Science.gov

Sample records for adult mice fed

  1. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet.

    PubMed

    Orellana, Juan A; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy

    2014-01-01

    Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter

  2. Maternal Dietary Vitamin D Does Not Program Systemic Inflammation and Bone Health in Adult Female Mice Fed an Obesogenic Diet

    PubMed Central

    Villa, Christopher R.; Chen, Jianmin; Wen, Bijun; Sacco, Sandra M.; Taibi, Amel; Ward, Wendy E.; Comelli, Elena M.

    2016-01-01

    Obesity is associated with systemic inflammation and impaired bone health. Vitamin D regulates bone metabolism, and has anti-inflammatory properties and epigenetic effects. We showed that exposure to high dietary vitamin D during pregnancy and lactation beneficially programs serum concentration of lipopolysaccharide (LPS) and bone structure in male offspring fed an obesogenic diet. Here we assessed if this effect is also apparent in females. C57BL/6J dams were fed AIN93G diet with high (5000 IU/kg diet) or low (25 IU/kg diet) vitamin D during pregnancy and lactation. Post-weaning, female offspring remained on their respective vitamin D level or were switched and fed a high fat and sucrose diet (44.2% fat, 19.8% sucrose) until age seven months when glucose response, adiposity, serum LPS, and bone mineral, trabecular and cortical structure, and biomechanical strength properties of femur and vertebra were assessed. There was no evidence for a programming effect of vitamin D for any outcomes. However, females exposed to a high vitamin D diet post-weaning had higher bone mineral content (p = 0.037) and density (p = 0.015) of lumbar vertebra. This post-weaning benefit suggests that in females, bone mineral accrual but not bone structure is compromised with low vitamin D status in utero until weaning in an obesogenic context. PMID:27792161

  3. Dietary CLA-induced lipolysis is delayed in soy oil-fed mice compared to coconut oil-fed mice.

    PubMed

    Ippagunta, S; Angius, Z; Sanda, M; Barnes, K M

    2013-11-01

    Conjugated linoleic acid (CLA) has been shown to cause a reduction in obesity in several species. CLA-induced body fat loss is enhanced when mice are fed coconut oil (CO) and involves increased lipolysis. The objective of this paper was to determine if the CLA-induced lipolysis in mice fed with different oil sources was time-dependent. Mice were fed 7 % soybean oil (SO) or CO diets for 6 week and then supplemented with 0 or 0.5 % CLA for 3, 7, 10 or 14 days. Body fat and ex-vivo lipolysis was determined. Body fat was reduced by CO on day 7 (P < 0.01) and in both CO and SO-fed mice (P < 0.05) in response to CLA on d14. Lipolysis was increased by CLA in CO-fed mice (P < 0.01) but not in SO-fed mice on day 7 and 10, but on day 14 CLA increased lipolysis in both CO- and SO-fed mice (P < 0.001). Expression and activation level of proteins involved in lipolysis and lipogenesis was determined by western blotting and real-time PCR, respectively. No significant differences were detected in protein expression. CO-fed mice had greater fatty acid synthase and stearyl CoA desaturase 1 mRNA expression and less acetyl CoA carboxylase mRNA expression (P < 0.01). Sterol regulatory binding protein 1c was decreased by CLA in CO-fed mice and increased in SO-fed mice (P < 0.05). Malic enzyme expression was increased by CLA (P < 0.001) and CO (P < 0.01). Therefore, CLA-induced lipolysis occurs more rapidly in CO vs SO-fed mice and lipogenesis is decreased in CO-fed mice with CLA supplementation.

  4. Food intake reduction and immunologic alterations in mice fed dehydroepiandrosterone.

    PubMed

    Weindruch, R; McFeeters, G; Walford, R L

    1984-01-01

    A diet containing 0.4% DHEA was fed to male mice of a long-lived strain from 3 weeks until 18 weeks of age. These mice were compared with others fed a control diet ad libitum and with mice pair-fed the control diet in amounts approximating the intake of the DHEA-fed group. Mice fed the DHEA diet failed to eat all of the food presented to them whereas the pair-fed mice ate all of their food. All mice were studied at 18 weeks of age for two age-sensitive immune parameters (spleen lymphocyte proliferation induced by T-cell mitogens [PHA or ConA] and natural killer cell lysis of an allogeneic tumor). DHEA feeding led to: 1) a decrease in food intake (approximately 30% less than for mice fed the control diet ad libitum), 2) a lower body weight at 18 weeks of age (approximately 40% lower than for ad libitum controls) due to a decrease in the body weight gained from 3 weeks through 18 weeks of age (approximately 55% lower than controls), 3) a lower spleen weight (approximately 30% lower than controls) but without lower numbers of nucleated cells per spleen, 4) an increase in PHA-induced proliferation by spleen lymphocytes (approximately 100% higher than for controls) and, 5) no influence on splenic natural killer cell activity. The inhibition of body weight gain for mice fed DHEA appeared due to both a reduction in food intake and a metabolic effect since mice eating DHEA gained less body weight per gram of food eaten than did mice in either group eating the control diet.

  5. Mitochondrial alterations in livers of Sod1-/- mice fed alcohol.

    PubMed

    Kessova, Irina G; Cederbaum, Arthur I

    2007-05-15

    Chronic alcohol consumption induced liver injury in Cu,Zn-superoxide dismutase-deficient mice (Sod1-/-), with extensive centrilobular necrosis and inflammation and a reduction in hepatic ATP content. Mechanisms by which ethanol decreased ATP in these mice remain unclear. We investigated alterations in mitochondria of Sod1-/- mice produced by chronic ethanol treatment. These mitochondria had an increase in State 4 oxygen consumption with succinate and especially with glutamate plus malate compared to mitochondria from pair-fed Sod1-/- mice or mitochondria from wild-type mice fed dextrose or ethanol. This uncoupling was associated with a decrease in ADP/O and respiratory control ratios, a decline in mitochondrial membrane potential, enhanced mitochondrial permeability transition, and decreased aconitase activity. Total thiols and uncoupling protein 2 levels were elevated in the pair-fed Sod1-/- mitochondria, perhaps an adaptive response to oxidant stress. However, no such increases were found with the ethanol-fed Sod1-/- mitochondria, suggesting a failure to develop these adaptations. The mitochondria from the ethanol-fed Sod1-/- mice had elevated levels of cleaved Bax, Bak, Bcl-xl, and adenine nucleotide translocator. Immunoprecipitation studies revealed increased association of Bax and Bak with the adenine nucleotide translocator. ADP-ATP exchange was very low in the ethanol-fed Sod1-/- mitochondria. These results suggest that ethanol treatment of Sod1-/- mice produces uncoupling and a decline in Deltapsi, swelling, increased association of proapoptotic proteins involved in the permeability transition, and decreased adenine nucleotide translocator activity, which may be responsible for the decline in ATP levels and development of necrosis in this model of alcohol-induced liver injury.

  6. Comparison of growth and exploratory behavior in mice fed an exclusively milk formula diet and mice fed a food-pellet diet post weaning.

    PubMed

    Ishii, Toshiaki; Itou, Takuya; Nishimura, Masakazu

    2005-11-26

    An exclusively milk formula diet stunted the growth of mice immediately following weaning. Milk-fed mice displayed a low-frequency profile of exploratory behavior, while pellet-fed mice showed high-frequency exploration. In contrast to exploratory behavior, feeding behavior did not differ significantly between milk- and pellet-fed mice. Despite showing low-frequency exploratory behavior, mice on an exclusively milk formula diet showed no difference in behavioral activities analyzed by an automatic hole-board apparatus compared to pellet-fed mice. These results suggest that the growth stunt caused by an exclusively milk formula diet retards the acquisition of active exploratory behavior without affecting the emotional state of mice.

  7. Discrimination learning in adult bobwhite quail fed paraquat

    USGS Publications Warehouse

    Bunck, C.M.; Bunck, T.J.; Sileo, L.

    1986-01-01

    Adult male bobwhite quail (Colinus virginianus) were fed a diet containing 0, 25 or 100 ppm paraquat dichloride. After 60 d on treated diets, discrimination learning was evaluated with acquisition and reversal tests. The three groups performed similarly on these tests. Dose-related histopathological lesions were not found in liver, kidney or lung tissues

  8. Suggestive evidence for the induction of colonic aberrant crypts in mice fed sodium nitrite.

    PubMed

    Zhou, Lin; Zahid, Muhammad; Anwar, Muhammad M; Pennington, Karen L; Cohen, Samuel M; Wisecarver, James L; Shostrom, Valerie; Mirvish, Sidney S

    2016-01-01

    A reported linkage between processed (nitrite-treated) meat products and the incidence of colon cancer could be due to sodium nitrite (NaNO2) itself or to N-nitroso compounds produced from the nitrite. Exposure to nitrite occurs due to residual nitrite in processed meat and to salivary nitrite arising by reduction of nitrate in vegetables and drinking water. Here we tested whether NaNO2 could induce colonic aberrant crypts (ABC) or ABC foci (ACF), which are putative precursors of colon cancer. We fed NaNO2 in drinking water for 20-25 wk to groups of 8-20 adult female mice. After sacrifice, ABC and ACF were counted in 2-cm distal colonic segments. In Experiment 1, no significant differences in ABC/ACF induction were seen between groups of 13-14 A/J mice fed 0, 0.5, or 1.0 g NaNO2/l drinking water. NaNO2 also did not affect fasting blood glucose levels. In Experiment 2, we fed 0, 1.0, 1.25, or 1.5 g NaNO2/l water to groups of 15 CF-1 mice. Five of the mice fed 1.5 g NaNO2/l showed ABC, whereas all other groups showed only 0-2 ABC/group, including 0 ABC for the group fed 1.25 g NaNO2/l. Overall statistical analysis indicated a dose-response p trends of 0.04. Pairwise comparison of ABC between groups fed 1.25 and 1.5 g NaNO2/l showed p 0.02 for both ABC and ACF, but a similar comparison between the untreated and 1.5 g/l groups showed no significant effects. In Experiment 3, hot dogs (18% of diet), which were fed to CF-1 mice previously treated with azoxymethane, inhibited ABC and ACF induction, but this effect was not significant (P = 0.10-0.12). In conclusion, these results support the view that NaNO2 may be a risk factor for colon carcinogenesis.

  9. Simvastatin and artesunate impact the structural organization of adult Schistosoma mansoni in hypercholesterolemic mice.

    PubMed

    Alencar, Alba Cristina Miranda de Barros; Santos, Thais da Silva; Neves, Renata Heisler; Lopes Torres, Eduardo José; Nogueira-Neto, José Firmino; Machado-Silva, José Roberto

    2016-08-01

    Experimental data have shown that simvastatin and artesunate possess activity against Schistosoma mansoni worms in mice fed standard chow. However, little is known regarding the roles of these drugs in mice fed high-fat chow. We have extended past studies by measuring the effects of these drugs on the structural organization of adult schistosomes in hypercholesterolemic mice. For this purpose, mice were gavaged with either simvastatin or artesunate at nine weeks post-infection and were euthanized by cervical dislocation at two weeks post-treatment. Adult worms were then collected and examined by conventional light microscopy, morphometry and confocal laser scanning microscopy. Plasma total cholesterol and worm reduction rates were significantly increased in mice fed high-fat chow compared with their respective control groups. Simvastatin and artesunate caused changes in the tegument, tubercles, and reproductive system (testicular lobes, vitelline glands and ovarian cells), particularly when administered to mice fed high-fat chow. In particular, the tegument and tubercles were significantly thinner in artesunate-treated worms in mice fed high-fat chow compared with mice fed standard chow. This study thus demonstrated that simvastatin and artesunate have several novel effects on the structural organization of adult worms. Together, these results show, for the first time, that simvastatin and artesunate display antischistosomal activity in hypercholesterolemic mice.

  10. Increased Aβ pathology in aged Tg2576 mice born to mothers fed a high fat diet.

    PubMed

    Nizari, Shereen; Carare, Roxana O; Hawkes, Cheryl A

    2016-02-25

    Maternal obesity is associated with increased risk of developing diabetes, obesity and premature death in adult offspring. Mid-life diabetes, hypertension and hypercholesterolaemia are risk factors for the development of sporadic Alzheimer's disease (AD). A key pathogenic feature of AD is the accumulation of β-amyloid (Aβ) in the brain. The purpose of this study was to investigate the effect of high fat diet feeding during early life on Aβ pathology in the Tg2576 mouse model of AD. Female mice were fed a standard (C) or high fat (HF) diet before mating and during gestation and lactation. At weaning, male offspring were fed a C diet. Significantly higher levels of guanidine-soluble Aβ and plaque loads were observed in the hippocampi of 11-month old Tg2576 mice born to mothers fed a HF diet. Changes in the extracellular matrix led to increased retention of Aβ within the parenchyma. These data support a role for maternal and gestational health on the health of the aged brain and pathologies associated with AD and may provide a novel target for both the prevention and treatment of AD.

  11. Increased Aβ pathology in aged Tg2576 mice born to mothers fed a high fat diet

    PubMed Central

    Nizari, Shereen; Carare, Roxana O.; Hawkes, Cheryl A.

    2016-01-01

    Maternal obesity is associated with increased risk of developing diabetes, obesity and premature death in adult offspring. Mid-life diabetes, hypertension and hypercholesterolaemia are risk factors for the development of sporadic Alzheimer’s disease (AD). A key pathogenic feature of AD is the accumulation of β-amyloid (Aβ) in the brain. The purpose of this study was to investigate the effect of high fat diet feeding during early life on Aβ pathology in the Tg2576 mouse model of AD. Female mice were fed a standard (C) or high fat (HF) diet before mating and during gestation and lactation. At weaning, male offspring were fed a C diet. Significantly higher levels of guanidine-soluble Aβ and plaque loads were observed in the hippocampi of 11-month old Tg2576 mice born to mothers fed a HF diet. Changes in the extracellular matrix led to increased retention of Aβ within the parenchyma. These data support a role for maternal and gestational health on the health of the aged brain and pathologies associated with AD and may provide a novel target for both the prevention and treatment of AD. PMID:26911528

  12. [Development of Rhodnius pictipes Stal, 1872 fed on mice and through a silicone membrane (Hemiptera, Reduviidae, Triatominae)].

    PubMed

    Rocha, D da S; da Fonseca, A H; Costa, F A; Jurberg, J; Galvão, C

    1997-01-01

    Rhodnius pictipes (Hemiptera, Reduviidae) from Serra Norte, State of Pará, Brazil, acclimatized in an insectary at the Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Departamento de Entomologia, Instituto Oswaldo Cruz, were fed through a silicone membrane. In order to know the viability and the efficiency of this membrane compared with insects fed on mice, the number of bloodmeals taken, period of development of the five nymphal instars, longevity of adults, average amount of blood intake in each meal and percent of mortality were observed. A total of 310 insects, were used, comprising 50 nymphs of each instar, as well as 30 male and 30 female adults. Insects fed artificially had reduced minimal and maximal periods of development than the group fed on mice. The largest relative increase of body weight was observed in the 2nd instar followed by the 1st, and the amount of blood ingested increased during the development, to the 5th instar for both groups. There were no significant differences between the groups fed artificially and in vivo according to Tukey's test for p > 0.05. The percent of mortality in the 1st instar was 18% for artificially fed and 16% for the group fed on mice; these percentages decreased as insects developed until the 4th instar, without mortality, returning to increase in the 5th instar. R. pictipes was shown to be easily adaptable to artificial feeding, and could be considered as an important and viable experimental model.

  13. Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice.

    PubMed

    Gahete, Manuel D; Córdoba-Chacón, José; Lantvit, Daniel D; Ortega-Salas, Rosa; Sanchez-Sanchez, Rafael; Pérez-Jiménez, Francisco; López-Miranda, José; Swanson, Steven M; Castaño, Justo P; Luque, Raúl M; Kineman, Rhonda D

    2014-11-01

    Growth hormone (GH) and/or insulin-like growth factor I (IGF-I) are thought to promote breast cancer based on reports showing circulating IGF-I levels correlate, in epidemiological studies, with breast cancer risk. Also, mouse models with developmental GH/IGF-I deficiency/resistance are less susceptible to genetic- or chemical-induced mammary tumorigenesis. However, given the metabolic properties of GH, medical strategies have been considered to raise GH to improve body composition and metabolic function in elderly and obese patients. Since hyperlipidemia, inflammation, insulin resistance and obesity increase breast cancer risk, elevating GH may serve to exacerbate cancer progression. To better understand the role GH/IGF-I plays in tumor formation, this study used unique mouse models to determine if reducing GH/IGF-I in adults protects against 7,12-dimethylbenz[α]anthracene (DMBA)-induced mammary tumor development, and if moderate elevations in endogenous GH/IGF-I alter DMBA-induced tumorigenesis in mice fed a standard-chow diet or in mice with altered metabolic function due to high-fat feeding. We observed that adult-onset isolated GH-deficient mice, which also have reduced IGF-I levels, were less susceptible to DMBA-treatment. Specifically, fewer adult-onset isolated GH-deficient mice developed mammary tumors compared with GH-replete controls. In contrast, chow-fed mice with elevated endogenous GH/IGF-I (HiGH mice) were not more susceptible to DMBA-treatment. However, high-fat-fed, HiGH mice showed reduced tumor latency and increased tumor incidence compared with diet-matched controls. These results further support a role of GH/IGF-I in regulating mammary tumorigenesis but suggest the ultimate consequences of GH/IGF-I on breast tumor development are dependent on the diet and/or metabolic status.

  14. Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice

    PubMed Central

    Gahete, Manuel D.; Córdoba-Chacón, José; Lantvit, Daniel D.; Ortega-Salas, Rosa; Sanchez-Sanchez, Rafael; Pérez-Jiménez, Francisco; López-Miranda, José; Swanson, Steven M.; Castaño, Justo P.; Luque, Raúl M.; Kineman, Rhonda D.

    2014-01-01

    Growth hormone (GH) and/or insulin-like growth factor I (IGF-I) are thought to promote breast cancer based on reports showing circulating IGF-I levels correlate, in epidemiological studies, with breast cancer risk. Also, mouse models with developmental GH/IGF-I deficiency/resistance are less susceptible to genetic- or chemical-induced mammary tumorigenesis. However, given the metabolic properties of GH, medical strategies have been considered to raise GH to improve body composition and metabolic function in elderly and obese patients. Since hyperlipidemia, inflammation, insulin resistance and obesity increase breast cancer risk, elevating GH may serve to exacerbate cancer progression. To better understand the role GH/IGF-I plays in tumor formation, this study used unique mouse models to determine if reducing GH/IGF-I in adults protects against 7,12-dimethylbenz[α]anthracene (DMBA)-induced mammary tumor development, and if moderate elevations in endogenous GH/IGF-I alter DMBA-induced tumorigenesis in mice fed a standard-chow diet or in mice with altered metabolic function due to high-fat feeding. We observed that adult-onset isolated GH-deficient mice, which also have reduced IGF-I levels, were less susceptible to DMBA-treatment. Specifically, fewer adult-onset isolated GH-deficient mice developed mammary tumors compared with GH-replete controls. In contrast, chow-fed mice with elevated endogenous GH/IGF-I (HiGH mice) were not more susceptible to DMBA-treatment. However, high-fat-fed, HiGH mice showed reduced tumor latency and increased tumor incidence compared with diet-matched controls. These results further support a role of GH/IGF-I in regulating mammary tumorigenesis but suggest the ultimate consequences of GH/IGF-I on breast tumor development are dependent on the diet and/or metabolic status. PMID:25085903

  15. Adrenalectomy fails to stimulate brown adipose tissue metabolism in ob/ob mice fed glucose.

    PubMed

    Kim, H K; Romsos, D R

    1988-11-01

    Adrenalectomy arrests the development of obesity in ob/ob mice fed nonpurified high-starch diets partly by stimulating the low thermogenic activity of brown adipose tissue (BAT). However, adrenalectomy fails to suppress the development of obesity in ob/ob mice fed a purified high-glucose diet. Effects of adrenalectomy on BAT metabolism in ob/ob mice fed purified high-starch or high-glucose diets were therefore examined. Adrenalectomy markedly decreased the efficiency of energy retention and increased BAT metabolism (as assessed by GDP binding to BAT mitochondria, GDP-inhibitable acetate- or chloride-induced mitochondrial swelling, and by rates of norepinephrine turnover in BAT) in ob/ob mice fed a high-starch purified diet but had only minimal effects on energy efficiency or BAT metabolism in ob/ob mice fed a high-glucose purified diet. Plasma insulin concentrations decreased and thyroxine concentrations increased in adrenalectomized ob/ob mice fed the high-starch diet; changes in these hormones were less pronounced in adrenalectomized ob/ob mice fed the high-glucose diet. Consumption of glucose mimics effects of adrenal secretions on BAT metabolism in ob/ob mice.

  16. Increased adult hippocampal neurogenesis is not necessary for wheel running to abolish conditioned place preference for cocaine in mice.

    PubMed

    Mustroph, M L; Merritt, J R; Holloway, A L; Pinardo, H; Miller, D S; Kilby, C N; Bucko, P; Wyer, A; Rhodes, J S

    2015-01-01

    Recent evidence suggests that wheel running can abolish conditioned place preference (CPP) for cocaine in mice. Running significantly increases the number of new neurons in the hippocampus, and new neurons have been hypothesised to enhance plasticity and behavioral flexibility. Therefore, we tested the hypothesis that increased neurogenesis was necessary for exercise to abolish cocaine CPP. Male nestin-thymidine kinase transgenic mice were conditioned with cocaine, and then housed with or without running wheels for 32 days. Half of the mice were fed chow containing valganciclovir to induce apoptosis in newly divided neurons, and the other half were fed standard chow. For the first 10 days, mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. On the last 4 days, mice were tested for CPP, and then euthanized for measurement of adult hippocampal neurogenesis by counting the number of BrdU-positive neurons in the dentate gyrus. Levels of running were similar in mice fed valganciclovir-containing chow and normal chow. Valganciclovir significantly reduced the numbers of neurons (BrdU-positive/NeuN-positive) in the dentate gyrus of both sedentary mice and runner mice. Valganciclovir-fed runner mice showed similar levels of neurogenesis as sedentary, normal-fed controls. However, valganciclovir-fed runner mice showed the same abolishment of CPP as runner mice with intact neurogenesis. The results demonstrate that elevated adult hippocampal neurogenesis resulting from running is not necessary for running to abolish cocaine CPP in mice.

  17. Mortality of adult Stomoxys calcitrans fed isolates of Bacillus thuringiensis.

    PubMed

    Lysyk, T J; Kalischuk-Tymensen, L D; Selinger, L B

    2012-10-01

    We examined the ability of five isolates of Bacillus thuringiensis Berliner to cause mortality in adult stable flies, Stomoxys calcitrans (L.). Isolates Bacillus thuringiensis tolworthi 4L3 (serotype 9), Bacillus thuringiensis darmstadiensis 4M1 (serotype 10a10b), Bacillus thuringiensis thompsoni 401 (serotype 12), Bacillus thuringiensis thuringiensis HD2 (serotype 1), and Bacillus thuringiensis kurstaki HD945 (serotype 3a3b3c) were administered to adult flies in diets containing blood only, sugar only, and both sugar and blood combined. B. t. tolworthi 4L3 had no effect on adult mortality regardless of the feeding substrate. The remaining isolates tended to cause the greatest mortality when administered in blood alone. B. t. thompsoni 401 was the only isolate that consistently caused adult mortality when fed in blood at concentrations ranging from 0.21 to 50.0 microg of protein per ml of blood. This isolate also caused mortality when applied topically. The time to 50% mortality declined with dose and reached a lower asymptote at approximately equal to 1.3 d at an oral dose of 8.75 microg/ml and at a topical dose of 0.14 microg per fly.

  18. Adult neurogenesis in serotonin transporter deficient mice.

    PubMed

    Schmitt, A; Benninghoff, J; Moessner, R; Rizzi, M; Paizanis, E; Doenitz, C; Gross, S; Hermann, M; Gritti, A; Lanfumey, L; Fritzen, S; Reif, A; Hamon, M; Murphy, D L; Vescovi, A; Lesch, K-P

    2007-09-01

    Serotonin (5-HT) is a regulator of morphogenetic activities during early brain development and neurogenesis, including cell proliferation, migration, differentiation, and synaptogenesis. The 5-HT transporter (5-HTT, SLC6A4) mediates high-affinity reuptake of 5-HT into presynaptic terminals and thereby fine-tunes serotonergic neurotransmission. Inactivation of the 5-HTT gene in mice reduces 5-HT clearance resulting in persistently increased concentrations of synaptic 5-HT. In the present study, we investigated the effects of elevated 5-HT levels on adult neurogenesis in the hippocampus of 5-HTT deficient mice, including stem cell proliferation, survival, and differentiation. Using an in vivo approach, we showed an increase in proliferative capacity of hippocampal adult neural stem cells in aged 5-HTT knockout mice (approximately 14.5 months) compared to wildtype controls. In contrast, in vivo and additional in vitro analyses of younger adult 5-HTT knockout mice (approximately 7 weeks and approximately 3.0 months) did not reveal significant changes in proliferation of neural stem cells or survival of newborn cells. We showed that the cellular fate of newly generated cells in 5-HTT knockout mice is not different with respect to the total number and percentage of neurons or glial cells from wildtype controls. Our findings indicate that elevated synaptic 5-HT concentration throughout early development and later life of 5-HTT deficient mice does not induce adult neurogenesis in adult mice, but that elevated 5-HT levels in aged mice influence stem cell proliferation.

  19. EPA prevents fat mass expansion and metabolic disturbances in mice fed with a Western diet.

    PubMed

    Pinel, Alexandre; Pitois, Elodie; Rigaudiere, Jean-Paul; Jouve, Chrystele; De Saint-Vincent, Sarah; Laillet, Brigitte; Montaurier, Christophe; Huertas, Alain; Morio, Beatrice; Capel, Frederic

    2016-08-01

    The impact of alpha linolenic acid (ALA), EPA, and DHA on obesity and metabolic complications was studied in mice fed a high-fat, high-sucrose (HF) diet. HF diets were supplemented with ALA, EPA, or DHA (1% w/w) and given to C57BL/6J mice for 16 weeks and to Ob/Ob mice for 6 weeks. In C57BL/6J mice, EPA reduced plasma cholesterol (-20%), limited fat mass accumulation (-23%) and adipose cell hypertrophy (-50%), and reduced plasma leptin concentration (-60%) compared with HF-fed mice. Furthermore, mice supplemented with EPA exhibited a higher insulin sensitivity (+24%) and glucose tolerance (+20%) compared with HF-fed mice. Similar effects were observed in EPA-supplemented Ob/Ob mice, although fat mass accumulation was not prevented. By contrast, in comparison with HF-fed mice, DHA did not prevent fat mass accumulation, increased plasma leptin concentration (+128%) in C57BL/6J mice, and did not improve glucose homeostasis in C57BL/6J and Ob/Ob mice. In 3T3-L1 adipocytes, DHA stimulated leptin expression whereas EPA induced adiponectin expression, suggesting that improved leptin/adiponectin balance may contribute to the protective effect of EPA. In conclusion, supplementation with EPA, but not ALA and DHA, could preserve glucose homeostasis in an obesogenic environment and limit fat mass accumulation in the early stage of weight gain.

  20. Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice

    PubMed Central

    Harada, Naoki; Hanaoka, Ryo; Horiuchi, Hiroko; Kitakaze, Tomoya; Mitani, Takakazu; Inui, Hiroshi; Yamaji, Ryoichi

    2016-01-01

    Late-onset hypogonadism (i.e. androgen deficiency) raises the risk for abdominal obesity in men. The mechanism for this obesity is unclear. Here, we demonstrated that hypogonadism after castration caused abdominal obesity in high-fat diet (HFD)-fed, but not in standard diet (SD)-fed, C57BL/6J mice. Furthermore, the phenotype was not induced in mice treated with antibiotics that disrupt the intestinal microflora. In HFD-fed mice, castration increased feed efficiency and decreased fecal weight per food intake. Castration also induced in an increase of visceral fat mass only in the absence of antibiotics in HFD-fed mice, whereas subcutaneous fat mass was increased by castration irrespective of antibiotics. Castration reduced the expression in the mesenteric fat of both adipose triglyceride lipase and hormone-sensitive lipase in HFD-fed mice, which was not observed in the presence of antibiotics. Castration decreased thigh muscle (i.e. quadriceps and hamstrings) mass, elevated fasting blood glucose levels, and increased liver triglyceride levels in a HFD-dependent manner, whereas these changes were not observed in castrated mice treated with antibiotics. The Firmicutes/Bacteroidetes ratio and Lactobacillus species increased in the feces of HFD-fed castrated mice. These results show that androgen (e.g. testosterone) deficiency can alter the intestinal microbiome and induce abdominal obesity in a diet-dependent manner. PMID:26961573

  1. Exercise Improves Glucose Disposal and Insulin Signaling in Pregnant Mice Fed a High Fat Diet

    PubMed Central

    Carter, Lindsay G; Ngo Tenlep, Sara Y; Woollett, Laura A; Pearson, Kevin J

    2016-01-01

    Objective Physical activity has been suggested as a non-pharmacological intervention that can be used to improve glucose homeostasis in women with gestational diabetes mellitus. The purpose of this study was to determine the effects of voluntary exercise on glucose tolerance and body composition in pregnant high fat diet fed mice. Methods Female mice were put on a standard diet or high fat diet for two weeks. The mice were then split into 4 groups; control standard diet fed, exercise standard diet fed, control high fat diet fed, and exercise high fat diet fed. Exercise mice had voluntary access to a running wheel in their home cage one week prior to mating, during mating, and throughout pregnancy. Glucose tolerance and body composition were measured during pregnancy. Akt levels were quantified in skeletal muscle and adipose tissue isolated from saline or insulin injected pregnant dams as a marker for insulin signaling. Results Consumption of the high fat diet led to significantly increased body weight, fat mass, and impaired glucose tolerance in control mice. However, voluntary running in the high fat diet fed dams significantly reduced weight gain and fat mass and ultimately improved glucose tolerance compared to control high fat diet fed dams. Further, body weight, fat mass, and glucose disposal in exercise high fat diet dams were indistinguishable from control dams fed the standard diet. High fat diet fed exercise dams also had significantly increased insulin stimulated phosphorylated Akt expression in adipose tissue, but not skeletal muscle, compared to control dams on high fat diet. Conclusion The use of voluntary exercise improves glucose homeostasis and body composition in pregnant female mice. Thus, future studies could investigate potential long-term health benefits in offspring born to obese exercising dams. PMID:26966635

  2. Time-restricted feeding reduces adiposity in mice fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disruption of the circadian rhythm contributes to obesity. The present study investigated the effects of time-restricted feeding (TRF) of a high-fat diet on adiposity in male C57BL/6 mice. Three-week-old mice were fed a low-fat or high-fat diet (16% or 45% of energy from corn oil) ad libitum (ad l...

  3. Chronic Angiotensin-(1-7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure.

    PubMed

    Williams, Ian M; Otero, Yolanda F; Bracy, Deanna P; Wasserman, David H; Biaggioni, Italo; Arnold, Amy C

    2016-05-01

    Angiotensin-(1-7) improves glycemic control in animal models of cardiometabolic syndrome. The tissue-specific sites of action and blood pressure dependence of these metabolic effects, however, remain unclear. We hypothesized that Ang-(1-7) improves insulin sensitivity by enhancing peripheral glucose delivery. Adult male C57BL/6J mice were placed on standard chow or 60% high-fat diet for 11 weeks. Ang-(1-7) (400 ng/kg per minute) or saline was infused subcutaneously during the last 3 weeks of diet, and hyperinsulinemic-euglycemic clamps were performed at the end of treatment. High-fat fed mice exhibited modest hypertension (systolic blood pressure: 137 ± 3 high fat versus 123 ± 5 mm Hg chow;P=0.001), which was not altered by Ang-(1-7) (141 ± 4 mm Hg;P=0.574). Ang-(1-7) did not alter body weight or fasting glucose and insulin in chow or high-fat fed mice. Ang-(1-7) increased the steady-state glucose infusion rate needed to maintain euglycemia in high-fat fed mice (31 ± 5 Ang-(1-7) versus 16 ± 1 mg/kg per minute vehicle;P=0.017) reflecting increased whole-body insulin sensitivity, with no effect in chow-fed mice. The improved insulin sensitivity in high-fat fed mice was because of an enhanced rate of glucose disappearance (34 ± 5 Ang-(1-7) versus 20 ± 2 mg/kg per minute vehicle;P=0.049). Ang-(1-7) enhanced glucose uptake specifically into skeletal muscle by increasing translocation of glucose transporter 4 to the sarcolemma. Our data suggest that Ang-(1-7) has direct insulin-sensitizing effects on skeletal muscle, independent of changes in blood pressure. These findings provide new insight into mechanisms by which Ang-(1-7) improves insulin action, and provide further support for targeting this peptide in cardiometabolic disease.

  4. CCK(1) receptor is essential for normal meal patterning in mice fed high fat diet.

    PubMed

    Donovan, Michael J; Paulino, Gabriel; Raybould, Helen E

    2007-12-05

    Cholecystokinin (CCK), released by lipid in the intestine, initiates satiety by acting at cholecystokinin type 1 receptors (CCK(1)Rs) located on vagal afferent nerve terminals located in the wall of the gastrointestinal tract. In the present study, we determined the role of the CCK(1)R in the short term effects of a high fat diet on daily food intake and meal patterns using mice in which the CCK(1)R gene is deleted. CCK(1)R(-/-) and CCK(1)R(+/+) mice were fed isocaloric high fat (HF) or low fat (LF) diets ad libitum for 18 h each day and meal size, meal frequency, intermeal interval, and meal duration were determined. Daily food intake was unaltered by diet in the CCK(1)R(-/-) compared to CCK(1)R(+/+) mice. However, meal size was larger in the CCK(1)R(-/-) mice compared to CCK(1)R(+/+) mice when fed a HF diet, with a concomitant decrease in meal frequency. Meal duration was increased in mice fed HF diet regardless of phenotype. In addition, CCK(1)R(-/-) mice fed a HF diet had a 75% decrease in the time to 1st meal compared to CCK(1)R(+/+) mice following a 6 h fast. These data suggest that lack of the CCK(1)R results in diminished satiation, causing altered meal patterns including larger, less frequent meals when fed a high fat diet. These results suggest that the CCK(1)R is involved in regulating caloric intake on a meal to meal basis, but that other factors are responsible for regulation of daily food intake.

  5. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet.

    PubMed

    Gao, Xiang; Liu, Xiaofang; Xu, Jie; Xue, Changhu; Xue, Yong; Wang, Yuming

    2014-10-01

    Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine (TMA) and is present in many aquatic foods. Here, we investigated the effects of TMAO on glucose tolerance in high fat diet (HFD)-fed mice. Male C57BL/6 mice were randomly assigned to the control, high fat (HF), and TMAO groups. The HF group was fed a diet containing 25% fat, and the TMAO group was fed the HFD plus 0.2% TMAO for 4 weeks. After 3 weeks of feeding, oral glucose tolerance tests were performed. Dietary TMAO increased fasting insulin levels and homeostasis model assessment-estimated insulin resistance (HOMA-IR) and exacerbated the impaired glucose tolerance in HFD-fed mice. These effects were associated with the expression of genes related to the insulin signal pathway, glycogen synthesis, gluconeogenesis and glucose transport in liver. mRNA levels of the pro-inflammatory cytokine MCP-1 increased significantly and of the anti-inflammatory cytokine IL-10 greatly decreased in adipose tissue. Our results suggest that dietary TMAO exacerbates impaired glucose tolerance, obstructs the hepatic insulin signaling pathway, and causes adipose tissue inflammation in mice fed a high fat diet.

  6. Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome.

    PubMed

    Fok, Wilson C; Chen, Yidong; Bokov, Alex; Zhang, Yiqiang; Salmon, Adam B; Diaz, Vivian; Javors, Martin; Wood, William H; Zhang, Yongqing; Becker, Kevin G; Pérez, Viviana I; Richardson, Arlan

    2014-01-01

    Rapamycin was found to increase (11% to 16%) the lifespan of male and female C57BL/6J mice most likely by reducing the increase in the hazard for mortality (i.e., the rate of aging) term in the Gompertz mortality analysis. To identify the pathways that could be responsible for rapamycin's longevity effect, we analyzed the transcriptome of liver from 25-month-old male and female mice fed rapamycin starting at 4 months of age. Few changes (<300 transcripts) were observed in transcriptome of rapamycin-fed males; however, a large number of transcripts (>4,500) changed significantly in females. Using multidimensional scaling and heatmap analyses, the male mice fed rapamycin were found to segregate into two groups: one group that is almost identical to control males (Rapa-1) and a second group (Rapa-2) that shows a change in gene expression (>4,000 transcripts) with more than 60% of the genes shared with female mice fed Rapa. Using ingenuity pathway analysis, 13 pathways were significantly altered in both Rapa-2 males and rapamycin-fed females with mitochondrial function as the most significantly changed pathway. Our findings show that rapamycin has a major effect on the transcriptome and point to several pathways that would likely impact the longevity.

  7. Subchronic toxicity study in mice fed Spirulina maxima.

    PubMed

    Salazar, M; Martínez, E; Madrigal, E; Ruiz, L E; Chamorro, G A

    1998-10-01

    The purpose of this study was to evaluate the toxicity of Spirulina maxima, a blue-green alga used as food supplement and food coloring, after 13 weeks of treatment. Groups of ten mice of each sex were given S. maxima in the diet at concentrations of 0 (control), 10, 20 or 30% (w/w) for 13 weeks. The alga ingestion had no effect on behavior, food and water intake, growth or survival. Terminal values in hematology and clinical chemistry did not reveal differences between treated and control groups. However, male and female mice showed significant changes in serum cholesterol levels at 20 and 30% algal concentrations, but a toxic effect of S. maxima was excluded. Post-mortem examination revealed no differences in gross or microscopic findings. Our results show that S. maxima up to high feeding levels did not produce adverse effects in mice after subchronic treatment.

  8. Immature mice are more susceptible than adult mice to acetaminophen-induced acute liver injury

    PubMed Central

    Lu, Yan; Zhang, Cheng; Chen, Yuan-Hua; Wang, Hua; Zhang, Zhi-Hui; Chen, Xi; Xu, De-Xiang

    2017-01-01

    Acetaminophen (APAP) overdose induces acute liver injury. The aim of the present study was to analyze the difference of susceptibility between immature and adult mice to APAP-induced acute liver injury. Weanling immature and adult mice were injected with APAP (300 mg/kg). As expected, immature mice were more susceptible than adult mice to APAP-induced acute liver injury. APAP-evoked hepatic c-Jun N-terminal kinase phosphorylation was stronger in immature mice than in adult mice. Hepatic receptor-interacting protein (RIP)1 was obviously activated at APAP-exposed immature and adult mice. Interestingly, hepatic RIP3 activation was more obvious in APAP-treated immature mice than adult mice. Although there was no difference on hepatic GSH metabolic enzymes between immature and adult mice, immature mice were more susceptible than adult mice to APAP-induced hepatic GSH depletion. Of interest, immature mice expressed a much higher level of hepatic Cyp2e1 and Cyp3a11 mRNAs than adult mice. Correspondingly, immature mice expressed a higher level of hepatic CYP2E1, the key drug metabolic enzyme that metabolized APAP into the reactive metabolite NAPQI. These results suggest that a higher level of hepatic drug metabolic enzymes in immature mice than adult mice might contribute to the difference of susceptibility to APAP-induced acute liver injury. PMID:28205631

  9. Intestinal Mucosal Triacylglycerol Accumulation Secondary to Decreased Lipid Secretion in Obese and High Fat Fed Mice

    PubMed Central

    Douglass, John D.; Malik, Nashmia; Chon, Su-Hyoun; Wells, Kevin; Zhou, Yin Xiu; Choi, Andrew S.; Joseph, Laurie B.; Storch, Judith

    2012-01-01

    The ectopic deposition of fat in liver and muscle during obesity is well established, however surprisingly little is known about the intestine. We used the ob/ob mouse and C57BL6/J mice fed a high fat (HF) diet to examine the effects of obesity and the effects of HF feeding, respectively, on intestinal mucosal triacylglycerol (TG) accumulation. Male C57BL6/J (wild-type, WT) mice were fed low fat (LF; 10% kcal as fat) or HF (45%) diets, and ob/ob mice were fed the LF diet, for 3 weeks. In this time frame, the WT–HF mice did not become obese, enabling independent examination of effects of the HF diet and effects of obesity. Analysis of intestinal lipid extracts from fed and fasted animals demonstrated that the mucosa, like other tissues, accumulates excess lipid. In the fed state, mucosal triacylglycerol (TG) levels were threefold and fivefold higher in the WT–HF and ob/ob mice, respectively, relative to the WT–LF mice. In the fasted state, mucosa from ob/ob mice had threefold higher TG levels relative to WT–LF mucosa. q-PCR analysis of mucosal mRNA from fed state mice showed alterations in the expression of several genes related to both anabolic and catabolic lipid metabolism pathways in WT–HF and ob/ob mice relative to WT–LF controls. Fewer changes were found in mucosal samples from the fasted state animals. Remarkably, oral fat tolerance tests showed a striking reduction in the plasma appearance of an oral fat load in the ob/ob and WT–HF mice compared to WT–LF. Overall, the results demonstrate that the intestinal mucosa accumulates excess TG during obesity. Changes in the expression of lipid metabolic and transport genes, as well as reduced secretion of dietary lipid from the mucosal cells into the circulation, may contribute to the TG accumulation in intestinal mucosa during obesity. Moreover, even in the absence of frank obesity, HF feeding leads to a large decrease in the rate of intestinal lipid secretion. PMID:22375121

  10. Adipokine production in mice fed high-fat diets containing different types of dietary fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study compared high-fat diets containing different types of dietary fats with various levels of linoleic acid (18:2n6, LA) and a-linolenic acid (18:3n3, ALA) on adipokine production in male C57BL/6 mice. Three-week old mice were fed AIN93G diet (15% of energy from corn oil, control) or ...

  11. Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice

    PubMed Central

    Cordoba-Chacon, Jose; Majumdar, Neena; List, Edward O.; Diaz-Ruiz, Alberto; Frank, Stuart J.; Manzano, Anna; Bartrons, Ramon; Puchowicz, Michelle; Kopchick, John J.

    2015-01-01

    Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have low growth hormone (GH) production and/or hepatic GH resistance. GH replacement can resolve the fatty liver condition in diet-induced obese rodents and in GH-deficient patients. However, it remains to be determined whether this inhibitory action of GH is due to direct regulation of hepatic lipid metabolism. Therefore, an adult-onset, hepatocyte-specific, GH receptor (GHR) knockdown (aLivGHRkd) mouse was developed to model hepatic GH resistance in humans that may occur after sexual maturation. Just 7 days after aLivGHRkd, hepatic de novo lipogenesis (DNL) was increased in male and female chow-fed mice, compared with GHR-intact littermate controls. However, hepatosteatosis developed only in male and ovariectomized female aLivGHRkd mice. The increase in DNL observed in aLivGHRkd mice was not associated with hyperactivation of the pathway by which insulin is classically considered to regulate DNL. However, glucokinase mRNA and protein levels as well as fructose-2,6-bisphosphate levels were increased in aLivGHRkd mice, suggesting that enhanced glycolysis drives DNL in the GH-resistant liver. These results demonstrate that hepatic GH actions normally serve to inhibit DNL, where loss of this inhibitory signal may explain, in part, the inappropriate increase in hepatic DNL observed in NAFLD patients. PMID:26015548

  12. Fasting and sampling time affect liver gene expression of high-fat diet-fed mice.

    PubMed

    Lee, C Y

    2010-05-01

    Several physiological and biological variables are known to affect peroxisome proliferator-activated receptor (PPAR)-α-dependent signaling pathway and plasma biochemical profiles. However, less is known about the effect of these variables on high-fat diet-fed mice. In a 5-week study, C57BL/6 mice were divided into control (C) and high-fat diet-fed (H) groups, whereby before dissection, each group was subdivided into non-fasted (nC and nH) and a 15-h fasted mice (fC and fH) killed in the early light cycle, and a 15-h fasted mice (eC and eH) killed in the late phase of the light cycle. Liver and blood from the vena cava were collected. Non-fasted nC and nH mice have a marginal difference in their body weight gain, whereas significant differences were found for fasted mice. In nH mice, PPAR-α, acyl-CoA oxidase and insulin-like growth factor-binding protein expressions were significantly elevated, in contrast to fatty acid synthase (Fasn), stearoyl CoA-desaturase (SCD)-1, and elongase (ELOVL)-6 expressions. Fasn was profoundly induced in fH mice, while decreased sterol regulatory-binding protein-1 and SCD-1 were found only in eH mice. Different from the gene expression profiles, plasma total cholesterol level of the eH mice was higher than controls, whereas nH mice have increased plasma non-esterified fatty acids. Only glucose level of the fH mice was higher than that observed for controls. Results showed that fasting and sampling time have significantly affected liver gene expression and plasma biochemical indices of the high-fat diet-treated mice. An overlook in these aspects can cause serious discrepancies in the experimental data and their interpretations.

  13. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet

    PubMed Central

    Mitchell, Sarah J.; Martin-Montalvo, Alejandro; Mercken, Evi M.; Palacios, Hector H.; Ward, Theresa M.; Abulwerdi, Gelareh; Minor, Robin K.; Vlasuk, George P.; Ellis, James L.; Sinclair, David A.; Dawson, John; Allison, David B.; Zhang, Yongqing; Becker, Kevin G.; Bernier, Michel; de Cabo, Rafael

    2014-01-01

    The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD+ deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of pro-inflammatory gene expression both in the liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice. PMID:24582957

  14. Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet.

    PubMed

    de Melo, Célio L; Queiroz, Maria Goretti R; Fonseca, Said G C; Bizerra, Ayla M C; Lemos, Telma L G; Melo, Tiago S; Santos, Flavia A; Rao, Vietla S

    2010-04-15

    Excess visceral adiposity may predispose to chronic diseases like hypertension and type 2 diabetes with a high risk for coronary artery disease. Adipose tissue secreted cytokines and oxidative stress play an important role in chronic disease progression. To combat adiposity, plant-derived triterpenes are currently receiving much attention as they possess antioxidant and anti-inflammatory properties and the ability to regulate glucose and lipid metabolism. In the search for potential antiobese compounds from natural sources, this study evaluated the effects of oleanolic acid (OA), a pentacyclic triterpene commonly present in fruits and vegetables, in glucose tolerance test and on high-fat diet (HFD)-induced obesity in mice. Adult male Swiss mice treated or not with OA (10 mg/kg) were fed a HFD during 15 weeks. Sibutramine (SIB) treated group (10 mg/kg) was included for comparison. Weekly body weights, food and water consumption were measured, and at the end of study period, the levels of blood glucose and lipids, plasma hormone levels of insulin, ghrelin and leptin, and the visceral abdominal fat content were analysed. Mice treated with OA and fed a HFD showed significantly (p<0.05) improved glucose tolerance, decreased body weights, visceral adiposity, blood glucose, plasma lipids relative to their respective controls fed no OA. Additionally, OA treatment, while significantly elevating the plasma hormone level of leptin, decreased the level of ghrelin. However, it caused a greater decrease in plasma amylase activity than lipase. Sibutramine-treated group also manifested similar effects like OA except for blood glucose level that was not different from HFD control. These findings suggest that OA ameliorates visceral adiposity and improves glucose tolerance in mice and thus has an antiobese potential through modulation of carbohydrate and fat metabolism.

  15. Dietary anthocyanin-rich tart cherry extract inhibits intestinal tumorigenesis in APC(Min) mice fed suboptimal levels of sulindac.

    PubMed

    Bobe, Gerd; Wang, Bing; Seeram, Navindra P; Nair, Muraleedharan G; Bourquin, Leslie D

    2006-12-13

    A promising approach for cancer chemoprevention might be a combination therapy utilizing dietary phytochemicals and anticarcinogenic pharmaceuticals at a suboptimal dosage to minimize any potential adverse side effects. To test this hypothesis, various dosages of anthocyanin-rich tart cherry extract were fed in combination with suboptimal levels of the nonsteroidal anti-inflammatory drug sulindac to APCMin mice for 19 weeks. By the end of the feeding period, fewer mice that were fed the anthocyanin-rich extract in combination with sulindac lost more than 10% of body weight than mice fed sulindac alone. Mice that were fed anthocyanin-rich extract (at any dose) in combination with sulindac had fewer tumors and a smaller total tumor burden (total tumor area per mouse) in the small intestine when compared to mice fed sulindac alone. These results suggest that a dietary combination of tart cherry anthocyanins and sulindac is more protective against colon cancer than sulindac alone.

  16. Cow milk allergy symptoms are reduced in mice fed dietary synbiotics during oral sensitization with whey.

    PubMed

    Schouten, Bastiaan; van Esch, Betty C A M; Hofman, Gerard A; van Doorn, Suzan A C M; Knol, Jan; Nauta, Alma J; Garssen, Johan; Willemsen, Linette E M; Knippels, Léon M J

    2009-07-01

    Cow milk allergy is the most common food allergy in children. So far, no effective treatment is available to prevent or cure food allergy. The purpose of this study was to compare effects of dietary supplementation with a prebiotic mixture (Immunofortis), a probiotic strain [Bifidobacterium breve M-16V], or a synbiotic diet combining both on the outcome of the allergic response when provided during oral sensitization with whey in mice. Mice were fed diets containing 2% (wt:wt) Immunofortis and/or the B. breve M-16V (n = 6/group). The acute allergic skin response was determined by measuring ear swelling. Antigen-induced anaphylaxis was scored. Furthermore, whey-specific serum immunoglobulins and mouse mast cell protease-1 (mMCP-1) were determined. In mice fed the synbiotic mixture, the allergic skin response and the anaphylactic reaction were strongly reduced compared with whey-sensitized mice fed the control diet (P < 0.01). Immunofortis or B. breve M-16V alone were significantly less effective in reducing the allergic skin response than the synbiotic diet and did not reduce the anaphylactic reaction. The whey-specific IgE and IgG(1) responses were not affected; however, IgG(2a) was greater in all treated groups than in the control group (P < 0.05). Serum mMCP-1 concentrations, reflecting mucosal mast cell degranulation, were lower in mice fed synbiotics compared with those fed the control diet (P < 0.01). Dietary supplementation with Immunofortis, B. breve M-16V, and particularly the synbiotic mixture, provided during sensitization, reduces the allergic effector response in a murine model of IgE-mediated hypersensitivity that mimics the human route of sensitization. This model shows the potential for dietary intervention with synbiotics in reducing the allergic response to food allergens.

  17. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    PubMed Central

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  18. Impaired Lipid and Glucose Homeostasis in Hexabromocyclododecane-Exposed Mice Fed a High-Fat Diet

    PubMed Central

    Koike, Eiko; Win-Shwe, Tin-Tin; Yamamoto, Megumi; Takano, Hirohisa

    2014-01-01

    Background: Hexabromocyclododecane (HBCD) is an additive flame retardant used in the textile industry and in polystyrene foam manufacturing. Because of its lipophilicity and persistency, HBCD accumulates in adipose tissue and thus has the potential of causing metabolic disorders through disruption of lipid and glucose homeostasis. However, the association between HBCD and obesity remains unclear. Objectives: We investigated whether exposure to HBCD contributes to initiation and progression of obesity and related metabolic dysfunction in mice fed a normal diet (ND) or a high-fat diet (HFD). Methods: Male C57BL/6J mice were fed a HFD (62.2 kcal% fat) or a ND and treated orally with HBCD (0, 1.75, 35, or 700 μg/kg body weight) weekly from 6 to 20 weeks of age. We examined body weight, liver weight, blood biochemistry, histopathological changes, and gene expression profiles in the liver and adipose tissue. Results: In HFD-fed mice, body and liver weight were markedly increased in mice treated with the high (700 μg/kg) and medium (35 μg/kg) doses of HBCD compared with vehicle. This effect was more prominent in the high-dose group. These increases were paralleled by increases in random blood glucose and insulin levels and enhancement of microvesicular steatosis and macrophage accumulation in adipose tissue. HBCD-treated HFD-fed mice also had increased mRNA levels of Pparg (peroxisome proliferator-activated receptor-γ) in the liver and decreased mRNA levels of Glut4 (glucose transporter 4) in adipose tissue compared with vehicle-treated HFD-fed mice. Conclusions: Our findings suggest that HBCD may contribute to enhancement of diet-induced body weight gain and metabolic dysfunction through disruption of lipid and glucose homeostasis, resulting in accelerated progression of obesity. Citation: Yanagisawa R, Koike E, Win-Shwe TT, Yamamoto M, Takano H. 2014. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet. Environ Health

  19. GLP-2 as Beneficial Factor in the Glucose Homeostasis in Mice Fed a High Fat Diet.

    PubMed

    Baldassano, Sara; Rappa, Francesca; Amato, Antonella; Cappello, Francesco; Mulè, Flavia

    2015-12-01

    Glucagon like peptide-2 (GLP-2) is a gastrointestinal hormone released in response to dietary nutrients, which acts through a specific receptor, the GLP-2 receptor (GLP-2R). The physiological effects of GLP-2 are multiple, involving also the intestinal adaptation to high fat diet (HFD). In consideration of the well-known relationship between chronic HFD and impaired glucose metabolism, in the present study we examined if the blocking of the GLP-2 signaling by chronic treatment with the GLP-2R antagonist, GLP-2 (3-33), leads to functional consequences in the regulation of glucose metabolism in HFD-fed mice. Compared with animals fed standard diet (STD), mice at the 10th week of HFD showed hyperglycaemia, glucose intolerance, high plasma insulin level after glucose load, increased pancreas weight and β cell expansion, but not insulin resistance. In HFD fed mice, GLP-2 (3-33) treatment for 4 weeks (from the 6th to the 10th week of diet) did not affect fasting glycaemia, but it significantly increased the glucose intolerance, both fasting and glucose-induced insulin levels, and reduced the sensitivity to insulin leading to insulin-resistance. In GLP-2 (3-33)-treated HFD mice pancreas was significantly heavier and displayed a significant increase in β-cell mass in comparison with vehicle-treated HFD mice. In STD mice, the GLP-2 (3-33) treatment did not affect fasted or glucose-stimulated glycemia, insulin, insulin sensitivity, pancreas weight and beta cell mass. The present study suggests that endogenous GLP-2 may act as a protective factor against the dysregulation of the glucose metabolism that occurs in HFD mice, because GLP-2 (3-33) worsens glucose metabolism disorders.

  20. Effects of Puerarin on Lipid Accumulation and Metabolism in High-Fat Diet-Fed Mice

    PubMed Central

    Zheng, Guodong; Lin, Lezhen; Zhong, Shusheng; Zhang, Qingfeng; Li, Dongming

    2015-01-01

    In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD), and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT) weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK), carnitine acyltransferase (CAT) and hormone-sensitive lipase (HSL) were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2) was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases. PMID:25822741

  1. Effects of adrenalectomy on energy balance in obese (ob/ob) mice fed high carbohydrate or high fat diets.

    PubMed

    Grogan, C K; Kim, H K; Romsos, D R

    1987-06-01

    We reported previously that adrenalectomy reduced the energy density of body weight gain (an indicator of proportional gain in lean and fat tissue) and the efficiency of energy retention in obese (ob/ob) mice to values approximating those in lean mice, but that adrenalectomy had much less influence on these parameters in ob/ob mice fed a purified high fat diet. To determine if fat was the exclusive factor in the purified high fat diet that negated effects of adrenalectomy, ob/ob mice were fed a purified high carbohydrate (glucose) diet identical in composition to the high fat diet, except for the fat/carbohydrate ratio. Responses of adrenalectomized ob/ob mice fed the purified high glucose diet from 4 to 7 wk of age mimicked those of mice fed the purified high fat diet, not those of mice fed the high carbohydrate nonpurified diet. Plasma glucose responses to a glucose load in adrenalectomized ob/ob mice paralleled the diet-dependent changes in energy balance. These results demonstrate that diet composition interacts with adrenal secretions to influence energy and glucose metabolism in ob/ob mice; consumption of either a purified high glucose or high fat diet negates the beneficial effects of adrenalectomy on energy and glucose metabolism observed when adrenalectomized ob/ob mice consume a nonpurified diet.

  2. Impact of PPAR-α induction on glucose homoeostasis in alcohol-fed mice.

    PubMed

    Lebrun, Valérie; Molendi-Coste, Olivier; Lanthier, Nicolas; Sempoux, Christine; Cani, Patrice D; van Rooijen, Nico; Stärkel, Peter; Horsmans, Yves; Leclercq, Isabelle A

    2013-12-01

    Alcohol consumption is a major cause of liver disease. It also associates with increased cardiovascular risk and Type 2 diabetes. ALD (alcoholic liver disease) and NAFLD (non-alcoholic fatty liver disease) share pathological features, pathogenic mechanisms and pattern of disease progression. In NAFLD, steatosis, lipotoxicity and liver inflammation participate to hepatic insulin resistance. The aim of the present study was to verify the effect of alcohol on hepatic insulin sensitivity and to evaluate the role of alcohol-induced steatosis and inflammation on glucose homoeostasis. C57BL/6J mice were fed for 20 days a modified Lieber-DeCarli diet in which the alcohol concentration was gradually increased up to 35% of daily caloric intake. OH (alcohol liquid diet)-fed mice had liver steatosis and inflammatory infiltration. In addition, these mice developed insulin resistance in the liver, but not in muscles, as demonstrated by euglycaemic-hyperinsulinaemic clamp and analysis of the insulin signalling cascade. Treatment with the PPAR-α (peroxisome-proliferator-activated receptor-α) agonist Wy14,643 protected against OH-induced steatosis and KC (Kupffer cell) activation and almost abolished OH-induced insulin resistance. As KC activation may modulate insulin sensitivity, we repeated the clamp studies in mice depleted in KC to decipher the role of macrophages. Depletion of KC using liposomes-encapsuled clodronate in OH-fed mice failed both to improve hepatic steatosis and to restore insulin sensitivity as assessed by clamp. Our study shows that chronic alcohol consumption induces steatosis, KC activation and hepatic insulin resistance in mice. PPAR-α agonist treatment that prevents steatosis and dampens hepatic inflammation also prevents alcohol-induced hepatic insulin resistance. However, KC depletion has little impact on OH-induced metabolic disturbances.

  3. Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate.

    PubMed

    Morris, Jay; Nakata, Paul A; McConn, Michele; Brock, Amanda; Hirschi, Kendal D

    2007-07-01

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the model forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 M. truncatula mutant was identified which contains identical calcium concentrations to wild-type, but contains no oxalate crystals. In this study, equal number of male and female mice were randomly grouped and then fed one of four 45Ca-containing diets: M. truncatula extrinsically or intrinsically labeled, and cod5 extrinsically or intrinsically labeled. Absorption of the tracer was determined in the legs one day after consumption. The absorption was similar in the M. truncatula and cod5 extrinsically labeled diets; however, in the intrinsically labeled diets, calcium absorption was 22.87% (P < 0.001) higher in mice fed cod5. Our study presents the first genetic evidence demonstrating the nutritional impact of removing oxalate crystals from foods.

  4. Histopathology of neoplastic and nonneoplastic hepatic lesions in mice fed diets containing tetrachlorvinphos.

    PubMed

    Ward, J M; Bernal, E; Buratto, B; Goodman, D G; Strandberg, J D; Schueler, R

    1979-07-01

    Tetrachlorvinphos was fed at 8,000 or 16,000 ppm in diets to male and female (C57BL/6N X C3H/HeN)F1 mice for 80 weeks. Surviving mice were killed at 92 weeks, and all mice were completely necropsied. A high incidence of unusual nonneoplastic hepatic lesions in treated mice was present and characterized by pericellular fibrosis, hepatocyte nuclear pleomorphism, and intrasinusoidal foci of macrophages with intracytoplasmic crystalline structures. From 84 to 94% of the treated male mice and from 21 to 23% of the treated females had hepatocellular neoplasms. Only 17% of the control males and 7% of the control females had liver tumors. The induced tumors were frequently multiple in the liver, whereas the tumors in the controls were usually singular. The morphology of 241 liver tumors in 110 treated mice was different from that of tumors in controls. Liver tumors in control mice were generally composed of small basophillic hepatocytes. In treated mice, tumors were hepatocellular carcinomas composed of solid sheets of large basophilic or eosinophilic hepatocytes. Foci of prominent trabecular formation were seen in 51 tumors. Fifteen tumors were composed of small basophilic hepatocytes with oval cells interposed among them. Foci of capillary formation were noted in 3 of these tumors. In addition, 7 more typical hemangiosarcomas forming sinusoids and with thrombosis were observed.

  5. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance.

    PubMed

    Sun, Yuxiang; Butte, Nancy F; Garcia, Jose M; Smith, Roy G

    2008-02-01

    Ghrelin and the ghrelin receptor (GH secretagogue receptor, GHS-R), are believed to have important roles in energy homeostasis. We describe results from the first studies to be conducted in congenic (N10) adult ghrelin(-/-) and Ghsr(-/-) mice under conditions of both positive (high-fat diet) and negative (caloric restriction) energy balance. In contrast to results from young N2 mutant mice, changes in body weight and energy expenditure are not clearly distinguishable across genotypes. Although respiratory quotient was lower in mice fed a high-fat diet, no differences were evident between littermate wild-type and null genotypes. With normal chow, a modest decrease trend in respiratory quotient was detected in ghrelin(-/-) mice but not in Ghsr(-/-) mice. Under caloric restriction, the weight loss of ghrelin(-/-) and Ghsr(-/-) mice was identical to wild-type littermates, but blood glucose levels were significantly lower. We conclude that adult congenic ghrelin(-/-) and Ghsr(-/-) mice are not resistant to diet-induced obesity but under conditions of negative energy balance show impairment in maintaining glucose homeostasis. These results support our hypothesis that the primary metabolic function of ghrelin in adult mice is to modulate glucose sensing and insulin sensitivity, rather than directly regulate energy intake and energy expenditure.

  6. Time-restricted feeding reduces adiposity in mice fed a high-fat diet.

    PubMed

    Sundaram, Sneha; Yan, Lin

    2016-06-01

    Disruption of the circadian rhythm contributes to obesity. This study tested the hypothesis that time-restricted feeding (TRF) reduces high-fat diet-induced increase in adiposity. Male C57BL/6 mice were fed the AIN93G or the high-fat diet ad libitum (ad lib); TRF of the high-fat diet for 12 or 8hours during the dark cycle was initiated when high-fat diet-fed mice exhibited significant increases in body weight. Energy intake of the TRF 12-hour group was not different from that of the high-fat ad lib group, although that of the TRF 8-hour group was slightly but significantly lower. Restricted feeding of the high-fat diet reduced body fat mass and body weight compared with mice fed the high-fat diet ad lib. There were no differences in respiratory exchange ratio (RER) among TRF and high-fat ad lib groups, but the RER of these groups was lower than that of the AIN93G group. Energy expenditure of the TRF groups was slightly but significantly lower than that of the high-fat ad lib group. Plasma concentrations of ghrelin were increased in TRF groups compared with both AIN93G and high-fat ad lib groups. Elevations of plasma concentrations of insulin, leptin, monocyte chemoattractant protein-1, and tissue inhibitor metalloproteinase-1 by high-fat ad lib feeding were reduced by TRF to the levels of mice fed the AIN93G diet. In conclusion, TRF during the dark cycle reduces high-fat diet-induced increases in adiposity and proinflammatory cytokines. These results indicate that circadian timing of food intake may prevent obesity and abate obesity-related metabolic disturbance.

  7. Modeling Energy Dynamics in Mice with Skeletal Muscle Hypertrophy Fed High Calorie Diets

    PubMed Central

    Bond, Nichole D.; Guo, Juen; Hall, Kevin D.; McPherron, Alexandra C.

    2016-01-01

    Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain. PMID:27076790

  8. Modeling Energy Dynamics in Mice with Skeletal Muscle Hypertrophy Fed High Calorie Diets.

    PubMed

    Bond, Nichole D; Guo, Juen; Hall, Kevin D; McPherron, Alexandra C

    2016-01-01

    Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain.

  9. Hypoxia induces heart regeneration in adult mice.

    PubMed

    Nakada, Yuji; Canseco, Diana C; Thet, SuWannee; Abdisalaam, Salim; Asaithamby, Aroumougame; Santos, Celio X; Shah, Ajay M; Zhang, Hua; Faber, James E; Kinter, Michael T; Szweda, Luke I; Xing, Chao; Hu, Zeping; Deberardinis, Ralph J; Schiattarella, Gabriele; Hill, Joseph A; Oz, Orhan; Lu, Zhigang; Zhang, Cheng Cheng; Kimura, Wataru; Sadek, Hesham A

    2017-01-12

    The adult mammalian heart is incapable of regeneration following cardiomyocyte loss, which underpins the lasting and severe effects of cardiomyopathy. Recently, it has become clear that the mammalian heart is not a post-mitotic organ. For example, the neonatal heart is capable of regenerating lost myocardium, and the adult heart is capable of modest self-renewal. In both of these scenarios, cardiomyocyte renewal occurs via the proliferation of pre-existing cardiomyocytes, and is regulated by aerobic-respiration-mediated oxidative DNA damage. Therefore, we reasoned that inhibiting aerobic respiration by inducing systemic hypoxaemia would alleviate oxidative DNA damage, thereby inducing cardiomyocyte proliferation in adult mammals. Here we report that, in mice, gradual exposure to severe systemic hypoxaemia, in which inspired oxygen is gradually decreased by 1% and maintained at 7% for 2 weeks, results in inhibition of oxidative metabolism, decreased reactive oxygen species production and oxidative DNA damage, and reactivation of cardiomyocyte mitosis. Notably, we find that exposure to hypoxaemia 1 week after induction of myocardial infarction induces a robust regenerative response with decreased myocardial fibrosis and improvement of left ventricular systolic function. Genetic fate-mapping analysis confirms that the newly formed myocardium is derived from pre-existing cardiomyocytes. These results demonstrate that the endogenous regenerative properties of the adult mammalian heart can be reactivated by exposure to gradual systemic hypoxaemia, and highlight the potential therapeutic role of hypoxia in regenerative medicine.

  10. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    SciTech Connect

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  11. Increased mucosal damage during parasite infection in mice fed an elemental diet.

    PubMed Central

    Ferguson, A; Logan, R F; MacDonald, T T

    1980-01-01

    We have examined the effects of parasite infection on the mucosal architecture of mice maintained on an elemental diet (Vivonex). Techniques used were conventional histology, micro-dissection and measurement of individual villi and crypts, and measurement of crypt cell proliferation rate by a metaphase accumulation technique. In normal, non-parasitised mice the elemental diet caused no change in villus height, crypt depth, or crypt cell proliferation. Likewise, the only effects of chronic protozoal infection or Nippostrongylus brasiliensis infection on the intestine of mice fed a normal diet have been a slight crypt hypertrophy and an increase in crypt cell proliferation rate without villous atrophy. However, the combination of elemental diet and parasite infection resulted in increased mucosal damage when compared with infected mice on a normal diet. Elemental diet mice infected with the nematode Nippostrongylus brasiliensis had significantly reduced villus height and correspondingly raised crypt length and metaphase accumulation rate. Elemental diet mice infected with the protozoan Giardia muris did not have villous atrophy but there was a significant increase in crypt length and metaphase accumulation when compared with infected normal diet mice. These experiments show that in two animal models of enteric infection, elemental diet has altered the host parasite relationship to the detriment of the host. Images Fig. 1 Fig. 5 PMID:7364318

  12. Drug-induced regeneration in adult mice

    PubMed Central

    Zhang, Yong; Strehin, Iossif; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise; Leferovich, John; Messersmith, Phillip B.; Heber-Katz, Ellen

    2015-01-01

    Whereas amphibians regenerate lost appendages spontaneously, mammals generally form scars over the injury site through the process of wound repair. The MRL mouse strain is an exception among mammals because it shows a spontaneous regenerative healing trait and so can be used to investigate proregenerative interventions in mammals. We report that hypoxia-inducible factor 1α (HIF-1α) is a central molecule in the process of regeneration in adult MRL mice. The degradation of HIF-1α protein, which occurs under normoxic conditions, is mediated by prolyl hydroxylases (PHDs). We used the drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), a PHD inhibitor, to stabilize constitutive expression of HIF-1α protein. A locally injectable hydrogel containing 1,4-DPCA was designed to achieve controlled delivery of the drug over 4 to 10 days. Subcutaneous injection of the 1,4-DPCA/hydrogel into Swiss Webster mice that do not show a regenerative phenotype increased stable expression of HIF-1α protein over 5 days, providing a functional measure of drug release in vivo. Multiple peripheral subcutaneous injections of the 1,4-DPCA/hydrogel over a 10-day period led to regenerative wound healing in Swiss Webster mice after ear hole punch injury. Increased expression of the HIF-1α protein may provide a starting point for future studies on regeneration in mammals. PMID:26041709

  13. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures.

    PubMed

    Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2016-05-01

    High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD.

  14. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet.

    PubMed

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling.

  15. Dietary krill oil supplementation reduces hepatic steatosis, glycemia, and hypercholesterolemia in high-fat-fed mice.

    PubMed

    Tandy, Sally; Chung, Rosanna W S; Wat, Elaine; Kamili, Alvin; Berge, Kjetil; Griinari, Mikko; Cohn, Jeffrey S

    2009-10-14

    Krill oil (KO) is rich in n-3 fatty acids that are present in phospholipids rather than in triglycerides. In the present study, we investigated the effects of dietary KO on cardiometabolic risk factors in male C57BL/6 mice fed a high-fat diet. Mice (n = 6-10 per group) were fed for 8 weeks either: (1) a nonpurified chow diet (N); (2) a high-fat semipurified diet containing 21 wt % buttermilk + 0.15 wt % cholesterol (HF); (3) HF supplemented with 1.25 wt % KO (HFKO1.25); (4) HF with 2.5 wt % KO (HFKO2.5); or (5) HF with 5 wt % KO (HFKO5.0). Dietary KO supplementation caused a significant reduction in liver wt (i.e., hepatomegaly) and total liver fat (i.e., hepatic steatosis), due to a dose-dependent reduction in hepatic triglyceride (mean +/- SEM: 35 +/- 6, 47 +/- 4, and 51 +/- 5% for HFKO1.25, -2.5, and -5.0 vs HF, respectively, P < 0.001) and cholesterol (55 +/- 5, 66 +/- 3, and 71 +/- 3%, P < 0.001). Serum cholesterol levels were reduced by 20 +/- 3, 29 +/- 4, and 29 +/- 5%, and blood glucose was reduced by 36 +/- 5, 34 +/- 6, and 42 +/- 6%, respectively. Serum adiponectin was increased in KO-fed animals (HF vs HFKO5.0: 5.0 +/- 0.2 vs 7.5 +/- 0.6 microg/mL, P < 0.01). These results demonstrate that dietary KO is effective in improving metabolic parameters in mice fed a high-fat diet, suggesting that KO may be of therapeutic value in patients with the metabolic syndrome and/or nonalcoholic fatty liver disease.

  16. Ghrelin O-acyltransferase knockout mice show resistance to obesity when fed high-sucrose diet.

    PubMed

    Kouno, Tetsuya; Akiyama, Nobuteru; Ito, Takahito; Okuda, Tomohiko; Nanchi, Isamu; Notoya, Mitsuru; Oka, Shogo; Yukioka, Hideo

    2016-02-01

    Ghrelin is an appetite-stimulating hormone secreted from stomach. Since the discovery that acylation of the serine-3 residue by ghrelin O-acyltransferase (GOAT) is essential for exerting its functions, GOAT has been regarded as an therapeutic target for attenuating appetite, and thus for the treatment of obesity and diabetes. However, contrary to the expectations, GOAT-knockout (KO) mice have not shown meaningful body weight reduction, under high-fat diet. Here, in this study, we sought to determine whether GOAT has a role in body weight regulation and glucose metabolism with a focus on dietary sucrose, because macronutrient composition of diet is important for appetite regulation. We found that peripherally administered acylated-ghrelin, but not unacylated one, stimulated sucrose consumption in a two-bottle-drinking test. The role of acylated-ghrelin in sucrose preference was further supported by the finding that GOAT KO mice consumed less sucrose solution compared with WT littermates. Then, we investigated the effect of dietary composition of sucrose on food intake and body weight in GOAT KO and WT mice. As a result, when fed on high-fat diet, food intake and body weight were similar between GOAT KO and WT mice. However, when fed on high-fat, high-sucrose diet, GOAT KO mice showed significantly reduced food intake and marked resistance to obesity, leading to amelioration of glucose metabolism. These results suggest that blockade of acylated-ghrelin production offers therapeutic potential for obesity and metabolic disorders caused by overeating of palatable food.

  17. Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue.

    PubMed

    Gotardo, Érica Martins Ferreira; dos Santos, Aline Noronha; Miyashiro, Renan Akira; Gambero, Sheley; Rocha, Thalita; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2013-01-01

    Since the discovery that hepcidin is expressed in the adipose tissue of obese subjects, attention has been increasingly focused on alterations in iron homeostasis that are associated with adiposity. We examined the production of hepcidin, the expression of hepcidin-related genes and the iron content of the adipose tissue in obesity using Swiss mice fed a high-fat diet (HFD). The mice were maintained on a control diet or HFD for 12 or 24 wk, and body weight, adiposity and glucose homeostasis were evaluated. The expression of several genes (hepcidin, TfR1, TfR2, DMT1, FT-heavy, ferroportin, IRP-1, IRP-2 and HIF-1) and the protein expression of hepcidin and IL-6 were quantified. The iron level was assessed using a Prussian blue reaction in paraffin-embedded tissue. After 24 wk on the HFD, we observed increases in the levels of hepcidin in the serum and the visceral adipose tissue. The IL-6 levels also increased in the visceral adipose tissue. Adipocytes isolated from the visceral adipose tissues of lean and obese mice expressed hepcidin at comparable levels; however, isolated macrophages from the stromal vascular fraction expressed higher hepcidin levels. Adipose tissues from obese mice displayed increased tfR2 expression and the presence of iron. Our results indicate that IL-6 and iron may affect the signaling pathways governing hepcidin expression. Thus, the mice fed HFD for 24 wk represent a suitable model for the study of obesity-linked hepcidin alterations. In addition, hepcidin may play local roles in controlling iron availability and interfering with inflammation in adipose tissue.

  18. Role of 5-HT3 Receptor on Food Intake in Fed and Fasted Mice

    PubMed Central

    Li, Bingjin; Shao, Dongyuan; Luo, Yungang; Wang, Pu; Liu, Changhong; Zhang, Xingyi; Cui, Ranji

    2015-01-01

    Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem. PMID:25789930

  19. Anti-obesity effect of alkaline reduced water in high fat-fed obese mice.

    PubMed

    Ignacio, Rosa Mistica Coles; Kang, Tae-Young; Kim, Cheol-Su; Kim, Soo-Ki; Yang, Young-Chul; Sohn, Joon-Hyung; Lee, Kyu-Jae

    2013-01-01

    Whether or not alkaline reduced water (ARW) has a positive effect on obesity is unclear. This study aims to prove the positive effect of ARW in high-fat (HF) diet-induced obesity (DIO) in C57BL/6 mice model. Toward this, obesity was induced by feeding the C57BL/6 male mice with high-fat diet (w/w 45% fat) for 12 weeks. Thereafter, the animals were administered with either ARW or tap water. Next, the degree of adiposity and DIO-associated parameters were assessed: clinico-pathological parameters, biochemical measurements, histopathological analysis of liver, the expression of cholesterol metabolism-related genes in the liver, and serum levels of adipokine and cytokine. We found that ARW-fed mice significantly ameliorated adiposity: controlled body weight gain, reduced the accumulation of epididymal fats and decreased liver fats as compared to control mice. Accordingly, ARW coordinated the level of adiponectin and leptin. Further, mRNA expression of cytochrome P450 (CYP)7A1 was upregulated. In summary, our data shows that ARW intake inhibits the progression of HF-DIO in mice. This is the first note on anti-obesity effect of ARW, clinically implying the safer fluid remedy for obesity control.

  20. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice.

    PubMed

    Gu, Yeyi; Yu, Shan; Park, Jong Yung; Harvatine, Kevin; Lambert, Joshua D

    2014-04-01

    In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6 J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 weeks. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40-60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cyclooxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia.

  1. Antihyperlipidemic effect of methanolic extract from Opuntia joconostle seeds in mice fed a hypercholesterolemic diet.

    PubMed

    Osorio-Esquivel, Obed; Ortiz-Moreno, Alicia; Garduño-Siciliano, Leticia; Alvarez, Valente B; Hernández-Navarro, María Dolores

    2012-12-01

    The purpose of this study was to evaluate the hypolipidemic effect of a methanolic extract from Opuntia joconostle seeds fed to mice in a hypercholesterolemic diet. Acute toxicity of the methanolic extract was investigated by an established method. Phenolic composition and antioxidant activity were determined by high-performance liquid chromatography and DPPH, respectively. The total phenolic content of Opuntia joconostle seeds was 47.85 ± 1.29 mg gallic acid equivalents/g dry weight. The main phenolic compounds were identified as quercetin, rutin, and cafeic acid. Percent inhibition of DPPH⁺ was 49.76 ± 0.49 %. The oral LD₅₀ for the methanolic extract from the Opuntia joconostle seeds was >5,000 mg/kg BW. Mice fed a hypercholesterolemic diet for six days exhibited significantly (P ≤ 0.001) higher plasma lipid levels than mice fed a normal diet. Remarkably, supplementation with methanolic extract from Opuntia joconostle at doses of 1, 2, and 5 g/kg body weight significantly (P ≤ 0.001) prevented the increase in total cholesterol, low-density lipoprotein cholesterol, triglycerides level, and atherogenic index. Similar concentrations of the HDL cholesterol were observed in both treated and control groups. A significant dose-dependent reduction in lipid levels was noted for treated groups compared to the hypercholesterolemic group. We attribute this result to the seeds' phenolic composition. This methanolic extract has potential to be included in short-term hypercholesterolemia treatment regimens as it exhibits hypolipidemic activity with no apparent toxic manifestations.

  2. Gastrointestinal absorption of plutonium, uranium and neptunium in fed and fasted adult baboons: Application to humans

    SciTech Connect

    Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.; Moretti, E.S.; Cohen, N.; Ralston, L.G.; Ayres, L.

    1992-03-01

    Gastrointestinal (GI) absorption values of plutonium, uranium, and neptunium were determined in fed and fasted adult baboons. A dual isotope method of determining GI absorption, which does not require animal sacrifice, was validated and shown to compare well with the sacrifice method (summation of oral isotope in urine with that in tissues at sacrifice). For all three elements, mean GI absorption values were significantly high (5- to 50-fold) in 24-hour (h)-fasted animals than in fed animals, and GI absorption values for baboons agreed well with those for humans.

  3. NADPH oxidase is implicated in the pathogenesis of oxidative phosphorylation dysfunction in mice fed a high-fat diet

    PubMed Central

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Grau, Montserrat; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A.

    2016-01-01

    The aim of this study was to evaluate the role of NADPH oxidase (NADPHox) in the pathogenesis of oxidative phosphorylation (OXPHOS) dysfunction as found in mice fed a high-fat diet (HFD). C57BL/6J mice were distributed in four groups: WT/SCD: six wild-type (WT) mice fed a standard chow diet (SCD); WT/HFD, six WT mice fed a HFD; NOX2−/−/SCD, six NADPHox-deficient mice on a SCD; (4) NOX2−/−/HFD, six NADPHox-deficient mice on a HFD. After 32 weeks, we studied the liver for: histology; OXPHOS complex activity; fully assembled OXPHOS complexes and their subunits; gene expression of OXPHOS subunits; oxidative and nitrosative stress; and oxidative DNA damage. In the liver of WT/HFD mice, we found a significant decreased in the activity of all OXPHOS complexes, in fully assembled complexes, in the amount of OXPHOS subunits, and in gene expression of mitochondrial DNA-encoded subunits. 8-hydroxy-2′-deoxyguanosine was only increased in mitochondrial DNA. The liver of NOX−/−/HFD mice showed mild steatosis but no non-alcoholic steatohepatitis (NASH) lesions were found. OXPHOS activity, OXPHOS subunits, and assembly of subunits into OXPHOS complexes were normal in these mice. We conclude that this study shows that NADPH deficiency protects mice from developing OXPHOS dysfunction and NASH caused by a HFD. PMID:27173483

  4. Gene expression profiles and physiological data from mice fed resveratrol-enriched rice DJ526

    PubMed Central

    Chung, Hea-Jong; Lee, Heui-Kwan; Kim, Hyeon-Jin; Baek, So-Hyeon; Hong, Seong-Tshool

    2016-01-01

    The molecular mechanism underlying lifespan extension by resveratrol remains widely discussed. To help study this mechanism, we previously created resveratrol-enriched rice, DJ526, by transferring the resveratrol biosynthesis gene into Dongjin rice. DJ526 accumulates 1.4–1.9 μg g−1 of resveratrol in its grain and can ameliorates age-related deterioration in mice, as compared to control animals, based on assessments of motor coordination, physical strength and cutaneous tissue aging. Here, we present raw data sets, deposited in public repositories, from microarray analysis and physiological data of mice fed with DJ526 and Dongjin rice and treated with resveratrol. We also provide a method to analyze blood serum at micron levels. These data sets may help other researchers find new clues regarding the etiology of the anti-aging process and signaling pathways induced by resveratrol, rice, or DJ526. PMID:27996975

  5. Protection against Influenza Virus Infection of Mice Fed Bifidobacterium breve YIT4064

    PubMed Central

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetuji; Shida, Kan

    1999-01-01

    Mice fed Bifidobacterium breve YIT4064 and immunized orally with influenza virus were more strongly protected against influenza virus infection of the lower respiratory tract than ones immunized with influenza virus only. The number of mice with enhanced anti-influenza virus immunoglobulin G (IgG) in serum upon oral administration of B. breve YIT4064 and oral immunization with influenza virus was significantly greater than that upon oral immunization with influenza virus only. These findings demonstrated that the oral administration of B. breve YIT4064 increased anti-influenza virus IgG antibodies in serum and protected against influenza virus infection. The oral administration of B. breve YIT4064 may enhance antigen-specific IgG against various pathogenic antigens taken orally and induce protection against various virus infections. PMID:10066652

  6. Allomyrina dichotoma (Arthropoda: Insecta) larvae confer resistance to obesity in mice fed a high-fat diet.

    PubMed

    Yoon, Young-Il; Chung, Mi Yeon; Hwang, Jae-Sam; Han, Myung Sae; Goo, Tae-Won; Yun, Eun-Young

    2015-03-17

    To clarify the anti-obesity effect of Allomyrina dichotoma larvae (ADL), we previously reported that ADL block adipocyte differentiation on 3T3-L1 cell lines through downregulation of transcription factors, such as peroxisome proliferator-activated receptor-γ (PPARG) and CCAAT/enhancer binding protein-α (CEBPA). In this study, we tested whether ADL prevent obesity in mice fed a high-fat diet (HFD) and further investigated the mechanism underlying the effects of ADL. All mice were maintained on a normal-fat diet (NFD) for 1 week and then assigned to one of five treatment groups: (1) NFD; (2) HFD; (3) HFD and 100 mg·kg(-1)·day(-1) ADL; (4) HFD and 3000 mg·kg(-1)·day(-1) ADL; or (5) HFD and 3000 mg·kg(-1)·day(-1) yerba mate (Ilex paraguariensis, positive control). ADL and yerba mate were administered orally daily. Mice were fed experimental diets and body weight was monitored weekly for 6 weeks. Our results indicated that ADL reduced body weight gain, organ weight and adipose tissue volume in a dose-dependent manner. Body weight gain was approximately 22.4% lower compared to mice fed only HFD, but the difference did not reach the level of statistical significance. Real-time polymerase chain reaction (PCR) analysis revealed that gene expression levels of PPARG, CEBPA and lipoprotein lipase (LPL) in the epididymal fat tissue of HFD-fed mice receiving 3000 mg·kg(-1)·day(-1) ADL were reduced by 12.4-, 25.7-, and 12.3-fold, respectively, compared to mice fed HFD only. Moreover, mice administered ADL had lower serum levels of triglycerides and leptin than HFD-fed mice that did not receive ADL. Taken together our results suggest that ADL and its constituent bioactive compounds hold potential for the treatment and prevention of obesity.

  7. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    PubMed

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  8. Androgenic and estrogenic metabolites in serum of mice fed dehydroepiandrosterone: relationship to antihyperglycemic effects.

    PubMed

    Leiter, E H; Beamer, W G; Coleman, D L; Longcope, C

    1987-09-01

    The steroid prehormone, dehydroepiandrosterone (DHEA) has potent antihyperglycemic effects when fed in the diet of genetically diabetic C57BL/KsJ-db/db mice. The purpose of this investigation was to analyze changes in sex steroid levels in serum of mice fed DHEA, and to compare the antihyperglycemic potencies of the various metabolites in order to clarify the mechanism of DHEA action. Steroid radioimmunoassays showed that dietary DHEA entered the blood in high concentrations and was actively metabolized to both androgens (testosterone, T; dihydrotestosterone, DHT) and estrogens (estrone, E1; 17 beta-estradiol, E2). This metabolism did not require intact adrenal glands or gonads. In C57BL/KsJ normal (+/+) males, conversion of DHEA to androgens was the prominent feature; in db/db males, DHEA feeding not only increased serum T and DHT, but also serum E1 and E2 levels. The db/db mice had increased amounts of adipose tissue that sequestered more intravenously injected 3H-E2; this additional body fat could account for increased aromatization of DHEA-derived estrogen precursors. Comparisons of the relative antihyperglycemic potencies of androgenic and estrogenic steroid metabolites of DHEA in db/db mice showed that the estrogens and metabolites with estrogenic properties (androstenediol) or those convertible to estrogens (DHEA sulfate) were the most potent. Although 17 beta-E2 was effective by injection or per os, DHEA was effective only when administered per os, implicating alimentary tract conversion of DHEA to more biologically active reactants. Based on the pivotal position of DHEA as a prehormone for androgens, estrogens, and etiocholanolones, an explanation of the seemingly paradoxical effects exerted by this compound in blocking autoimmune disease, hyperglycemia, obesity, and neoplasia was proposed.

  9. Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice

    PubMed Central

    Morton, Tiffany L.; Galior, Kornelia; McGrath, Cody; Wu, Xin; Uzer, Gunes; Uzer, Guniz Bas; Sen, Buer; Xie, Zhihui; Tyson, David; Rubin, Janet; Styner, Maya

    2016-01-01

    Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete’s paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a “brown” phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD. PMID:27445983

  10. Ethanolic extract of Taheebo attenuates increase in body weight and fatty liver in mice fed a high-fat diet.

    PubMed

    Choi, Won Hee; Um, Min Young; Ahn, Jiyun; Jung, Chang Hwa; Park, Myung Kyu; Ha, Tae Youl

    2014-10-08

    We evaluated whether intake of an ethanolic extract of Taheebo (TBE) from Tabebuia avellanedae protects against body weight increase and fat accumulation in mice with high-fat diet (HFD)-induced obesity. Four-week old male C57BL/6 mice were fed a HFD (25% fat, w/w) for 11 weeks. The diet of control (HFD) mice was supplemented with vehicle (0.5% sodium carboxymethyl cellulose by gavage); the diet of experimental (TBE) mice was supplemented with TBE (150 mg/kg body weight/day by gavage). Mice administered TBE had significantly reduced body weight gain, fat accumulation in the liver, and fat pad weight, compared to HFD mice. Reduced hypertrophy of fat cells was also observed in TBE mice. Mice administered TBE also showed significantly lower serum levels of triglycerides, insulin, and leptin. Lipid profiles and levels of mRNAs and proteins related to lipid metabolism were determined in liver and white adipose tissue of the mice. Expression of mRNA and proteins related to lipogenesis were decreased in TBE-administered mice compared to mice fed HFD alone. These results suggest that TBE inhibits obesity and fat accumulation by regulation of gene expression related to lipid metabolism in HFD-induced obesity in mice.

  11. Differential expression of cholesteryl ester transfer protein in the liver and plasma of fasted and fed transgenic mice.

    PubMed

    MacLean, P S; Vadlamudi, S; Hao, E; Barakat, H A

    2000-06-01

    Because cholesteryl ester transfer protein (CETP) is considered a potential target in the treatment of atherosclerosis, several reports have focused on the regulation of this enzyme, and there is evidence that insulin may be a regulatory factor. The present study examines the differential expression of the human CETP gene between physiologic conditions that are accompanied by low (fasted) and high (fed) insulin levels. CETP expression was examined in plasma and tissues of transgenic mice expressing the human CETP minigene after 12 hours of fasting (n = 20) or ad libitum feeding (n = 20) with normal mouse chow. Plasma cholesteryl ester transfer activity (CETA) was 20% higher in fed than in fasted mice, reflecting higher levels of CETP (P < 0.05). This observation was accompanied by higher liver mRNA in fed mice (100%, P < 0.05), as determined by ribonuclease protection assays, as well as by higher CETA (23%, P < 0.05) and CETP mass (29%, P < 0.05) in the particulate fraction of liver homogenates. These parameters of liver CETP expression correlated well with each other, as well as with plasma CETA. CETP in the liver particulate fraction was found as a doublet (approximately 70 and 65 kDa), which resolved to a single band (approximately 60 kDa) upon deglycosylation. No differences in CETP expression were observed in pooled adipose tissue samples from fed and fasted mice. Insulin and glucose were not related to any plasma or tissue parameter of CETP expression. In summary, the concerted, differential expression of CETP in the liver of fed and fasted transgenic mice appears to contribute to higher plasma CETP levels in fed mice, but the precise role of insulin and glucose in regulating CETP expression under fasted and fed conditions needs to be defined.

  12. A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic Dysfunction in High-Fat–Fed Mice

    PubMed Central

    Fink, Brian D.; Herlein, Judith A.; Guo, Deng Fu; Kulkarni, Chaitanya; Weidemann, Benjamin J.; Yu, Liping; Grobe, Justin L.; Rahmouni, Kamal; Kerns, Robert J.

    2014-01-01

    We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics. PMID:25301169

  13. Moderate GLUT4 overexpression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed transgenic mice.

    PubMed

    Atkinson, Brittanie J; Griesel, Beth A; King, Caleb D; Josey, Miranda A; Olson, Ann Louise

    2013-07-01

    The GLUT4 facilitative glucose transporter mediates insulin-dependent glucose uptake. We tested the hypothesis that moderate overexpression of human GLUT4 in mice, under the regulation of the human GLUT4 promoter, can prevent the hyperinsulinemia that results from obesity. Transgenic mice engineered to express the human GLUT4 gene and promoter (hGLUT4 TG) and their nontransgenic counterparts (NT) were fed either a control diet (CD) or a high-fat diet (HFD) for up to 10 weeks. Homeostasis model assessment of insulin resistance scores revealed that hGLUT4 TG mice fed an HFD remained highly insulin sensitive. The presence of the GLUT4 transgene did not completely prevent the metabolic adaptations to HFD. For example, HFD resulted in loss of dynamic regulation of the expression of several metabolic genes in the livers of fasted and refed NT and hGLUT4 TG mice. The hGLUT4 TG mice fed a CD showed no feeding-dependent regulation of SREBP-1c and fatty acid synthase (FAS) mRNA expression in the transition from the fasted to the fed state. Similarly, HFD altered the response of SREBP-1c and FAS mRNA expression to feeding in both strains. These changes in hepatic gene expression were accompanied by increased nuclear phospho-CREB in refed mice. Taken together, a moderate increase in expression of GLUT4 is a good target for treatment of insulin resistance.

  14. Absorption and distribution of cadmium in mice fed diets containing either inorganic or oyster-incorporated cadmium

    SciTech Connect

    Sullivan, M.F.; Hardy, J.T.; Miller, B.M.; Buschbom, R.L.; Siewicki, T.C.

    1984-02-01

    To determine the absorption, organ distribution, and retention of organically bound cadmium (Cd) and the effects of dietary zinc (Zn) on Cd metabolism, groups of mice were fed five different diets. The organic Cd used in the diets was in the form of lyophilized oyster (Crassostrea virginica) that had accumulated radiolabeled 109Cd through a plankton food chain. The mice were fed either a standard basal mouse diet (AIN-76) or diets containing five or eight times the Zn concentration of the basal diet. The source of Zn was either oyster tissue or ZnCO3. The concentration of organic and inorganic Cd provided a dose of approximately 0.4 mg/kg. Diets prepared from oyster tissue probably contained all of the Cd and 85% of the Zn in organic form. Diets prepared with inorganic metals contained about the same Cd and Zn concentrations as the diets prepared with oyster. There was very little difference between the retention of Cd by mice that ingested organic (oyster bound) Cd and those fed inorganic Cd (CdCl2). However, when the Cd retained in the intestine was excluded, retention of organic Cd was significantly greater than that of inorganic Cd. The organ distribution of Cd differed significantly according to the chemical form of Cd fed (organic or inorganic) and the Zn level in the diet. The kidneys of mice fed organically bound Cd retained a higher percentage of the metal than the kidneys of those fed inorganic Cd. On the other hand, the livers of animals fed a low-Zn diet retained a higher percentage of the Cd than the livers of those fed a high-Zn diet, regardless of the dietary source of Cd.

  15. Inhibition by dietary D-psicose of body fat accumulation in adult rats fed a high-sucrose diet.

    PubMed

    Ochiai, Masaru; Nakanishi, Yosuke; Yamada, Takako; Iida, Tetsuo; Matsuo, Tatsuhiro

    2013-01-01

    We investigated the anti-obesity effects of dietary D-psicose on adult rats fed a high-sucrose diet. Wistar rats (16 weeks old) that had previously been fed a high-sucrose diet (HSD) were fed HSD or a high-starch diet (HTD) with or without 5% D-psicose for 8 weeks. The food efficiency, carcass fat percentage, abdominal fat accumulation, and body weight gain were all significantly suppressed by dietary D-psicose.

  16. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets

    PubMed Central

    Lindenmaier, Laurence B.; Philbrick, Kenneth A.; Branscum, Adam J.; Kalra, Satya P.; Turner, Russell T.; Iwaniec, Urszula T.

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 107 particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  17. Decrease of Obesity by Allantoin via Imidazoline I1-Receptor Activation in High Fat Diet-Fed Mice

    PubMed Central

    Chung, Hsien-Hui; Lee, Kung Shing

    2013-01-01

    The activation of the imidazoline I1-receptor (I1R) is known to regulate appetite. Allantoin, an active ingredient in the yam, has been reported to improve lipid metabolism in high fat diet- (HFD-)fed mice. However, the effect of allantoin on obesity remains unclear. In the present study, we investigated the effects of allantoin on HFD-induced obesity. The chronic administration of allantoin to HFD-fed mice for 8 weeks significantly decreased their body weight, and this effect was reversed by efaroxan at a dose sufficient to block I1R. The epididymal white adipose tissue (eWAT) cell size and weight in HFD-fed mice were also decreased by allantoin via the activation of I1R. In addition, allantoin significantly decreased the energy intake of HFD-fed mice, and this reduction was associated with a decrease in the NPY levels in the brain. However, no inhibitory effect of allantoin on energy intake was observed in db/db mice. Moreover, allantoin lowered HFD-induced hyperleptinemia, and this activity was abolished by I1R blockade with efaroxan. Taken together, these data suggest that allantoin can ameliorate energy intake and eWAT accumulation by activating I1R to improve HFD-induced obesity. PMID:23606885

  18. Bardoxolone methyl prevents the development and progression of cardiac and renal pathophysiologies in mice fed a high-fat diet.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Wang, Hongqin; Dinh, Chi H L; Huang, Xu-Feng

    2016-01-05

    Obesity caused by the consumption of a high-fat (HF) diet is a major risk factor for the development of associated complications, such as heart and kidney failure. A semi-synthetic triterpenoid, bardoxolone methyl (BM) was administrated to mice fed a HF diet for 21 weeks to determine if it would prevent the development of obesity-associated cardiac and renal pathophysiologies. Twelve week old male C57BL/6J mice were fed a lab chow (LC), HF (40% fat), or a HF diet supplemented with 10 mg/kg/day BM in drinking water. After 21 weeks, the left ventricles of hearts and cortex of kidneys of mice were collected for analysis. Histological analysis revealed that BM prevented HF diet-induced development of structural changes in the heart and kidneys. BM prevented HF diet-induced decreases in myocyte number in cardiac tissue, although this treatment also elevated cardiac endothelin signalling molecules. In the kidneys, BM administration prevented HF diet-induced renal corpuscle hypertrophy and attenuated endothelin signalling. Furthermore, in both the hearts and kidneys of mice fed a HF diet, BM administration prevented HF diet-induced increases in fat accumulation, macrophage infiltration and tumour necrosis factor alpha (TNFα) gene expression. These findings suggest that BM prevents HF diet-induced developments of cardiac and renal pathophysiologies in mice fed a chronic HF diet by preventing inflammation. Moreover, these results suggest that BM has the potential as a therapeutic for preventing obesity-induced cardiac and renal pathophysiologies.

  19. Morphometric and functional abnormalities of kidneys in the progeny of mice fed chocolate during pregnancy and lactation.

    PubMed

    Patera, Janusz; Chorostowska-Wynimko, Joanna; Słodkowska, Janina; Borowska, Adamina; Skopiński, Piotr; Sommer, Ewa; Wasiutyński, Aleksander; Skopińska-Rózewska, Ewa

    2006-01-01

    Even most commonly consumed beverages like tea, coffee, chocolate and cocoa contain methylxanthines, biogenic amines and polyphenols, among them catechins, that exhibit significant biological activity and might profoundly affect the organism homeostasis. We have previously shown that 400 mg of bitter chocolate or 6 mg of theobromine added to the daily diet of pregnant and afterwards lactating mice affected embryonic angiogenesis and caused bone mineralization disturbances as well as limb shortening in 4-weeks old offspring. The aim of the present study was the morphometric and functional evaluation of kidneys in the 4-weeks old progeny mice fed according to the protocol mentioned above. Progeny from the mice fed chocolate presented considerable morphometric abnormalities in the kidney structure, with the lower number of glomeruli per mm2 and their increased diameter. Moreover, higher serum creatinine concentration was observed in that group of offspring. No morphometric or functional irregularities were found in the progeny of mice fed theobromine. Abnormalities demonstrated in the offspring of mice fed chocolate are not related to its theobromine content. Consequently, identification of active compound(s) responsible for the observed effects is of vital importance.

  20. Artemisia annua Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice

    PubMed Central

    Kim, Kyung Eun; Ko, Keon-Hee; Heo, Rok Won; Yi, Chin-ok; Shin, Hyun Joo; Kim, Jun Young; Park, Jae-Ho; Nam, Sanghae; Kim, Hwajin

    2016-01-01

    Abstract Artemisia annua L. (AA) is a well-known source of the antimalarial drug artemisinin. AA also has an antibacterial and antioxidant activity. However, the effect of AA extract on hepatic steatosis induced by obesity is unclear. We investigated whether AA extract prevents obesity-induced insulin resistance and hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were randomly divided into groups that received a normal chow diet or HFD with or without AA for 12 weeks. We found that AA extract reduced insulin resistance and hepatic steatosis in HFD-fed mice. Western blot analysis showed that HFD-induced expression of nuclear sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein in the livers was decreased by AA extract. In particular, dietary administration of AA extract decreased hepatic high-mobility group box 1 and cyclooxygenase-2 expression in HFD-fed mice. AA extract also attenuated HFD-induced collagen deposition and fibrosis-related transforming growth factor-β1 and connective tissue growth factor. These data indicate that dietary AA extract has beneficial effects on hepatic steatosis and inflammation in HFD-fed mice. PMID:26741655

  1. Effects of fasting and/or oxidizing and reducing agents on absorption of neptunium from the gastrointestinal tract of mice and adult or neonatal rats.

    PubMed

    Sullivan, M F; Ruemmler, P S; Ryan, J L

    1984-12-01

    Neptunium-237(V) nitrate was administered by gavage to groups of fed or fasted adult and 5-day-old rats. Some groups also received the oxidants quinhydrone or ferric iron, and others received the reducing agent ferrous iron. Adult mice received ferric or ferrous iron and 235Np. When the adult rats were killed at 7 days after gavage, measurements showed that, compared with rats that were fed, a 24-hr fast caused a fivefold increase in 237Np absorption and retention. Both quinhydrone and ferric iron caused an even greater increase in absorption in both fed and fasted rats. Ferrous iron, on the other hand, decreased absorption in fasted rats to values lower than those obtained in fed rats. Similar results were obtained in mice treated with 235Np and either ferric or ferrous iron. The highest absorption obtained after gavage of ferric iron to fasted rats and mice was about two orders of magnitude higher than the value obtained in animals that were fed before gavage. The effects of ferric and ferrous iron on neptunium absorption by neonatal rats were similar to their effects on adult animals but of lesser magnitude. These results are consistent with the hypothesis that Np(V), when given in small mass quantities to fed animals, is reduced in the gastrointestinal tract to Np(IV), which is less well absorbed than Np(V).

  2. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice.

    PubMed

    Baldwin, Jessie; Collins, Brian; Wolf, Patricia G; Martinez, Kristina; Shen, Wan; Chuang, Chia-Chi; Zhong, Wei; Cooney, Paula; Cockrell, Chase; Chang, Eugene; Gaskins, H Rex; McIntosh, Michael K

    2016-01-01

    Our objective was to determine if consuming table grapes reduces adiposity and its metabolic consequences and alters gut microbiota in mice fed a high-fat (HF), butter-rich diet. C57BL/6J mice were fed a low-fat (LF) diet or HF diet with 3% or 5% grapes for 11weeks. Total body and inguinal fat were moderately but significantly reduced in mice fed both levels of grapes compared to their controls. Mice fed 5% grapes had lower liver weights and triglyceride levels and decreased expression of glycerol-3-phosphate acyltransferase (Gpat1) compared to the 5% controls. Mice fed 3% grapes had lower hepatic mRNA levels of peroxisome proliferator-activated receptor gamma 2, sterol-CoA desaturase 1, fatty-acid binding protein 4 and Gpat1 compared to the 3% controls. Although grape feeding had only a minor impact on markers of inflammation or lipogenesis in adipose tissue or intestine, 3% of grapes decreased the intestinal abundance of sulfidogenic Desulfobacter spp. and the Bilophila wadsworthia-specific dissimilatory sulfite reductase gene and tended to increase the abundance of the beneficial bacterium Akkermansia muciniphila compared to controls. In addition, Bifidobacterium, Lactobacillus, Allobaculum and several other genera correlated negatively with adiposity. Allobaculum in particular was increased in the LF and 3% grapes groups compared to the HF-fed controls. Notably, grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens. Collectively, these data indicate that some of the adverse health consequences of consuming an HF diet rich in saturated fat can be attenuated by table grape consumption.

  3. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice

    PubMed Central

    Baldwin, Jessie; Collins, Brian; Wolf, Patricia G.; Martinez, Kristina; Shen, Wan; Chuang, Chia-Chi; Zhong, Wei; Cooney, Paula; Cockrell, Chase; Chang, Eugene; Gaskins, H. Rex; McIntosh, Michael K.

    2016-01-01

    Our objective was to determine if consuming table grapes reduces adiposity and its metabolic consequences and alters gut microbiota in mice fed a high fat (HF), butter-rich diet. C57BL/6J mice were fed a low fat (LF) diet or HF diet with 3% or 5% grapes for 11 weeks. Total body and inguinal fat were moderately, but significantly reduced in mice fed both levels of grapes compared to their controls. Mice fed 5% grapes had lower liver weights and triglyceride levels, and decreased expression of glycerol-3-phosphate acyltransferase (Gpat1) compared to the 5% controls. Mice fed 3% grapes had lower hepatic mRNA levels of peroxisome proliferator-activated receptor gamma 2, sterol-CoA desaturase 1, fatty-acid binding protein 4, and Gpat1 compared to the 3% controls. Although grape feeding had only a minor impact on markers of inflammation or lipogenesis in adipose tissue or intestine, 3% grapes decreased the intestinal abundance of sulfidogenic Desulfobacter spp., and the Bilophila wadsworthia-specific dissimilatory sulfite reductase gene (dsrA-Bw), and tended to increase the abundance of the beneficial bacterium Akkermansia muciniphila compared to controls. Additionally, Bifidobacterium, Lactobacillus, Allobaculum, and several other genera correlated negatively with adiposity. Allobaculum in particular was increased in the LF and 3% grapes groups compared to the HF-fed controls. Notably, grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens. Collectively, these data indicate that some of the adverse health consequences of consuming a HF diet rich in saturated fat can be attenuated by table grape consumption. PMID:26423887

  4. Liver Perilipin 5 Expression Worsens Hepatosteatosis But Not Insulin Resistance in High Fat-Fed Mice

    PubMed Central

    Trevino, Michelle B.; Mazur-Hart, David; Machida, Yui; King, Timothy; Nadler, Joseph; Galkina, Elena V.; Poddar, Arjun; Dutta, Sucharita

    2015-01-01

    Perilipin 5 (PLIN5) is a lipid droplet (LD) protein highly expressed in oxidative tissues, including the fasted liver. However, its expression also increases in nonalcoholic fatty liver. To determine whether PLIN5 regulates metabolic phenotypes of hepatosteatosis under nutritional excess, liver targeted overexpression of PLIN5 was achieved using adenoviral vector (Ad-PLIN5) in male C57BL/6J mice fed high-fat diet. Mice treated with adenovirus expressing green fluorescent protein (GFP) (Ad-GFP) served as control. Ad-PLIN5 livers increased LD in the liver section, and liquid chromatography with tandem mass spectrometry revealed increases in lipid classes associated with LD, including triacylglycerol, cholesterol ester, and phospholipid classes, compared with Ad-GFP liver. Lipids commonly associated with hepatic lipotoxicity, diacylglycerol, and ceramides, were also increased in Ad-PLIN5 liver. The expression of genes in lipid metabolism regulated by peroxisome proliferator-activated receptor-α was reduced suggestive of slower mobilization of stored lipids in Ad-PLIN5 mice. However, the increase of hepatosteatosis by PLIN5 overexpression did not worsen glucose homeostasis. Rather, serum insulin levels were decreased, indicating better insulin sensitivity in Ad-PLIN5 mice. Moreover, genes associated with liver injury were unaltered in Ad-PLIN5 steatotic liver compared with Ad-GFP control. Phosphorylation of protein kinase B was increased in Ad-PLIN5-transduced AML12 hepatocyte despite of the promotion of fatty acid incorporation to triacylglycerol as well. Collectively, our data indicates that the increase in liver PLIN5 during hepatosteatosis drives further lipid accumulation but does not adversely affect hepatic health or insulin sensitivity. PMID:26296152

  5. Serotonin Deficiency Rescues Lactation on Day 1 in Mice Fed a High Fat Diet

    PubMed Central

    Prichard, Allan S.; Perez, Paola K.; Streckenbach, Liana J.; Olson, Jake M.; Cook, Mark E.; Hernandez, Laura L.

    2016-01-01

    Obesity is an inflammatory state associated with delayed lactogenesis stage II and altered mammary gland morphology. Serotonin mediates inflammation and mammary gland involution. The objective of this study was to determine if a genetic deficiency of tryptophan hydroxylase 1, the rate-limiting enzyme in peripheral serotonin synthesis, would result in an improved ability to lactate in dams fed a high fat diet. Twenty-six female mice were fed a high (HFD) or low fat (LFD) diet throughout pregnancy and lactation. Fourteen mice were genetically deficient for Tph1 (Tph1-/-), and twelve were wild type. Milk yield, pup mortality, and dam weights were recorded and milk samples were collected. On day 10 of lactation, dams were sacrificed and mammary glands were harvested for RT-PCR and histological evaluation. HFD dams weighed more than LFD dams at the onset of lactation. WT HFD dams were unable to lactate on day 1 of lactation and exhibited increased pup mortality relative to all other treatments, including Tph1-/- HFD dams. mRNA expression of immune markers C-X-C motif chemokine 5 and tumor necrosis factor alpha were elevated in WT HFD mammary glands. Mammary gland histology showed a reduced number of alveoli in WT compared to Tph1-/- dams, regardless of diet, and the alveoli of HFD dams were smaller than those of LFD dams. Finally, fatty acid profile in milk was dynamic in both early and peak lactation, with reduced de novo synthesis of fatty acids on day 10 of lactation in the HFD groups. Administration of a HFD to C57BL/6 dams produced an obese phenotype in the mammary gland, which was alleviated by a genetic deficiency of Tph1. Serotonin may modulate the effects of obesity on the mammary gland, potentially contributing to the delayed onset of lactogenesis seen in obese women. PMID:27603698

  6. Effect of dietary selenium and cancer cell xenograft on peripheral T and B lymphocytes in adult nude mice.

    PubMed

    Cheng, Wen-Hsing; Holmstrom, Alexandra; Li, Xiangdong; Wu, Ryan T Y; Zeng, Huawei; Xiao, Zhengguo

    2012-05-01

    Selenium (Se) is known to regulate tumorigenesis and immunity at the nutritional and supranutritional levels. Because the immune system provides critical defenses against cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop CD8(+) and CD4(+) T cells, we investigated whether B and T cell maturation could be modulated by dietary Se and by tumorigenesis in nude mice. Fifteen homozygous nude mice were fed a Se-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se+) or 1.0 (Se++) mg Se/kg (as Na(2)SeO(4)) for 6 months, followed by a 7-week time course of PC-3 prostate cancer cell xenograft (2 × 10(6) cells/site, 2 sites/mouse). Here, we show that peripheral B cell levels decreased in nude mice fed the Se -  or Se++ diet and the CD4(+) T cell levels increased in mice fed the Se++ diet. During the PC-3 cell tumorigenesis, dietary Se status did not affect peripheral CD4(+) or CD8(+) T cells in nude mice whereas mice fed with the Se++ diet appeared to exhibit greater peripheral CD25(+)CD4(+) T cells on day 9. Dietary Se status did not affect spleen weight in nude mice 7 weeks after the xenograft. Spleen weight was associated with frequency of peripheral CD4(+), but not CD8(+) T cells. Taken together, dietary Se at the nutritional and supranutritional levels regulates peripheral B and T cells in adult nude mice before and after xenograft with PC-3 prostate cancer cells.

  7. Chronic prednisolone treatment reduces hepatic insulin sensitivity while perturbing the fed-to-fasting transition in mice.

    PubMed

    Laskewitz, Anke J; van Dijk, Theo H; Bloks, Vincent W; Reijngoud, Dirk-Jan; van Lierop, Marie-José; Dokter, Wim H; Kuipers, Folkert; Groen, Albert K; Grefhorst, Aldo

    2010-05-01

    Chronic glucocorticoid use for treatment of inflammatory diseases is accompanied by severe side effects in humans (e.g. hyperglycemia and insulin resistance). The present studies were conducted to characterize consequences of chronic treatment with the synthetic glucocorticoid prednisolone on insulin sensitivity and blood glucose kinetics in mice. Prednisolone treatment increased fasting blood glucose and plasma insulin concentrations, but this apparently reduced insulin sensitivity could not be confirmed in hyperinsulinemic euglycemic clamp studies. Therefore, a novel method to study whole body glucose kinetics was used. This method revealed that prednisolone-treated mice show an increased hepatic glucose production (HGP). The increased HGP was accompanied by elevated plasma insulin concentrations, indicating reduced insulin sensitivity of hepatic glucose metabolism in prednisolone-treated mice. Compared with vehicle, prednisolone-treated mice had lower blood glucose concentrations, higher plasma free fatty acids, and higher plasma fibroblast growth factor-21 concentrations in the fed condition, i.e. mimicking a fasting situation. Next, the effects of 24-h fasting on energy metabolism were studied. Compared with controls, fasted prednisolone-treated mice had higher blood glucose concentrations and lower plasma beta-hydroxybutyrate concentrations. In conclusion, these results indicate that chronic prednisolone treatment reduces insulin sensitivity of HGP, induces a fasting-like phenotype in fed mice, and perturbs the fed-to-fasting transition.

  8. Morphofunctional Renal Alterations in Progeny of Mice Fed Rhodiola kirilowii Extracts or Epigallocatechin During Pregnancy and Lactation.

    PubMed

    Lewicki, Sławomir; Skopińska-Różewska, Ewa; Bałan, Barbara Joanna; Kalicki, Bolesław; Patera, Janusz; Wilczak, Jacek; Wasiutyński, Aleksander; Zdanowski, Robert

    2017-01-01

    Treating infections in pregnant patients is potentially dangerous even when herbal medicines are used. Many herbal medicines, among them extracts from plants of Rhodiola genus, have antimicrobial, anti-inflammatory, and immunostimulatory properties owing to their polyphenol content; they may, however, affect fetal development due to their antiangiogenic properties. The aim of this study was to explain whether daily feeding pregnant and lactating mice with 20 mg/kg Rhodiola kirilowii aqueous (RKW) or 50% hydro-alcoholic (RKW-A) extracts, or 0.2 mg/kg epigallocatechin (EGC, antiangiogenic compound of Rhodiola extracts), may lead to abnormalities in morphology and function of the kidneys of adult progeny. Such abnormalities were not observed in the kidneys of 6-week-old offspring, neither in RKW nor in the control group. However, the progeny of RKW-A- or EGC-fed mothers presented morphometric abnormalities in the kidney structure, with a significantly higher number of glomeruli/mm(2) and a lower diameter of glomeruli (RKW-A group) or a significantly higher glomeruli diameter (EGC), than in the control and RKW groups. Abnormalities in serum vascular endothelial growth factor, tumor necrosis factor (TNF)-alpha, urea, creatinine, and cystatin C levels were also found. We recommend caution in long-term use of RKW-A extract and EGC-rich foods during pregnancy and lactation.

  9. Beneficial effects of apple peel polyphenols on vascular endothelial dysfunction and liver injury in high choline-fed mice.

    PubMed

    Jia, Mengfan; Ren, Daoyuan; Nie, Yan; Yang, Xingbin

    2017-03-22

    This study was designed to investigate the preventive effects of Red Fuji apple peel polyphenolic extract (APP) on vascular endothelial dysfunction and liver injury in mice fed a high choline diet. The mice were fed 3% dietary choline in drinking water for 8 weeks and displayed vascular dysfunction and liver damage (p < 0.01). The administration of APP at 600 and 900 mg per kg bw significantly elevated serum NO, HDL and 6-Keto-PGF1a levels and lowered serum TC, TG, LDL, ET-1 and TXB2 levels in the HC-fed mice. Besides, APP also caused the reduction of AST, ALT activities and MDA, CRP, TNF-α levels, and increased the hepatic GSH-Px and SOD activities of the HC-fed mice. Furthermore, the histopathology of the liver by conventional H&E and oil red O staining confirmed the liver steatosis induced by a choline diet and the hepatoprotective effect of APP. The experiment results indicated that the polyphenolic extract from apple peel might be regarded as a preventive and therapeutic product for the amelioration of HC diet-induced vascular dysfunction and hepatic injury.

  10. Blueberry juice and anthocyanins modulate obesity, leptin and beta cell function in mice fed a high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins (ACNs) are the components responsible for the red and blue colors found in many fruits and berries. Consumption of purified blueberry (BB) anthocyanins but not whole BB in the diet has been shown to prevent the development of obesity in mice fed high-fat diets (JAFC 56:647, 2008). The o...

  11. Triticale Bran Alkylresorcinols Enhance Resistance to Oxidative Stress in Mice Fed a High-Fat Diet

    PubMed Central

    Agil, Rania; Patterson, Zachary R.; Mackay, Harry; Abizaid, Alfonso; Hosseinian, Farah

    2016-01-01

    Triticale (× Triticosecale Whitm.) is a cereal grain with high levels of alkyresorcinols (AR) concentrated in the bran. These phenolic lipids have been shown to reduce or inhibit triglyceride accumulation and protect against oxidation; however, their biological effects have yet to be evaluated in vivo. The purpose of this study was to determine the effects of ARs extracted from triticale bran (TB) added to a high–fat diet on the development of obesity and oxidative stress. CF-1 mice were fed a standard low-fat (LF) diet, a 60% high-fat diet (HF) and HF diets containing either 0.5% AR extract (HF-AR), 10% TB (HF-TB), or 0.5% vitamin E (HF-VE). Energy intake, weight gain, glucose tolerance, fasting blood glucose (FBG) levels, and body composition were determined. Oxygen radical absorbance capacity (ORAC), superoxide dismutase (SOD) activity, and glutathione (GSH) assays were performed on mice liver and heart tissues. The findings suggest that ARs may serve as a preventative measure against risks of oxidative damage associated with high-fat diets and obesity through their application as functional foods and neutraceuticals. Future studies aim to identify the in vivo mechanisms of action of ARs and the individual homologs involved in their favorable biological effects. PMID:28231100

  12. Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet

    PubMed Central

    Xia, Shu-Fang; Le, Guo-Wei; Wang, Peng; Qiu, Yu-Yu; Jiang, Yu-Yu; Tang, Xue

    2016-01-01

    Myricetin is an effective antioxidant in the treatment of obesity and obesity-related metabolic disorders. The objective of this study was to explore the regressive effect of myricetin on pre-existing hepatic steatosis induced by high-fat diet (HFD). C57BL/6 mice were fed either a standard diet or a HFD for 12 weeks and then half of the mice were treated with myricetin (0.12% in the diet, w/w) while on their respective diets for further 12 weeks. Myricetin treatment significantly alleviated HFD-induced steatosis, decreased hepatic lipid accumulation and thiobarbituric acid reactive substance (TBARS) levels, and increased antioxidative enzyme activities, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Microarray analysis of hepatic gene expression profiles showed that myricetin significantly altered the expression profiles of 177 genes which were involved in 12 biological pathways, including the peroxisome proliferator activated receptor (PPAR) signaling pathway and peroxisome. Further research indicated that myricetin elevated hepatic nuclear Nrf2 translocation, increased the protein expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1), reduced the protein expression of PPARγ, and normalized the expressions of genes that were involved in peroxisome and the PPAR signaling pathway. Our data indicated that myricetin might represent an effective therapeutic agent to treat HFD-induced hepatic steatosis via activating the Nrf2 pathway and the PPAR signaling pathway. PMID:27973423

  13. Coacervate whey protein improves inflammatory milieu in mice fed with high-fat diet

    PubMed Central

    2014-01-01

    Background Functional foods with bioactive properties may help in treat obesity, as they can lead to a decreased risks of inflammatory diseases. The aim of this study was to investigate the effects of chitosan coacervate whey protein on the proinflammatory processes in mice fed with high-fat diet. Methods Mice were divided into two groups receiving either a normolipidic or high-fat diet; the animals in each of the two diet groups were given a diet supplement of either coacervate (gavage, 36 mg protein/kg of body weight) or tap water for four weeks [groups: normolipidic diet plus water (C); normolipidic diet and coacervate (CC); high-fat diet and water (H); and high-fat diet and coacervate (HC)]. Results The high-fat diet promoted inflammation, possibly by decreased adiponectin/sum of adipose tissues ratio and increased phosphorylation of NF-κB p50. In HC we observed a positive correlation between IL-10 and TNF-α in mesenteric adipose tissue, retroperitoneal adipose tissue and liver tissue. We also observed a positive correlation between lipopolisaccharide with IL-10 in the liver tissue. Conclusions High-fat diet treatment promoted metabolic alterations and inflammation, and chitosan coacervate whey protein modulated inflammatory milieu. PMID:24673809

  14. Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet.

    PubMed

    Xia, Shu-Fang; Le, Guo-Wei; Wang, Peng; Qiu, Yu-Yu; Jiang, Yu-Yu; Tang, Xue

    2016-12-11

    Myricetin is an effective antioxidant in the treatment of obesity and obesity-related metabolic disorders. The objective of this study was to explore the regressive effect of myricetin on pre-existing hepatic steatosis induced by high-fat diet (HFD). C57BL/6 mice were fed either a standard diet or a HFD for 12 weeks and then half of the mice were treated with myricetin (0.12% in the diet, w/w) while on their respective diets for further 12 weeks. Myricetin treatment significantly alleviated HFD-induced steatosis, decreased hepatic lipid accumulation and thiobarbituric acid reactive substance (TBARS) levels, and increased antioxidative enzyme activities, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Microarray analysis of hepatic gene expression profiles showed that myricetin significantly altered the expression profiles of 177 genes which were involved in 12 biological pathways, including the peroxisome proliferator activated receptor (PPAR) signaling pathway and peroxisome. Further research indicated that myricetin elevated hepatic nuclear Nrf2 translocation, increased the protein expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1), reduced the protein expression of PPARγ, and normalized the expressions of genes that were involved in peroxisome and the PPAR signaling pathway. Our data indicated that myricetin might represent an effective therapeutic agent to treat HFD-induced hepatic steatosis via activating the Nrf2 pathway and the PPAR signaling pathway.

  15. Lack of mature lymphocytes results in obese but metabolically healthy mice when fed a high-fat diet

    PubMed Central

    Liu, X; Huh, JY; Gong, H; Chamberland, JP; Brinkoetter, MT; Hamnvik, O-PR; Mantzoros, CS

    2017-01-01

    BACKGROUND/OBJECTIVES Obesity is characterized by chronic inflammation and immune dysregulation, as well as insulin resistance, but the link between obesity and adaptive immunity remains to be fully studied. METHODS To elucidate the role of adaptive immunity on body composition, glucose homeostasis and inflammation, recombination-activating gene 1 knockout (Rag1 − / −) mice, without mature T-lymphocytes or B-lymphocytes, were maintained on a low- or high-fat diet (LFD and HFD, respectively) for 11 weeks. RESULTS Rag1 − / − mice fed HFD gained significantly more weight and had increased body fat compared with wild type. Downregulation of energy expenditure as well as brown fat uncoupling protein UCP-1 and UCP-3 gene expression were noticed in HFD-fed Rag1 − / − mice compared with LFD. HFD mice had significantly decreased energy intake compared with LFD mice, consistent with decreased agouti-related protein and increased pro-opiomelanocortin gene expression levels in the hypothalamus. Moreover, compared with wild type, Rag1 − / − mice had lower interleukin (IL)-4 levels, a cytokine recently found to induce browning in white adipocytes, and higher IL-12 levels in HFD-fed Rag1 − / − mice. Despite that HFD Rag1 − / − mice were more obese, they had similar glucose, insulin and adiponectin levels, while leptin was marginally increased. CONCLUSIONS Mice with deficiency in adaptive immunity are obese, partly owing to decreased energy expenditure, but are metabolically normal, suggesting that mature lymphocytes have necessary roles in the development of obesity-related metabolic dysregulation. PMID:25994806

  16. Bardoxolone methyl prevents insulin resistance and the development of hepatic steatosis in mice fed a high-fat diet.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Dinh, Chi H L; Wang, Hongqin; Cheng, Licai; Huang, Xu-Feng

    2015-09-05

    High-fat (HF) diet-induced obesity is a major risk factor for the development of insulin resistance and hepatic steatosis. We examined the hypothesis that bardoxolone methyl (BM) would prevent the development of insulin resistance and hepatic steatosis in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC), HF (40% fat), or HF diet supplemented with 10 mg/kg/day BM orally for 21 weeks. Glucose metabolism was assessed using a glucose tolerance test (GTT) and insulin sensitivity test (IST). Signalling molecules involved in insulin resistance, inflammation, and lipid metabolism were examined in liver tissue via western blotting and RT-PCR. BM prevented HF diet-induced insulin resistance and alterations in the protein levels of protein tyrosine phosphatase 1B (PTP1B), forkhead box protein O1 (FOXO1) and BDNF, and expression of the insulin receptor (IR), IRS-1 and glucose-6-phosphatase (G6Pase) genes. Furthermore, BM prevented fat accumulation in the liver and decreases in the β-oxidation gene, peroxisomal acyl-coenzyme A oxidase 1 (ACOX) in mice fed a HF diet. In the livers of HF fed mice, BM administration prevented HF diet-induced macrophage infiltration, inflammation as indicated by reduced IL-6 and signal transducer and activator of transcription 3 (STAT3) protein levels and TNFα mRNA expression, and increased nuclear factor-like 2 (Nrf2) mRNA expression and nuclear protein levels. These findings suggest that BM prevents HF diet induced insulin resistance and the development of hepatic steatosis in mice fed a chronic HF diet through modulation of molecules involved in insulin signalling, lipid metabolism and inflammation in the liver.

  17. Liver fatty acid binding protein gene-ablation exacerbates weight gain in high-fat fed female mice.

    PubMed

    McIntosh, Avery L; Atshaves, Barbara P; Landrock, Danilo; Landrock, Kerstin K; Martin, Gregory G; Storey, Stephen M; Kier, Ann B; Schroeder, Friedhelm

    2013-05-01

    Loss of liver fatty acid binding protein (L-FABP) decreases long chain fatty acid uptake and oxidation in primary hepatocytes and in vivo. On this basis, L-FABP gene ablation would potentiate high-fat diet-induced weight gain and weight gain/energy intake. While this was indeed the case when L-FABP null (-/-) mice on the C57BL/6NCr background were pair-fed a high-fat diet, whether this would also be observed under high-fat diet fed ad libitum was not known. Therefore, this possibility was examined in female L-FABP (-/-) mice on the same background. L-FABP (-/-) mice consumed equal amounts of defined high-fat or isocaloric control diets fed ad libitum. However, on the ad libitum-fed high-fat diet the L-FABP (-/-) mice exhibited: (1) decreased hepatic long chain fatty acid (LCFA) β-oxidation as indicated by lower serum β-hydroxybutyrate level; (2) decreased hepatic protein levels of key enzymes mitochondrial (rate limiting carnitine palmitoyl acyltransferase A1, CPT1A; HMG-CoA synthase) and peroxisomal (acyl CoA oxidase 1, ACOX1) LCFA β-oxidation; (3) increased fat tissue mass (FTM) and FTM/energy intake to the greatest extent; and (4) exacerbated body weight gain, weight gain/energy intake, liver weight, and liver weight/body weight to the greatest extent. Taken together, these findings showed that L-FABP gene-ablation exacerbated diet-induced weight gain and fat tissue mass gain in mice fed high-fat diet ad libitum--consistent with the known biochemistry and cell biology of L-FABP.

  18. Apple cider vinegar modulates serum lipid profile, erythrocyte, kidney, and liver membrane oxidative stress in ovariectomized mice fed high cholesterol.

    PubMed

    Nazıroğlu, Mustafa; Güler, Mustafa; Özgül, Cemil; Saydam, Gündüzalp; Küçükayaz, Mustafa; Sözbir, Ercan

    2014-08-01

    The purpose of this study was to investigate the potentially beneficial effects of apple cider vinegar (ACV) supplementation on serum triglycerides, total cholesterol, liver and kidney membrane lipid peroxidation, and antioxidant levels in ovariectomized (OVX) mice fed high cholesterol. Four groups of ten female mice were treated as follows: Group I received no treatment and was used as control. Group II was OVX mice. Group III received ACV intragastrically (0.6% of feed), and group IV was OVX and was treated with ACV as described for group III. The treatment was continued for 28 days, during which the mice were fed a high-cholesterol diet. The lipid peroxidation levels in erythrocyte, liver and kidney, triglycerides, total, and VLDL cholesterol levels in serum were higher in the OVX group than in groups III and IV. The levels of vitamin E in liver, the kidney and erythrocyte glutathione peroxidase (GSH-Px), and erythrocyte-reduced glutathione (GSH) were decreased in group II. The GSH-Px, vitamin C, E, and β-carotene, and the erythrocyte GSH and GSH-Px values were higher in kidney of groups III and IV, but in liver the vitamin E and β-carotene concentrations were decreased. In conclusion, ACV induced a protective effect against erythrocyte, kidney, and liver oxidative injury, and lowered the serum lipid levels in mice fed high cholesterol, suggesting that it possesses oxidative stress scavenging effects, inhibits lipid peroxidation, and increases the levels of antioxidant enzymes and vitamin.

  19. A mixture of cod and scallop protein reduces adiposity and improves glucose tolerance in high-fat fed male C57BL/6J mice.

    PubMed

    Tastesen, Hanne Sørup; Rønnevik, Alexander Krokedal; Borkowski, Kamil; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2014-01-01

    Low-protein and high-protein diets regulate energy metabolism in animals and humans. To evaluate whether different dietary protein sources modulate energy balance when ingested at average levels obesity-prone male C57BL/6J mice were pair-fed high-fat diets (67 energy percent fat, 18 energy percent sucrose and 15 energy percent protein) with either casein, chicken filet or a mixture of cod and scallop (1:1 on amino acid content) as protein sources. At equal energy intake, casein and cod/scallop fed mice had lower feed efficiency than chicken fed mice, which translated into reduced adipose tissue masses after seven weeks of feeding. Chicken fed mice had elevated hepatic triglyceride relative to casein and cod/scallop fed mice and elevated 4 h fasted plasma cholesterol concentrations compared to low-fat and casein fed mice. In casein fed mice the reduced adiposity was likely related to the observed three percent lower apparent fat digestibility compared to low-fat, chicken and cod/scallop fed mice. After six weeks of feeding an oral glucose tolerance test revealed that despite their lean phenotype, casein fed mice had reduced glucose tolerance compared to low-fat, chicken and cod/scallop fed mice. In a separate set of mice, effects on metabolism were evaluated by indirect calorimetry before onset of diet-induced obesity. Spontaneous locomotor activity decreased in casein and chicken fed mice when shifting from low-fat to high-fat diets, but cod/scallop feeding tended (P = 0.06) to attenuate this decrease. Moreover, at this shift, energy expenditure decreased in all groups, but was decreased to a greater extent in casein fed than in cod/scallop fed mice, indicating that protein sources regulated energy expenditure differently. In conclusion, protein from different sources modulates energy balance in C57BL/6J mice when given at normal levels. Ingestion of a cod/scallop-mixture prevented diet-induced obesity compared to intake of chicken filet and preserved glucose

  20. A Mixture of Cod and Scallop Protein Reduces Adiposity and Improves Glucose Tolerance in High-Fat Fed Male C57BL/6J Mice

    PubMed Central

    Tastesen, Hanne Sørup; Rønnevik, Alexander Krokedal; Borkowski, Kamil; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2014-01-01

    Low-protein and high-protein diets regulate energy metabolism in animals and humans. To evaluate whether different dietary protein sources modulate energy balance when ingested at average levels obesity-prone male C57BL/6J mice were pair-fed high-fat diets (67 energy percent fat, 18 energy percent sucrose and 15 energy percent protein) with either casein, chicken filet or a mixture of cod and scallop (1∶1 on amino acid content) as protein sources. At equal energy intake, casein and cod/scallop fed mice had lower feed efficiency than chicken fed mice, which translated into reduced adipose tissue masses after seven weeks of feeding. Chicken fed mice had elevated hepatic triglyceride relative to casein and cod/scallop fed mice and elevated 4 h fasted plasma cholesterol concentrations compared to low-fat and casein fed mice. In casein fed mice the reduced adiposity was likely related to the observed three percent lower apparent fat digestibility compared to low-fat, chicken and cod/scallop fed mice. After six weeks of feeding an oral glucose tolerance test revealed that despite their lean phenotype, casein fed mice had reduced glucose tolerance compared to low-fat, chicken and cod/scallop fed mice. In a separate set of mice, effects on metabolism were evaluated by indirect calorimetry before onset of diet-induced obesity. Spontaneous locomotor activity decreased in casein and chicken fed mice when shifting from low-fat to high-fat diets, but cod/scallop feeding tended (P = 0.06) to attenuate this decrease. Moreover, at this shift, energy expenditure decreased in all groups, but was decreased to a greater extent in casein fed than in cod/scallop fed mice, indicating that protein sources regulated energy expenditure differently. In conclusion, protein from different sources modulates energy balance in C57BL/6J mice when given at normal levels. Ingestion of a cod/scallop-mixture prevented diet-induced obesity compared to intake of chicken filet and preserved glucose

  1. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells.

  2. Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet.

    PubMed

    Liu, Xiaoying; Henkel, Anne S; LeCuyer, Brian E; Schipma, Matthew J; Anderson, Kristy A; Green, Richard M

    2015-12-15

    Fatty liver is associated with endoplasmic reticulum stress and activation of the hepatic unfolded protein response (UPR). Reduced hepatic expression of the UPR regulator X-box binding protein 1 spliced (XBP1s) is associated with human nonalcoholic steatohepatitis (NASH), and feeding mice a high-fat diet with fructose/sucrose causes progressive, fibrosing steatohepatitis. This study examines the role of XBP1 in nonalcoholic fatty liver injury and fatty acid-induced cell injury. Hepatocyte-specific Xbp1-deficient (Xbp1(-/-)) mice were fed a high-fat/sugar (HFS) diet for up to 16 wk. HFS-fed Xbp1(-/-) mice exhibited higher serum alanine aminotransferase levels compared with Xbp1(fl/fl) controls. RNA sequencing and Gene Ontogeny pathway analysis of hepatic mRNA revealed that apoptotic process, inflammatory response, and extracellular matrix structural constituent pathways had enhanced activation in HFS-fed Xbp1(-/-) mice. Liver histology demonstrated enhanced injury and fibrosis but less steatosis in the HFS-fed Xbp1(-/-) mice. Hepatic Col1a1 and Tgfβ1 gene expression, as well as Chop and phosphorylated JNK (p-JNK), were increased in Xbp1(-/-) compared with Xbp1(fl/fl) mice after HFS feeding. In vitro, stable XBP1-knockdown Huh7 cells (Huh7-KD) and scramble control cells (Huh7-SCR) were generated and treated with palmitic acid (PA) for 24 h. PA-treated Huh7-KD cells had increased cytotoxicity measured by lactate dehydrogenase release, apoptotic nuclei, and caspase3/7 activity assays compared with Huh7-SCR cells. CHOP and p-JNK expression was also increased in Huh7-KD cells following PA treatment. In conclusion, loss of XBP1 enhances injury in both in vivo and in vitro models of fatty liver injury. We speculate that hepatic XBP1 plays an important protective role in pathogenesis of NASH.

  3. Resveratrol Attenuates Obesity-Associated Peripheral and Central Inflammation and Improves Memory Deficit in Mice Fed a High-Fat Diet

    PubMed Central

    Jeon, Byeong Tak; Jeong, Eun Ae; Shin, Hyun Joo; Lee, Younghyurk; Lee, Dong Hoon; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Choi, Wan Sung; Roh, Gu Seob

    2012-01-01

    Obesity-induced diabetes is associated with chronic inflammation and is considered a risk factor for neurodegeneration. We tested the hypothesis that an AMP-activated protein kinase activator, resveratrol (RES), which is known to exert potent anti-inflammatory effects, would attenuate peripheral and central inflammation and improve memory deficit in mice fed a high-fat diet (HFD). C57BL/6J mice were fed an HFD or an HFD supplemented with RES for 20 weeks. Metabolic parameters in serum were evaluated, and Western blot analysis and immunohistochemistry in peripheral organs and brain were completed. We used the Morris water maze test to study the role of RES on memory function in HFD-treated mice. RES treatment reduced hepatic steatosis, macrophage infiltration, and insulin resistance in HFD-fed mice. In the hippocampus of HFD-fed mice, the protein levels of tumor necrosis factor-α and Iba-1 expression were reduced by RES treatment. Choline acetyltransferase was increased, and the phosphorylation of tau was decreased in the hippocampus of HFD-fed mice upon RES treatment. In particular, we found that RES significantly improved memory deficit in HFD-fed mice. These findings indicate that RES reverses obesity-related peripheral and central inflammation and metabolic derangements and improves memory deficit in HFD-fed diabetic mice. PMID:22362175

  4. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets

    PubMed Central

    Sadowska, Julita; Gębczyński, Andrzej K.; Konarzewski, Marek

    2017-01-01

    Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model—mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human “sedentary lifestyle”, with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets. PMID:28235091

  5. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets.

    PubMed

    Sadowska, Julita; Gębczyński, Andrzej K; Konarzewski, Marek

    2017-01-01

    Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model-mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human "sedentary lifestyle", with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets.

  6. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    PubMed Central

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch; Bahl, Martin Iain; Hansen, Camilla Hartmann Friis; Danneskiold-Samsøe, Niels Banhos; Kristiansen, Karsten; Radulescu, Ilinca Daria; Sina, Christian; Frandsen, Henrik Lauritz; Hansen, Axel Kornerup; Brix, Susanne; Hellgren, Lars I.; Licht, Tine Rask

    2017-01-01

    Dietary gluten causes severe disorders like celiac disease in gluten-intolerant humans. However, currently understanding of its impact in tolerant individuals is limited. Our objective was to test whether gliadin, one of the detrimental parts of gluten, would impact the metabolic effects of an obesogenic diet. Mice were fed either a defined high-fat diet (HFD) containing 4% gliadin (n = 20), or a gliadin-free, isocaloric HFD (n = 20) for 23 weeks. Combined analysis of several parameters including insulin resistance, histology of liver and adipose tissue, intestinal microbiota in three gut compartments, gut barrier function, gene expression, urinary metabolites and immune profiles in intestinal, lymphoid, liver and adipose tissues was performed. Mice fed the gliadin-containing HFD displayed higher glycated hemoglobin and higher insulin resistance as evaluated by the homeostasis model assessment, more hepatic lipid accumulation and smaller adipocytes than mice fed the gliadin-free HFD. This was accompanied by alterations in the composition and activity of the gut microbiota, gut barrier function, urine metabolome, and immune phenotypes within liver and adipose tissue. Our results reveal that gliadin disturbs the intestinal environment and affects metabolic homeostasis in obese mice, suggesting a detrimental effect of gluten intake in gluten-tolerant subjects consuming a high-fat diet. PMID:28300220

  7. Oxyresveratrol Supplementation to C57bl/6 Mice Fed with a High-Fat Diet Ameliorates Obesity-Associated Symptoms

    PubMed Central

    Tan, Hui Yuan; Tse, Iris Mei Ying; Li, Edmund Tsze Shing; Wang, Mingfu

    2017-01-01

    Oxyresveratrol has been proven effective in inhibiting adipogenesis in a 3T3-L1 cell model. We investigated the preventive effect of oxyresveratrol supplementation on obesity development in high-fat diet-fed mice. Male C57bl/6 mice were randomly subjected to control (5% fat by weight, LF), high-fat (30% fat by weight, HF), and high-fat supplemented with 0.25% and 0.5% oxyresveratrol (OXY1 and OXY2, respectively) diet groups for eight weeks. Oxyresveratrol supplementation effectively alleviated obesity-associated symptoms such as insulin resistance, hyperglycemia, and hepatic steatosis in high-fat diet-fed mice. Compared to the high-fat diet group, oxyresveratrol supplementation suppressed expression of glucose-6-phosphatase, sterol regulatory element-binding proteins 1, fatty acid synthase and CCAAT/Enhancer-binding proteins α, and elevated AMP-activated protein kinase (α2-catalytic subunit) level in liver, upregulated insulin-dependent glucose transporter type 4 level in adipose tissue, and increased expression of insulin receptor substrate 1, insulin-dependent glucose transporter type 4, AMP-activated protein kinase α, peroxisome proliferator-activated receptor γ coactivator-1α, and sirtuin 1 in muscle to regulate lipid and glucose homeostasis in these tissues. This study demonstrated that oxyresveratrol supplementation effectively ameliorated obesity-associated symptoms in high-fat diet-fed mice, presumably attributed to mediating critical regulators involved in lipid and glucose homeostasis in liver, visceral fat, and muscle. PMID:28212343

  8. Thylakoids suppress appetite by increasing cholecystokinin resulting in lower food intake and body weight in high-fat fed mice.

    PubMed

    Köhnke, Rickard; Lindqvist, Andreas; Göransson, Nathanael; Emek, Sinan C; Albertsson, Per-Ake; Rehfeld, Jens F; Hultgårdh-Nilsson, Anna; Erlanson-Albertsson, Charlotte

    2009-12-01

    Thylakoids are membranes isolated from plant chloroplasts which have previously been shown to inhibit pancreatic lipase/colipase catalysed hydrolysis of fat in vitro and induce short-term satiety in vivo. The purpose of the present study was to examine if dietary supplementation of thylakoids could affect food intake and body weight during long-term feeding in mice. Female apolipoprotein E-deficient mice were fed a high-fat diet containing 41% of fat by energy with and without thylakoids for 100 days. Mice fed the thylakoid-enriched diet had suppressed food intake, body weight gain and body fat compared with the high-fat fed control mice. Reduced serum glucose, serum triglyceride and serum free fatty acid levels were found in the thylakoid-treated animals. The satiety hormone cholecystokinin was elevated, suggesting this hormone mediates satiety. Leptin levels were reduced, reflecting a decreased fat mass. There was no sign of desensitization in the animals treated with thylakoids. The results suggest that thylakoids are useful to suppress appetite and body weight gain when supplemented to a high-fat food during long-term feeding.

  9. Oxyresveratrol Supplementation to C57bl/6 Mice Fed with a High-Fat Diet Ameliorates Obesity-Associated Symptoms.

    PubMed

    Tan, Hui Yuan; Tse, Iris Mei Ying; Li, Edmund Tsze Shing; Wang, Mingfu

    2017-02-16

    Oxyresveratrol has been proven effective in inhibiting adipogenesis in a 3T3-L1 cell model. We investigated the preventive effect of oxyresveratrol supplementation on obesity development in high-fat diet-fed mice. Male C57bl/6 mice were randomly subjected to control (5% fat by weight, LF), high-fat (30% fat by weight, HF), and high-fat supplemented with 0.25% and 0.5% oxyresveratrol (OXY1 and OXY2, respectively) diet groups for eight weeks. Oxyresveratrol supplementation effectively alleviated obesity-associated symptoms such as insulin resistance, hyperglycemia, and hepatic steatosis in high-fat diet-fed mice. Compared to the high-fat diet group, oxyresveratrol supplementation suppressed expression of glucose-6-phosphatase, sterol regulatory element-binding proteins 1, fatty acid synthase and CCAAT/Enhancer-binding proteins α, and elevated AMP-activated protein kinase (α2-catalytic subunit) level in liver, upregulated insulin-dependent glucose transporter type 4 level in adipose tissue, and increased expression of insulin receptor substrate 1, insulin-dependent glucose transporter type 4, AMP-activated protein kinase α, peroxisome proliferator-activated receptor γ coactivator-1α, and sirtuin 1 in muscle to regulate lipid and glucose homeostasis in these tissues. This study demonstrated that oxyresveratrol supplementation effectively ameliorated obesity-associated symptoms in high-fat diet-fed mice, presumably attributed to mediating critical regulators involved in lipid and glucose homeostasis in liver, visceral fat, and muscle.

  10. Adult offspring of high-fat diet-fed dams can have normal glucose tolerance and body composition.

    PubMed

    Platt, K M; Charnigo, R J; Pearson, K J

    2014-06-01

    Maternal high-fat diet consumption and obesity have been shown to program long-term obesity and lead to impaired glucose tolerance in offspring. Many rodent studies, however, use non-purified, cereal-based diets as the control for purified high-fat diets. In this study, primiparous ICR mice were fed purified control diet (10-11 kcal% from fat of lard or butter origin) and lard (45 or 60 kcal% fat) or butter (32 or 60 kcal% fat)-based high-fat diets for 4 weeks before mating, throughout pregnancy, and for 2 weeks of nursing. Before mating, female mice fed the 32 and 60% butter-based high-fat diets exhibited impaired glucose tolerance but those females fed the lard-based diets showed normal glucose disposal following a glucose challenge. High-fat diet consumption by female mice of all groups decreased lean to fat mass ratios during the 4th week of diet treatment compared with those mice consuming the 10-11% fat diets. All females were bred to male mice and pregnancy and offspring outcomes were monitored. The body weight of pups born to 45% lard-fed dams was significantly increased before weaning, but only female offspring born to 32% butter-fed dams exhibited long-term body weight increases. Offspring glucose tolerance and body composition were measured for at least 1 year. Minimal, if any, differences were observed in the offspring parameters. These results suggest that many variables should be considered when designing future high-fat diet feeding and maternal obesity studies in mice.

  11. Impact of fasting on the rhythmic expression of myogenic and metabolic factors in skeletal muscle of adult mice.

    PubMed

    Shavlakadze, T; Anwari, T; Soffe, Z; Cozens, G; Mark, P J; Gondro, C; Grounds, M D

    2013-07-01

    Circadian rhythms and metabolism are tightly integrated, and rhythmic expression of metabolic factors is common in homeostatic processes. We measured the temporal changes in the expression of myogenic regulatory factors and expression and activity level of molecules involved in protein metabolism in skeletal muscles and livers in mice and examined the impact of fasting. Tissues were collected over 24 h (at zeitgeber times ZT1, ZT5, ZT9, ZT13, ZT17, ZT21, and ZT1 the following day) from adult male C57Bl/6J mice that had been either freely fed or fasted for 24 h. In skeletal muscle, there was a robust rise in the mRNA expression of the myogenic regulatory factors MyoD and myogenin during dark hours which was strongly suppressed by fasting. Circadian pattern was observed for mRNA of MuRF1, Akt1, and ribosomal protein S6 in muscles in fed and fasted mice and for Fbxo32 in fed mice. Activity (phosphorylation) levels of Akt(Ser473) displayed temporal regulation in fasted (but not fed) mice and were high at ZT9. Fasting caused significant reductions in phosphorylation for both Akt and S6 in muscles, indicative of inactivation. Hepatic phosphorylated Akt(Ser473) and S6(Ser235/236) proteins did not exhibit daily rhythms. Fasting significantly reduced hepatic Akt(473) phosphorylation compared with fed levels, although (unlike in muscle) it did not affect S6(Ser235/236) phosphorylation. This in vivo circadian study addresses for the first time the signaling activities of key molecules related to protein turnover and their possible cross-regulation of expression of genes related to protein degradation.

  12. Oral Resveratrol Prevents Osteoarthritis Progression in C57BL/6J Mice Fed a High-Fat Diet.

    PubMed

    Gu, Hailun; Li, Keyu; Li, Xingyao; Yu, Xiaolu; Wang, Wei; Ding, Lifeng; Liu, Li

    2016-04-20

    The effects of resveratrol on osteoarthritis (OA) pathogenesis have been demonstrated in vitro and in animal models employing intra-articular injections. However, the potential for oral resveratrol supplements to mediate protective effects on OA have not been examined. Therefore, the aim of the present study was to investigate the potential anti-OA effects of oral resveratrol on mice fed a high-fat diet (HFD). C57BL/6J male mice were fed either a standard diet or a HFD, and a subset of the latter also received varying doses of resveratrol. Twelve weeks later, all of the animals were sacrificed and knee joints were evaluated with histological, immunohistochemical, and TUNEL analyses. Mice that received a HFD had significantly greater body weights than the control mice and also exhibited features consistent with knee OA. The mice that received a HFD in combination with low, intermediate, or high doses of resveratrol were only slightly heavier than the control mice at the end of 12 weeks. Quantitative histological assessments indicated that resveratrol treatment partly recovered joint structure in the mice that received a HFD, while high doses of resveratrol prevented the degradation of type II collagen into C-telopeptide of type II collagen (CTX-II) and retained type II collagen expression in cartilage. Furthermore, TUNEL analyses revealed a reduction in chondrocyte apoptosis in the resveratrol-treated mice compared with the HFD mice. Thus, oral resveratrol appears to exert anti-OA effects in a mouse model of HFD-induced OA, thereby highlighting the potential preventive and therapeutic value of administering resveratrol for obesity-associated OA.

  13. Heart regeneration in adult MRL mice

    NASA Astrophysics Data System (ADS)

    Leferovich, John M.; Bedelbaeva, Khamilia; Samulewicz, Stefan; Zhang, Xiang-Ming; Zwas, Donna; Lankford, Edward B.; Heber-Katz, Ellen

    2001-08-01

    The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models. We have previously shown that the MRL mouse strain has an extraordinary capacity to heal surgical wounds, a complex trait that maps to at least seven genetic loci. Here, we extend these studies to cardiac wounds and demonstrate that a severe transmural, cryogenically induced infarction of the right ventricle heals extensively within 60 days, with the restoration of normal myocardium and function. Scarring is markedly reduced in MRL mice compared with C57BL/6 mice, consistent with both the reduced hydroxyproline levels seen after injury and an elevated cardiomyocyte mitotic index of 10-20% for the MRL compared with 1-3% for the C57BL/6. The myocardial response to injury observed in these mice resembles the regenerative process seen in amphibians.

  14. Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice.

    PubMed

    Joo, Erina; Harada, Norio; Yamane, Shunsuke; Fukushima, Toru; Taura, Daisuke; Iwasaki, Kanako; Sankoda, Akiko; Shibue, Kimitaka; Harada, Takanari; Suzuki, Kazuyo; Hamasaki, Akihiro; Inagaki, Nobuya

    2017-04-01

    Gastric inhibitory polypeptide receptor (GIPR) directly induces energy accumulation in adipose tissue in vitro. However, the importance of the direct effect of GIPR signaling on adipose tissue in vivo remains unclear. In the current study, we generated adipose tissue-specific GIPR knockout (GIPR(adipo-/-)) mice and investigated the direct actions of GIP in adipose tissue. Under high-fat diet (HFD)-fed conditions, GIPR(adipo-/-) mice had significantly lower body weight and lean body mass compared with those in floxed GIPR (GIPR(fl/fl)) mice, although the fat volume was not significantly different between the two groups. Interestingly, insulin resistance, liver weight, and hepatic steatosis were reduced in HFD-fed GIPR(adipo-/-) mice. Plasma levels of interleukin-6 (IL-6), a proinflammatory cytokine that induces insulin resistance, were reduced in HFD-fed GIPR(adipo-/-) mice compared with those in HFD-fed GIPR(fl/fl) mice. Suppressor of cytokine signaling 3 (SOCS3) signaling is located downstream of the IL-6 receptor and is associated with insulin resistance and hepatic steatosis. Expression levels of SOCS3 mRNA were significantly lower in adipose and liver tissues of HFD-fed GIPR(adipo-/-) mice compared with those of HFD-fed GIPR(fl/fl) mice. Thus, GIPR signaling in adipose tissue plays a critical role in HFD-induced insulin resistance and hepatic steatosis in vivo, which may involve IL-6 signaling.

  15. Bone density, strength, and formation in adult cathepsin K (-/-) mice.

    PubMed

    Pennypacker, B; Shea, M; Liu, Q; Masarachia, P; Saftig, P; Rodan, S; Rodan, G; Kimmel, D

    2009-02-01

    Cathepsin K (CatK) is a cysteine protease expressed predominantly in osteoclasts, that plays a prominent role in degrading Type I collagen. Growing CatK null mice have osteopetrosis associated with a reduced ability to degrade bone matrix. Bone strength and histomorphometric endpoints in young adult CatK null mice aged more than 10 weeks have not been studied. The purpose of this paper is to describe bone mass, strength, resorption, and formation in young adult CatK null mice. In male and female wild-type (WT), heterozygous, and homozygous CatK null mice (total N=50) aged 19 weeks, in-life double fluorochrome labeling was performed. Right femurs and lumbar vertebral bodies 1-3 (LV) were evaluated by dual-energy X-ray absorptiometry (DXA) for bone mineral content (BMC) and bone mineral density (BMD). The trabecular region of the femur and the cortical region of the tibia were evaluated by histomorphometry. The left femur and sixth lumbar vertebral body were tested biomechanically. CatK (-/-) mice show higher BMD at the central and distal femur. Central femur ultimate load was positively influenced by genotype, and was positively correlated with both cortical area and BMC. Lumbar vertebral body ultimate load was also positively correlated to BMC. Genotype did not influence the relationship of ultimate load to BMC in either the central femur or vertebral body. CatK (-/-) mice had less lamellar cortical bone than WT mice. Higher bone volume, trabecular thickness, and trabecular number were observed at the distal femur in CatK (-/-) mice. Smaller marrow cavities were also present at the central femur of CatK (-/-) mice. CatK (-/-) mice exhibited greater trabecular mineralizing surface, associated with normal volume-based formation of trabecular bone. Adult CatK (-/-) mice have higher bone mass in both cortical and cancellous regions than WT mice. Though no direct measures of bone resorption rate were made, the higher cortical bone quantity is associated with a smaller

  16. Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice.

    PubMed

    Park, Eun-Young; Choi, Hojung; Yoon, Ji-Young; Lee, In-Young; Seo, Youngwan; Moon, Hong-Seop; Hwang, Jong-Hee; Jun, Hee-Sook

    2015-11-12

    Ecklonia cava (E. cava; CA) is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA) on nonalcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-fed mice. C57BL6 mice were fed a HFD for six weeks and then the HFD group was administered 300 mg/kg of G-CA extracts by oral intubation for 10 weeks. Body weight, fat mass, and serum biochemical parameters were reduced by G-CA extract treatment. MRI/MRS analysis showed that liver fat and liver volume in HFD-induced obese mice were reduced by G-CA extract treatment. Further, we analyzed hepatic gene expression related to inflammation and lipid metabolism. The mRNA expression levels of inflammatory cytokines and hepatic lipogenesis-related genes were decreased in G-CA-treated HFD mice. The mRNA expression levels of cholesterol 7 alpha-hydroxylase 1 (CYP7A1), the key enzyme in bile acid synthesis, were dramatically increased by G-CA treatment in HFD mice. We suggest that G-CA treatment ameliorated hepatic steatosis by inhibiting inflammation and improving lipid metabolism.

  17. Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice

    PubMed Central

    Park, Eun-Young; Choi, Hojung; Yoon, Ji-Young; Lee, In-Young; Seo, Youngwan; Moon, Hong-Seop; Hwang, Jong-Hee; Jun, Hee-Sook

    2015-01-01

    Ecklonia cava (E. cava; CA) is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA) on nonalcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-fed mice. C57BL6 mice were fed a HFD for six weeks and then the HFD group was administered 300 mg/kg of G-CA extracts by oral intubation for 10 weeks. Body weight, fat mass, and serum biochemical parameters were reduced by G-CA extract treatment. MRI/MRS analysis showed that liver fat and liver volume in HFD-induced obese mice were reduced by G-CA extract treatment. Further, we analyzed hepatic gene expression related to inflammation and lipid metabolism. The mRNA expression levels of inflammatory cytokines and hepatic lipogenesis-related genes were decreased in G-CA-treated HFD mice. The mRNA expression levels of cholesterol 7 alpha-hydroxylase 1 (CYP7A1), the key enzyme in bile acid synthesis, were dramatically increased by G-CA treatment in HFD mice. We suggest that G-CA treatment ameliorated hepatic steatosis by inhibiting inflammation and improving lipid metabolism. PMID:26569269

  18. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice.

    PubMed

    Sartori, Claudio; Dessen, Pierre; Mathieu, Caroline; Monney, Anita; Bloch, Jonathan; Nicod, Pascal; Scherrer, Urs; Duplain, Hervé

    2009-12-01

    Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.

  19. Long-term vitamin E supplementation reduces atherosclerosis and mortality in Ldlr-/- mice, but not when fed Western style diet

    PubMed Central

    Meydani, Mohsen; Kwan, Paul; Band, Michael; Knight, Ashley; Guo, Weimin; Goutis, Jason; Ordovas, Jose

    2014-01-01

    Objectives Epidemiological and experimental evidence have indicated potential health benefits of vitamin E supplementation on coronary heart disease (CHD), but several clinical trials have reported no benefit from vitamin E supplementation on CHD. We hypothesized that supplemental intake of vitamin E from an early age may prevent or retard the development and progression of atherosclerosis and CHD mortality. Methods To test this hypothesis, 300 Ldlr-/- mice were divided into groups receiving Western style high fat/cholesterol (HFHC), moderate fat/cholesterol (MFMC), or low fat/cholesterol (LFLC) diets all containing 50 IU of vitamin E. These dietary groups were further subdivided into four sub-groups (N=25) receiving their respective diets with no vitamin E supplementation or additionally supplemented with vitamin E (500 IU/kg diet) starting at the early age of 5 wks, or 6 mo, or 12 mo. All mice remained on their assigned diets until age 18 mo. Body weight, health status and survival rate of mice were monitored and recorded. After 18 mo of dietary treatments, mice were sacrificed. Results Body weight was the highest in HFHC groups and the lowest in LFLC groups. Plasma concentration of cholesterol and triglycerides was high in all dietary groups, and plasma vitamin E was high in vitamin E supplemented groups. Fifty percent of mice fed Western style HFHC diet and 53% of mice fed MFMC diet survived during the 18 mo, whereas 75% of mice fed LFLC diet survived during the 18 mo dietary treatments. At the age of 18 mo, all the Ldlr-/- mice, regardless of dietary treatments, had several advanced atherosclerotic lesions in both aortic root and aortic tree. Within the LFLC groups, those that received vitamin E supplements from age 5 wks up to 18 mo had a significantly higher survival rate of 88% (p=0.04) and lower mortality (12%) compared to mice that did not receive vitamin E supplements (64%). This lower mortality rate and higher survival rate coincided with significantly

  20. Supplementation with the Extract of Schisandrae Fructus Pulp, Seed, or Their Combination Influences the Metabolism of Lipids and Glucose in Mice Fed with Normal and Hypercholesterolemic Diet

    PubMed Central

    Wang, Xiao-Yan; Yu, Zhi-Ling; Zhang, Yi; Sun, Nan; Zhu, Pei-Li; Jia, Zhan-Hong; Zhou, Shu-Feng; Ko, Kam-Ming

    2014-01-01

    Schisandrae Fructus (SF), which possesses five tastes: sweet (fruit skin), sour (pulp), bitter/pungent (seed core), and saltiness (all parts), can produce a wide spectrum of biological activities in the body. Here, we investigated the effects of the ethanolic extract of SF pulp, seed, or their combination (namely, EtSF-P, EtSF-S, or EtSF-P/S, resp.; collectively called EtSF) on the metabolism of lipids and glucose in normal diet- (ND-) and hypercholesterolemic diet- (HCLD-) fed mice. Supplementation with EtSF significantly reduced hepatic triglyceride and cholesterol levels by 18–47% in both ND- and HCLD-fed mice. EtSF supplementation reduced serum triglyceride levels (approximately 29%), whereas EtSF-P and EtSF-S/P elevated serum cholesterol (up to 26 and 44%, resp.) in HCLD-fed mice. Treatment with EtSF decreased hepatic glucose levels (by 9–44%) in both ND- and HCLD-fed mice. Supplementation with EtSF-S or EtSF-S/P (at 1 and 3%) increased biliary or fecal TC contents in HCLD-fed mice. However, supplementation with EtSF-S/P at 9% reduced biliary TC levels in HCLD-fed mice. EtSF-P or EtSF-S/P supplementation reduced serum alanine aminotransferase activity in HCLD-fed mice. The findings suggested that supplementation with EtSF lowered lipid and glucose accumulation in the liver and increased fecal cholesterol contents in mice. Dietary supplementation with EtSF-P or EtSF-S/P attenuated liver damage in HCLD-fed mice. PMID:24876871

  1. Preservation of endothelium-dependent relaxation in cholesterol-fed and streptozotocin-induced diabetic mice by the chronic administration of cholestyramine.

    PubMed Central

    Kamata, K.; Sugiura, M.; Kojima, S.; Kasuya, Y.

    1996-01-01

    1. Experiments were designed to investigate the effects of the low density lipoprotein (LDL)-lowering drugs cholestyramine on serum LDL levels and endothelium-dependent relaxation to acetylcholine (ACh) in cholesterol-fed or streptozotocin (STZ)-induced diabetic mice. 2. In aortic rings from control mice, ACh or A23187 caused concentration-dependent relaxation. The relaxations caused by ACh or A23187 were significantly attenuated in aortic rings from cholesterol-fed and STZ-diabetic mice. The attenuated vasodilatation in both cholesterol-fed and diabetic mice was returned to normal by chronic administration of cholestyramine. The endothelium-independent relaxations of aortic rings induced by sodium nitroprusside (SNP) were not significantly different between control, cholesterol-fed and STZ-induced diabetic mice. 3. The increased LDL levels in cholesterol-fed and diabetic mice were returned to normal by the chronic administration of cholestyramine. Chronic administration of cholestyramine had no effects on serum glucose levels. 4. These results suggest that attenuated endothelium-dependent vasodilatations in both cholesterol-fed and STZ-diabetic mice are improved by the chronic administration of cholestyramine, and these effects are, at least in part, due to lowering serum LDL levels. PMID:8735642

  2. Cell suspension culture of Eriobotrya japonica regulates the diabetic and hyperlipidemic signs of high-fat-fed mice.

    PubMed

    Shih, Chun-Ching; Ciou, Jiun-Lin; Lin, Cheng-Hsiu; Wu, Jin-Bin; Ho, Hui-Ya

    2013-03-01

    The present study investigates the anti-hyperlipidemic and antihyperglycemic effects and mechanism in high-fat (HF)-fed mice of cell suspension culture of Eriobotrya japonica (TA), which contains a great number of pentacyclic terpenoids. Firstly, C57BL/6J mice were randomly divided into two groups: the control (CON) group was fed with a low-fat diet (n = 9), whereas the experimental group was fed a 45% HF diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and was orally given TA or rosiglitazone or not for 4 weeks. Blood and visceral adipose tissue, liver tissue and skeletal muscle were examined. Treatment with TA reduced body weight gain, weights of white adipose tissue (WAT) (including epididymal, perirenal, mesenteric WAT and visceral fat), and hepatic triacylglycerol content significantly without affecting food intake in diet-induced diabetic mice. TA effectively prevented HF diet-induced increases in the levels of blood glucose, insulin, leptin and HOMA-IR index (p < 0.001, p < 0.05, p < 0.05, p < 0.01, respectively) and attenuated insulin resistance. Treatment with TA, adipocytes in the visceral depots showed a reduction in size. TA effectively significantly increased the protein contents of phosphorylation of AMPK-α (Thr172) both in liver and adipose tissue. It is shown that TA exhibits hypolipidemic effect in HF-fed mice by decreasing gene expressions of fatty acid synthesis, including acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) 2, which catalyzes the final step in the synthesis of triglycerides, and antidiabetic properties occurred as a result of decreased hepatic glucose production via phosphenolpyruvate carboxykinase (PEPCK) down- regulation, improved insulin sensitization and TA (at 1.0 g/kg dose) decreased expression of hepatic and adipose 11-β-hydroxysteroid dehydroxygenase (11β-HSD1) gene, which contributed in attenuating diabetic state. Futhermore, TA at doses of 0

  3. Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice.

    PubMed

    Porter, David; Faivre, Emilie; Flatt, Peter R; Hölscher, Christian; Gault, Victor A

    2012-05-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity-diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O(2) consumption, CO(2) production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet.

  4. Raspberry ketone fails to reduce adiposity beyond decreasing food intake in C57BL/6 mice fed a high-fat diet.

    PubMed

    Cotten, Bradley M; Diamond, Stephanie A; Banh, Taylor; Hsiao, Yung-Hsuan; Cole, Rachel M; Li, Jinhui; Simons, Christopher T; Bruno, Richard S; Belury, Martha A; Vodovotz, Yael

    2017-04-05

    As the incidence of obesity continues to increase, identifying novel nutritional therapies to enhance weight loss are needed. Raspberry ketone (RK; 4-(4-hydroxyphenyl) butan-2-one) is a bioactive phytochemical that is marketed as a weight loss supplement in the United States, yet there is scant scientific evidence demonstrating that RK promotes weight loss. The aim of the current study was to investigate the effect of RK on accumulation of adipose mass, hepatic lipid storage, and levels of plasma adiponectin in mice fed a high-fat (HF) diet. Mice were individually housed and fed a HF control diet (45% kcal from fat) for two weeks to induce weight gain, then assigned to HF control, high-dose (1.74% wt/wt) raspberry ketone (HRK), low-dose (0.25% wt/wt) raspberry ketone (LRK), or a pair-fed group (PF) fed similar food intake to LRK mice. Following five weeks of feeding, mice fed LRK and HRK diets showed reduced food intake and body weight compared to mice maintained on control diet. When normalized to body weight, mice fed HRK diet exhibited decreased inguinal fat mass and increased liver mass compared to the control group. Hepatic steatosis was lowest in mice fed HRK diet, whereas LRK diet did not have an effect when compared to the PF group. Plasma adiponectin concentration was unaffected by RK and pair-feeding. Our findings demonstrate that RK supplementation has limited benefit to adipose loss beyond reducing energy intake in mice fed a high-fat diet. The present study supports the need for appropriate study design when validating weight-loss supplements.

  5. Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet

    PubMed Central

    Henkel, Anne S.; LeCuyer, Brian E.; Schipma, Matthew J.; Anderson, Kristy A.; Green, Richard M.

    2015-01-01

    Fatty liver is associated with endoplasmic reticulum stress and activation of the hepatic unfolded protein response (UPR). Reduced hepatic expression of the UPR regulator X-box binding protein 1 spliced (XBP1s) is associated with human nonalcoholic steatohepatitis (NASH), and feeding mice a high-fat diet with fructose/sucrose causes progressive, fibrosing steatohepatitis. This study examines the role of XBP1 in nonalcoholic fatty liver injury and fatty acid-induced cell injury. Hepatocyte-specific Xbp1-deficient (Xbp1−/−) mice were fed a high-fat/sugar (HFS) diet for up to 16 wk. HFS-fed Xbp1−/− mice exhibited higher serum alanine aminotransferase levels compared with Xbp1fl/fl controls. RNA sequencing and Gene Ontogeny pathway analysis of hepatic mRNA revealed that apoptotic process, inflammatory response, and extracellular matrix structural constituent pathways had enhanced activation in HFS-fed Xbp1−/− mice. Liver histology demonstrated enhanced injury and fibrosis but less steatosis in the HFS-fed Xbp1−/− mice. Hepatic Col1a1 and Tgfβ1 gene expression, as well as Chop and phosphorylated JNK (p-JNK), were increased in Xbp1−/− compared with Xbp1fl/fl mice after HFS feeding. In vitro, stable XBP1-knockdown Huh7 cells (Huh7-KD) and scramble control cells (Huh7-SCR) were generated and treated with palmitic acid (PA) for 24 h. PA-treated Huh7-KD cells had increased cytotoxicity measured by lactate dehydrogenase release, apoptotic nuclei, and caspase3/7 activity assays compared with Huh7-SCR cells. CHOP and p-JNK expression was also increased in Huh7-KD cells following PA treatment. In conclusion, loss of XBP1 enhances injury in both in vivo and in vitro models of fatty liver injury. We speculate that hepatic XBP1 plays an important protective role in pathogenesis of NASH. PMID:26472223

  6. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang

    2015-10-29

    Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/cholesterol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibited lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles.

  7. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet.

    PubMed

    Al Rajabi, Ala; Castro, Gabriela S F; da Silva, Robin P; Nelson, Randy C; Thiesen, Aducio; Vannucchi, Helio; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Curtis, Jonathan M; Jacobs, René L

    2014-03-01

    Dietary choline is required for proper structure and dynamics of cell membranes, lipoprotein synthesis, and methyl-group metabolism. In mammals, choline is synthesized via phosphatidylethanolamine N-methyltransferase (Pemt), which converts phosphatidylethanolamine to phosphatidylcholine. Pemt(-/-) mice have impaired VLDL secretion and developed fatty liver when fed a high-fat (HF) diet. Because of the reduction in plasma lipids, Pemt(-/-)/low-density lipoprotein receptor knockout (Ldlr(-/-)) mice are protected from atherosclerosis. The goal of this study was to investigate the importance of dietary choline in the metabolic phenotype of Pemt(-/-)/Ldlr(-/-) male mice. At 10-12 wk of age, Pemt(+/+)/Ldlr(-/-) (HF(+/+)) and half of the Pemt(-/-)/Ldlr(-/-) (HF(-/-)) mice were fed an HF diet with normal (1.3 g/kg) choline. The remaining Pemt(-/-)/Ldlr(-/-) mice were fed an HF diet supplemented (5 g/kg) with choline (HFCS(-/-) mice). The HF diet contained 60% of calories from fat and 1% cholesterol, and the mice were fed for 16 d. HF(-/-) mice lost weight and developed hepatomegaly, steatohepatitis, and liver damage. Hepatic concentrations of free cholesterol, cholesterol-esters, and triglyceride (TG) were elevated by 30%, 1.1-fold and 3.1-fold, respectively, in HF(-/-) compared with HF(+/+) mice. Choline supplementation normalized hepatic cholesterol, but not TG, and dramatically improved liver function. The expression of genes involved in cholesterol transport and esterification increased by 50% to 5.6-fold in HF(-/-) mice when compared with HF(+/+) mice. Markers of macrophages, oxidative stress, and fibrosis were elevated in the HF(-/-) mice. Choline supplementation normalized the expression of these genes. In conclusion, HF(-/-) mice develop liver failure associated with altered cholesterol metabolism when fed an HF/normal choline diet. Choline supplementation normalized cholesterol metabolism, which was sufficient to prevent nonalcoholic steatohepatitis development

  8. Hypocholesterolemic metabolism of dietary red pericarp glutinous rice rich in phenolic compounds in mice fed a high cholesterol diet

    PubMed Central

    Park, Eun-Mi; Kim, Eun-Hye; Chung, Ill-Min

    2014-01-01

    BACKGROUND/OBJECTIVES The purpose of the current study was to investigate the effect of red pericarp glutinous rice rich in polyphenols (Jakwangchalbyeo, red rice) on serum and hepatic levels of cholesterol and hepatic protein expression linked to synthesis and degradation of cholesterol in a hypercholesterolemic mice diet as compared with brown rice. MATERIALS/METHODS C57BL/6 male mice were randomly divided into four groups (n = 5 each), which were fed different diets for a period of 12 weeks: American Institute of Nutrition (AIN)-93G diet, AIN-93G diet with 2% cholesterol, brown rice with 2% cholesterol, or red rice with 2% cholesterol. RESULT Consumption of red rice resulted in a significant decrease in serum level of low-density lipoprotein cholesterol and hepatic levels of triglyceride and total-cholesterol. Expression of acyl-coenzyme A cholesterol acyltransferase-2 (ACAT-2), sterol regulatory element binding protein-2 (SREBP-2), and 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase was decreased, while expression of phosphorylated adenosine monophosphate activated protein kinase (p-AMPK)/AMPK ratio, cholesterol 7-α-hydroxylase (CYP7a1), and sterol 12-α-hydroxylase (CYP8b1) was increased in mice fed red rice. Brown rice had similar effects on cholesterol metabolism, but the effect of red rice was significantly greater than that of brown rice. CONCLUSIONS The current study suggested that red rice had a hypocholesterolemic effect by lowering hepatic cholesterol synthesis through ACAT-2, HMG-CoA reductase, and SREBP-2, and by enhancing hepatic cholesterol degradation through CYP7a1 and CYP8b1 in mice fed a hypercholesterolemic diet. PMID:25489402

  9. Transcriptome analysis of the effects of chitosan on the hyperlipidemia and oxidative stress in high-fat diet fed mice.

    PubMed

    Wang, Bin; Zhang, Sicong; Wang, Xiaoya; Yang, Shuo; Jiang, Qixing; Xu, Yanshun; Xia, Wenshui

    2017-04-03

    Transcriptome analysis was performed to investigate the alterations in gene expression after chitosan (CS) treatment on the liver of mice fed with high-fat diet (HFD). The results showed that the body weight, the liver weight and the epididymal fat mass of HFD mice, which were 62.98%, 46.51% and 239.37%, respectively, higher than those of control mice, could be significantly decreased by chitosan supplementation. Also, high-fat diet increased both plasma lipid and liver lipid as compared with the control mice. Chitosan supplementation decreased the plasma lipid and liver lipid, increased the lipoprotein lipase (LPL) and hepatic lipase (HL) activity, increased T-AOC and decreased MDA in the liver and the epididymis adipose as compared with the HFD mice. Transcriptome analysis indicated that increased Mups, Lcn2, Gstm3 and CYP2E1 expressions clearly indicated HFD induced lipid metabolism disorder and oxidative damage. Especially, chitosan treatment decreased the Mup17 and Lcn2 expressions by 64.32% and 82.43% respectively as compared with those of HFD mice. These results indicated that chitosan possess the ability to improve the impairment of lipid metabolism as strongly associated with increased Mups expressions and gene expressions related to oxidative stress.

  10. Changes in the small intestine of Schistosoma mansoni-infected mice fed a high-fat diet.

    PubMed

    Alencar, Alba Cristina Miranda de Barros; Neves, Renata Heisler; de Oliveira, Albanita Viana; Machado-Silva, José Roberto

    2012-05-01

    The consumption of a high-fat diet modifies both the morphology of the small intestine and experimentally tested effects of schistosomiasis mansoni. However, whether a schistosomiasis infection associated with a high-fat diet causes injury to the small intestine has never been investigated. Mice were fed either a high-fat or a standard-fat diet for 6 months and were then infected with Schistosoma mansoni cercariae. Physical characteristics of the intestinal tissue (mucosal thickness, small intestinal villi length and height, and abundance of goblet cells and enterocytes on the villous surface) and the distribution of granulomas along the intestinal segments and their developmental stage were measured at the time of sacrifice (9 or 17 weeks post-infection). The group fed a high-fat diet exhibited different granuloma stages, whereas the control group possessed only exudative granulomas. The chronically infected mice fed a high-fat diet exhibited higher granuloma and egg numbers than the acutely infected group. Exudative, exudative/exudative-productive and exudative-productive granulomas were present irrespective of diet. Computer-aided morphometric analysis confirmed that villus length, villus width, muscular height and submucosal height of the duodenal and jejunal segments were affected by diet and infection. In conclusion, a high-fat diet and infection had a significant impact on the small intestine morphology and morphometry among the animals tested.

  11. Digestibility and metabolizable energy of raw soybeans manufactured with different processing treatments and fed to adult dogs and puppies.

    PubMed

    Félix, A P; Zanatta, C P; Brito, C B M; Sá Fortes, C M L; Oliveira, S G; Maiorka, A

    2013-06-01

    The objective of this study was to evaluate the apparent total tract digestibility (ATTD), ME, and fecal characteristics of adult dogs and puppies fed raw soybeans (RSB) and their by-products. Six treatments were evaluated: 1 reference diet (REF), based on a maize-poultry by-product meal, and 5 extruded diets containing 70% of the ingredients of the REF diet and 30% of a soybean processed product [defatted soybean meal (DSM), micronized soybeans (MSB), soybean meal (SBM), RSB, or toasted soybeans (TSB)]. Six adult dogs (5.8 yr old) and 6 puppies (5.1 mo old) were used in a study with a double Latin square design (6 × 6). Urease was reduced in all diets after extrusion, but trypsin inhibitor was reduced only in the diets containing SBM, DSM, and RSB. The ATTD of CP in DSM, SBM, MSB, TSB, and RSB were 85.1%, 85.2%, 88.4%, 84.7%, and 78.9%, respectively, for adult dogs. Soybean meal and DSM had the lowest ATTD of acid-hydrolyzed fat (AHF; 84.3% for both ingredients in adult dogs). The ATTD of DM and AHF in DSM and AHF in all soybean products were greater in puppies than adult dogs (P < 0.05). The ME content was greatest in MSB (21.39 MJ/kg) and least in DSM (15.23 MJ/kg). The feces of dogs fed soybean products were softer and had a lower pH (average of 5.91 vs. 6.05 for adult dogs fed soybean products and REF diets, respectively) and ammonia content (average of 3.82 vs. 4.32 g/kg for adult dogs fed soybean products and REF diets, respectively), except those fed RSB, which had similar fecal pH and ammonia values, compared with those fed the REF diet. Soybean products are good protein sources for both adult and growing dogs, provided they are heat treated before diet extrusion.

  12. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice.

    PubMed

    Bose, Mousumi; Lambert, Joshua D; Ju, Jihyeung; Reuhl, Kenneth R; Shapses, Sue A; Yang, Chung S

    2008-09-01

    In this study, we investigated the effects of the major green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), on high-fat-induced obesity, symptoms of the metabolic syndrome, and fatty liver in mice. In mice fed a high-fat diet (60% energy as fat), supplementation with dietary EGCG treatment (3.2 g/kg diet) for 16 wk reduced body weight (BW) gain, percent body fat, and visceral fat weight (P < 0.05) compared with mice without EGCG treatment. The BW decrease was associated with increased fecal lipids in the high-fat-fed groups (r(2) = 0.521; P < 0.05). EGCG treatment attenuated insulin resistance, plasma cholesterol, and monocyte chemoattractant protein concentrations in high-fat-fed mice (P < 0.05). EGCG treatment also decreased liver weight, liver triglycerides, and plasma alanine aminotransferase concentrations in high-fat-fed mice (P < 0.05). Histological analyses of liver samples revealed decreased lipid accumulation in hepatocytes in mice treated with EGCG compared with high-fat diet-fed mice without EGCG treatment. In another experiment, 3-mo-old high-fat-induced obese mice receiving short-term EGCG treatment (3.2 g/kg diet, 4 wk) had decreased mesenteric fat weight and blood glucose compared with high-fat-fed control mice (P < 0.05). Our results indicate that long-term EGCG treatment attenuated the development of obesity, symptoms associated with the metabolic syndrome, and fatty liver. Short-term EGCG treatment appeared to reverse preexisting high-fat-induced metabolic pathologies in obese mice. These effects may be mediated by decreased lipid absorption, decreased inflammation, and other mechanisms.

  13. Anti-aging effect of Blakeslea trispora powder on adult mice.

    PubMed

    Hu, Weilian; Dai, Dehui; Li, Wei

    2013-08-01

    Blakeslea trispora powder that contains 1.9 % lycopene was tested for its anti-aging effect on adult mice. 48 adult mice were administered with the powder at 0, 267, 534, 1,068 mg lycopene kg(-1) body daily for 30 days. The body weight, hematology, clinical chemical and antioxidant activities in major organs of adult mice were measured. The powder had no effect on the body weight, hematology, clinical chemical parameters of adult mice but improved the antioxidant activities in major organs of adult mice. Increased activities of superoxide dismutase, catalase and glutathione peroxidase and a decreased amount of malondialdehyde in liver, brain, kidney and skin of adult mice when a high-dose of the B. trispora powder was administered, suggests that it has the ability to enhance the antioxidation system and improve the anti-aging abilities of adult mice.

  14. Natural History of Age-Related Retinal Lesions That Precede AMD in Mice Fed High or Low Glycemic Index Diets

    PubMed Central

    Weikel, Karen A.; FitzGerald, Paul; Shang, Fu; Caceres, M. Andrea; Bian, Qingning; Handa, James T.; Stitt, Alan W.

    2012-01-01

    Purpose. Epidemiologic data indicate that people who consume low glycemic index (GI) diets are at reduced risk for the onset and progression of age-related macular degeneration (AMD). The authors sought corroboration of this observation in an animal model. Methods. Five- and 16-month-old C57BL/6 mice were fed high or low GI diets until they were 17 and 23.5 months of age, respectively. Retinal lesions were evaluated by transmission electron microscopy, and advanced glycation end products (AGEs) were evaluated by immunohistochemistry. Results. Retinal lesions including basal laminar deposits, loss of basal infoldings, and vacuoles in the retinal pigment epithelium were more prevalent in the 23.5- than in the 17-month-old mice. Within each age group, consumption of a high GI diet increased the risk for lesions and the risk for photoreceptor abnormalities and accumulation of AGEs. Conclusions. Consuming high GI diets accelerates the appearance of age-related retinal lesions that precede AMD in mice, perhaps by increasing the deposition of toxic AGEs in the retina. The data support the hypothesis that consuming lower GI diets, or simulation of their effects with nutraceuticals or drugs, may protect against AMD. The high GI-fed C57BL/6 mouse is a new model of age-related retinal lesions that precede AMD and mimic the early stages of disease and may be useful for drug discovery. PMID:22205601

  15. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet.

  16. Inhibitory effects of Leonurus sibiricus on weight gain after menopause in ovariectomized and high-fat diet-fed mice.

    PubMed

    Kim, Jangseon; Kim, Mi Hye; Choi, You Yeon; Hong, Jongki; Yang, Woong Mo

    2016-07-01

    Leonurus sibiricus, also called motherwort, is a well-known functional food and medicinal herb. It has been known to possess beneficial properties for women's health, especially for aged women. Estrogen deficiency in the menopause could induce lipid metabolic abnormalities in body fat, resulting in obesity. In this study, the inhibitory effects of L. sibiricus on obesity after the menopause were investigated. Female C57BL/6 mice were ovariectomized and fed high-fat diet (HFD) for 12 weeks. Following an induction period, aqueous extracts of L. sibiricus (LS) were orally administrated for 6 weeks. The body, uterine, and visceral fat weights were measured immediately after the animals were killed. Histological analysis was performed to monitor fat and liver. Serum levels of glucose, triglyceride, total cholesterol, and LDL-cholesterol were evaluated. In addition, the expression of lipases was analyzed. Total body weight was significantly decreased by LS treatment. Histological changes in adipocyte size were shown along with a decrease of visceral fat weight in the LS-treated group. In addition, the fat infiltration of liver was reduced by LS administration. LS-treated mice experienced decreases of serum triglyceride, total cholesterol, and LDL-cholesterol levels. The expression of HSL and ATGL was significantly increased by LS treatment. These results suggest that LS could regulate the lipid metabolism via an increase of lipases expression in ovariectomized and HFD-fed mice. LS might be a novel candidate for a functional food to inhibit weight gain after the menopause.

  17. Intermittent access to liquid sucrose differentially modulates energy intake and related central pathways in control or high-fat fed mice.

    PubMed

    Soto, Marion; Chaumontet, Catherine; Even, Patrick C; Nadkarni, Nachiket; Piedcoq, Julien; Darcel, Nicolas; Tomé, Daniel; Fromentin, Gilles

    2015-03-01

    Intake of sodas has been shown to increase energy intake and to contribute to obesity in humans and in animal models, although the magnitude and importance of these effects are still debated. Moreover, intake of sugar sweetened beverages is often associated with high-fat food consumption in humans. We studied two different accesses to a sucrose-sweetened water (SSW, 12.3%, a concentration similar to that usually found in sugar sweetened beverages) in C57BL/6 mice fed a normal-fat (NF) or a high-fat (HF) diet in a scheduled access (7.5h). NF-fed and HF-fed mice received during 5weeks access to water, to SSW continuously for 7.5h (SSW), or to water plus SSW for 2h (randomly-chosen time slot for only 5 random days/week) (SSW-2h). Mouse preference for SSW was greater in HF-fed mice than NF-fed mice. Continuous SSW access induced weight gain whatever the diet and led to greater caloric intake than mice drinking water in NF-fed mice and in the first three weeks in HF-fed mice. In HF-fed mice, 2h-intermittent access to SSW induced a greater body weight gain than mice drinking water, and led to hyperphagia on the HF diet when SSW was accessible compared to days without SSW 2h-access (leading to greater overall caloric intake), possibly through inactivation of the anorexigenic neuropeptide POMC in the hypothalamus. This was not observed in NF-fed mice, but 2h-intermittent access to SSW stimulated the expression of dopamine, opioid and endocannabinoid receptors in the nucleus accumbens compared to water-access. In conclusion, in mice, a sucrose solution provided 2h-intermittently and a high-fat diet have combined effects on peripheral and central homeostatic systems involved in food intake regulation, a finding which has significant implications for human obesity.

  18. Metabolomic and genomic profiling of n-3 polyunsaturated fatty acid effects on muscle metabolism in mice fed a high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported that feeding mice high-fat (HF) diets enriched with eicosapentaenoic acid (EPA) decreased inflammation, adiposity and insulin resistance. In the current study, we used skeletal muscle from mice fed HF or HF-EPA for 11 weeks to further dissect mechanisms mediating EPA effects o...

  19. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice.

    PubMed

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S; Baek, Jeong-Hwa

    2014-09-01

    We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss.

  20. Coumarin attenuates hepatic steatosis by down-regulating lipogenic gene expression in mice fed a high-fat diet.

    PubMed

    Um, Min Young; Moon, Mi Kyeong; Ahn, Jiyun; Youl Ha, Tae

    2013-05-01

    Coumarin is a natural compound abundant in plant-based foods such as citrus fruits, tomatoes, vegetables and green tea. Although coumarin has been reported to exhibit anti-coagulant, anti-inflammation and cholesterol-lowering properties, the effect of coumarin on hepatic lipid metabolism remains unclear. In the present study, we evaluated the ability of coumarin to protect against hepatic steatosis associated with a high-fat diet (HFD) and investigated potential mechanisms underlying this effect. C57BL/6J mice were fed a normal diet, HFD and HFD containing 0·05 % courmarin for 8 weeks. The present results showed that coumarin reduced weight gain and abdominal fat mass in mice fed the HFD for 8 weeks (P< 0·05). Coumarin also significantly reduced the HFD-induced elevation in total cholesterol, apoB, leptin and insulin (P< 0·05). In the liver of HFD-fed mice, coumarin significantly reduced total lipids, TAG and cholesterol (38, 22 and 9 % reductions, respectively; P< 0·05), as well as lipid droplet number and size. Additionally, thiobarbituric acid-reactive substance levels, as an indicator of hepatic steatosis, were attenuated by coumarin (P< 0·05). Finally, coumarin suppressed the HFD-induced up-regulation in fatty acid synthase (FAS) activity, and the expression of sterol regulatory element-binding protein-1, FAS, acetyl-CoA carboxylase 1, PPARγ and CCAAT/enhancer-binding protein-α in the liver. Taken together, these results demonstrate that coumarin could prevent HFD-induced hepatic steatosis by regulating lipogenic gene expression, suggesting potential targets for preventing hepatic steatosis.

  1. Morphoquantitative analysis of the Ileum of C57BL/6 mice (Mus musculus) fed with a high-fat diet

    PubMed Central

    Navarrete, Javiera; Vásquez, Bélgica; del Sol, Mariano

    2015-01-01

    Due to the increase in overweight and obesity in humans, various studies have been conducted in recent years that demonstrate the detrimental effects on tissues and organs. The aim of this study was to assess the morphoquantitative changes produced in the ileum of mice, associated with high-fat diets. Fourteen male C57BL/6 mice, 5 months old, were fed two types of diets for 14 weeks. The control group (C) was fed a standard diet (10% fat, AIN-93M) and the experimental group (E) was fed a high-fat diet (42% fat, AIN-93M-AG). The assessments included: body weight, calorie consumption, food efficiency, biochemical analysis of plasma lipids, diameter, total wall thickness, thickness of the tunica mucosa and tunica muscularis, length and width of the intestinal villi, depth of the intestinal crypts and number of goblet cells per mm-2 (NA). For the statistical analysis the Student’s t-test was used, considering a P value less than 0.05. The mice in the E group presented greater weight gain (P = 0.028), higher levels of total and LDL cholesterol (P = 0.03 and P = 0.01, respectively), and length of the intestinal villi (P = 0.000). The width of the intestinal villi and the NA of PAS-positive goblet cells presented significantly lower values (P = 0.037 and P = 0.039, respectively) than the C group. The observed changes could be related to the higher demand for fat absorption and to possible alterations in the intestinal microflora and inflammation by action of high-fat diets. PMID:26823788

  2. Improved Endothelial Dysfunction by Cynanchum wilfordii in Apolipoprotein E−/− Mice Fed a High Fat/Cholesterol Diet

    PubMed Central

    Choi, Deok Ho; Lee, Yun Jung; Oh, Hyun Cheol; Cui, Ying Lan; Kim, Jin Sook

    2012-01-01

    Abstract Cynanchum wilfordii is used in traditional Chinese medicine with almost all parts of this plant considered beneficial for various vascular diseases. This study was performed to evaluate the effect of an ethanol extract of C. wilfordii (ECW) on vascular dysfunction in apolipoprotein E (apoE)−/− mice fed with high fat/cholesterol diets (HFCDs). The apoE−/− mice were fed HFCD consisting of 7.5% cocoa butter and 1.25% cholesterol, with or without 100 or 200 mg/day/kg ECW. Chronic ECW treatment significantly lessened the level of low-density lipoprotein (P<.05) and elevated that of high-density lipoprotein-cholesterol (P<.01). Chronic ECW treatment normalized the HFCD-induced increase in systolic blood pressure, maintained smooth and soft intimal endothelial layers, and decreased intima-media thickness in aortic sections of HFCD-fed apoE−/− mice. ECW significantly restored the diet-induced decrease in vasorelaxation response to acetylcholine; however, the response to sodium nitroprusside did not change. ECW clearly restored the HFCD-induced reduction in endothelial nitric oxide synthase expression levels in aortic tissue, leading to decreased vascular inflammation through an inhibition of cellular adhesion molecules such as E-selectin, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1 as well as endothelin-1 (ET-1) expression. In conclusion, ECW ameliorates endothelial dysfunction via improvement of the nitric oxide/cyclic GMP signaling pathway in a diet/genetic model of hyperlipidemia. ECW also substantially inhibited the development of atherosclerosis, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation, suggesting a vascular protective role for this herb in the treatment and prevention of atherosclerotic vascular disease. PMID:22082065

  3. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice.

    PubMed

    Rao, Anuradha; Kosters, Astrid; Mells, Jamie E; Zhang, Wujuan; Setchell, Kenneth D R; Amanso, Angelica M; Wynn, Grace M; Xu, Tianlei; Keller, Brad T; Yin, Hong; Banton, Sophia; Jones, Dean P; Wu, Hao; Dawson, Paul A; Karpen, Saul J

    2016-09-21

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, and safe and effective therapies are needed. Bile acids (BAs) and their receptors [including the nuclear receptor for BAs, farnesoid X receptor (FXR)] play integral roles in regulating whole-body metabolism and hepatic lipid homeostasis. We hypothesized that interruption of the enterohepatic BA circulation using a luminally restricted apical sodium-dependent BA transporter (ASBT) inhibitor (ASBTi; SC-435) would modify signaling in the gut-liver axis and reduce steatohepatitis in high-fat diet (HFD)-fed mice. Administration of this ASBTi increased fecal BA excretion and messenger RNA (mRNA) expression of BA synthesis genes in liver and reduced mRNA expression of ileal BA-responsive genes, including the negative feedback regulator of BA synthesis, fibroblast growth factor 15. ASBT inhibition resulted in a marked shift in hepatic BA composition, with a reduction in hydrophilic, FXR antagonistic species and an increase in FXR agonistic BAs. ASBT inhibition restored glucose tolerance, reduced hepatic triglyceride and total cholesterol concentrations, and improved NAFLD activity score in HFD-fed mice. These changes were associated with reduced hepatic expression of lipid synthesis genes (including liver X receptor target genes) and normalized expression of the central lipogenic transcription factor, Srebp1c Accumulation of hepatic lipids and SREBP1 protein were markedly reduced in HFD-fed Asbt(-/-) mice, providing genetic evidence for a protective role mediated by interruption of the enterohepatic BA circulation. Together, these studies suggest that blocking ASBT function with a luminally restricted inhibitor can improve both hepatic and whole body aspects of NAFLD.

  4. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet

    PubMed Central

    Srivastava, Shireesh; Kashiwaya, Yoshihiro; King, M. Todd; Baxa, Ulrich; Tam, Joseph; Niu, Gang; Chen, Xiaoyuan; Clarke, Kieran; Veech, Richard L.

    2012-01-01

    We measured the effects of a diet in which d-β-hydroxybutyrate-(R)-1,3 butanediol monoester [ketone ester (KE)] replaced equicaloric amounts of carbohydrate on 8-wk-old male C57BL/6J mice. Diets contained equal amounts of fat, protein, and micronutrients. The KE group was fed ad libitum, whereas the control (Ctrl) mice were pair-fed to the KE group. Blood d-β-hydroxybutyrate levels in the KE group were 3-5 times those reported with high-fat ketogenic diets. Voluntary food intake was reduced dose dependently with the KE diet. Feeding the KE diet for up to 1 mo increased the number of mitochondria and doubled the electron transport chain proteins, uncoupling protein 1, and mitochondrial biogenesis-regulating proteins in the interscapular brown adipose tissue (IBAT). [18F]-Fluorodeoxyglucose uptake in IBAT of the KE group was twice that in IBAT of the Ctrl group. Plasma leptin levels of the KE group were more than 2-fold those of the Ctrl group and were associated with increased sympathetic nervous system activity to IBAT. The KE group exhibited 14% greater resting energy expenditure, but the total energy expenditure measured over a 24-h period or body weights was not different. The quantitative insulin-sensitivity check index was 73% higher in the KE group. These results identify KE as a potential antiobesity supplement.—Srivastava, S., Kashiwaya, Y., King, M. T. Baxa, U., Tam, J., Niu, G., Chen, X., Clarke, K., Veech, R. L. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. PMID:22362892

  5. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1(-/-) mice fed low levels of cholic acid.

    PubMed

    Jones, Ryan D; Repa, Joyce J; Russell, David W; Dietschy, John M; Turley, Stephen D

    2012-07-15

    Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that converts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1(-/-)) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1(-/-) mice and matching Cyp7a1(+/+) controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15-18 days. A level of just 0.03% provided a CA intake of ~12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1(-/-) mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1(+/+) mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models.

  6. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1−/− mice fed low levels of cholic acid

    PubMed Central

    Jones, Ryan D.; Repa, Joyce J.; Russell, David W.; Dietschy, John M.

    2012-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that coverts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1−/−) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1−/− mice and matching Cyp7a1+/+ controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15–18 days. A level of just 0.03% provided a CA intake of ∼12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1−/− mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1+/+ mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models. PMID:22628034

  7. Endogenous cerebellar neurogenesis in adult mice with progressive ataxia

    PubMed Central

    Kumar, Manoj; Csaba, Zsolt; Peineau, Stéphane; Srivastava, Rupali; Rasika, Sowmyalakshmi; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2014-01-01

    Objective Transplanting exogenous neuronal progenitors to replace damaged neurons in the adult brain following injury or neurodegenerative disorders and achieve functional amelioration is a realistic goal. However, studies so far have rarely taken into consideration the preexisting inflammation triggered by the disease process that could hamper the effectiveness of transplanted cells. Here, we examined the fate and long-term consequences of human cerebellar granule neuron precursors (GNP) transplanted into the cerebellum of Harlequin mice, an adult model of progressive cerebellar degeneration with early-onset microgliosis. Methods Human embryonic stem cell-derived progenitors expressing Atoh1, a transcription factor key to GNP specification, were generated in vitro and stereotaxically transplanted into the cerebellum of preataxic Harlequin mice. The histological and functional impact of these transplants was followed using immunolabeling and Rotarod analysis. Results Although transplanted GNPs did not survive beyond a few weeks, they triggered the proliferation of endogenous nestin-positive precursors in the leptomeninges that crossed the molecular layer and differentiated into mature neurons. These phenomena were accompanied by the preservation of the granule and Purkinje cell layers and delayed ataxic changes. In vitro neurosphere generation confirmed the enhanced neurogenic potential of the cerebellar leptomeninges of Harlequin mice transplanted with exogenous GNPs. Interpretation The cerebellar leptomeninges of adult mice contain an endogenous neurogenic niche that can be stimulated to yield mature neurons from an as-yet unidentified population of progenitors. The transplantation of human GNPs not only stimulates this neurogenesis, but, despite the potentially hostile environment, leads to neuroprotection and functional amelioration. PMID:25574472

  8. Susceptibility of germfree or antibiotic-treated adult mice to Cryptosporidium parvum.

    PubMed

    Harp, J A; Wannemuehler, M W; Woodmansee, D B; Moon, H W

    1988-08-01

    Adult mice are more resistant than neonatal mice to intestinal colonization with the protozoan parasite Cryptosporidium parvum. Development of a mature intestinal flora may play a role in this resistance. We compared susceptibilities to colonization with C. parvum in adult conventional mice, adult germfree mice, and adult conventional mice treated with oral antibiotics to deplete the intestinal flora. Germfree mice of both CD1 and BALB/c strains were colonized at day 7 following inoculation with C. parvum oocysts isolated from the feces of an infected, diarrheic calf. Age-matched conventional mice of the same strains were comparatively resistant to colonization. Conventional mice treated with antibiotics remained resistant to colonization. These results suggest that the microflora in the intestine was not the sole determinant of resistance or susceptibility to colonization. The germfree adult mouse as an experimental model of cryptosporidiosis is discussed.

  9. Actions of exendin-4 therapy on cognitive function and hippocampal synaptic plasticity in mice fed a high-fat diet.

    PubMed

    Gault, V A; Porter, W D; Flatt, P R; Hölscher, C

    2010-08-01

    High-calorie diet has been shown to impair learning ability and hippocampal synaptic plasticity in rodents. This study examined effects of daily treatment with the glucagon-like peptide-1 mimetic, exendin-4, on cognitive function and hippocampal synaptic plasticity in a model of diet-induced obesity, which exhibits compromised cognitive performance. Mice fed a high-fat diet were treated with exendin-4 (25 nmol kg(-1) bodyweight; twice daily) or saline vehicle (0.9% (w/v) NaCl) over 21 days. In addition to improving metabolic control, exendin-4-treated mice exhibited a marked increase in recognition index highlighting improved learning and memory. High-fat diet resulted in the elimination of in vivo electrophysiological long-term potentiation, which was rescued following exendin-4 treatment. This study shows that exendin-4 therapy improves cognitive function and ameliorates impaired hippocampal synaptic plasticity in dietary-induced obesity.

  10. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet.

    PubMed

    Takanabe, Rieko; Ono, Koh; Abe, Yukiko; Takaya, Tomohide; Horie, Takahiro; Wada, Hiromichi; Kita, Toru; Satoh, Noriko; Shimatsu, Akira; Hasegawa, Koji

    2008-11-28

    MicroRNAs (miRNAs) are short non-coding RNA that post-transcriptionally regulates gene expression. miR-143 has been proposed to play a role in the differentiation of adipocytes in culture. However, the mechanism regulating the expression of miR-143 in adult adipose tissue during the development of obesity in vivo is unknown. Here in, we showed that the expression of miR-143 in the mesenteric fat was up-regulated in mice fed a high-fat diet. Increased miR-143 expression was associated with an elevated body weight and mesenteric fat weight. Furthermore, miR-143 levels were closely correlated with expression levels of adipocyte differentiation markers such as PPARgamma and aP2 as well as plasma levels of leptin, one of the important adipocytokines involved in insulin resistance. These findings provide the first evidence for the up-regulated expression of miR-143 in the mesenteric fat of high-fat diet-induced obese mice, which might contribute to the regulated expression of adipocyte genes involved in the pathophysiology of obesity.

  11. Reduction of intestinal polyp formation in min mice fed a high-fat diet with aloe vera gel extract.

    PubMed

    Chihara, Takeshi; Shimpo, Kan; Beppu, Hidehiko; Tomatsu, Akiko; Kaneko, Takaaki; Tanaka, Miyuki; Yamada, Muneo; Abe, Fumiaki; Sonoda, Shigeru

    2013-01-01

    Aloe vera gel supercritical CO2 extract (AVGE) has been shown to contain five phytosterols, reduce visceral fat accumulation, and influence the metabolism of glucose and lipids in animal model experiments. Recent epidemiologic studies have shown that obesity is an established risk factor for several cancers including colorectal cancer. Therefore, we examined the effects of AVGE on intestinal polyp formation in Apc-deficient Min mice fed a high-fat diet. Male Min mice were divided into normal diet (ND), high fat diet (HFD), low dose AVGE (HFD+LAVGE) and high dose AVGE (HFD+HAVGE) groups. The ND group received AIN-93G diet and the latter 3 groups were given modified high-fat AIN-93G diet (HFD) for 7 weeks. AVGE was suspended in 0.5% carboxymethyl cellulose (CMC) and administered orally to mice in HFD+LAVGE and HFD+HAVGE groups every day (except on Sunday) for 7 weeks at a dose of 3.75 and 12.5 mg/kg body weight, respectively. ND and HFD groups received 0.5% CMC alone. Between weeks 4 and 7, body weights in the HFD and HFD+LAVGE groups were reduced more than those in the ND group. However, body weights were not reduced in the HFD+HAVGE group. Mice were sacrificed at the end of the experiment and their intestines were scored for polyps. No significant differences were observed in either the incidence and multiplicity of intestinal polyps (≥0.5 mm in a diameter) among the three groups fed HFD. However, when intestinal polyps were categorized by their size into 0.5-1.4, 1.5-2.4, or ≥2.5 mm, the incidence and multiplicity of large polyps (≥2.5 mm) in the intestine in the HFD+HAVGE group were significantly lower than those in the HFD group. We measured plasma lipid (triglycerides and total cholesterol) and adipocytokine [interleukin-6 and high molecular weight (HMW) adiponectin] levels as possible indicators of mechanisms of inhibition. The results showed that HMW adiponectin levels in the HFD group were significantly lower than those in the ND group. However, the

  12. Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes.

    PubMed

    Pahlavani, Mandana; Razafimanjato, Fitia; Ramalingam, Latha; Kalupahana, Nishan S; Moussa, Hanna; Scoggin, Shane; Moustaid-Moussa, Naima

    2017-01-01

    Brown adipose tissue (BAT) plays a key role in energy expenditure through its specialized thermogenic function. Therefore, BAT activation may help prevent and/or treat obesity. Interestingly, subcutaneous white adipose tissue (WAT) also has the ability to differentiate into brown-like adipocytes and may potentially contribute to increased thermogenesis. We have previously reported that eicosapentaenoic acid (EPA) reduces high-fat (HF)-diet-induced obesity and insulin resistance in mice. Whether BAT mediates some of these beneficial effects of EPA has not been determined. We hypothesized that EPA activates BAT thermogenic program, contributing to its antiobesity effects. BAT and WAT were harvested from B6 male mice fed HF diets supplemented with or without EPA. HIB 1B clonal brown adipocytes treated with or without EPA were also used. Gene and protein expressions were measured in adipose tissues and H1B 1B cells by quantitative polymerase chain reaction and immunoblotting, respectively. Our results show that BAT from EPA-supplemented mice expressed significantly higher levels of thermogenic genes such as PRDM16 and PGC1α and higher levels of uncoupling protein 1 compared to HF-fed mice. By contrast, both WATs (subcutaneous and visceral) had undetectable levels of these markers with no up regulation by EPA. HIB 1B cells treated with EPA showed significantly higher mRNA expression of PGC1α and SIRT2. EPA treatment significantly increased maximum oxidative and peak glycolytic metabolism in H1B 1B cells. Our results demonstrate a novel and promising role for EPA in preventing obesity via activation of BAT, adding to its known beneficial anti-inflammatory effects.

  13. Impact of dietary dairy polar lipids on lipid metabolism of mice fed a high-fat diet.

    PubMed

    Reis, Mariza G; Roy, Nicole C; Bermingham, Emma N; Ryan, Leigh; Bibiloni, Rodrigo; Young, Wayne; Krause, Lutz; Berger, Bernard; North, Mike; Stelwagen, Kerst; Reis, Marlon M

    2013-03-20

    The effect of milk polar lipids on lipid metabolism of liver, adipose tissue, and brain and on composition of intestinal microbiota was investigated. C57BL/6J mice were fed a high-fat diet (HFD) for 5 weeks, followed by 5 weeks with HFD without (control) or supplemented with total polar lipids (TPL), phospholipids (PL), or sphingolipids (SPL). Animals fed SPL showed a tendency for lower triglyceride synthesis (P = 0.058) in the liver, but not in adipose tissue. PL and TPL reduced de novo hepatic fatty acid biosynthesis. The ratio of palmitoleic to palmitic acid in the liver was lower for animals fed SPL or TPL compared to control. There was little effect of the supplementation on the cecal microbiota composition. In the brain, DHA (C22:6) content correlated negatively with tetracosanoic acid (C24:0) after TPL supplementation (-0.71, P = 0.02) but not in control (0.26, P = 0.44). Arachidonic acid (C20:4) was negatively correlated with C24:0 in both groups (TPL, -0.77, P = 0.008; control, -0.81, P = 0.003).

  14. Hypolipidemic effect of n-butanol Extract from Asparagus officinalis L. in mice fed a high-fat diet.

    PubMed

    Zhu, Xinglei; Zhang, Wen; Pang, Xiufeng; Wang, Jiesi; Zhao, Jingjing; Qu, Weijing

    2011-08-01

    During industrial processing of Asparagus (Asparagus officinalis L.), around half of each spear is discarded. However, these discarded asparagus (by-products) might be used as food supplements for their potential therapeutic effects. This study evaluated the hypolipidemic effect of n-butanol extract (BEA) from asparagus by-products in mice fed a high-fat diet (HFD). Continuous HFD feeding caused hyperlipidemia, oxidative stress and liver damage in mice. Interestingly, while BEA significantly decreased the levels of body weight gain, serum total cholesterol and low density lipoprotein cholesterol, it dramatically increased the high density lipoprotein level when administered at three different doses (40, 80 or 160 mg/kg body weight) for 8 weeks in hyperlipidemic mice. In addition, BEA decreased the levels of alanine transaminase, aspartate transaminase and alkaline phosphatase in serum. Finally, superoxide dismutase activity and the total antioxidation capacity were evidently increased, while the malondialdehyde level and the distribution of lipid droplets were reduced in liver cells of BEA-treated mice. Taken together, the findings of this study suggested that BEA had a strong hypolipidemic function and could be used as a supplement in healthcare foods and drugs or in combination with other hypolipidemic drugs.

  15. Dietary cholesterol induces hepatic inflammation and blunts mitochondrial function in the liver of high-fat-fed mice.

    PubMed

    Li, Songpei; Zeng, Xiao-Yi; Zhou, Xiu; Wang, Hao; Jo, Eunjung; Robinson, Stephen R; Xu, Aimin; Ye, Ji-Ming

    2016-01-01

    The present study investigated the role of dietary cholesterol and fat in the development of nonalcoholic fatty liver disease, a common liver disease in metabolic disorders. Mice were fed a diet of regular chow (CH), chow supplemented with 0.2% w/w cholesterol (CHC), high fat (HF, 45kcal%) or HF with cholesterol (HFC) for 17weeks. While both HF and HFC groups displayed hepatic steatosis and metabolic syndrome, only HFC group developed the phenotype of liver injury, as indicated by an increase in plasma level of alanine transaminase (ALT, by 50-80%). There were ~2-fold increases in mRNA expression of tumor necrosis factor α, interleukin 1β and monocyte chemotactic protein 1 in the liver of HFC-fed mice (vs. HF) but no endoplasmic reticulum stress or oxidative stress was observed. Furthermore, cholesterol suppressed HF-induced increase of peroxisome proliferator-activated receptor γ coactivator 1α and mitochondrial transcription factor A expression and blunted fatty acid oxidation. Interestingly, after switching HFC to HF diet for 5weeks, the increases in plasma ALT and liver inflammatory markers were abolished but the blunted of mitochondrial function remained. These findings suggest that cholesterol plays a critical role in the conversion of a simple fatty liver toward nonalcoholic steatohepatitis possibly by activation of inflammatory pathways together with retarded mitochondrial function.

  16. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet.

    PubMed

    Srivastava, Shireesh; Kashiwaya, Yoshihiro; King, M Todd; Baxa, Ulrich; Tam, Joseph; Niu, Gang; Chen, Xiaoyuan; Clarke, Kieran; Veech, Richard L

    2012-06-01

    We measured the effects of a diet in which D-β-hydroxybutyrate-(R)-1,3 butanediol monoester [ketone ester (KE)] replaced equicaloric amounts of carbohydrate on 8-wk-old male C57BL/6J mice. Diets contained equal amounts of fat, protein, and micronutrients. The KE group was fed ad libitum, whereas the control (Ctrl) mice were pair-fed to the KE group. Blood d-β-hydroxybutyrate levels in the KE group were 3-5 times those reported with high-fat ketogenic diets. Voluntary food intake was reduced dose dependently with the KE diet. Feeding the KE diet for up to 1 mo increased the number of mitochondria and doubled the electron transport chain proteins, uncoupling protein 1, and mitochondrial biogenesis-regulating proteins in the interscapular brown adipose tissue (IBAT). [(18)F]-Fluorodeoxyglucose uptake in IBAT of the KE group was twice that in IBAT of the Ctrl group. Plasma leptin levels of the KE group were more than 2-fold those of the Ctrl group and were associated with increased sympathetic nervous system activity to IBAT. The KE group exhibited 14% greater resting energy expenditure, but the total energy expenditure measured over a 24-h period or body weights was not different. The quantitative insulin-sensitivity check index was 73% higher in the KE group. These results identify KE as a potential antiobesity supplement.

  17. Anti-obesity Effect of Capsaicin in Mice Fed with High-Fat Diet Is Associated with an Increase in Population of the Gut Bacterium Akkermansia muciniphila

    PubMed Central

    Shen, Wei; Shen, Mengyu; Zhao, Xia; Zhu, Hongbin; Yang, Yuhui; Lu, Shuguang; Tan, Yinling; Li, Gang; Li, Ming; Wang, Jing; Hu, Fuquan; Le, Shuai

    2017-01-01

    Capsaicin (CAP) reduces body weight mainly through activation of transient receptor potential vanilloid 1 (TRPV1) cation channel. However, recent evidence indicates that the gut microbiota influences many physiological processes in host and might provoke obesity. This study determined whether the anti-obesity effect of CAP is related to the changes in gut microbiota. C57BL/6 mice were fed either with high-fat diet (HFD) or HFD with CAP (HFD-CAP) for 9 weeks. We observed a significantly reduced weight gain and improved glucose tolerance in HFD-CAP-fed mice compared with HFD-fed mice. 16S rRNA gene sequencing results showed a decrease of phylum Proteobacteria in HFD-CAP-fed mice. In addition, HFD-CAP-fed mice showed a higher abundance of Akkermansia muciniphila, a mucin-degrading bacterium with beneficial effects on host metabolism. Further studies found that CAP directly up-regulates the expression of Mucin 2 gene Muc2 and antimicrobial protein gene Reg3g in the intestine. These data suggest that the anti-obesity effect of CAP is associated with a modest modulation of the gut microbiota. PMID:28280490

  18. Anti-obesity Effect of Capsaicin in Mice Fed with High-Fat Diet Is Associated with an Increase in Population of the Gut Bacterium Akkermansia muciniphila.

    PubMed

    Shen, Wei; Shen, Mengyu; Zhao, Xia; Zhu, Hongbin; Yang, Yuhui; Lu, Shuguang; Tan, Yinling; Li, Gang; Li, Ming; Wang, Jing; Hu, Fuquan; Le, Shuai

    2017-01-01

    Capsaicin (CAP) reduces body weight mainly through activation of transient receptor potential vanilloid 1 (TRPV1) cation channel. However, recent evidence indicates that the gut microbiota influences many physiological processes in host and might provoke obesity. This study determined whether the anti-obesity effect of CAP is related to the changes in gut microbiota. C57BL/6 mice were fed either with high-fat diet (HFD) or HFD with CAP (HFD-CAP) for 9 weeks. We observed a significantly reduced weight gain and improved glucose tolerance in HFD-CAP-fed mice compared with HFD-fed mice. 16S rRNA gene sequencing results showed a decrease of phylum Proteobacteria in HFD-CAP-fed mice. In addition, HFD-CAP-fed mice showed a higher abundance of Akkermansia muciniphila, a mucin-degrading bacterium with beneficial effects on host metabolism. Further studies found that CAP directly up-regulates the expression of Mucin 2 gene Muc2 and antimicrobial protein gene Reg3g in the intestine. These data suggest that the anti-obesity effect of CAP is associated with a modest modulation of the gut microbiota.

  19. Ghrelin signaling in heart remodeling of adult obese mice.

    PubMed

    Lacerda-Miranda, Glauciane; Soares, Vivian M; Vieira, Anatalia K G; Lessa, Juliana G; Rodrigues-Cunha, Alessandra C S; Cortez, Erika; Garcia-Souza, Erica P; Moura, Anibal S

    2012-05-01

    Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), has been suggested to be associated to obesity, insulin secretion, cardiovascular growth and homeostasis. GHS-R has been found in most of the tissues, and among the hormone action it is included the regulation of heart energy metabolism. Therefore, hypernutrition during early life leads to obesity, induces cardiac hypertrophy, compromises myocardial function, inducing heart failure in adulthood. We examined ghrelin signaling process in cardiac remodeling in these obese adult mice. The cardiomyocytes (cmy) of left ventricle were analyzed by light microscopy and stereology, content and phosphorilation of cardiac proteins: ghrelin receptor (growth hormone secretagogue receptor 1a, GHSR-1a), protein kinase B (AKT and pAKT), phosphatidil inositol 3 kinase (PI3K), AMP-activated protein kinase (AMPK and pAMPK) and actin were achieved by Western blotting. GHSR-1a gene expression was analyzed by Real Time-PCR. We observed hyperglycemia and higher liver and visceral fat weight in obese when compared to control group. Obese mice presented a marked increase in heart weight/tibia length, indicating an enlarged heart size or a remodeling process. Obese mice had increased GHSR-1a content and expression in the heart associated to PI3K content and increased AKT content and phosphorylation. In contrast, AMPK content and phosphorylation in heart was not different between experimental groups. Ghrelin plasma levels in obese group were decreased when compared to control group. Our data suggest that remodeled myocardial in adult obese mice overnourished in early life are associated with higher phosphorylation of GHSR-1a, PI3K and AKT but not with AMPK.

  20. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    PubMed

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  1. Olive Leaf Extract Attenuates Obesity in High-Fat Diet-Fed Mice by Modulating the Expression of Molecules Involved in Adipogenesis and Thermogenesis

    PubMed Central

    Song, Su Jin

    2014-01-01

    The present study aimed to investigate whether olive leaf extract (OLE) prevents high-fat diet (HFD)-induced obesity in mice and to explore the underlying mechanisms. Mice were randomly divided into groups that received a chow diet (CD), HFD, or 0.15% OLE-supplemented diet (OLD) for 8 weeks. OLD-fed mice showed significantly reduced body weight gain, visceral fat-pad weights, and plasma lipid levels as compared with HFD-fed mice. OLE significantly reversed the HFD-induced upregulation of WNT10b- and galanin-mediated signaling molecules and key adipogenic genes (PPARγ, C/EBPα, CD36, FAS, and leptin) in the epididymal adipose tissue of HFD-fed mice. Furthermore, the HFD-induced downregulation of thermogenic genes involved in uncoupled respiration (SIRT1, PGC1α, and UCP1) and mitochondrial biogenesis (TFAM, NRF-1, and COX2) was also significantly reversed by OLE. These results suggest that OLE exerts beneficial effects against obesity by regulating the expression of genes involved in adipogenesis and thermogenesis in the visceral adipose tissue of HFD-fed mice. PMID:24624222

  2. Botulism in metronidazole- treated conventional adult mice challenged orogastrically with spores of Clostridium botulinum type A or B.

    PubMed Central

    Wang, Y; Sugiyama, H

    1984-01-01

    Conventional adult mice were pretreated with metronidazole to make their intestinal tracts receptive to colonization by Clostridium botulinum. These mice, in groups of 10, were fed 0 (controls), 10(2), 10(3), 10(4), or 10(5) C. botulinum type B spores and were placed for observation in filter-lid cages whose screen floors minimized the amounts of feces available for coprophagy. The opportunity to eat feces was made equal for all mouse groups by placing one mouse of every group in each of 10 cages. Mice given a spore inoculum began to develop botulism after incubation periods of slightly less than 2.75 days. Morbidity rates, which reached maxima within 5 days of challenge, were related to inocula levels. Mortality rates were also dose related. Mice given 10(5) spores and then type B antitoxin intraperitoneally, a treatment not affecting intraintestinal toxin production, remained healthy. Morbidity among control mice was seldom more than 10% and could be ascribed to toxin ingested with feces. A C. botulinum type A spore suspension gave similar results, although morbidity and mortality rates were generally lower than after challenge with a comparable number of type B spores. Mice challenged with 10(2) or 10(5) spores had similar toxin levels in their large intestines 48 h later. Morbidity rates correlated better with toxin levels in the small intestines. PMID:6389360

  3. Erythropoietin inhibits gluconeogenesis and inflammation in the liver and improves glucose intolerance in high-fat diet-fed mice.

    PubMed

    Meng, Ran; Zhu, Dalong; Bi, Yan; Yang, Donghui; Wang, Yaping

    2013-01-01

    Erythropoietin (EPO) has multiple biological functions, including the modulation of glucose metabolism. However, the mechanisms underlying the action of EPO are still obscure. This study is aimed at investigating the potential mechanisms by which EPO improves glucose tolerance in an animal model of type 2 diabetes. Male C57BL/6 mice were fed with high-fat diet (HFD) for 12 weeks and then treated with EPO (HFD-EPO) or vehicle saline (HFD-Con) for two week. The levels of fasting blood glucose, serum insulin and glucose tolerance were measured and the relative levels of insulin-related phosphatidylinositol 3-kinase (PI3K)/Akt, insulin receptor (IR) and IR substrate 1 (IRS1) phosphorylation were determined. The levels of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6- phosphatase (G6Pase), toll like receptor 4 (TLR4), tumor necrosis factor (TNF)-α and IL-6 expression and nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK), extracellular-signal-regulated kinase (ERK) and p38 MAPK activation in the liver were examined. EPO treatment significantly reduced the body weights and the levels of fasting blood glucose and serum insulin and improved the HFD-induced glucose intolerance in mice. EPO treatment significantly enhanced the levels of Akt, but not IR and IRS1, phosphorylation, accompanied by inhibiting the PEPCK and G6Pase expression in the liver. Furthermore, EPO treatment mitigated the HFD-induced inflammatory TNF-α and IL-6 production, TLR4 expression, NF-κB and JNK, but not ERK and p38 MAPK, phosphorylation in the liver. Therefore, our data indicated that EPO treatment improved glucose intolerance by inhibiting gluconeogenesis and inflammation in the livers of HFD-fed mice.

  4. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier.

    PubMed

    Benoit, Bérengère; Plaisancié, Pascale; Géloën, Alain; Estienne, Monique; Debard, Cyrille; Meugnier, Emmanuelle; Loizon, Emmanuelle; Daira, Patricia; Bodennec, Jacques; Cousin, Olivier; Vidal, Hubert; Laugerette, Fabienne; Michalski, Marie-Caroline

    2014-08-28

    Dairy products derived from the milk of cows fed in pastures are characterised by higher amounts of conjugated linoleic acid and α-linolenic acid (ALA), and several studies have shown their ability to reduce cardiovascular risk. However, their specific metabolic effects compared with standard dairy in a high-fat diet (HFD) context remain largely unknown; this is what we determined in the present study with a focus on the metabolic and intestinal parameters. The experimental animals were fed for 12 weeks a HFD containing 20 % fat in the form of a pasture dairy cream (PDC) or a standard dairy cream (SDC). Samples of plasma, liver, white adipose tissue, duodenum, jejunum and colon were analysed. The PDC mice, despite a higher food intake, exhibited lower fat mass, plasma and hepatic TAG concentrations, and inflammation in the adipose tissue than the SDC mice. Furthermore, they exhibited a higher expression of hepatic PPARα mRNA and adipose tissue uncoupling protein 2 mRNA, suggesting an enhanced oxidative activity of the tissues. These results might be explained, in part, by the higher amounts of ALA in the PDC diet and in the liver and adipose tissue of the PDC mice. Moreover, the PDC diet was found to increase the proportions of two strategic cell populations involved in the protective function of the intestinal epithelium, namely Paneth and goblet cells in the small intestine and colon, compared with the SDC diet. In conclusion, a PDC HFD leads to improved metabolic outcomes and to a stronger gut barrier compared with a SDC HFD. This may be due, at least in part, to the protective mechanisms induced by specific lipids.

  5. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    PubMed

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis.

  6. Metabolic effects of a mitochondrial-targeted coenzyme Q analog in high fat fed obese mice.

    PubMed

    Fink, Brian D; Guo, Deng Fu; Kulkarni, Chaitanya A; Rahmouni, Kamal; Kerns, Robert J; Sivitz, William I

    2017-04-01

    We recently reported that mitoquinone (mitoQ, 500 μmol/L) added to drinking water of C57BL/6J mice attenuated weight gain, decreased food intake, increased hypothalamic orexigenic gene expression, and mitigated oxidative stress when administered from the onset of high-fat (HF) feeding. Here, we examined the effects of mitoQ on pre-existing obesity in C57BL/6J mice first made obese by 107 days of HF feeding. In contrast to our preventative study, we found that already obese mice did not tolerate mitoQ at 500 μmol/L. Within 4 days of administration, obese mice markedly decreased food and water intake and lost substantial weight necessitating a dose reduction to 250 μmol/L. Food and water intake then improved. Over the next 4 weeks, body mass of the mitoQ-treated mice increased faster than vehicle-treated controls but did not catch up. Over the subsequent 10 weeks, weights of the mitoQ-treated group remained significantly less than vehicle control, but percent fat and food intake did not differ. Although the mitoQ-treated groups continued to drink less, there was no difference in percent body fluid and no laboratory evidence of dehydration at study end. At the time of killing, hypothalamic NPY gene expression was reduced in the mitoQ-treated mice . Liver fat was markedly increased by HF feeding but did not differ between mitoQ and vehicle groups and, in contrast to our previous preventative study, there was no improvement in plasma alanine amino transferase or liver hydroperoxides. In summary, administration of mitoQ to already obese mice attenuated weight gain, but showed limited overall benefit.

  7. Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice

    PubMed Central

    Moya-Pérez, Angela; Neef, Alexander; Sanz, Yolanda

    2015-01-01

    Background/Objectives The role of intestinal dysbiosis in obesity-associated systemic inflammation via the cross-talk with peripheral tissues is under debate. Our objective was to decipher the mechanisms by which intervention in the gut ecosystem with a specific Bifidobacterium strain reduces systemic inflammation and improves metabolic dysfunction in obese high-fat diet (HFD) fed mice. Methods Adult male wild-type C57BL-6 mice were fed either a standard or HFD, supplemented with placebo or Bifidobacterium pseudocatenulatum CECT 7765, for 14 weeks. Lymphocytes, macrophages and cytokine/chemokine concentrations were quantified in blood, gut, liver and adipose tissue using bead-based multiplex assays. Biochemical parameters in serum were determined by ELISA and enzymatic assays. Histology was assessed by hematoxylin-eosin staining. Microbiota was analyzed by 16S rRNA gene pyrosequencing and quantitative PCR. Results B. pseudocatenulatum CECT 7765 reduced obesity-associated systemic inflammation by restoring the balance between regulatory T cells (Tregs) and B lymphocytes and reducing pro-inflammatory cytokines of adaptive (IL-17A) and innate (TNF-α) immunity and endotoxemia. In the gut, the bifidobacterial administration partially restored the HFD-induced alterations in microbiota, reducing abundances of Firmicutes and of LPS-producing Proteobacteria, paralleled to reductions in B cells, macrophages, and cytokines (IL-6, MCP-1, TNF-α, IL-17A), which could contribute to systemic effects. In adipose tissue, bifidobacterial administration reduced B cells whereas in liver the treatment increased Tregs and shifted different cytokines (MCP-1 plus ILP-10 in adipose tissue and INF-γ plus IL-1β in liver). In both tissues, the bifidobacteria reduced pro-inflammatory macrophages and, TNF-α and IL-17A concentrations. These effects were accompanied by reductions in body weight gain and in serum cholesterol, triglyceride, glucose and insulin levels and improved oral glucose

  8. Differences and similarities in hepatic lipogenesis, gluconeogenesis and oxidative imbalance in mice fed diets rich in fructose or sucrose.

    PubMed

    Schultz, Alini; Barbosa-da-Silva, Sandra; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A

    2015-05-01

    Changes in feeding habits are the primary environmental factors (though modifiable) commonly correlated with increase in diseases such as obesity and associated comorbidities. Diets rich in fructose and sucrose have been related to the epidemic of obesity. Three groups of mice were studied during 15 weeks of consuming standard chow (SC), a high-fructose diet (HFru) and a high-sucrose diet (HSu). The animals did not present significant differences in food intake, energy intake, or body mass evolution at the end of the experiment. Although the findings in the HFru and HSu animals were not equal in magnitude, in comparison with the SC mice, the HFru and HSu animals showed hyperglycemia, hyperinsulinemia and hyperleptinemia as well as high levels of inflammatory adipokines, low adiponectin, and high levels of total cholesterol, triacylglycerol, and liver enzymes. The liver of HFru (more) and HSu (less) groups showed fatty infiltration and areas of necroinflammation, which are characteristic of the transition from nonalcoholic fatty liver disease to nonalcoholic steatohepatitis. In addition, the HFru and HSu groups showed increased lipogenesis, gluconeogenesis, reduced beta-oxidation and antioxidant imbalance compared with the SC animals. In conclusion, current findings demonstrate comparable adverse effects on carbohydrate metabolism, inflammatory profile, antioxidant imbalance and NAFLD in the mice of the C57BL/6 strain fed a diet rich in sucrose or rich in fructose.

  9. Antihyperglycemic and antioxidative effects of Hydroxyethyl Methylcellulose (HEMC) and Hydroxypropyl Methylcellulose (HPMC) in mice fed with a high fat diet.

    PubMed

    Ban, Su Jeong; Rico, Catherine W; Um, In Chul; Kang, Mi Young

    2012-01-01

    The effect of dietary feeding of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) on the glucose metabolism and antioxidative status in mice under high fat diet conditions was investigated. The mice were randomly divided and given experimental diets for six weeks: normal control (NC group), high fat (HF group), and high fat supplemented with either HEMC (HF+HEMC group) or HPMC (HF+HPMC group). At the end of the experimental period, the HF group exhibited markedly higher blood glucose and insulin levels as well as a higher erythrocyte lipid peroxidation rate relative to the control group. However, diet supplementation of HEMC and HPMC was found to counteract the high fat-induced hyperglycemia and oxidative stress via regulation of antioxidant and hepatic glucose-regulating enzyme activities. These findings illustrate that HEMC and HPMC were similarly effective in improving the glucose metabolism and antioxidant defense system in high fat-fed mice and they may be beneficial as functional biomaterials in the development of therapeutic agents against high fat dietinduced hyperglycemia and oxidative stress.

  10. Antihyperglycemic and Antioxidative Effects of Hydroxyethyl Methylcellulose (HEMC) and Hydroxypropyl Methylcellulose (HPMC) in Mice Fed with a High Fat Diet

    PubMed Central

    Ban, Su Jeong; Rico, Catherine W.; Um, In Chul; Kang, Mi Young

    2012-01-01

    The effect of dietary feeding of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) on the glucose metabolism and antioxidative status in mice under high fat diet conditions was investigated. The mice were randomly divided and given experimental diets for six weeks: normal control (NC group), high fat (HF group), and high fat supplemented with either HEMC (HF+HEMC group) or HPMC (HF+HPMC group). At the end of the experimental period, the HF group exhibited markedly higher blood glucose and insulin levels as well as a higher erythrocyte lipid peroxidation rate relative to the control group. However, diet supplementation of HEMC and HPMC was found to counteract the high fat-induced hyperglycemia and oxidative stress via regulation of antioxidant and hepatic glucose-regulating enzyme activities. These findings illustrate that HEMC and HPMC were similarly effective in improving the glucose metabolism and antioxidant defense system in high fat-fed mice and they may be beneficial as functional biomaterials in the development of therapeutic agents against high fat dietinduced hyperglycemia and oxidative stress. PMID:22489179

  11. Antilithiasic and Hypolipidaemic Effects of Raphanus sativus L. var. niger on Mice Fed with a Lithogenic Diet

    PubMed Central

    Castro-Torres, Ibrahim Guillermo; Naranjo-Rodríguez, Elia Brosla; Domínguez-Ortíz, Miguel Ángel; Gallegos-Estudillo, Janeth; Saavedra-Vélez, Margarita Virginia

    2012-01-01

    In Mexico, Raphanus sativus L. var. niger (black radish) has uses for the treatment of gallstones and for decreasing lipids serum levels. We evaluate the effect of juice squeezed from black radish root in cholesterol gallstones and serum lipids of mice. The toxicity of juice was analyzed according to the OECD guidelines. We used female C57BL/6 mice fed with a lithogenic diet. We performed histopathological studies of gallbladder and liver, and measured concentrations of cholesterol, HDL cholesterol and triglycerides. The juice can be considered bioactive and non-toxic; the lithogenic diet significantly induced cholesterol gallstones; increased cholesterol and triglycerides levels, and decreased HDL levels; gallbladder wall thickness increased markedly, showing epithelial hyperplasia and increased liver weight. After treatment with juice for 6 days, cholesterol gallstones were eradicated significantly in the gallbladder of mice; cholesterol and triglycerides levels decreased too, and there was also an increase in levels of HDL (P < 0.05). Gallbladder tissue continued to show epithelial hyperplasia and granulocyte infiltration; liver tissue showed vacuolar degeneration. The juice of black radish root has properties for treatment of cholesterol gallstones and for decreasing serum lipids levels; therefore, we confirm in a preclinical study the utility that people give it in traditional medicine. PMID:23093836

  12. Hop (Humulus lupulus L.) extract inhibits obesity in mice fed a high-fat diet over the long term.

    PubMed

    Sumiyoshi, Maho; Kimura, Yoshiyuki

    2013-01-14

    Hops (Humulus lupulus L.) are traditionally used to add bitterness and flavour to beer. Although the isomerised hop extracts produced by the brewing process have been thought to ameliorate lipid and glucose metabolism, the influence of untreated hop extracts on high-fat (HF) diet-induced obesity is unclear. The present study examined the anti-obesity effects of a hop extract in male C57BL/6J mice fed a HF diet, or HF diet plus 2 or 5 % hop extract for 20 weeks. The oral glucose tolerance test was performed at week 19. Furthermore, water excretion was evaluated in water-loaded Balb/c male mice. The effects of the extract on lipid accumulation and PPARγ expression in 3T3-L1 adipocytes were examined. The hop extract inhibited the increase in body and adipose tissue weight, adipose cell diameter and liver lipids induced by the HF diet. Furthermore, it improved glucose intolerance. The extract enhanced water excretion in water-loaded mice. Various fractions of the hop extract inhibited lipid accumulation and PPARγ expression in 3T3-L1 adipocytes. Hop extracts might be useful for preventing obesity and glucose intolerance caused by a HF diet.

  13. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet.

    PubMed

    Hatori, Megumi; Vollmers, Christopher; Zarrinpar, Amir; DiTacchio, Luciano; Bushong, Eric A; Gill, Shubhroz; Leblanc, Mathias; Chaix, Amandine; Joens, Matthew; Fitzpatrick, James A J; Ellisman, Mark H; Panda, Satchidananda

    2012-06-06

    While diet-induced obesity has been exclusively attributed to increased caloric intake from fat, animals fed a high-fat diet (HFD) ad libitum (ad lib) eat frequently throughout day and night, disrupting the normal feeding cycle. To test whether obesity and metabolic diseases result from HFD or disruption of metabolic cycles, we subjected mice to either ad lib or time-restricted feeding (tRF) of a HFD for 8 hr per day. Mice under tRF consume equivalent calories from HFD as those with ad lib access yet are protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation and have improved motor coordination. The tRF regimen improved CREB, mTOR, and AMPK pathway function and oscillations of the circadian clock and their target genes' expression. These changes in catabolic and anabolic pathways altered liver metabolome and improved nutrient utilization and energy expenditure. We demonstrate in mice that tRF regimen is a nonpharmacological strategy against obesity and associated diseases.

  14. Effect of Lactobacillus plantarum Strain K21 on High-Fat Diet-Fed Obese Mice.

    PubMed

    Wu, Chien-Chen; Weng, Wei-Lien; Lai, Wen-Lin; Tsai, Hui-Ping; Liu, Wei-Hsien; Lee, Meng-Hwan; Tsai, Ying-Chieh

    2015-01-01

    Recent studies have demonstrated beneficial effects of specific probiotics on alleviating obesity-related disorders. Here we aimed to identify probiotics with potential antiobesity activity among 88 lactic acid bacterial strains via in vitro screening assays, and a Lactobacillus plantarum strain K21 was found to harbor abilities required for hydrolyzing bile salt, reducing cholesterol, and inhibiting the accumulation of lipid in 3T3-L1 preadipocytes. Furthermore, effects of K21 on diet-induced obese (DIO) mice were examined. Male C57Bl/6J mice received a normal diet, high-fat diet (HFD), or HFD with K21 administration (10(9) CFU in 0.2 mL PBS/day) for eight weeks. Supplementation of K21, but not placebo, appeared to alleviate body weight gain and epididymal fat mass accumulation, reduce plasma leptin levels, decrease cholesterol and triglyceride levels, and mitigate liver damage in DIO mice. Moreover, the hepatic expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) related to adipogenesis was significantly downregulated in DIO mice by K21 intervention. We also found that K21 supplementation strengthens intestinal permeability and modulates the amount of Lactobacillus spp., Bifidobacterium spp., and Clostridium perfringens in the cecal contents of DIO mice. In conclusion, our results suggest that dietary intake of K21 protects against the onset of HFD-induced obesity through multiple mechanisms of action.

  15. Bone status of adult female butyrylcholinesterase gene-deficient mice.

    PubMed

    Haupt, Malte; Kauschke, Vivien; Sender, Jonas; Kampschulte, Marian; Kovtun, Anna; Dürselen, Lutz; Heiss, Christian; Lips, Katrin Susanne

    2015-11-01

    Butyrylcholinesterase (BChE) degrades acetylcholine in addition to acetylcholinesterase (AChE) which is involved in embryonic development of limbs. Since BChE is expressed by osteoblast-like cells we asked whether it is functional in adult bone remodeling. We addressed this issue by analyzing BChE gene-deficient mice (BChE-KO). Bones were extracted from 16-week old female BChE-KO and corresponding wild type mice (WT). Femoral bones were used for biomechanical testing and μCT evaluation of cancellous and cortical bone. Also vertebrae Th12 and L1 were investigated with μCT while L3 was used for tartrate-resistant acidic phosphatase (TRAP) histomorphometry and Th10 for gene expression analysis by means of real-time RT-PCR. BChE-KO did not reveal significant differences in biomechanical bone strength and bone mineral density determined by μCT. Microarchitecture of cancellous and cortical bone showed an increase in μCT parameters like trabecular thickness, trabecular separation, and relative cortical bone area of femoral BChE-KO bone compared to WT. In vertebrae no changes of microstructure and mRNA expression were detected. However, osteoclast histomorphometry with TRAP stained sections demonstrated a significant increase in relative osteoclast number. In conclusion, in adult murine bone the role of BChE is limited to bone specific changes in microarchitecture and to an increase in relative number of bone resorbing osteoclasts whereas the main collagen resorbing enzyme Cathepsin-K (CtsK) was stably expressed. Besides, AChE might be able to compensate the lack of BChE. Thus, further analyses using bone tissue specific AChE BChE cre-lox double knockout mice would be helpful.

  16. Disturbances in cholesterol, bile acid and glucose metabolism in peroxisomal 3-ketoacylCoA thiolase B deficient mice fed diets containing high or low fat contents.

    PubMed

    Nicolas-Francès, Valérie; Arnauld, Ségolène; Kaminski, Jacques; Ver Loren van Themaat, Emiel; Clémencet, Marie-Claude; Chamouton, Julie; Athias, Anne; Grober, Jacques; Gresti, Joseph; Degrace, Pascal; Lagrost, Laurent; Latruffe, Norbert; Mandard, Stéphane

    2014-03-01

    The peroxisomal 3-ketoacyl-CoA thiolase B (ThB) catalyzes the thiolytic cleavage of straight chain 3-ketoacyl-CoAs. Up to now, the ability of ThB to interfere with lipid metabolism was studied in mice fed a laboratory chow enriched or not with the synthetic agonist Wy14,643, a pharmacological activator of the nuclear hormone receptor PPARα. The aim of the present study was therefore to determine whether ThB could play a role in obesity and lipid metabolism when mice are chronically fed a synthetic High Fat Diet (HFD) or a Low Fat Diet (LFD) as a control diet. To investigate this possibility, wild-type (WT) mice and mice deficient for Thb (Thb(-/-)) were subjected to either a synthetic LFD or a HFD for 25 weeks, and their responses were compared. First, when fed a normal regulatory laboratory chow, Thb(-/-) mice displayed growth retardation as well as a severe reduction in the plasma level of Growth Hormone (GH) and Insulin Growth Factor-I (IGF-I), suggesting alterations in the GH/IGF-1 pathway. When fed the synthetic diets, the corrected energy intake to body mass was significantly higher in Thb(-/-) mice, yet those mice were protected from HFD-induced adiposity. Importantly, Thb(-/-) mice also suffered from hypoglycemia, exhibited reduction in liver glycogen stores and circulating insulin levels under the LFD and the HFD. Thb deficiency was also associated with higher levels of plasma HDL (High Density Lipoproteins) cholesterol and increased liver content of cholesterol under both the LFD and the HFD. As shown by the plasma lathosterol to cholesterol ratio, a surrogate marker for cholesterol biosynthesis, whole body cholesterol de novo synthesis was increased in Thb(-/-) mice. By comparing liver RNA from WT mice and Thb(-/-) mice using oligonucleotide microarray and RT-qPCR, a coordinated decrease in the expression of critical cholesterol synthesizing genes and an increased expression of genes involved in bile acid synthesis (Cyp7a1, Cyp17a1, Akr1d1) were

  17. Ingestion of cinnamaldehyde, a TRPA1 agonist, reduces visceral fats in mice fed a high-fat and high-sucrose diet.

    PubMed

    Tamura, Yasuko; Iwasaki, Yusaku; Narukawa, Masataka; Watanabe, Tatsuo

    2012-01-01

    Cinnamaldehyde (CNA), a pungent compound in cinnamon or dried bark of cassia, is a TRPA1 agonist. The effect of 0.1-1.0% CNA on pair-fed mice with high fat and high sucrose (HFS) diet for 1 mo was investigated. The total food intake was similar in the mice fed control and CNA diets, but the body weight showed a tendency to be lower in CNA-fed mice than in control mice. By adding CNA at 0.1, 0.5, and 1.0% concentrations, the weight of the mesenteric adipose tissue decreased significantly, and there was a tendency foward lower perirenal and epididymal adipose tissue weights compared to the control. No differences were found in any blood component measured. UCP1 protein levels in the interscapular brown adipose tissue were higher in the 0.5 and 1.0% CNA groups than in the HSF group, as shown by Western blotting. Collectively, these data show that the addition of CNA diminishes visceral fat deposition in HFS diet-fed mice, in part by stimulating interscapular brown adipose tissue.

  18. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were

  19. The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice.

    PubMed

    Llanos, Paola; Contreras-Ferrat, Ariel; Georgiev, Tihomir; Osorio-Fuentealba, Cesar; Espinosa, Alejandra; Hidalgo, Jorge; Hidalgo, Cecilia; Jaimovich, Enrique

    2015-02-15

    Insulin stimulates glucose uptake in adult skeletal muscle by promoting the translocation of GLUT4 glucose transporters to the transverse tubule (T-tubule) membranes, which have particularly high cholesterol levels. We investigated whether T-tubule cholesterol content affects insulin-induced glucose transport. Feeding mice a high-fat diet (HFD) for 8 wk increased by 30% the T-tubule cholesterol content of triad-enriched vesicular fractions from muscle tissue compared with triads from control mice. Additionally, isolated muscle fibers (flexor digitorum brevis) from HFD-fed mice showed a 40% decrease in insulin-stimulated glucose uptake rates compared with fibers from control mice. In HFD-fed mice, four subcutaneous injections of MβCD, an agent reported to extract membrane cholesterol, improved their defective glucose tolerance test and normalized their high fasting glucose levels. The preincubation of isolated muscle fibers with relatively low concentrations of MβCD increased both basal and insulin-induced glucose uptake in fibers from controls or HFD-fed mice and decreased Akt phosphorylation without altering AMPK-mediated signaling. In fibers from HFD-fed mice, MβCD improved insulin sensitivity even after Akt or CaMK II inhibition and increased membrane GLUT4 content. Indinavir, a GLUT4 antagonist, prevented the stimulatory effects of MβCD on glucose uptake. Addition of MβCD elicited ryanodine receptor-mediated calcium signals in isolated fibers, which were essential for glucose uptake. Our findings suggest that T-tubule cholesterol content exerts a critical regulatory role on insulin-stimulated GLUT4 translocation and glucose transport and that partial cholesterol removal from muscle fibers may represent a useful strategy to counteract insulin resistance.

  20. Involvement of skin barrier dysfunction in itch-related scratching in special diet-fed hairless mice.

    PubMed

    Fujii, Masanori; Nabe, Takeshi; Tomozawa, Junko; Kohno, Shigekatsu

    2006-01-13

    HR-1 hairless mice fed with a special diet develop atopic-like dry skin, characterized by increased transepidermal water loss, and prolonged bouts of spontaneous scratching. In this study, the role of the skin barrier dysfunction in the prolongation of scratching was evaluated. Although the prolonged scratching was dose-dependently inhibited by opioid receptor antagonist naloxone, neither H(1) receptor antagonist, mepyramine, nor 5-HT(1/2) receptor antagonist, methysergide, affected it. Thus, the prolonged scratching could be itch-related response independent of histamine and serotonin. The application of petrolatum ointment on the skin temporarily alleviated the increase of transepidermal water loss for 60 min after treatment. Due to this alleviation in barrier dysfunction, the prolongation of scratching was significantly suppressed. However, when the barrier dysfunction relapsed, the scratching worsened. Taken together, a skin barrier dysfunction is associated with the itch-related response.

  1. Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice.

    PubMed

    Druart, Céline; Neyrinck, Audrey M; Dewulf, Evelyne M; De Backer, Fabienne C; Possemiers, Sam; Van de Wiele, Tom; Moens, Frédéric; De Vuyst, Luc; Cani, Patrice D; Larondelle, Yvan; Delzenne, Nathalie M

    2013-09-28

    In vitro experiments have shown that isolated human gut bacteria are able to metabolise PUFA into conjugated PUFA like conjugated linoleic acids (CLA). The hypothesis of the present paper was that high-fat (HF) diet feeding and supplementation with fermentable carbohydrates that have prebiotic properties modulate the in vivo production of CLA by the mouse gut microbiota. Mice were treated for 4 weeks as follows: control (CT) groups were fed a standard diet; HF groups were fed a HF diet rich in linoleic acid (18 : 2n-6); the third groups were fed with the HF diet supplemented with either inulin-type fructans (HF-ITF) or arabinoxylans (HF-Ax). HF diet feeding increased rumenic acid (cis-9,trans-11-18 : 2 CLA) content both in the caecal and liver tissues compared with the CT groups. ITF supplementation had no major effect compared with the HF diet whereas Ax supplementation increased further rumenic acid (cis-9,trans-11-18 : 2 CLA) in the caecal tissue. These differences between both prebiotics may be linked to the high fat-binding capacity of Ax that provides more substrates for bacterial metabolism and to differential modulation of the gut microbiota (specific increase in Roseburia spp. in HF-Ax v. HF). In conclusion, these experiments supply the proof of concept that the mouse gut microbiota produces CLA in vivo, with consequences on the level of CLA in the caecal and liver tissues. We postulate that the CLA-producing bacteria could be a mediator to consider in the metabolic effects of both HF diet feeding and prebiotic supplementation.

  2. Nitric oxide (NO)--production and regulation of insulin secretion in islets of freely fed and fasted mice.

    PubMed

    Eckersten, Dag; Henningsson, Ragnar

    2012-02-10

    Production of nitric oxide through the action of nitric oxide synthase (NOS) has been detected in the islets of Langerhans. The inducible isoform of NOS (iNOS) is induced by cytokines and might contribute to the development of type-1 diabetes, while the constitutive isoform (cNOS) is thought to be implicated in the physiological regulation of insulin secretion. In the present study we have detected and quantified islet cNOS- and iNOS-derived NO production concomitant with measuring its influence on insulin secretion in the presence of different secretagogues: glucose, L-arginine, L-leucine and α-ketoisocaproic acid (KIC) both during fasting and freely fed conditions. In intact islets from freely fed mice both cNOS- and iNOS-activity was greatly increased by glucose (20 mmol/l). Fasting induced islet iNOS activity at both physiological (7 mmol/l) and high (20 mmol/l) glucose concentrations. NOS blockade increased insulin secretion both during freely fed conditions and after fasting. L-arginine stimulated islet cNOS activity and did not affect islet iNOS activity. l-leucine or KIC, known to enter the TCA cycle without affecting glycolysis, did not affect either islet cNOS- or iNOS activity. Accordingly, insulin secretion stimulated by L-leucine or KIC was unaffected by addition of L-NAME both during feeding and fasting. We conclude that both high glucose concentrations and fasting increase islet total NO production (mostly iNOS derived) which inhibit insulin secretion. The insulin secretagogues L-leucine and KIC, which do not affect glycolysis, do not interfere with the islet NO-NOS system.

  3. COMPARISON OF GENE EXPRESSION PROFILES FROM MICE FED THREE TOXICOLOGICALLY DIFFERENT TRIAZOLE-BASED CONAZOLES

    EPA Science Inventory

    The present study was designed to identify the underlying molecular mechanism for the induction of mouse liver tumors by conazoles. CD-1 mice were treated with the tumor producing conazoles, triadimefon (1800, 500, or 100 ppm), or propiconazole (2500, 500, or 100 ppm), or the non...

  4. Taurine Treatment Modulates Circadian Rhythms in Mice Fed A High Fat Diet

    PubMed Central

    Figueroa, Ana Lucia C.; Figueiredo, Hugo; Rebuffat, Sandra A.; Vieira, Elaine; Gomis, Ramon

    2016-01-01

    Close ties have been made among certain nutrients, obesity, type 2 diabetes and circadian clocks. Among nutrients, taurine has been documented as being effective against obesity and type 2 diabetes. However, the impact of taurine on circadian clocks has not been elucidated. We investigated whether taurine can modulate or correct disturbances in daily rhythms caused by a high-fat diet in mice. Male C57BL/6 mice were divided in four groups: control (C), control + taurine (C+T), high-fat diet (HFD) and HFD + taurine (HFD+T). They were administered 2% taurine in their drinking water for 10 weeks. Mice were euthanized at 6:00, 12:00, 18:00, and 24:00. HFD mice increased body weight, visceral fat and food intake, as well as higher levels of glucose, insulin and leptin, throughout the 24 h. Taurine prevented increments in food intake, body weight and visceral fat, improved glucose tolerance and insulin sensitivity and reduced disturbances in the 24 h patterns of plasma insulin and leptin. HFD downregulated the expression of clock genes Rev-erbα, Bmal1, and Per1 in pancreatic islets. Taurine normalized the gene and protein expression of PER1 in beta-cells, which suggests that it could be beneficial for the correction of daily rhythms and the amelioration of obesity and diabetes. PMID:27857215

  5. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  6. Mango modulates body fat and plasma glucose and lipids in mice fed a high-fat diet.

    PubMed

    Lucas, Edralin A; Li, Wenjia; Peterson, Sandra K; Brown, Angela; Kuvibidila, Solo; Perkins-Veazie, Penny; Clarke, Stephen L; Smith, Brenda J

    2011-11-01

    Consumption of fruits and vegetables has been investigated for their role in the prevention of many chronic conditions. Among the fruits, mango provides numerous bioactive compounds such as carotenoids, vitamin C and phenolic compounds, which have been shown to have antioxidant and anti-inflammatory properties. The present study examined the effects of dietary supplementation of freeze-dried mango pulp, in comparison with the hypolipidaemic drug, fenofibrate, and the hypoglycaemic drug, rosiglitazone, in reducing adiposity and alterations in glucose metabolism and lipid profile in mice fed a high-fat (HF) diet. Male C57BL/6J mice were randomly divided into six treatment groups (eight to nine/group): control (10 % energy from fat); HF (60 % energy from fat); HF+1 or 10 % freeze-dried mango (w/w); HF+fenofibrate (500 mg/kg diet); HF+rosiglitazone (50 mg/kg diet). After 8 weeks of treatment, mice receiving the HF diet had a higher percentage body fat (P = 0·0205) and epididymal fat mass (P = 0·0037) compared with the other treatment groups. Both doses of freeze-dried mango, similar to fenofibrate and rosiglitazone, prevented the increase in epididymal fat mass and the percentage of body fat. Freeze-dried mango supplementation at the 1 % dose improved glucose tolerance as shown by approximately 35 % lower blood glucose area under the curve compared with the HF group. Moreover, freeze-dried mango lowered insulin resistance, as indicated by the homeostasis model assessment of insulin resistance, to a similar extent as rosiglitazone and modulated NEFA. The present findings demonstrate that incorporation of freeze-dried mango in the diet of mice improved glucose tolerance and lipid profile and reduced adiposity associated with a HF diet.

  7. Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice.

    PubMed

    Higashimura, Yasuki; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Ushiroda, Chihiro; Ohnogi, Hiromu; Kudo, Yoko; Yasui, Madoka; Inui, Seina; Hisada, Takayoshi; Honda, Akira; Matsuzaki, Yasushi; Yoshikawa, Toshikazu

    2016-03-15

    High-fat diet (HFD)-induced alteration in the gut microbial composition, known as dysbiosis, is increasingly recognized as a major risk factor for various diseases, including colon cancer. This report describes a comprehensive investigation of the effect of agaro-oligosaccharides (AGO) on HFD-induced gut dysbiosis, including alterations in short-chain fatty acid contents and bile acid metabolism in mice. C57BL/6N mice were fed a control diet or HFD, with or without AGO. Terminal restriction fragment-length polymorphism (T-RFLP) analysis produced their fecal microbiota profiles. Profiles of cecal organic acids and serum bile acids were determined, respectively, using HPLC and liquid chromatography-tandem mass spectrometry systems. T-RFLP analyses showed that an HFD changed the gut microbiota significantly. Changes in the microbiota composition induced by an HFD were characterized by a decrease in the order Lactobacillales and by an increase in the Clostridium subcluster XIVa. These changes of the microbiota community generated by HFD treatment were suppressed by AGO supplementation. As supported by the data of the proportion of Lactobacillales order, the concentration of lactic acid increased in the HFD + AGO group. Data from the serum bile acid profile showed that the level of deoxycholic acid, a carcinogenic secondary bile acid produced by gut bacteria, was increased in HFD-receiving mice. The upregulation tended to be suppressed by AGO supplementation. Finally, results show that AGO supplementation suppressed the azoxymethane-induced generation of aberrant crypt foci in the colon derived from HFD-treated mice. Our results suggest that oral intake of AGO prevents HFD-induced gut dysbiosis, thereby inhibiting colon carcinogenesis.

  8. The Intestinal Peptide Transporter PEPT1 Is Involved in Food Intake Regulation in Mice Fed a High-Protein Diet

    PubMed Central

    Sailer, Manuela; Daniel, Hannelore

    2011-01-01

    High-protein diets are effective in achieving weight loss which is mainly explained by increased satiety and thermogenic effects. Recent studies suggest that the effects of protein-rich diets on satiety could be mediated by amino acids like leucine or arginine. Although high-protein diets require increased intestinal amino acid absorption, amino acid and peptide absorption has not yet been considered to contribute to satiety effects. We here demonstrate a novel finding that links intestinal peptide transport processes to food intake, but only when a protein-rich diet is provided. When mice lacking the intestinal peptide transporter PEPT1 were fed diets containing 8 or 21 energy% of protein, no differences in food intake and weight gain were observed. However, upon feeding a high-protein (45 energy%) diet, Pept1−/− mice reduced food intake much more pronounced than control animals. Although there was a regain in food consumption after a few days, no weight gain was observed which was associated with a reduced intestinal energy assimilation and increased fecal energy losses. Pept1−/− mice on high-protein diet displayed markedly reduced plasma leptin levels during the period of very low food intake, suggesting a failure of leptin signaling to increase energy intake. This together with an almost two-fold elevated plasma arginine level in Pept1−/− but not wildtype mice, suggests that a cross-talk of arginine with leptin signaling in brain, as described previously, could cause these striking effects on food intake. PMID:22031831

  9. Hexim1 heterozygosity stabilizes atherosclerotic plaque and decreased steatosis in ApoE null mice fed atherogenic diet.

    PubMed

    Dhar-Mascareno, Manya; Rozenberg, Inna; Iqbal, Jahangir; Hussain, M Mahmood; Beckles, Daniel; Mascareno, Eduardo

    2017-02-01

    Hexim-1 is an inhibitor of RNA polymerase II transcription elongation. Decreased Hexim-1 expression in animal models of chronic diseases such as left ventricular hypertrophy, obesity and cancer triggered significant changes in adaptation and remodeling. The main aim of this study was to evaluate the role of Hexim1 in lipid metabolism focused in the progression of atherosclerosis and steatosis. We used the C57BL6 apolipoprotein E (ApoE null) crossed bred to C57BL6Hexim1 heterozygous mice to obtain ApoE null - Hexim1 heterozygous mice (ApoE-HT). Both ApoE null backgrounds were fed high fat diet for twelve weeks. Then, we evaluated lipid metabolism, atherosclerotic plaque formation and liver steatosis. In order to understand changes in the transcriptome of both backgrounds during the progression of steatosis, we performed Affymetrix mouse 430 2.0 microarray. After 12 weeks of HFD, ApoE null and ApoE-HT showed similar increase of cholesterol and triglycerides in plasma. Plaque composition was altered in ApoE-HT. Additionally, liver triglycerides and steatosis were decreased in ApoE-HT mice. Affymetrix analysis revealed that decreased steatosis might be due to impaired inducible SOCS3 expression in ApoE-HT mice. In conclusion, decreased Hexim-1 expression does not alter cholesterol metabolism in ApoE null background after HFD. However, it promotes stable atherosclerotic plaque and decreased steatosis by promoting the anti-inflammatory TGFβ pathway and blocking the expression of the inducible and pro-inflammatory expression of SOCS3 respectively.

  10. Hydrodynamic delivery of FGF21 gene alleviates obesity and fatty liver in mice fed a high-fat diet.

    PubMed

    Gao, Mingming; Ma, Yongjie; Cui, Ran; Liu, Dexi

    2014-07-10

    FGF21 is a secreted protein that plays critical roles in regulating glucose and lipid metabolism. In this study, we evaluated the effects of FGF21 gene transfer on C57BL/6 mice fed a high fat diet (HFD). We demonstrate that transfer of the FGF21 gene using a hydrodynamics-based procedure increased mRNA levels of FGF21 exclusively in the liver, consequently generating a sustained high level of FGF21 protein in blood that peaked at 500 ng/ml 1 day after injection, leading to a variety of beneficial effects including blockade of HFD-induced obesity, alleviation of fatty liver and improvement in glucose homeostasis. These effects were associated with altered expression of Ucp1, Dio2, Pgc1α, Pparγ2, Mgat1, F4/80, Mcp1 and Tnfα, which are involved in thermogenesis, lipogenesis and chronic inflammation in the liver and adipose tissues. Transfer of the FGF21 gene in HFD-induced obese mice greatly increased the expression of thermogenic genes in adipose tissue, resulting in similar improvements in systemic metabolism including reduction of adiposity, alleviation of fatty liver and attenuation of insulin resistance. Mechanistic studies on the effects of FGF21 gene transfer in lean mice revealed that mice transferred with FGF21 gene displayed suppressed lipogenesis in the liver and enhanced thermogenesis in brown adipose tissue which was coincident with a significant improvement in glucose tolerance. Collectively, our results suggest that transfer of the FGF21 gene could be considered a promising approach for treating obesity and its complications.

  11. Zinc deficiency augments leptin production and exacerbates macrophage infiltration into adipose tissue in mice fed a high-fat diet.

    PubMed

    Liu, Ming-Jie; Bao, Shengying; Bolin, Eric R; Burris, Dara L; Xu, Xiaohua; Sun, Qinghua; Killilea, David W; Shen, Qiwen; Ziouzenkova, Ouliana; Belury, Martha A; Failla, Mark L; Knoell, Daren L

    2013-07-01

    Zinc (Zn) deficiency and obesity are global public health problems. Zn deficiency is associated with obesity and comorbid conditions that include insulin resistance and type 2 diabetes. However, the function of Zn in obesity remains unclear. Using a mouse model of combined high-fat and low-Zn intake (0.5-1.5 mg/kg), we investigated whether Zn deficiency exacerbates the extent of adiposity as well as perturbations in metabolic and immune function. C57BL/6 mice were randomly assigned to receive either a high-fat diet (HFD) or a control (C) diet for 6 wk, followed by further subdivision into 2 additional groups fed Zn-deficient diets (C-Zn, HFD-Zn), along with a C diet and an HFD, for 3 wk (n = 8-9 mice/group). The extent of visceral fat, insulin resistance, or systemic inflammation was unaffected by Zn deficiency. Strikingly, Zn deficiency significantly augmented circulating leptin concentrations (HFD-Zn vs. HFD: 3.15 ± 0.16 vs. 2.59 ± 0.12 μg/L, respectively) and leptin signaling in the liver of obese mice. Furthermore, gene expression of macrophage-specific markers ADAM8 (A disintegrin and metalloproteinase domain-containing protein 8) and CD68 (cluster of differentiation 68) was significantly greater in adipose tissue in the HFD-Zn group than in the HFD group, as confirmed by CD68 protein analysis, indicative of increased macrophage infiltration. Inspection of Zn content and mRNA profiles of all Zn transporters in the adipose tissue revealed alterations of Zn metabolism to obesity and Zn deficiency. Our results demonstrate that Zn deficiency increases leptin production and exacerbates macrophage infiltration into adipose tissue in obese mice, indicating the importance of Zn in metabolic and immune dysregulation in obesity.

  12. Chemoprevention of intestinal polyps in ApcMin/+ mice fed with western or balanced diets by drinking annurca apple polyphenol extract.

    PubMed

    Fini, Lucia; Piazzi, Giulia; Daoud, Yahya; Selgrad, Michael; Maegawa, Shinji; Garcia, Melissa; Fogliano, Vincenzo; Romano, Marco; Graziani, Giulia; Vitaglione, Paola; Carmack, Susanne W; Gasbarrini, Antonio; Genta, Robert M; Issa, Jean-Pierre; Boland, C Richard; Ricciardiello, Luigi

    2011-06-01

    The Western diet (WD) is associated with a higher incidence of colorectal cancer (CRC) than the Mediterranean diet. Polyphenols extracted from Annurca apple showed chemopreventive properties in CRC cells. A multifactorial, four-arm study by using wild-type (wt) and Apc(Min/+) mice was carried out to evaluate the effect on polyp number and growth of APE treatment (60 μmol/L) ad libitum in drinking water combined with a WD or a balanced diet (BD) for 12 weeks. Compared with APE treatment, we found a significant drop in body weight (P < 0.0001), severe rectal bleeding (P = 0.0076), presence of extraintestinal tumors, and poorer activity status (P = 0.0034) in water-drinking Apc(Min/+) mice, more remarkably in the WD arm. In the BD and WD groups, APE reduced polyp number (35% and 42%, respectively, P < 0.001) and growth (60% and 52%, respectively, P < 0.0001) in both colon and small intestine. Increased antioxidant activity was found in wt animals fed both diets and in Apc(Min/+) mice fed WD and drinking APE. Reduced lipid peroxidation was found in Apc(Min/+) mice drinking APE fed both diets and in wt mice fed WD. In normal mucosa, mice drinking water had lower global levels of DNA methylation than mice drinking APE. APE treatment is highly effective in reducing polyps in Apc(Min/+) mice and supports the concept that a mixture of phytochemicals, as they are naturally present in foods, represent a plausible chemopreventive agent for CRC, particularly in populations at high risk for colorectal neoplasia.

  13. Beneficial effects of rosuvastatin on insulin resistance, adiposity, inflammatory markers and non-alcoholic fatty liver disease in mice fed on a high-fat diet.

    PubMed

    Fraulob, Julio Cesar; Souza-Mello, Vanessa; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2012-08-01

    The aim of the present study was to evaluate the effects of ST (rosuvastatin) and GZ (rosiglitazone) on IR (insulin resistance) and on liver as well as adipose tissue in mice fed on an HF (high-fat) diet. Our data show that treatment with ST resulted in a marked improvement in insulin sensitivity characterized by enhanced glucose clearance during the insulin tolerance test and a 70% decrease in the HOMA-IR (homoeostasis model assessment of insulin resistance) index level (P=0.0008). The ST-treated mice exhibited lower gains in BM (body mass; -8%; P<0.01) and visceral fat pad thickness (-60%; P<0.01) compared with the untreated HF group. In comparison with HF-diet-fed mice, HF+ST-treated mice showed a significant reduction in hepatomegaly and liver steatosis (-6%, P<0.05; and -21%, P<0.01 respectively). In HF+ST-treated mice, the hepatic TAG (triacylglycerol) levels were reduced by 58% compared with the HF group (P<0.01). In addition, the expression of SREBP-1c (sterol-regulatory-element-binding protein-1c) was decreased by 50% in the livers of HF+ST-treated mice (P<0.01) relative to the HF-diet-fed mice. The levels of resistin were lower in the HF+ST-treated group compared with the HF group (44% less, P< 0.01). In conclusion, we demonstrated that ST treatment improved insulin sensitivity and decreased liver steatosis in mice fed on an HF diet. Furthermore, ST reduced BM gains, improved the circulating levels of plasma cholesterol and TAG, and reduced hepatic TAG, which was concomitant with lower resistin levels.

  14. Feeding Pregnant and Lactating Mice Rhodiola kirilowii Extracts helps to Preserve Thymus Function of their Adult Progeny.

    PubMed

    Bień, K; Lewicki, S; Zdanowski, R; Skopinska-Różewska, E; Krzyżowska, M

    2016-09-01

    Plants belonging to Rhodiola kirilowii species, members of Rhodiola genus and Crassulaceae family, grow wildly in Tibet, Mongolia and China mountains and are traditionally used as adaptogens, antidepressants and anti-inflammatory remedies. Nowadays, R. kirilowii is cultivated in some countries, also in Poland. In our previous papers we reported immuno- and angio-modulatory effects of aqueous and hydro-alcoholic extracts of radix and rhizome of this plant in non-pregnant and pregnant mice. The aim of the present study was to evaluate the effect of feeding pregnant and further lactating mice these extracts on selected thymus function parameters in adult progeny. The counts of M-30+ apoptotic cells, in the thymuses obtained from progeny of mice fed during pregnancy and lactation water or 50% water-alcoholic extract of Rhodiola kirilowii, were significantly lower (p<0.05) than apoptotic cells counts observed in the control mice. No significant differences in the counts of IL-7-positive cells in the thymuses obtained from progeny of the control mice and mothers treated with water or hydro-alcohol extracts of Rhodiola kirilowii were observed.

  15. Blood values of adult captive cheetahs (Acinonyx jubatus) fed either supplemented beef or whole rabbit carcasses.

    PubMed

    Depauw, Sarah; Hesta, M; Whitehouse-Tedd, K; Stagegaard, J; Buyse, J; Janssens, G P J

    2012-01-01

    This study evaluated nutrient intake and relevant blood parameters of 14 captive cheetahs, randomly assigned to a meat-only diet (supplemented beef, SB) or a whole prey diet (whole rabbit, WR) for 4 weeks each. Despite a higher food intake, daily metabolizable energy intake was lower when fed WR (308 kJ BW(-1) ) compared with SB (347 kJ BW(-1) ) (P = 0.002). The ratio of protein to fat was markedly lower for WR (2.3:1) compared with SB (8.8:1), which was reflected in higher serum urea levels when fed SB (P = 0.033), and a tendency for elevated cholesterol levels when fed WR (P = 0.055). Taurine intake of cheetahs fed WR was low (0.06% on DM basis); however, analytical error during taurine analysis cannot be ruled out. Feeding WR resulted in a well-balanced mineral intake, in contrast to SB. The latter provided a low calcium:phosphorus ratio (1:2.3), thereby increasing the risk of metabolic bone disease. The high zinc content of SB (200 mg/kg DM), compared with WR (94 mg/kg DM), was reflected in higher serum zinc concentrations (P = 0.011). Feeding WR resulted in an increase in serum vitamin A (P = 0.011). Therefore, the risk of hypervitaminosis A in captive cheetahs when fed WR exclusively on a long-term basis should be evaluated. Our findings suggest that neither diet is likely to provide appropriate nutrition to captive cheetahs when fed exclusively.

  16. Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects.

    PubMed

    Jung, Young-Mi; Lee, Seon-Ha; Lee, Dong-Sub; You, Myung-Jin; Chung, In Kwon; Cheon, Woo Hyun; Kwon, Young-Sam; Lee, Young-Joon; Ku, Sae-Kwang

    2011-05-01

    This study examined the bioactivity of yeast (Saccharomyces cerevisiae)-fermented aged black garlic (FBG) on obese mice supplied a high-fat diet (HFD) and its in vitro antioxidant activity. Aged black garlic (BG) exhibits potent antioxidative effects and has been subjected to extensive research. In addition, the bioactivity of some natural products is increased by fermentation. In a preliminary test, this study found that the antioxidant activity of FBG is stronger than that of BG. Therefore, it was hypothesized that the bioactivity of BG would be increased by yeast fermentation and would be a good candidate as a nutraceutical product for improving the oxidative defense systems in older patients or patients affected by various oxidative stresses, for example, diabetes and diabetic complications. To test this hypothesis, the bioactivities of FBG in diabetic and obese mice as well as the antioxidant activity in vitro were examined. After 91 days of continuous HFD supply, the mice showed marked obesity, hyperglycemia, hyperlipemia, and liver and kidney damages. Black garlic and all 3 different doses of FBG showed favorable hepatoprotective, nephroprotective, hypolipidemic, and antiobesity effects compared with the HFD control, but no hypoglycemic effects. In particular, more favorable bioactivity against all 4 HFD-induced diabetic complications was detected in the FBG-treated groups compared with the group given equivalent doses of BG. These findings suggest that the bioactivities of BG can be improved by yeast fermentation.

  17. Action of a serotonergic anorectic in meal-fed mice working for food.

    PubMed

    Rowland, Neil E; Robertson, Kimberly L; Cadiz, Emilia M; Kenney, Jessica; Kwiatkowski, Veronica

    2012-09-01

    The aim of this study was to examine the effects of a serotonergic anorectic agent, dexnorfenfluramine (DNOR), on food intake in mice whose meals were constrained to specified periods each day and by effort. Mice were forced to adopt a human-like pattern of regular meals by making food available for four periods of 40 min/24-h period, mostly at night. They lived in behavior test chambers with a closed economy for food and were required to emit a fixed unit price (FUP) of either 2 or 25 nose pokes (FUP2, FUP25) to receive a 20 mg pellet of food. Once responding and intake were stable, mice were injected with a vehicle or DNOR (3 or 6 mg/kg) 1 h before a specified feeding opportunity. Food intake was dose-dependently suppressed at the next meal and to a greater extent when the cost of food was high (FUP25). Within a meal, the effect of the drug was the greatest in the first half of the available time. Therefore, the anorectic effect of DNOR was modified by the concurrent cost of food.

  18. Colonic inflammation and enhanced-beta-catenin signaling accompany an increase of the Lachnospiraceae/Streptococcaceae in the hind gut of high-fat diet-fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of an obesigenic / high-fat (HF) diet is associated with a high colon cancer risk, and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed a HF (45% energy) or low-fat (LF) (...

  19. Colonic inflammation and enhanced-beta-catenin signaling accompany an increase of the Lachnospiraceae/Streptococcaceae in the hind gut of high-fat diet-fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of an obesigenic / high-fat (HF) diet is associated with an increase of inflammation-related colon cancer risk and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory processes and changes gut microbiome composition, C57BL/6 mice were fed a HF ...

  20. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of...

  1. Mitochondrial ultrastructure and markers of dynamics in hepatocytes from aged, calorie restricted mice fed with different dietary fats

    PubMed Central

    Khraiwesh, Husam; López-Domínguez, José A.; del Río, Lucía Fernández; Gutierrez-Casado, Elena; López-Lluch, Guillermo; Navas, Plácido; de Cabo, Rafael; Ramsey, Jon J.; Burón, María I.; Villalba, José M.; González-Reyes, José A.

    2014-01-01

    In this paper we analyzed changes in hepatocyte mitochondrial mass and ultrastructure as well as in mitochondrial markers of fission/fusion and biogenesis in mice subjected to 40% calorie restriction (CR) for 18 months versus ad libitum-fed controls. Animals subjected to CR were separated into three groups with different dietary fats: soybean oil (also in controls),fish oil and lard. Therefore, the effect of the dietary fat under CR was studied as well. Our results show that CR induced changes in hepatocyte and mitochondrial size, in the volume fraction occupied by mitochondria, and in the number of mitochondria per hepatocyte. Also, mean number of mitochondrial cristae and lengths were significantly higher in all CR groups compared with controls. Finally, CR had no remarkable effects on the expression levels of fission and fusion protein markers. However, considerable differences in many of these parameters were found when comparing the CR groups, supporting the idea that dietary fat plays a relevant role in the modulation of CR effects in aged mice. PMID:24704714

  2. Effects of pectin lyase-modified red ginseng extracts in high-fat diet-fed obese mice

    PubMed Central

    Lee, Hak-Yong; Park, Kwang-Hyun; Park, Young-Mi; Moon, Dae-In; Oh, Hong-Geun; Kwon, Dae-Young; Yang, Hye-Jeong; Kim, Okjin; Kim, Dong-Woo; Yoo, Ji-Hyun; Hong, Se-Chul; Lee, Kun-Hee; Seol, Su-Yeon; Park, Yong-Sik; Park, Jong-Dae

    2014-01-01

    Red ginseng and its extracts have been used as traditional medicines and functional foods in countries worldwide. The aim of this study was to examine the bioavailability of pectin lyase-modified red ginseng extracts (GS-E3D), and the effects of GS-E3D on adipogenesis of 3T3-L1 adipocytes, as well as on metabolic disorders such as hyperglycemia, dyslipidemia, and fatty liver in high-fat diet fed obese C57BL/6 mice. Mice were divided into 5 groups: normal diet group, high fat diet-vehicle group, high fat diet + 0.1 g/kg GS-E3D (0.1-GS-E3D), high fat diet + 0.3 g/kg (0.3-GS-E3D), high fat diet + 1.0 g/kg (1.0-GS-E3D). Treatment of GS-E3D reduced differentiation of 3T3-L1 adipocytes with low cytotoxicity. In the animal model, compared to the high fat diet control, serum glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, TG, and leptin level were reduced in treatment animals in a dose-dependent manner. In addition, we found that GS-E3D could decrease total hepatic lipid droplets. These results suggest that GS-E3D, as a dietary supplement, has beneficial effects on obesity and may have useful effects in health-care products. PMID:25628725

  3. Gut Microbiota Modulation Attenuated the Hypolipidemic Effect of Simvastatin in High-Fat/Cholesterol-Diet Fed Mice.

    PubMed

    He, Xuyun; Zheng, Ningning; He, Jiaojiao; Liu, Can; Feng, Jing; Jia, Wei; Li, Houkai

    2017-04-10

    The hypolipidemic effect of simvastatin varies greatly among patients. In the current study, we investigated the gut microbial-involved mechanisms underlying the different responses to simvastatin. Male C57BL/6J mice were divided into control (Con), high-fat/cholesterol diet (HFD), antibiotic (AB), simvastatin (SV) and antibiotic_simvastatin (AB_SV) groups, respectively. At the end of the experiment, serum samples were collected for lipids and metabolomic analysis, and liver tissues for histology, gene and protein expression analysis. The results showed that antibiotic treatment not only altered the composition of gut microbiota, but attenuated the hypolipidemic effect of SV. A total of 16 differential metabolites between SV and HFD groups were identified with metabolomics, while most of them showed no statistical differences between AB_SV and HFD groups, and similar changes were also observed in bile acids profile. The expressions of several genes and proteins involved in regulating bile acids synthesis were significantly reversed by SV, but not AB_SV in HFD fed mice. In summary, our current study indicated that the hypolipidemic effect of SV was correlated with the composition of the gut microbiota, and the attenuated hypolipidemic effect of SV by gut microbiota modulation was associated with a suppression of bile acids synthesis from cholesterol.

  4. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice.

    PubMed

    Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra

    2016-01-01

    Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µM dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role.

  5. Anti-obesity effects of Rapha diet® preparation in mice fed a high-fat diet.

    PubMed

    Kim, Jihyun; Kyung, Jangbeen; Kim, Dajeong; Choi, Ehn-Kyoung; Bang, Paul; Park, Dongsun; Kim, Yun-Bae

    2012-12-01

    The anti-obesity activities of Rapha diet® preparation containing silkworm pupa peptide, Garcinia cambogia, white bean extract, mango extract, raspberry extract, cocoa extract, and green tea extract were investigated in mice with dietary obesity. Male C57BL/6 mice were fed a high-fat diet (HFD) containing 3% Rapha diet® preparation for 8 weeks, and blood and tissue parameters of obesity were analyzed. The HFD markedly enhanced body weight gain by increasing the weights of epididymal, perirenal, and mesenteric adipose tissues. The increased body weight gain induced by HFD was significantly reduced by feeding Rapha diet® preparation, in which decreases in the weight of abdominal adipose tissue and the size of abdominal adipocytes were confirmed by microscopic examination. Long-term feeding of HFD increased blood triglycerides and cholesterol levels, leading to hepatic lipid accumulation. However, Rapha diet® preparation not only reversed the blood lipid levels, but also attenuated hepatic steatosis. The results indicate that Rapha diet® preparation could improve HFD-induced obesity by reducing both lipid accumulation and the size of adipocytes.

  6. Purified Betacyanins from Hylocereus undatus Peel Ameliorate Obesity and Insulin Resistance in High-Fat-Diet-Fed Mice.

    PubMed

    Song, Haizhao; Chu, Qiang; Xu, Dongdong; Xu, Yang; Zheng, Xiaodong

    2016-01-13

    Natural bioactive compounds in food have been shown to be beneficial in preventing the development of obesity, diabetes, and other metabolic diseases. Increasing evidence indicates that betacyanins possess free-radical-scavenging and antioxidant activities, suggesting their beneficial effects on metabolic disorders. The main objective of this study was to isolate and identify the betaycanins from Hylocereus undatus (white-fleshed pitaya) peel and evaluate their ability to ameliorate obesity, insulin resistance, and hepatic steatosis in high-fat-diet (HFD)-induced obese mice. The purified pitaya peel betacyanins (PPBNs) were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS), and the male C57BL/6 mice were fed a low-fat diet, HFD, or HFD supplemented with PPBNs for 14 weeks. Our results showed that the white-fleshed pitaya peel contains 14 kinds of betacyanins and dietary PPBNs reduced HFD-induced body weight gain and ameliorated adipose tissue hypertrophy, hepatosteatosis, glucose intolerance, and insulin resistance. Moreover, the hepatic gene expression analysis indicated that PPBN supplementation increased the expression levels of lipid-metabolism-related genes (AdipoR2, Cpt1a, Cpt1b, Acox1, PPARγ, Insig1, and Insig2) and FGF21-related genes (β-Klotho and FGFR1/2) but decreased the expression level of Fads2, Fas, and FGF21, suggesting that the protective effect of PPBNs might be associated with the induced fatty acid oxidation, decreased fatty acid biosynthesis, and alleviated FGF21 resistance.

  7. Differential Insulin Secretion of High-Fat Diet-Fed C57BL/6NN and C57BL/6NJ Mice: Implications of Mixed Genetic Background in Metabolic Studies

    PubMed Central

    Attané, Camille; Peyot, Marie-Line; Lussier, Roxane; Zhang, Dongwei; Joly, Erik; Madiraju, S. R. Murthy; Prentki, Marc

    2016-01-01

    Many metabolic studies employ tissue-specific gene knockout mice, which requires breeding of floxed gene mice, available mostly on C57BL/6N (NN) genetic background, with cre or Flp recombinase-expressing mice, available on C57BL/6J (JJ) background, resulting in the generation of mixed C57BL/6NJ (NJ) genetic background mice. Recent awareness of many genetic differences between NN and JJ strains including the deletion of nicotinamide nucleotide transhydrogenase (nnt), necessitates examination of the consequence of mixed NJ background on glucose tolerance, beta cell function and other metabolic parameters. Male mice with NN and NJ genetic background were fed with normal or high fat diets (HFD) for 12 weeks and glucose and insulin homeostasis were studied. Genotype had no effect on body weight and food intake in mice fed normal or high fat diets. Insulinemia in the fed and fasted states and after a glucose challenge was lower in HFD-fed NJ mice, even though their glycemia and insulin sensitivity were similar to NN mice. NJ mice showed mild glucose intolerance. Moreover, glucose- but not KCl-stimulated insulin secretion in isolated islets was decreased in HFD-fed NJ vs NN mice without changes in insulin content and beta cell mass. Under normal diet, besides reduced fed insulinemia, NN and NJ mice presented similar metabolic parameters. However, HFD-fed NJ mice displayed lower fed and fasted insulinemia and glucose-induced insulin secretion in vivo and ex vivo, as compared to NN mice. These results strongly caution against using unmatched mixed genetic background C57BL/6 mice for comparisons, particularly under HFD conditions. PMID:27403868

  8. Effects of Dietary Fibers on Weight Gain, Carbohydrate Metabolism and Gastric Ghrelin Gene Expression in High Fat Diet Fed Mice

    PubMed Central

    Wang, Zhong Q.; Zuberi, Aamir; Zhang, Xian H.; Macgowan, Jacalyn; Qin, Jianhua; Ye, Xin; Son, Leslie; Wu, Qinglin; Lian, Kun; Cefalu, William T.

    2009-01-01

    Diets that are high in dietary fiber are reported to have substantial health benefits. We sought to compare the metabolic effects for three types of dietary fibers, i.e. sugar cane fiber (SCF), psyllium (PSY) and cellulose (CEL) on body weight, carbohydrate metabolism and stomach ghrelin gene expression in a high-fat diet fed mouse model. Thirty-six male mice (C57BL/6) were randomly divided into four groups that consumed high fat-diets or high fat diet containing 10% SCF, PSY, and CEL respectively. After baseline measurements were assessed for body weight, plasma insulin, glucose, leptin and glucagon-like peptide-1 (GLP-1), animals were treated for 12 weeks. Parameters were re-evaluated at end of study. Whereas there was no difference at the baseline, body weight gains in the PSY and SCF groups were significantly lower than in CEL group at end of study, No difference in body weight was observed between the PSY and SCF animals. Body composition analysis demonstrated that fat mass in the SCF group was considerably lower than in the CEL and HFD groups. In addition, fasting plasma glucose and insulin and areas under curve of IPGTT were also significantly lower in the SCF and PSY groups than in the CEL and HFD groups. Moreover, fasting plasma concentrations of leptin were significantly lower and GLP-1 level was two-fold higher in the SCF and PSY mice than in the HFD and CEL mice. Ghrelin mRNA levels of stomach in SCF groups were significantly lower than in CEL and HFD groups as well. These results suggest differences in response to dietary fiber intake in this animal model as high fat diets incorporating dietary fibers such as SCF and PSY appeared to attenuate weight gain, enhance insulin sensitivity, and modulate leptin and GLP-1 secretion and gastric ghrelin gene expression. PMID:17998014

  9. Effects of a B-vitamin-deficient diet on exploratory activity, motor coordination, and spatial learning in young adult Balb/c mice.

    PubMed

    Lalonde, R; Barraud, H; Ravey, J; Guéant, J-L; Bronowicki, J-P; Strazielle, C

    2008-01-10

    Elevated homocysteine levels resulting from vitamin B deficiencies have been hypothesized to contribute to functional decline. To investigate the effects of elevated serum homocysteine on neurobehavioral performances, young adult Balb/c mice consumed a vitamin-B-deficient diet or a control diet under free-feeding and pair-fed conditions. The B-deficient diet decreased body weight and food intake but increased water ingestion. Relative to either control group, vitamin-B-deficient mice were more active in the open field and in enclosed arms of the elevated plus-maze. However, vitamin-B-deficient mice were not impaired on sensorimotor coordination and spatial learning tests, swimming to a visible platform even faster than either control group. The main effect of this diet restriction was hyperactivity with no change in anxiety, coordination, and memory. It remains to be determined whether severer deficits are demonstrable in older mice.

  10. BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet

    PubMed Central

    Williams, Jarrod; Ensor, Charles; Gardner, Scott; Smith, Rebecca; Lodder, Robert

    2016-01-01

    Objective This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE-/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). Background D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacological activities have been made including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory, and anti-atherosclerotic effects. To our knowledge this is the first study that combines D-tagatose and BSN723 for the treatment of hyperlipidemia and the prevention of atherosclerosis. Methods ApoE-deficient mice were randomized into five groups with equivalent mean body weights. The mice were given the following diets for 8 weeks: Group 1 - Standard diet; Group 2 - Western diet; Group 3 - Western diet formulated with D-tagatose; Group 4 - Western diet formulated with BSN723; Group 5 - Western diet formulated with BSN723T. Mice were measured for weight gain, tissue and organ weights, total serum cholesterol and triglycerides and formation of atherosclerosis. Results The addition of D-tagatose, either alone or in combination with BSN723, prevented the increase in adipose tissue and weight gain brought on by the Western diet. Both D-tagatose and BSN723 alone reduced total cholesterol and the formation of atherosclerosis in the aorta compared to mice on the Western diet. Addition of BSN723 to D-tagatose (BSN723T) did not increase efficacy in prevention of increases in cholesterol or atherosclerosis compared to D-tagatose alone. Conclusion Addition of either D-tagatose or BSN723 alone to a Western diet prevented weight gain, increases in total serum cholesterol and triglycerides, and the formation of atherosclerosis. However, there was no additive or synergistic effect on the

  11. Baicalin inhibits the expression of monocyte chemoattractant protein-1 and interleukin-6 in the kidneys of apolipoprotein E-knockout mice fed a high cholesterol diet.

    PubMed

    Liu, Lihua; Liao, Pingping; Wang, Bin; Fang, Xin; Li, Wei; Guan, Siming

    2015-05-01

    Hyperlipidemia is considered an independent risk factor for renal dysfunction and induces a significant increase in the expression of inflammatory mediators, which can be used to evaluate the degree of renal injury. Baicalin is widely used in traditional Chinese herbal medicine and has multiple pharmacological effects. The present study investigated whether baicalin can attenuate the expression of vascular cell adhesion molecule 1 (VCAM‑1) via a reduction in the expression of monocyte chemoattractant protein‑1 (MCP‑1) and interleukin‑6 (IL‑6) in the kidney of apolipoprotein E (ApoE)‑knockout (KO) mice fed a high cholesterol diet. These mice were used as a model of atherosclerosis and were treated with baicalin (100 mg/kg/day) daily by gavage for a period of 12 weeks. By contrast, wild‑type male C57BL/6J mice were fed a standard diet. Blood samples were obtained from the angular veins of the mice to measure the total cholesterol (TC) and the expression levels of VCAM‑1, MCP‑1 and IL‑6 in the kidney tissues of the mice were analyzed using reverse transcription quantitative polymerase chain reaction and western blot analysis. Following oral administration of baicalin, no significant difference was observed in the TC in the baicalin group compared with the high cholesterol diet control group. The TC was significantly higher in the AopE‑KO mice compared with the wild‑type male C57BL/6J mice. The expression levels of VCAM‑1, MCP‑1 and IL‑6 in the kidney tissues of the baicalin group were lower compared with those in the high cholesterol diet control group. The results suggested that baicalin decreased the expression levels of pro‑inflammatory mediators and prevented kidney dysfunction in the ApoE‑KO mice fed a high cholesterol diet.

  12. Inulin prolongs survival of intragastrically administered Lactobacillus plantarum No. 14 in the gut of mice fed a high-fat diet.

    PubMed

    Takemura, Naoki; Hagio, Masahito; Ishizuka, Satoshi; Ito, Hiroyuki; Morita, Tatsuya; Sonoyama, Kei

    2010-11-01

    We tested whether a high-fat diet (HFD) impairs the survival of probiotics in mice. In Expt. 1, after feeding either a HFD (62.7% energy) or a normal-fat diet (NFD; 11.1% energy) for 2 d, C57BL/6 mice were i.g. administered Lactobacillus plantarum No. 14. Fecal recovery of viable L. plantarum was significantly decreased 99% by the HFD compared with the NFD. Total bile acid concentrations in the small intestine and cecum were significantly higher (1.5- and 2.2-fold of NFD, respectively) in mice fed HFD than in those fed NFD. Cholic acid and deoxycholic acid significantly reduced the viability of L. plantarum No. 14 in culture experiments. In Expt. 2, after feeding HFD for 2 d, simultaneous administration of inulin (10 mg) with L. plantarum No. 14 significantly increased (100-fold of that without inulin) the fecal recovery of viable L. plantarum. Inulin administration did not alter intestinal bile acid concentrations. In Expt. 3, after feeding HFD for 2 d, mice were i.g. administered either inulin (10 mg) or vehicle and, after 6 h, cecal contents were subjected to culture experiments. Growth of L. plantarum No. 14 was significantly higher in the cecal contents of inulin-administered mice than vehicle-administered mice. Inulin supplementation to cecal contents of vehicle-administered mice significantly enhanced the growth of L. plantarum No. 14. We propose that HFD impairs the survival of probiotics in the gut due to increased bile acid stress and that simultaneous administration of inulin prolongs the survival of probiotics in mice fed HFD.

  13. Long-term voluntary running improves diet-induced adiposity in young adult mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of long-term voluntary running on diet-induced adiposity in male C57BL/6 mice. Four-week old mice (n = 15 per group) were fed the AIN93G diet or a 45% high-fat diet (% kcal.) with or without access to in-cage activity wheels for 14 weeks. The high-fat die...

  14. Effects of early-onset voluntary exercise on adult physical activity and associated phenotypes in mice.

    PubMed

    Acosta, Wendy; Meek, Thomas H; Schutz, Heidi; Dlugosz, Elizabeth M; Vu, Kim T; Garland, Theodore

    2015-10-01

    The purpose of this study was to evaluate the effects of early-life exercise on adult physical activity (wheel running, home-cage activity), body mass, food consumption, and circulating leptin levels in males from four replicate lines of mice selectively bred for high voluntary wheel running (High Runner or HR) and their four non-selected control (C) lines. Half of the mice were given wheel access shortly after weaning for three consecutive weeks. Wheel access was then removed for 52 days, followed by two weeks of adult wheel access for all mice. A blood sample taken prior to adult wheel testing was analyzed for circulating leptin concentration. Early-life wheel access significantly increased adult voluntary exercise on wheels during the first week of the second period of wheel access, for both HR and C mice, and HR ran more than C mice. During this same time period, activity in the home cages was not affected by early-age wheel access, and did not differ statistically between HR and C mice. Throughout the study, all mice with early wheel access had lower body masses than their sedentary counterparts, and HR mice had lower body masses than C mice. With wheel access, HR mice also ate significantly more than C mice. Early-life wheel access increased plasma leptin levels (adjusted statistically for fat-pad mass as a covariate) in C mice, but decreased them in HR mice. At sacrifice, early-life exercise had no statistically significant effects on visceral fat pad, heart (ventricle), liver or spleen masses (all adjusted statistically for variation in body mass). Results support the hypothesis that early-age exercise in mice can have at least transitory positive effects on adult levels of voluntary exercise, in addition to reducing body mass, and may be relevant for the public policy debates concerning the importance of physical education for children.

  15. Lipid emulsion administered intravenously or orally attenuates triglyceride accumulation and expression of inflammatory markers in the liver of nonobese mice fed parenteral nutrition formula.

    PubMed

    Ito, Kyoko; Hao, Lei; Wray, Amanda E; Ross, A Catharine

    2013-03-01

    The accumulation of hepatic TG and development of hepatic steatosis (HS) is a serious complication of the use of parenteral nutrition (PN) formulas containing a high percentage of dextrose. But whether fat emulsions or other nutrients can ameliorate the induction of HS by high-carbohydrate diets is still uncertain. We hypothesized that administration of a lipid emulsion (LE; Intralipid) and/or the vitamin A metabolite retinal (RAL) will reduce hepatic TG accumulation and attenuate indicators of inflammation. C57BL/6 male mice were fed PN formula as their only source of hydration and nutrition for 4-5 wk. In Expt. 1, mice were fed PN only or PN plus treatment with RAL (1 μg/g orally), LE (200 μL i.v.), or both LE and RAL. In Expt. 2, LE was orally administered at 4 and 13.5% of energy to PN-fed mice. All PN mice developed HS compared with mice fed normal chow (NC) and HS was reduced by LE. The liver TG mass was lower in the PN+LE and PN+RAL+LE groups compared with the PN and PN+RAL groups (P < 0.01) and in the 4% and 13.5% PN+LE groups compared with PN alone. Hepatic total retinol was higher in the RAL-fed mice (P < 0.0001), but RAL did not alter TG mass. mRNA transcripts for fatty acid synthase (Fasn) and sterol regulatory element-binding protein-1c (Srebpf1) were higher in the PN compared with the NC mice, but FAS protein and Srebpf1 mRNA were lower in the PN+LE groups compared with PN alone. The inflammation marker serum amyloid P component was also reduced. In summary, LE given either i.v. or orally may be sufficient to reduce the steatotic potential of orally fed high-dextrose formulas and may suppress the early development of HS during PN therapy.

  16. Adult-onset deficiency of acyl CoA:monoacylglycerol acyltransferase 2 protects mice from diet-induced obesity and glucose intolerance[S

    PubMed Central

    Banh, Taylor; Nelson, David W.; Gao, Yu; Huang, Ting-Ni; Yen, Mei-I; Yen, Chi-Liang E.

    2015-01-01

    Acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2 catalyzes triacylglycerol (TAG) synthesis, required in intestinal fat absorption. We previously demonstrated that mice without a functional MGAT2-coding gene (Mogat2−/−) exhibit increased energy expenditure and resistance to obesity induced by excess calories. One critical question raised is whether lacking MGAT2 during early development is required for the metabolic phenotypes in adult mice. In this study, we found that Mogat2−/− pups grew slower than wild-type littermates during the suckling period. To determine whether inactivating MGAT2 in adult mice is sufficient to confer resistance to diet-induced obesity, we generated mice with an inducible Mogat2-inactivating mutation. Mice with adult-onset MGAT2 deficiency (Mogat2AKO) exhibited a transient decrease in food intake like Mogat2−/− mice when fed a high-fat diet and a moderate increase in energy expenditure after acclimatization. They gained less weight than littermate controls, but the difference was smaller than that between wild-type and Mogat2−/− mice. The moderate reduction in weight gain was associated with reduced hepatic TAG and improved glucose tolerance. Similar protective effects were also observed in mice that had gained weight on a high-fat diet before inactivating MGAT2. These findings suggest that adult-onset MGAT2 deficiency mitigates metabolic disorders induced by high-fat feeding and that MGAT2 modulates early postnatal nutrition and may program metabolism later in life. PMID:25535286

  17. The Regulation of Non-Coding RNA Expression in the Liver of Mice Fed DDC

    PubMed Central

    Oliva, Joan; Bardag-Gorce, Fawzia; French, Barbara A; Li, Jun; French, Samuel W

    2010-01-01

    Mallory-Denk bodies (MDBs) are found in the liver of patients with alcoholic and chronic nonalcoholic liver disease, and hepatocellular carcinoma (HCC). Diethyl 1,4-dihydro-2,4,6,-trimethyl-3,5-pyridinedicarboxylate (DDC) is used as a model to induce the formation of MDBs in mouse liver. Previous studies in this laboratory showed that DDC induced epigenetic modifications in DNA and histones. The combination of these modifications changes the phenotype of the MDB forming hepatocytes, as indicated by the marker FAT10. These epigenetic modifications are partially prevented by adding to the diet S-adenosylmethionine (SAMe) or betaine, both methyl donors. The expression of three imprinted ncRNA genes was found to change in MDB forming hepatocytes, which is the subject of this report. NcRNA expression was quantitated by Real-Time PCR and RNA FISH in liver sections. Microarray analysis showed that the expression of three ncRNAs was regulated by DDC: up regulation of H19, antisense Igf2r (AIR), and down regulation of GTL2 (also called MEG3). S-adenosylmethionine (SAMe) feeding prevented these changes. Betaine, another methyl group donor, prevented only H19 and AIR up regulation induced by DDC, on microarrays. The results of the SAMe and betaine groups were confirmed by Real-Time PCR, except for AIR expression. After 1 month of drug withdrawal, the expression of the three ncRNAs tended toward control levels of expression. Liver tumors that developed also showed up regulation of H19 and AIR. The RNA FISH approach showed that the MDB forming cells’ phenotype changed the level of expression of AIR, H19 and GTL2, compared to the surrounding cells. Furthermore, over expression of H19 and AIR was demonstrated in tumors formed in mice withdrawn for 9 months. The disregulation of ncRNA in MDB forming liver cells has been observed for the first time in drug primed mice associated with liver preneoplastic foci and tumors. PMID:19362547

  18. Urinary excretion of orally administered oxalic acid in saccharin and o-phenylphenol-fed NMRI mice.

    PubMed

    Salminen, E; Salminen, S

    1986-01-01

    Both saccharin and o-phenylphenol have been suggested to be carcinogenic to the urinary bladder in experimental animals, but the mechanism has remained unclear. The aim of this study was to investigate the effects of dietary saccharin and o-phenylphenol on the urinary excretion of dietary oxalic acid. Male NMRI mice were gradually adapted to either 3% o-phenylphenol or 5% saccharin in their diet. Having being adapted to these diets for 1 week or after consuming them for 3 months, the animals were fasted for 6 h and given a 2.5-microCi oral dose of U-14C-oxalic acid. Dosed animals were kept in metabolism cages for 48 h to monitor urinary and fecal excretion of the label. Adaptation to dietary o-phenylphenol appeared to increase the urinary excretion of orally administered U-14C-oxalic acid when food and water were available during urinary and fecal collections. Adaptation to dietary saccharin had little effect on urinary oxalate levels when compared to control animals. These results indicate that changes in urinary oxalate levels should be more carefully studied in connection with potential urinary bladder carcinogens to avoid the possibility of bladder irritation by increased urinary oxalate excretion.

  19. Beneficial effect of dietary Ephedra sinica on obesity and glucose intolerance in high-fat diet-fed mice

    PubMed Central

    SONG, MOON-KOO; UM, JAE-YOUNG; JANG, HYEUNG-JIN; LEE, BYUNG-CHEOL

    2012-01-01

    Obesity is a major contributor to both glucose intolerance and metabolic syndrome. In this study, we investigated the anti-obesity and anti-hyperglycemic effects of Ephedra sinica on high-fat diet-fed mice. Male ICR mice were divided into four groups; the normal group, the obese and diabetic control group treated with a high-fat diet, the positive control group treated with a high-fat diet containing acarbose, and the experimental group treated with a high-fat diet containing Ephedra sinica. The effects of Ephedra sinica on obesity and glucose intolerance were measured by an oral glucose tolerance test (OGTT), plasma biochemistry, body and epididymal fat weight; the expression of adiponectin, peroxisome-proliferator-activated receptor α (PPAR-α), tumor necrosis factor α (TNF-α) and leptin was also determined. Ephedra sinica reduced weight gain and epididymal fat accumulation, improved glucose intolerance on the OGTT, decreased triglycerides and increased high-density lipoprotein cholesterol compared to the controls. Moreover, it reduced weight gain and fasting glucose levels and improved HDL-cholesterol levels more than acarbose. Gene expression analysis revealed that Ephedra sinica upregulated the expression of adiponectin and PPAR-α, and downregulated the expression of TNF-α. From these results, we suggest that Ephedra sinica may reduce obesity and hyperglycemia by increasing PPAR-α and adiponectin and reducing TNF-α, and that it may have the potential to be used clinically as an ingredient in food or drugs effective in obesity-related glucose intolerance treatments. PMID:22969956

  20. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    PubMed

    Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason

    2012-01-01

    Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).

  1. Excessive energy intake does not modify fed-state tissue protein synthesis rates in adult rats.

    PubMed

    Adéchian, Solange; Giardina, Silvana; Rémond, Didier; Papet, Isabelle; Buonocore, Daniela; Gaudichon, Claire; Dardevet, Dominique; Marzatico, Fulvio; Mosoni, Laurent

    2009-07-01

    The impact of chronic excessive energy intake on protein metabolism is still controversial. Male Wistar rats were fed ad libitum during 5 weeks with either a high-fat high-sucrose diet (HF: n = 9) containing 45% of total energy as lipids (protein 14%; carbohydrate 40% with 83.5% sucrose) or a standard diet (controls: n = 10). Energy intake and body weight were recorded. At the end of the experiment, we measured body composition, metabolic parameters (plasma amino acid, lipid, insulin, and glucose levels), inflammatory parameter (plasma alpha2-macroglobulin), oxidative stress parameters (antioxidant enzyme activities, lipoperoxidation (LPO), protein carbonyl content in liver and muscle), and in vivo fed-state fractional protein synthesis rates (FSRs) in muscle and liver. Energy intake was significantly higher in HF compared with control rats (+28%). There were significant increases in body weight (+8%), body fat (+21%), renal (+41%), and epidydimal (+28%) fat pads in HF compared with control rats. No effect was observed in other tissue weights (liver, muscle, spleen, kidneys, intestine). Liver and muscle FSRs, plasma levels of lipids, glucose, insulin and alpha2-macroglobulin, soleus and liver glutathione reductase and peroxidase activities, MnSOD activity, LPO, and protein carbonyl content were not altered by the HF diet. Only soleus muscle and liver Cu/ZnSOD activity and soleus muscle catalase activities were reduced in HF rats compared with control rats. Thus, chronic excessive energy intake and increased adiposity, in the absence of other metabolic alterations, do not stimulate fed-state tissue protein synthesis rates.

  2. Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet.

    PubMed

    Foucault, Anne-Sophie; Even, Patrick; Lafont, René; Dioh, Waly; Veillet, Stanislas; Tomé, Daniel; Huneau, Jean-François; Hermier, Dominique; Quignard-Boulangé, Annie

    2014-04-10

    In a previous study, we have demonstrated that a supplementation of a high-fat diet with a quinoa extract enriched in 20-hydroxyecdysone (QE) or pure 20-hydroxyecdysone (20E) could prevent the development of obesity. In line with the anti-obesity effect of QE, we used indirect calorimetry to examine the effect of dietary QE and 20E in high-fat fed mice on different components of energy metabolism. Mice were fed a high-fat (HF) diet with or without supplementation by QE or pure 20E for 3 weeks. As compared to mice maintained on a low-fat diet, HF feeding resulted in a marked physiological shift in energy homeostasis, associating a decrease in global energy expenditure (EE) and an increase in lipid utilization as assessed by the lower respiratory quotient (RQ). Supplementation with 20E increased energy expenditure while food intake and activity were not affected. Furthermore QE and 20E promoted a higher rate of glucose oxidation leading to an increased RQ value. In QE and 20E-treated HFD fed mice, there was an increase in fecal lipid excretion without any change in stool amount. Our study indicates that anti-obesity effect of QE can be explained by a global increase in energy expenditure, a shift in glucose metabolism towards oxidation to the detriment of lipogenesis and a decrease in dietary lipid absorption leading to reduced dietary lipid storage in adipose tissue.

  3. Effects of high molecular weight water-soluble chitosan on in vitro fertilization and ovulation in mice fed a high-fat diet.

    PubMed

    Choi, Hee Gon; Kim, Jin Kyung; Kwak, Dong Hoon; Cho, Jung Ran; Kim, Ji Yeoun; Kim, Byung Jin; Jung, Kyu Yong; Choi, Bong Kyu; Shin, Min Kyo; Choo, Young Kug

    2002-04-01

    A high molecular weight water-soluble chitosan (WSC) with an average molecular weight of 300 kD and a deacethylation level of over 90% was produced using a simple multi-step membrane separation process. It is known that WSC prevents obesity induced by a high-fat diet. Consequently, this study investigated whether or not WSC improved the ovarian dysfunction caused by obesity in mice. The mice were fed a high density protein and lipid diet for 4 weeks, followed by the administration of WSC at 480 mg/kg body weight per day for 4 days. Thereafter, the changes in body weight, ovulation rate, in vivo and in vitro fertilization and embryonic development were measured. WSC markedly reduced the body weight of obese mice fed with a high-fat diet, but not in mice fed with a normal diet. WSC had significant effects on the ovulation rate, both the in vivo and in vitro fertilization rates and embryonic development. These results indicate an improvement in the ovarian and oviduct dysfunction caused by obesity, and suggest an adjustment in the internal secretions and metabolic functions.

  4. Tis7 deletion reduces survival and induces intestinal anastomotic inflammation and obstruction in high-fat diet-fed mice with short bowel syndrome.

    PubMed

    Garcia, Amy M; Wakeman, Derek; Lu, Jianyun; Rowley, Christopher; Geisman, Taylor; Butler, Catherine; Bala, Shashi; Swietlicki, Elzbieta A; Warner, Brad W; Levin, Marc S; Rubin, Deborah C

    2014-09-15

    Effective therapies are limited for patients with parenteral nutrition-dependent short bowel syndrome. We previously showed that intestinal expression of the transcriptional coregulator tetradecanoyl phorbol acetate-induced sequence 7 (tis7) is markedly increased during the adaptive response following massive small bowel resection and tis7 plays a role in normal gut lipid metabolism. Here, we further explore the functional implications of tis7 deletion in intestinal lipid metabolism and the adaptive response following small bowel resection. Intestinal tis7 transgenic (tis7(tg)), tis7(-/-), and wild-type (WT) littermates were subjected to 50% small bowel resection. Mice were fed a control or a high-saturated-fat (42% energy) diet for 21 days. Survival, body weight recovery, lipid absorption, mucosal lipid analysis, and the morphometric adaptive response were analyzed. Quantitative real-time PCR was performed to identify tis7 downstream gene targets. Postresection survival was markedly reduced in high-fat, but not control, diet-fed tis7(-/-) mice. Decreased survival was associated with anastomotic inflammation and intestinal obstruction postresection. High-fat, but not control, diet-fed tis7(-/-) mice had increased intestinal IL-6 expression. Intestinal lipid trafficking was altered in tis7(-/-) compared with WT mice postresection. In contrast, high-fat diet-fed tis7(tg) mice had improved survival postresection compared with WT littermates. High-fat diet feeding in the setting of tis7 deletion resulted in postresection anastomotic inflammation and small bowel obstruction. Tolerance of a calorie-rich, high-fat diet postresection may require tis7 and its target genes. The presence of luminal fat in the setting of tis7 deletion promotes an intestinal inflammatory response postresection.

  5. Dietary fenugreek and onion attenuate cholesterol gallstone formation in lithogenic diet-fed mice.

    PubMed

    Reddy, Raghunatha R L; Srinivasan, Krishnapura

    2011-10-01

    An animal study was conducted to evaluate the antilithogenic effect of a combination of dietary fenugreek seeds and onion. Lithogenic conditions were induced in mice by feeding them a high (0.5%) cholesterol diet (HCD) for 10 weeks. Fenugreek (12%) and onion (2%) were included individually and in combination in this HCD. Fenugreek, onion and their combination reduced the incidence of cholesterol gallstones by 75%, 27% and 76%, respectively, with attendant reduction in total cholesterol content by 38-42%, 50-72% and 61-80% in serum, liver and bile respectively. Consequently, the cholesterol/phospholipid ratio was reduced significantly in serum, liver and bile. The cholesterol saturation index of bile was reduced from 4.14 to 1.38 by the combination of fenugreek and onion and to 2.33 by onion alone. The phospholipid and bile acid contents of the bile were also increased. Changes in the hepatic enzyme activities (3-hydroxy-3-methylglutaryl Coenzyme A reductase, cholesterol-7α-hydroxylase and cholesterol-27-hydroxylase) induced by HCD were countered by fenugreek, onion and their combination. Hepatic lipid peroxides were reduced by 19-22% and 39-45% with fenugreek, onion and their combination included in the diet along with the HCD. Increased accumulation of fat in the liver and inflammation of the gallbladder membrane produced by HCD were reduced by fenugreek, onion and their combination. The antilithogenic influence was highest with fenugreek alone, and the presence of onion along with it did not further increase this effect. There was also no additive effect of the two spices in the recovery of antioxidant molecules or in the antioxidant enzyme activities.

  6. Systemic activation of NF-κB driven luciferase activity in transgenic mice fed advanced glycation end products modified albumin.

    PubMed

    Nass, Norbert; Bayreuther, Kristina; Simm, Andreas

    2017-04-01

    Advanced glycation end products (AGEs) are stable end products of the Maillard reaction and accumulate with progressing ageing and degenerative diseases. Significant amounts of AGE-modified peptides are also consumed with processed food. AGEs bind to specific receptors, especially the receptor of AGEs (RAGE). Activation of RAGE then evokes intracellular signalling, finally resulting in the activation of the NF-κB transcription factor and therefore a proinflammatory state. We here analysed, whether NF-κB is activated in short term upon feeding an AGE-modified protein in-vivo. Transgenic mice expressing firefly luciferase under the control of an NF-κB responsive promoter were intraperitoneally injected or fed with AGE-modified- or control albumin and luciferase expression was analysed by in-vivo imaging and by in-vitro by determination of luciferase enzyme activity in heart, lung, gut, spleen, liver and kidney. In all organs, an activation of the luciferase reporter gene was observed in response to AGE-BSA feeding, however with different intensity and timing. The gut exhibited highest luciferase activity and this activity peaked 6-8 h post AGE-feeding. In heart and kidney, luciferase activity increased for up to 12 h post feeding. All other organs tested, exhibited highest activity at 10 h after AGE-consumption. Altogether, these data demonstrate that feeding AGE-modified protein resulted in a transient and systemic activation of the NF-κB reporter.

  7. Myelin injury induces axonal transport impairment but not AD-like pathology in the hippocampus of cuprizone-fed mice

    PubMed Central

    Sun, Junjun; Zhou, Hong; Bai, Feng; Ren, Qingguo; Zhang, Zhijun

    2016-01-01

    Both multiple sclerosis (MS) and Alzheimer's disease (AD) are progressive neurological disorders with myelin injury and memory impairment. However, whether myelin impairment could cause AD-like neurological pathology remains unclear. To explore neurological pathology following myelin injury, we assessed cognitive function, the expression of myelin proteins, axonal transport-associated proteins, axonal structural proteins, synapse-associated proteins, tau and beta amyloid and the status of neurons, using the cuprizone mouse model of demyelination. We found the mild impairment of learning ability in cuprizone-fed mice and the decreased expression of myelin basic protein (MBP) in the hippocampus. And anti-LINGO-1 improved learning ability and partly restored MBP level. Furthermore, we also found kinesin light chain (KLC), neurofilament light chain (NFL) and neurofilament heavy chain (NF200) were declined in demyelinated hippocampus, which could be partly improved by treatment with anti-LINGO-1. However, we did not observe the increased expression of beta amyloid, hyperphosphorylation of tau and loss of neurons in demyelinated hippocampus. Our results suggest that demyelination might lead to the impairment of neuronal transport, but not cause increased level of hyperphosphorylated tau and beta amyloid. Our research demonstrates remyelination might be an effective pathway to recover the function of neuronal axons and cognition in MS. PMID:27129150

  8. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet.

    PubMed

    Shin, Su-Kyung; Cho, Su-Jung; Jung, Un Ju; Ryu, Ri; Choi, Myung-Sook

    2016-02-16

    Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w), high-fat diet (HFD, 20% fat, w/w), or HFD supplemented with phlorizin (PH, 0.02%, w/w). The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT) weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  9. Effects of three Chinese herbal medicines on plasma and liver lipids in mice fed a high-fat diet.

    PubMed

    Nakayama, Tohru; Suzuki, Satoe; Kudo, Hideki; Sassa, Shuji; Nomura, Makoto; Sakamoto, Shinobu

    2007-01-19

    Chinese herbal medicines, Inchinko-to, Bofu-tsusho-san and Dai-saiko-to, containing 3, 18 and 8 components, respectively, have since long been used as an anti-inflammatory, antipyretic, choleretic and diuretic agent for liver disorders and jaundice, as an anti-obesity agent, a hypocholesterolemic agent for liver disorders and a therapeutic and/or preventive agent for cholesterol gallstone disease with hypertriglycerid-emia in China and Japan, respectively. In the present study, we investigated the effects of these three herbal medicines in young male mice fed a high-fat diet. Plasma levels of lipids and the numbers of the fatty droplets in the liver cytoplasm were markedly lowered by the diets supplemented with three herbal medicines. The liver weights and the body growth were reduced by the diet supplemented with Dai-saiko-to, which slightly affected the concentrations of total protein, albumin, creatinine or calcium, and the activity of lactate dehydrogenase. Thus, Dai-saiko-to, besides Bofu-tsusho-san, seems effective in the activities of anti-obesity, anti-hyperlipidemia and anti-hyperlipids in liver cytoplasm, when used carefully.

  10. Self administration of oxycodone by adolescent and adult mice affects striatal neurotransmitter receptor gene expression.

    PubMed

    Mayer-Blackwell, B; Schlussman, S D; Butelman, E R; Ho, A; Ott, J; Kreek, M J; Zhang, Y

    2014-01-31

    Illicit use of prescription opioid analgesics (e.g., oxycodone) in adolescence is a pressing public health issue. Our goal was to determine whether oxycodone self administration differentially affects striatal neurotransmitter receptor gene expression in the dorsal striatum of adolescent compared to adult C57BL/6J mice. Groups of adolescent mice (4 weeks old, n=12) and of adult mice (11 weeks old, n=11) underwent surgery during which a catheter was implanted into their jugular veins. After recovering from surgery, mice self administered oxycodone (0.25 mg/kg/infusion) 2 h/day for 14 consecutive days or served as yoked saline controls. Mice were sacrificed within 1h after the last self-administration session and the dorsal striatum was isolated for mRNA analysis. Gene expression was analyzed with real time PCR using a commercially available neurotransmitter receptor PCR array containing 84 genes. We found that adolescent mice self administered less oxycodone than adult mice over the 14 days. Monoamine oxidase A (Maoa) and neuropeptide Y receptor 5 mRNA levels were lower in adolescent mice than in adult mice without oxycodone exposure. Oxycodone self administration increased Maoa mRNA levels compared to controls in both age groups. There was a positive correlation of the amount of oxycodone self administered in the last session or across 14 sessions with Maoa mRNA levels. Gastrin-releasing peptide receptor mRNA showed a significant Drug × Age interaction, with point-wise significance. More genes in the dorsal striatum of adolescents (19) changed in response to oxycodone self administration compared to controls than in adult (4) mice. Overall, this study demonstrates that repeated oxycodone self administration alters neurotransmitter receptors gene expression in the dorsal striatum of adolescent and adult mice.

  11. Krill Oil Supplementation Improves Dyslipidemia and Lowers Body Weight in Mice Fed a High-Fat Diet Through Activation of AMP-Activated Protein Kinase.

    PubMed

    Yang, Goowon; Lee, Jihyun; Lee, Sangsu; Kwak, Dongyun; Choe, Wonchae; Kang, Insug; Kim, Sung Soo; Ha, Joohun

    2016-12-01

    Krill oil is a novel, commercially available marine oil rich in long-chain polyunsaturated omega-3 fatty acids, particularly eicosapentaenoic acid and docosahexaenoic acid. Compared with fish oil, the effects of krill oil supplementation on human health and its underlying action mechanisms are currently poorly understood. In the present study, we examined the effect of krill oil supplementation on metabolic parameters of mice fed a high-fat diet (HFD). Krill oil supplementation in mice fed a HFD for 10 weeks resulted in an ∼15% lower body weight gain and a dramatic suppression of hepatic steatosis. These effects were associated with significantly lower serum triglyceride and low-density lipoprotein-cholesterol levels. We further uncovered a novel underlying mechanism, showing that AMP-activated protein kinase, a master regulator of glucose and lipid metabolism, mediates the beneficial effects of krill oil.

  12. Cell proliferation and neuroblast differentiation in the dentate gyrus of high-fat diet-fed mice are increased after rosiglitazone treatment

    PubMed Central

    Yoo, Dae Young; Kim, Woosuk; Kim, Dae Won; Nam, Sung Min; Jung, Hyo Young; Kim, Jong Whi; Lee, Choong Hyun; Choi, Jung Hoon; Won, Moo-Ho

    2014-01-01

    In this study, we determined how rosiglitazone (RSG) differentially affected hippocampal neurogenesis in mice fed a low-fat diet (LFD) or high-fat diet (HFD; 60% fat). LFD and HFD were given to the mice for 8 weeks. Four weeks after initiating the LFD and HFD feeding, vehicle or RSG was administered orally once a day to both groups of mice. We measured cell proliferation and neuroblast differentiation in the subgranular zone of the dentate gyrus using Ki67 and doublecortin (DCX), respectively, as markers. In addition, we monitored the effects of RSG on the levels of DCX and brain-derived neurotrophic factor (BDNF) in hippocampal homogenates. At 8 weeks after the LFD feeding, the numbers of Ki67- and DCX-positive cells as well as hippocampal levels of DCX and BDNF were significantly decreased in the RSG-treated group compared to the vehicle-treated animals. In contrast, the numbers of Ki67- and DCX-positive cells along with hippocampal levels of DCX and BDNF in the HFD fed mice were significantly increased in the RSG-treated mice compared to the vehicle-treated group. Our data demonstrate that RSG can modulate the levels of BDNF, which could play a pivotal role in cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus. PMID:24136217

  13. Gut microbiota Modulated by Probiotics and Garcinia cambogia Extract Correlate with Weight Gain and Adipocyte Sizes in High Fat-Fed Mice

    PubMed Central

    Heo, Jaeyoung; Seo, Minseok; Park, Hwanhee; Lee, Woon Kyu; Guan, Le Luo; Yoon, Joon; Caetano-Anolles, Kelsey; Ahn, Hyeonju; Kim, Se-Young; Kang, Yoon-Mo; Cho, Seoae; Kim, Heebal

    2016-01-01

    Results of recent studies on gut microbiota have suggested that obesogenic bacteria exacerbate obesity and metabolic dysfunction in the host when fed a high fat diet (HFD). In order to explore obesity-associated bacterial candidates and their response to diet, the composition of faecal bacterial communities was investigated by analyzing 16S rRNA gene sequences in mice. Dietary intervention with probiotics and Garcinia cambogia extract attenuated weight gain and adipocyte size in HFD-fed mice. To identify obesity-causative microbiota, two statistical analyses were performed. Forty-eight bacterial species were found to overlap between the two analyses, indicating the commonly identified species as diet-driven and obesity-associated, which would make them strong candidates for host-microbiome interaction on obesity. Finally, correlation based network analysis between diet, microbe, and host revealed that Clostridium aminophilum, a hyper-ammonia-producing bacterium, was highly correlated with obesity phenotypes and other associated bacteria, and shown to be suppressed by the combination of probiotics and Garcinia cambogia extract. Results of the present study suggest that probiotics and Garcinia cambogia extract alleviate weight gain and adiposity, in part via differentially modulating the composition of gut microbiota in HFD fed mice. PMID:27658722

  14. Gut microbiota Modulated by Probiotics and Garcinia cambogia Extract Correlate with Weight Gain and Adipocyte Sizes in High Fat-Fed Mice.

    PubMed

    Heo, Jaeyoung; Seo, Minseok; Park, Hwanhee; Lee, Woon Kyu; Guan, Le Luo; Yoon, Joon; Caetano-Anolles, Kelsey; Ahn, Hyeonju; Kim, Se-Young; Kang, Yoon-Mo; Cho, Seoae; Kim, Heebal

    2016-09-23

    Results of recent studies on gut microbiota have suggested that obesogenic bacteria exacerbate obesity and metabolic dysfunction in the host when fed a high fat diet (HFD). In order to explore obesity-associated bacterial candidates and their response to diet, the composition of faecal bacterial communities was investigated by analyzing 16S rRNA gene sequences in mice. Dietary intervention with probiotics and Garcinia cambogia extract attenuated weight gain and adipocyte size in HFD-fed mice. To identify obesity-causative microbiota, two statistical analyses were performed. Forty-eight bacterial species were found to overlap between the two analyses, indicating the commonly identified species as diet-driven and obesity-associated, which would make them strong candidates for host-microbiome interaction on obesity. Finally, correlation based network analysis between diet, microbe, and host revealed that Clostridium aminophilum, a hyper-ammonia-producing bacterium, was highly correlated with obesity phenotypes and other associated bacteria, and shown to be suppressed by the combination of probiotics and Garcinia cambogia extract. Results of the present study suggest that probiotics and Garcinia cambogia extract alleviate weight gain and adiposity, in part via differentially modulating the composition of gut microbiota in HFD fed mice.

  15. Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin.

    PubMed

    Lopes, Luiza da Silva; Slobodian, Ili; Del Bigio, Marc R

    2009-09-01

    Hydrocephalus is a common neurological problem in humans, usually caused by an impairment of cerebrospinal fluid (CSF) flow or absorption. A reliable induced model of chronic hydrocephalus in mice would be useful to test hypotheses using genetic mutants. Our goal was to characterize behavioral and histological changes in juvenile and young adult mice with kaolin (aluminum silicate)-induced hydrocephalus. Seven-day old and 7-8 week old mice received injection of kaolin into the cisterna magna. Behavior was assessed repeatedly. Seven or 14 days following kaolin, magnetic resonance (MR) imaging was used to assess ventricle size. In hydrocephalic mice, body weight was significantly lower than in age-matched saline-injected sham controls and the gait and posture score were impaired. Juvenile mice developed severe ventriculomegaly and had reduced corpus callosum thickness with gross white matter destruction by 14 days. Reactive astroglial change in white matter and cortex and reduced cellular proliferation in the subependymal zone were also apparent. Young adult mice developed only moderate ventricular enlargement without overt white matter destruction, although there was corpus callosum atrophy and mild astroglial reaction in white matter. Glial fibrillary acidic protein content was significantly higher in juvenile and young adult hydrocephalic mice at 7 and 14 days, but myelin basic protein content was not significantly altered. In conclusion, hydrocephalus induced by percutaneous injection of kaolin in juvenile and young adult mice is feasible. The associated periventricular alterations are essentially the same as those reported in rats of comparable ages.

  16. Selenium status alters the immune response and expulsion of adult Heligmosomodies bakeri in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri was delayed in selenium (Se) deficient mice. ...

  17. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet

    PubMed Central

    da Silva-Santi, Lorena Gimenez; Antunes, Marina Masetto; Caparroz-Assef, Silvana Martins; Carbonera, Fabiana; Masi, Laureane Nunes; Curi, Rui; Visentainer, Jesuí Vergílio; Bazotte, Roberto Barbosa

    2016-01-01

    Both high-carbohydrate diet (HCD) and high-fat diet (HFD) modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA) composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets), and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1), ∆-6 desaturase (D6D), elongases and de novo lipogenesis (DNL) were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO) production, and mRNA expressions of F4/80, type I collagen, interleukin (IL)-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α) were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs) and had a lower omega-6/omega-3 fatty acid (n-6/n-3) ratio. In conclusion, liver lipid accumulation, fatty acids (FA) composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD. PMID:27801862

  18. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet.

    PubMed

    da Silva-Santi, Lorena Gimenez; Antunes, Marina Masetto; Caparroz-Assef, Silvana Martins; Carbonera, Fabiana; Masi, Laureane Nunes; Curi, Rui; Visentainer, Jesuí Vergílio; Bazotte, Roberto Barbosa

    2016-10-29

    Both high-carbohydrate diet (HCD) and high-fat diet (HFD) modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA) composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets), and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1), ∆-6 desaturase (D6D), elongases and de novo lipogenesis (DNL) were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO) production, and mRNA expressions of F4/80, type I collagen, interleukin (IL)-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α) were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs) and had a lower omega-6/omega-3 fatty acid (n-6/n-3) ratio. In conclusion, liver lipid accumulation, fatty acids (FA) composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.

  19. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    PubMed Central

    Heyman-Lindén, Lovisa; Kotowska, Dorota; Sand, Elin; Bjursell, Mikael; Plaza, Merichel; Turner, Charlotta; Holm, Cecilia; Fåk, Frida; Berger, Karin

    2016-01-01

    Background The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF)-induced metabolic alterations. Methods Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2) during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP) as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain. PMID:27125264

  20. Monocular Deprivation in Adult Mice Alters Visual Acuity and Single-Unit Activity

    ERIC Educational Resources Information Center

    Evans, Scott; Lickey, Marvin E.; Pham, Tony A.; Fischer, Quentin S.; Graves, Aundrea

    2007-01-01

    It has been discovered recently that monocular deprivation in young adult mice induces ocular dominance plasticity (ODP). This contradicts the traditional belief that ODP is restricted to a juvenile critical period. However, questions remain. ODP of young adults has been observed only using methods that are indirectly related to vision, and the…

  1. Citrus junos Tanaka Peel Extract Exerts Antidiabetic Effects via AMPK and PPAR-γ both In Vitro and In Vivo in Mice Fed a High-Fat Diet

    PubMed Central

    Kim, Sung Hee; Hur, Haeng Jeon; Yang, Hye Jeong; Kim, Hyun Jin; Kim, Min Jung; Park, Jae Ho; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young; Hwang, Jin-Taek

    2013-01-01

    The antidiabetic effect of the Citrus junos Tanaka (also known as yuja or yuzu) was examined. Ethanol extract of yuja peel (YPEE) significantly stimulated 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) uptake in C2C12 myotubes. However, ethanol extract of yuja pulp (YpEE) and water extract of yuja peel (YPWE) or pulp (YpWE) did not stimulate glucose uptake. In addition, peroxisome proliferator-activated receptor gamma (PPAR-γ) and AMP-activated protein kinase (AMPK) activities were increased by YPEE in a dose-dependent manner. Pretreatment of AMPK inhibitor decreased the glucose uptake stimulated by YPEE in C2C12 myotubes. We confirmed the anti-diabetic effect of YPEE in mice fed a high fat-diet (HFD). Compared with control mice on a normal diet (ND), these mice showed increased body weight, liver fat, insulin resistance, triacylglycerol (TG), and total cholesterol content. Addition of 5% YPEE significantly reduced the weight gain and rise in liver fat content, serum triacylglycerol (TG), total cholesterol, and insulin resistance found in mice fed a high-fat diet (HFD). Moreover, YPEE reduced the secretion of HFD-induced adipocytokines such as leptin and resistin. YPEE also resulted in increased phosphorylation of AMPK in muscle tissues. These results suggest that ethanol extract of yuja peel exerts anti-diabetic effects via AMPK and PPAR-γ in both cell culture and mouse models. PMID:23762167

  2. Citrus junos Tanaka Peel Extract Exerts Antidiabetic Effects via AMPK and PPAR-γ both In Vitro and In Vivo in Mice Fed a High-Fat Diet.

    PubMed

    Kim, Sung Hee; Hur, Haeng Jeon; Yang, Hye Jeong; Kim, Hyun Jin; Kim, Min Jung; Park, Jae Ho; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young; Hwang, Jin-Taek

    2013-01-01

    The antidiabetic effect of the Citrus junos Tanaka (also known as yuja or yuzu) was examined. Ethanol extract of yuja peel (YPEE) significantly stimulated 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) uptake in C2C12 myotubes. However, ethanol extract of yuja pulp (YpEE) and water extract of yuja peel (YPWE) or pulp (YpWE) did not stimulate glucose uptake. In addition, peroxisome proliferator-activated receptor gamma (PPAR-γ) and AMP-activated protein kinase (AMPK) activities were increased by YPEE in a dose-dependent manner. Pretreatment of AMPK inhibitor decreased the glucose uptake stimulated by YPEE in C2C12 myotubes. We confirmed the anti-diabetic effect of YPEE in mice fed a high fat-diet (HFD). Compared with control mice on a normal diet (ND), these mice showed increased body weight, liver fat, insulin resistance, triacylglycerol (TG), and total cholesterol content. Addition of 5% YPEE significantly reduced the weight gain and rise in liver fat content, serum triacylglycerol (TG), total cholesterol, and insulin resistance found in mice fed a high-fat diet (HFD). Moreover, YPEE reduced the secretion of HFD-induced adipocytokines such as leptin and resistin. YPEE also resulted in increased phosphorylation of AMPK in muscle tissues. These results suggest that ethanol extract of yuja peel exerts anti-diabetic effects via AMPK and PPAR-γ in both cell culture and mouse models.

  3. Decreased production of interleukin-6 and prostaglandin E2 associated with inhibition of delta-5 desaturation of omega6 fatty acids in mice fed safflower oil diets supplemented with sesamol.

    PubMed

    Chavali, S R; Forse, R A

    1999-12-01

    The differences in the immune responses in mice fed sesame oil diets and those fed sesamin may be attributed to the presence of other lignans in the non-fat portion of the oil. The fatty acid composition (mean +/- SD mol. %) of liver membrane phospholipids and the levels of endotoxin-induced prostaglandin (PG) E2, interleukin (IL)-6, IL-10, IL-12 and tumor necrosis factor (TNF)-alpha were determined in mice fed diets supplemented with 5% safflower oil (SO) in the absence or presence of 1% sesamol. The levels of dihomo-gamma-linolenic acid (20:3omega6) were markedly higher (P<0.025) in the livers from mice fed sesamol supplemented SO diets (1.6 +/- 0.1) compared to the controls (1.4 +/- 0.1). These data suggest that sesamol or its metabolite could inhibit the in vivo delta-5 desaturation of omega6 fatty acids. Further, in animals fed sesamol supplemented SO diets, the levels of PGE2 (228 +/- 41 pg/ml) were markedly lower (P<0.01) compared to those fed SO diet alone (1355 +/- 188 pg/ml). Concomitantly, the concentrations of IL-6 were also lower (P<0.01) in mice fed sesamol diet (63 +/- 11 ng/ml) compared to the controls (143 +/- 22 ng/ml). A marked reduction in the levels of PGE2 in animals fed sesamol diets suggests that sesamol or its metabolite could inhibit the activity of cyclooxygenase enzyme.

  4. Dietary supplementation with purified mulberry (Morus australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice.

    PubMed

    Wu, Tao; Qi, Xueming; Liu, Yan; Guo, Jun; Zhu, Ruiyu; Chen, Wei; Zheng, Xiaodong; Yu, Ting

    2013-11-01

    We present our experiment about adding anthocyanins to the daily food of mice. Three kinds of anthocyanins (cyanidin-3-glucoside, cyanidin-3-rutinoside and pelargonidin-3-glucoside) purified from Chinese mulberry (Morus australis Poir) were evaluated for suppressing body weight gain of the male C57BL/6 mice fed with high-fat diet (HFD). The results from a 12-week experiment show that consumption of purified mulberry anthocyanins (MACN) of 40 or 200mg/kg can significantly inhibit body weight gain, reduce the resistance to insulin, lower the size of adipocytes, attenuate lipid accumulation and decrease the leptin secretion. Thus, dietary supplementation with MACN can protect against body weight gain of the diet-induced obese mice.

  5. Different regulation of adult hippocampal neurogenesis in Western house mice (Mus musculus domesticus) and C57BL/6 mice.

    PubMed

    Klaus, Fabienne; Hauser, Thomas; Lindholm, Anna K; Cameron, Heather A; Slomianka, Lutz; Lipp, Hans-Peter; Amrein, Irmgard

    2012-02-14

    Adult hippocampal neurogenesis (AHN) of laboratory rodents is enhanced by physical exercise in a running wheel. However, little is known about modulation of AHN in wild-living rodent species. The finding that AHN cannot be modulated by voluntary exercise in wild wood mice suggests that AHN may be regulated differently under natural conditions than in laboratory adapted animals. In order to minimize genetic influences, we aimed to investigate the genetically closest wild-living relatives of laboratory mice. Here, C57BL/6 mice and F1 offspring of wild house mice (Mus musculus domesticus) were tested in two different running paradigms: voluntary running and running-for-food--a condition in which mice had to run for their daily allowance of food. In house mice, we found a non-significant trend towards increased numbers of proliferating cells and doublecortin-positive immature neurons in both voluntary runners and runners-for-food. Voluntary running in C57BL/6 mice resulted in a 30% increase in cell proliferation and a pronounced 70% increase in doublecortin-positive cells. C57BL/6 runners-for-food ran as much as voluntary runners, but they showed no enhancement of cell proliferation, a small increase in the number of doublecortin-positive cells and more pyknotic cells compared to controls. Taken together, these findings suggest that motivational aspects of running are critical determinants of the increased cell proliferation in C57BL/6 mice. In contrast, running has smaller and context-independent effects in house mice. The findings imply a difference in the regulation of AHN in C57BL/6 mice and their wild-derived conspecifics.

  6. Splenic Immune Response Is Down-Regulated in C57BL/6J Mice Fed Eicosapentaenoic Acid and Docosahexaenoic Acid Enriched High Fat Diet

    PubMed Central

    Soni, Nikul K.; Ross, Alastair B.; Scheers, Nathalie; Savolainen, Otto I.; Nookaew, Intawat; Gabrielsson, Britt G.; Sandberg, Ann-Sofie

    2017-01-01

    Dietary n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with reduction of inflammation, although the mechanisms are poorly understood, especially how the spleen, as a secondary lymphoid organ, is involved. To investigate the effects of EPA and DHA on spleen gene expression, male C57BL/6J mice were fed high fat diets (HFD) differing in fatty acid composition, either based on corn oil (HFD-CO), or CO enriched with 2 g/100 g EPA and DHA (HFD-ED), for eight weeks. Spleen tissue was analyzed using transcriptomics and for fatty acids profiling. Biological processes (BPs) related to the immune response, including T-cell receptor signaling pathway, T-cell differentiation and co-stimulation, myeloid dendritic cell differentiation, antigen presentation and processing, and the toll like receptor pathway were downregulated by HFD-ED compared with control and HFD-CO. These findings were supported by the down-regulation of NF-κB in HFD-ED compared with HFD-CO fed mice. Lower phospholipid arachidonic acid levels in HFD-ED compared with HFD-CO, and control mice suggest attenuation of pathways via prostaglandins and leukotrienes. The HFD-ED also upregulated BPs related to erythropoiesis and hematopoiesis compared with control and HFD-CO fed mice. Our findings suggest that EPA and DHA down-regulate the splenic immune response induced by HFD-CO, supporting earlier work that the spleen is a target organ for the anti-inflammatory effects of these n-3 fatty acids. PMID:28075380

  7. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet

    PubMed Central

    Jiao, Jun; Han, Shu-Fen; Zhang, Wei; Xu, Jia-Ying; Tong, Xing; Yin, Xue-Bin; Yuan, Lin-Xi; Qin, Li-Qiang

    2016-01-01

    Background Leucine supplementation has been reported to improve lipid metabolism. However, lipid metabolism in adipose tissues and liver has not been extensively studied for leucine supplementation in mice fed with a high-fat/cholesterol diet (HFCD). Design C57BL/6J mice were fed a chow diet, HFCD, HFCD supplemented with 1.5% leucine (HFCD+1.5% Leu group) or 3% leucine (HFCD+3% Leu group) for 24 weeks. The body weight, peritoneal adipose weight, total cholesterol (TC), triglyceride in serum and liver, and serum adipokines were analyzed. In addition, expression levels of proteins associated with hepatic lipogenesis, adipocyte lipolysis, and white adipose tissue (WAT) browning were determined. Results Mice in the HFCD group developed obesity and deteriorated lipid metabolism. Compared with HFCD, leucine supplementation lowered weight gain and TC levels in circulation and the liver without changing energy intake. The decrease in body fat was supported by histological examination in the WAT and liver. Furthermore, serum levels of proinflammatory adipokines, such as leptin, IL-6, and tumor necrosis factor-alpha, were significantly decreased by supplemented leucine. At the protein level, leucine potently decreased the hepatic lipogenic enzymes (fatty acid synthase and acetyl-coenzyme A carboxylase) and corresponding upstream proteins. In epididymal WAT, the reduced expression levels of two major lipases by HFCD, namely phosphorylated hormone-sensitive lipase and adipose triglyceride lipase, were reversed when leucine was supplemented. Uncoupling protein 1, β3 adrenergic receptors, peroxisome proliferator-activated receptor g coactivator-1α, and fibroblast growth factor 21 were involved in the thermogenic program and WAT browning. Leucine additionally upregulated their protein expression in both WAT and interscapular brown adipose tissue. Conclusion This study demonstrated that chronic leucine supplementation reduced the body weight and improved the lipid profile of

  8. Red beet (Beta vulgaris L.) leaf supplementation improves antioxidant status in C57BL/6J mice fed high fat high cholesterol diet

    PubMed Central

    Lee, Jeung Hee; Son, Chan Wook; Kim, Mi Yeon; Kim, Min Hee; Kim, Hye Ran; Kwak, Eun Shil; Kim, Sena

    2009-01-01

    The effect of diet supplemented with red beet (Beta vulgaris L.) leaf on antioxidant status of plasma and tissue was investigated in C57BL/6J mice. The mice were randomly divided into two groups after one-week acclimation, and fed a high fat (20%) and high cholesterol (1%) diet without (control group) or with 8% freeze-dried red beet leaf (RBL group) for 4 weeks. In RBL mice, lipid peroxidation determined as 2-thiobarbituric acid-reactive substances (TBARS value) was significantly reduced in the plasma and selected organs (liver, heart, and kidney). Levels of antioxidants (glutathione and β-carotene) and the activities of antioxidant enzyme (glutathione peroxidase) in plasma and liver were considerably increased, suggesting that antioxidant defenses were improved by RBL diet. Comet parameters such as tail DNA (%), tail extent moment, olive tail moment and tail length were significantly reduced by 25.1%, 49.4%, 35.4%, and 23.7%, respectively, in plasma lymphocyte DNA of RBL mice compared with control mice, and indicated the increased resistance of lymphocyte DNA to oxidative damage. In addition, the RBL diet controlled body weight together with a significant reduction of fat pad (retroperitoneal, epididymal, inguinal fat, and total fat). Therefore, the present study suggested that the supplementation of 8% red beet leaf in high fat high cholesterol diet could prevent lipid peroxidation and improve antioxidant defense system in the plasma and tissue of C57BL/6J mice. PMID:20016711

  9. N-nitroso compounds in the gastrointestinal tract of rats and in the feces of mice with induced colitis or fed hot dogs or beef.

    PubMed

    Mirvish, Sidney S; Haorah, James; Zhou, Lin; Hartman, Melissa; Morris, Chantey R; Clapper, Marge L

    2003-03-01

    Because colonic N-nitroso compounds (NOC) may be a cause of colon cancer, we determined total NOC levels by Walters' method in the gastrointestinal tract and feces of rodents: (i) feces of C57BL mice fed chow and semi-purified diets contained 3.2 +/- 0.4 and 0.46 +/- 0.06 NOC/g, respectively (P < 0.01, mean +/- SD). (ii) NOC levels for gastrointestinal contents of three groups of Sprague-Dawley rats fed chow diet were 0.9 +/- 0.05 (diet), 0.2 +/- 0 (stomach), 0.3-0.4 (small intestine), 0.7-1.6 (cecum and colon) and 2.6 +/- 0.6 (feces) nmol/g. NOC precursor (NOCP) levels (measured as NOC after mild nitrosation) for two rat groups fed chow diet showed a 16-fold increase from stomach to proximal small intestine (mean, 6.2 micromol/g), and a 1.7-fold increase from distal colon to feces (mean, 11.6 micromol/g). (iii) Eight Min and five C57BL/6J mice received 4% dextran sulfate sodium in drinking water on days 1-4 to induce acute colitis. This increased fecal NOC levels 1.9-fold on day 5 in both strains (P < or = 0.04), probably due to NO synthase-derived nitrosating agents in the colon. (iv) Following studies on humans fed beef [Hughes et al. (2001) Carcinogenesis, 22, 199], Swiss mice received semi-purified diets mixed with 18% of beef plus pork hot dogs or sautéed beef for 7 days. On day 7, individual 24-h fecal NOC outputs were determined. In three hot dog and two beef groups with 5 mice/group, mean fecal NOC output/day was 3.7-5.0 (hot dog) and 2.0-2.9 (beef) times that for control groups fed semi-purified diet alone (P < 0.002 for each of combined groups). These groups showed little change in fecal NOCP output. (v) Initial purification of rat fecal NOCP by adsorption-desorption and HPLC is described. Results should help evaluate the view that colonic NOC causes colon cancer associated with colitis and ingestion of red and nitrite-preserved meat.

  10. Comparative evaluation of anti-obesity effect of Aloe vera and Gymnema sylvestre supplementation in high-fat diet fed C57BL/6J mice

    PubMed Central

    Pothuraju, Ramesh; Sharma, Raj Kumar; Rather, Sarver Ahmed; Singh, Satvinder

    2016-01-01

    Background: The aim of the present study was to investigate, anti-obesity effect of Aloe vera (AV), and Gymnema sylvestre (GS) whole extract powders administration to high-fat diet (HFD) fed C57BL/6J mice for 12 weeks. Materials and Methods: At the end of experiment, different parameters such as body weight, feed intake, organ weights, fasting blood glucose, oral glucose tolerance test, plasma lipid levels, and expression analysis of adipocytokines were evaluated. Results: At the end of experimental period, oral administration of both herbs showed a significant (P < 0.05 and P < 0.001) decrease in the plasma glucose and lipid levels in HFD fed mice. In addition, increased in the epididymal fat (E. fat) weight in the HFD group was significantly (P < 0.05) reduced on GS administration alone. Finally, quantitative mRNA expression analysis of adiponectin gene was significantly up-regulated in AV supplementation. Further, no effect was observed with the both herbs on pro-inflammatory cytokines (interleukin 6 and tumor necrosis factor-a) in the E. fat tissue of HFD fed group. Conclusions: The anti-obesity and other metabolic studies depend on the type of diet, different parts of herbal extractions, and animal models used. Further studies are required in this area to strengthen the anti-obesity effects of herbs with active component, and it can be used a pro-drug instead of whole extract. PMID:27757271

  11. Rice α-globulin decreases serum cholesterol concentrations in rats fed a hypercholesterolemic diet and ameliorates atherosclerotic lesions in apolipoprotein E-deficient mice.

    PubMed

    Tong, Li-Tao; Fujimoto, Yumiko; Shimizu, Naoki; Tsukino, Mariko; Akasaka, Taiki; Kato, Yukiko; Iwamoto, Wakako; Shiratake, Sawako; Imaizumi, Katsumi; Sato, Masao

    2012-05-01

    The hypocholesterolemic and antiatherogenic effects of rice α-globulin remain unclear. We investigated the hypocholesterolemic effect of rice α-globulin in rats fed a hypercholesterolemic diet. The rats were divided into 4 groups and were orally administrated the following three proteins or a vehicle for 4weeks: rice protein, rice α-globulin, or soy β-conglycinin at a dose of 100mg/kg body weight or carboxymethylcellulose to the control rats. In the rice α-globulin group, serum cholesterol concentrations were 28% lower than the control group and fecal neutral steroid excretion was increased by 30%. The hypocholesterolemic effect of rice α-globulin was equal to soy β-conglycinin in SD rats fed the hypercholesterolemic diet. However, the serum cholesterol concentrations in the rice protein group did not change compared to the control group. To investigate the antiatherogenic effects of rice α-globulin, male apolipoprotein E-deficient mice were orally administered the same dose of rice α-globulin for 9weeks. The en face lesion area in the aorta was 46% lower than in the control group. In conclusion, administration of rice α-globulin improves hypercholesterolemia in rats fed a hypercholesterolemic diet by increasing the fecal excretion of neutral sterols, and inhibits atherosclerosis development in apolipoprotein E-deficient mice. The anti-atherosclerotic effect exerts by mechanism(s) other than the regulation of serum MCP-1 and NO concentrations.

  12. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice.

    PubMed

    Shih, Chun-Ching; Shlau, Min-Tzong; Lin, Cheng-Hsiu; Wu, Jin-Bin

    2014-03-01

    Momordica charantia Linn. (Cucurbitaceae) fruit is commonly known as bitter melon. C57BL/6J mice were firstly divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% high-fat (HF) diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and still on HF diet and was given orally M. charantia extract (MCE) or rosiglitazone (Rosi) or not for 4 weeks. M. charantia decreased the weights of visceral fat and caused glucose lowering. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. MCE significantly increases the hepatic protein contents of AMPK phosphorylation by 126.2-297.3% and reduces expression of phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Most importantly, MCE decreased expression of hepatic 11beta hydroxysteroid dehydroxygenase (11beta-HSD1) gene, which contributed in attenuating diabetic state. Furthermore, MCE lowered serum triglycerides (TGs) by inhibition of hepatic fatty acid synthesis by dampening sterol response element binding protein 1c and fatty acid synthase mRNA leading to reduction in TGs synthesis. This study demonstrates M. charantia ameliorates diabetic and hyperlipidemic state in HF-fed mice occurred by regulation of hepatic PEPCK, 11beta-HSD1 and AMPK phosphorylation.

  13. The effects of metabolizable energy intake on body fat depots of adult Pelibuey ewes fed roughage diets under tropical conditions.

    PubMed

    Chay-Canul, A J; Ayala-Burgos, A J; Ku-Vera, J C; Magaña-Monforte, J G; Tedeschi, L O

    2011-06-01

    The objective of this work was to evaluate the effect of metabolizable energy intake (MEI) on changes in fat depots of adult Pelibuey ewes fed roughage diets under tropical conditions. Eighteen 3-year-old Pelibuey ewes with similar body weight (BW) of 37.6 ± 4.0 kg and body condition score (BCS) of 2.5 ± 0.20 were randomly assigned to three groups of six ewes each in a completely randomized design. Ewes were housed in metabolic crates and fed three levels of MEI: low (L), medium (M), and high (H) for 65 days to achieve different BW and BCS. At the end of the experiment, the ewes were slaughtered. Data recorded at slaughter were: weights of viscera and carcass. Internal fat (IF, internal adipose tissue) was dissected, weighed, and grouped as pelvic (around kidneys and pelvic region), omental, and mesenteric regions. Carcass was split at the dorsal midline in two equal halves, weighed, and chilled at 6°C during 24 h. After refrigeration, the left half of the carcass was completely dissected into subcutaneous and intermuscular fat (carcass fat). Dissected carcass fat (CF) of the left carcass was adjusted as whole carcass. At low levels of MEI, proportion of IF and CF was approximately 50%; however, as the MEI was increased, the proportion of IF was increased up to 57% and 60% for M and H, respectively. Omental and pelvic fat depots were those which increased in a larger proportion with respect to the mesenteric fat depot. Regression equations between the weight of each body fat depot and BW had a coefficient of determination (r (2)) that ranged between 0.37 for mesenteric fat and 0.87 for CF. The regression with BCS had a r (2) that ranged between 0.57 for mesenteric and 0.71 for TBF. BW was the best predictor for TBF, CF, omental fat, and pelvic fat; whereas, BCS was better than BW in predicting IF and mesenteric fat. Inclusion of both BW and BCS in multiple regressions improved the prediction for all fat depots, except for pelvic fat, which was best

  14. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    PubMed

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.

  15. Prediabetic changes in gene expression induced by aspartame and monosodium glutamate in Trans fat-fed C57Bl/6 J mice

    PubMed Central

    2013-01-01

    Background The human diet has altered markedly during the past four decades, with the introduction of Trans hydrogenated fat, which extended the shelf-life of dietary oils and promoted a dramatic increase in elaidic acid (Trans-18.1) consumption. Food additives such as monosodium glutamate (MSG) and aspartame (ASP) were introduced to increase food palatability and reduce caloric intake. Nutrigenomics studies in small-animal models are an established platform for analyzing the interactions between various macro- and micronutrients. We therefore investigated the effects of changes in hepatic and adipose tissue gene expression induced by the food additives ASP, MSG or a combination of both additives in C57Bl/6 J mice fed a Trans fat-enriched diet. Methods Hepatic and adipose tissue gene expression profiles, together with body characteristics, glucose parameters, serum hormone and lipid profiles were examined in C57Bl/6 J mice consuming one of the following four dietary regimens, commencing in utero via the mother’s diet: [A] Trans fat (TFA) diet; [B] MSG + TFA diet; [C] ASP + TFA diet; [D] ASP + MSG + TFA diet. Results Whilst dietary MSG significantly increased hepatic triglyceride and serum leptin levels in TFA-fed mice, the combination of ASP + MSG promoted the highest increase in visceral adipose tissue deposition, serum free fatty acids, fasting blood glucose, HOMA-IR, total cholesterol and TNFα levels. Microarray analysis of significant differentially expressed genes (DEGs) showed a reduction in hepatic and adipose tissue PPARGC1a expression concomitant with changes in PPARGC1a-related functional networks including PPARα, δ and γ. We identified 73 DEGs common to both adipose and liver which were upregulated by ASP + MSG in Trans fat-fed mice; and an additional 51 common DEGs which were downregulated. Conclusion The combination of ASP and MSG may significantly alter adiposity, glucose homeostasis, hepatic and adipose tissue gene

  16. Adolescent mice are more vulnerable than adults to single injection-induced behavioral sensitization to amphetamine.

    PubMed

    Kameda, Sonia R; Fukushiro, Daniela F; Trombin, Thaís F; Procópio-Souza, Roberta; Patti, Camilla L; Hollais, André W; Calzavara, Mariana B; Abílio, Vanessa C; Ribeiro, Rosana A; Tufik, Sergio; D'Almeida, Vânia; Frussa-Filho, Roberto

    2011-04-01

    Drug-induced behavioral sensitization in rodents has enhanced our understanding of why drugs acquire increasing motivational and incentive value. Compared to adults, human adolescents have accelerated dependence courses with shorter times from first exposure to dependence. We compared adolescent and adult mice in their ability to develop behavioral sensitization to amphetamine following a single injection. Adult (90-day-old) and adolescent (45-day-old) male Swiss mice received an acute intraperitoneal injection of saline or amphetamine (1.0, 2.0 or 4.0 mg/kg). Seven days later, half of the mice from the saline group received a second injection of saline. The remaining animals were challenged with 2.0 mg/kg amphetamine. Following all of the injections, mice were placed in activity chambers and locomotion was quantified for 45 min. The magnitude of both the acute and sensitized locomotor stimulatory effect of amphetamine was higher in the adolescent mice. Previous experience with the test environment inhibited the acute amphetamine stimulation in both adolescent and adult mice, but facilitated the detection of elevated spontaneous locomotion in adolescent animals. These results support the notion that the adolescent period is associated with an increased risk for development of drug abuse. Additionally, they indicate a complex interaction between the environmental novelty, adolescence and amphetamine.

  17. Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young-adult Ts65Dn and disomic mice.

    PubMed

    Kelley, Christy M; Powers, Brian E; Velazquez, Ramon; Ash, Jessica A; Ginsberg, Stephen D; Strupp, Barbara J; Mufson, Elliott J

    2014-04-15

    Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer's disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. Although DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3-7.5 months of age. Ts65Dn dams were maintained on a choline-supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; post weaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, and brains were sectioned and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75(NTR) ). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn-unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21.

  18. Male mice retain a metabolic memory of improved glucose tolerance induced during adult onset, short-term dietary restriction

    PubMed Central

    2012-01-01

    Background Chronic dietary restriction (DR) has been shown to have beneficial effects on glucose homeostasis and insulin sensitivity. These factors show rapid and robust improvements when rodents were crossed over from an ad libitum (AL) diet to DR in mid life. We aimed to determine whether the beneficial effects induced by short-term exposure to DR can be retained as a ‘metabolic memory’ when AL feeding is resumed (AL-DR-AL) and vice versa: whether the effects of long-term DR can be reversed by a period of AL feeding (DR-AL-DR). C57BL/6 male and female mice were used to examine sex differences (N = 10/sex/group). Mice were fed AL or DR from 3 until 15 months (baseline) and each dietary crossover lasted approximately 5 months. Results In females, body and fat mass were proportional to the changes in feeding regime and plasma insulin and glucose tolerance were unaffected by the crossovers. However, in male mice, glucose tolerance and plasma insulin levels were reversed within 6 to 12 weeks. When males returned to AL intake following 5 months DR (AL-DR-AL), body mass was maintained below baseline, proportional to changes in fat mass. Glucose tolerance was also significantly better compared to baseline. Conclusions Male mice retained a metabolic memory of 5 months of DR feeding in terms of reduced body mass and improved glucose tolerance. This implies that some of the beneficial effects induced by a period of DR in adult life may be beneficial, even when free feeding is resumed at least in males. However, under continuous DR, lifespan extension was more prominent in females than in males. PMID:24764509

  19. Fibroblast Growth Factor 21 (Fgf21) Gene Expression Is Elevated in the Liver of Mice Fed a High-Carbohydrate Liquid Diet and Attenuated by a Lipid Emulsion but Is Not Upregulated in the Liver of Mice Fed a High-Fat Obesogenic Diet123

    PubMed Central

    Hao, Lei; Huang, Kuan-Hsun; Ito, Kyoko; Sae-tan, Sudathip; Lambert, Joshua D; Ross, A Catharine

    2016-01-01

    Background: Fibroblast growth factor 21 (FGF21) is a regulator of carbohydrate and lipid metabolism; however, the regulation of Fgf21 gene expression by diet remains incompletely understood. Objective: We investigated the effect of a high-carbohydrate (HC) liquid diet, with and without supplementation with a lipid emulsion (LE), and of a high-fat diet (HFD) compared with a low-fat diet (LFD) on the regulation of Fgf21 gene expression in the liver of intact mice. Methods: C57BL/6 male mice were fed standard feed pellets (SFPs), a purified HC liquid diet (adequate in calories and protein), or an HC liquid diet containing an LE at either 4% or 13.5% of energy for 5 wk (Expt. 1) or 1 wk (Expt. 2). In Expt. 3, mice were fed a purified LFD (∼10% fat) or HFD (∼60% fat) or were fed an HFD and given access to a running wheel for voluntary exercise for 16 wk. Results: Fgf21 mRNA in liver and FGF21 protein in plasma were increased by 3.5- to 7-fold in HC mice compared with SFP mice (P < 0.001), whereas the LE dose-dependently attenuated the induction of Fgf21 expression (P < 0.05). After 16 wk, hepatic Fgf21 mRNA did not differ between LFD and HFD mice but was dramatically reduced in the HFD+exercise group to <20% of the level in the HFD group (P < 0.0001). Conclusions: In mice, hepatic Fgf21 expression was upregulated by 1 and 5 wk of feeding a lipogenic HC diet but not by 16 wk of feeding an obesogenic HFD, whereas the addition of fat as an LE to the HC formula significantly reduced Fgf21 gene expression and the plasma FGF21 protein concentration. Our results support a strong and reversible response of hepatic Fgf21 expression to shifts in dietary glucose intake. PMID:26764334

  20. Effect of epidermal growth factor (EGF) on (/sup 3/H)TdR incorporation into DNA in ad lib fed and fasted CD2F1 mice

    SciTech Connect

    Scheving, L.A.; Tsai, T.H.; Scheving, L.E.; Hoke, W.S.

    1987-03-01

    The effect of EGF on the incorporation of (/sup 3/H)TdR into DNA (DNA synthesis) was determined in the esophagus, liver, pancreas, and kidney in mice standardized to 12 hours (hr) of light alternating with 12 hr of darkness. A question asked was whether intraperitoneally administered EGF could alter the circadian patterns of DNA synthesis in these organs. The most marked effects of EGF were: an increase in DNA synthesis but only after a specific duration of time after treatment, ranging from 8 to 23 hr, which differed for each tissue, a similarity in the response of the esophagus in both ad lib fed and fasted mice, but not in the response of the liver, where the stimulatory effect of EGF observed in fed mice was dramatically reduced in fasted ones, and an advance in the phasing of the circadian rhythm in DNA synthesis of the esophagus by about 12 hr. In addition, no sex differences in fasted animals were found under the conditions of this study.

  1. Cholera toxin-induced ADP-ribosylation of a 46 kDa protein is decreased in brains of ethanol-fed mice

    SciTech Connect

    Nhamburo, P.T.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    The acute in vitro effects of ethanol on cerebral cortical adenylate cyclase activity and beta-adrenergic receptor characteristics suggested a site of action of ethanol at Gs, the stimulatory guanine nucleotide binding protein. After chronic ethanol ingestion, the beta-adrenergic receptor appeared to be uncoupled (i.e., the form of the receptor with high affinity for agonist was undetectable), and stimulation of adenylate cyclase activity by isoproterenol or guanine nucleotides was reduced, suggesting an alteration in the properties of Gs. To further characterize this change, cholera and pertussis toxin-mediated /sup 32/P-ADP-ribosylation of mouse cortical membranes was assessed in mice that had chronically ingested ethanol in a liquid diet. /sup 32/P-labeled proteins were separated by SDS-PAGE and quantitated by autoradiography. There was a selective 30-50% decrease in cholera toxin-induced labeling of 46 kDa protein band in membranes of ethanol-fed mice, with no apparent change in pertussis toxin-induced labeling. The 46 kDa protein has a molecular weight similar to that of the alpha subunit of Gs, suggesting a reduced amount of this protein or a change in its characteristics as a substrate for cholera toxin-induced ADP-ribosylation in cortical membranes of ethanol-fed mice.

  2. Antidiabetic and Antihyperlipidemic Effects of Clitocybe nuda on Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    PubMed Central

    Chen, Mei-Hsing; Lin, Cheng-Hsiu; Shih, Chun-Ching

    2014-01-01

    The objective of this study was to evaluate the antihyperlipidemic and antihyperglycemic effects and mechanism of the extract of Clitocybe nuda (CNE), in high-fat- (HF-) fed mice. C57BL/6J was randomly divided into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed with a HF diet for 8 weeks. Then, the HF group was subdivided into five groups and was given orally CNE (including C1: 0.2, C2: 0.5, and C3: 1.0 g/kg/day extracts) or rosiglitazone (Rosi) or vehicle for 4 weeks. CNE effectively prevented HF-diet-induced increases in the levels of blood glucose, triglyceride, insulin (P < 0.001, P < 0.01, P < 0.05, resp.) and attenuated insulin resistance. By treatment with CNE, body weight gain, weights of white adipose tissue (WAT) and hepatic triacylglycerol content were reduced; moreover, adipocytes in the visceral depots showed a reduction in size. By treatment with CNE, the protein contents of glucose transporter 4 (GLUT4) were significantly increased in C3-treated group in the skeletal muscle. Furthermore, CNE reduces the hepatic expression of glucose-6-phosphatase (G6Pase) and glucose production. CNE significantly increases protein contents of phospho-AMP-activated protein kinase (AMPK) in the skeletal muscle and adipose and liver tissues. Therefore, it is possible that the activation of AMPK by CNE leads to diminished gluconeogenesis in the liver and enhanced glucose uptake in skeletal muscle. It is shown that CNE exhibits hypolipidemic effect in HF-fed mice by increasing ATGL expression, which is known to help triglyceride to hydrolyze. Moreover, antidiabetic properties of CNE occurred as a result of decreased hepatic glucose production via G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic states by CNE in HF-fed mice occurred by regulation of GLUT4, G6Pase, ATGL, and AMPK phosphorylation. PMID:24550994

  3. Combined treatment of betulinic acid, a PTP1B inhibitor, with Orthosiphon stamineus extract decreases body weight in high-fat-fed mice.

    PubMed

    Choi, Yoon-Jung; Park, So-Young; Kim, Jong-Yeon; Won, Kyu-Chang; Kim, Bo-Ra; Son, Jong-Keun; Lee, Seung-Ho; Kim, Yong-Woon

    2013-01-01

    Leptin resistance is a common feature of obesity and is accompanied by hyperleptinemia. Although leptin sensitizers improve leptin resistance, they also decrease plasma leptin levels that attenuate the leptin-associated antiobesity effect. We hypothesized that the combinational treatment of leptin sensitizer and endogenous leptin expression stimulant would synergistically induce an antiobesity effect in high-fat-fed obese animals. Betulinic acid (BA) isolated from Saussurea lappa suppressed the hypothalamic protein tyrosine phosphatase 1B in mice and enhanced the antiobesity effect of leptin in obese rats. Ethanol extract of Orthosiphon stamineus (OS) induced leptin expressions in both 3T3-L1 adipocytes and mice in a dose-dependent manner. To evaluate our hypothesis, we treated obese mice induced by 6 weeks of high-fat-diet feeding with BA and OS for 2 weeks. Although BA or OS alone did not decrease body weight in obese mice, the combinational treatment of BA and OS decreased body weight significantly compared to either BA- or OS-treated obese mice. These results suggest that combinational treatment of BA and OS would be effective for the treatment of obesity.

  4. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    PubMed

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model.

  5. Effect of tempol on peripheral neuropathy in diet-induced obese and high fat fed/low dose streptozotocin treated C57Bl6/J mice.

    PubMed

    Obrosov, Alexander; Shevalye, Hanna; Coppey, Lawrence J; Yorek, Mark A

    2017-04-04

    In this study we sought to determine the efficacy of tempol on multiple neuropathic endpoints in a diet-induced obese mouse, a model of pre-diabetes, and a high fat fed low dose streptozotocin treated mouse, a model of type 2 diabetes. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperdine -1-oxyl) is a low molecular weight, water soluble, membrane permeable and metal independent superoxide dismutase mimetic that has been widely used in cellular studies for the removal of intracellular and extracellular superoxide. This in vivo study was designed to be an early intervention. Fourteen weeks post high fat diet (six weeks post hyperglycemia) control, obese and diabetic mice were divided into no treatment and treatment groups. The treated mice received tempol by gavage (150 mg/kg in water) while the untreated mice received vehicle. The diet-induced obese and diabetic mice were maintained on the high fat diet for the duration of the study while the control group was maintained on the standard diet. Obesity and diabetes caused slowing of motor and sensory nerve conduction, reduction in intraepidermal nerve fiber density, thermal hypoalgesia and mechanical allodynia. Treatment with tempol partially or completely protected obese and diabetic mice from these deficits. These studies suggest that tempol or other effective scavengers of reactive oxygen species may be a viable option for treating neural complications associated with obesity or type 2 diabetes.

  6. Impact of the Consumption of Tea Polyphenols on Early Atherosclerotic Lesion Formation and Intestinal Bifidobacteria in High-Fat-Fed ApoE−/− Mice

    PubMed Central

    Liao, Zhen-Lin; Zeng, Ben-Hua; Wang, Wei; Li, Gui-Hua; Wu, Fei; Wang, Li; Zhong, Qing-Ping; Wei, Hong; Fang, Xiang

    2016-01-01

    There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of some cardiovascular diseases, such as atherosclerosis (AS). However, limited information is available on how these polyphenols affect the gut microbiota and AS development. This study was designed to evaluate the modulation of dietary tea polyphenols (TPs) on intestinal Bifidobacteria (IB) and its correlation with AS development in apolipoprotein E-deficient (ApoE−/−) mice. Fifty C57BL/6 ApoE−/− mice were randomized into one of the five treatment groups (n = 10/group): control group fed normal diet (CK); a group fed a high-fat diet (HFD); and the other three groups fed the same HFD supplemented with TPs in drinking water for 16 weeks. The total cholesterol and low-density lipoprotein cholesterol (LDL-C) were decreased significantly (P < 0.05) after TP interference. In addition, the TP diet also decreased the plaque area/lumen area (PA/LA) ratios (P < 0.01) in the TP diet group. Interestingly, copies of IB in the gut of ApoE−/− mice were notably increased with TP interference. This increase was dose dependent (P < 0.01) and negatively correlated with the PA/LA ratio (P < 0.05). We conclude that TPs could promote the proliferation of the IB, which is partially responsible for the reduction of AS plaque induced by HFD. PMID:28066771

  7. Transient Suppression of Dbx1 PreBötzinger Interneurons Disrupts Breathing in Adult Mice

    PubMed Central

    Vann, Nikolas C.; Pham, Francis D.; Hayes, John A.; Kottick, Andrew; Del Negro, Christopher A.

    2016-01-01

    Interneurons derived from Dbx1-expressing precursors located in the brainstem preBötzinger complex (preBötC) putatively form the core oscillator for inspiratory breathing movements. We tested this Dbx1 core hypothesis by expressing archaerhodopsin in Dbx1-derived interneurons and then transiently hyperpolarizing these neurons while measuring respiratory rhythm in vitro or breathing in vagus-intact adult mice. Transient illumination of the preBötC interrupted inspiratory rhythm in both slice preparations and sedated mice. In awake mice, light application reduced breathing frequency and prolonged the inspiratory duration. Support for the Dbx1 core hypothesis previously came from embryonic and perinatal mouse experiments, but these data suggest that Dbx1-derived preBötC interneurons are rhythmogenic in adult mice too. The neural origins of breathing behavior can be attributed to a localized and genetically well-defined interneuron population. PMID:27611210

  8. Transient Suppression of Dbx1 PreBötzinger Interneurons Disrupts Breathing in Adult Mice.

    PubMed

    Vann, Nikolas C; Pham, Francis D; Hayes, John A; Kottick, Andrew; Del Negro, Christopher A

    2016-01-01

    Interneurons derived from Dbx1-expressing precursors located in the brainstem preBötzinger complex (preBötC) putatively form the core oscillator for inspiratory breathing movements. We tested this Dbx1 core hypothesis by expressing archaerhodopsin in Dbx1-derived interneurons and then transiently hyperpolarizing these neurons while measuring respiratory rhythm in vitro or breathing in vagus-intact adult mice. Transient illumination of the preBötC interrupted inspiratory rhythm in both slice preparations and sedated mice. In awake mice, light application reduced breathing frequency and prolonged the inspiratory duration. Support for the Dbx1 core hypothesis previously came from embryonic and perinatal mouse experiments, but these data suggest that Dbx1-derived preBötC interneurons are rhythmogenic in adult mice too. The neural origins of breathing behavior can be attributed to a localized and genetically well-defined interneuron population.

  9. Neuroinflammation Induced by Surgery Does Not Impair the Reference Memory of Young Adult Mice

    PubMed Central

    Zhao, Yanhua; Huang, Lili; Xu, Huan; Wu, Guangxi; Zhu, Mengyi; Tian, Jie; Wang, Hao; Yu, Weifeng

    2016-01-01

    Postoperative cognitive dysfunction (POCD) increases morbidity and mortality after surgery. But the underlying mechanism is not clear yet. While age is now accepted as the top one risk factor for POCD, results from studies investigating postoperative cognitive functions in adults have been controversial, and data about the very young adult individuals are lacking. The present study investigated the spatial reference memory, IL-1β, IL-6, and microglia activation changes in the hippocampus in 2-month-old mice after anesthesia and surgery. We found that hippocampal IL-1β and IL-6 increased at 6 hours after surgery. Microglia were profoundly activated in the hippocampus 6 to 24 hours after surgery. However, no significant behavior changes were found in these mice. These results indicate that although anesthesia and surgery led to neuroinflammation, the latter was insufficient to impair the spatial reference memory of young adult mice. PMID:27956760

  10. Neuroendocrine function in adult female transgenic mice expressing the human growth hormone gene.

    PubMed

    Chandrashekar, V; Bartke, A; Wagner, T E

    1992-04-01

    Adult female transgenic mice expressing the human GH (hGH) gene with mouse metallothionein-I promoter are sterile. To evaluate the hypothalamic-pituitary function in these animals, adult female transgenic mice and nontransgenic normal littermates were ovariectomized. On days 7 and 8 after ovariectomy, mice were injected with either oil or primed with 0.5 micrograms estradiol benzoate (EB) in oil, 24 h later treated with 10 micrograms EB/100 g body wt and a day later bled for measurements of FSH, LH, and PRL levels. Plasma gonadotropin and PRL levels were also measured in ovary-intact transgenic and normal siblings at estrus. Additional ovariectomized EB-treated transgenic mice and normal siblings were injected with either saline or GnRH in saline (1 ng/g body wt) and were bled 15 min later for determination of circulating hormone levels. At estrus, in transgenic mice, circulating FSH and PRL levels were significantly lower (FSH:P less than 0.001; PRL:P less than 0.025), but plasma LH concentrations were higher (P less than 0.001) than those in nontransgenic mice. As expected, ovariectomy significantly increased (P less than 0.001) circulating FSH and LH levels in both groups of mice relative to ovary-intact animals, but the increase in plasma LH levels was attenuated in transgenic mice. The suppressive effect of estrogen on circulating FSH and LH levels were similar in transgenic and nontransgenic mice. Treatment with GnRH significantly increased plasma FSH and LH levels in both transgenic and normal mice. However, the plasma FSH and LH responses to GnRH administration were significantly reduced (P less than 0.001) in transgenic mice. The results of these studies indicate that adult female transgenic mice expressing the hGH gene are hypoprolactinemic. Yet due to PRL-like activity of hGH, the gonadotropin secretion is altered. Thus, endogenously secreted hGH modulates the hypothalamic-pituitary function of adult female transgenic mice bearing the hGH gene.

  11. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice.

    PubMed

    Liangpunsakul, Suthat; Rahmini, Yasmeen; Ross, Ruth A; Zhao, Zhenwen; Xu, Yan; Crabb, David W

    2012-03-01

    Our previous data showed the inhibitory effect of ethanol on AMP-activated protein kinase phosphorylation, which appears to be mediated, in part, through increased levels of hepatic ceramide and activation of protein phosphatase 2A (Liangpunsakul S, Sozio MS, Shin E, Zhao Z, Xu Y, Ross RA, Zeng Y, Crabb DW. Am J Physiol Gastrointest Liver Physiol 298: G1004-G1012, 2010). The effect of ethanol on AMP-activated protein kinase phosphorylation was reversed by imipramine, suggesting that the generation of ceramide via acid sphingomyelinase (ASMase) is stimulated by ethanol. In this study, we determined the effects of imipramine on the development of hepatic steatosis, the generation of ceramide, and downstream effects of ceramide on inflammatory, insulin, and apoptotic signaling pathways, in ethanol-fed mice. The effect of ethanol and imipramine (10 μg/g body wt ip) on ceramide levels, as well as inflammatory, insulin, and apoptotic signaling pathways, was studied in C57BL/6J mice fed the Lieber-DeCarli diet. Ethanol-fed mice developed the expected steatosis, and cotreatment with imipramine for the last 2 wk of ethanol feeding resulted in improvement in hepatic steatosis. Ethanol feeding for 4 wk induced impaired glucose tolerance compared with controls, and this was modestly improved with imipramine treatment. There was a significant decrease in total ceramide concentrations in response to imipramine in ethanol-fed mice treated with and without imipramine (287 ± 11 vs. 348 ± 12 pmol/mg tissue). The magnitude and specificity of inhibition on each ceramide species differed. A significant decrease was observed for C16 (28 ± 3 vs. 33 ± 2 pmol/mg tissue) and C24 (164 ± 9 vs. 201 ± 4 pmol/mg tissue) ceramide. Ethanol feeding increased the levels of the phosphorylated forms of ERK slightly and increased phospho-p38 and phospho-JNK substantially. The levels of phospho-p38 and phospho-JNK were reduced by treatment with imipramine. The activation of ASMase and generation

  12. A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice.

    PubMed

    Hammerschmidt, K; Schreiweis, C; Minge, C; Pääbo, S; Fischer, J; Enard, W

    2015-11-01

    The transcription factor FOXP2 has been linked to severe speech and language impairments in humans. An analysis of the evolution of the FOXP2 gene has identified two amino acid substitutions that became fixed after the split of the human and chimpanzee lineages. Studying the functional consequences of these two substitutions in the endogenous Foxp2 gene of mice showed alterations in dopamine levels, striatal synaptic plasticity, neuronal morphology and cortico-striatal-dependent learning. In addition, ultrasonic vocalizations (USVs) of pups had a significantly lower average pitch than control littermates. To which degree adult USVs would be affected in mice carrying the 'humanized' Foxp2 variant remained unclear. In this study, we analyzed USVs of 68 adult male mice uttered during repeated courtship encounters with different females. Mice carrying the Foxp2(hum/hum) allele did not differ significantly in the number of call elements, their element structure or in their element composition from control littermates. We conclude that neither the structure nor the usage of USVs in adult mice is affected by the two amino acid substitutions that occurred in FOXP2 during human evolution. The reported effect for pup vocalization thus appears to be transient. These results are in line with accumulating evidence that mouse USVs are hardly influenced by vocal learning. Hence, the function and evolution of genes that are necessary, but not sufficient for vocal learning in humans, must be either studied at a different phenotypic level in mice or in other organisms.

  13. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    PubMed

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression.

  14. Recapitulating adult human immune traits in laboratory mice by normalizing environment

    PubMed Central

    Beura, Lalit K.; Hamilton, Sara E.; Bi, Kevin; Schenkel, Jason M.; Odumade, Oludare A.; Casey, Kerry A.; Thompson, Emily A.; Fraser, Kathryn A.; Rosato, Pamela C.; Filali-Mouhim, Ali; Sekaly, Rafick P.; Jenkins, Marc K.; Vezys, Vaiva; Haining, W. Nicholas; Jameson, Stephen C.; Masopust, David

    2016-01-01

    Our current understanding of immunology was largely defined in laboratory mice because of experimental advantages including inbred homogeneity, tools for genetic manipulation, the ability to perform kinetic tissue analyses starting with the onset of disease, and tractable models. Comparably reductionist experiments are neither technically nor ethically possible in humans. Despite revealing many fundamental principals of immunology, there is growing concern that mice fail to capture relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside1–8. Laboratory mice live in abnormally hygienic “specific pathogen free” (SPF) barrier facilities. Here we show that the standard practice of laboratory mouse husbandry has profound effects on the immune system and that environmental changes result in better recapitulation of features of adult humans. Laboratory mice lack effector-differentiated and mucosally distributed memory T cells, which more closely resembles neonatal than adult humans. These cell populations were present in free-living barn populations of feral mice, pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting a role for environment. Consequences of altering mouse housing profoundly impacted the cellular composition of the innate and adaptive immune system and resulted in global changes in blood cell gene expression patterns that more closely aligned with immune signatures of adult humans rather than neonates, altered the mouse’s resistance to infection, and impacted T cell differentiation to a de novo viral infection. These data highlight the impact of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modeling immunological events in free-living organisms, including humans. PMID

  15. Fatty acid composition in serum correlates with that in the liver and non-alcoholic fatty liver disease activity scores in mice fed a high-fat diet.

    PubMed

    Wang, Xing-He; Li, Chun-Yan; Muhammad, Ishfaq; Zhang, Xiu-Ying

    2016-06-01

    In this study, we investigated the correlation between the serum fatty acid composition and hepatic steatosis, inflammation, hepatocellular ballooning scores, and liver fatty acids composition in mice fed a high-fat diet. Livers were collected for non-alcoholic fatty liver disease score analysis. Fatty acid compositions were analysed by gas chromatography. Correlations were determined by Pearson correlation coefficient. Exposed to a high-fat diet, mice developed fatty liver disease with varying severity without fibrosis. The serum fatty acid variation became more severe with prolonged exposure to a high-fat diet. This variation also correlated significantly with the variation in livers, with the types of fatty acids corresponding to liver steatosis, inflammation, and hepatocellular ballooning scores. Results of this study lead to the following hypothesis: the extent of serum fatty acid variation may be a preliminary biomarker of fatty liver disease caused by high-fat intake.

  16. Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet.

    PubMed

    Xu, Jie; Cao, Ke; Li, Yuan; Zou, Xuan; Chen, Cong; Szeto, Ignatius Man-Yau; Dong, Zhizhong; Zhao, Youyou; Shi, Yujie; Wang, Junkuan; Liu, Jiankang; Feng, Zhihui

    2014-04-01

    Bitter gourd (BG) is a popular fruit in Asia with numerous well-known medicinal uses, including as an antidiabetic. In the current study, we aimed to explore the effects of BG on mitochondrial function during the development of obesity-associated fatty liver. C57BL/6 mice were divided into 4 experimental groups: mice fed a normal diet (control; included for reference only), mice fed a high-fat diet (HFD), and mice fed an HFD supplemented with freeze-dried BG powder through daily gavage at doses of 0.5 (HFD+0.5BG) and 5 (HFD+5BG) g/kg, respectively. After 16 wk, mice in the HFD+5BG group showed less body and tissue weight gain and less hyperglycemia and hyperlipidemia compared with those in the HFD group (P < 0.05). In both HFD+0.5BG and HFD+5BG groups, serum interleukin-6 concentration was lower than that in the HFD group (P < 0.02). The serum C-reactive protein concentration was lower in the HFD+5BG group compared with the HFD group (P < 0.04). An analysis of liver tissue revealed lower liver triglyceride and cholesterol concentrations in both HFD+0.5BG and HFD+5BG groups than in the HFD group (P < 0.01). The HFD+5BG group had less activation of the sterol regulatory element binding protein/fatty acid synthase (SREBP-1/FAS) pathway, greater superoxide dismutase activity, and less total protein and mitochondrial protein oxidation than did the HFD group (P < 0.05). Mitochondrial complex I, II, III, and V activity was greater in the HFD+0.5BG group than in the HFD group (P < 0.03). The HFD+5BG group only had greater complex V activity compared with the HFD group (P < 0.05). Mitochondrial dynamics regulators, including dynamin related protein 1 (DRP1) and mitofusin 1 (MFN1), as well as proapoptotic protein expression levels were restored by BG treatment (P < 0.02). Taken together, our results suggest that BG prevents inflammation and oxidative stress, modulates mitochondrial activity, suppresses apoptosis activation, and inhibits lipid accumulation during the

  17. Dietary aloe vera gel powder and extract inhibit azoxymethane- induced colorectal aberrant crypt foci in mice fed a high- fat diet.

    PubMed

    Chihara, Takeshi; Shimpo, Kan; Kaneko, Takaaki; Beppu, Hidehiko; Higashiguchi, Takashi; Sonoda, Shigeru; Tanaka, Miyuki; Yamada, Muneo; Abe, Fumiaki

    2015-01-01

    Aloe vera gel exhibits protective effects against insulin resistance as well as lipid-lowering and anti-diabetic effects. The anti-diabetic compounds in this gel were identified as Aloe-sterols. Aloe vera gel extract (AVGE) containing Aloe-sterols has recently been produced using a new procedure. We previously reported that AVGE reduced large-sized intestinal polyps in Apc-deficient Min mice fed a high fat diet (HFD), suggesting that Aloe vera gel may protect against colorectal cancer. In the present study, we examined the effects of Aloe vera gel powder (AVGP) and AVGE on azoxymethane-induced colorectal preneoplastic aberrant crypt foci (ACF) in mice fed a HFD. Male C57BL/6J mice were given a normal diet (ND), HFD, HFD containing 0.5% carboxymethyl cellulose solution, which was used as a solvent for AVGE (HFDC), HFD containing 3% or 1% AVGP, and HFDC containing 0.0125% (H-) or 0.00375% (L-) AVGE. The number of ACF was significantly lower in mice given 3% AVGP and H-AVGE than in those given HFD or HFDC alone. Moreover, 3% AVGP, H-AVGE and L-AVGE significantly decreased the mean Ki-67 labeling index, assessed as a measure of cell proliferation in the colonic mucosa. In addition, hepatic phase II enzyme glutathione S-transferase mRNA levels were higher in the H-AVGE group than in the HFDC group. These results suggest that both AVGP and AVGE may have chemopreventive effects on colorectal carcinogenesis under the HFD condition. Furthermore, the concentration of Aloe-sterols was similar between 3% AVGP and H-AVGE, suggesting that Aloe-sterols were the main active ingredients in this experiment.

  18. Effect of dry tomato peel supplementation on glucose tolerance, insulin resistance, and hepatic markers in mice fed high-saturated-fat/high-cholesterol diets.

    PubMed

    Zidani, Sofiane; Benakmoum, Amar; Ammouche, Ali; Benali, Yasmine; Bouhadef, Anissa; Abbeddou, Souheila

    2017-02-01

    Many studies have investigated the effect of crude tomato peel in vivo, but no studies have determined the dose-effect of dry tomato peel (DTP) on glucose intolerance, insulin resistance, and atherogenic dyslipidemia induced by a high-saturated-fat (HSF) diet in vivo. The aim of this study was to investigate the effects of different doses of DTP on the levels of oxidative stress in mice fed an HSF and cholesterol-rich diet for 12 weeks. The main outcomes are glucose and insulin tolerance, plasma lipids, and hepatic steatosis and inflammation. BALB/c male mice (n=40) (8 weeks old, weighing 22.2±1.0 g) were divided into four treatment groups (10 mice/group): (a) high-fat control diet (HF Ctrl), which contains sunflower oil as a sole source of fat; (b) HSF/high-cholesterol (HC) diet; (c) HSF/HC diet supplemented with 9% DTP and (d) HSF/HC diet supplemented with 17% DTP. The HSF/HC diet significantly increased body weight gain, adipose tissue weight, fasting plasma glucose, fasting plasma insulin and lipid peroxidation and caused the development of liver steatosis and inflammation. Supplementation with DTP increased plasma lycopene concentration and reduced the development of indicators of metabolic syndrome, with no consistent effect of the DTP dose. Hepatic steatosis and inflammation were not reversed with DTP supplementation. Among mice fed the HSF/HC diet, DTP supplementation appears to have a beneficial effect on insulin resistance, which confirms the antiatherogenic effect of DTP.

  19. Evidence for a mature B cell subpopulation in Peyer's patches of young adult xid mice

    PubMed Central

    1983-01-01

    Peyer's patch (PP) and mesenteric lymph node (MLN) cell cultures from young adult X-linked immunodeficient (xid) CBA/N and (CBA/N X DBA/2) F1 male mice support primary anti-sheep erythrocyte (SRBC) plaque-forming cell (PFC) responses, which suggests that gut-associated lymphoreticular tissue (GALT) contains a normal B lymphocyte subpopulation. Further support for this was provided by the observation that PP cells from xid mice gave responses to both TI-1 and TI-2 antigens that were similar to the responses of PP cell cultures from normal mice. Spleen cell cultures from xid mice were unresponsive to SRBC and TI-2 antigens. Proof that GALT of xid mice contain mature B lymphocytes was provided by the demonstration of PP B cells that bear a low density of surface immunoglobulin M. When these cells were separated by flow cytometry and immunized with trinitrophenyl (TNP)- Ficoll in vitro, good anti-TNP PFC responses were observed. These results suggest that GALT of young adult xid mice contain mature B cells and may represent the origin for the mature B cell responses seen in aged xid mice. PMID:6600493

  20. Early postnatal motor experience shapes the motor properties of C57BL/6J adult mice.

    PubMed

    Serradj, Nadjet; Picquet, Florence; Jamon, Marc

    2013-11-01

    This study aimed to evaluate the long-term consequences of early motor training on the muscle phenotype and motor output of middle-aged C57BL/6J mice. Neonatal mice were subjected to a variety of motor training procedures, for 3 weeks during the period of acquisition of locomotion. These procedures are widely used for motor training in adults; they include enriched environment, forced treadmill, chronic centrifugation, and hindlimb suspension. At 9 months, the mice reared in the enriched environment showed a slower type of fibre in slow muscles and a faster type in fast muscles, improved performance in motor tests, and a modified gait and body posture while walking. The proportion of fibres in the postural muscles of centrifuged mice did not change, but these mice showed improved resistance to fatigue. The suspended mice showed increased persistence of immature hybrid fibres in the tibialis, with a slower shift in the load-bearing soleus, without any behavioural changes. The forced treadmill was very stressful for the mice, but had limited effects on motor output, although a slower profile was observed in the tibialis. These results support the hypothesis that motor experience during a critical period of motor development shapes muscle phenotype and motor output. The different impacts of the various training procedures suggest that motor performance in adults can be optimized by appropriate training during a defined period of motor development.

  1. Disparate Metabolic Responses in Mice Fed a High-Fat Diet Supplemented with Maize-Derived Non-Digestible Feruloylated Oligo- and Polysaccharides Are Linked to Changes in the Gut Microbiota

    PubMed Central

    Yang, Junyi; Bindels, Laure B.; Segura Munoz, Rafael R.; Martínez, Inés; Walter, Jens; Ramer-Tait, Amanda E.; Rose, Devin J.

    2016-01-01

    Studies have suggested links between colonic fermentation of dietary fibers and improved metabolic health. The objectives of this study were to determine if non-digestible feruloylated oligo- and polysaccharides (FOPS), a maize-derived dietary fiber, could counteract the deleterious effects of high-fat (HF) feeding in mice and explore if metabolic benefits were linked to the gut microbiota. C57BL/6J mice (n = 8/group) were fed a low-fat (LF; 10 kcal% fat), HF (62 kcal% fat), or HF diet supplemented with FOPS (5%, w/w). Pronounced differences in FOPS responsiveness were observed: four mice experienced cecal enlargement and enhanced short chain fatty acid production, indicating increased cecal fermentation (F-FOPS). Only these mice displayed improvements in glucose metabolism compared with HF-fed mice. Blooms in the gut microbial genera Blautia and Akkermansia were observed in three of the F-FOPS mice; these shifts were associated with reductions in body and adipose tissue weights compared with the HF-fed control mice. No improvements in metabolic markers or weights were detected in the four mice whose gut microbiota did not respond to FOPS. These findings demonstrate that FOPS-induced improvements in weight gain and metabolic health in mice depended on the ability of an individual’s microbiota to ferment FOPS. PMID:26731528

  2. Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice.

    PubMed

    Aerts, Jeroen; Nys, Julie; Moons, Lieve; Hu, Tjing-Tjing; Arckens, Lutgarde

    2015-09-01

    Matrix metalloproteinases (MMPs) are Zn(2+)-dependent endopeptidases considered to be essential for normal brain development and neuroplasticity by modulating extracellular matrix proteins, receptors, adhesion molecules, growth factors and cytoskeletal proteins. Specifically, MMP-3 has recently been implicated in synaptic plasticity, hippocampus-dependent learning and neuronal development and migration in the cerebellum. However, the function(s) of this enzyme in the neocortex is understudied. Therefore, we explored the phenotypical characteristics of the neuronal architecture and the capacity for experience-dependent cortical plasticity in the visual cortex of adult MMP-3-deficient (MMP-3(-/-)) mice. Golgi-Cox stainings revealed a significant reduction in apical dendritic length and an increased number of apical obliques for layer V pyramidal neurons in the visual cortex of adult MMP-3(-/-) mice compared to wild-type (WT) animals. In addition, a significant upregulation of both phosphorylated and non-phosphorylated neurofilament protein (NF)-high, phosphorylated NF-medium, NF-low and α-internexin was detected in the visual cortex of MMP-3(-/-) mice. To assess the effect of MMP-3 deficiency on cortical plasticity, we monocularly enucleated adult MMP-3(-/-) mice and analyzed the reactivation of the contralateral visual cortex 7 weeks post-enucleation. In contrast to previous results in C57Bl/6J adult mice, activity remained confined to the binocular zone and did not expand into the monocular regions indicative for an aberrant open-eye potentiation. Permanent hypoactivity in the monocular cortex lateral and medial to V1 also indicated a lack of cross-modal plasticity. These observations demonstrate that genetic inactivation of MMP-3 has profound effects on the structural integrity and plasticity response of the visual cortex of adult mice.

  3. Food restriction increases long-term memory persistence in adult or aged mice.

    PubMed

    Talhati, F; Patti, C L; Zanin, K A; Lopes-Silva, L B; Ceccon, L M B; Hollais, A W; Bizerra, C S; Santos, R; Tufik, S; Frussa-Filho, R

    2014-04-03

    Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12h) or repeated (12h/day for 2days) FR protocols on learning and memory of adult and aged mice evaluated in the plus-maze discriminative avoidance task (PM-DAT), an animal model that concurrently (but independently) evaluates learning and memory, anxiety and locomotion. We also investigated the possible role of FR-induced stress by the corticosterone concentration in adult mice. Male mice were kept at home cage with food ad libitum (CTRL-control condition) or subjected to FR during the dark phase of the cycle for 12h/day or 12h/2days. The FR protocols were applied before training, immediately after it or before testing. Our results demonstrated that only FR for 2days enhanced memory persistence when applied before training in adults and before testing in aged mice. Conversely, FR for 2days impaired consolidation and exerted no effects on retrieval irrespective of age. These effects do not seem to be related to corticosterone concentration. Collectively, these results indicate that FR for 2days can promote promnestic effects not only in aged mice but also in adults.

  4. EFFECT OF HYPOXIA ON THE RATE OF OXYGEN CONSUMPTION OF NEWBORN, YOUNG, AND ADULT MICE AT VARIOUS ENVIRONMENTAL TEMPERATURES,

    DTIC Science & Technology

    Critical Po2 that is, Po2 below the point at which oxygen consumption is reduced - was measured in newborn, 5-day-old, and adult mice. At...thermoneutral environmental temperatures, the critical Po2 of newborn was 85 mm. Hg; that of 5-day-old mice was 100 mm. Hg; and that of adults was 70 mm. Hg

  5. The effect of metformin on neuronal activity in the appetite-regulating brain regions of mice fed a high-fat diet during an anorectic period.

    PubMed

    Kim, Hyun-Ju; Jin, Bo-Yeong; Oh, Mi-Jeong; Shin, Kyung-Ho; Choi, Sang-Hyun; Kim, Dong-Hoon

    2016-02-01

    Metformin reduces body weight by decreasing food intake in humans and animals. However, the brain regions involved in metformin-induced anorexia remain unclear. Therefore, we investigated c-Fos expression (FOS), a marker of neuronal activity, in the appetite-regulating brain regions after oral administration of metformin (PO, 300mg/kg daily for 1 or 3days) or vehicle. The body weight and food intake decreased in mice treated with metformin for 3days (RM group) and mice that had the same amount of food as the RM group (Pair-fed group; PF) compared to the control group. FOS expression levels increased in the paraventricular nucleus, area postrema, and central amygdala of mice administered an acute single dose of metformin (SM group) compared to the control mice. In the nucleus tractus solitarius, the FOS expression levels increased in both the SM and RM groups compared to the control group. The FOS expression levels also increased in the nucleus accumbens of the RM group compared to other groups. The FOS expression levels decreased in the ventromedial hypothalamic nucleus in the PF group, but not the RM group, compared to the control group, suggesting a potential hypothalamic area involvement for metformin-induced anorexia. These results suggest that both the hypothalamic and extra-hypothalamic regions are associated with metformin-induced anorexia, which is dependent on metformin treatment duration.

  6. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was investigated the preventive effects of the flavanones hesperidin, eriocitrin and eriodictyol on the oxidative stress and systemic inflammation induced by high-fat diet in C57BL/6J mice. The mice received a standard diet (9.5% kcal from fat), high-fat diet (45% kcal from fat) or high fat diet ...

  7. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  8. Striatal magnetic resonance spectroscopy abnormalities in young adult SAPAP3 knockout mice

    PubMed Central

    Mintzopoulos, Dionyssios; Gillis, Timothy E.; Robertson, Holly R.; Dalia, Triana; Feng, Guoping; Rauch, Scott L.; Kaufman, Marc J.

    2015-01-01

    Background Obsessive compulsive disorder (OCD) is a debilitating condition with lifetime prevalence of 1–3%. OCD typically arises in youth but delays in diagnosis impede optimal treatment and developmental studies of the disorder. Research using genetically modified rodents may provide models of etiology that enable earlier detection and intervention. The SAPAP3 knockout (KO) transgenic mouse was developed as an animal model of OCD and related disorders (OCRD). KO mice exhibit compulsive self-grooming behavior analogous to behaviors found in people with OCRD. Striatal hyperactivity has been reported in these mice and in humans with OCD. Methods Striatal and medial frontal cortex 9.4 Tesla proton spectra were acquired from young adult SAPAP3 KO and wild-type control mice to determine whether KO mice have metabolic and neurochemical abnormalities. Results Young adult KO mice had lower striatal lactate (P=0.006) and glutathione (P=0.039) levels. Among all mice, striatal lactate and glutathione levels were associated (R=0.73, P=0.007). We found no group differences in medial frontal cortex metabolites. At the age range studied, only 1 of 8 KO mice had skin lesions indicative of severe compulsive grooming. Conclusion Young adult SAPAP3 KO mice have striatal but not medial frontal cortex MRS abnormalities that may reflect striatal hypermetabolism accompanied by oxidative stress. These abnormalities typically preceded the onset of severe compulsive grooming. Our findings are consistent with striatal hypermetabolism in OCD. Together, these results suggest that striatal MRS measures of lactate or glutathione might be useful biomarkers for early detection of risk for developing compulsive behavior disorders. PMID:26858992

  9. Antihyperlipidemic and body fat-lowering effects of silk proteins with different fibroin/sericin compositions in mice fed with high fat diet.

    PubMed

    Seo, Chung-Won; Um, In Chul; Rico, Catherine W; Kang, Mi Young

    2011-04-27

    The effect of silk protein with different fibroin/sericin compositions on body weight and lipid metabolism in high fat-fed mice was investigated. The animals were given experimental diets for 6 weeks: normal control (NC), high fat (HF) and high fat diet supplemented with F100 (pure fibroin, HF-F100), F81 (81:19 fibroin/sericin, w/w, HF-F81) or F50 (50:50 fibroin/sericin, w/w, HF-F50). The silk protein-fed mice showed markedly reduced body weight and enhanced lipid profile relative to the HF group. In general, the amount of body fat, triglyceride and total plasma cholesterol levels, atherogenic index and free fatty acid level tended to decrease, while the HDL-cholesterol level increased, with increased amount of sericin in the diet. This hypolipidemic effect was partly due to increased fecal lipid excretion, inhibition of lipogenesis and regulation of adipokine production. These findings illustrate that silk protein, particularly sericin, may be beneficial in the prevention of high fat diet-induced hyperlipidemia and obesity.

  10. Green coffee polyphenols do not attenuate features of the metabolic syndrome and improve endothelial function in mice fed a high fat diet.

    PubMed

    Li Kwok Cheong, J D; Croft, K D; Henry, P D; Matthews, V; Hodgson, J M; Ward, N C

    2014-10-01

    We have investigated the effects of the major polyphenol in coffee, chlorogenic acid (CGA), on obesity, glucose intolerance, insulin resistance, systemic oxidative stress and endothelial dysfunction in a mouse model of the metabolic syndrome. Thirty C57BL6 mice were randomly divided into (n=10/group) (i) normal diet (ND), (ii) high fat diet (HFD), or (iii) high fat diet supplemented with 0.5% w/w green coffee bean extract (GCE) rich in chlorogenic acid (HFD+GCE). The high fat diet consisted of 28% fat and all animals were maintained on their diets for 12 weeks. The mice fed a HFD and HFD+GCE displayed symptoms of the metabolic syndrome compared to their normal fed counterparts, although no endothelial dysfunction was detected in the abdominal aortas after 12 weeks. GCE did not attenuate HFD-induced obesity, glucose intolerance, insulin resistance or systemic oxidative stress. Furthermore, GCE did not protect against ex vivo oxidant (hypochlorous acid)-induced endothelial dysfunction.

  11. Effects of Supplemental Acerola Juice on the Mineral Concentrations in Liver and Kidney Tissue Samples of Mice Fed with Cafeteria Diet.

    PubMed

    Leffa, Daniela Dimer; dos Santos, Carla Eliete Iochims; Daumann, Francine; Longaretti, Luiza Martins; Amaral, Livio; Dias, Johnny Ferraz; da Silva, Juliana; Andrade, Vanessa Moraes

    2015-09-01

    We evaluated the impact of a supplemental acerola juice (unripe, ripe, and industrial) and its main pharmaceutically active components on the concentrations of minerals in the liver and kidney of mice fed with cafeteria diet. Swiss male mice were fed with a cafeteria (CAF) diet for 13 weeks. The CAF consisted of a variety of supermarket products with high energy content. Subsequently, animals received one of the following food supplements for 1 month: water, unripe acerola juice, ripe acerola juice, industrial acerola juice, vitamin C, or rutin. Mineral concentrations of the tissues were determined by particle-induced X-ray emission (PIXE). Our study suggests that the simultaneous intake of acerola juices, vitamin C, or rutin in association with a hypercaloric and hyperlipidic diet provides change in the mineral composition of organisms in the conditions of this study, which plays an important role in the antioxidant defenses of the body. This may help to reduce the metabolism of the fat tissue or even to reduce the oxidative stress.

  12. Fenofibrate insulates diacylglycerol in lipid droplet/ER and preserves insulin signaling transduction in the liver of high fat fed mice.

    PubMed

    Chan, Stanley M H; Zeng, Xiao-Yi; Sun, Ruo-Qiong; Jo, Eunjung; Zhou, Xiu; Wang, Hao; Li, Songpei; Xu, Aimin; Watt, Matthew J; Ye, Ji-Ming

    2015-07-01

    Hepatic steatosis is often associated with insulin resistance as a hallmark of the metabolic syndrome in the liver. The present study investigated the effects of PPARα activation induced by fenofibrate (FB) on the relationship of insulin resistance and hepatic steatosis in mice fed a high-fat (HF) diet, which increases lipid influx into the liver. Mice were fed HF diet to induce insulin resistance and hepatic steatosis with or without FB. FB activated PPARα and ameliorated HF diet-induced glucose intolerance and hepatic insulin resistance without altering either hepatic steatosis or inflammation signaling (JNK or IKK). Interestingly, FB treatment simultaneously increased fatty acid (FA) synthesis (50%) and oxidation (66%, both p<0.01) into intermediate lipid metabolites, suggesting a FA oxidation-synthesis cycling in operation. Associated with these effects, diacylglycerols (DAGs) were sequestered within the lipid droplet/ER compartment, thus reducing their deposition in the cellular membrane, which is known to impair insulin signal transduction. These findings suggest that the reduction in membrane DAGs (rather than total hepatic steatosis) may be critical for the protection by fenofibrate-induced PPARα activation against hepatic insulin resistance induced by dietary fat.

  13. Altered hepatic lipid metabolism in C57BL/6 mice fed alcohol: a targeted lipidomic and gene expression study[S

    PubMed Central

    Clugston, Robin D.; Jiang, Hongfeng; Lee, Man Xia; Piantedosi, Roseann; Yuen, Jason J.; Ramakrishnan, Rajasekhar; Lewis, Michael J.; Gottesman, Max E.; Huang, Li-Shin; Goldberg, Ira J.; Berk, Paul D.; Blaner, William S.

    2011-01-01

    Chronic alcohol consumption is associated with fatty liver disease in mammals. The object of this study was to gain an understanding of dysregulated lipid metabolism in alcohol-fed C57BL/6 mice using a targeted lipidomic approach. Liquid chromatography tandem mass spectrometry was used to analyze several lipid classes, including free fatty acids, fatty acyl-CoAs, fatty acid ethyl esters, sphingolipids, ceramides, and endocannabinoids, in plasma and liver samples from control and alcohol-fed mice. The interpretation of lipidomic data was augmented by gene expression analyses for important metabolic enzymes in the lipid pathways studied. Alcohol feeding was associated with i) increased hepatic free fatty acid levels and decreased fatty acyl-CoA levels associated with decreased mitochondrial fatty acid oxidation and decreased fatty acyl-CoA synthesis, respectively; ii) increased hepatic ceramide levels associated with higher levels of the precursor molecules sphingosine and sphinganine; and iii) increased hepatic levels of the endocannabinoid anandamide associated with decreased expression of its catabolic enzyme fatty acid amide hydrolase. The unique combination of lipidomic and gene expression analyses allows for a better mechanistic understanding of dysregulated lipid metabolism in the development of alcoholic fatty liver disease. PMID:21856784

  14. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  15. Soshiho-Tang Aqueous Extract Exerts Antiobesity Effects in High Fat Diet-Fed Mice and Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Lee, Mee-young; Kang, Byoung-Kab

    2016-01-01

    Soshiho-tang (SST; sho-saiko-to in Japanese; xiaochaihu-tang in Chinese) has generally been used to improve liver fibrosis- and cirrhosis-related symptoms in traditional Korean medicine. Although many studies have investigated the pharmacological properties of SST, its antiobesity effect has not been elucidated. Thus, our present study was carried out to evaluate the antiobesity effect of SST using a high fat diet- (HFD) induced obese mouse model and 3T3-L1 adipose cells. C57BL/6J mice were randomly divided into four groups (n = 6/group), normal diet (ND), HFD-fed group, and HFD- and SST-fed groups (S200: 200 mg/kg of SST; S600: 600 mg/kg of SST) and given HFD with or without SST extract for 8 weeks. 3T3-L1 preadipocytes were differentiated into adipocytes for 8 days with or without SST. In the HFD-fed obese mice, body weight and fat accumulation in adipose tissue were significantly reduced by SST administration. Compared with control-differentiated adipocytes, SST significantly inhibited lipid accumulation by decreasing the triglyceride (TG) content and leptin concentration in 3T3-L1 adipocytes. SST also decreased the expression of adipogenesis-related genes including lipoprotein lipase (LPL), fatty acid binding protein 4 (FABP4), CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor-gamma (PPAR-γ). Our findings suggest that SST has potential as a nontoxic antiobesity medication. PMID:27777595

  16. Nonhematopoietic Nrf2 dominantly impedes adult progression of sickle cell anemia in mice

    PubMed Central

    Ghosh, Samit; Ihunnah, Chibueze A.; Hazra, Rimi; Walker, Aisha L.; Hansen, Jason M.; Archer, David R.; Owusu-Ansah, Amma T.; Ofori-Acquah, Solomon F.

    2016-01-01

    The prevention of organ damage and early death in young adults is a major clinical concern in sickle cell disease (SCD). However, mechanisms that control adult progression of SCD during the transition from adolescence are poorly defined with no cognate prophylaxis. Here, we demonstrate in a longitudinal cohort of homozygous SCD (SS) mice a link between intravascular hemolysis, vascular inflammation, lung injury, and early death. Prophylactic Nrf2 activation in young SS mice stabilized intravascular hemolysis, reversed vascular inflammation, and attenuated lung edema in adulthood. Enhanced Nrf2 activation in endothelial cells in vitro concurred with the dramatic effect on vascular inflammation in the mice. BM chimeric SS mice lacking Nrf2 expression in nonhematopoietic tissues were created to dissect the role of nonerythroid Nrf2 in SCD progression. The SS chimeras developed severe intravascular hemolysis despite having erythroid Nrf2. In addition, they developed premature vascular inflammation and pulmonary edema and died younger than donor littermates with intact nonhematopoietic Nrf2. Our results reveal a dominant protective role for nonhematopoietic Nrf2 against tissue damage in both erythroid and nonerythroid tissues in SCD. Furthermore, we show that prophylactic augmentation of Nrf2-coordinated cytoprotection effectively impedes onset of the severe adult phenotype of SCD in mice. PMID:27158670

  17. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    EPA Science Inventory

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male mice
    John C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.
    1Reproductive Toxicology Division, National Health and Envir...

  18. Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets.

    PubMed

    Heber, David; Zhang, Yanjun; Yang, Jieping; Ma, Janice E; Henning, Susanne M; Li, Zhaoping

    2014-09-01

    Green tea (GT) and caffeine in combination were shown to increase energy expenditure and fat oxidation, but less is known about the effects of black tea (BT) and oolong tea (OT). This study investigated whether decaffeinated polyphenol extracts from GT, BT, and OT decrease body fat and inflammation in male C57BL/6J mice fed high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose)] diets. Mice were fed either an HF/HS diet with 0.25% of polyphenol from GT, OT, or BT or a low-fat/high-sucrose [LF/HS (10.6% energy from fat, 25% energy from sucrose)] diet for 20 wk. Monomeric tea polyphenols were found in the liver and adipose tissue of mice fed the HF/HS diet with GT polyphenols (GTPs) and OT polyphenols (OTPs) but not BT polyphenols (BTPs). Treatment with GTPs, OTPs, BTPs, and an LF/HS diet led to significantly lower body weight, total visceral fat volume by MRI, and liver lipid weight compared with mice in the HF/HS control group. Only GTPs reduced food intake significantly by ∼10%. GTP, BTP, and LF/HS-diet treatments significantly reduced serum monocyte chemotactic protein-1 (MCP-1) compared with HF/HS controls. In mesenteric fat, monocyte chemotactic protein-1 (Mcp1) gene expression was significantly decreased by treatment with GTPs, BTPs, OTPs, and an LF/HS diet and in liver tissue by GTP and BTP treatments. Mcp1 gene expression in epididymal fat was significantly decreased by the BTP and LF/HS diet interventions. In epididymal fat, consistent with an anti-inflammatory effect, adiponectin gene expression was significantly increased by GTPs and OTPs. Angiogenesis during adipose tissue expansion is anti-inflammatory by maintaining adipocyte perfusion. We observed significantly increased gene expression of vascular endothelial growth factor A by GTPs and vascular endothelial growth factor receptor 2 by BTPs and the LF/HS diet and a decrease in pigment epithelium-derived factor gene expression by OTPs and BTPs. In summary, all 3 tea polyphenol

  19. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition.

    PubMed

    Pavlisova, Jana; Bardova, Kristina; Stankova, Barbora; Tvrzicka, Eva; Kopecky, Jan; Rossmeisl, Martin

    2016-05-01

    Mixed results have been obtained regarding the level of insulin resistance induced by high-fat diets rich in saturated fatty acids (SFA) when compared to those enriched by polyunsaturated fatty acids (PUFA), and how metabolic effects of marine PUFA of n-3 series, i.e. docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), depend on dietary lipid background. Here we compared two high-fat diets, in which the major lipid constituent was based either on SFA in the form of pork lard (LHF diet) or PUFA of n-6 series (Omega-6) as corn oil (cHF diet). Both cHF and LHF parental diets were also supplemented with EPA+DHA (∼30 g/kg diet) to produce cHF+F and LHF+F diet, respectively. Male C57BL/6N mice were fed the experimental diets for 8 weeks. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps in mice fed LHF and cHF diets, and then metabolic effects of cHF+F and LHF+F diets were assessed focusing on the liver and epididymal white adipose tissue (eWAT). Both LHF and cHF induced comparable weight gain and the level of insulin resistance, however LHF-fed mice showed increased hepatic steatosis associated with elevated activity of stearoyl-CoA desaturase-1 (SCD1), and lower plasma triacylglycerol levels when compared to cHF. Despite lowering hepatic SCD1 activity, which was concomitant with reduced hepatic steatosis reaching the level observed in cHF+F mice, LHF+F did not decrease adiposity and the weight of eWAT, and rather further impaired insulin sensitivity relative to cHF+F, that tended to improve it. In conclusion, high-fat diets containing as much as ∼35 weight% as lipids induce similar weight gain and impairment of insulin sensitivity irrespective whether they are based on SFA or Omega-6. Although the SFA-rich diet containing EPA+DHA efficiently reduced hepatic steatosis, it did so without a corresponding improvement in insulin sensitivity and in the absence of effect on adiposity.

  20. Protective effects of maternal methyl donor supplementation on adult offspring of high fat diet-fed dams.

    PubMed

    Jiao, Fei; Yan, Xiaoshuang; Yu, Yuan; Zhu, Xiao; Ma, Ying; Yue, Zhen; Ou, Hailong; Yan, Zhonghai

    2016-08-01

    Obesity has become a global public health problem associated with metabolic dysfunction and chronic disorders. It has been shown that the risk of obesity and the DNA methylation profiles of the offspring can be affected by maternal nutrition, such as high-fat diet (HFD) consumption. The aim of this study was to investigate whether metabolic dysregulation and physiological abnormalities in offspring caused by maternal HFD can be alleviated by the treatment of methyl donors during pregnancy and lactation of dams. Female C57BL/6 mice were assigned to specific groups and given different nutrients (control diet, Control+Met, HFD and HFD+Met) throughout gestation and lactation. Offspring of each group were weaned onto a control diet at 3 weeks of age. Physiological (weight gain and adipose composition) and metabolic (plasma biochemical analyses) outcomes were assessed in male and female adult offspring. Expression and DNA methylation profiles of obesogenic-related genes including PPAR γ, fatty acid synthase, leptin and adiponectin were also detected in visceral fat of offspring. The results showed that dietary supplementation with methyl donors can prevent the adverse effects of maternal HFD on offspring. Changes in the expression and DNA methylation of obesogenic-related genes indicated that epigenetic regulation may contribute to the effects of maternal dietary factors on offspring outcomes.

  1. Apple pectin affects the efficacy of epigallocatechin gallate on oral sucrose tolerance test in adult mice.

    PubMed

    Tamura, M; Hori, S

    2011-11-01

    Epigallocatechin gallate (EGCg), a dietary polyphenol and a major tea catechin, is a known sucrase inhibitor. Since dietary pectin is known to modulate some of the functions of the gastrointestinal tract, we investigated whether it could specifically affect the efficacy of EGCg on an oral sucrose tolerance test in mice. Male Crj:CD-1 (ICR) mice (seven weeks old) were randomly divided into two groups and fed a 5 % apple pectin (PE) or 5 % cellulose (CE) diet (control diet) for 28 days. After the experimental diet period, all mice were fasted overnight. A volume of 0.2 mL EGCg (20 mg/mL) was orally administered to all the mice by stainless steel feeding needle via injection syringe and a sucrose tolerance test was performed. The blood glucose levels were measured in blood collected from the tail vein using the OneTouch® Ultra® blood glucose monitoring system. Blood glucose levels at 30 minutes and 60 minutes after sucrose loading in the PE group were significantly higher than initial blood glucose levels. However, blood glucose levels at 30 minutes, 60 minutes, and 120 minutes after sucrose loading in the CE group were not significantly higher than initial blood glucose levels. After laparotomy, plasma lipids were also measured. Plasma triglyceride concentrations were significantly greater in the PE group than in the CE (control) group. This demonstrates that dietary pectin can affect the efficacy of EGCg on the oral sucrose tolerance test in mice.

  2. Deletion of Lkb1 in adult mice results in body weight reduction and lethality.

    PubMed

    Shan, Tizhong; Xiong, Yan; Kuang, Shihuan

    2016-11-08

    Liver kinase B1 (Lkb1) plays crucial roles in development, metabolism and survival. As constitutive knockout of Lkb1 in mice leads to embryonic lethality, whether Lkb1 is required for the growth and survival of adult mice is unclear. Here we address this question using a tamoxifen-inducible Lkb1 knockout (KO) mouse model: Rosa26-Cre(ER): Lkb1(flox/flox) (abbreviated as Rosa-Lkb1). The Rosa-Lkb1 mice exhibited body weight reduction and died within 6 weeks after tamoxifen induction. The body weight reduction was due to reduced weight of various tissues but the brown and white adipose tissues underwent much more pronounced weight reduction relative to the overall body weight reduction. Accordingly, the Rosa-Lkb1 mice had increased blood glucose levels and were intolerant to glucose challenge. Expression levels of adipogenic and lipogenic genes in adipose tissues were also dramatically reduced by Lkb1 deletion. Additionally, Lkb1 deletion reduced lipid deposition and increased expression of mitochondrial (Pgc1a, Cox5b and Cox7a) and hepatic gluconeogenesis related genes (Pepck) in liver. Finally, the Rosa-Lkb1 mice had much reduced oxygen consumption, carbon dioxide production, and energy expenditure. These results demonstrate that Lkb1 plays an important role in maintaining body weight, liver and adipose tissue function, blood glucose homeostasis and survival in adult mice.

  3. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  4. Pathological impact of SMN2 mis-splicing in adult SMA mice.

    PubMed

    Sahashi, Kentaro; Ling, Karen K Y; Hua, Yimin; Wilkinson, John Erby; Nomakuchi, Tomoki; Rigo, Frank; Hung, Gene; Xu, David; Jiang, Ya-Ping; Lin, Richard Z; Ko, Chien-Ping; Bennett, C Frank; Krainer, Adrian R

    2013-10-01

    Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. The related SMN2 gene expresses suboptimal levels of functional SMN protein, due to a splicing defect. Many SMA patients reach adulthood, and there is also adult-onset (type IV) SMA. There is currently no animal model for adult-onset SMA, and the tissue-specific pathogenesis of post-developmental SMN deficiency remains elusive. Here, we use an antisense oligonucleotide (ASO) to exacerbate SMN2 mis-splicing. Intracerebroventricular ASO injection in adult SMN2-transgenic mice phenocopies key aspects of adult-onset SMA, including delayed-onset motor dysfunction and relevant histopathological features. SMN2 mis-splicing increases during late-stage disease, likely accelerating disease progression. Systemic ASO injection in adult mice causes peripheral SMN2 mis-splicing and affects prognosis, eliciting marked liver and heart pathologies, with decreased IGF1 levels. ASO dose-response and time-course studies suggest that only moderate SMN levels are required in the adult central nervous system, and treatment with a splicing-correcting ASO shows a broad therapeutic time window. We describe distinctive pathological features of adult-onset and early-onset SMA.

  5. Effects of Bofu-Tsusho-San on Diabetes and Hyperlipidemia Associated with AMP-Activated Protein Kinase and Glucose Transporter 4 in High-Fat-Fed Mice

    PubMed Central

    Lin, Cheng-Hsiu; Kuo, Yueh-Hsiung; Shih, Chun-Ching

    2014-01-01

    This study was undertaken to examine the effect and mechanism of Bofu-tsusho-san formula (BO) on hyperglycemia and hyperlipidemia and in mice fed with a high-fat (HF) diet. The C57BL/6J mice were received control/HF diet for 12 weeks, and oral administration of BO (at three doses) or rosiglitazone (Rosi) or vehicle for the last 4 weeks. Blood, skeletal muscle and tissues were examined by means of measuring glycaemia and dyslipidaemia-associated events. BO treatment effectively prevented HF diet-induced increases in the levels of triglyceride (TG), free fatty acid (FFA) and leptin (p < 0.01, p < 0.01, p < 0.01, respectively). BO treatment exhibited reduced both visceral fat mass and hepatic triacylglycerol content; moreover, BO treatment displayed significantly decreased both the average area of the cut of adipocytes and ballooning of hepatocytes. BO treatment exerted increased the protein contents of glucose transporter 4 (GLUT4) in skeletal muscle, and caused lowered blood glucose levels. BO treatment displayed increased levels of phosphorylated AMP-activated protein kinase (AMPK) in both skeletal muscle and liver tissue. Furthermore, BO reduced the hepatic expression of glucose-6-phosphatase (G6Pase) and phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Therefore, it is possible that the activation of AMPK by BO leads to diminished gluconeogenesis in liver tissue. BO increased hepatic expressions of peroxisome proliferator-activated receptor α (PPARα), whereas down-regulating decreasing expressions of fatty acid synthesis, including sterol regulatory element binding protein 1c (SREBP1c) and fatty acid synthase (FAS), resulting in a decrease in circulating triglycerides. This study originally provides the evidence that amelioration of dyslipidemic and diabetic state by BO in HF-fed mice occurred by regulation of GLUT4, SREBP1c, FAS, PPARα, adiponectin and AMPK phosphorylation. PMID:25375187

  6. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice.

    PubMed

    Tsuchida, Takuma; Shiraishi, Muneshige; Ohta, Tetsuya; Sakai, Kaoru; Ishii, Shinichi

    2012-07-01

    Type 2 diabetes mellitus is frequently accompanied by fatty liver/nonalcoholic fatty liver disease. Hence, accumulation of lipids in the liver is considered to be one of the risk factors for insulin resistance and metabolic syndrome. Ursodeoxycholic acid (UDCA) is widely used for the treatment of liver dysfunction. We investigated the therapeutic effects of UDCA on type 2 diabetes mellitus exacerbating hepatic steatosis and the underlying mechanisms of its action using KK-A(y) mice fed a high-fat diet. KK-A(y) mice were prefed a high-fat diet; and 50, 150, and 450 mg/kg of UDCA was orally administered for 2 or 3 weeks. Administration of UDCA decreased fasting hyperglycemia and hyperinsulinemia. Hyperinsulinemic-euglycemic clamp analyses showed that UDCA improved hepatic (but not peripheral) insulin resistance. Hepatic triglyceride and cholesterol contents were significantly reduced by treatment with UDCA, although the genes involved in the synthesis of fatty acids and cholesterol, including fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, were upregulated. Fecal levels of bile acids, neutral sterols, fatty acids, and phospholipids were significantly increased by UDCA treatment. The gene expression levels and protein phosphorylation levels of endoplasmic reticulum stress markers were not changed by UDCA treatment. These results indicate that UDCA ameliorates hyperglycemia and hyperinsulinemia by improving hepatic insulin resistance and steatosis in high-fat diet-fed KK-A(y) mice. Reduction of hepatic lipids might be due to their excretion in feces, followed by enhanced utilization of glucose for the synthesis of fatty acids and cholesterol. Ursodeoxycholic acid should be effective for the treatment of type 2 diabetes mellitus accompanying hepatic steatosis.

  7. Effects of Bofu-Tsusho-San on diabetes and hyperlipidemia associated with AMP-activated protein kinase and glucose transporter 4 in high-fat-fed mice.

    PubMed

    Lin, Cheng-Hsiu; Kuo, Yueh-Hsiung; Shih, Chun-Ching

    2014-11-04

    This study was undertaken to examine the effect and mechanism of Bofu-tsusho-san formula (BO) on hyperglycemia and hyperlipidemia and in mice fed with a high-fat (HF) diet. The C57BL/6J mice were received control/HF diet for 12 weeks, and oral administration of BO (at three doses) or rosiglitazone (Rosi) or vehicle for the last 4 weeks. Blood, skeletal muscle and tissues were examined by means of measuring glycaemia and dyslipidaemia-associated events. BO treatment effectively prevented HF diet-induced increases in the levels of triglyceride (TG), free fatty acid (FFA) and leptin (p<0.01, p<0.01, p<0.01, respectively). BO treatment exhibited reduced both visceral fat mass and hepatic triacylglycerol content; moreover, BO treatment displayed significantly decreased both the average area of the cut of adipocytes and ballooning of hepatocytes. BO treatment exerted increased the protein contents of glucose transporter 4 (GLUT4) in skeletal muscle, and caused lowered blood glucose levels. BO treatment displayed increased levels of phosphorylated AMP-activated protein kinase (AMPK) in both skeletal muscle and liver tissue. Furthermore, BO reduced the hepatic expression of glucose-6-phosphatase (G6Pase) and phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Therefore, it is possible that the activation of AMPK by BO leads to diminished gluconeogenesis in liver tissue. BO increased hepatic expressions of peroxisome proliferator-activated receptor α (PPARα), whereas down-regulating decreasing expressions of fatty acid synthesis, including sterol regulatory element binding protein 1c (SREBP1c) and fatty acid synthase (FAS), resulting in a decrease in circulating triglycerides. This study originally provides the evidence that amelioration of dyslipidemic and diabetic state by BO in HF-fed mice occurred by regulation of GLUT4, SREBP1c, FAS, PPARα, adiponectin and AMPK phosphorylation.

  8. Chamnamul [Pimpinella brachycarpa (Kom.) Nakai] ameliorates hyperglycemia and improves antioxidant status in mice fed a high-fat, high-sucrose diet.

    PubMed

    Lee, Soo-Jin; Choi, Ha-Neul; Kang, Min-Jung; Choe, Eunok; Auh, Joong Hyuck; Kim, Jung-In

    2013-12-01

    Chronic consumption of a high-fat, high-sucrose (HFHS) diet increases insulin resistance and results in type 2 diabetes mellitus in C57BL/6J mice. Hyperglycemia in diabetics increases oxidative stress, which is associated with a high risk of diabetic complications. The purpose of this study was to examine the hypoglycemic and antioxidant effects of chamnamul [Pimpinella brachycarpa (Kom.) Nakai] in an animal model of type 2 diabetes. The α-glucosidase inhibitory activity of a 70% ethanol extract of chamnamul was measured in vitro. Five-week-old male C57BL/6J mice were fed a basal or HFHS diet with or without a 70% ethanol extract of chamnamul at a 0.5% level of the diet for 12 weeks after 1 week of adaptation. After sacrifice, serum glucose, insulin, adiponectin, and lipid profiles, and lipid peroxidation of the liver were determined. Homeostasis model assessment for insulin resistance (HOMA-IR) was determined. Chamnamul extract inhibited α-glucosidase by 26.7%, which was 78.3% the strength of inhibition by acarbose at a concentration of 0.5 mg/mL. Serum glucose, insulin, and cholesterol levels, as well as HOMA-IR values, were significantly lower in the chamnamul group than in the HFHS group. Chamnamul extract significantly decreased the level of thiobarbituric acid reactive substances and increased the activities of superoxide dismutase, catalase, and glutathione peroxidase in the liver compared with the HFHS group. These findings suggest that chamnamul may be useful in prevention of hyperglycemia and reduction of oxidative stress in mice fed a HFHS diet.

  9. Reduction of Influenza Virus Titer and Protection against Influenza Virus Infection in Infant Mice Fed Lactobacillus casei Shirota

    PubMed Central

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetsuji

    2004-01-01

    We investigated whether oral administration of Lactobacillus casei strain Shirota to neonatal and infant mice ameliorates influenza virus (IFV) infection in the upper respiratory tract and protects against influenza infection. In a model of upper respiratory IFV infection, the titer of virus in the nasal washings of infant mice administered L. casei Shirota (L. casei Shirota group) was significantly (P < 0.05) lower than that in infant mice administered saline (control group) (102.48 ± 100.31 and 102.78 ± 100.4, respectively). Further, the survival rate of the L. casei Shirota group was significantly (P < 0.05) higher than that of the control group (14.3 versus 40.0%). One day after infection, pulmonary NK cell activity and interleukin-12 production by mediastinal lymph node cells of mice in the L. casei Shirota group were significantly greater than those of mice in the control group. These findings suggest that oral administration of L. casei Shirota activates the immature immune system of neonatal and infant mice and protects against IFV infection. Therefore, oral administration of L. casei Shirota may accelerate the innate immune response of the respiratory tract and protect against various respiratory infections in neonates, infants, and children, a high risk group for viral and bacterial infections. PMID:15242940

  10. Humanized HLA-DR4 Mice Fed with the Protozoan Pathogen of Oysters Perkinsus Marinus (Dermo) Do Not Develop Noticeable Pathology but Elicit Systemic Immunity

    PubMed Central

    Kleschenko, Yuliya; Pow-Sang, Luis; Brumeanu, Teodor D.; Villasante, Eileen Franke; Vasta, Gerardo R.; Fernández-Robledo, José-Antonio; Casares, Sofia

    2014-01-01

    Perkinsus marinus (Phylum Perkinsozoa) is a marine protozoan parasite responsible for “Dermo” disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1–2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA0) in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA0 mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA0 mice had antibodies (IgM and IgG) reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ) immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA0 mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents. PMID:24498105

  11. Male 11β-HSD1 Knockout Mice Fed Trans-Fats and Fructose Are Not Protected From Metabolic Syndrome or Nonalcoholic Fatty Liver Disease

    PubMed Central

    Larner, Dean P.; Morgan, Stuart A.; Gathercole, Laura L.; Doig, Craig L.; Guest, Phil; Weston, Christopher; Hazeldine, Jon; Tomlinson, Jeremy W.; Stewart, Paul M.

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) defines a spectrum of conditions from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis and is regarded as the hepatic manifestation of the metabolic syndrome. Glucocorticoids can promote steatosis by stimulating lipolysis within adipose tissue, free fatty acid delivery to liver and hepatic de novo lipogenesis. Glucocorticoids can be reactivated in liver through 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme activity. Inhibition of 11β-HSD1 has been suggested as a potential treatment for NAFLD. To test this, male mice with global (11β-HSD1 knockout [KO]) and liver-specific (LKO) 11β-HSD1 loss of function were fed the American Lifestyle Induced Obesity Syndrome (ALIOS) diet, known to recapitulate the spectrum of NAFLD, and metabolic and liver phenotypes assessed. Body weight, muscle and adipose tissue masses, and parameters of glucose homeostasis showed that 11β-HSD1KO and LKO mice were not protected from systemic metabolic disease. Evaluation of hepatic histology, triglyceride content, and blinded NAFLD activity score assessment indicated that levels of steatosis were similar between 11β-HSD1KO, LKO, and control mice. Unexpectedly, histological analysis revealed significantly increased levels of immune foci present in livers of 11β-HSD1KO but not LKO or control mice, suggestive of a transition to NASH. This was endorsed by elevated hepatic expression of key immune cell and inflammatory markers. These data indicate that 11β-HSD1-deficient mice are not protected from metabolic disease or hepatosteatosis in the face of a NAFLD-inducing diet. However, global deficiency of 11β-HSD1 did increase markers of hepatic inflammation and suggests a critical role for 11β-HSD1 in restraining the transition to NASH. PMID:27384305

  12. Humanized HLA-DR4 mice fed with the protozoan pathogen of oysters Perkinsus marinus (Dermo) do not develop noticeable pathology but elicit systemic immunity.

    PubMed

    Wijayalath, Wathsala; Majji, Sai; Kleschenko, Yuliya; Pow-Sang, Luis; Brumeanu, Teodor D; Villasante, Eileen Franke; Vasta, Gerardo R; Fernández-Robledo, José-Antonio; Casares, Sofia

    2014-01-01

    Perkinsus marinus (Phylum Perkinsozoa) is a marine protozoan parasite responsible for "Dermo" disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1-2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA(0)) in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA(0) mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA(0) mice had antibodies (IgM and IgG) reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ) immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA(0) mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents.

  13. Effects of high-calcium diets with different whey proteins on weight loss and weight regain in high-fat-fed C57BL/6J mice.

    PubMed

    Pilvi, Taru K; Harala, Saara; Korpela, Riitta; Mervaala, Eero M

    2009-08-01

    The aim of the study was to compare the effect of different whey protein-containing high-Ca diets on weight loss and weight regain in a model of diet-induced obesity. Obesity was induced in C57BL/6J mice with a high-fat (60 % of energy) diet. Weight loss by energy restriction was performed on four different high-Ca diets (1.8 % CaCO3) containing different whey proteins (18 % of energy): alpha-lactalbumin (ALA), beta-lactoglobulin (BLG), lactoferrin (LF) and whey protein isolate (WPI). After 7 weeks of energy restriction some of the mice were killed and the rest were fed with the same diets ad libitum for 7 weeks. The mice on the LF diet lost significantly more weight than mice on the WPI diet. The body fat content in the ALA and LF groups was significantly lower than in the WPI group (P < 0.05) and the LF group differed significantly even from the BLG group (P < 0.05). Ad libitum feeding after weight loss resulted in weight regain in all groups and only the ALA diet significantly reduced fat accumulation during weight regain. The weight regain was most pronounced in the LF group, but the adipocyte size was still significantly smaller than in the other groups. There were no differences in food intake or apparent fat digestibility between the groups. It can be concluded that a high-Ca diet with ALA significantly improves the outcome of weight loss and subsequent weight regain during the feeding of a high-fat diet in C57BL/6J mice, in comparison with WPI.

  14. Betaine improved adipose tissue function in mice fed a high-fat diet: a mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease.

    PubMed

    Wang, Zhigang; Yao, Tong; Pini, Maria; Zhou, Zhanxiang; Fantuzzi, Giamila; Song, Zhenyuan

    2010-05-01

    Adipose tissue dysfunction, featured by insulin resistance and/or dysregulated adipokine production, plays a central role not only in disease initiation but also in the progression to nonalcoholic steatohepatitis and cirrhosis. Promising beneficial effects of betaine supplementation on nonalcoholic fatty liver disease (NAFLD) have been reported in both clinical investigations and experimental studies; however, data related to betaine therapy in NAFLD are still limited. In this study, we examined the effects of betaine supplementation on hepatic fat accumulation and injury in mice fed a high-fat diet and evaluated mechanisms underlying its hepatoprotective effects. Male C57BL/6 mice weighing 25 +/- 0.5 (SE) g were divided into four groups (8 mice/group) and started on one of four treatments: control diet, control diet supplemented with betaine, high-fat diet, and high-fat diet supplemented with betaine. Betaine was supplemented in the drinking water at a concentration of 1% (wt/vol) (anhydrous). Our results showed that long-term high-fat feeding caused NAFLD in mice, which was manifested by excessive neutral fat accumulation in the liver and elevated plasma alanine aminotransferase levels. Betaine supplementation alleviated hepatic pathological changes, which were concomitant with attenuated insulin resistance as shown by improved homeostasis model assessment of basal insulin resistance values and glucose tolerance test, and corrected abnormal adipokine (adiponectin, resistin, and leptin) productions. Specifically, betaine supplementation enhanced insulin sensitivity in adipose tissue as shown by improved extracellular signal-regulated kinases 1/2 and protein kinase B activations. In adipocytes freshly isolated from mice fed a high-fat diet, pretreatment of betaine enhanced the insulin signaling pathway and improved adipokine productions. Further investigation using whole liver tissues revealed that betaine supplementation alleviated the high-fat diet

  15. Growth restriction, leptin, and the programming of adult behavior in mice.

    PubMed

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-12-15

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, p<0.05), but GR mice exhibited regression in their escape times on days 2 and 3 (56% regressed vs 22% of control saline mice, p<0.05). Compared to controls, GR mice entered the open arms of the elevated plus maze more often and stayed there longer (72+/-10s vs 36+/-5s, p<0.01). Neonatal leptin supplementation normalized the behavior of GR mice across all behavioral assays. In conclusion, GR alters the social interactions, learning and activity of mice, and supplementation with the neurotrophic hormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective.

  16. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet

    PubMed Central

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-01-01

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model. PMID:19638223

  17. Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet.

    PubMed

    Cunha, Cláudio A; Lira, Fábio S; Rosa Neto, José C; Pimentel, Gustavo D; Souza, Gabriel I H; da Silva, Camila Morais Gonçalves; de Souza, Cláudio T; Ribeiro, Eliane B; Sawaya, Alexandra Christine Helena Frankland; Oller do Nascimento, Cláudia M; Rodrigues, Bruno; de Oliveira Carvalho, Patrícia; Oyama, Lila M

    2013-01-01

    The aim of this study was to evaluate the effects of green tea Camellia sinensis extract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water); CG (chow diet and water + green tea extract); HW (high-fat diet and water); HG (high-fat diet and water + green tea extract). The mice were fed ad libitum with chow or high-fat diet and concomitantly supplemented (oral gavage) with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.). The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFα levels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.

  18. Aerobic endurance training improves nonalcoholic fatty liver disease (NAFLD) features via miR-33 dependent autophagy induction in high fat diet fed mice.

    PubMed

    Ghareghani, Parvin; Shanaki, Mehrnoosh; Ahmadi, Saeideh; Khoshdel, Ali Reza; Rezvan, Neda; Meshkani, Reza; Delfan, Maryam; Gorgani-Firuzjaee, Sattar

    2017-02-02

    Due to changes in life style, obesity and obesity related complication such as insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease caused worldwide health problems. Regular exercise has been frequently prescribed to combat metabolic complication of obesity but its molecular mechanism has not been fully illustrated. We investigated molecular mechanism of lipid lowering effect of exercise training in high fat diet fed mice by focusing on miR-33 expression and autophagy pathway. 24 mice were assigned to normal chow (NC) (n=8), high-fat diet (HFD) (n=16) group and subjected to NC and HFD for 13-weeks. HFD groups were divided to sedentary (HFD n=8) or continuous endurance training (HFD+CET, n=8) subgroups. The HFD+CET mice were subjected to treadmill running for 10-weeks in 23-week HFD course. HFD increased body weight, fasting blood sugar, triglyceride, cholesterol, aspartate aminotransferase (AST), alanine aminotransferase (ALT), liver lipogenic genes expression and reduced miR-33 mRNA expression and autopahgy pathway while training program reversed them. Exogenous miR-33 mimic sequence induced autophagy and reduced lipogenesis in HepG2 cells. Autophagy induction by rapamycin reduced lipogenesis and autophagy inhibition by chloroquine, enhanced lipogenesis in HepG2 cells. These findings suggest that aerobic exercise training as a non-pharmacological therapy exerts its lipid lowering effects by miR-33 dependent autophagy induction.

  19. (Val(8))GLP-1-Glu-PAL: a GLP-1 agonist that improves hippocampal neurogenesis, glucose homeostasis, and β-cell function in high-fat-fed mice.

    PubMed

    Lennox, Rachael; Porter, David W; Flatt, Peter R; Gault, Victor A

    2013-04-01

    This study examined the biological properties of a novel GLP-1 peptide, (Val(8))GLP-1-Glu-PAL, engineered with an Ala(8)→Val(8) substitution and additional incorporation of a C(16) fatty acid moiety at Lys(26) via a glutamic acid linker. GLP-1 underwent 75 % degradation by DPP-IV over 8 h, whereas (Val(8))GLP-1 and (Val(8))GLP-1-Glu-PAL remained intact. All GLP-1 peptides significantly stimulated insulin secretion at 5.6 mM (1.3- to 4.9-fold, p<0.01 to p<0.001) and 16.7 mM glucose (1.5- to 2.3-fold, p<0.001). At higher concentrations (Val(8))GLP-1-Glu-PAL was significantly more potent at stimulating insulin secretion (1.2- to 1.3-fold, p<0.05). In high-fat-fed mice, all GLP-1 peptides significantly lowered plasma glucose concentrations (41-66 % decrease, p<0.05 to p<0.001), with (Val(8))GLP-1-Glu-PAL eliciting protracted glucose-lowering actions (32-59 % decrease, p<0.05 to p<0.01) when administered 8 h prior to a glucose load. Twice-daily administration of (Val(8))GLP-1-Glu-PAL in high-fat-fed mice for 21 days had no effect on bodyweight or food intake, but significantly lowered non-fasting plasma glucose (43-46 % decrease, p<0.05). (Val(8))GLP-1-Glu-PAL markedly decreased glycemic excursion following intraperitoneal glucose (32-48 % decrease, p<0.05), enhanced insulin response to glucose (2- to 2.3-fold, p<0.05 to p<0.01), and improved insulin sensitivity (25-38 % decrease in plasma glucose, p<0.05). O(2) consumption, CO(2) production, RER, and energy expenditure were not altered by (Val(8))GLP-1-Glu-PAL therapy. Treatment with (Val(8))GLP-1-Glu-PAL resulted in a significant increase in BrdU-positive cells (1.3-fold, p<0.05) in the granule cell layer of the dentate gyrus. These data demonstrate that (Val(8))GLP-1-Glu-PAL is a long-acting GLP-1 peptide that significantly improves hippocampal neurogenesis, glucose homeostasis, and insulin secretion in high-fat-fed mice.

  20. Very slow turnover of beta-cells in aged adult mice.

    PubMed

    Teta, Monica; Long, Simon Y; Wartschow, Lynn M; Rankin, Matthew M; Kushner, Jake A

    2005-09-01

    Although many signaling pathways have been shown to promote beta-cell growth, surprisingly little is known about the normal life cycle of preexisting beta-cells or the signaling pathways required for beta-cell survival. Adult beta-cells have been speculated to have a finite life span, with ongoing adult beta-cell replication throughout life to replace lost cells. However, little solid evidence supports this idea. To more accurately measure adult beta-cell turnover, we performed continuous long-term labeling of proliferating cells with the DNA precursor analog 5-bromo-2-deoxyuridine (BrdU) in 1-year-old mice. We show that beta-cells of aged adult mice have extremely low rates of replication, with minimal evidence of turnover. Although some pancreatic components acquired BrdU label in a linear fashion, only 1 in approximately 1,400 adult beta-cells were found to undergo replication per day. We conclude that adult beta-cells are very long lived.

  1. Premature aging of the hippocampal neurogenic niche in adult Bmal1‐ deficient mice

    PubMed Central

    Ali, Amira A. H.; Schwarz‐Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-01-01

    Hippocampal neurogenesis undergoes dramatic age‐related changes. Mice with targeted deletion of the clock gene Bmal1 (Bmal1‐/‐) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1‐/‐ mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1‐/‐ mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70kDa and expression of the cell cycle inhibitor p21 Waf1/CIP1 were increased in adult Bmal1‐/‐ mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age‐dependent decline in adult neurogenesis presumably as a consequence of oxidative stress. PMID:26142744

  2. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice.

    PubMed

    Ali, Amira A H; Schwarz-Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-06-01

    Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.

  3. GABAergic Interneuron Dysfunction Impairs Hippocampal Neurogenesis in Adult Apolipoprotein E4 Knock-in Mice

    PubMed Central

    Li, Gang; Bien-Ly, Nga; Andrews-Zwilling, Yaisa; Xu, Qin; Bernardo, Aubrey; Ring, Karen; Halabisky, Brian; Deng, Changhui; Mahley, Robert W.; Huang, Yadong

    2010-01-01

    SUMMARY Apolipoprotein (apo) E has important and diverse functions in neurobiology, and apoE4 is the major known genetic risk factor for Alzheimer’s disease. Here we report that adult neural stem/progenitor cells (NSCs) express apoE. In apoE knockout mice, neurogenesis in the hippocampus was ~60% lower than in wildtype mice, and most newborn cells developed into astrocytes rather than into neurons as in wildtype mice. This impairment was not observed in human apoE3 knock-in mice. In apoE4 knock-in mice, however, the maturation and dendritic development of newborn hippocampal neurons was significantly impaired as a result of apoE4 and its fragment-caused GABAergic interneuron dysfunction. This impairment was fully rescued by treatment with a GABAA receptor potentiator. These findings demonstrate the importance of apoE in adult hippocampal neurogenesis and show that apoE4 inhibits hippocampal neurogenesis by impairing neuronal maturation mediated by GABA signaling. PMID:19951691

  4. The effect of brief neonatal cryoanesthesia on physical development and adult cognitive function in mice

    PubMed Central

    Janus, Christopher; Golde, Todd

    2013-01-01

    Deep hypothermia (cryoanesthesia) is often used as general anesthesia during surgery in neonatal rodents. Neonatal cryoanesthesia has been used recently to generate somatic brain transgenic (SBT) mouse models via intracerebral ventricular injection of rAAV vectors into both non-transgenic mice and numerous transgenic mouse models. Since, the evaluation of cognition is one of the main experimental endpoints in many of these studies, we examined the consequences of brief neonatal cryoanesthesia on the physical development and mnemonic function of adult mice. Two groups of 129FVBF1 pups from reciprocal breeding crosses underwent cryoanesthesia for 6 (Cryo6) or 12 (Cryo12) min, respectively, within the first hours (< 12hr) of postnatal life. A group of pups separated from the nest and kept in ambient temperature of 33 °C for 6 min served as a control. Our results revealed that lowering the temperature of pups to ~8 °C (Cryo6) or ~5 °C (Cryo12) did not affect their body weight at pre-weaning stage and in the adulthood. The evaluation of cognitive function in adult mice revealed strong and comparable to controls spatial reference, and context and tone fear memories of neonatally cryoanesthetized mice. Also, the experimental and control groups had comparable brain weight at the end of the study. Our results demonstrate that neonatal cryoanesthesia, lasting up to 12 min, has no adverse effects on the body weight of mice during development, and on their cognition in the adulthood. PMID:24239696

  5. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    PubMed

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  6. Sertraline exposure leads to small left heart syndrome in adult mice

    PubMed Central

    Haskell, Sarah E.; Hermann, Gregory M.; Reinking, Benjamin E.; Volk, Kenneth A.; Peotta, Veronica A.; Zhu, Vivian; Roghair, Robert D.

    2013-01-01

    Background Sertraline, a selective serotonin reuptake inhibitor (SSRI), is the most commonly prescribed therapy for maternal depression. Epidemiologic studies have linked SSRI exposure with decreased fetal growth, altered autonomic regulation, and cardiac malformations. We hypothesized SSRI exposure decreases left ventricular volumes and increases adult sympathetic nervous system activation, resulting in increased adult heart rates. Methods C57BL/6 mice received saline or sertraline (5 or 15 mg/kg/day i.p.) on postnatal days 1–14. Adult phenotypes were assessed at 5 months. Results Sertraline-exposed mice had smaller left ventricular internal diameters in diastole (control 4.0 ± 0.1 mm, SSRI 3.7 ± 0.1 mm, p < 0.05), decreased stroke volumes (control 46 ± 2.6 μL, SSRI 37 ± 2.3 μL, p < 0.05), higher heart rates (control 530 ± 13 beats per minute (bpm), SSRI 567 ± 6 bpm, p <0.05) and increased urinary excretion of noradrenaline (control 174 ± 29.4 ng/mL, SSRI 276 ± 35.1 ng/mL, p<0.05). These changes were associated with increased cerebral serotonin transporter (5-HTT) expression. Conclusion Neonatal sertraline exposure causes long term changes in cardiac morphology and physiology. We speculate that early life SSRI exposure impairs cardiomyocyte growth and central serotonin signaling, leading to a small left heart syndrome in adult mice. PMID:23232669

  7. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    PubMed

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  8. The Cox-2 Inhibitor Meloxicam Ameliorates Neuroinflammation and Depressive Behavior in Adult Mice after Splenectomy

    PubMed Central

    Haile, Michael; Boutajangout, Allal; Chung, Kevin; Chan, Jeffrey; Stolper, Tanya; Vincent, Nemahun; Batchan, Marc; D’Urso, John; Lin, Yan; Kline, Richard; Yaghmoor, Faris; Jahfal, Saad; Kamal, Robel; Aljohani, Waleed; Blanck, Thomas; Bekker, Alex; Wisniewski, Thomas

    2016-01-01

    Background Peripheral surgical trauma may incite neuroinflammation that leads to neuronal dysfunction associated with both depression and cognitive deficits. In a previous study, we found that adult mice developed neuroinflammation and short-term working memory dysfunction in a delayed, transient manner after splenectomy that was ameliorated by the cyclooxygenase-2 inhibitor meloxicam. We tested the hypothesis that splenectomy in mice would also cause anhedonia, the diminished response to pleasure or rewarding stimuli that is a hallmark of depression, and that treatment with meloxicam would be ameliorative. Methods After Institutional Animal Care and Use Committee approval, Swiss-Webster mice underwent sucrose preference training before being randomized into groups on day 0, when they had either splenectomy and anesthesia or anesthesia alone. Within each group, half were randomized to receive intraperitoneal saline at 24 hours, while the other half received intraperitoneal meloxicam at 24 hours. Sucrose preference ratios were determined on days 1, 5, 9, and 14. Additional mice were randomized into groups for brain histochemistry. Specimens were stained for glial fibrillary acidic protein (GFAP), a marker of astrocytes, and CD45, a protein tyrosine phosphatase that identifies microglial activation. Results On day 5, mice receiving splenectomy and saline demonstrated diminished sucrose preference, which was not seen in mice receiving splenectomy and meloxicam. Semiquantitative analysis of histological slides taken from splenectomized mice treated with meloxicam revealed reduced microglial-based neuroinflammation and reactive astrocytosis compared to mice receiving saline. Conclusion Splenectomy in mice is associated with neuroinflammation and anhedonia, as evidenced by reactive microgliosis, astrocytosis, and behavioral changes. Postsurgical treatment with meloxicam attenuates both neuroinflammation and anhedonia. These findings suggest that cyclooxygenase-2

  9. Lepidium meyenii (Maca) increases litter size in normal adult female mice

    PubMed Central

    Ruiz-Luna, Ana C; Salazar, Stephanie; Aspajo, Norma J; Rubio, Julio; Gasco, Manuel; Gonzales, Gustavo F

    2005-01-01

    Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i) Reproductive indexes group, ii) Implantation sites group and iii) Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW) or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO) day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to enhance female fertility. PMID

  10. Effect of red pepper Capsicum annuum var. conoides and garlic Allium sativum on plasma lipid levels and cecal microflora in mice fed beef tallow.

    PubMed

    Kuda, Takashi; Iwai, Akiko; Yano, Toshihiro

    2004-10-01

    Antihyperlipidemia or hypocholesterolaemic and antibacterial activities of red hot pepper and garlic are well known. To determine the effect of the dietary spices ingested to suppress blood lipids on the intestinal condition, we examined plasma lipid levels and cecal microflora in mice that were fed diets containing 19% (w/w) beef tallow and 2% red pepper Capsicum annuum var. conoides 'Takanotume' (RP) or garlic Allium sativum 'White' (GP) for 4-weeks. Plasma triacylglyceride level was suppressed by the spices. RP lowered cecal bacteroidaceae, a predominant bacterial group (from 9.4 to 9.0 log CFU/g), bifidobacteria (from 8.7 to 7.6 log CFU/g), and staphylococci. Although GP increased the cecal weight including their contents, significant differences were not shown in the cecal microflora. These results suggest that RP can affect the intestinal condition and host health through the disturbance of intestinal microflora.

  11. Metabolic effects of intermittent access to caloric or non-caloric sweetened solutions in mice fed a high-caloric diet.

    PubMed

    Soto, Marion; Chaumontet, Catherine; Even, Patrick C; Azzout-Marniche, Dalila; Tomé, Daniel; Fromentin, Gilles

    2017-03-24

    Human consumption of obesogenic diets and soft drinks, sweetened with different molecules, is increasing worldwide, and increases the risk of metabolic diseases. We hypothesized that the chronic consumption of caloric (sucrose, high-fructose corn syrup (HFCS), maltodextrin) and non-caloric (sucralose) solutions under 2-hour intermittent access, alongside the consumption of a high-fat high-sucrose diet, would result in differential obesity-associated metabolic abnormalities in mice. Male C57BL/6 mice had ad libitum access to an HFHS diet and to water (water control group). In addition, some mice had access, 2h/day, 5days/week (randomly chosen) for 12weeks, to different solutions: i) a sucrose solution (2.1kJ/ml), ii) an HFCS solution (2.1kJ/ml), iii) a maltodextrin solution (2.1kJ/ml) and a sucralose solution (60mM) (n=15/group). Despite no changes in total caloric intake, 2h-intermittent access to the sucrose, HFCS or maltodextrin solutions led to increased body weight and accumulation of lipids in the liver when compared to the group consuming water only. The HFCS and sucrose solutions induced a higher fat mass in various fat depots, glucose intolerance, increased glucose oxidation at the expense of lipid oxidation, and a lower hypothalamic expression of NPY in the fasted state. HFCS also reduced proopiomelanocortin expression in the hypothalamus. 2h-intermittent access to sucralose did not result in significant changes in body composition, but caused a stronger expression of CART in the hypothalamus. Finally, sucrose intake showed a trend to increase the expression of various receptors in the nucleus accumbens, linked to dopamine, opioid and endocannabinoid signaling. In conclusion, 2h-intermittent access to caloric solutions (especially those sweetened with sucrose and HFCS), but not sucralose, resulted in adverse metabolic consequences in high-fat high-sucrose-fed mice.

  12. Streptozotocin-Treated High Fat Fed Mice: A New Type 2 Diabetes Model Used to Study Canagliflozin-Induced Alterations in Lipids and Lipoproteins.

    PubMed

    Yu, Tian; Sungelo, Mitchell J; Goldberg, Ira J; Wang, Hong; Eckel, Robert H

    2017-04-10

    The pharmacological effects of type 2 diabetes (T2DM) medications on lipoprotein metabolism are difficult to assess in preclinical models because those created failure to replicate the human condition in which insulin deficiency is superimposed on obesity-related insulin resistance. To create a better model, we fed mice with high fat (HF) diet and treated the animals with low dose streptozotocin (STZ) to mimic T2DM. We used this model to evaluate the effects of canagliflozin (CANA), a drug that reduces plasma glucose by inhibiting the sodium-glucose transporter 2 (SGLT2), which mediates ~90% of renal glucose reabsorption] on lipid and lipoprotein metabolism. After 6 weeks of CANA (30 mg/kg/day) treatment, the increase in total plasma cholesterol in HF-STZ diabetic mice was reversed, but plasma triglycerides were not affected. Lipoprotein fractionation and cholesterol distribution analysis showed that CANA kept HDL-Cholesterol, LDL-Cholesterol, and IDL-Cholesterol levels steady while these lipoprotein species were increased in placebo- and insulin-treated control groups. CANA treatment of HF-STZ mice reduced post-heparin plasma lipoprotein lipase (LPL) activity at 2 (-40%) and 5 (-30%) weeks compared to placebo. Tissue-specific LPL activity following CANA treatment showed similar reduction. In summary, CANA prevented the total cholesterol increase in HF-STZ mice without effects on plasma lipids or lipoproteins, but did decrease LPL, implying a potential role of LPL-dependent lipoprotein metabolism in CANA action. These effects did not recapitulate the effect of SGLT2 inhibitors on lipids and lipoproteins in human, suggesting that a better murine T2DM model (such as the ApoB100 humanized CETP-overexpressing mouse) is needed next.

  13. Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice

    PubMed Central

    2012-01-01

    Background Type 2 diabetes is associated with obesity, ectopic lipid accumulation and low-grade inflammation. A dysfunctional gut microbiota has been suggested to participate in the pathogenesis of the disease. Green tea is rich in polyphenols and has previously been shown to exert beneficial metabolic effects. Lactobacillus plantarum has the ability to metabolize phenolic acids. The health promoting effect of whole green tea powder as a prebiotic compound has not been thoroughly investigated previously. Methods C57BL/6J mice were fed a high-fat diet with or without a supplement of 4% green tea powder (GT), and offered drinking water supplemented with Lactobacillus plantarum DSM 15313 (Lp) or the combination of both (Lp + GT) for 22 weeks. Parameters related to obesity, glucose tolerance, lipid metabolism, hepatic steatosis and inflammation were examined. Small intestinal tissue and caecal content were collected for bacterial analysis. Results Mice in the Lp + GT group had significantly more Lactobacillus and higher diversity of bacteria in the intestine compared to both mice in the control and the GT group. Green tea strongly reduced the body fat content and hepatic triacylglycerol and cholesterol accumulation. The reduction was negatively correlated to the amount of Akkermansia and/or the total amount of bacteria in the small intestine. Markers of inflammation were reduced in the Lp + GT group compared to control. PLS analysis of correlations between the microbiota and the metabolic variables of the individual mice showed that relatively few components of the microbiota had high impact on the correlation model. Conclusions Green tea powder in combination with a single strain of Lactobacillus plantarum was able to promote growth of Lactobacillus in the intestine and to attenuate high fat diet-induced inflammation. In addition, a component of the microbiota, Akkermansia, correlated negatively with several metabolic parameters known to be risk factors

  14. Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress.

    PubMed

    Xia, Shu-Fang; Xie, Zhen-Xing; Qiao, Yi; Li, Li-Rong; Cheng, Xiang-Rong; Tang, Xue; Shi, Yong-Hui; Le, Guo-Wei

    2015-01-01

    High fat diets induce oxidative stress which may be involved in neurodegenerative diseases. Quercetin is a kind of antioxidant that has neuroprotective effects and potent7ial pro-oxidant effects as well. In this study, we evaluated cognitive function in mice fed with high fat diets and basic diets with or without quercetin. Male Chinese Kunming (KM) mice were randomly assigned to five groups fed with basic diet (Control), basic diet with 0.005% (w/w) quercetin (CQ1), high fat diet (HFD), HFD with 0.005% (w/w) quercetin (HFDQ1) and 0.01% (w/w) quercetin (HFDQ2) for 13weeks. At the end of the study period, fasting blood glucose (FBG), plasma and hippocampal markers of oxidative stress, plasma lipid status, Morris water maze as well as hippocampal relative mRNA expression of akt, bdnf, camkII, creb, gsk-3β, nrf2 and pi3k were examined. The results suggested that in comparison to the control group, the escape latency was increased and percent time spent in the target quadrant was decreased, with increased reactive carbonyls, malondialdehyde (MDA) and declined expression of pi3k, akt, nrf2, creb and bdnf in the hippocampus of HFD and CQ1 groups. Conversely, higher quercetin supplemented to HFD improved antioxidant capacity and reversed cognitive decline completely. Significant correlations between the redox status and cognition-related gene expression were observed as well (P<0.05). Thus, in the case of oxidative stress, an appropriate dose of quercetin can attenuate oxidative stress to improve hippocampus dependent cognition. But under a balanced situation, quercetin exerts pro-oxidant effects to impair cognition.

  15. The effects of the aqueous extract and residue of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet.

    PubMed

    Xu, Ping; Ying, Le; Hong, Gaojie; Wang, Yuefei

    2016-01-01

    Matcha is a kind of powdered green tea produced by grinding with a stone mill. In the present study, the preventive effects of the aqueous extract (water-soluble) and residue (water-insoluble) of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet were investigated. Mice were fed seven different experimental diets for 4 weeks: a normal diet control (NC), a high-fat diet (HF), a high-fat diet with 0.025% Matcha (MLD), a high-fat diet with 0.05% Matcha (MMD), a high-fat diet with 0.075% Matcha (MHD), a high-fat diet with 0.05% Matcha aqueous extracts (ME), and a high-fat diet with 0.05% Matcha residues (MR). It was found that serum total cholesterol (TC) and triglyceride (TG) levels of the MHD group were significantly decreased compared to those of the HF group. Furthermore, in the MHD group, the level of high-density lipoprotein-cholesterol (HDL-C) was elevated, on the contrary the level of low-density lipoprotein-cholesterol (LDL-C) was suppressed. Moreover, Matcha could significantly lower the blood glucose levels, and improve the superoxide dismutase (SOD) activity and malondialdehyde (MAD) contents both in serum and liver; besides, the serum GSH-Px activity indicated that the oxidative stress caused by HF could be reversed by administration of Matcha. These findings suggest that Matcha has beneficial effects through the suppression of the blood glucose (BG) accumulation and promotion of the lipid metabolism and antioxidant activities. Moreover, the water-insoluble part of Matcha is suggested to play an important role in the suppression of diet-induced high levels of lipid and glucose.

  16. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    PubMed

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10.

  17. Acerola (Malpighia emarginata DC.) juice intake protects against alterations to proteins involved in inflammatory and lipolysis pathways in the adipose tissue of obese mice fed a cafeteria diet

    PubMed Central

    2014-01-01

    Background Obesity has been studied as a metabolic and an inflammatory disease and is characterized by increases in the production of pro-inflammatory adipokines in the adipose tissue. To elucidate the effects of natural dietary components on the inflammatory and metabolic consequences of obesity, we examined the effects of unripe, ripe and industrial acerola juice (Malpighia emarginata DC.) on the relevant inflammatory and lipolysis proteins in the adipose tissue of mice with cafeteria diet-induced obesity. Materials/methods Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into five subgroups, each of which received a different supplement for one further month (water, unripe acerola juice, ripe acerola juice, industrial acerola juice, or vitamin C) by gavage. Enzyme-linked immunosorbent assays, Western blotting, a colorimetric method and histology were utilized to assess the observed data. Results The CAF water (control obese) group showed a significant increase in their adiposity indices and triacylglycerol levels, in addition to a reduced IL-10/TNF-α ratio in the adipose tissue, compared with the control lean group. In contrast, acerola juice and Vitamin C intake ameliorated the weight gain, reducing the TAG levels and increasing the IL-10/TNF-α ratio in adipose tissue. In addition, acerola juice intake led to reductions both in the level of phosphorylated JNK and to increases in the phosphorylation of IκBα and HSLser660 in adipose tissue. Conclusions Taken together, these results suggest that acerola juice reduces low-grade inflammation and ameliorates obesity-associated defects in the lipolytic processes. PMID:24495336

  18. Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes

    PubMed Central

    Kurbegovic, Almira; Côté, Olivier; Couillard, Martin; Ward, Christopher J.; Harris, Peter C.; Trudel, Marie

    2010-01-01

    While high levels of Pkd1 expression are detected in tissues of patients with autosomal dominant polycystic kidney disease (ADPKD), it is unclear whether enhanced expression could be a pathogenetic mechanism for this systemic disorder. Three transgenic mouse lines were generated from a Pkd1-BAC modified by introducing a silent tag via homologous recombination to target a sustained wild-type genomic Pkd1 expression within the native tissue and temporal regulation. These mice specifically overexpressed the Pkd1 transgene in extrarenal and renal tissues from ∼2- to 15-fold over Pkd1 endogenous levels in a copy-dependent manner. All transgenic mice reproducibly developed tubular and glomerular cysts leading to renal insufficiency. Interestingly, Pkd1TAG mice also exhibited renal fibrosis and calcium deposits in papilla reminiscent of nephrolithiasis as frequently observed in ADPKD. Similar to human ADPKD, these mice consistently displayed hepatic fibrosis and ∼15% intrahepatic cysts of the bile ducts affecting females preferentially. Moreover, a significant proportion of mice developed cardiac anomalies with severe left-ventricular hypertrophy, marked aortic arch distention and/or valvular stenosis and calcification that had profound functional impact. Of significance, Pkd1TAG mice displayed occasional cerebral lesions with evidence of ruptured and unruptured cerebral aneurysms. This Pkd1TAG mouse model demonstrates that overexpression of wild-type Pkd1 can trigger the typical adult renal and extrarenal phenotypes resembling human ADPKD. PMID:20053665

  19. Schmallenberg virus infection of adult type I interferon receptor knock-out mice.

    PubMed

    Wernike, Kerstin; Breithaupt, Angele; Keller, Markus; Hoffmann, Bernd; Beer, Martin; Eschbaumer, Michael

    2012-01-01

    Schmallenberg virus (SBV), a novel orthobunyavirus, was discovered in Europe in late 2011. It causes mild and transient disease in adult ruminants, but fetal infection can lead to abortion or severe malformations. There is considerable demand for SBV research, but in vivo studies in large animals are complicated by their long gestation periods and the cost of high containment housing. The goal of this study was to investigate whether type I interferon receptor knock-out (IFNAR(-/-)) mice are a suitable small animal model for SBV. Twenty IFNAR(-/-) mice were inoculated with SBV, four were kept as controls. After inoculation, all were observed and weighed daily; two mice per day were sacrificed and blood, brain, lungs, liver, spleen, and intestine were harvested. All but one inoculated mouse lost weight, and two mice died spontaneously at the end of the first week, while another two had to be euthanized. Real-time RT-PCR detected large amounts of SBV RNA in all dead or sick mice; the controls were healthy and PCR-negative. IFNAR(-/-) mice are susceptible to SBV infection and can develop fatal disease, making them a handy and versatile tool for SBV vaccine research.

  20. Social experience modulates ocular dominance plasticity differentially in adult male and female mice.

    PubMed

    Balog, Jenny; Matthies, Ulrike; Naumann, Lisa; Voget, Mareike; Winter, Christine; Lehmann, Konrad

    2014-12-01

    Environmental factors have long been known to regulate brain plasticity. We investigated the potential influence of social experience on ocular dominance plasticity. Fully adult female or male mice were monocularly deprived for four days and kept a) either alone or in pairs of the same sex and b) either in a small cage or a large, featureless arena. While mice kept alone did not show ocular dominance plasticity, no matter whether in a cage or in an arena, paired female mice in both environmental conditions displayed a shift of ocular dominance towards the open eye. Paired male mice, in contrast, showed no plasticity in the cage, but a very strong ocular dominance shift in the arena. This effect was not due to increased locomotion, since the covered distance was similar in single and paired male mice in the arena, and furnishing cages with a running wheel did not enable ocular dominance plasticity in cage-housed mice. Confirming recent results in rats, the plasticity-enhancing effect of the social environment was shown to be mediated by serotonin. Our results demonstrate that social experience has a strong effect on cortical plasticity that is sex-dependent. This has potential consequences both for animal research and for human education and rehabilitation.

  1. Round and Round and Round We Go: Behavior of Adult Female Mice on the ISS

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2016-01-01

    The NASA Decadal Survey (2011) emphasized the importance of long duration rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware and science capabilities supporting mouse studies in space were developed at Ames Research Center. Here we present a video-based behavioral analysis of ten C57BL6 female adult mice exposed to a total of 37 days in space compared with identically housed Ground Controls. Flight and Control mice exhibited the same range of behaviors, including feeding, drinking, exploratory behavior, grooming, and social interactions. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another. Overall activity was greater in Flt as compared to GC mice. Spontaneous, organized circling or race-tracking behavior emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. I will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral phenotyping revealed important insights into the overall health and adaptation of mice to the space environment, and identified unique behaviors that can guide future habitat development and research on rodents in space.

  2. Antigen presentation by peritoneal macrophages from young adult and old mice

    SciTech Connect

    Perkins, E.H.; Massucci, J.M.; Glover, P.L.

    1982-01-01

    Macrophages perform vital inductive and regulatory functions in immune processes and host defense mechanisms. However, macrophage function during senescence has not been extensively studied. Although antibody response is dramatically reduced in old animals, antigen presentation has never been directly assessed. Therefore, the antigen-presenting capabilities of purified peritoneal macrophages from young adult and old mice were studied by quantitatively measuring their ability to induce antigen specific proliferation of lymph node T lymphocytes. Increasing numbers (10/sup 2/ to 10/sup 5/) of macrophages from nonimmunized young adult (3 to 6 months) or aged (27 to 36 months) animals were cultured in the presence of antigen with a constant number (2 x 10/sup 5/) of column-separated popliteal lymph node cells from young adult mice. The latter had been immunized with the dinitrophenyl conjugate of bovine ..gamma..-globulin in complete Freund's adjuvant by footpad injection. Macrophages from old animals were equal to macrophages from young adult in stimulating T-lymphocyte proliferation, and the kinetics of incorporation was identical with increasing numbers of macrophages from either young adult or old animals. However, greater numbers of resident or induced peritoneal macrophages were always harvested from old animals. Differences in macrophage activity as assessed by different functional parameters may be reconciled by implicating subpopulations of macrophages that perform separate functions, e.g. Ia-positive antigen presenter and Ia-negative scavenger macrophages.

  3. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    PubMed

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  4. Adolescent mice, unlike adults, consume more alcohol in the presence of peers than alone.

    PubMed

    Logue, Sheree; Chein, Jason; Gould, Thomas; Holliday, Erica; Steinberg, Laurence

    2014-01-01

    One hallmark of adolescent risk-taking is that it typically occurs when adolescents are with peers. It has been hypothesized that the presence of peers primes a reward-sensitive motivational state that overwhelms adolescents' immature capacity for inhibitory control. We examined this hypothesis using a rodent model. A sample of mice were raised in same-sex triads and were tested for alcohol consumption either as juveniles or as adults, with half in each age group tested alone and half tested with their cagemates. The presence of 'peers' increased alcohol consumption among adolescent mice, but not adults. The peer effect on human adolescent reward-seeking may reflect a hard-wired, evolutionarily conserved process through which the presence of agemates increases individuals' sensitivity to potential rewards in their immediate environment.

  5. Differences in tissue distribution of HBCD alpha and gamma between adult and developing mice.

    PubMed

    Szabo, David T; Diliberto, Janet J; Huwe, Janice K; Birnbaum, Linda S

    2011-09-01

    Hexabromocyclododecane (HBCD) is a mixture of three stereoisomers alpha (α), beta (β), and gamma (γ). γ-HBCD dominates the mixture (∼70%), and despite α-HBCD's minor contribution to global HBCD production and usage (∼10%), it is the dominant congener found in most biotic samples worldwide. Evidence of toxicity and lack of stereoisomer studies drives the importance of understanding HBCD toxicokinetics in potentially susceptible populations. The majority of public health concern has focused on hazardous effects resulting from exposure of infants and young children to HBCD due to reports on adverse developmental effects in rodent studies, in combination with human exposure estimates suggesting that nursing infants and young children have the highest exposure to HBCD. This study was designed to investigate differences in the disposition of both γ-HBCD and α-HBCD in infantile mice reported to be susceptible to the HBCD commercial mixture. The tissue distribution of α-[(14)C]HBCD- and γ-[(14)C]HBCD-derived radioactivity was monitored in C57BL/6 mice following a single oral dose of either compound (3 mg/kg) after direct gavage at postnatal day 10. Mice were held up to 7 days in shoebox cages after which pups were sacrificed, tissue collected, and internal dosimetry was measured. Developing mice exposed to α-HBCD had an overall higher body burden than γ-HBCD at every time point measured; at 4 days postexposure, they retained 22% of the α-HBCD administered dose, whereas pups exposed to γ-HBCD retained 10%. Total body burden in infantile mice after exposure to γ-HBCD was increased 10-fold as compared with adults. Similarly, after exposure to α-HBCD, infantile mice contained 2.5-fold higher levels than adult. These differences lead to higher concentrations of the HBCD diastereomers at target tissues during critical windows of development. The results indicate that the toxicokinetics of the two HBCD diastereomers differ between developing and adult mice

  6. Long-term telemetric recording of arterial pressure and heart rate in mice fed basal and high NaCl diets.

    PubMed

    Carlson, S H; Wyss, J M

    2000-02-01

    Research examining the control of arterial pressure in mice has primarily relied on tail-cuff plethysmography and, more recently, on tethered arterial catheters. In contrast, the radiotelemetry method has largely become the "gold standard" for long-term monitoring of arterial pressure and heart rate in rats. Whereas smaller telemetry probes have recently been developed, no published studies have used radiotelemetric monitoring of arterial pressure in mice, largely because of a relatively low success rate in small mice (ie, <30 g body weight). We report on the development of a protocol for the use of these probes to continuously monitor arterial pressure and heart rate in mice as small as 19 g body weight. To test the accuracy and reliability of this method, adult C57/BL6 mice were monitored for 3 weeks during exposure to a basal followed by a high NaCl diet. The results demonstrate that carotid and aortic placements of the telemetry probe provide equally accurate monitoring of arterial pressure and heart rate, but the carotid placement has a much greater rate of success. Exposure to a high NaCl diet increases both the amplitude of the arterial pressure rhythm (+ 6.0+/-0.6 mm Hg, approximately 32%) and the average mean arterial pressure (+ 8.6+/-1.1 mm Hg, approximately 8%), as would be predicted from previous studies in NaCl-resistant rats. Thus, the data demonstrate that telemetric recording of long-term arterial pressure and heart rate provides a powerful tool with which to define the mechanisms of cardiovascular control in mice.

  7. Neonatal Colon Insult Alters Growth Factor Expression and TRPA1 Responses in Adult Mice

    PubMed Central

    Christianson, Julie A.; Bielefeldt, Klaus; Malin, Sacha A.; Davis, Brian M.

    2010-01-01

    Inflammation or pain during neonatal development can result in long-term structural and functional alterations of nociceptive pathways, ultimately altering pain perception in adulthood. We have developed a mouse model of neonatal colon irritation (NCI) to investigate the plasticity of pain processing within the viscerosensory system. Mouse pups received an intracolonic administration of 2% mustard oil (MO) on postnatal days 8 and 10. Distal colons were processed at subsequent timepoints for myeloperoxidase (MPO) activity and growth factor expression. Adult mice were assessed for visceral hypersensitivity by measuring the visceromotor response during colorectal distension. Dorsal root ganglion (DRG) neurons from adult mice were retrogradely labeled from the distal colon and calcium imaging was used to measure transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) responses to acute application of capsaicin and MO, respectively. Despite the absence of inflammation (as indicated by MPO activity), neonatal exposure to intracolonic MO transiently maintained a higher expression level of growth factor messenger RNA (mRNA). Adult NCI mice displayed significant visceral hypersensitivity, as well as increased sensitivity to mechanical stimulation of the hindpaw, compared to control mice. The percentage of TRPA1-expressing colon afferents was significantly increased in NCI mice, however they displayed no increase in the percentage of TRPV1-immunopositive or capsaicin-sensitive colon DRG neurons. These results suggest that early neonatal colon injury results in a long-lasting visceral hypersensitivity, possibly driven by an early increase in growth factor expression and maintained by permanent changes in TRPA1 function. PMID:20850221

  8. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    SciTech Connect

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  9. Enriched environment increases neurogenesis and improves social memory persistence in socially isolated adult mice.

    PubMed

    Monteiro, Brisa M M; Moreira, Fabrício A; Massensini, André R; Moraes, Márcio F D; Pereira, Grace S

    2014-02-01

    Social memory consists of the information necessary to identify and recognize cospecifics and is essential to many forms of social interaction. Social memory persistence is strongly modulated by the animal's experiences. We have shown in previous studies that social isolation (SI) in adulthood impairs social memory persistence and that an enriched environment (EE) prevents this impairment. However, the mechanisms involved in the effects of SI and EE on social memory persistence remain unknown. We hypothesized that the mechanism by which SI and EE affect social memory persistence is through their modulation of neurogenesis. To investigate this hypothesis, adult mice were submitted to 7 days of one of the following conditions: group-housing in a standard (GH) or enriched environment (GH+EE); social isolation in standard (SI) or enriched environment (SI+EE). We observed an increase in the number of newborn neurons in the dentate gyrus of the hippocampus (DG) and glomerular layer of the olfactory bulb (OB) in both GH+EE and SI+EE mice. However, this increase of newborn neurons in the granule cell layer of the OB was restricted to the GH+EE group. Furthermore, both SI and SI+EE groups showed less neurogenesis in the mitral layer of the OB. Interestingly, the performance of the SI mice in the buried food-finding task was inferior to that of the GH mice. To further analyze whether increased neurogenesis is in fact the mechanism by which the EE improves social memory persistence in SI mice, we administered the mitotic inhibitor AraC or saline directly into the lateral ventricles of the SI+EE mice. We found that the AraC treatment decreased cell proliferation in both the DG and OB, and impaired social memory persistence in the SI+EE mice. Taken together, our results strongly suggest that neurogenesis is what supports social memory persistence in socially isolated mice.

  10. Generation of Venus reporter knock-in mice revealed MAGI-2 expression patterns in adult mice.

    PubMed

    Ihara, Kan-ichiro; Nishimura, Tomoki; Fukuda, Tomokazu; Ookura, Tetsuya; Nishimori, Katsuhiko

    2012-01-01

    The membrane-associated guanylate kinase inverted 2 (MAGI-2) protein, which is known to localize at the tight junction of epithelial cells, contains multiple copies of the PDZ and WW domains in its structure. Although the expression pattern of Magi2 mRNA in representative organs has been previously published, its detailed cellular distribution at the histological level remains unknown. Such detailed information would be useful to clarify the biological function of MAGI-2. Here, we report the generation of Venus reporter knock-in mice for Magi2 in which exon 6 of the gene was substituted by the Venus-encoding sequence. We detected the expression of the Venus reporter protein in kidney podocytes from these knock-in mice. We also detected Venus reporter protein expression in spermatids within the testes and within neurons in various regions of the brain. Detection of the reporter protein from these diverse locations indicated the endogenous expression of MAGI-2 in these tissues. Our data suggested a potential function of MAGI-2 in the glomerular filtration process and sperm cell maturation. These data indicate that the Venus reporter knock-in mouse for Magi2 is a useful model for the further study of Magi2 gene function.

  11. VNN1 promotes atherosclerosis progression in apoE−/− mice fed a high-fat/high-cholesterol diet

    PubMed Central

    Hu, Yan-Wei; Wu, Shao-Guo; Zhao, Jing-Jing; Ma, Xin; Lu, Jing-Bo; Xiu, Jian-cheng; Zhang, Yuan; Huang, Chuan; Qiu, Yu-Rong; Sha, Yan-Hua; Gao, Ji-Juan; Wang, Yan-Chao; Li, Shu-Fen; Zhao, Jia-Yi; Zheng, Lei; Wang, Qian

    2016-01-01

    Accumulated evidence shows that vanin-1 (VNN1) plays a key part in glucose metabolism. We explored the effect of VNN1 on cholesterol metabolism, inflammation, apoptosis in vitro, and progression of atherosclerotic plaques in apoE−/− mice. Oxidized LDL (Ox-LDL) significantly induced VNN1 expression through an ERK1/2/cyclooxygenase-2/PPARα signaling pathway. VNN1 significantly increased cellular cholesterol content and decreased apoAI and HDL-cholesterol (HDL-C)-mediated efflux by 25.16% and 23.13%, respectively, in THP-1 macrophage-derived foam cells (P < 0.05). In addition, VNN1 attenuated Ox-LDL-induced apoptosis through upregulation of expression of p53 by 59.15% and downregulation of expression of B-cell lymphoma-2 127.13% in THP-1 macrophage (P < 0.05). In vivo, apoE−/− mice were divided randomly into two groups and transduced with lentivirus (LV)-Mock or LV-VNN1 for 12 weeks. VNN1-treated mice showed increased liver lipid content and plasma levels of TG (124.48%), LDL-cholesterol (119.64%), TNF-α (148.74%), interleukin (IL)-1β (131.81%), and IL-6 (156.51%), whereas plasma levels of HDL-C (25.75%) were decreased significantly (P < 0.05). Consistent with these data, development of atherosclerotic lesions was increased significantly upon infection of apoE−/− mice with LV-VNN1. These observations suggest that VNN1 may be a promising therapeutic candidate against atherosclerosis. PMID:27281478

  12. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet.

    PubMed

    Pu, Peng; Gao, Dong-Mei; Mohamed, Salim; Chen, Jing; Zhang, Jing; Zhou, Xiao-Ya; Zhou, Nai-Jing; Xie, Jing; Jiang, Hong

    2012-02-01

    Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage.

  13. Juvenile mice show greater flexibility in multiple choice reversal learning than adults

    PubMed Central

    Johnson, Carolyn; Wilbrecht, Linda

    2011-01-01

    We hypothesized that decision-making strategies in juvenile animals, rather than being immature, are optimized to navigate the uncertainty and instability likely to be encountered in the environment at the time of the animal’s transition to independence. We tested juvenile and young adult mice on discrimination and reversal of a 4-choice and 2-choice odor-based foraging task. Juvenile mice (P26–27) learned a 4-choice discrimination and reversal faster than adults (P60–70), making fewer perseverative and distraction errors. Juvenile mice had shorter choice latencies and more focused search strategies. In both ages, performance of the task was significantly impaired by a lesion of the dorsomedial frontal cortex. Our data show that the frontal cortex can support highly flexible behavior in juvenile mice at a time coincident with weaning and first independence. The unexpected developmental decline in flexibility of behavior one month later suggests that frontal cortex based executive function may not inevitably become more flexible with age, but rather may be developmentally tuned to optimize exploratory and exploitative behavior for each life stage. PMID:21949556

  14. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice.

    PubMed

    Sauter, Kristin A; Pridans, Clare; Sehgal, Anuj; Tsai, Yi Ting; Bradford, Barry M; Raza, Sobia; Moffat, Lindsey; Gow, Deborah J; Beard, Philippa M; Mabbott, Neil A; Smith, Lee B; Hume, David A

    2014-08-01

    We investigated the role of CSF1R signaling in adult mice using prolonged treatment with anti-CSF1R antibody. Mutation of the CSF1 gene in the op/op mouse produces numerous developmental abnormalities. Mutation of the CSF1R has an even more penetrant phenotype, including perinatal lethality, because of the existence of a second ligand, IL-34. These effects on development provide limited insight into functions of CSF1R signaling in adult homeostasis. The carcass weight and weight of several organs (spleen, kidney, and liver) were reduced in the treated mice, but overall body weight gain was increased. Despite the complete loss of Kupffer cells, there was no effect on liver gene expression. The treatment ablated OCL, increased bone density and trabecular volume, and prevented the decline in bone mass seen in female mice with age. The op/op mouse has a deficiency in pancreatic β cells and in Paneth cells in the gut wall. Only the latter was reproduced by the antibody treatment and was associated with increased goblet cell number but no change in villus architecture. Male op/op mice are infertile as a result of testosterone insufficiency. Anti-CSF1R treatment ablated interstitial macrophages in the testis, but there was no sustained effect on testosterone or LH. The results indicate an ongoing requirement for CSF1R signaling in macrophage and OCL homeostasis but indicate that most effects of CSF1 and CSF1R mutations are due to effects on development.

  15. Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    PubMed Central

    Batista, Thiago M.; Alonso-Magdalena, Paloma; Vieira, Elaine; Amaral, Maria Esmeria C.; Cederroth, Christopher R.; Nef, Serge; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2012-01-01

    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit. In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes. PMID:22470480

  16. Psychological stress in adolescent and adult mice increases neuroinflammation and attenuates the response to LPS challenge

    PubMed Central

    2012-01-01

    Background There is ample evidence that psychological stress adversely affects many diseases. Recent evidence has shown that intense stressors can increase inflammation within the brain, a known mediator of many diseases. However, long-term outcomes of chronic psychological stressors that elicit a neuroinflammatory response remain unknown. Methods To address this, we have modified previously described models of rat/mouse predatory stress (PS) to increase the intensity of the interaction. We postulated that these modifications would enhance the predator-prey experience and increase neuroinflammation and behavioral dysfunction in prey animals. In addition, another group of mice were subjected to a modified version of chronic unpredictable stress (CUS), an often-used model of chronic stress that utilizes a combination of stressors that include physical, psychological, chemical, and other. The CUS model has been shown to exacerbate a number of inflammatory-related diseases via an unknown mechanism. Using these two models we sought to determine: 1) whether chronic PS or CUS modulated the inflammatory response as a proposed mechanism by which behavioral deficits might be mediated, and 2) whether chronic exposure to a pure psychological stressor (PS) leads to deficits similar to those produced by a CUS model containing psychological and physical stressors. Finally, to determine whether acute PS has neuroinflammatory consequences, adult mice were examined at various time-points after PS for changes in inflammation. Results Adolescent mice subjected to chronic PS had increased basal expression of inflammation within the midbrain. CUS and chronic PS mice also had an impaired inflammatory response to a subsequent lipopolysaccharide challenge and PS mice displayed increased anxiety- and depressive-like behaviors following chronic stress. Finally, adult mice subjected to acute predatory stress had increased gene expression of inflammatory factors. Conclusion Our results

  17. Repeatability and consistency of individual behaviour in juvenile and adult Eurasian harvest mice

    NASA Astrophysics Data System (ADS)

    Schuster, Andrea C.; Carl, Teresa; Foerster, Katharina

    2017-04-01

    Knowledge on animal personality has provided new insights into evolutionary biology and animal ecology, as behavioural types have been shown to affect fitness. Animal personality is characterized by repeatable and consistent between-individual behavioural differences throughout time and across different situations. Behavioural repeatability within life history stages and consistency between life history stages should be checked for the independence of sex and age, as recent data have shown that males and females in some species may differ in the repeatability of behavioural traits, as well as in their consistency. We measured the repeatability and consistency of three behavioural and one cognitive traits in juvenile and adult Eurasian harvest mice ( Micromys minutus). We found that exploration, activity and boldness were repeatable in juveniles and adults. Spatial recognition measured in a Y Maze was only repeatable in adult mice. Exploration, activity and boldness were consistent before and after maturation, as well as before and after first sexual contact. Data on spatial recognition provided little evidence for consistency. Further, we found some evidence for a litter effect on behaviours by comparing different linear mixed models. We concluded that harvest mice express animal personality traits as behaviours were repeatable across sexes and consistent across life history stages. The tested cognitive trait showed low repeatability and was less consistent across life history stages. Given the rising interest in individual variation in cognitive performance, and in its relationship to animal personality, we suggest that it is important to gather more data on the repeatability and consistency of cognitive traits.

  18. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.

    PubMed

    Lei, Lei; Spradling, Allan C

    2013-05-21

    Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.

  19. Isocaloric pair-fed high-carbohydrate diet induced more hepatic steatosis and inflammation than high-fat diet mediated by miR- 34a/SIRT1 axis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the different effects of isocaloric high-fat diet (HFD) and high-carbohydrate diet (HCD) on hepatic steatosis and the underlying mechanisms, especially the role of microRNA- 34a/silent information regulator T1 (SIRT1) axis, C57BL/6J mice (n = 12/group) were isocaloric pair-fed with Li...

  20. Genistein promotes insulin action through adenosine monophosphate-activated protein kinase activation and p70 ribosomal protein S6 kinase 1 inhibition in the skeletal muscle of mice fed a high energy diet.

    PubMed

    Arunkumar, Elumalai; Anuradha, Carani Venkatraman

    2012-08-01

    Genistein (GEN), a soy isoflavone, exerts insulin-sensitizing actions in animals; however, the underlying mechanisms have not been determined. Because GEN is a known activator of adenosine monophosphate-activated protein kinase (AMPK), we hypothesize that GEN activates insulin signaling through AMPK activation. To test this hypothesis, a high fat-high fructose diet (HFFD)-fed mice model of insulin resistance was administered GEN, and the insulin signaling pathway proteins in the skeletal muscle were examined. Hyperglycemia and hyperinsulinemia observed in HFFD-fed mice were significantly lowered by GEN. GEN increased insulin-stimulated tyrosine phosphorylation of insulin receptor-β and insulin receptor substrate (IRS) 1 but down-regulated IRS-1 serine phosphorylation in the skeletal muscle of HFFD-fed mice. Furthermore, GEN treatment improved muscle IRS-1-associated phospatidylinositol-3 kinase expression, phosphorylation of Akt at Ser(473), and translocation of glucose transporter subtype 4. Phosphorylation of AMPK at Thr(172) and acetyl coenzyme A carboxylase (ACC) at Ser(79) was augmented, whereas phosphorylation of p70 ribosomal protein S6 kinase 1 at Thr(389) was significantly decreased after GEN treatment in the skeletal muscle of HFFD-fed mice. These results suggest that GEN might improve insulin action in the skeletal muscle by targeting AMPK.

  1. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet

    PubMed Central

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity. PMID:26066016

  2. Isoorientin Prevents Hyperlipidemia and Liver Injury by Regulating Lipid Metabolism, Antioxidant Capability, and Inflammatory Cytokine Release in High-Fructose-Fed Mice.

    PubMed

    Yuan, Li; Han, Xiao; Li, Wenfeng; Ren, Daoyuan; Yang, Xingbin

    2016-04-06

    Isoorientin (ISO), a natural flavonoid, has been found to have multiple biological properties. In the present study, obese mice with high-fructose (HF)-induced liver injury were used to investigate the hepatoprotective effects of ISO. The results showed that ISO significantly reduced the serum lipid parameters in mice fed 20% HF water. Meanwhile, ISO appeared to alleviate HF-induced lipid metabolic disorders by increasing the serum levels of apo-A1 and decreasing the serum apoB levels, apoB/apo-A1 ratio, and FAS activity in the liver. ISO also remarkably ameliorated HF-induced hepatic oxidative injury and inflammation by decreasing ALT, AST, and ALP levels; enhancing antioxidant enzyme activities; and inhibiting inflammatory cytokine (TNF-α, IL-1, IL-6) release. Histopathology of liver stained by H&E and Oil Red O showed the liver steatosis and oxidative injury after HF treatment and the protective effect of ISO. Furthermore, aortic pathology observation found that ISO had a protective effect on the vascular endothelium. This is the first report that ISO efficiently inhibited HF-induced hyperlipidemia and liver injury by ameliorating lipid metabolism, enhancing the antioxidant defensedefense system, and regulating the secretion of inflammatory cytokines.

  3. Microalgal Oil Supplementation Has an Anti-Obesity Effect in C57BL/6J Mice Fed a High Fat Diet

    PubMed Central

    Yook, Jin-Seon; Kim, Kyung-Ah; Park, Jeong Eun; Lee, Seon-Hwa; Cha, Youn-Soo

    2015-01-01

    This study investigated the impact of microalgal oil (MO) on body weight management in C57BL/6J mice. Obesity was induced for 8 weeks and animals were orally supplemented with the following for 8 additional weeks: beef tallow (BT), corn oil, fish oil (FO), microalgal oil (MO), or none, as a high fat diet control group (HD). A normal control group was fed with a normal diet. After completing the experiment, the FO and MO groups showed significant decreases in body weight gain, epididymal fat pad weights, serum triglycerides, and total cholesterol levels compared to the HD and BT groups. A lower mRNA expression level of lipid anabolic gene and higher levels of lipid catabolic genes were observed in both FO and MO groups. Serum insulin and leptin concentrations were lower in the MO group. These results indicated that microalgal oil has an anti-obesity effect that can combat high fat diet-induced obesity in mice. PMID:26770909

  4. Elemental concentrations in kidney and liver of mice fed with cafeteria or standard diet determined by particle induced X-ray emission

    NASA Astrophysics Data System (ADS)

    Leffa, Daniela Dimer; dos Santos, Carla Eliete Iochims; Debastiani, Rafaela; Amaral, Livio; Yoneama, Maria Lucia; Dias, Johnny Ferraz; Andrade, Vanessa Moraes

    2014-01-01

    The importance of trace elements in human health is well known and their main source is daily diet. Nowadays, one of the biggest issues is the presence of these micronutrients in levels much higher than required, leading to potential toxic effects. The aim of this work was to investigate the elemental content in organs of mice fed with cafeteria or standard diet using PIXE. Twelve male Swiss mice were divided into two groups: control group (standard chow) and cafeteria group (high-caloric diet). After 17 weeks, samples of different organs (kidney and liver) were collected and prepared for PIXE analysis. The Fe concentration in kidney and liver was statistically higher in animals that received the cafeteria diet (p < 0.001). The Al and Si kidney contents were significantly higher for cafeteria diet in relation to standard diet (p < 0.05). Moreover, the standard diet showed significant differences for Cl and K (p < 0.05) in comparison to cafeteria diet in kidney, and for P, S and Zn (p < 0.005) in liver.

  5. Genome-wide analysis identifies colonic genes differentially associated with serum leptin and insulin concentrations in C57BL/6J mice fed a high-fat diet

    PubMed Central

    Yoon, Joon; Chu, Jae Ryang; Bae, Yun Jung; Lee, Seungyeoun; Park, Taesung; Sung, Mi-Kyung

    2017-01-01

    Obesity-induced chronic inflammation is known to increase the risk of ulcerative colitis, Crohn’s disease, and colorectal cancer. Accumulating evidence suggests that leptin and insulin are key molecules linking obesity with diseases of the lower intestine. Here, we identified serum phenotype-associated genes in the colon of diet-induced obese mice as early biomarkers of obesity-associated colonic diseases. C57BL/6J mice were fed with either normal diet (ND, 15% of fat calories) or high-fat diet (HFD, 45% of fat calories) for 8 weeks. Serum concentrations of insulin, insulin-like growth factor-1 (IGF-1), leptin, and adiponectin were measured as obesity-related phenotypic markers. Genome-wide gene expression profiles of colon tissue were determined, followed by statistical analyses to detect differentially expressed and serum phenotype-associated genes. HFD-fed mice showed higher serum concentrations of leptin (P < 0.001) and insulin (P < 0.01) than those in the ND group, whereas serum IGF-1 and adiponectin concentrations did not differ between the two dietary groups. Among differentially expressed genes affected by HFD, 135, 128, 110, and 341 genes were associated with serum levels of leptin, insulin, IGF-1, and adiponectin, respectively. We identified 17 leptin-associated genes and 4 insulin-associated genes that inversely responded to HFD and ND. Among these, leptin-associated Peli3 (Pellino E3 ubiquitin protein ligase family member 3), Creb1 (cAMP responsive element binding protein 1), and Enpp2 (ectonucleotide pyrophosphatase/phosphodiesterase 2, autotaxin) and insulin-associated Centg1 (AGAP2, ArfGAP with GTPase domain) are reported to play a role either in obesity or colonic diseases. mRNA expression of these genes was validated by RT-qPCR. Our data suggest Peli3, Creb1, Enpp2, and Centg1 as potential early biomarker candidates for obesity-induced pathophysiological changes in the colon. Future studies verifying the function of these candidates are needed

  6. Green Tea Extract Rich in Epigallocatechin-3-Gallate Prevents Fatty Liver by AMPK Activation via LKB1 in Mice Fed a High-Fat Diet.

    PubMed

    Santamarina, Aline B; Oliveira, Juliana L; Silva, Fernanda P; Carnier, June; Mennitti, Laís V; Santana, Aline A; de Souza, Gabriel H I; Ribeiro, Eliane B; Oller do Nascimento, Cláudia M; Lira, Fábio S; Oyama, Lila M

    2015-01-01

    Supplementation with epigallocatechin-3-gallate has been determined to aid in the prevention of obesity. Decaffeinated green tea extract appears to restore a normal hepatic metabolic profile and attenuate high-fat diet (HFD)-induced effects, thereby preventing non-alcoholic fatty liver disease in mice. Mice were maintained on either a control diet (CD) or HFD for 16 weeks and supplemented with either water or green tea extract (50 mg/kg/day). The body mass increase, serum adiponectin level, and lipid profile were measured over the course of the treatment. Furthermore, the AMPK pathway protein expression in the liver was measured. From the fourth week, the weight gain in the CD + green tea extract (CE) group was lower than that in the CD + water (CW) group. From the eighth week, the weight gain in the HFD + water (HFW) group was found to be higher than that in the CW group. Moreover, the weight gain in the HFD + green tea extract (HFE) group was found to be lower than that in the HFW group. Carcass lipid content was found to be higher in the HFW group than that in the CW and HFE groups. Serum analysis showed reduced non-esterified fatty acid level in the CE and HFE groups as compared with their corresponding placebo groups. Increased adiponectin level was observed in the same groups. Increased VLDL-TG secretion was observed in the HFW group as compared with the CW and HFE groups. Increased protein expression of AdipoR2, SIRT1, pLKB1, and pAMPK was observed in the HFE group, which explained the reduced expression of ACC, FAS, SREBP-1, and ChREBP in this group. These results indicate that the effects of decaffeinated green tea extract may be related to the activation of AMPK via LKB1 in the liver of HFD-fed mice.

  7. Effects and action mechanisms of berberine and Rhizoma coptidis on gut microbes and obesity in high-fat diet-fed C57BL/6J mice.

    PubMed

    Xie, Weidong; Gu, Dayong; Li, Jianna; Cui, Kai; Zhang, Yaou

    2011-01-01

    Gut microbes play important roles in regulating fat storage and metabolism. Rhizoma coptidis (RC) and its main active compound, berberine, have either antimicrobial or anti-obesity activities. In the present study, we hypothesize that RC exerts anti-obesity effects that are likely mediated by mechanisms of regulating gut microbes and berberine may be a key compound of RC. Gut microbes and glucose and lipid metabolism in high-fat diet-fed C57BL/6J (HFD) mice in vivo are investigated after RC and berberine treatments. The results show that RC (200 mg/kg) and berberine (200 mg/kg) significantly lower both body and visceral adipose weights, and reduce blood glucose and lipid levels, and decrease degradation of dietary polysaccharides in HFD mice. Both RC and berberine significantly reduce the proportions of fecal Firmicutes and Bacteroidetes to total bacteria in HFD mice. In the trial ex vivo, both RC and berberine significantly inhibit the growth of gut bacteria under aerobic and anaerobic conditions. In in vitro trials, both RC and berberine significantly inhibit the growth of Lactobacillus (a classical type of Firmicutes) under anaerobic conditions. Furthermore, both RC and berberine significantly increase fasting-induced adipose factor (Fiaf, a key protein negatively regulated by intestinal microbes) expressions in either intestinal or visceral adipose tissues. Both RC and berberine significantly increase mRNA expressions of AMPK, PGC1α, UCP2, CPT1α, and Hadhb related to mitochondrial energy metabolism, which may be driven by increased Fiaf expression. These results firstly suggest that antimicrobial activities of RC and berberine may result in decreasing degradation of dietary polysaccharides, lowering potential calorie intake, and then systemically activating Fiaf protein and related gene expressions of mitochondrial energy metabolism in visceral adipose tissues. Taken together, these action mechanisms may contribute to significant anti-obesity effects

  8. Green Tea Extract Rich in Epigallocatechin-3-Gallate Prevents Fatty Liver by AMPK Activation via LKB1 in Mice Fed a High-Fat Diet

    PubMed Central

    Santamarina, Aline B.; Oliveira, Juliana L.; Silva, Fernanda P.; Carnier, June; Mennitti, Laís V.; Santana, Aline A.; de Souza, Gabriel H. I.; Ribeiro, Eliane B.; Oller do Nascimento, Cláudia M.; Lira, Fábio S.; Oyama, Lila M.

    2015-01-01

    Supplementation with epigallocatechin-3-gallate has been determined to aid in the prevention of obesity. Decaffeinated green tea extract appears to restore a normal hepatic metabolic profile and attenuate high-fat diet (HFD)-induced effects, thereby preventing non-alcoholic fatty liver disease in mice. Mice were maintained on either a control diet (CD) or HFD for 16 weeks and supplemented with either water or green tea extract (50 mg/kg/day). The body mass increase, serum adiponectin level, and lipid profile were measured over the course of the treatment. Furthermore, the AMPK pathway protein expression in the liver was measured. From the fourth week, the weight gain in the CD + green tea extract (CE) group was lower than that in the CD + water (CW) group. From the eighth week, the weight gain in the HFD + water (HFW) group was found to be higher than that in the CW group. Moreover, the weight gain in the HFD + green tea extract (HFE) group was found to be lower than that in the HFW group. Carcass lipid content was found to be higher in the HFW group than that in the CW and HFE groups. Serum analysis showed reduced non-esterified fatty acid level in the CE and HFE groups as compared with their corresponding placebo groups. Increased adiponectin level was observed in the same groups. Increased VLDL-TG secretion was observed in the HFW group as compared with the CW and HFE groups. Increased protein expression of AdipoR2, SIRT1, pLKB1, and pAMPK was observed in the HFE group, which explained the reduced expression of ACC, FAS, SREBP-1, and ChREBP in this group. These results indicate that the effects of decaffeinated green tea extract may be related to the activation of AMPK via LKB1 in the liver of HFD-fed mice. PMID:26536464

  9. Chronic benzylamine administration in the drinking water improves glucose tolerance, reduces body weight gain and circulating cholesterol in high-fat diet-fed mice.

    PubMed

    Iffiú-Soltész, Zsuzsa; Wanecq, Estelle; Lomba, Almudena; Portillo, Maria P; Pellati, Federica; Szöko, Eva; Bour, Sandy; Woodley, John; Milagro, Fermin I; Alfredo Martinez, J; Valet, Philippe; Carpéné, Christian

    2010-04-01

    Benzylamine is found in Moringa oleifera, a plant used to treat diabetes in traditional medicine. In mammals, benzylamine is metabolized by semicarbazide-sensitive amine oxidase (SSAO) to benzaldehyde and hydrogen peroxide. This latter product has insulin-mimicking action, and is involved in the effects of benzylamine on human adipocytes: stimulation of glucose transport and inhibition of lipolysis. This study examined whether chronic, oral administration of benzylamine could improve glucose tolerance and the circulating lipid profile without increasing oxidative stress in overweight and pre-diabetic mice. The benzylamine diffusion across the intestine was verified using everted gut sacs. Then, glucose handling and metabolic markers were measured in mice rendered insulin-resistant when fed a high-fat diet (HFD) and receiving or not benzylamine in their drinking water (3600micromol/(kgday)) for 17 weeks. HFD-benzylamine mice showed lower body weight gain, fasting blood glucose, total plasma cholesterol and hyperglycaemic response to glucose load when compared to HFD control. In adipocytes, insulin-induced activation of glucose transport and inhibition of lipolysis remained unchanged. In aorta, benzylamine treatment partially restored the nitrite levels that were reduced by HFD. In liver, lipid peroxidation markers were reduced. Resistin and uric acid, surrogate plasma markers of metabolic syndrome, were decreased. In spite of the putative deleterious nature of the hydrogen peroxide generated during amine oxidation, and in agreement with its in vitro insulin-like actions found on adipocytes, the SSAO-substrate benzylamine could be considered as a potential oral agent to treat metabolic syndrome.

  10. Pectinase-Processed Ginseng Radix (GINST) Ameliorates Hyperglycemia and Hyperlipidemia in High Fat Diet-Fed ICR Mice

    PubMed Central

    Yuan, Hai-Dan; Kim, Jung Tae; Chung, Sung Hyun

    2012-01-01

    To develop a ginseng product possessing an efficacy for diabetes, ginseng radix ethanol extract was treated with pectinase and obtained the GINST. In the present study, we evaluate the beneficial effect of GINST on high fat diet (HFD)-induced hyper-glycemia and hyperlipidemia and action mechanism(s) in ICR mice. The mice were randomly divided into five groups: regular diet group (RD), high fat diet group (HFD), HFD plus GINST at 75 mg/kg (GINST75), 150 mg/kg (GINST150), and 300 mg/kg (GINST300). Oral glucose tolerance test reveals that GINST improves the glucose tolerance after glucose challenge. Fasting plasma glucose and insulin levels were decreased by 4.3% and 4.2% in GINST75, 10.9% and 20.0% in GINST150, and 19.6% and 20.9% in GINST300 compared to those in HFD control group. Insulin resistance indices were also markedly decreased by 8.2% in GINST75, 28.7% in GINST150, and 36.4% in GINST300, compared to the HFD control group. Plasma triglyceride, total cholesterol and non-esterified fatty acid levels in the GINST300 group were decreased by 13.5%, 22.7% and 24.1%, respectively, compared to those in HFD control group. Enlarged adipocytes of HFD control group were markedly decreased in GINST-treated groups, and shrunken islets of HFD control mice were brought back to near normal shape in GINST300 group. Furthermore, GINST enhanced phosphorylation of AMP-activated protein kinase (AMPK) and glucose transporter 4 (GLUT4). In summary, GINST prevents HFD-induced hyperglycemia and hyperlipidemia through reducing insulin resistance via activating AMPK-GLUT4 pathways, and could be a potential therapeutic agent for type 2 diabetes. PMID:24116299

  11. Membrane potential dye imaging of ventromedial hypothalamus neurons from adult mice to study glucose sensing.

    PubMed

    Vazirani, Reema P; Fioramonti, Xavier; Routh, Vanessa H

    2013-11-27

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.

  12. Duct Cells Contribute to Regeneration of Endocrine and Acinar Cells Following Pancreatic Damage in Adult Mice

    PubMed Central

    CRISCIMANNA, ANGELA; SPEICHER, JULIE A.; HOUSHMAND, GOLBAHAR; SHIOTA, CHIYO; PRASADAN, KRISHNA; Ji, BAOAN; LOGSDON, CRAIG D.; GITTES, GEORGE K.; ESNI, FARZAD

    2015-01-01

    BACKGROUND & AIMS There have been conflicting results on a cell of origin in pancreatic regeneration. These discrepancies predominantly stem from lack of specific markers for the pancreatic precursors/stem cells, as well as differences in the targeted cells and severity of tissue injury in the experimental models so far proposed. We attempted to create a model that used diphtheria toxin receptor (DTR) to ablate specific cell populations, control the extent of injury, and avoid induction of the inflammatory response. METHODS To target specific types of pancreatic cells, we crossed R26DTR or R26dtR/lacZ mice with transgenic mice that express the Cre recombinase in the pancreas, under control of the Pdx1 (global pancreatic) or elastase (acinar-specific) promoters. RESULTS Exposure of PdxCre;R26DTR mice to diphtheria toxin resulted in extensive ablation of acinar and endocrine tissues but not ductal cells. Surviving cells within the ductal compartment contributed to regeneration of endocrine and acinar cells via recapitulation of the embryonic pancreatic developmental program. However, following selective ablation of acinar tissue in ElaCre-ERT2;R26DTR mice, regeneration likely occurred by reprogramming of ductal cells to acinar lineage. CONCLUSIONS In the pancreas of adult mice, epithelial cells within the ductal compartment contribute to regeneration of endocrine and acinar cells. The severity of injury determines the regenerative mechanisms and cell types that contribute to this process. PMID:21763240

  13. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CD1 Mice

    EPA Science Inventory

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the bi...

  14. Effect of peripheral kisspeptin administration on adiponectin, leptin, and resistin secretion under fed and fasting conditions in the adult male rhesus monkey (Macaca mulatta).

    PubMed

    Wahab, F; Bano, R; Jabeen, S; Irfan, S; Shahab, M

    2010-07-01

    In the last few years, kisspeptin-KISS1R signaling has appeared as a major regulator of the reproductive function in several vertebrate species. However, KISS1(encoding kisspeptin) and its putative receptor, KISS1R, are expressed in several other tissues. Adipose tissue, which secretes many peptides with diverse functions in normal physiology, expresses KISS1, which is modulated by gonadal steroids as well as by body nutritional status. Similarly, KISS1Rexpression is also found in adipose tissue, but the local role of kisspeptin in adipocyte function is currently unknown. Therefore, in the present study the effects of exogenous human kisspeptin-10 (KP10) were studied on three important adipokines, namely, adiponectin, leptin, and resistin in a set of four chair-restraint habituated intact adult male rhesus monkeys under; 1) normal fed conditions, 2) 24-h fasting conditions, and 3) 48-h fasting conditions. Plasma resistin and leptin levels decreased (p<0.01), whereas adiponectin levels increased (p<0.05) in fasted monkeys. Kisspeptin administration significantly increased (p<0.05) mean plasma adiponectin levels under fed and 24-h fasting conditions as compared to pretreatment or vehicle-treatment levels. A stimulatory effect was also observed on the 48-h fasting stimulated plasma adiponectin levels, but it lacked statistical significance. In contrast, no effect of kisspeptin was observed on mean plasma leptin and resistin levels. Thus, the present study demonstrated a stimulatory effect of peripheral kisspeptin administration on the plasma adiponectin levels under fed and 24-h fasting conditions in the adult male rhesus monkey. These findings, therefore, assign a novel role to kisspeptin, a regulator of adipocyte function in higher primate.

  15. Synaptosomal-associated protein 25 mutation induces immaturity of the dentate granule cells of adult mice

    PubMed Central

    2013-01-01

    Background Synaptosomal-associated protein, 25 kDa (SNAP-25) regulates the exocytosis of neurotransmitters. Growing evidence suggests that SNAP-25 is involved in neuropsychiatric disorders, such as schizophrenia, attention-deficit/hyperactivity disorder, and epilepsy. Recently, increases in anxiety-related behaviors and epilepsy have been observed in SNAP-25 knock-in (KI) mice, which have a single amino acid substitution of Ala for Ser187. However, the molecular and cellular mechanisms underlying the abnormalities in this mutant remain unknown. Results In this study, we found that a significant number of dentate gyrus (DG) granule cells was histologically and electrophysiologically similar to immature DG neurons in the dentate gyrus of the adult mutants, a phenomenon termed the “immature DG” (iDG). SNAP-25 KI mice and other mice possessing the iDG phenotype, i.e., alpha-calcium/calmodulin-dependent protein kinase II heterozygous mice, Schnurri-2 knockout mice, and mice treated with the antidepressant fluoxetine, showed similar molecular expression patterns, with over 100 genes similarly altered. A working memory deficit was also identified in mutant mice during a spontaneous forced alternation task using a modified T-maze, a behavioral task known to be dependent on hippocampal function. Chronic treatments with the antiepileptic drug valproate abolished the iDG phenotype and the working memory deficit in mutants. Conclusions These findings suggest that the substitution of Ala for Ser187 in SNAP-25 induces the iDG phenotype, which can also be caused by epilepsy, and led to a severe working memory deficit. In addition, the iDG phenotype in adulthood is likely an endophenotype for at least a part of some common psychiatric disorders. PMID:23497716

  16. Loss of AND-34/BCAR3 expression in mice results in rupture of the adult lens

    PubMed Central

    Near, Richard I.; Smith, Richard S.; Toselli, Paul A.; Freddo, Thomas F.; Bloom, Alexander B.; Vanden Borre, Pierre; Seldin, David C.

    2009-01-01

    Purpose AND-34/BCAR3 (Breast Cancer Anti-Estrogen Resistance 3) associates with the focal adhesion adaptor protein, p130CAS/BCAR1. Expression of AND-34 regulates epithelial cell growth pattern, motility, and growth factor dependence. We sought to establish the effects of the loss of AND-34 expression in a mammalian organism. Methods AND-34−/− mice were generated by homologous recombination. Histopathology, in situ hybridization, and western blotting were performed on murine tissues. Results Western analyses confirmed total loss of expression in AND-34−/− splenic lymphocytes. Mice lacking AND-34 are fertile and have normal longevity. While AND-34 is widely expressed in wild type mice, histologic analysis of multiple organs in AND-34−/− mice is unremarkable and analyses of lymphocyte development show no overt changes. A small percentage of AND-34−/− mice show distinctive small white eye lesions resulting from the migration of ruptured cortical lens tissue into the anterior chamber. Following initial vacuolization and liquefaction of the lens cortex first observed at postnatal day three, posterior lens rupture occurs in all AND-34−/− mice, beginning as early as three weeks and seen in all mice at three months. Western blot analysis and in situ hybridization confirmed the presence of AND-34 RNA and protein in lens epithelial cells, particularly at the lens equator. Prior data link AND-34 expression to the activation of Akt signaling. While Akt Ser 473 phosphorylation was readily detectable in AND-34+/+ lens epithelial cells, it was markedly reduced in the AND-34−/− lens epithelium. Basal levels of p130Cas phosphorylation were higher in AND-34+/+ than in AND-34−/− lens epithelium. Conclusions These results demonstrate the loss of AND-34 dysregulates focal adhesion complex signaling in lens epithelial cells and suggest that AND-34-mediated signaling is required for maintenance of the structural integrity of the adult ocular lens. PMID:19365570

  17. Morphological and behavioral characterization of adult mice deficient for SrGAP3.

    PubMed

    Bertram, Jonathan; Koschützke, Leif; Pfannmöller, Jörg P; Esche, Jennifer; van Diepen, Laura; Kuss, Andreas W; Hartmann, Bianca; Bartsch, Dusan; Lotze, Martin; von Bohlen Und Halbach, Oliver

    2016-10-01

    SrGAP3 belongs to the family of Rho GTPase proteins. These proteins are thought to play essential roles in development and in the plasticity of the nervous system. SrGAP3-deficient mice have recently been created and approximately 10 % of these mice developed a hydrocephalus and died shortly after birth. The others survived into adulthood, but displayed neuroanatomical alteration, including increased ventricular size. We now show that SrGAP3-deficient mice display increased brain weight together with increased hippocampal volume. This increase was accompanied by an increase of the thickness of the stratum oriens of area CA1 as well as of the thickness of the molecular layer of the dentate gyrus (DG). Concerning hippocampal adult neurogenesis, we observed no significant change in the number of proliferating cells. The density of doublecortin-positive cells also did not vary between SrGAP3-deficient mice and controls. By analyzing Golgi-impregnated material, we found that, in SrGAP3-deficient mice, the morphology and number of dendritic spines was not altered in the DG. Likewise, a Sholl-analysis revealed no significant changes concerning dendritic complexity as compared to controls. Despite the distinct morphological alterations in the hippocampus, SrGAP3-deficient mice were relatively inconspicuous in their behavior, not only in the open-field, nest building but also in the Morris water-maze. However, the SrGAP3-deficient mice showed little to no interest in burying marbles; a behavior that is seen in some animal models related to autism, supporting the view that SrGAP3 plays a role in neurodevelopmental disorders.

  18. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function

    PubMed Central

    Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Medigeshi, Guruprasad R.

    2017-01-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β–T cells (TCRβ–null) are highly susceptible and die over 10–18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage. PMID:28151989

  19. Garcinia cambogia extract ameliorates visceral adiposity in C57BL/6J mice fed on a high-fat diet.

    PubMed

    Kim, Keun-Young; Lee, Hye Nam; Kim, Yun Jung; Park, Taesun

    2008-07-01

    The aim of present study is to evaluate the effects of Garcinia cambogia on the mRNA levels of the various genes involved in adipogenesis, as well as on body weight gain, visceral fat accumulation, and other biochemical markers of obesity in obesity-prone C57BL/6J mice. Consumption of the Garcinia cambogia extract effectively lowered the body weight gain, visceral fat accumulation, blood and hepatic lipid concentrations, and plasma insulin and leptin levels in a high-fat diet (HFD)-induced obesity mouse model. The Garcinia cambogia extract reversed the HFD-induced changes in the expression pattern of such epididymal adipose tissue genes as adipocyte protein aP2 (aP2), sterol regulatory element-binding factor 1c (SREBP1c), peroxisome proliferator-activated receptor gamma2 (PPARgamma2), and CCAT/enhancer-binding protein alpha (C/EBPalpha). These findings suggest that the Garcinia cambogia extract ameliorated HFD-induced obesity, probably by modulating multiple genes associated with adipogenesis, such as aP2, SREBP1c, PPARgamma2, and C/EBPalpha in the visceral fat tissue of mice.

  20. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice.

    PubMed

    Baltgalvis, Kristen A; White, Kathy; Li, Wei; Claypool, Mark D; Lang, Wayne; Alcantara, Raniel; Singh, Baljit K; Friera, Annabelle M; McLaughlin, John; Hansen, Derek; McCaughey, Kelly; Nguyen, Henry; Smith, Ira J; Godinez, Guillermo; Shaw, Simon J; Goff, Dane; Singh, Rajinder; Markovtsov, Vadim; Sun, Tian-Qiang; Jenkins, Yonchu; Uy, Gerald; Li, Yingwu; Pan, Alison; Gururaja, Tarikere; Lau, David; Park, Gary; Hitoshi, Yasumichi; Payan, Donald G; Kinsella, Todd M

    2014-04-15

    Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD.

  1. Glucose transporter-8 (GLUT8) mediates glucose intolerance and dyslipidemia in high-fructose diet-fed male mice.

    PubMed

    DeBosch, Brian J; Chen, Zhouji; Finck, Brian N; Chi, Maggie; Moley, Kelle H

    2013-11-01

    Members of the glucose transporter (GLUT) family of membrane-spanning hexose transporters are subjects of intensive investigation for their potential as modifiable targets to treat or prevent obesity, metabolic syndrome, and type 2 diabetes mellitus. Mounting evidence suggests that the ubiquitously expressed class III dual-specificity glucose and fructose transporter, GLUT8, has important metabolic homeostatic functions. We therefore tested the hypothesis that GLUT8 mediates the deleterious metabolic effects of chronic high-fructose diet exposure. Here we demonstrate resistance to high-fructose diet-induced glucose intolerance and dyslipidemia concomitant with enhanced oxygen consumption and thermogenesis in GLUT8-deficient male mice. Independent of diet, significantly lower systolic blood pressure both at baseline and after high-fructose diet feeding was also observed by tail-cuff plethysmography in GLUT8-deficient mice vs wild-type controls. Resistance to fructose-induced metabolic dysregulation occurred in the context of enhanced hepatic peroxisome proliferator antigen receptor-γ (PPARγ) protein abundance, whereas in vivo hepatic adenoviral GLUT8 overexpression suppressed hepatic PPARγ expression. Taken together, these findings suggest that GLUT8 blockade prevents fructose-induced metabolic dysregulation, potentially by enhancing hepatic fatty acid metabolism through PPARγ and its downstream targets. We thus establish GLUT8 as a promising target in the prevention of diet-induced obesity, metabolic syndrome, and type 2 diabetes mellitus in males.

  2. Oestradiol Exposure Early in Life Programs Daily and Circadian Activity Rhythms in Adult Mice.

    PubMed

    Royston, S E; Bunick, D; Mahoney, M M

    2016-01-01

    Hormone signalling during critical periods organises the adult circadian timekeeping system by altering adult hormone sensitivity and shaping fundamental properties of circadian rhythmicity. However, the timing of when developmental oestrogens modify the timekeeping system is poorly understood. To test the hypothesis that alterations in postnatal oestrogenic signalling organise adult daily activity rhythms, we utilised aromatase knockout mice (ArKO), which lack the enzyme required for oestradiol synthesis. ArKO and wild-type (WT) males and females were administered either oestradiol (E) or oil (OIL) daily for the first 5 postnatal days (p1-5E and p1-5OIL , respectively) because this time encompasses the emergence of clock gene rhythmicity and light responsiveness in the suprachiasmatic nucleus, a bilateral hypothalamic structure regarded as the 'master oscillator'. After sexual maturation, gonadectomy and exogenous oestradiol supplementation, locomotor parameters were assessed. We determined that altered oestrogenic signalling in early life exerts organisational control over the expression of daily and circadian activity rhythms in adult mice. Specifically, p1-5E reduced total wheel running activity in male and female ArKO and female WT mice but had no effect on WT male activity levels. In females, wheel running was consolidated by p1-5E to the early versus late evening, a phenomenon characteristic of male mice. The time of peak activity was advanced by p1-5E in WT and ArKO females but not males. P1-5E shortened the length of the active phase (alpha) in WT males but had no effect on ArKO males or females of either genotypes. Finally, p1-5E altered the magnitude of photic-induced shifts, suggesting that developmental oestrogenic signalling impacts adult circadian functions. In the present study, we further define both a critical period of development of the adult timekeeping system and the role that oestrogenic signalling plays in the expression of daily and

  3. Steroidogenic Factor 1 Differentially Regulates Fetal and Adult Leydig Cell Development in Male Mice1

    PubMed Central

    Karpova, Tatiana; Ravichandiran, Kumarasamy; Insisienmay, Lovella; Rice, Daren; Agbor, Valentine; Heckert, Leslie L.

    2015-01-01

    The nuclear receptor steroidogenic factor 1 (SF-1, AD4BP, NR5A1) is a key regulator of the endocrine axes and is essential for adrenal and gonad development. Partial rescue of Nr5a1−/− mice with an SF-1-expressing transgene caused a hypomorphic phenotype that revealed its roles in Leydig cell development. In contrast to controls, all male rescue mice (Nr5a1−/−;tg+/0) showed varying signs of androgen deficiency, including spermatogenic arrest, cryptorchidism, and poor virilization. Expression of various Leydig cell markers measured by immunohistochemistry, Western blot analysis, and RT-PCR indicated fetal and adult Leydig cell development were differentially impaired. Whereas fetal Leydig cell development was delayed in Nr5a1−/−;tg+/0 embryos, it recovered to control levels by birth. In contrast, Sult1e1, Vcam1, and Hsd3b6 transcript levels in adult rescue testes indicated complete blockage in adult Leydig cell development. In addition, between Postnatal Days 8 and 12, peritubular cells expressing PTCH1, SF-1, and CYP11A1 were observed in control testes but not in rescue testes, indicating SF-1 is needed for either survival or differentiation of adult Leydig cell progenitors. Cultured prepubertal rat peritubular cells also expressed SF-1 and PTCH1, but Cyp11a1 was expressed only after treatment with cAMP and retinoic acid. Together, data show SF-1 is needed for proper development of fetal and adult Leydig cells but with distinct primary functions; in fetal Leydig cells, it regulates differentiation, whereas in adult Leydig cells it regulates progenitor cell formation and/or survival. PMID:26269506

  4. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

    PubMed

    Tolson, Kristen P; Gemelli, Terry; Meyer, Donna; Yazdani, Umar; Kozlitina, Julia; Zinn, Andrew R

    2014-07-01

    Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1's physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus.

  5. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    PubMed

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  6. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice.

    PubMed

    Wang, Hong; Warner-Schmidt, Jennifer; Varela, Santiago; Enikolopov, Grigori; Greengard, Paul; Flajolet, Marc

    2015-08-04

    Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell-cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors.

  7. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice

    PubMed Central

    Wang, Hong; Warner-Schmidt, Jennifer; Varela, Santiago; Enikolopov, Grigori; Greengard, Paul; Flajolet, Marc

    2015-01-01

    Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell–cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors. PMID:26195764

  8. Ketogenic Diet Prevents Epileptogenesis and Disease Progression in Adult Mice and Rats

    PubMed Central

    Lusardi, Theresa A.; Akula, Kiran K.; Coffman, Shayla Q.; Ruskin, David; Masino, Susan A.; Boison, Detlev

    2015-01-01

    Epilepsy is a highly prevalent seizure disorder which tends to progress in severity and become refractory to treatment. Yet no therapy is proven to halt disease progression or to prevent the development of epilepsy. Because a high fat low carbohydrate ketogenic diet (KD) augments adenosine signaling in the brain and because adenosine not only suppresses seizures but also affects epileptogenesis, we hypothesized that a ketogenic diet might prevent epileptogenesis through similar mechanisms. Here, we tested this hypothesis in two independent rodent models of epileptogenesis. Using a pentylenetetrazole kindling paradigm in mice, we first show that a KD, but not a conventional antiepileptic drug (valproic acid), suppressed kindling-epileptogenesis. Importantly, after treatment reversal, increased seizure thresholds were maintained in those animals kindled in the presence of a KD, but not in those kindled in the presence of valproic acid. Next, we tested whether a KD can halt disease progression in a clinically relevant model of progressive epilepsy. Epileptic rats that developed spontaneous recurrent seizures after a pilocarpine-induced status epilepticus were treated with a KD or control diet (CD). Whereas seizures progressed in severity and frequency in the CD-fed animals, KD-fed animals showed a prolonged reduction of seizures, which persisted after diet reversal. KD-treatment was associated with increased adenosine and decreased DNA methylation, the latter being maintained after diet discontinuation. Our findings demonstrate that a KD prevented disease progression in two mechanistically different models of epilepsy, and suggest an epigenetic mechanism underlying the therapeutic effects. PMID:26256422

  9. Effect of genistein with carnitine administration on lipid parameters and obesity in C57Bl/6J mice fed a high-fat diet.

    PubMed

    Yang, Ji-Yeon; Lee, Sang-Jun; Park, Hyun-Woo; Cha, Youn-Soo

    2006-01-01

    Soy products are mainly composed of proteins, phytochemicals such as isoflavones, soy lipids, and carbohydrates. It is unclear whether an individual component alone or a combined effect of multiple bioactive compounds contributes to the beneficial properties of soy. We investigated the effect of dietary genistein (the principal soy isoflavone) alone and combined with L-carnitine to evaluate possible synergistic effects on the intentionally induced prediabetic state characterized by insulin resistance and obesity in C57Bl/6J mice fed a high-fat diet (HD). In the HD-alone group, abdominal and back fat relative to total body weight were significantly higher compared with other groups including those fed normal diet (ND). Among the HD groups, final weight gains of the HD plus genistein (HD+G) and HD plus genistein plus L-carnitine (HD+G+C) groups were lower compared with that of the control (HD-alone). Especially in liver, the results showed that genistein with carnitine transcriptionally up-regulated expressions of acyl-coenzyme A synthetase (ACS) and carnitine palmitoyltransferase-I (CPT-I) by approximately 50% and 40%, respectively, compared with genistein alone. However, the up-regulation of CPT-I did not directly reflect the enzyme activity of CPT-I. On the other hand, the effects of genistein and genistein with carnitine on the expressions of ACS and CPT-I in muscle were not significant. Our study suggests that genistein with carnitine exerts anti-obesity effects, probably by modulating peroxisome proliferator-activated receptor-associated genes. However, further work is needed to elucidate the possible mechanisms by which genistein and carnitine intervene.

  10. The isoflavone-rich fraction of the crude extract of the Puerariae flower increases oxygen consumption and BAT UCP1 expression in high-fat diet-fed mice.

    PubMed

    Kamiya, Tomoyasu; Nagamine, Rika; Sameshima-Kamiya, Mayu; Tsubata, Masahito; Ikeguchi, Motoya; Takagaki, Kinya

    2012-08-12

    Puerariae flower extract (PFE) is a crude extract of the Kudzu flower. Previous studies have shown that PFE supplementation exerts anti-obesity and anti-fatty liver effects in high-fat diet-fed mice. In this study, we aimed to identify the PFE components responsible for these effects and to determine their influence on energy expenditure and uncoupling protein 1 (UCP1) expression. Experiments were conducted on C57BL/6J male mice classified into 3 groups: (1) high-fat diet-fed (HFD), (2) high-fat diet-fed given PFE (HFD + PFE), and (3) high-fat diet-fed given the PFE isoflavone-rich fraction (HFD + ISOF). All groups were fed for 42 days. The HFD + PFE and HFD + ISOF groups showed significant resistance to increases in body weight, hepatic triglyceride level, and visceral fat compared to the HFD group. These groups also exhibited significant increases in oxygen consumption and UCP1-positive brown adipose tissue (BAT) area. Our results demonstrate that the active ingredients in PFE are present in the ISOF and that these compounds may increase energy expenditure by upregulation of BAT UCP1 expression. These findings provide valuable information regarding the anti-obesity effects of isoflavones.

  11. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    PubMed Central

    Ho, New Fei; Han, Siew Ping; Dawe, Gavin S

    2009-01-01

    Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU). Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease. PMID:19500352

  12. Chronic and progressive Parkinson's disease MPTP model in adult and aged mice.

    PubMed

    Muñoz-Manchado, Ana B; Villadiego, Javier; Romo-Madero, Sonia; Suárez-Luna, Nela; Bermejo-Navas, Alfonso; Rodríguez-Gómez, José A; Garrido-Gil, Pablo; Labandeira-García, José L; Echevarría, Miriam; López-Barneo, José; Toledo-Aral, Juan J

    2016-01-01

    Despite the different animal models of Parkinson's disease developed during the last years, they still present limitations modelling the slow and progressive process of neurodegeneration. Here, we undertook a histological, neurochemical and behavioural analysis of a new chronic parkinsonian mouse model generated by the subcutaneous administration of low doses of MPTP (20 mg/kg, 3 times per week) for 3 months, using both young adult and aged mice. The MPTP-induced nigrostriatal neurodegeneration was progressive and was accompanied by a decrease in striatal dopamine levels and motor impairment. We also demonstrated the characteristic neuroinflammatory changes (microglial activation and astrogliosis) associated with the neurodegenerative process. Aged animals showed both a faster time course of neurodegeneration and an altered neuroinflammatory response. The long-term systemic application of low MPTP doses did not induce any increase in mortality in either young adult or aged mice and better resembles the slow evolution of the neurodegenerative process. This treatment could be useful to model different stages of Parkinson's disease, providing a better understanding of the pathophysiology of the disease and facilitating the testing of both protective and restorative treatments. Here, we show a new chronic and progressive parkinsonian mouse model, in young and aged mice. This model produces a stable degeneration of the dopaminergic nigrostriatal pathway, continuous neuroinflammatory reaction and motor deficits. Aged animals showed a faster neurodegeneration and an altered neuroinflammatory response. This treatment could be useful to model different stages of PD and to test both protective and restorative therapeutic approaches.

  13. Of Mice and Men-Warning: Intact Versus Castrated Adult Male Mice as Xenograft Hosts Are Equivalent to Hypogonadal Versus Abiraterone Treated Aging Human Males, Respectively

    PubMed Central

    Sedelaar, J.P. Michiel; Dalrymple, Susan S.; Isaacs, John T.

    2014-01-01

    BACKGROUND Immune deficient male mice bearing human prostate cancer xenografts are used to evaluate therapeutic response to novel androgen ablation approaches and the results compared to surgical castration based upon assumption that testosterone microenvironment in intact and castrated adult male mice mimics eugonadal and castrated aging adult human males. METHODS To test these assumptions, serum total testosterone (TT) and free testosterone (FT) were determined longitudinally in groups (n > 20) of intact versus castrated adult male nude, NOG, and immune competent C57BL/6 mice. RESULTS In adult male mice, TT and FT varies by 30- to 100-fold within the same animal providing a microenvironment that is only equivalent to hypogonadal, not eugonadal, adult human males (TT is 1.7 ± 1.2 ng/ml [5.8 ± 4.1 nM] in nude and 2.5 ± 1.3 ng/ml [8.7 ± 4.4 nM] in NOG mice versus >4.2 ng/ml [14.7 nM] in eugonadal humans). This was confirmed based upon enhanced growth of androgen dependent human prostate cancer xenografts inoculated into mice supplemented with exogenous testosterone to elevate and chronically maintain serum TT at a level (5 ng/ml [18 nM]) equivalent to a 50-year-old eugonadal human male. In castrated mice, TT and FT range from 2 to 20 pg/ml (7–70 pM) and <0.8 pg/ml (<2.6 pM), respectively, which is equivalent to castrate resistant prostate cancer (CRPC) patients treated with abiraterone. This was confirmed based upon the inability of another CYP17A1 inhibitor, ketoconazole, to inhibit the growth of CRPC xenografts in castrated mice. CONCLUSIONS Adult male mice supplemented with testosterone mimic eugonadal human males, while unsupplemented animals mimic standard androgen ablation and castrated animals mimic abiraterone treated patients. These studies confirm what is claimed in Robert Burns’ poem “To a Mouse” that “The best laid schemes of mice and men/often go awry. PMID:23775398

  14. Increased Cardiovascular Reactivity to Acute Stress and Salt-Loading in Adult Male Offspring of Fat Fed Non-Obese Rats

    PubMed Central

    Rudyk, Olena; Makra, Péter; Jansen, Eugene; Shattock, Michael J.; Poston, Lucilla; Taylor, Paul D.

    2011-01-01

    Diet-induced obesity in rat pregnancy has been shown previously to be associated with consistently raised blood pressure in the offspring, attributed to sympathetic over-activation, but the relative contributions to this phenotype of maternal obesity versus raised dietary fat is unknown. Sprague-Dawley female rats were fed either a control (4.3% fat, n = 11) or lard-enriched (23.6% fat, n = 16) chow 10 days prior to mating, throughout pregnancy and lactation. In conscious adult (9-month-old) offspring cardiovascular parameters were measured (radiotelemetry). The short period of fat-feeding did not increase maternal weight versus controls and the baseline blood pressure was similar in offspring of fat fed dams (OF) and controls (OC). However, adult male OF showed heightened cardiovascular reactivity to acute restraint stress (p<0.01; Δ systolic blood pressure (SBP) and Δheart rate (HR)) with a prolonged recovery time compared to male OC. α1/β-adrenergic receptor blockade normalised the response. Also, after dietary salt-loading (8%-NaCl ad libitum for 1 week) male OF demonstrated higher SBP (p<0.05) in the awake phase (night-time) and increased low/high frequency ratio of power spectral density of HR variability versus OC. Baroreflex gain and basal power spectral density components of the heart rate or blood pressure were similar in male OF and OC. Minor abnormalities were evident in female OF. Fat feeding in the absence of maternal obesity in pregnant rats leads to altered sympathetic control of cardiovascular function in adult male offspring, and hypertension in response to stressor stimuli. PMID:22043281

  15. Suppressor T-cell population induced by Junin virus in adult mice.

    PubMed Central

    Campetella, O E; Barrios, H A; Galassi, N V

    1988-01-01

    Intracerebral (i.c.) Junin virus (JV) infection of adult BALB/c mice is characterized by the absence of morbidity and a low mortality (barely 8-10%). In contrast, the suckling mouse model exhibits almost 100% mortality following central nervous system (CNS) alterations consistent with a delayed-type hypersensitivity (DTH)-like immune response. Besides, JV infection of adult (resistant) mice leads to immunosuppression of DTH to unrelated antigens. Here we present evidence demonstrating that such suppression is mediated by JV-induced cells present in spleen from 24 hr to 24 days post-infection, bearing the Thy-1+, Ly-1+2- phenotype and reactive to an unrelated antigen such as sheep red blood cells (SRBC). No evidence of suppressor factors was found. A relatively low number of total splenic cells (5 x 10(6) cells/mouse) was enough to transfer suppression. Therefore, this cell population may be involved in adult mouse survival to JV infection. PMID:2970429

  16. Osthole Upregulates BDNF to Enhance Adult Hippocampal Neurogenesis in APP/PS1 Transgenic Mice.

    PubMed

    Liu, Hong; Xue, Xinhong; Shi, Huijian; Qi, Lifeng; Gong, Dianrong

    2015-01-01

    Adult hippocampal neurogenesis occurs in the dentate gyrus (DG) of the mouse hippocampus, and plays roles in learning and memory progresses. In amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice, a rodent model of Alzheimer's disease (AD), severe impairment of neurogenesis in the dentate subgranular zone (SGZ) of the DG has been reported. Osthole, an active constituent of Cnidium monnieri (L.) CUSSON, has been reported to exert neuroprotective effects and may promote neural stem cell proliferation. However, whether osthole ameliorates spatial memory deficits and improves hippocampal neurogenesis in APP/PS1 mice remains unknown. In this study we found that osthole (30 mg/kg intraperitoneally (i.p.) once daily) treatment dramatically ameliorated the cognitive impairments by Morris Water Maze test and passive avoidance test, and augmented neurogenesis in the DG of hippocampus in APP/PS1 mice. Furthermore, osthole treatment upregulated expression of brain-derived neurotrophic factor (BDNF) and enhanced activation of the BDNF receptor tyrosine receptor kinase B (TrkB) following increased phosphorylation of cyclic AMP response element-binding protein (CREB), indicating that osthole improves neurogenesis via stimulating BDNF/TrkB/CREB signaling in APP/PS1 transgenic mice.

  17. Effect of extract of Hibiscus on the ultrastructure of the testis in adult mice.

    PubMed

    Mahmoud, Yomna Ibrahim

    2012-07-01

    Hibiscus sabdariffa extract is a popular beverage in many tropical and sub-tropical countries. Although, Hibiscus tea is known for its medicinal effects for thousands of years, scientific evidence of its systemic safety is very limited. The current study aimed to assess the potential adverse effects of H. sabdariffa extract on sperm morphology and testicular ultrastructure of albino mice. Thirty adult male albino mice were divided into three equal groups and were given: (a) distilled water, (b) cold Hibiscus aqueous extract, and (c) boiled Hibiscus aqueous extract. Hibiscus extract was administered orally daily for 4 weeks in a dose of 200 mg/kg body weight/mouse. Twenty-four hours after the last treatment, mice were decapitated and the testes and epididymides were excised and processed for transmission electron microscopy to assess ultrastructural and sperm abnormalities. The results clearly demonstrate that aqueous extracts from dried calyx of H. sabdariffa, either cold or boiled, alter normal sperm morphology and testicular ultrastructure and adversely influence the male reproductive fertility in albino mice. The current data suggest that Hibiscus extract should be consumed with caution, and reasonable estimates of the human risk associated with its consumption should be provided.

  18. Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    PubMed Central

    2009-01-01

    The anterior cingulate cortex (ACC) is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i) regular spiking (RS) cells (24.7%), intrinsic bursting (IB) cells (30.9%), and intermediate (IM) cells (44.4%). In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5%) and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner. PMID:20015370

  19. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    PubMed

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings.

  20. Neonatal Diesel Exhaust Particulate Exposure Does Not Predispose Mice to Adult Cardiac Hypertrophy or Heart Failure

    PubMed Central

    Liu, Yonggang; Weldy, Chad S.; Chin, Michael T.

    2016-01-01

    Background: We have previously reported that in utero and early life exposure to diesel exhaust particulates predisposes mice to adult heart failure, and that in utero exposure alone is sufficient to confer this predisposition. This follow up study addresses whether neonatal exposure alone can also confer this predisposition. Methods: Newborn male C57BL/6 mice were exposed to diesel exhaust (DE) particulates immediately after birth until weaning at 21 days of age, whereupon they were transferred to filtered air (FA) conditions. At the age of 12 weeks, transverse aortic constriction (TAC) was performed followed by weekly echocardiography for three weeks. After the last echocardiogram, mice were euthanized for organ harvest, gravimetry and histology. Results: Neonatal exposure to DE particulates did not increase susceptibility to cardiac hypertrophy or heart failure after TAC when compared to FA exposed controls (ventricular weight/body weight ratio 7.505 vs. 7.517 mg/g, p = Not Significant (NS)). The left ventricular ejection fraction after TAC was similar between groups at one week, two weeks, and three weeks after procedure. Histological analysis showed no difference in the degree of cardiac hypertrophy or fibrosis. Conclusions: Neonatal exposure to DE particulates does not predispose mice to TAC-induced cardiac hypertrophy and heart failure in adulthood, in contrast to previously published results showing susceptibility due to in utero exposure. PMID:27886143

  1. Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets

    NASA Astrophysics Data System (ADS)

    Brackmann, Christian; Gabrielsson, Britt; Svedberg, Fredrik; Holmäng, Agneta; Sandberg, Ann-Sofie; Enejder, Annika

    2010-11-01

    Hallmarks of high-fat Western diet intake, such as excessive lipid accumulation in skeletal muscle and liver as well as liver fibrosis, are investigated in tissues from mice using nonlinear microscopy, second harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS), supported by conventional analysis methods. Two aspects are presented; intake of standard chow versus Western diet, and a comparison between two high-fat Western diets of different polyunsaturated lipid content. CARS microscopy images of intramyocellular lipid droplets in muscle tissue show an increased amount for Western diet compared to standard diet samples. Even stronger diet impact is found for liver samples, where combined CARS and SHG microscopy visualize clear differences in lipid content and collagen fiber development, the latter indicating nonalcoholic fatty liver disease (NAFLD) and steatohepatitis induced at a relatively early stage for Western diet. Characteristic for NAFLD, the fibrous tissue-containing lipids accumulate in larger structures. This is also observed in CARS images of liver samples from two Western-type diets of different polyunsaturated lipid contents. In summary, nonlinear microscopy has strong potential (further promoted by technical advances toward clinical use) for detection and characterization of steatohepatitis already in its early stages.

  2. Obesity and insulin resistance induce early development of diastolic dysfunction in young female mice fed a Western diet.

    PubMed

    Manrique, Camila; DeMarco, Vincent G; Aroor, Annayya R; Mugerfeld, Irina; Garro, Mona; Habibi, Javad; Hayden, Melvin R; Sowers, James R

    2013-10-01

    Cardiovascular disease (CVD), including heart failure, constitutes the main source of morbidity and mortality in men and women with diabetes. Although healthy young women are protected against CVD, postmenopausal and diabetic women lose this CVD protection. Obesity, insulin resistance, and diabetes promote heart failure in females, and diastolic dysfunction is the earliest manifestation of this heart failure. To examine the mechanisms promoting diastolic dysfunction in insulin-resistant females, this investigation evaluated the impact of 8 weeks of a high-fructose/high-fat Western diet (WD) on insulin sensitivity and cardiac structure and function in young C57BL6/J female versus male mice. Insulin sensitivity was determined by hyperinsulinemic-euglycemic clamps and two-dimensional echocardiograms were used to evaluate cardiac function. Both males and females developed systemic insulin resistance after 8 weeks of a WD. However, only the females developed diastolic dysfunction. The diastolic dysfunction promoted by the WD was accompanied by increases in collagen 1, a marker of stiffness, increased oxidative stress, reduced insulin metabolic signaling, and increased mitochondria and cardiac microvascular alterations as determined by electron microscopy. Aldosterone (a promoter of cardiac stiffness) levels were higher in females compared with males but were not affected by the WD in either gender. These data suggest a predisposition toward developing early diastolic heart failure in females exposed to a WD. These data are consistent with the notion that higher aldosterone levels, in concert with insulin resistance, may promote myocardial stiffness and diastolic dysfunction in response to overnutrition in females.

  3. Evaluation of Beneficial Metabolic Effects of Berries in High-Fat Fed C57BL/6J Mice

    PubMed Central

    Blanco, Narda; Sterner, Olov; Holm, Cecilia

    2014-01-01

    Objective. The aim of the study was to screen eight species of berries for their ability to prevent obesity and metabolic abnormalities associated with type 2 diabetes. Methods. C57BL/6J mice were assigned the following diets for 13 weeks: low-fat diet, high-fat diet or high-fat diet supplemented (20%) with lingonberry, blackcurrant, bilberry, raspberry, açai, crowberry, prune or blackberry. Results. The groups receiving a high-fat diet supplemented with lingonberries, blackcurrants, raspberries or bilberries gained less weight and had lower fasting insulin levels than the control group receiving high-fat diet without berries. Lingonberries, and also blackcurrants and bilberries, significantly decreased body fat content, hepatic lipid accumulation, and plasma levels of the inflammatory marker PAI-1, as well as mediated positive effects on glucose homeostasis. The group receiving açai displayed increased weight gain and developed large, steatotic livers. Quercetin glycosides were detected in the lingonberry and the blackcurrant diets. Conclusion. Lingonberries were shown to fully or partially prevent the detrimental metabolic effects induced by high-fat diet. Blackcurrants and bilberries had similar properties, but to a lower degree. We propose that the beneficial metabolic effects of lingonberries could be useful in preventing obesity and related disorders. PMID:24669315

  4. Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice.

    PubMed

    Wang, Hao; Sun, Ruo-Qiong; Zeng, Xiao-Yi; Zhou, Xiu; Li, Songpei; Jo, Eunjung; Molero, Juan C; Ye, Ji-Ming

    2015-01-01

    High-carbohydrate (mainly fructose) consumption is a major dietary factor for hepatic insulin resistance, involving endoplasmic reticulum (ER) stress and lipid accumulation. Because autophagy has been implicated in ER stress, the present study investigated the role of autophagy in high-fructose (HFru) diet-induced hepatic ER stress and insulin resistance in male C57BL/6J mice. The results show that chronic HFru feeding induced glucose intolerance and impaired insulin signaling transduction in the liver, associated with ER stress and the accumulation of lipids. Intriguingly, hepatic autophagy was suppressed as a result of activation of mammalian target of rapamycin. The suppressed autophagy was detected within 6 hours after HFru feeding along with activation of both inositol-requiring enzyme 1 and protein kinase RNA-like endoplasmic reticulum kinase pathways. These events occurred prior to lipid accumulation or lipogenesis and were sufficient to blunt insulin signaling transduction with activation of c-Jun N-terminal kinase/inhibitory-κB kinase and serine phosphorylation of insulin receptor substrate 1. The stimulation of autophagy attenuated ER stress- and c-Jun N-terminal kinase/inhibitory-κB kinase-associated impairment in insulin signaling transduction in a mammalian target of rapamycin -independent manner. Taken together, our data suggest that restoration of autophagy functions disrupted by fructose is able to alleviate ER stress and improve insulin signaling transduction.

  5. Antiobesity and Hypoglycaemic Effects of Aqueous Extract of Ibervillea sonorae in Mice Fed a High-Fat Diet with Fructose

    PubMed Central

    Rivera-Ramírez, Fabiola; Escalona-Cardoso, Gerardo N.; Garduño-Siciliano, Leticia; Galaviz-Hernández, Carlos; Paniagua-Castro, Norma

    2011-01-01

    Obesity, type II diabetes, and hyperlipidaemia, which frequently coexist and are strongly associated with oxidative stress, increase the risk of cardiovascular disease. An increase in carbohydrate intake, especially of fructose, and a high-fat diet are both factors that contribute to the development of these metabolic disorders. In recent studies carried out in diabetic rats, authors reported that Ibervillea sonorae had hypoglycaemic activity; saponins and monoglycerides present in the plant could be responsible for the effects observed. In the present study, we determined the effects of an aqueous I. sonorae extract on a murine model of obesity and hyperglycaemia, induced by a high-calorie diet, and the relationship of these effects with hepatic oxidation. A high-fat diet over a period of 8 weeks induced weight gain in the mice and increased triglycerides and blood glucose levels. Simultaneous treatment with I. sonorae aqueous extracts, at doses of 100, 200, and 400 mg/kg, decreased triglycerides and glycaemia levels, prevented an increase in body weight in a dose-dependent manner, and decreased hepatic lipid oxidation at a dose of 200 mg/kg. These data suggest that the aqueous extract from I. sonorae root prevents obesity, dyslipidaemia, and hyperglycaemia induced by a hypercaloric diet; however, high doses may induce toxicity. PMID:22174560

  6. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    PubMed

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity.

  7. Supplement of bamboo extract lowers serum monocyte chemoattractant protein-1 concentration in mice fed a diet containing a high level of saturated fat.

    PubMed

    Higa, Jason K; Liu, Wanyu; Berry, Marla J; Panee, Jun

    2011-12-01

    Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine up-regulated in obese subjects, contributing to the development of type 2 diabetes. The present study investigated the inhibitory effect of an ethanol-water extract from bamboo (BEX, Phyllostachys edulis) on the blood concentration of MCP-1. C57BL/6J mice were fed a standard diet or a high-fat diet with or without the BEX supplement (11 g dry mass/17 000 kJ) for 6 months. A total of ten mice were used in each group. Body weight and food consumption were measured weekly. After euthanisation, the weight of visceral fat and circulating MCP-1 concentration were measured. In comparison with the standard control group, the high-fat control group had increased body weight, abdominal fat storage and serum MCP-1 concentration by 60 % (P < 0·001), 266 % (P < 0·001) and 180 % (P < 0·01), respectively. In comparison with the high-fat control group, the high-fat BEX group showed a 3 % decrease in body weight (P < 0·01), 24 % decrease in mesenteric fat depot (P < 0·01) and 49 % decrease in serum MCP-1 concentration (P < 0·05). The present study suggests that the BEX supplement in the high-fat diet ameliorates elevated MCP-1 concentrations in the blood, and whether this is related to modulated endocrine properties of the visceral fat is to be studied.

  8. Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet.

    PubMed

    Wu, Yizhen; Yu, Yinghua; Szabo, Alexander; Han, Mei; Huang, Xu-Feng

    2014-01-01

    A low-grade pro-inflammatory state is at the pathogenic core of obesity and type 2 diabetes. We tested the hypothesis that the plant terpenoid compound ginsenoside Rb1 (Rb1), known to exert anti-inflammatory effects, would ameliorate obesity, obesity-associated inflammation and glucose intolerance in the high-fat diet-induced obese mouse model. Furthermore, we examined the effect of Rb1 treatment on central leptin sensitivity and the leptin signaling pathway in the hypothalamus. We found that intraperitoneal injections of Rb1 (14 mg/kg, daily) for 21 days significantly reduced body weight gain, fat mass accumulation, and improved glucose tolerance in obese mice on a HF diet compared to vehicle treatment. Importantly, Rb1 treatment also reduced levels of pro-inflammatory cytokines (TNF-α, IL-6 and/or IL-1β) and NF-κB pathway molecules (p-IKK and p-IκBα) in adipose tissue and liver. In the hypothalamus, Rb1 treatment decreased the expression of inflammatory markers (IL-6, IL-1β and p-IKK) and negative regulators of leptin signaling (SOCS3 and PTP1B). Furthermore, Rb1 treatment also restored the anorexic effect of leptin in high-fat fed mice as well as leptin pSTAT3 signaling in the hypothalamus. Ginsenoside Rb1 has potential for use as an anti-obesity therapeutic agent that modulates obesity-induced inflammation and improves central leptin sensitivity in HF diet-induced obesity.

  9. Adzuki bean ameliorates hepatic lipogenesis and proinflammatory mediator expression in mice fed a high-cholesterol and high-fat diet to induce nonalcoholic fatty liver disease.

    PubMed

    Kim, Sera; Hong, Jihye; Jeon, Raok; Kim, Hyun-Sook

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a simple steatosis, in which fat accumulates more than 5% in the liver, and regarded as most common liver diseases worldwide. Because NAFLD can be developed to severe liver disease and correlated with metabolic disease, its importance is currently emphasized. Occurrence of NAFLD is strongly related to dietary patterns and lifestyles; therefore, the suggestion of physiologically beneficial food is essential. Based on these, adzuki beans containing anthocyanin, catechin, and adzukisaponin are suggested as a health-beneficial food. Moreover, the effects of adzuki beans on metabolic improvement are not well established through the in vivo studies. Therefore, this study hypothesized that adzuki beans can alleviate lipid accumulation and oxidative stress-mediated inflammation in high-cholesterol and high-fat diet-induced NALFD mice. To demonstrate its effects, 6-week-old C57BL/6 male mice were allocated into 4 groups and fed a normal diet (ND), a high-cholesterol and high-fat diet (HCD), and HCD with 10% and 20% adzuki bean for 10 weeks. The result shows that fasting blood glucose, serum and hepatic triglyceride and cholesterol levels, and antioxidative enzyme activity ameliorated in the adzuki bean groups (P < .05). The transcriptional factors of hepatic lipogenesis, such as adiponectin, AMP-activated protein kinase α, sterol regulatory element-binding protein 1c, fatty acid synthase, carnitine palmitoyltransferase 1, 3-hydroxy-3-methyl-glutaryl-CoA reductase, and apolipoprotein B, as well as proinflammatory mediators, such as tumor necrosis factor α, nuclear factor κB, and caspase-3, improved in both experimental groups (P < .05). These results suggested that adzuki beans attenuate lipid accumulation and oxidative stress-induced inflammation by suppressing hepatic messenger RNA expression of lipogenic and inflammatory mediators in NAFLD.

  10. Impact of CYP24A1 overexpression on growth of colorectal tumour xenografts in mice fed with vitamin D and soy.

    PubMed

    Höbaus, Julia; Tennakoon, Samawansha; Heffeter, Petra; Groeschel, Charlotte; Aggarwal, Abhishek; Hummel, Doris M; Thiem, Ursula; Marculescu, Rodrig; Berger, Walter; Kállay, Enikö

    2016-01-15

    Our previous studies showed that the 1,25-dihydroxyvitamin D (1,25-D3) catabolizing enzyme, 1,25-dihydoxyvitamin D 24 hydroxylase (CYP24A1) was overexpressed in colorectal tumours and its level correlated with increased proliferation. We hypothesised that cells overexpressing CYP24A1 have growth advantage and a diet rich in vitamin D and soy would restore sensitivity to the anti-tumourigenic effects of vitamin D. Soy contains genistein, a natural CYP24A1 inhibitor. To determine causality between CYP24A1 and tumour growth, we established xenografts in male SCID mice with HT29 cells stably overexpressing either GFP-tagged CYP24A1 or GFP. Mice were fed with either high (2500 IU D3/kg) or low vitamin D (100 IU D3/kg) diet in the presence or absence of soy (20% diet). In vitro, cells overexpressing CYP24A1 grew faster than controls. 1,25-D3, the active vitamin D metabolite, reduced cell number only in the presence of the CYP24A1 inhibitor VID400. Regardless of the amount of vitamin D in the diet, xenografts overexpressing CYP24A1 grew faster, were heavier and more aggressive. Soy reduced tumour volume only in the control xenografts, while the tumours overexpressing CYP24A1 were larger in the presence of dietary soy. In conclusion, we demonstrate that CYP24A1 overexpression results in increased aggressiveness and proliferative potential of colorectal tumours. Irrespective of the dietary vitamin D3, dietary soy is able to increase tumour volume when tumours overexpress CYP24A1, suggesting that combination of vitamin D3 and soy could have an anti-tumourigenic effect only if CYP24A1 levels are normal.

  11. Dietary ribonucleic acid suppresses inflammation of adipose tissue and improves glucose intolerance that is mediated by immune cells in C57BL/6 mice fed a high-fat diet.

    PubMed

    Sakai, Tohru; Taki, Tomoyo; Nakamoto, Akiko; Tazaki, Shiho; Arakawa, Mai; Nakamoto, Mariko; Tsutsumi, Rie; Shuto, Emi

    2015-01-01

    Recent evidence suggests that immune cells play an important role in differentiation of inflammatory macrophages in adipose tissue, which contributes to systemic chronic inflammation. Dietary ribonucleic acid (RNA) has been shown to modulate immune function. We hypothesized that RNA affects immune cell function in adipose tissue and then improves inflammatory response in adipose tissue. C57/BL6 mice and recombination activating gene-1 (RAG-1) knockout mice on a C57BL/6 mice background were fed a high-fat diet containing 1% RNA for 12 wk. An oral glucose tolerance test was performed. Supplementation of dietary RNA in C57BL/6 mice fed a high-fat diet resulted in a smaller area under the curve (AUC) after oral glucose administration than that for control mice. The mRNA expression levels of inflammation-related cytokines in adipose tissue and serum interleukin-6 levels were reduced by dietary RNA supplementation. Interestingly, reduction of the AUC value by RNA supplementation was abolished in T and B cell-deficient RAG-1 knockout mice. These results indicate that RNA improves inflammation in adipose tissue and reduces the AUC value following oral glucose administration in a T and B cell-dependent manner.

  12. Genetic inducible fate mapping in adult mice using tamoxifen-dependent Cre recombinases.

    PubMed

    Feil, Susanne; Krauss, Jana; Thunemann, Martin; Feil, Robert

    2014-01-01

    The Cre/lox site-specific recombination system allows the control of gene activity in space and time in almost any tissue of the mouse. A major technical advance was the development of tamoxifen-dependent Cre recombinases, such as CreER(T2), that can be activated by administration of tamoxifen to the animal. This powerful tool greatly facilitates the study of gene functions and the generation of more realistic animal models of sporadic human diseases. Another important application of tamoxifen-dependent Cre recombinases is genetic inducible fate mapping (GIFM). In GIFM studies, the inducible Cre/lox system is used to genetically label a defined cell population at a selected time by irreversible activation of the expression of a Cre-responsive reporter transgene. Then, marked cells are detected at later time points to determine how the originally labeled progenitors contribute to specific structures and cell types during pre- and postnatal development. GIFM was initially applied during mouse embryogenesis, but is now increasingly used for cell lineage tracing in adult mice under physiological and pathophysiological conditions. Here we describe the design of GIFM experiments in adult mice as exemplifie