Science.gov

Sample records for adult mice led

  1. Drug-induced regeneration in adult mice

    PubMed Central

    Zhang, Yong; Strehin, Iossif; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise; Leferovich, John; Messersmith, Phillip B.; Heber-Katz, Ellen

    2015-01-01

    Whereas amphibians regenerate lost appendages spontaneously, mammals generally form scars over the injury site through the process of wound repair. The MRL mouse strain is an exception among mammals because it shows a spontaneous regenerative healing trait and so can be used to investigate proregenerative interventions in mammals. We report that hypoxia-inducible factor 1α (HIF-1α) is a central molecule in the process of regeneration in adult MRL mice. The degradation of HIF-1α protein, which occurs under normoxic conditions, is mediated by prolyl hydroxylases (PHDs). We used the drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), a PHD inhibitor, to stabilize constitutive expression of HIF-1α protein. A locally injectable hydrogel containing 1,4-DPCA was designed to achieve controlled delivery of the drug over 4 to 10 days. Subcutaneous injection of the 1,4-DPCA/hydrogel into Swiss Webster mice that do not show a regenerative phenotype increased stable expression of HIF-1α protein over 5 days, providing a functional measure of drug release in vivo. Multiple peripheral subcutaneous injections of the 1,4-DPCA/hydrogel over a 10-day period led to regenerative wound healing in Swiss Webster mice after ear hole punch injury. Increased expression of the HIF-1α protein may provide a starting point for future studies on regeneration in mammals. PMID:26041709

  2. Gene expression: RNA interference in adult mice

    NASA Astrophysics Data System (ADS)

    McCaffrey, Anton P.; Meuse, Leonard; Pham, Thu-Thao T.; Conklin, Douglas S.; Hannon, Gregory J.; Kay, Mark A.

    2002-07-01

    RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.

  3. Examining Young Recreational Male Soccer Players' Experience in Adult- and Peer-Led Structures

    ERIC Educational Resources Information Center

    Imtiaz, Faizan; Hancock, David J.; Côté, Jean

    2016-01-01

    Purpose: Youth sport has the potential to be one of the healthiest and most beneficial activities in which children can partake. Participation in a combination of adult-led and peer-led sport structures appears to lead to favorable outcomes such as enhanced physical fitness, as well as social and emotional development. The purpose of the present…

  4. Evaluation of a Peer-Led, Low-Intensity Physical Activity Program for Older Adults

    ERIC Educational Resources Information Center

    Werner, Danilea; Teufel, James; Brown, Stephen L.

    2014-01-01

    Background: Physical inactivity is a primary contributor to decreasing functional physical fitness and increasing chronic disease in older adults. Purpose: This study assessed the health-related benefits of ExerStart for Lay Leaders, a 20-week, community based, peer-led, low-impact exercise program for older adults. ExerStart focuses on aerobic…

  5. Employing a youth-led adult-guided framework: "Why Drive High?" social marketing campaign.

    PubMed

    Marko, Terry-Lynne; Watt, Tyler

    2011-01-01

    The "Drugged Driving Kills project: Why Drive High?" social marketing campaign was developed and implemented by youth leaders and adult facilitators from public and community health to increase youth awareness of the adverse effects of marijuana on driving. The youth-led adult-guided project was founded on the Holden's youth empowerment conceptual model. This article reports on the results of the focus group evaluation, conducted to determine to what extent the tailored youth-led adult-guided framework for the "Why Drive High?" social marketing campaign provided an environment for youth leadership development.

  6. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope

    PubMed Central

    Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M

    2011-01-01

    Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462

  7. Eliminating Medicaid adult dental coverage in California led to increased dental emergency visits and associated costs.

    PubMed

    Singhal, Astha; Caplan, Daniel J; Jones, Michael P; Momany, Elizabeth T; Kuthy, Raymond A; Buresh, Christopher T; Isman, Robert; Damiano, Peter C

    2015-05-01

    Dental coverage for adults is an elective benefit under Medicaid. As a result of budget constraints, California Medicaid eliminated its comprehensive adult dental coverage in July 2009. We examined the impact of this policy change on emergency department (ED) visits by Medicaid-enrolled adults for dental problems in the period 2006-11. We found that the policy change led to a significant and immediate increase in dental ED use, amounting to more than 1,800 additional dental ED visits per year. Young adults, members of racial/ethnic minority groups, and urban residents were disproportionately affected by the policy change. Average yearly costs associated with dental ED visits increased by 68 percent. The California experience provides evidence that eliminating Medicaid adult dental benefits shifts dental care to costly EDs that do not provide definitive dental care. The population affected by the Medicaid adult dental coverage policy is increasing as many states expand their Medicaid programs under the ACA. Hence, such evidence is critical to inform decisions regarding adult dental coverage for existing Medicaid enrollees and expansion populations. PMID:25941275

  8. Pains, joys, and secrets: nurse-led group therapy for older adults with depression.

    PubMed

    Nance, Douglas C

    2012-02-01

    This is the first study of nurse-led group therapy in Mexico. Forty-one depressed older adults with a median age of 71 participated in nurse-led cognitive behavioral group therapy once a week for 12 weeks. Participants' scores on the Patient Health Questionaire-9 showed mild to moderate improvement. Participants experienced positive results in personal growth, changing negative thoughts, and relationships with family. An important therapeutic factor was the support of fellow group members. The nurses experienced positive personal and professional growth. Difficulties included physician resistance and a too-rigid cognitive behavioral group therapy model. A combination of cognitive behavioral therapy and supportive group therapy is recommended. PMID:22273342

  9. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin Aα null mice.

    PubMed

    Madsen, Kirsten; Reddy, Ramesh N; Price, S Russ; Williams, Clintoria R; Gooch, Jennifer L

    2013-01-01

    Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα) were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2) expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout animals. PMID:23638102

  10. Heart regeneration in adult MRL mice

    NASA Astrophysics Data System (ADS)

    Leferovich, John M.; Bedelbaeva, Khamilia; Samulewicz, Stefan; Zhang, Xiang-Ming; Zwas, Donna; Lankford, Edward B.; Heber-Katz, Ellen

    2001-08-01

    The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models. We have previously shown that the MRL mouse strain has an extraordinary capacity to heal surgical wounds, a complex trait that maps to at least seven genetic loci. Here, we extend these studies to cardiac wounds and demonstrate that a severe transmural, cryogenically induced infarction of the right ventricle heals extensively within 60 days, with the restoration of normal myocardium and function. Scarring is markedly reduced in MRL mice compared with C57BL/6 mice, consistent with both the reduced hydroxyproline levels seen after injury and an elevated cardiomyocyte mitotic index of 10-20% for the MRL compared with 1-3% for the C57BL/6. The myocardial response to injury observed in these mice resembles the regenerative process seen in amphibians.

  11. Neurobiological Sequelae of Witnessing Stressful Events in Adult Mice

    PubMed Central

    Warren, Brandon L.; Vialou, Vincent F.; Iñiguez, Sergio D.; Alcantara, Lyonna F.; Wright, Katherine N.; Feng, Jiang; Kennedy, Pamela J.; LaPlant, Quincey; Shen, Li; Nestler, Eric J.; Bolaños-Guzmán, Carlos A.

    2012-01-01

    Background It is well known that exposure to severe stress increases the risk for developing mood disorders. However, most chronic stress models in rodents involve at least some form of physically experiencing traumatic events. Methods This study assessed the effects of a novel social stress paradigm that is insulated from the effects of physical stress. Specifically, adult male C57BL/6J mice were exposed to either emotional (ES) or physical stress (PS) for ten minutes per day for ten days. ES mice were exposed to the social defeat of a PS mouse by a larger more aggressive CD-1 mouse from the safety of an adjacent compartment. Results Like PS mice, ES mice exhibited a range of depression- and anxiety-like behaviors both 24 hr and 1 month after the stress. Increased levels of serum corticosterone, part of the stress response, accompanied these behavioral deficits. Based on prior work which implicated gene expression changes in the ventral tegmental area (a key brain reward region) in the PS phenotype, we compared genome-wide mRNA expression patterns in this brain region of ES and PS mice using RNA-seq. We found significant overlap between these conditions, which suggests several potential gene targets for mediating the behavioral abnormalities observed. Conclusions Together, these findings demonstrate that witnessing traumatic events is a potent stress in adult male mice capable of inducing long-lasting neurobiological perturbations. PMID:22795644

  12. Adoptive transfer of macrophages from adult mice reduces mortality in mice infected with human enterovirus 71.

    PubMed

    Liu, Jiangning; Li, Xiaoying; Fan, Xiaoxu; Ma, Chunmei; Qin, Chuan; Zhang, Lianfeng

    2013-02-01

    Human enterovirus 71 (EV71) causes hand, foot and mouth disease in children under 6 years of age, and the neurological complications of this virus can lead to death. Until now, no vaccines or drugs have been available for the clinical control of this epidemic. Macrophages can engulf pathogens and mediate a series of host immune responses that play a role in the defence against infectious diseases. Using immunohistochemistry, we observed the localizations of virus in muscle tissues of EV71-infected mice. The macrophages isolated from the adult mice could kill the virus gradually in vitro, as shown using quantitative real-time PCR (qRT-PCR) and virus titration. Co-localisation of lysosomes and virus within macrophages suggested that the lysosomes were possibly responsible for the phagocytosis of EV71. Activation of the macrophages in the peritoneal cavity of mice four days pre-infection reduced the mortality of mice upon lethal EV71 infection. The adoptive transfer of macrophages from adult mice inhibited virus replication in the muscle tissues of infected mice, and this was followed by a relief of symptoms and a significant reduction of mortality, which suggested that the adoptive transfer of macrophages from adult humans represents a potential strategy to treat EV71-infected patients.

  13. Litter Size Predicts Adult Stereotypic Behavior in Female Laboratory Mice

    PubMed Central

    Bechard, Allison; Nicholson, Anthony; Mason, Georgia

    2012-01-01

    Stereotypic behaviors are repetitive invariant behaviors that are common in many captive species and potentially indicate compromised welfare and suitability as research subjects. Adult laboratory mice commonly perform stereotypic bar-gnawing, route-tracing, and back-flipping, although great individual variation in frequency occurs. Early life factors (for example, level of maternal care received) have lasting effects on CNS functioning and abilities to cope with stress and therefore may also affect stereotypic behavior in offspring. Access to maternal resources and care are influenced by the number of pups in a litter; therefore, we examined both litter size and its potential correlate, weight at weaning, as early environmental predictors of adult stereotypic behavior in laboratory mice. Further, we assessed the effects on offspring stereotypic behavior of delaying the separation of mother and pups (weaning) beyond the standard 21 d of age. Analyzing stereotypic behavior in 3 different mouse colonies composed of 2 inbred strains (C57BL/6N and C57BL/6J) and an outbred stock (CD1[ICR]) revealed significant positive correlation between litter size and stereotypic behavior in female, but not male, mice. Weight and age at weaning did not significantly affect levels of stereotypy in either sex. Litter size therefore may be a useful indicator of individual predisposition to stereotypic behavior in female laboratory mice. PMID:23043805

  14. Deletion of RBP-J in adult mice leads to the onset of aortic valve degenerative diseases.

    PubMed

    Li, Zhi; Feng, Lei; Wang, Chun-Mei; Zheng, Qi-Jun; Zhao, Bi-Jun; Yi, Wei; Zhang, Jin-Zhou; Wang, Yue-Min; Guo, Hai-Tao; Yi, Ding-Hua; Han, Hua

    2012-04-01

    Transcription factor RBP-J-mediated Notch signaling has been implicated in several inherited cardiovascular diseases including aortic valve diseases (AVD). But whether Notch signal plays a role in AVD in adults has been unclear. This study aims to test whether the deletion of RBP-J in adult mice would lead to AVD and to investigate the underlying mechanisms. Cre-LoxP-mediated gene deletion was employed to disrupt Notch signal in adult mice. Immunofluorescence and electron microscope observations showed that deletion of RBP-J in adult mice led to early morphological changes of AVD. The size of aortic valve was enlarged. The endothelial homeostasis was perturbed, probably due to the up-regulation of VEGFR2. The endothelial cells exhibited increased proliferation and loose endothelial junctions. The valvular mesenchyme displayed significant fibrosis, consistent with the up-regulation of TGF-β1 and activation of endothelial-mesenchymal transition. We observed melanin-producing cells in aortic valves. The number of melanin-producing cells increased significantly, and their location changed from the mesenchyme to subendothelial layer of valve cusps in RBP-J deficient mice. These results suggest that RBP-J-mediated Notch signaling in aortic valves may be critically involved in valve homeostasis and valve diseases as well. These findings will be helpful for the understanding of the molecular mechanisms of AVD in adults.

  15. Antisense Reduction of Tau in Adult Mice Protects against Seizures

    PubMed Central

    DeVos, Sarah L.; Goncharoff, Dustin K.; Chen, Guo; Kebodeaux, Carey S.; Yamada, Kaoru; Stewart, Floy R.; Schuler, Dorothy R.; Maloney, Susan E.; Wozniak, David F.; Rigo, Frank; Bennett, C. Frank; Cirrito, John R.; Holtzman, David M.

    2013-01-01

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS—brain and spinal cord tissue, interstitial fluid, and CSF—while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability. PMID:23904623

  16. Discovery of nigral dopaminergic neurogenesis in adult mice

    PubMed Central

    Morrison, Brad E.

    2016-01-01

    Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra. As a result, intensive efforts have focused upon mechanisms that facilitate the death of mature dopaminergic neurons. Unfortunately, these efforts have been unsuccessful in providing an effective treatment to address neurodegeneration in this disease. Therefore, alternative theories of pathogenesis are being explored. Adult neurogenesis of dopaminergic neurons is an attractive concept that would provide a possible mechanism of neurodegeneration as well as offer an endogenous means to replenish affected neurons. To determine whether dopaminergic neurons experience neurogenesis in adult mice we developed a novel cell lineage tracing model that permitted detection of neurogenesis without many of the issues associated with popular techniques. Remarkably, we discovered that dopaminergic neurons are replenished in adult mice by Nestin+/Sox2- progenitor cells. What's more, the rate of neurogenesis is similar to the rate of dopaminergic neuron loss reported using a chronic, systemic inflammatory response mouse model. This observation may indicate that neuron loss in Parkinson's disease results from inhibition of neurogenesis. PMID:27482200

  17. AML1 deletion in adult mice causes splenomegaly and lymphomas.

    PubMed

    Putz, G; Rosner, A; Nuesslein, I; Schmitz, N; Buchholz, F

    2006-02-01

    AML1 (RUNX1) encodes a DNA-binding subunit of the CBF transcription factor family and is required for the establishment of definitive hematopoiesis. AML1 is one of the most frequently mutated genes associated with human acute leukemia, suggesting that genetic alterations of the gene contribute to leukemogenesis. Here, we report the analysis of mice carrying conditional AML1 knockout alleles that were inactivated using the Cre/loxP system. AML1 was deleted in adult mice by inducing Cre activity to replicate AML1 deletions found in human MDS, familial platelet disorder and rare de novo human AML. At a latency of 2 months after induction, the thymus was reduced in size and frequently populated by immature double negative thymocytes, indicating defective T-lymphocyte maturation, resulting in lymphatic diseases with 50% penetrance, including atypical hyperplasia and thymic lymphoma. Metastatic lymphomas to the liver and the meninges were observed. Mice also developed splenomegaly with an expansion of the myeloid compartment. Increased Howell-Jolly body counts indicated splenic hypofunction. Thrombocytopenia occurred due to immaturity of mini-megakaryocytes in the bone marrow. Together with mild lymphocytopenia in the peripheral blood and increased fractions of immature cells in the bone marrow, AML1 deficient mice display features of a myelodysplastic syndrome, suggesting a preleukemic state.

  18. Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice.

    PubMed

    Cordoba-Chacon, Jose; Majumdar, Neena; List, Edward O; Diaz-Ruiz, Alberto; Frank, Stuart J; Manzano, Anna; Bartrons, Ramon; Puchowicz, Michelle; Kopchick, John J; Kineman, Rhonda D

    2015-09-01

    Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have low growth hormone (GH) production and/or hepatic GH resistance. GH replacement can resolve the fatty liver condition in diet-induced obese rodents and in GH-deficient patients. However, it remains to be determined whether this inhibitory action of GH is due to direct regulation of hepatic lipid metabolism. Therefore, an adult-onset, hepatocyte-specific, GH receptor (GHR) knockdown (aLivGHRkd) mouse was developed to model hepatic GH resistance in humans that may occur after sexual maturation. Just 7 days after aLivGHRkd, hepatic de novo lipogenesis (DNL) was increased in male and female chow-fed mice, compared with GHR-intact littermate controls. However, hepatosteatosis developed only in male and ovariectomized female aLivGHRkd mice. The increase in DNL observed in aLivGHRkd mice was not associated with hyperactivation of the pathway by which insulin is classically considered to regulate DNL. However, glucokinase mRNA and protein levels as well as fructose-2,6-bisphosphate levels were increased in aLivGHRkd mice, suggesting that enhanced glycolysis drives DNL in the GH-resistant liver. These results demonstrate that hepatic GH actions normally serve to inhibit DNL, where loss of this inhibitory signal may explain, in part, the inappropriate increase in hepatic DNL observed in NAFLD patients. PMID:26015548

  19. Hepatic isometallothioneins in mice: induction in adults and postnatal ontogeny.

    PubMed

    Kershaw, W C; Lehman-McKeeman, L D; Klaassen, C D

    1990-06-15

    The purpose of this study was to quantitate hepatic metallothionein-I (MT-I) and metallothionein-II (MT-II) in adult mice pretreated with various dosages of selected inorganic and organic compounds and in nonchemically treated neonatal mice. Male CF-1 mice received Zn (0.38-6.0 mmol/kg, sc), Cd (5-80 mumol/kg, sc), dexamethasone (10-1000 mumol/kg, sc), or ethanol (60-180 mmol/kg, po). Liver cytosol was prepared 24 hr after the administration of each compound. In another experiment, liver cytosols were prepared from male and female neonates 1 to 35 days after parturition. MT-I and MT-II in liver cytosols were isolated by high-performance anion-exchange chromatography and quantitated by atomic absorption spectrometry. Hepatic MT-I and MT-II concentrations in adult controls were 5.1 +/- 1.3 and 3.7 +/- 1.0 micrograms/g liver, respectively. All compounds increased hepatic MT levels in a dose-dependent manner over a narrow range of dosages. The lowest dosages of Zn, Cd, dexamethasone, and ethanol that produced a significant increase in total MT content (MT-I plus MT-II) were 0.38, 0.005, 0.3, and 90 mmol/kg, respectively. Maximal induction of total MT following the highest dosages of Zn, Cd, ethanol, and dexamethasone was 58, 34, 24, and 13 times the control value (8.8 +/- 2.4 micrograms total MT/g liver), respectively. The relationship between dose and hepatic MT content was linear following ethanol administration and log-linear following Zn, Cd, and dexamethasone administration. The ratio of MT-I/MT-II was approximately 2.4 following all dosages of metals. Following low and high dosages of organic compounds, the ratio of MT-I/MT-II was approximately 1.0 and 1.5, respectively. Total MT concentration in livers of 1- to 14-day-old mice was approximately 40 times that observed in adult liver (5.5 +/- 1.6 micrograms total MT/g liver) and returned toward adult levels 21 days after parturition. The ratio of MT-I/MT-II was approximately 1.8 during Postpartum Days 1 through 14

  20. Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice

    PubMed Central

    Martini, Mariangela; Calandreau, Ludovic; Jouhanneau, Mélanie; Mhaouty-Kodja, Sakina; Keller, Matthieu

    2014-01-01

    During perinatal life, sex steroids, such as estradiol, have marked effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are man-made chemicals, which animal and human population encounter in the environment and which are able to disrupt the functioning of the endocrine system. Scientific interest in the effects of exposure to xenoestrogens has focused more on fertility and reproductive behaviors, while the effects on cognitive behaviors have received less attention. Therefore, the present study explored whether the organochlorine insecticide Methoxychlor (MXC), with known xenoestrogens properties, administered during the perinatal period (from gestational day 11 to postnatal day 8) to pregnant-lactating females, at an environmentally relevant dose (20 µg/kg (body weight)/day), would also affect learning and memory functions depending on the hippocampus of male and female offspring mice in adulthood. When tested in adulthood, MXC perinatal exposure led to an increase in anxiety-like behavior and in short-term spatial working memory in both sexes. Emotional learning was also assessed using a contextual fear paradigm and MXC treated male and female mice showed an enhanced freezing behavior compared to controls. These results were correlated with an increased survival of adult generated cells in the adult hippocampus. In conclusion, our results show that perinatal exposure to an environmentally relevant dose of MXC has an organizational effect on hippocampus-dependent memory and emotional behaviors. PMID:24982620

  1. Reversible suppression of an essential gene in adult mice using transgenic RNA interference

    PubMed Central

    McJunkin, Katherine; Mazurek, Anthony; Premsrirut, Prem K.; Zuber, Johannes; Dow, Lukas E.; Simon, Janelle; Stillman, Bruce; Lowe, Scott W.

    2011-01-01

    RNAi has revolutionized loss-of-function genetics by enabling sequence-specific suppression of virtually any gene. Furthermore, tetracycline response elements (TRE) can drive expression of short hairpin RNAs (shRNAs) for inducible and reversible target gene suppression. Here, we demonstrate the feasibility of transgenic inducible RNAi for suppression of essential genes. We set out to directly target cell proliferation by screening an RNAi library against DNA replication factors and identified multiple shRNAs against Replication Protein A, subunit 3 (RPA3). We generated transgenic mice with TRE-driven Rpa3 shRNAs whose expression enforced a reversible cell cycle arrest. In adult mice, the block in cell proliferation caused rapid atrophy of the intestinal epithelium which led to weight loss and lethality within 8–11 d of shRNA induction. Upon shRNA withdrawal, villus atrophy and weight loss were fully reversible. Thus, shRpa3 transgenic mice provide an interesting tool to study tissue maintenance and regeneration. Overall, we have established a robust system that serves the purpose of temperature-sensitive alleles in other model organisms, enabling inducible and reversible suppression of essential genes in a mammalian system. PMID:21482754

  2. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice.

    PubMed

    Wright, Margaret C; Reed-Geaghan, Erin G; Bolock, Alexa M; Fujiyama, Tomoyuki; Hoshino, Mikio; Maricich, Stephen M

    2015-02-01

    Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1(+) skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood.

  3. Evaluation of Oogenesis Aspects in Neonatal and Adult Mice after Toloaldoxime Treatment

    PubMed Central

    Fazeltabar Malekshah, Mohammad; Sedighi, Mahsa; Parivar, Kazem; Mohseni Kouchesfahani, Homa; Bigdeli, Mohamadali

    2015-01-01

    Objective Oximes are important materials in organic chemistry. Synparamethyl benzal- dehyde oxime (toloaldoxime) is structurally similar to other oximes, hence we have studied its effects on the neonatal and adult female Balb/c mice reproductive systems in order to provide a platform for future studies on the production of female contraceptive drugs. Materials and Methods In experimental study, we studied the effects of toloaldoxime on ovary growth and gonadal hormones of neonatal and adult Balb/c mice. A regression model for prediction was presented. Results The effects of toloaldoxime on neonatal mice were more than adult mice. The greatest effect was on the number of Graafian follicles (59.6% in adult mice and 31.83% in neonatal mice). The least effect was on ovary weight, and blood serum lev- els of follicle stimulating hormone (FSH) and luteinizing hormone (LH). Conclusion According to the data obtained, toloaldoxime can be considered an anti- pregnancy substance. PMID:26464830

  4. An inducible hepatocellular carcinoma model for preclinical evaluation of antiangiogenic therapy in adult mice.

    PubMed

    Runge, Anja; Hu, Junhao; Wieland, Matthias; Bergeest, Jan-Philip; Mogler, Carolin; Neumann, André; Géraud, Cyrill; Arnold, Bernd; Rohr, Karl; Komljenovic, Dorde; Schirmacher, Peter; Goerdt, Sergij; Augustin, Hellmut G

    2014-08-01

    The limited availability of experimental tumor models that faithfully mimic the progression of human tumors and their response to therapy remains a major bottleneck to the clinical translation and application of novel therapeutic principles. To address this challenge in hepatocellular carcinoma (HCC), one of the deadliest and most common cancers in the world, we developed and validated an inducible model of hepatocarcinogenesis in adult mice. Tumorigenesis was triggered by intravenous adenoviral delivery of Cre recombinase in transgenic mice expressing the hepatocyte-specific albumin promoter, a loxP-flanked stop cassette, and the SV40 large T-antigen (iAST). Cre recombinase-mediated excision of the stop cassette led to a transient viral hepatitis and resulted in multinodular tumorigenesis within 5 to 8 weeks. Tumor nodules with histologic characteristics of human HCC established a functional vasculature by cooption, remodeling, and angiogenic expansion of the preexisting sinusoidal liver vasculature with increasing signs of vascular immaturity during tumor progression. Treatment of mice with sorafenib rapidly resulted in the induction of vascular regression, inhibition of tumor growth, and enhanced overall survival. Vascular regression was characterized by loss of endothelial cells leaving behind avascular type IV collagen-positive empty sleeves with remaining pericytes. Sorafenib treatment led to transcriptional changes of Igf1, Id1, and cMet over time, which may reflect the emergence of potential escape mechanisms. Taken together, our results established the iAST model of inducible hepatocarcinogenesis as a robust and versatile preclinical model to study HCC progression and validate novel therapies. PMID:24906623

  5. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    PubMed

    Kesby, James P; Kim, Jane J; Scadeng, Miriam; Woods, Gina; Kado, Deborah M; Olefsky, Jerrold M; Jeste, Dilip V; Achim, Cristian L; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions.

  6. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    PubMed

    Kesby, James P; Kim, Jane J; Scadeng, Miriam; Woods, Gina; Kado, Deborah M; Olefsky, Jerrold M; Jeste, Dilip V; Achim, Cristian L; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions. PMID:26448649

  7. The effect of pharmacist-led interventions in optimising prescribing in older adults in primary care: A systematic review

    PubMed Central

    Riordan, David O; Walsh, Kieran A; Galvin, Rose; Sinnott, Carol; Kearney, Patricia M; Byrne, Stephen

    2016-01-01

    Objective: To evaluate studies of pharmacist-led interventions on potentially inappropriate prescribing among community-dwelling older adults receiving primary care to identify the components of a successful intervention. Data sources: An electronic search of the literature was conducted using the following databases from inception to December 2015: PubMed, Embase, Cumulative Index to Nursing and Allied Health Literature, MEDLINE (through Ovid), Trip, Centre for Reviews and Dissemination databases, Cochrane Database of Systematic Reviews, ISI Web of Science, ScienceDirect, ClinicalTrials.gov, metaRegister of Controlled Trials, ProQuest Dissertations & Theses Database (Theses in Great Britain, Ireland and North America). Review methods: Studies were included if they were randomised controlled trials or quasi-randomised studies involving a pharmacist-led intervention compared to usual/routine care which aimed to reduce potentially inappropriate prescribing in older adults in primary care. Methodological quality of the included studies was independently assessed. Results: A comprehensive literature search was conducted which identified 2193 studies following removal of duplicates. Five studies met the inclusion criteria. Four studies involved a pharmacist conducting a medication review and providing feedback to patients or their family physician. One randomised controlled trial evaluated the effect of a computerised tool that alerted pharmacists when elderly patients were newly prescribed potentially inappropriate medications. Four studies were associated with an improvement in prescribing appropriateness. Conclusion: Overall, this review demonstrates that pharmacist-led interventions may improve prescribing appropriateness in community-dwelling older adults. However, the quality of evidence is low. The role of a pharmacist working as part of a multidisciplinary primary care team requires further investigation to optimise prescribing in this group of patients. PMID

  8. Antidepressant-like effect of lead in adult mice.

    PubMed

    Mantovani, M; Matteussi, A S; Rodrigues, A L

    1999-12-01

    It has been reported that lead can cause behavioral impairment by inhibiting the N-methyl-D-aspartate (NMDA) receptor complex. MK-801, a noncompetitive NMDA receptor antagonist, exhibits an antidepressant-like action in the forced swimming test. The purpose of the present study was to determine whether subacute lead exposure in adult male Swiss mice weighing 30-35 g causes an antidepressant-like action in a forced swimming test. Mice were injected intraperitoneally (ip) with 10 mg/kg lead acetate or saline daily for 7 consecutive days. Twenty-four hours after the last treatment, the saline and lead-treated mice received an injection of MK-801 (0.01 mg/kg, ip) or saline and were tested in forced swimming and in open-field tests. Immobility time was similarly reduced in the saline-MK-801, Pb-saline and Pb-MK-801 groups compared to the saline-saline group (mean +/- SEM; 197.3 +/- 18.5, 193.5 +/- 15.8, 191.3 +/- 12.3 and 264.0 +/- 14.4 s, respectively; N = 9). These data indicate that lead may exert its effect on the forced swimming test by directly or indirectly inhibiting the NMDA receptor complex. Lead treatment caused no deficit in memory of habituation and did not affect locomotor activity in an open-field (N = 14). However, mice that received MK-801 after lead exhibited a deficit in habituation (22% reduction in rearing responses between session 3 and 1; N = 14) as compared to control (41% reduction in rearing responses; N = 15), further suggesting that lead may have affected the NMDA receptor activity. Forced-swim immobility in a basin in two daily consecutive sessions was also significantly decreased by lead exposure (mean +/- SEM; day 1 = 10.6 +/- 3.2, day 2 = 19.6 +/- 3.6; N = 16) as compared to control (day 1 = 18.4 +/- 3.8, day 2 = 34.0 +/- 3.7; N = 17), whereas the number of crossings was not affected by lead treatment, further indicating a specific antidepressant-like action of lead.

  9. Myogenin Regulates Exercise Capacity but Is Dispensable for Skeletal Muscle Regeneration in Adult mdx Mice

    PubMed Central

    Klein, William H.

    2011-01-01

    Duchenne muscular dystrophy (DMD) is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myogflox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myogflox/flox mice (mdx), Myogflox/flox mice (wild-type), and mdx:MyogfloxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted). mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function. PMID:21264243

  10. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia.

    PubMed

    Fry, Christopher S; Lee, Jonah D; Mula, Jyothi; Kirby, Tyler J; Jackson, Janna R; Liu, Fujun; Yang, Lin; Mendias, Christopher L; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2015-01-01

    A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis.

  11. Embryonic and adult stem cells promote raphespinal axon outgrowth and improve functional outcome following spinal hemisection in mice.

    PubMed

    Boido, Marina; Rupa, Rosita; Garbossa, Diego; Fontanella, Marco; Ducati, Alessandro; Vercelli, Alessandro

    2009-09-01

    Spinal cord injury (SCI) often results in permanent neurological deficits below the injury site. Serotonergic raphespinal projections promote functional recovery after SCI, but spontaneous regeneration of most severed axons is limited by the glial cyst and scar that form at the lesion site. Stem cell (SC) transplantation offers a promising approach for inducing regeneration through the damaged area. Here we compare the effects of transplantation of embryonic neural precursors (NPs) or adult mesenchymal SCs, both of which are potential candidates for SC therapy. The spinal cord was hemisected at the L2 neuromer in adult mice. Two weeks post-injury, we transplanted neural precursors or mesenchymal SCs into the cord, caudal to the hemisection. Injured mice without a graft served as controls. Mice were tested for functional recovery on a battery of motor tasks, then killed and analysed for survival of grafted cells, for effects of engraftment on the local cellular environment and for the sprouting of serotonergic axons. Both types of SCs survived and were integrated into the host tissue, but only the NPs expressed neuronal markers. All transplanted animals displayed an increased number of serotonin-positive fibres caudal to the hemisection, compared with untreated mice. And both cell types led to improved motor performance. These results point to a therapeutic potential for such cell grafting.

  12. Histaminergic modulation of the intact respiratory network of adult mice.

    PubMed

    Dutschmann, M; Bischoff, A M; Büsselberg, D; Richter, D W

    2003-02-01

    Histaminergic modulation of neuronal activity in the respiratory network was investigated under normoxic and hypoxic conditions in the working heart-brainstem preparation of adult mice. Systemic application of histamine, as well as the H-1 and H-3 receptor agonists 6-[2-(4-imidazolyl)ethylamino]- N-(4-trifluoromethylphenyl) heptanecarboxamide (HTMT) and imetit, 0.5-10 micro M, significantly increased the frequency of respiratory burst discharges. Dimaprit, an H-2 receptor agonist, had no effect on respiratory activity. To test for ongoing histaminergic modulation we applied the histamine receptor antagonists pyrilamine (H-1); cimetidine (H-2) and thioperamide (H-3), each 0.5-10 micro M. Only the H-1 receptor antagonist had significant effects, viz. reduction of respiratory frequency and depression of burst amplitude. Underlying effects of histamine receptor activation were identified at the cellular level. Intracellular recordings showed that histamine mediated an increase in synaptic drive potentials in inspiratory neurones while augmentation of inhibitory and excitatory synaptic activity was observed in expiratory neurones. The augmented synaptic depolarisation of inspiratory neurones was blocked by the H-1 receptor antagonist. Histaminergic modulation is also involved in the hypoxic response of the respiratory network. Blockade of H-1 receptors significantly attenuated secondary depression of the biphasic hypoxic responses, while hypoxic augmentation was not affected. We conclude that histamine is a functional neuromodulator, which is tonically active in the respiratory network and is activated further during hypoxia. The data indicate that histaminergic neuromodulation acts predominantly via H-1 receptors.

  13. Impaired adult myelination in the prefrontal cortex of socially isolated mice

    PubMed Central

    Liu, Jia; Dietz, Karen; DeLoyht, Jacqueline M; Pedre, Xiomara; Kelkar, Dipti; Kaur, Jasbir; Vialou, Vincent; Lobo, Mary Kay; Dietz, David M; Nestler, Eric J; Dupree, Jeffrey; Casaccia, Patrizia

    2013-01-01

    Protracted social isolation of adult mice induced behavioral, transcriptional and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC) and impaired adult myelination. Social re-integration was sufficient to normalize behavioral and transcriptional changes. Short periods of isolation affected chromatin and myelin, but did not induce behavioral changes. Thus, myelinating oligodendrocytes in the adult PFC respond to social interaction with chromatin changes, suggesting that myelination acts as a form of adult plasticity. PMID:23143512

  14. Selenium status alters the immune response and expulsion of adult Heligmosomodies bakeri in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri was delayed in selenium (Se) deficient mice. ...

  15. Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin.

    PubMed

    Lopes, Luiza da Silva; Slobodian, Ili; Del Bigio, Marc R

    2009-09-01

    Hydrocephalus is a common neurological problem in humans, usually caused by an impairment of cerebrospinal fluid (CSF) flow or absorption. A reliable induced model of chronic hydrocephalus in mice would be useful to test hypotheses using genetic mutants. Our goal was to characterize behavioral and histological changes in juvenile and young adult mice with kaolin (aluminum silicate)-induced hydrocephalus. Seven-day old and 7-8 week old mice received injection of kaolin into the cisterna magna. Behavior was assessed repeatedly. Seven or 14 days following kaolin, magnetic resonance (MR) imaging was used to assess ventricle size. In hydrocephalic mice, body weight was significantly lower than in age-matched saline-injected sham controls and the gait and posture score were impaired. Juvenile mice developed severe ventriculomegaly and had reduced corpus callosum thickness with gross white matter destruction by 14 days. Reactive astroglial change in white matter and cortex and reduced cellular proliferation in the subependymal zone were also apparent. Young adult mice developed only moderate ventricular enlargement without overt white matter destruction, although there was corpus callosum atrophy and mild astroglial reaction in white matter. Glial fibrillary acidic protein content was significantly higher in juvenile and young adult hydrocephalic mice at 7 and 14 days, but myelin basic protein content was not significantly altered. In conclusion, hydrocephalus induced by percutaneous injection of kaolin in juvenile and young adult mice is feasible. The associated periventricular alterations are essentially the same as those reported in rats of comparable ages.

  16. Vaccination of mice with liposome-entrapped adult antigens of Nippostrongylus brasiliensis.

    PubMed

    Rhalem, A; Bourdieu, C; Luffau, G; Pery, P

    1988-01-01

    An immunization procedure was developed to induce protection of mice against the gastrointestinal helminth Nippostrongylus brasiliensis. Mice immunized by the oral route with antigens which were released by adult worms during their in vitro survival in a detergent-containing medium and which were entrapped in liposomes were protected against a challenge infection.

  17. Simvastatin and artesunate impact the structural organization of adult Schistosoma mansoni in hypercholesterolemic mice.

    PubMed

    Alencar, Alba Cristina Miranda de Barros; Santos, Thais da Silva; Neves, Renata Heisler; Lopes Torres, Eduardo José; Nogueira-Neto, José Firmino; Machado-Silva, José Roberto

    2016-08-01

    Experimental data have shown that simvastatin and artesunate possess activity against Schistosoma mansoni worms in mice fed standard chow. However, little is known regarding the roles of these drugs in mice fed high-fat chow. We have extended past studies by measuring the effects of these drugs on the structural organization of adult schistosomes in hypercholesterolemic mice. For this purpose, mice were gavaged with either simvastatin or artesunate at nine weeks post-infection and were euthanized by cervical dislocation at two weeks post-treatment. Adult worms were then collected and examined by conventional light microscopy, morphometry and confocal laser scanning microscopy. Plasma total cholesterol and worm reduction rates were significantly increased in mice fed high-fat chow compared with their respective control groups. Simvastatin and artesunate caused changes in the tegument, tubercles, and reproductive system (testicular lobes, vitelline glands and ovarian cells), particularly when administered to mice fed high-fat chow. In particular, the tegument and tubercles were significantly thinner in artesunate-treated worms in mice fed high-fat chow compared with mice fed standard chow. This study thus demonstrated that simvastatin and artesunate have several novel effects on the structural organization of adult worms. Together, these results show, for the first time, that simvastatin and artesunate display antischistosomal activity in hypercholesterolemic mice.

  18. Monocular Deprivation in Adult Mice Alters Visual Acuity and Single-Unit Activity

    ERIC Educational Resources Information Center

    Evans, Scott; Lickey, Marvin E.; Pham, Tony A.; Fischer, Quentin S.; Graves, Aundrea

    2007-01-01

    It has been discovered recently that monocular deprivation in young adult mice induces ocular dominance plasticity (ODP). This contradicts the traditional belief that ODP is restricted to a juvenile critical period. However, questions remain. ODP of young adults has been observed only using methods that are indirectly related to vision, and the…

  19. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice.

    PubMed

    Bakker, Elvira R M; Raghoebir, Lalini; Franken, Patrick F; Helvensteijn, Werner; van Gurp, Léon; Meijlink, Frits; van der Valk, Martin A; Rottier, Robbert J; Kuipers, Ernst J; van Veelen, Wendy; Smits, Ron

    2012-09-01

    Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages.

  20. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    PubMed

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans. PMID:27096360

  1. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    PubMed

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.

  2. Neonatal pneumococcal colonisation caused by Influenza A infection alters lung function in adult mice

    PubMed Central

    FitzPatrick, Meaghan; Royce, Simon G.; Langenbach, Shenna; McQualter, Jonathan; Reading, Patrick C.; Wijburg, Odilia; Anderson, Gary P.; Stewart, Alastair; Bourke, Jane; Bozinovski, Steven

    2016-01-01

    There is emerging epidemiological data to suggest that upper respiratory tract bacterial colonisation in infancy may increase the risk of developing respiratory dysfunction later in life, and respiratory viruses are known to precipitate persistent colonisation. This study utilized a neonatal mouse model of Streptococcus pneumonia (SP) and influenza A virus (IAV) co-infection, where bronchoalveolar leukocyte infiltration had resolved by adulthood. Only co-infection resulted in persistent nasopharyngeal colonisation over 40 days and a significant increase in airway resistance in response to in vivo methacholine challenge. A significant increase in hysteresivity was also observed in IAV and co-infected mice, consistent with ventilatory heterogeneity and structural changes in the adult lung. Airway hyper-responsiveness was not associated with a detectable increase in goblet cell transdifferentiation, peribronchial smooth muscle bulk or collagen deposition in regions surrounding the airways. Increased reactivity was not observed in precision cut lung slices challenged with methacholine in vitro. Histologically, the airway epithelium appeared normal and expression of epithelial integrity markers (ZO-1, occludin-1 and E-cadherin) were not altered. In summary, neonatal co-infection led to persistent nasopharyngeal colonisation and increased airway responsiveness that was not associated with detectable smooth muscle or mucosal epithelial abnormalities, however increased hysteresivity may reflect ventilation heterogeneity. PMID:26940954

  3. Increasing the effectiveness of intracerebral injections in adult and neonatal mice: a neurosurgical point of view.

    PubMed

    Mathon, Bertrand; Nassar, Mérie; Simonnet, Jean; Le Duigou, Caroline; Clemenceau, Stéphane; Miles, Richard; Fricker, Desdemona

    2015-12-01

    Intracerebral injections of tracers or viral constructs in rodents are now commonly used in the neurosciences and must be executed perfectly. The purpose of this article is to update existing protocols for intracerebral injections in adult and neonatal mice. Our procedure for stereotaxic injections in adult mice allows the investigator to improve the effectiveness and safety, and save time. Furthermore, for the first time, we describe a two-handed procedure for intracerebral injections in neonatal mice that can be performed by a single operator in a very short time. Our technique using the stereotaxic arm allows a higher precision than freehand techniques previously described. Stereotaxic injections in adult mice can be performed in 20 min and have >90% efficacy in targeting the injection site. Injections in neonatal mice can be performed in 5 min. Efficacy depends on the difficulty of precisely localizing the injection sites, due to the small size of the animal. We describe an innovative, effortless, and reproducible surgical protocol for intracerebral injections in adult and neonatal mice.

  4. CpG Improves Influenza Vaccine Efficacy in Young Adult but Not Aged Mice.

    PubMed

    Ramirez, Alejandro; Co, Mary; Mathew, Anuja

    2016-01-01

    Several studies have shown a reduced efficacy of influenza vaccines in the elderly compared to young adults. In this study, we evaluated the immunogenicity and protective efficacy of a commercially available inactivated influenza vaccine (Fluzone®) in young adult and aged mice. C57/BL6 mice were administered a single or double immunization of Fluzone® with or without CpG and challenged intranasally with H1N1 A/California/09 virus. A double immunization of Fluzone® adjuvanted with CpG elicited the highest level of protection in young adult mice which was associated with increases in influenza specific IgG, elevated HAI titres, reduced viral titres and lung inflammation. In contrast, the vaccine schedule which provided fully protective immunity in young adult mice conferred limited protection in aged mice. Antigen presenting cells from aged mice were found to be less responsive to in vitro stimulation by Fluzone and CpG which may partially explain this result. Our data are supportive of studies that have shown limited effectiveness of influenza vaccines in the elderly and provide important information relevant to the design of more immunogenic vaccines in this age group. PMID:26934728

  5. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice.

    PubMed

    Dansie, L E; Phommahaxay, K; Okusanya, A G; Uwadia, J; Huang, M; Rotschafer, S E; Razak, K A; Ethell, D W; Ethell, I M

    2013-08-29

    Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder. Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in "fragile X mental retardation gene" knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4- and 8-week-long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model.

  6. Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/- BDNF mutant mice.

    PubMed

    Dluzen, D E; Gao, X; Story, G M; Anderson, L I; Kucera, J; Walro, J M

    2001-07-01

    Deletion of a single copy of the BDNF gene has been shown to affect the nigrostriatal dopaminergic system of young adult BDNF mice. In the present report we evaluated various indices of nigrostriatal dopaminergic function between 9-month-old wild-type (+/+) and heterozygous (+/-) BDNF mutant mice. Performance in a sensorimotor beam walking task was significantly decreased in +/- mice as indicated by increased times required to traverse both a wide (21 mm) and narrow (6 mm) beam. No differences in spontaneous locomotor behavior were observed between the +/+ and +/- mice. Amphetamine-stimulated (5 mg/kg) locomotor behavior was increased to a greater degree in the +/- mice, with the number of movements performed by these mice being significantly greater than their +/+ controls. Corpus striatal dopamine concentrations were significantly greater in the +/- BDNF mice. The absence of any significant differences for dopamine concentrations within the hypothalamus and olfactory bulb of these mice, as well as an absence of any difference in striatal norepinephrine concentrations, suggested a relative specificity of these effects to the corpus striatum. Both the +/- and +/+ mice showed similar reductions in striatal dopamine concentrations in response to a neurotoxic regimen of methamphetamine (20 mg/kg). Collectively these data show increased levels of striatal dopamine concentrations associated with altered behavioral responses involving the nigrostriatal dopaminergic system within the heterozygous BDNF mutant mice. PMID:11421589

  7. Transient Suppression of Dbx1 PreBötzinger Interneurons Disrupts Breathing in Adult Mice

    PubMed Central

    Vann, Nikolas C.; Pham, Francis D.; Hayes, John A.; Kottick, Andrew; Del Negro, Christopher A.

    2016-01-01

    Interneurons derived from Dbx1-expressing precursors located in the brainstem preBötzinger complex (preBötC) putatively form the core oscillator for inspiratory breathing movements. We tested this Dbx1 core hypothesis by expressing archaerhodopsin in Dbx1-derived interneurons and then transiently hyperpolarizing these neurons while measuring respiratory rhythm in vitro or breathing in vagus-intact adult mice. Transient illumination of the preBötC interrupted inspiratory rhythm in both slice preparations and sedated mice. In awake mice, light application reduced breathing frequency and prolonged the inspiratory duration. Support for the Dbx1 core hypothesis previously came from embryonic and perinatal mouse experiments, but these data suggest that Dbx1-derived preBötC interneurons are rhythmogenic in adult mice too. The neural origins of breathing behavior can be attributed to a localized and genetically well-defined interneuron population. PMID:27611210

  8. Transient Suppression of Dbx1 PreBötzinger Interneurons Disrupts Breathing in Adult Mice.

    PubMed

    Vann, Nikolas C; Pham, Francis D; Hayes, John A; Kottick, Andrew; Del Negro, Christopher A

    2016-01-01

    Interneurons derived from Dbx1-expressing precursors located in the brainstem preBötzinger complex (preBötC) putatively form the core oscillator for inspiratory breathing movements. We tested this Dbx1 core hypothesis by expressing archaerhodopsin in Dbx1-derived interneurons and then transiently hyperpolarizing these neurons while measuring respiratory rhythm in vitro or breathing in vagus-intact adult mice. Transient illumination of the preBötC interrupted inspiratory rhythm in both slice preparations and sedated mice. In awake mice, light application reduced breathing frequency and prolonged the inspiratory duration. Support for the Dbx1 core hypothesis previously came from embryonic and perinatal mouse experiments, but these data suggest that Dbx1-derived preBötC interneurons are rhythmogenic in adult mice too. The neural origins of breathing behavior can be attributed to a localized and genetically well-defined interneuron population. PMID:27611210

  9. Effects of cage density on behavior in young adult mice.

    PubMed

    Davidson, Lauren P; Chedester, Alan L; Cole, Marlene N

    2007-08-01

    Optimal housing conditions for mice can be achieved by minimizing environmental variables, such as those that may contribute to anxiety-like behavior. This study evaluated the effects of cage size on juvenile mice through assessment of differences in weaning weight, locomotor skills, and anxiety-like behavior. Eighteen pairs of male and pregnant female Swiss-Webster (Cr:SW) mice were housed in 3 different caging scenarios, providing 429, 505, or 729 cm2 of space. Litters were standardized to 10 pups per litter in each cage. Mice reared in each caging scenario were assessed with the open-field, light-dark exploration, and elevated plus-maze tests. No differences in weaning weight were noted. Mice reared in the 505- and 729-cm2 cages explored a significantly larger area of the open-field arena than did those in the 429-cm2 cages. Those reared in the 505-cm2 cages spent more time in the center of the open field than did those in the 729-cm2 cages, suggesting that anxiety-like behavior may be increased in the animals housed in the larger cages. This study did not establish a consistent link between decreased floor space and increased anxiety-like behavior; neither does there appear to be a consistent effect of available floor area on the development of locomotor skills on mouse pups.

  10. Ultrastructural analysis of blood-brain barrier breakdown in the peri-infarct zone in young adult and aged mice.

    PubMed

    Nahirney, Patrick C; Reeson, Patrick; Brown, Craig E

    2016-02-01

    Following ischemia, the blood-brain barrier is compromised in the peri-infarct zone leading to secondary injury and dysfunction that can limit recovery. Currently, it is uncertain what structural changes could account for blood-brain barrier permeability, particularly with aging. Here we examined the ultrastructure of early and delayed changes (3 versus 72 h) to the blood-brain barrier in young adult and aged mice (3-4 versus 18 months) subjected to photothrombotic stroke. At both time points and ages, permeability was associated with a striking increase in endothelial caveolae and vacuoles. Tight junctions were generally intact although small spaces were detected in a few cases. In young mice, ischemia led to a significant increase in pericyte process area and vessel coverage whereas these changes were attenuated with aging. Stroke led to an expansion of the basement membrane region that peaked at 3 h and partially recovered by 72 h in both age groups. Astrocyte endfeet and their mitochondria were severely swollen at both times points and ages. Our results suggest that blood-brain barrier permeability in young and aged animals is mediated by transcellular pathways (caveolae/vacuoles), rather than tight junction loss. Further, our data indicate that the effects of ischemia on pericytes and basement membrane are affected by aging. PMID:26661190

  11. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    PubMed

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression.

  12. A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice.

    PubMed

    Hammerschmidt, K; Schreiweis, C; Minge, C; Pääbo, S; Fischer, J; Enard, W

    2015-11-01

    The transcription factor FOXP2 has been linked to severe speech and language impairments in humans. An analysis of the evolution of the FOXP2 gene has identified two amino acid substitutions that became fixed after the split of the human and chimpanzee lineages. Studying the functional consequences of these two substitutions in the endogenous Foxp2 gene of mice showed alterations in dopamine levels, striatal synaptic plasticity, neuronal morphology and cortico-striatal-dependent learning. In addition, ultrasonic vocalizations (USVs) of pups had a significantly lower average pitch than control littermates. To which degree adult USVs would be affected in mice carrying the 'humanized' Foxp2 variant remained unclear. In this study, we analyzed USVs of 68 adult male mice uttered during repeated courtship encounters with different females. Mice carrying the Foxp2(hum/hum) allele did not differ significantly in the number of call elements, their element structure or in their element composition from control littermates. We conclude that neither the structure nor the usage of USVs in adult mice is affected by the two amino acid substitutions that occurred in FOXP2 during human evolution. The reported effect for pup vocalization thus appears to be transient. These results are in line with accumulating evidence that mouse USVs are hardly influenced by vocal learning. Hence, the function and evolution of genes that are necessary, but not sufficient for vocal learning in humans, must be either studied at a different phenotypic level in mice or in other organisms.

  13. Alzheimer's disease and methanol toxicity (part 1): chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice.

    PubMed

    Yang, Meifeng; Lu, Jing; Miao, Junye; Rizak, Joshua; Yang, Jianzhen; Zhai, Rongwei; Zhou, Jun; Qu, Jiagui; Wang, Jianhong; Yang, Shangchuan; Ma, Yuanye; Hu, Xintian; He, Rongqiao

    2014-01-01

    Although methanol toxicity is well known for acute neurological sequelae leading to blindness or death, there is a new impetus to investigate the chronic effects of methanol exposure. These include a recently established link between formaldehyde, a methanol metabolite, and Alzheimer's disease (AD) pathology. In the present study, mice were fed with methanol to revisit the chronic effects of methanol toxicity, especially as it pertains to AD progression. Three groups of mice (n = 9) were given either water as a control or a methanol solution (concentrations of 2% or 3.8%) over a 6-week period. The methanol-fed mice were found to have impaired spatial recognition and olfactory memory in Y-maze and olfactory memory paradigms. Immunohistochemical analysis of the mouse brains found increased neuronal tau phosphorylation in the hippocampus and an increased cellular apoptotic marker in hippocampal CA1 neurons (~10% of neurons displayed chromatin condensation) in the methanol-fed groups. Two additional in vitro experiments in mouse embryonic cerebral cortex neurons and mouse neuroblastoma N2a cells found that formaldehyde, but not methanol or the methanol end product formic acid, induced microtubule disintegration and tau protein hyperphosphorylation. The findings of the behavioral tests and immunohistochemical analysis suggested that the methanol-fed mice presented with partial AD-like symptoms. The in vitro experiments suggested that formaldehyde was most likely the detrimental component of methanol toxicity related to hippocampal tau phosphorylation and the subsequent impaired memory in the mice. These findings add to a growing body of evidence that links formaldehyde to AD pathology.

  14. Effect of chronic social defeat stress on behaviors and dopamine receptor in adult mice.

    PubMed

    Huang, Guang-Biao; Zhao, Tong; Gao, Xiao-Lei; Zhang, Hong-Xing; Xu, Yu-Ming; Li, Hao; Lv, Lu-Xian

    2016-04-01

    Victims of bullying often undergo depression, low self-esteem, high anxiety and post-traumatic stress disorder symptoms. The social defeat model has become widely accepted for studying experimental animal behavior changes associated with bullying; however, differences in the effects in susceptible and unsusceptible individuals have not been well studied. The present study investigated the effects of social defeat stress on behavior and the expression of dopamine receptors D1 and D2 in the brains of adult mice. Adult mice were divided into susceptible and unsusceptible groups after 10days of social defeat stress. Behavioral tests were conducted, and protein levels in the brains were assessed by Western blotting. The results indicate that all mice undergo decreased locomotion and increased anxiety behavior. However, decreased social interaction and impaired memory performance were only observed in susceptible mice. A significantly decreased expression of D1 was observed in the prefrontal cortex and amygdala of susceptible mice only. No significant differences in D2 expression were shown between control and defeated mice in any area studied. These data indicate that depression-like behavior and cognition impairment caused by social defeat stress in susceptible mice may be related to changes in the dopamine receptor D1. PMID:26655446

  15. EVALUATION OF PERFLUOROOCTANOIC ACID IMMUNOTOXICITY IN ADULT MICE.

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is used in the manufacture of fluoropolymers and may be formed by metabolism or degradation of other perfluoroalkyl acids. Safety concerns led the U.S. EPA to conduct a risk assessment of PFOA and related compounds due to their environmental persist...

  16. Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice.

    PubMed

    Aerts, Jeroen; Nys, Julie; Moons, Lieve; Hu, Tjing-Tjing; Arckens, Lutgarde

    2015-09-01

    Matrix metalloproteinases (MMPs) are Zn(2+)-dependent endopeptidases considered to be essential for normal brain development and neuroplasticity by modulating extracellular matrix proteins, receptors, adhesion molecules, growth factors and cytoskeletal proteins. Specifically, MMP-3 has recently been implicated in synaptic plasticity, hippocampus-dependent learning and neuronal development and migration in the cerebellum. However, the function(s) of this enzyme in the neocortex is understudied. Therefore, we explored the phenotypical characteristics of the neuronal architecture and the capacity for experience-dependent cortical plasticity in the visual cortex of adult MMP-3-deficient (MMP-3(-/-)) mice. Golgi-Cox stainings revealed a significant reduction in apical dendritic length and an increased number of apical obliques for layer V pyramidal neurons in the visual cortex of adult MMP-3(-/-) mice compared to wild-type (WT) animals. In addition, a significant upregulation of both phosphorylated and non-phosphorylated neurofilament protein (NF)-high, phosphorylated NF-medium, NF-low and α-internexin was detected in the visual cortex of MMP-3(-/-) mice. To assess the effect of MMP-3 deficiency on cortical plasticity, we monocularly enucleated adult MMP-3(-/-) mice and analyzed the reactivation of the contralateral visual cortex 7 weeks post-enucleation. In contrast to previous results in C57Bl/6J adult mice, activity remained confined to the binocular zone and did not expand into the monocular regions indicative for an aberrant open-eye potentiation. Permanent hypoactivity in the monocular cortex lateral and medial to V1 also indicated a lack of cross-modal plasticity. These observations demonstrate that genetic inactivation of MMP-3 has profound effects on the structural integrity and plasticity response of the visual cortex of adult mice.

  17. Pubertal and adult Leydig cell function in Mullerian inhibiting substance-deficient mice.

    PubMed

    Wu, Xiufeng; Arumugam, Ramamani; Baker, Stephen P; Lee, Mary M

    2005-02-01

    Mullerian inhibiting substance (MIS) causes Mullerian duct regression during sexual differentiation and regulates postnatal Leydig cell development. MIS knockout (MIS-KO) mice with targeted deletions of MIS develop Leydig cell hyperplasia, but their circulating androgen concentrations are reportedly unaltered. We compared reproductive hormone profiles, androgen biosynthesis, and the expression of key steroidogenic and metabolic enzymes in MIS-KO and wild-type (WT) mice at puberty (36 d) and sexual maturity (60 d). In pubertal animals, basal testosterone and LH concentrations in plasma were lower in MIS-KO than WT mice, whereas human chorionic gonadotropin-stimulated testosterone concentrations were similar. In adults, basal LH, and both basal and human chorionic gonadotropin (hCG)-stimulated testosterone concentrations were similar. Purified Leydig cells from pubertal MIS-KO mice had lower testosterone but higher androstanediol and androstenedione production rates. In contrast, testosterone, androstanediol, and androstenedione production rates were all lower in adult MIS-KO Leydig cells. Steroidogenic acute regulatory protein expression was lower in pubertal MIS-KO mice compared with WT, whereas 17beta-hydroxy-steroid dehydrogenase and 5alpha-reductase were greater, and P450c17 and P450scc were similar. The expression of steroidogenic acute regulatory protein and 17beta-hydroxysteroid dehydrogenase was lower in adult MIS-KO mice, whereas that of 5alpha-reductase, P450c17, and P450scc was similar. Collectively, these results suggest that in the absence of MIS, Leydig cells remain less differentiated, causing an altered intratesticular androgen milieu that may contribute to the infertility of MIS-KO mice. In immature mice, this deficit in steroidogenic capacity appears to be mediated by a direct loss of MIS action in Leydig cells as well as by indirect effects via the hypothalamic-pituitary-gonadal axis.

  18. Endogenous brain erythropoietin is a potent sex-specific respiratory stimulant in adult and newborn mice.

    PubMed

    Ballot, Orlane; Joseph, Vincent; Soliz, Jorge

    2015-06-01

    We tested the hypothesis that endogenous brain Epo is a respiratory stimulant. Adult (3 mo) and newborn (10 days) male and female mice received an intracisternal (cisterna magna) injection of soluble Epo receptor (sEpoR; competes with EpoR to bind Epo; 50 μg/ml) or vehicle (0.1% BSA in PBS). Twenty-four hours after injection, we used whole body plethysmography to record minute ventilation (V̇e) tidal volume (VT), respiratory frequency (fR), O2 consumption (V̇o2), and CO2 production (V̇co2) under normoxia and progressive exposure to hypoxia (12-10-6% O2; 10 min each). In adult male and female mice sEpoR decreased normoxic V̇e (-25%), due to a decrease of VT in males and fR in females. Moreover, sEpoR injection decreased the ventilatory response to 12% O2, assessed as V̇e/V̇o2 or V̇e/V̇co2, in male but not in female mice. In newborn male and female mice sEpoR decreased V̇e (-37% in males, -59% in females) and VT (-38% in males, -47% in females) in normoxia and fR in females. During hypoxia, sEpoR decreased V̇e/V̇o2 and V̇e/V̇co2 in mice of both sexes. Upon extreme hypoxia (6% O2), the newborn mice treated with sEpoR showed respiratory depression, signs of asphyxia (gasping) and a high mortality rate in males and females. We concluded that endogenous brain Epo is a potent respiratory stimulant under normoxia and hypoxia in adult and newborn mice. Because sex-specific effects are different in newborn male and female, sex steroids secreted at different ages mice appear to modulate the effects of Epo on respiratory regulation in normoxia and in response to hypoxia. PMID:25792712

  19. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  20. Developmental and adult GAP-43 deficiency in mice dynamically alters hippocampal neurogenesis and mossy fiber volume.

    PubMed

    Latchney, Sarah E; Masiulis, Irene; Zaccaria, Kimberly J; Lagace, Diane C; Powell, Craig M; McCasland, James S; Eisch, Amelia J

    2014-01-01

    Growth-associated protein-43 (GAP-43) is a presynaptic protein that plays key roles in axonal growth and guidance and in modulating synapse formation. Previous work has demonstrated that mice lacking one allele of this gene (GAP-43+/- mice) exhibit hippocampal structural abnormalities, impaired spatial learning and stress-induced behavioral withdrawal and anxiety, behaviors that are dependent on proper hippocampal circuitry and function. Given the correlation between hippocampal function, synaptic connectivity and neurogenesis, we tested if behaviorally naïve GAP-43+/- mice had alterations in either neurogenesis or synaptic connectivity in the hippocampus during early postnatal development and young adulthood, and following behavior testing in older adults. To test our hypothesis, we examined hippocampal cell proliferation (Ki67), number of immature neuroblasts (doublecortin, DCX) and mossy fiber volume (synaptoporin) in behaviorally naïve postnatal day 9 (P9) and P26, and behaviorally experienced 5- to 7-month-old GAP-43+/- and +/+ littermate mice. P9 GAP-43+/- mice had fewer Ki67+ and DCX+ cells compared to +/+ mice, particularly in the posterior dentate gyrus, and smaller mossy fiber volume in the same region. In young adulthood, however, male GAP-43+/- mice had more Ki67+ and DCX+ cells and greater mossy fiber volume in the posterior dentate gyrus relative to male +/+ mice. These increases were not seen in females. In 5- to 7-month-old GAP-43+/- mice (whose behaviors were the focus of our prior publication), there was no global change in the number of proliferating or immature neurons relative to +/+ mice. However, more detailed analysis revealed fewer proliferative DCX+ cells in the anterior dentate gyrus of male GAP-43+/- mice compared to male +/+ mice. This reduction was not observed in females. These results suggest that young GAP-43+/- mice have decreased hippocampal neurogenesis and synaptic connectivity, but slightly older mice have greater hippocampal

  1. Acute Multiple Organ Failure in Adult Mice Deleted for the Developmental Regulator Wt1

    PubMed Central

    Chau, You-Ying; Brownstein, David; Mjoseng, Heidi; Lee, Wen-Chin; Buza-Vidas, Natalija; Nerlov, Claus; Jacobsen, Sten Eirik; Perry, Paul; Berry, Rachel; Thornburn, Anna; Sexton, David; Morton, Nik; Hohenstein, Peter; Freyer, Elisabeth; Samuel, Kay; van't Hof, Rob; Hastie, Nicholas

    2011-01-01

    There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal–epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover. PMID:22216009

  2. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    EPA Science Inventory

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male mice
    John C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.
    1Reproductive Toxicology Division, National Health and Envir...

  3. Gonadectomy prior to puberty decreases normal parental behavior in adult mice

    PubMed Central

    Kercmar, Jasmina; Snoj, Tomaz; Tobet, Stuart A.; Majdic, Gregor

    2014-01-01

    Sex steroid hormones secreted by gonads influence development and expression of many behaviors including parental behaviors. The capacity to display many behaviors develops under the influence of sex steroid hormones; it begins with gonadal differentiation and lasts through puberty. The timing of gonadectomy may have important and long lasting effects on the organization and activation of neural circuits regulating the expression of different behaviors. The present study investigated the importance of exposure to endogenous gonadal steroid hormones during pubertal period/adolescence on parental behavior in adult mice. Male and female WT mice were gonadectomized either before puberty (25 days of age) or after puberty (60 days of age) and tested for parental behavior with and without estradiol benzoate (EB) replacement in adulthood. Additional groups of mice were gonadectomized at P25 and supplemented with estradiol (females) or testosterone (males) during puberty. Female mice gonadectomized after puberty or gonadectomized before puberty and supplemented with estradiol during puberty, displayed better pup directed parental behaviors in comparison to mice gonadectomized at 25 days of age regardless treatment with estradiol in adulthood. However, mice treated with EB in adulthood displayed better non-pup directed nest building behavior than when they were tested without EB treatment regardless of sex and time of gonadectomy. To examine whether the sensitivity to sex steroid hormones was altered due to differences in time without gonads prior to the testing, mice were also tested for female sex behavior and there were no differences between mice gonadectomized at P25 or P60, although this could not completely rule out the possibility that parental behavior is more sensitive to prolonged absence of steroid hormones than female sex behavior. These results suggest that the absence of gonads and thereby the absence of appropriate gonadal steroid hormones during puberty

  4. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  5. Effect of oral administration of Kudoa septempunctata genotype ST3 in adult BALB/c mice.

    PubMed

    Ahn, Meejung; Woo, Hochoon; Kang, Bongjo; Jang, Yeounghwan; Shin, Taekyun

    2015-01-01

    Kudoa septempunctata (Myxozoa: Multivalvulida) infects the muscles of olive flounder (Paralichthys olivaceus, Paralichthyidae) in the form of spores. To investigate the effect of K. septempunctata spores in mammals, adult BALB/c mice were fed with spores of K. septempunctata genotype ST3 (1.35 × 10(5) to 1.35 × 10(8) spores/mouse). After ingestion of spores, the mice remained clinically normal during the 24-h observation period. No spores were found in any tissue examined by histopathological screening. Quantitative PCR screening of the K. septempunctata 18S rDNA gene revealed that the K. septempunctata spores were detected only in the stool samples from the spore-fed groups. Collectively, these findings suggest that K. septempunctata spores are excreted in faeces and do not affect the gastrointestinal tract of adult mice. PMID:26630307

  6. [Effect of alcohol in combination with stress in the prenatal period on adult mice behaviour].

    PubMed

    Morozova, M V; Popova, N K

    2010-11-01

    The aim of the present study was to investigate the effects of the prenatal alcohol and stress on behaviour of adult CBA/LacJ male mice. Pregnant mice were given ethanol 11% from to 21 days of the gestation and were exposed to restraint stress for two hours daily from 15 to 21 days gestation. At 3 months of age, the offspring were tested for behaviour. Alcohol and stress-exposed animals buried more marbles in the marble-burying test, which models obsessive-compulsive disorders (OCD). In addition, the alcohol and stress-exposed males showed increased social activity. No significant effects of the prenatal alcohol and stress exposure on locomotor activity, anxiety, exploring activity of the adult male mice were revealed. Conclusion was made that exposure to the alcohol and stress combination in prenatal period produces predisposition to OCD.

  7. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer

    PubMed Central

    Bernardes de Jesus, Bruno; Vera, Elsa; Schneeberger, Kerstin; Tejera, Agueda M; Ayuso, Eduard; Bosch, Fatima; Blasco, Maria A

    2012-01-01

    A major goal in aging research is to improve health during aging. In the case of mice, genetic manipulations that shorten or lengthen telomeres result, respectively, in decreased or increased longevity. Based on this, we have tested the effects of a telomerase gene therapy in adult (1 year of age) and old (2 years of age) mice. Treatment of 1- and 2-year old mice with an adeno associated virus (AAV) of wide tropism expressing mouse TERT had remarkable beneficial effects on health and fitness, including insulin sensitivity, osteoporosis, neuromuscular coordination and several molecular biomarkers of aging. Importantly, telomerase-treated mice did not develop more cancer than their control littermates, suggesting that the known tumorigenic activity of telomerase is severely decreased when expressed in adult or old organisms using AAV vectors. Finally, telomerase-treated mice, both at 1-year and at 2-year of age, had an increase in median lifespan of 24 and 13%, respectively. These beneficial effects were not observed with a catalytically inactive TERT, demonstrating that they require telomerase activity. Together, these results constitute a proof-of-principle of a role of TERT in delaying physiological aging and extending longevity in normal mice through a telomerase-based treatment, and demonstrate the feasibility of anti-aging gene therapy. PMID:22585399

  8. Cumulative neonatal oxygen exposure predicts response of adult mice infected with influenza A virus

    PubMed Central

    Maduekwe, Echezona T.; Buczynski, Bradley W.; Yee, Min; Rangasamy, Tiruamalai; Stevens, Timothy P.; Lawrence, B. Paige; O'Reilly, Michael A.

    2015-01-01

    Summary An acceptable level of oxygen exposure in preterm infants that maximizes efficacy and minimizes harm has yet to be determined. Quantifying oxygen exposure as an area-under-the curve (OAUC) has been predictive of later respiratory symptoms among former low birth weight infants. Here, we test the hypothesis that quantifying OAUC in newborn mice can predict their risk for altered lung development and respiratory viral infections as adults. Newborn mice were exposed to room air or a FiO2 of 100% oxygen for 4 days, 60% oxygen for 8 days, or 40% oxygen for 16 days (same cumulative dose of excess oxygen). At 8 weeks of age, mice were infected intranasally with a non-lethal dose of influenza A virus. Adult mice exposed to 100% oxygen for 4 days or 60% oxygen for 8 days exhibited alveolar simplification and altered elastin deposition compared to siblings birthed into room air, as well as increased inflammation and fibrotic lung disease following viral infection. These changes were not observed in mice exposed to 40% oxygen for 16 days. Our findings in mice support the concept that quantifying OAUC over a currently unspecified threshold can predict human risk for respiratory morbidity later in life. PMID:24850805

  9. Pathological impact of SMN2 mis-splicing in adult SMA mice

    PubMed Central

    Sahashi, Kentaro; Ling, Karen K Y; Hua, Yimin; Wilkinson, John Erby; Nomakuchi, Tomoki; Rigo, Frank; Hung, Gene; Xu, David; Jiang, Ya-Ping; Lin, Richard Z; Ko, Chien-Ping; Bennett, C Frank; Krainer, Adrian R

    2013-01-01

    Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. The related SMN2 gene expresses suboptimal levels of functional SMN protein, due to a splicing defect. Many SMA patients reach adulthood, and there is also adult-onset (type IV) SMA. There is currently no animal model for adult-onset SMA, and the tissue-specific pathogenesis of post-developmental SMN deficiency remains elusive. Here, we use an antisense oligonucleotide (ASO) to exacerbate SMN2 mis-splicing. Intracerebroventricular ASO injection in adult SMN2-transgenic mice phenocopies key aspects of adult-onset SMA, including delayed-onset motor dysfunction and relevant histopathological features. SMN2 mis-splicing increases during late-stage disease, likely accelerating disease progression. Systemic ASO injection in adult mice causes peripheral SMN2 mis-splicing and affects prognosis, eliciting marked liver and heart pathologies, with decreased IGF1 levels. ASO dose–response and time-course studies suggest that only moderate SMN levels are required in the adult central nervous system, and treatment with a splicing-correcting ASO shows a broad therapeutic time window. We describe distinctive pathological features of adult-onset and early-onset SMA. PMID:24014320

  10. Juvenile ethanol exposure increases rewarding properties of cocaine and morphine in adult DBA/2J mice.

    PubMed

    Molet, Jenny; Hervé, Denis; Thiébot, Marie-Hélène; Hamon, Michel; Lanfumey, Laurence

    2013-12-01

    Convergent data showed that ethanol exposure during adolescence can alter durably ethanol-related behaviour at adulthood. However, the consequences of juvenile ethanol exposure on the reinforcing effects of other drugs of abuse remain unclear. In the present work, we evaluated in adult male DBA/2J mice the effects of early ethanol exposure on the sensitivity to the incentive effects of cocaine and morphine, and on extracellular signal-regulated kinase (ERK) activation in response to cocaine. Juvenile male mice received intragastric administration of ethanol (2×2.5g/kg/day) or water for 5 days starting on postnatal day 28. When reaching adult age (10 week-old), animals were subjected to an unbiased procedure to assess conditioned place preference (CPP) to cocaine or morphine. In addition, activation of ERK in response to an acute injection of cocaine was investigated using immunoblotting in the striatum and the nucleus accumbens. Mice that have been subjected to early ethanol exposure developed CPP to doses of cocaine (5mg/kg) or morphine (10mg/kg) below the threshold doses to induce CPP in water pre-exposed mice. In addition, early ethanol administration significantly increased striatal ERK phosphorylation normally induced by acute cocaine (10 and 20mg/kg) in adult mice. These results show that, in DBA/2J mice, early exposure to ethanol enhanced the perception of the incentive effects of cocaine and morphine. Ethanol pre-exposure also induced a positive modulation of striatal ERK signalling, in line with the inference that juvenile ethanol intake may contribute to the development of addictive behaviour at adult age. PMID:23619165

  11. Prenatal allergen and diesel exhaust exposure and their effects on allergy in adult offspring mice

    PubMed Central

    2010-01-01

    Background Multiple studies have suggested that prenatal exposure to either allergens or air pollution may increase the risk for the development of allergic immune responses in young offspring. However, the effects of prenatal environmental exposures on adult offspring have not been well-studied. We hypothesized that combined prenatal exposure to Aspergillus fumigatus (A. fumigatus) allergen and diesel exhaust particles will be associated with altered IgE production, airway inflammation, airway hyperreactivity (AHR), and airway remodeling of adult offspring. Methods Following sensitization via the airway route to A. fumigatus and mating, pregnant BALB/c mice were exposed to additional A. fumigatus and/or diesel exhaust particles. At age 9-10 weeks, their offspring were sensitized and challenged with A. fumigatus. Results We found that adult offspring from mice that were exposed to A. fumigatus or diesel exhaust particles during pregnancy experienced decreases in IgE production. Adult offspring of mice that were exposed to both A. fumigatus and diesel exhaust particles during pregnancy experienced decreases in airway eosinophilia. Conclusion These results suggest that, in this model, allergen and/or diesel administration during pregnancy may be associated with protection from developing systemic and airway allergic immune responses in the adult offspring. PMID:20459836

  12. The course of LCMV infection in gnotobiotic and conventional adult mice pretreated with attenuated NDV vaccine.

    PubMed

    Szeri, I; Csatáry, L K; Anderlik, P; Bános, Z; Nász, I; Barna, Z

    1990-01-01

    A single intraperitoneal treatment with two different doses of live Newcastle Disease Virus (NDV) containing attenuated NDV vaccine one day before intracerebral inoculation with lymphocytic choriomeningitis virus (LCMV) had no influence on the ratio and time of deaths after infection with a 100 LD50 dose of LCMV either in gnotobiotic or in conventional mice. There was no difference either in the LD50 values determined on the basis of three parallel LCMV titration performed on mice pretreated with two different doses of vaccine or untreated. NDV vaccine pretreatment thus did not influence the cellular immune response to LCMV infection either in gnotobiotic or in conventional adult mice. As the NDV vaccine increased the cellular immune response to LCMV infection in suckling mice according to earlier results, the present results reinforce our earlier statement that the direction of immunomodulatory effects can be influenced by age.

  13. Growth Restriction, Leptin, and the Programming of Adult Behavior in Mice

    PubMed Central

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-01-01

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4–14, C57BL/6 mice were randomized to daily injections of saline or leptin (80 ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/−6 sec vs 87+/−7 sec for controls, p<0.05), but GR mice exhibited regression in their escape times on days 2 and 3 (56% regressed vs 22% of control saline mice, p<0.05). Compared to controls, GR mice entered the open arms of the elevated plus maze more often and stayed there longer (72+/−10 sec vs 36+/−5 sec, p<0.01). Neonatal leptin supplementation normalized the behavior of GR mice across all behavioral assays. In conclusion, GR alters the social interactions, learning and activity of mice, and supplementation with the neurotrophic hormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective. PMID:25196633

  14. Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice.

    PubMed

    Pan, Weihong; Hsuchou, Hung; He, Yi; Sakharkar, Amul; Cain, Courtney; Yu, Chuanhui; Kastin, Abba J

    2008-06-01

    The agouti viable yellow (A vy) spontaneous mutation generates an unusual mouse phenotype of agouti-colored coat and adult-onset obesity with metabolic syndrome. Persistent production of agouti signaling protein in A vy mice antagonizes melanocortin receptors in the hypothalamus. To determine how this disruption of neuroendocrine circuits affects leptin transport across the blood-brain barrier (BBB), we measured leptin influx in A vy and B6 control mice after the development of obesity, hyperleptinemia, and increased adiposity. After iv bolus injection, (125)I-leptin crossed the BBB significantly faster in young (2 month old) B6 mice than in young A vy mice or in older (8 month old) mice of either strain. This difference was not observed by in situ brain perfusion studies, indicating the cause being circulating factors, such as elevated leptin levels or soluble receptors. Thus, A vy mice showed peripheral leptin resistance. ObRa, the main transporting receptor for leptin at the BBB, showed no change in mRNA expression in the cerebral microvessels between the age-matched (2 month old) A vy and B6 mice. Higher ObRb mRNA was seen in the A vy microvasculature with unknown significance. Immunofluorescent staining unexpectedly revealed that many of the ObR(+) cells were astrocytes and that the A vy mice showed significantly more ObR(+) astrocytes in the hypothalamus than the B6 mice. Although leptin permeation from the circulation was slower in the A vy mice, the increased ObR expression in astrocytes and increased ObRb mRNA in microvessels suggest the possibility of heightened central nervous system sensitivity to circulating leptin.

  15. Growth restriction, leptin, and the programming of adult behavior in mice.

    PubMed

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-12-15

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, p<0.05), but GR mice exhibited regression in their escape times on days 2 and 3 (56% regressed vs 22% of control saline mice, p<0.05). Compared to controls, GR mice entered the open arms of the elevated plus maze more often and stayed there longer (72+/-10s vs 36+/-5s, p<0.01). Neonatal leptin supplementation normalized the behavior of GR mice across all behavioral assays. In conclusion, GR alters the social interactions, learning and activity of mice, and supplementation with the neurotrophic hormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective.

  16. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    PubMed

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  17. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice.

    PubMed

    Ali, Amira A H; Schwarz-Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-06-01

    Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.

  18. Integration of CD45-positive leukocytes into newly forming lymphatics of adult mice.

    PubMed

    Buttler, K; Lohrberg, M; Gross, G; Weich, H A; Wilting, J

    2016-06-01

    The embryonic origin of lymphatic endothelial cells (LECs) has been a matter of controversy since more than a century. However, recent studies in mice have supported the concept that embryonic lymphangiogenesis is a complex process consisting of growth of lymphatics from specific venous segments as well as the integration of lymphangioblasts into the lymphatic networks. Similarly, the mechanisms of adult lymphangiogenesis are poorly understood and have rarely been studied. We have recently shown that endothelial progenitor cells isolated from the lung of adult mice have the capacity to form both blood vessels and lymphatics when grafted with Matrigel plugs into the skin of syngeneic mice. Here, we followed up on these experiments and studied the behavior of host leukocytes during lymphangiogenesis in the Matrigel plugs. We observed a striking co-localization of CD45(+) leukocytes with the developing lymphatics. Numerous CD45(+) cells expressed the LEC marker podoplanin and were obviously integrated into the lining of lymphatic capillaries. This indicates that, similar to inflammation-induced lymphangiogenesis in man, circulating CD45(+) cells of adult mice are capable of initiating lymphangiogenesis and of adopting a lymphvasculogenic cellular differentiation program. The data are discussed in the context of embryonic and inflammation-induced lymphangiogenesis. PMID:26748643

  19. Targeted deletion of Vegfa in adult mice induces vision loss.

    PubMed

    Kurihara, Toshihide; Westenskow, Peter D; Bravo, Stephen; Aguilar, Edith; Friedlander, Martin

    2012-11-01

    Current therapies directed at controlling vascular abnormalities in cancers and neovascular eye diseases target VEGF and can slow the progression of these diseases. While the critical role of VEGF in development has been well described, the function of locally synthesized VEGF in the adult eye is incompletely understood. Here, we show that conditionally knocking out Vegfa in adult mouse retinal pigmented epithelial (RPE) cells, which regulate retinal homeostasis, rapidly leads to vision loss and ablation of the choriocapillaris, the major blood supply for the outer retina and photoreceptor cells. This deletion also caused rapid dysfunction of cone photoreceptors, the cells responsible for fine visual acuity and color vision. Furthermore, Vegfa deletion showed significant downregulation of multiple angiogenic genes in both physiological and pathological states, whereas the deletion of the upstream regulatory transcriptional factors HIFs did not affect the physiological expressions of angiogenic genes. These results suggest that endogenous VEGF provides critical trophic support necessary for retinal function. Targeting factors upstream of VEGF, such as HIFs, may be therapeutically advantageous compared with more potent and selective VEGF antagonists, which may have more off-target inhibitory trophic effects. PMID:23093773

  20. Emotional disorders in adult mice heterozygous for the transcription factor Phox2b.

    PubMed

    Bollen, Bieke; Ramanantsoa, Nelina; Naert, Arne; Matrot, Boris; Van den Bergh, Omer; D'Hooge, Rudi; Gallego, Jorge

    2015-03-15

    Phox2b is an essential transcription factor for the development of the autonomic nervous system. Mice carrying one invalidated Phox2b allele (Phox2b(+/-)) show mild autonomic disorders including sleep apneas, and impairments in chemosensitivity and thermoregulation that recover within 10days of postnatal age. Because Phox2b is not expressed above the pons nor in the cerebellum, this mutation is not expected to affect brain development and cognitive functioning directly. However, the transient physiological disorders in Phox2b(+/-) mice might impair neurodevelopment. To examine this possibility, we conducted a behavioral test battery of emotional, motor, and cognitive functioning in adult Phox2b(+/-) mice and their wildtype littermates (Phox2b(+/+)). Adult Phox2b(+/-) mice showed altered exploratory behavior in the open field and in the elevated plus maze, both indicative of anxiety. Phox2b(+/-) mice did not show cognitive or motor impairments. These results suggest that also mild autonomic control deficits may disturb long-term emotional development. PMID:25582512

  1. Emotional disorders in adult mice heterozygous for the transcription factor Phox2b.

    PubMed

    Bollen, Bieke; Ramanantsoa, Nelina; Naert, Arne; Matrot, Boris; Van den Bergh, Omer; D'Hooge, Rudi; Gallego, Jorge

    2015-03-15

    Phox2b is an essential transcription factor for the development of the autonomic nervous system. Mice carrying one invalidated Phox2b allele (Phox2b(+/-)) show mild autonomic disorders including sleep apneas, and impairments in chemosensitivity and thermoregulation that recover within 10days of postnatal age. Because Phox2b is not expressed above the pons nor in the cerebellum, this mutation is not expected to affect brain development and cognitive functioning directly. However, the transient physiological disorders in Phox2b(+/-) mice might impair neurodevelopment. To examine this possibility, we conducted a behavioral test battery of emotional, motor, and cognitive functioning in adult Phox2b(+/-) mice and their wildtype littermates (Phox2b(+/+)). Adult Phox2b(+/-) mice showed altered exploratory behavior in the open field and in the elevated plus maze, both indicative of anxiety. Phox2b(+/-) mice did not show cognitive or motor impairments. These results suggest that also mild autonomic control deficits may disturb long-term emotional development.

  2. SUPPRESSION OF IDIOTYPIC SPECIFICITIES IN ADULT MICE BY ADMINISTRATION OF ANTIIDIOTYPIC ANTIBODY

    PubMed Central

    Hart, David A.; Wang, Ai-Lan; Pawlak, Laura L.; Nisonoff, Alfred

    1972-01-01

    It has previously been shown that there are extensive idiotypic cross-reactions among antiphenylarsonate antibodies of A/J mice. The present work indicates that administration, into normal, adult A/J mice, of rabbit antiidiotypic antibody directed to A/J antiphenylarsonate antibody suppresses almost completely the subsequent production of antibody of the corresponding idiotype. No effect was noted on the formation of antibodies to the protein carrier or of antiphenylarsonate antibody of a different idiotype. The data are consistent with central suppression of production of the idiotypic antibody mediated through interaction with immunoglobulin receptors on lymphocytes. PMID:4623607

  3. Cellulose Supplementation Early in Life Ameliorates Colitis in Adult Mice

    PubMed Central

    Nagy-Szakal, Dorottya; Hollister, Emily B.; Luna, Ruth Ann; Szigeti, Reka; Tatevian, Nina; Smith, C. Wayne; Versalovic, James; Kellermayer, Richard

    2013-01-01

    Decreased consumption of dietary fibers, such as cellulose, has been proposed to promote the emergence of inflammatory bowel diseases (IBD: Crohn disease [CD] and ulcerative colitis [UC]) where intestinal microbes are recognized to play an etiologic role. However, it is not known if transient fiber consumption during critical developmental periods may prevent consecutive intestinal inflammation. The incidence of IBD peaks in young adulthood indicating that pediatric environmental exposures may be important in the etiology of this disease group. We studied the effects of transient dietary cellulose supplementation on dextran sulfate sodium (DSS) colitis susceptibility during the pediatric period in mice. Cellulose supplementation stimulated substantial shifts in the colonic mucosal microbiome. Several bacterial taxa decreased in relative abundance (e.g., Coriobacteriaceae [p = 0.001]), and other taxa increased in abundance (e.g., Peptostreptococcaceae [p = 0.008] and Clostridiaceae [p = 0.048]). Some of these shifts persisted for 10 days following the cessation of cellulose supplementation. The changes in the gut microbiome were associated with transient trophic and anticolitic effects 10 days following the cessation of a cellulose-enriched diet, but these changes diminished by 40 days following reversal to a low cellulose diet. These findings emphasize the transient protective effect of dietary cellulose in the mammalian large bowel and highlight the potential role of dietary fibers in amelioration of intestinal inflammation. PMID:23437211

  4. Promoting Exercise as Part of a Physiotherapy-Led Falls Pathway Service for Adults with Intellectual Disabilities: A Service Evaluation

    ERIC Educational Resources Information Center

    Crockett, Jennifer; Finlayson, Janet; Skelton, Dawn A.; Miller, Gillian

    2015-01-01

    Background: People with intellectual disabilities experience high rates of falls. Balance and gait problems are common in people with intellectual disabilities, increasing the likelihood of falls; thus, tailored exercise interventions to improve gait and balance are recommended. The present authors set up a physiotherapy-led falls pathway service…

  5. Social experience modulates ocular dominance plasticity differentially in adult male and female mice.

    PubMed

    Balog, Jenny; Matthies, Ulrike; Naumann, Lisa; Voget, Mareike; Winter, Christine; Lehmann, Konrad

    2014-12-01

    Environmental factors have long been known to regulate brain plasticity. We investigated the potential influence of social experience on ocular dominance plasticity. Fully adult female or male mice were monocularly deprived for four days and kept a) either alone or in pairs of the same sex and b) either in a small cage or a large, featureless arena. While mice kept alone did not show ocular dominance plasticity, no matter whether in a cage or in an arena, paired female mice in both environmental conditions displayed a shift of ocular dominance towards the open eye. Paired male mice, in contrast, showed no plasticity in the cage, but a very strong ocular dominance shift in the arena. This effect was not due to increased locomotion, since the covered distance was similar in single and paired male mice in the arena, and furnishing cages with a running wheel did not enable ocular dominance plasticity in cage-housed mice. Confirming recent results in rats, the plasticity-enhancing effect of the social environment was shown to be mediated by serotonin. Our results demonstrate that social experience has a strong effect on cortical plasticity that is sex-dependent. This has potential consequences both for animal research and for human education and rehabilitation.

  6. Environmental factors during early developmental period influence psychobehavioral abnormalities in adult PACAP-deficient mice.

    PubMed

    Ishihama, Toshihiro; Ago, Yukio; Shintani, Norihito; Hashimoto, Hitoshi; Baba, Akemichi; Takuma, Kazuhiro; Matsuda, Toshio

    2010-06-19

    Mice lacking the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) (PACAP(-/-)) display behavioral abnormalities, and genetic variants of the genes encoding PACAP are associated with schizophrenia. Clinical studies show that environmental factors, besides genetic factors, play a key role in etiology of many psychiatric disorders. This study examined the effects of environmental factors such as short-term social isolation and an enriched environment on behavioral abnormalities of PACAP(-/-) mice. Rearing in isolation for 2-weeks from 4-weeks old induced hyperlocomotion and aggressive behaviors in the PACAP(-/-) mice without affecting the behavioral performance of the wild-type controls. Adult PACAP(-/-) mice showed not only hyperactivity, jumping behavior, and depression-like behavior, but also decreased social interaction. These abnormal behaviors were improved by rearing for 4-weeks in an early enriched environment (from 4-weeks old), although the deficits of prepulse inhibition (PPI) were not influenced by the enriched condition. In contrast, rearing for 4-weeks in late enriched environment (from 8-weeks old) did not affect the hyperactivity and jumping behaviors in the PACAP(-/-) mice. These results suggest that abnormal behaviors except PPI deficits in PACAP(-/-) mice depend on the environmental factors during the early stages of development.

  7. Round and Round and Round We Go: Behavior of Adult Female Mice on the ISS

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2016-01-01

    The NASA Decadal Survey (2011) emphasized the importance of long duration rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware and science capabilities supporting mouse studies in space were developed at Ames Research Center. Here we present a video-based behavioral analysis of ten C57BL6 female adult mice exposed to a total of 37 days in space compared with identically housed Ground Controls. Flight and Control mice exhibited the same range of behaviors, including feeding, drinking, exploratory behavior, grooming, and social interactions. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another. Overall activity was greater in Flt as compared to GC mice. Spontaneous, organized circling or race-tracking behavior emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. I will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral phenotyping revealed important insights into the overall health and adaptation of mice to the space environment, and identified unique behaviors that can guide future habitat development and research on rodents in space.

  8. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    PubMed

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  9. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice

    PubMed Central

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-01-01

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes. PMID:26923756

  10. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    PubMed Central

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  11. Adolescent Mice, Unlike Adults, Consume More Alcohol in the Presence of Peers than Alone

    PubMed Central

    Logue, Sheree; Chein, Jason; Gould, Thomas; Holliday, Erica; Steinberg, Laurence

    2013-01-01

    One hallmark of adolescent risk taking is that it typically occurs when adolescents are with peers. It has been hypothesized that the presence of peers primes a reward-sensitive motivational state that overwhelms adolescents’ immature capacity for inhibitory control. We examined this hypothesis using a rodent model. A sample of mice were raised in same-sex triads and were tested for alcohol consumption either as juveniles or as adults, with half in each age group tested alone and half tested with their cagemates. The presence of “peers” increased alcohol consumption among adolescent mice, but not adults. The peer effect on human adolescent reward-seeking may reflect a hard-wired, evolutionarily conserved process through which the presence of agemates increases individuals’ sensitivity to potential rewards in their immediate environment. PMID:24341974

  12. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice.

    PubMed

    Bain, Calum C; Bravo-Blas, Alberto; Scott, Charlotte L; Gomez Perdiguero, Elisa; Geissmann, Frederic; Henri, Sandrine; Malissen, Bernard; Osborne, Lisa C; Artis, David; Mowat, Allan McI

    2014-10-01

    The paradigm that macrophages that reside in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate-mapping models and monocytopenic mice, together with bone marrow chimera and parabiotic models, we found that embryonic precursor cells seeded the intestinal mucosa and demonstrated extensive in situ proliferation during the neonatal period. However, these cells did not persist in the intestine of adult mice. Instead, they were replaced around the time of weaning by the chemokine receptor CCR2-dependent influx of Ly6C(hi) monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool.

  13. Environmental enrichment is associated with rapid volumetric brain changes in adult mice.

    PubMed

    Scholz, Jan; Allemang-Grand, Rylan; Dazai, Jun; Lerch, Jason P

    2015-04-01

    Environmental enrichment is a model of increased structural brain plasticity. Previous histological observations have shown molecular and cellular changes in a few pre-determined areas of the rodent brain. However, little is known about the time course of enrichment-induced brain changes and how they distribute across the whole brain. Here we expose adult mice to three weeks of environmental enrichment using a novel re-configurable maze design. In-vivo MRI shows volumetric brain changes in brain areas related to spatial memory, navigation, and sensorimotor experience, such as the hippocampal formation and the sensorimotor cortex. Evidence from a second cohort of mice indicates that these plastic changes might occur as early as 24h after exposure. This suggests that novel experiences are powerful modulators of plasticity even in the adult brain. Understanding and harnessing the underlying molecular mechanisms could advance future treatments of neurological disease.

  14. Neonatal Colon Insult Alters Growth Factor Expression and TRPA1 Responses in Adult Mice

    PubMed Central

    Christianson, Julie A.; Bielefeldt, Klaus; Malin, Sacha A.; Davis, Brian M.

    2010-01-01

    Inflammation or pain during neonatal development can result in long-term structural and functional alterations of nociceptive pathways, ultimately altering pain perception in adulthood. We have developed a mouse model of neonatal colon irritation (NCI) to investigate the plasticity of pain processing within the viscerosensory system. Mouse pups received an intracolonic administration of 2% mustard oil (MO) on postnatal days 8 and 10. Distal colons were processed at subsequent timepoints for myeloperoxidase (MPO) activity and growth factor expression. Adult mice were assessed for visceral hypersensitivity by measuring the visceromotor response during colorectal distension. Dorsal root ganglion (DRG) neurons from adult mice were retrogradely labeled from the distal colon and calcium imaging was used to measure transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) responses to acute application of capsaicin and MO, respectively. Despite the absence of inflammation (as indicated by MPO activity), neonatal exposure to intracolonic MO transiently maintained a higher expression level of growth factor messenger RNA (mRNA). Adult NCI mice displayed significant visceral hypersensitivity, as well as increased sensitivity to mechanical stimulation of the hindpaw, compared to control mice. The percentage of TRPA1-expressing colon afferents was significantly increased in NCI mice, however they displayed no increase in the percentage of TRPV1-immunopositive or capsaicin-sensitive colon DRG neurons. These results suggest that early neonatal colon injury results in a long-lasting visceral hypersensitivity, possibly driven by an early increase in growth factor expression and maintained by permanent changes in TRPA1 function. PMID:20850221

  15. Impaired spatial learning and reduced adult hippocampal neurogenesis in histamine H1-receptor knockout mice.

    PubMed

    Ambrée, Oliver; Buschert, Jens; Zhang, Weiqi; Arolt, Volker; Dere, Ekrem; Zlomuzica, Armin

    2014-08-01

    The histamine H1-receptor (H1R) is expressed in wide parts of the brain including the hippocampus, which is involved in spatial learning and memory. Previous studies in H1R knockout (H1R-KO) mice revealed deficits in a variety of learning and memory tasks. It was also proposed that H1R activation is crucial for neuronal differentiation of neural progenitors. Therefore, the aim of this study was to investigate negatively reinforced spatial learning in the water-maze and to assess survival and neuronal differentiation of newborn cells in the adult hippocampus of H1R-KO mice. H1R-KO and wild-type (WT) mice were subjected to the following sequence of tests: (a) cued version, (b) place learning, (c) spatial probe, (d) long-term retention and (e) reversal learning. Furthermore hippocampal neurogenesis in terms of survival and differentiation was assessed in H1R-KO and WT mice. H1R-KO mice showed normal cued learning, but impaired place and reversal learning as well as impaired long-term retention performance. In addition, a marked reduction of newborn neurons in the hippocampus but no changes in differentiation of neural progenitors into neuronal and glial lineage was found in H1R-KO mice. Our data suggest that H1R deficiency in mice is associated with pronounced deficits in hippocampus-dependent spatial learning and memory. Furthermore, we herein provide first evidence that H1R deficiency in the mouse leads to a reduced neurogenesis. However, the exact mechanisms for the reduced number of cells in H1R-KO mice remain elusive and might be due to a reduced survival of newborn hippocampal neurons and/or a reduction in cell proliferation.

  16. NGF induces appearance of adult-like response to spatial novelty in 18-day male mice.

    PubMed

    Calamandrei, Gemma; Valanzano, Angela; Ricceri, Laura

    2002-10-17

    We investigated the effects of Nerve Growth Factor (NGF) administration on the maturation of reactivity to spatial and non-spatial novelty in developing mice. CD-1 mice of both sexes received intracerebral administration of NGF on postnatal day (pnd) 15, and their response to object displacement (spatial novelty) and object substitution (object novelty) were assessed in a spatial open-field with four objects on pnd 18 or 28. On pnd 18, NGF induced only in males precocious appearance of spatial novelty discrimination, while increasing choline acetyltransferase activity in neocortex and hippocampus of both sexes. The behavioral and neurochemical effects disappeared by pnd 28. NGF triggers adult-like responding to spatial novelty in developing mice and such effect is gender-specific.

  17. Vitamin E Status and Metabolism in Adult and Aged Aryl Hydrocarbon Receptor Null Mice

    PubMed Central

    Traber, Maret G.; Mustacich, Debbie J.; Sullivan, Laura C.; Leonard, Scott W.; Ahern-Rindell, Amelia; Kerkvliet, Nancy

    2009-01-01

    The aryl hydrocarbon receptor (AhR) is involved in regulation of mechanisms for detoxification of xenobiotics, as well as vitamin A metabolism. Vitamin E is a fat-soluble nutrient whose metabolism is initialized via the cytochrome P450 system. Thus, AhR absence could alter hepatic regulation of α-tocopherol metabolism. To test this hypothesis, we assessed vitamin E status in adult (2–5 m) and old (21–22 m), wildtype and AhR-null mice. Plasma α-tocopherol concentrations in AhR null mice (2.3 ± 1.2 μmol/L, n= 19) were lower than those of wildtype mice (3.2 ± 1.2, n=17, P=0.0131); those in old mice (3.2 ± 1.2, n= 20) were higher than those of adults (2.2 ± 1.0, n=16, p=0.0075). Hepatic α-tocopherol concentrations were not different between genotypes, but were nearly double in old (32 ± 8 nmol/g, n=20) as compared with adult mice (17 ± 2, n=16, p<0.0001). Hepatic Cyp3a concentrations in AhR-null mice were greater than those in wildtypes (p=0.0011). Genotype (p=0.0047), sex (p<0.0001) and age (p<0.0001) were significant modifiers of liver α-tocopherol metabolite (α-CEHC) concentrations. In general, Cyp3a concentrations correlated with hepatic α-tocopherol (r= 0.3957, p<0.05) and α-CEHC (r=0.4260, p<0.05) concentrations. Since there were no significant genotype differences in the hepatic α- or γ-tocopherol concentrations, AhR null mice did not have dramatically altered vitamin E metabolism. Since they did have higher hepatic α-CEHC concentrations, these data suggest metabolism was up-regulated in the AhR null mice in order to maintain the hepatic tocopherol concentrations similar to those of wildtypes. PMID:20153623

  18. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    SciTech Connect

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  19. Generation of Venus reporter knock-in mice revealed MAGI-2 expression patterns in adult mice.

    PubMed

    Ihara, Kan-ichiro; Nishimura, Tomoki; Fukuda, Tomokazu; Ookura, Tetsuya; Nishimori, Katsuhiko

    2012-01-01

    The membrane-associated guanylate kinase inverted 2 (MAGI-2) protein, which is known to localize at the tight junction of epithelial cells, contains multiple copies of the PDZ and WW domains in its structure. Although the expression pattern of Magi2 mRNA in representative organs has been previously published, its detailed cellular distribution at the histological level remains unknown. Such detailed information would be useful to clarify the biological function of MAGI-2. Here, we report the generation of Venus reporter knock-in mice for Magi2 in which exon 6 of the gene was substituted by the Venus-encoding sequence. We detected the expression of the Venus reporter protein in kidney podocytes from these knock-in mice. We also detected Venus reporter protein expression in spermatids within the testes and within neurons in various regions of the brain. Detection of the reporter protein from these diverse locations indicated the endogenous expression of MAGI-2 in these tissues. Our data suggested a potential function of MAGI-2 in the glomerular filtration process and sperm cell maturation. These data indicate that the Venus reporter knock-in mouse for Magi2 is a useful model for the further study of Magi2 gene function.

  20. Theory of hantavirus infection spread incorporating localized adult and itinerant juvenile mice

    NASA Astrophysics Data System (ADS)

    Kenkre, V. M.; Giuggioli, L.; Abramson, G.; Camelo-Neto, G.

    2007-02-01

    A generalized model of the spread of the Hantavirus in mice populations is presented on the basis of recent observational findings concerning the movement characteristics of the mice that carry the infection. The factual information behind the generalization is based on mark-recapture observations reported in Giuggioli et al. [Bull. Math. Biol. 67, 1135 (2005)] that have necessitated the introduction of home ranges in the simple model of Hantavirus spread presented by Abramson and Kenkre [Phys. Rev. E 66, 11912 (2002)]. The essential feature of the model presented here is the existence of adult mice that remain largely confined to locations near their home ranges, and itinerant juvenile mice that are not so confined, and, during their search for their own homes, move and infect both other juveniles and adults that they meet during their movement. The model is presented at three levels of description: mean field, kinetic and configuration. Results of calculations are shown explicitly from the mean field equations and the simulation rules, and are found to agree in some respects and to differ in others. The origin of the differences is shown to lie in spatial correlations. It is indicated how mark-recapture observations in the field may be employed to verify the applicability of the theory.

  1. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice.

    PubMed

    Sauter, Kristin A; Pridans, Clare; Sehgal, Anuj; Tsai, Yi Ting; Bradford, Barry M; Raza, Sobia; Moffat, Lindsey; Gow, Deborah J; Beard, Philippa M; Mabbott, Neil A; Smith, Lee B; Hume, David A

    2014-08-01

    We investigated the role of CSF1R signaling in adult mice using prolonged treatment with anti-CSF1R antibody. Mutation of the CSF1 gene in the op/op mouse produces numerous developmental abnormalities. Mutation of the CSF1R has an even more penetrant phenotype, including perinatal lethality, because of the existence of a second ligand, IL-34. These effects on development provide limited insight into functions of CSF1R signaling in adult homeostasis. The carcass weight and weight of several organs (spleen, kidney, and liver) were reduced in the treated mice, but overall body weight gain was increased. Despite the complete loss of Kupffer cells, there was no effect on liver gene expression. The treatment ablated OCL, increased bone density and trabecular volume, and prevented the decline in bone mass seen in female mice with age. The op/op mouse has a deficiency in pancreatic β cells and in Paneth cells in the gut wall. Only the latter was reproduced by the antibody treatment and was associated with increased goblet cell number but no change in villus architecture. Male op/op mice are infertile as a result of testosterone insufficiency. Anti-CSF1R treatment ablated interstitial macrophages in the testis, but there was no sustained effect on testosterone or LH. The results indicate an ongoing requirement for CSF1R signaling in macrophage and OCL homeostasis but indicate that most effects of CSF1 and CSF1R mutations are due to effects on development.

  2. Immunosuppression transfer by spleen cells from young to adult mice previous to Histoplasma capsulatum infection.

    PubMed

    Reyes-Montes, M R; García-Camacho, M P; Casasola, J; Taylor, M L

    1988-02-01

    The passive transfer of spleen cells from 1 month old mice into adult syngeneic mice, abrogates their resistance to histoplasmal infection. This suppressive state was detected in two cell populations, one non-adherent and another adherent with radioresistant characteristics. The transferred spleen cells were treated by different anti-sera: anti-theta, anti-adherent cells (produced in rabbits) and monoclonal anti-Thy 1.2 respectively. The irradiated and non-irradiated adult recipient mice were infected with Histoplasma yeasts utilizing the Lethal Dose50 for 1 month old mice. The infection course was determined by death percentage, the histoplasmosis murine signs and the number of the fungal colony forming units (CFU) from the infected spleens. The results of the anti-sera treatment suggest that non-adherent as well as adherent cells participate in the suppressive phenomena. A lower number of CFU was identified in infected animals which received cells treated with anti-Thy 1.2 anti-sera.

  3. Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    PubMed Central

    Batista, Thiago M.; Alonso-Magdalena, Paloma; Vieira, Elaine; Amaral, Maria Esmeria C.; Cederroth, Christopher R.; Nef, Serge; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2012-01-01

    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit. In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes. PMID:22470480

  4. Psychological stress in adolescent and adult mice increases neuroinflammation and attenuates the response to LPS challenge

    PubMed Central

    2012-01-01

    Background There is ample evidence that psychological stress adversely affects many diseases. Recent evidence has shown that intense stressors can increase inflammation within the brain, a known mediator of many diseases. However, long-term outcomes of chronic psychological stressors that elicit a neuroinflammatory response remain unknown. Methods To address this, we have modified previously described models of rat/mouse predatory stress (PS) to increase the intensity of the interaction. We postulated that these modifications would enhance the predator-prey experience and increase neuroinflammation and behavioral dysfunction in prey animals. In addition, another group of mice were subjected to a modified version of chronic unpredictable stress (CUS), an often-used model of chronic stress that utilizes a combination of stressors that include physical, psychological, chemical, and other. The CUS model has been shown to exacerbate a number of inflammatory-related diseases via an unknown mechanism. Using these two models we sought to determine: 1) whether chronic PS or CUS modulated the inflammatory response as a proposed mechanism by which behavioral deficits might be mediated, and 2) whether chronic exposure to a pure psychological stressor (PS) leads to deficits similar to those produced by a CUS model containing psychological and physical stressors. Finally, to determine whether acute PS has neuroinflammatory consequences, adult mice were examined at various time-points after PS for changes in inflammation. Results Adolescent mice subjected to chronic PS had increased basal expression of inflammation within the midbrain. CUS and chronic PS mice also had an impaired inflammatory response to a subsequent lipopolysaccharide challenge and PS mice displayed increased anxiety- and depressive-like behaviors following chronic stress. Finally, adult mice subjected to acute predatory stress had increased gene expression of inflammatory factors. Conclusion Our results

  5. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    PubMed

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life.

  6. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CD1 Mice

    EPA Science Inventory

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the bi...

  7. The effects of paradoxical sleep deprivation on amphetamine-induced behavioral sensitization in adult and adolescent mice.

    PubMed

    Kameda, Sonia R; Fukushiro, Daniela F; Trombin, Thaís F; Sanday, Leandro; Wuo-Silva, Raphael; Saito, Luis P; Tufik, Sergio; D'Almeida, Vânia; Frussa-Filho, Roberto

    2014-08-30

    Drug-induced behavioral sensitization (BS), paradoxical sleep deprivation (PSD) and adolescence in rodents are associated with changes in the mesolimbic dopaminergic system. We compared the effects of PSD on amphetamine-induced BS in adult and adolescent mice. Adult (90 days old) and adolescent (45 days old) Swiss mice were subjected to PSD for 48h. Immediately after PSD, mice received saline or 2.0mg/kg amphetamine intraperitoneally (i.p.), and their locomotion was quantified in activity chambers. Seven days later, all the animals were challenged with 2.0mg/kg amphetamine i.p., and their locomotion was quantified again. Acute amphetamine enhanced locomotion in both adult and adolescent mice, but BS was observed only in adolescent mice. Immediately after its termination, PSD decreased locomotion of both saline- and amphetamine-treated adolescent mice. Seven days later, previous PSD potentiated both the acute stimulatory effect of amphetamine and its sensitization in adolescent mice. In adult animals, previous PSD revealed BS. Our data suggest that adolescent mice are more vulnerable to both the immediate and long-term effects of PSD on amphetamine-induced locomotion. Because drug-induced BS in rodents shares neuroplastic changes with drug craving in humans, our findings also suggest that both adolescence and PSD could facilitate craving-related mechanisms in amphetamine abuse.

  8. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    PubMed

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  9. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    PubMed

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  10. Oestradiol Exposure Early in Life Programs Daily and Circadian Activity Rhythms in Adult Mice.

    PubMed

    Royston, S E; Bunick, D; Mahoney, M M

    2016-01-01

    Hormone signalling during critical periods organises the adult circadian timekeeping system by altering adult hormone sensitivity and shaping fundamental properties of circadian rhythmicity. However, the timing of when developmental oestrogens modify the timekeeping system is poorly understood. To test the hypothesis that alterations in postnatal oestrogenic signalling organise adult daily activity rhythms, we utilised aromatase knockout mice (ArKO), which lack the enzyme required for oestradiol synthesis. ArKO and wild-type (WT) males and females were administered either oestradiol (E) or oil (OIL) daily for the first 5 postnatal days (p1-5E and p1-5OIL , respectively) because this time encompasses the emergence of clock gene rhythmicity and light responsiveness in the suprachiasmatic nucleus, a bilateral hypothalamic structure regarded as the 'master oscillator'. After sexual maturation, gonadectomy and exogenous oestradiol supplementation, locomotor parameters were assessed. We determined that altered oestrogenic signalling in early life exerts organisational control over the expression of daily and circadian activity rhythms in adult mice. Specifically, p1-5E reduced total wheel running activity in male and female ArKO and female WT mice but had no effect on WT male activity levels. In females, wheel running was consolidated by p1-5E to the early versus late evening, a phenomenon characteristic of male mice. The time of peak activity was advanced by p1-5E in WT and ArKO females but not males. P1-5E shortened the length of the active phase (alpha) in WT males but had no effect on ArKO males or females of either genotypes. Finally, p1-5E altered the magnitude of photic-induced shifts, suggesting that developmental oestrogenic signalling impacts adult circadian functions. In the present study, we further define both a critical period of development of the adult timekeeping system and the role that oestrogenic signalling plays in the expression of daily and

  11. Steroidogenic factor 1 differentially regulates fetal and adult leydig cell development in male mice.

    PubMed

    Karpova, Tatiana; Ravichandiran, Kumarasamy; Insisienmay, Lovella; Rice, Daren; Agbor, Valentine; Heckert, Leslie L

    2015-10-01

    The nuclear receptor steroidogenic factor 1 (SF-1, AD4BP, NR5A1) is a key regulator of the endocrine axes and is essential for adrenal and gonad development. Partial rescue of Nr5a1(-/-) mice with an SF-1-expressing transgene caused a hypomorphic phenotype that revealed its roles in Leydig cell development. In contrast to controls, all male rescue mice (Nr5a1(-/-);tg(+/0)) showed varying signs of androgen deficiency, including spermatogenic arrest, cryptorchidism, and poor virilization. Expression of various Leydig cell markers measured by immunohistochemistry, Western blot analysis, and RT-PCR indicated fetal and adult Leydig cell development were differentially impaired. Whereas fetal Leydig cell development was delayed in Nr5a1(-/-);tg(+/0) embryos, it recovered to control levels by birth. In contrast, Sult1e1, Vcam1, and Hsd3b6 transcript levels in adult rescue testes indicated complete blockage in adult Leydig cell development. In addition, between Postnatal Days 8 and 12, peritubular cells expressing PTCH1, SF-1, and CYP11A1 were observed in control testes but not in rescue testes, indicating SF-1 is needed for either survival or differentiation of adult Leydig cell progenitors. Cultured prepubertal rat peritubular cells also expressed SF-1 and PTCH1, but Cyp11a1 was expressed only after treatment with cAMP and retinoic acid. Together, data show SF-1 is needed for proper development of fetal and adult Leydig cells but with distinct primary functions; in fetal Leydig cells, it regulates differentiation, whereas in adult Leydig cells it regulates progenitor cell formation and/or survival. PMID:26269506

  12. Steroidogenic factor 1 differentially regulates fetal and adult leydig cell development in male mice.

    PubMed

    Karpova, Tatiana; Ravichandiran, Kumarasamy; Insisienmay, Lovella; Rice, Daren; Agbor, Valentine; Heckert, Leslie L

    2015-10-01

    The nuclear receptor steroidogenic factor 1 (SF-1, AD4BP, NR5A1) is a key regulator of the endocrine axes and is essential for adrenal and gonad development. Partial rescue of Nr5a1(-/-) mice with an SF-1-expressing transgene caused a hypomorphic phenotype that revealed its roles in Leydig cell development. In contrast to controls, all male rescue mice (Nr5a1(-/-);tg(+/0)) showed varying signs of androgen deficiency, including spermatogenic arrest, cryptorchidism, and poor virilization. Expression of various Leydig cell markers measured by immunohistochemistry, Western blot analysis, and RT-PCR indicated fetal and adult Leydig cell development were differentially impaired. Whereas fetal Leydig cell development was delayed in Nr5a1(-/-);tg(+/0) embryos, it recovered to control levels by birth. In contrast, Sult1e1, Vcam1, and Hsd3b6 transcript levels in adult rescue testes indicated complete blockage in adult Leydig cell development. In addition, between Postnatal Days 8 and 12, peritubular cells expressing PTCH1, SF-1, and CYP11A1 were observed in control testes but not in rescue testes, indicating SF-1 is needed for either survival or differentiation of adult Leydig cell progenitors. Cultured prepubertal rat peritubular cells also expressed SF-1 and PTCH1, but Cyp11a1 was expressed only after treatment with cAMP and retinoic acid. Together, data show SF-1 is needed for proper development of fetal and adult Leydig cells but with distinct primary functions; in fetal Leydig cells, it regulates differentiation, whereas in adult Leydig cells it regulates progenitor cell formation and/or survival.

  13. The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice.

    PubMed

    Holloway, Benjamin B; Viar, Kenneth E; Stornetta, Ruth L; Guyenet, Patrice G

    2015-09-01

    The retrotrapezoid nucleus (RTN) is a bilateral cluster of neurons located at the ventral surface of the brainstem below the facial nucleus. The RTN is activated by hypercapnia and stabilises arterial Pco2 by adjusting lung ventilation in a feedback manner. RTN neurons contain vesicular glutamate transporter-2 (Vglut2) transcripts (Slc17a6), and their synaptic boutons are Vglut2-immunoreactive. Here, we used optogenetics to test whether the RTN increases ventilation in conscious adult mice by releasing glutamate. Neurons located below the facial motor nucleus were transduced unilaterally to express channelrhodopsin-2 (ChR2)-enhanced yellow fluorescent protein, with lentiviral vectors that employ the Phox2b-activated artificial promoter PRSx8. The targeted population consisted of two types of Phox2b-expressing neuron: non-catecholaminergic neurons (putative RTN chemoreceptors) and catecholaminergic (C1) neurons. Opto-activation of a mix of ChR2-expressing RTN and C1 neurons produced a powerful stimulus frequency-dependent (5-15 Hz) stimulation of breathing in control conscious mice. Respiratory stimulation was comparable in mice in which dopamine-β-hydroxylase (DβH)-positive neurons no longer expressed Vglut2 (DβH(C) (re/0);;Vglut2(fl/fl)). In a third group of mice, i.e. DβH(+/+);;Vglut2(fl/fl) mice, we injected a mixture of PRSx8-Cre lentiviral vector and Cre-dependent ChR2 adeno-associated virus 2 unilaterally into the RTN; this procedure deleted Vglut2 from ChR2-expressing neurons regardless of whether or not they were catecholaminergic. The ventilatory response elicited by photostimulation of ChR2-positive neurons was almost completely absent in these mice. Resting ventilatory parameters were identical in the three groups of mice, and their brains contained similar numbers of ChR2-positive catecholaminergic and non-catecholaminergic neurons. From these results, we conclude that RTN neurons increase breathing in conscious adult mice by releasing glutamate.

  14. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

    PubMed

    Tolson, Kristen P; Gemelli, Terry; Meyer, Donna; Yazdani, Umar; Kozlitina, Julia; Zinn, Andrew R

    2014-07-01

    Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1's physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus. PMID:24773343

  15. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

    PubMed

    Tolson, Kristen P; Gemelli, Terry; Meyer, Donna; Yazdani, Umar; Kozlitina, Julia; Zinn, Andrew R

    2014-07-01

    Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1's physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus.

  16. The Joanna Briggs Institute Best Practice Information Sheet: Nurse-led interventions to reduce cardiac risk factors in adults.

    PubMed

    2010-09-01

    This Best Practice Information Sheet updates and supersedes an earlier publication of the Joanna Briggs Institute in 2005. The information that is contained in this publication is based upon a systematic review of six randomized clinical trials. Additional information has been derived from a second systematic review; thus, in total, the information is derived from 22 randomized controlled trials. The original references can be sourced from the systematic reviews. Coronary heart disease (CHD) is the major cause of illness in Western society and it is becoming increasingly important to establish effective strategies in order to reduce the incidence of CHD. Nurse-led clinics are becoming more prominent in community settings and the importance of nurse interventions in the management of CHD and risk factor reduction is recognized in terms of improved health outcomes for patients. However, the variation in outcome measures and inconsistent findings between some studies make it difficult to draw firm conclusions. PMID:20727078

  17. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice.

    PubMed

    Wang, Hong; Warner-Schmidt, Jennifer; Varela, Santiago; Enikolopov, Grigori; Greengard, Paul; Flajolet, Marc

    2015-08-01

    Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell-cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors.

  18. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice

    PubMed Central

    Wang, Hong; Warner-Schmidt, Jennifer; Varela, Santiago; Enikolopov, Grigori; Greengard, Paul; Flajolet, Marc

    2015-01-01

    Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell–cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors. PMID:26195764

  19. Communal nesting increases pup growth but has limited effects on adult behavior and neurophysiology in inbred mice.

    PubMed

    Heiderstadt, Kathleen M; Vandenbergh, David J; Gyekis, Joseph P; Blizard, David A

    2014-03-01

    Laboratory mice preferentially rear their offspring in communal nests (CN), with all mothers contributing to maternal care and feeding of all the pups. Previous studies using primarily outbred mice have shown that offspring reared under CN conditions may display increased preweaning growth rates and differences in adult behavior and neurobiology compared with mice reared under single-nesting (SN; one dam with her litter) conditions. Here we compared pup mortality; weaning and adult body weights; adult behavior; and gene expression in the hippocampus and frontal cortex between C57BL/6J, DBA/2J and 129x1/SvJ mice reared by using CN (3 dams and their litters sharing a single nest) or SN. Male and female pups of all 3 strains reared in CN cages showed higher body weight at weaning than did SN pups of the same strain, with no significant difference in pup mortality between groups. Adult male offspring reared in CN showed no differences in any behavioral test when compared with SN offspring. Combining CN dams and litters after parturition revealed greater cortical brain-derived neurotropic factor expression in adult male C57BL/6J offspring and cortical glucocorticoid receptor expression in adult male C57BL/6J and 129x1/SvJ offspring as compared with SN offspring of the same strain. Communal rearing can enhance juvenile growth rates but does not change adult behavior in inbred mouse strains, although potential effects on adult neurophysiology are possible.

  20. Of Mice and Men-Warning: Intact Versus Castrated Adult Male Mice as Xenograft Hosts Are Equivalent to Hypogonadal Versus Abiraterone Treated Aging Human Males, Respectively

    PubMed Central

    Sedelaar, J.P. Michiel; Dalrymple, Susan S.; Isaacs, John T.

    2014-01-01

    BACKGROUND Immune deficient male mice bearing human prostate cancer xenografts are used to evaluate therapeutic response to novel androgen ablation approaches and the results compared to surgical castration based upon assumption that testosterone microenvironment in intact and castrated adult male mice mimics eugonadal and castrated aging adult human males. METHODS To test these assumptions, serum total testosterone (TT) and free testosterone (FT) were determined longitudinally in groups (n > 20) of intact versus castrated adult male nude, NOG, and immune competent C57BL/6 mice. RESULTS In adult male mice, TT and FT varies by 30- to 100-fold within the same animal providing a microenvironment that is only equivalent to hypogonadal, not eugonadal, adult human males (TT is 1.7 ± 1.2 ng/ml [5.8 ± 4.1 nM] in nude and 2.5 ± 1.3 ng/ml [8.7 ± 4.4 nM] in NOG mice versus >4.2 ng/ml [14.7 nM] in eugonadal humans). This was confirmed based upon enhanced growth of androgen dependent human prostate cancer xenografts inoculated into mice supplemented with exogenous testosterone to elevate and chronically maintain serum TT at a level (5 ng/ml [18 nM]) equivalent to a 50-year-old eugonadal human male. In castrated mice, TT and FT range from 2 to 20 pg/ml (7–70 pM) and <0.8 pg/ml (<2.6 pM), respectively, which is equivalent to castrate resistant prostate cancer (CRPC) patients treated with abiraterone. This was confirmed based upon the inability of another CYP17A1 inhibitor, ketoconazole, to inhibit the growth of CRPC xenografts in castrated mice. CONCLUSIONS Adult male mice supplemented with testosterone mimic eugonadal human males, while unsupplemented animals mimic standard androgen ablation and castrated animals mimic abiraterone treated patients. These studies confirm what is claimed in Robert Burns’ poem “To a Mouse” that “The best laid schemes of mice and men/often go awry. PMID:23775398

  1. Photoperiodic regulation of hippocampal neurogenesis in adult male white-footed mice (Peromyscus leucopus).

    PubMed

    Walton, James C; Aubrecht, Taryn G; Weil, Zachary M; Leuner, Benedetta; Nelson, Randy J

    2014-08-01

    Photoperiodic organisms monitor environmental day length to engage in seasonally appropriate adaptions in physiology and behavior. Among these adaptations are changes in brain volume and neurogenesis, which have been well described in multiple species of birds, yet few studies have described such changes in the brains of adult mammals. White-footed mice (Peromyscus leucopus) are an excellent species in which to investigate the effects of day length on adult hippocampal neurogenesis, as males, in addition to having reduced hippocampal volume in short days (SD) with concomitant impairments in hippocampus-mediated behaviors, have photoperiod-dependent changes in olfactory bulb neurogenesis. We performed the current experiment to assess the effects of photoperiod on hippocampal neurogenesis longitudinally, using the thymidine analog bromodeoxyuridine at multiple time points across 10 weeks of SD exposure. Compared with counterparts held in long day (LD) lengths, across the first 8 weeks of SD exposure hippocampal neurogenesis was reduced. However, at 10 weeks in SD lengths neurogenic levels in the hippocampus were elevated above those levels in mice held in LD lengths. The current findings are consistent with the natural photoperiodic cycle of hippocampal function in male white-footed mice, and may help to inform research on photoperiodic plasticity in neurogenesis and provide insight into how the complex interplay among the environment, genes and adaptive responses to changing day lengths affects brain structure, function and behavior at multiple levels. PMID:24893623

  2. Photoperiodic regulation of hippocampal neurogenesis in adult male white-footed mice (Peromyscus leucopus).

    PubMed

    Walton, James C; Aubrecht, Taryn G; Weil, Zachary M; Leuner, Benedetta; Nelson, Randy J

    2014-08-01

    Photoperiodic organisms monitor environmental day length to engage in seasonally appropriate adaptions in physiology and behavior. Among these adaptations are changes in brain volume and neurogenesis, which have been well described in multiple species of birds, yet few studies have described such changes in the brains of adult mammals. White-footed mice (Peromyscus leucopus) are an excellent species in which to investigate the effects of day length on adult hippocampal neurogenesis, as males, in addition to having reduced hippocampal volume in short days (SD) with concomitant impairments in hippocampus-mediated behaviors, have photoperiod-dependent changes in olfactory bulb neurogenesis. We performed the current experiment to assess the effects of photoperiod on hippocampal neurogenesis longitudinally, using the thymidine analog bromodeoxyuridine at multiple time points across 10 weeks of SD exposure. Compared with counterparts held in long day (LD) lengths, across the first 8 weeks of SD exposure hippocampal neurogenesis was reduced. However, at 10 weeks in SD lengths neurogenic levels in the hippocampus were elevated above those levels in mice held in LD lengths. The current findings are consistent with the natural photoperiodic cycle of hippocampal function in male white-footed mice, and may help to inform research on photoperiodic plasticity in neurogenesis and provide insight into how the complex interplay among the environment, genes and adaptive responses to changing day lengths affects brain structure, function and behavior at multiple levels.

  3. Chronic and progressive Parkinson's disease MPTP model in adult and aged mice.

    PubMed

    Muñoz-Manchado, Ana B; Villadiego, Javier; Romo-Madero, Sonia; Suárez-Luna, Nela; Bermejo-Navas, Alfonso; Rodríguez-Gómez, José A; Garrido-Gil, Pablo; Labandeira-García, José L; Echevarría, Miriam; López-Barneo, José; Toledo-Aral, Juan J

    2016-01-01

    Despite the different animal models of Parkinson's disease developed during the last years, they still present limitations modelling the slow and progressive process of neurodegeneration. Here, we undertook a histological, neurochemical and behavioural analysis of a new chronic parkinsonian mouse model generated by the subcutaneous administration of low doses of MPTP (20 mg/kg, 3 times per week) for 3 months, using both young adult and aged mice. The MPTP-induced nigrostriatal neurodegeneration was progressive and was accompanied by a decrease in striatal dopamine levels and motor impairment. We also demonstrated the characteristic neuroinflammatory changes (microglial activation and astrogliosis) associated with the neurodegenerative process. Aged animals showed both a faster time course of neurodegeneration and an altered neuroinflammatory response. The long-term systemic application of low MPTP doses did not induce any increase in mortality in either young adult or aged mice and better resembles the slow evolution of the neurodegenerative process. This treatment could be useful to model different stages of Parkinson's disease, providing a better understanding of the pathophysiology of the disease and facilitating the testing of both protective and restorative treatments. Here, we show a new chronic and progressive parkinsonian mouse model, in young and aged mice. This model produces a stable degeneration of the dopaminergic nigrostriatal pathway, continuous neuroinflammatory reaction and motor deficits. Aged animals showed a faster neurodegeneration and an altered neuroinflammatory response. This treatment could be useful to model different stages of PD and to test both protective and restorative therapeutic approaches.

  4. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    PubMed Central

    Ho, New Fei; Han, Siew Ping; Dawe, Gavin S

    2009-01-01

    Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU). Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease. PMID:19500352

  5. A Safe and Stable Neonatal Vaccine Targeting GAPDH Confers Protection against Group B Streptococcus Infections in Adult Susceptible Mice

    PubMed Central

    Alves, Joana; Madureira, Pedro; Baltazar, Maria Teresa; Barros, Leandro; Oliveira, Liliana; Dinis-Oliveira, Ricardo Jorge; Andrade, Elva Bonifácio; Ribeiro, Adília; Vieira, Luís Mira; Trieu-Cuot, Patrick; Duarte, José Alberto; Carvalho, Félix; Ferreira, Paula

    2015-01-01

    Group B Streptococcus (GBS), a commensal organism, can turn into a life-threatening pathogen in neonates and elderly, or in adults with severe underlying diseases such as diabetes. We developed a vaccine targeting the GBS glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme detected at the bacterial surface, which was proven to be effective in a neonatal mouse model of infection. Since this bacterium has emerged as an important pathogen in non-pregnant adults, here we investigated whether this vaccine also confers protection in an adult susceptible and in a diabetic mouse model of infection. For immunoprotection studies, sham or immunized adult mice were infected with GBS serotype Ia and V strains, the two most prevalent serotypes isolated in adults. Sham and vaccinated mice were also rendered diabetic and infected with a serotype V GBS strain. For toxicological (pre-clinical) studies, adult mice were vaccinated three times, with three concentrations of recombinant GAPDH adjuvanted with Allydrogel, and the toxicity parameters were evaluated twenty-four hours after the last immunization. For the stability tests, the vaccine formulations were maintained at 4°C for 6 and 12 months prior immunization. The results showed that all tested doses of the vaccine, including the stability study formulations, were immunogenic and that the vaccine was innocuous. The organs (brain, blood, heart, and liver) of vaccinated susceptible or diabetic adult mice were significantly less colonized compared to those of control mice. Altogether, these results demonstrate that the GAPDH-based vaccine is safe and stable and protects susceptible and diabetic adult mice against GBS infections. It is therefore a promising candidate as a global vaccine to prevent GBS-induced neonatal and adult diseases. PMID:26673420

  6. A Safe and Stable Neonatal Vaccine Targeting GAPDH Confers Protection against Group B Streptococcus Infections in Adult Susceptible Mice.

    PubMed

    Alves, Joana; Madureira, Pedro; Baltazar, Maria Teresa; Barros, Leandro; Oliveira, Liliana; Dinis-Oliveira, Ricardo Jorge; Andrade, Elva Bonifácio; Ribeiro, Adília; Vieira, Luís Mira; Trieu-Cuot, Patrick; Duarte, José Alberto; Carvalho, Félix; Ferreira, Paula

    2015-01-01

    Group B Streptococcus (GBS), a commensal organism, can turn into a life-threatening pathogen in neonates and elderly, or in adults with severe underlying diseases such as diabetes. We developed a vaccine targeting the GBS glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme detected at the bacterial surface, which was proven to be effective in a neonatal mouse model of infection. Since this bacterium has emerged as an important pathogen in non-pregnant adults, here we investigated whether this vaccine also confers protection in an adult susceptible and in a diabetic mouse model of infection. For immunoprotection studies, sham or immunized adult mice were infected with GBS serotype Ia and V strains, the two most prevalent serotypes isolated in adults. Sham and vaccinated mice were also rendered diabetic and infected with a serotype V GBS strain. For toxicological (pre-clinical) studies, adult mice were vaccinated three times, with three concentrations of recombinant GAPDH adjuvanted with Allydrogel, and the toxicity parameters were evaluated twenty-four hours after the last immunization. For the stability tests, the vaccine formulations were maintained at 4°C for 6 and 12 months prior immunization. The results showed that all tested doses of the vaccine, including the stability study formulations, were immunogenic and that the vaccine was innocuous. The organs (brain, blood, heart, and liver) of vaccinated susceptible or diabetic adult mice were significantly less colonized compared to those of control mice. Altogether, these results demonstrate that the GAPDH-based vaccine is safe and stable and protects susceptible and diabetic adult mice against GBS infections. It is therefore a promising candidate as a global vaccine to prevent GBS-induced neonatal and adult diseases. PMID:26673420

  7. Presynaptic control of striatal dopamine neurotransmission in adult vesicular monoamine transporter 2 (VMAT2) mutant mice.

    PubMed

    Patel, Jyoti; Mooslehner, Katrin A; Chan, Pok Man; Emson, Piers C; Stamford, Jonathan A

    2003-05-01

    The vesicular monoamine transporter 2 (VMAT2) plays a pivotal role in regulating the size of vesicular and cytosolic dopamine (DA) storage pools within the CNS, and can thus influence extracellular DA neurotransmission. Transgenic mice have been generated with a dramatically reduced (by approximately 95%) expression of the VMAT2 gene which, unlike complete knockout lines, survive into adulthood. We compared the pre-synaptic regulation of both impulse-dependent (exocytotic) and carrier-mediated (via reversal of the DA transporter, DAT) DA release in the dorsolateral caudate putamen (CPu) of striatal slices derived from adult homozygous VMAT2 mutant and wild-type mice using fast cyclic voltammetry. Impulse-dependent DA release, evoked by a single electrical pulse, was lower in homozygous (116 nm) than wild-type mice (351 nm) indicating smaller vesicular DA stores, an observation supported by the evanescent effect of amfonelic acid (300 nm) in homozygous mice. Amphetamine (2 microm) increased extracellular DA via DAT reversal in both wild-type (by 459 nm) and VMAT2 mutant (by 168 nm, p < 0.01 vs. wild-type) mice. In both cases, the effect was blocked by the DAT inhibitor GBR12935 (1 microm). Simultaneously, amphetamine decreased impulse-dependent DA release, albeit less in homozygous (by 55%) than in wild-type (by 78%) mice. In wild-types, this decrement was largely reversed by GBR12935 but not by the D2/D3 autoreceptor antagonist (-)sulpiride (1 microm). Conversely, in homozygous VMAT2 mutant mice, it was attenuated by (-)sulpiride but not GBR12935. The D2/D3 receptor agonist quinpirole inhibited impulse-dependent DA release with a lower EC50 value in homozygous mice (12 nm) compared with wild-types (34 nm), indicating the compensatory presence of functionally supersensitive release-regulating autoreceptors. However, analysis of DA reuptake kinetics obtained in the absence and presence of DAT blockade (by cocaine and amfonelic acid) revealed only minor differences in

  8. Constrained tibial vibration does not produce an anabolic bone response in adult mice.

    PubMed

    Christiansen, Blaine A; Kotiya, Akhilesh A; Silva, Matthew J

    2009-10-01

    and exposure to anesthesia was associated with significant loss of trabecular and cortical bone. We conclude that direct vibrational loading of bone in anesthetized, adult mice is not anabolic.

  9. Constrained tibial vibration does not produce an anabolic bone response in adult mice.

    PubMed

    Christiansen, Blaine A; Kotiya, Akhilesh A; Silva, Matthew J

    2009-10-01

    and exposure to anesthesia was associated with significant loss of trabecular and cortical bone. We conclude that direct vibrational loading of bone in anesthetized, adult mice is not anabolic. PMID:19576309

  10. Abnormal Motor Phenotype at Adult Stages in Mice Lacking Type 2 Deiodinase

    PubMed Central

    Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Background Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3′-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. Aim This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Results Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. Conclusions The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders. PMID:25083788

  11. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice

    PubMed Central

    Dorrell, Craig; Erker, Laura; Schug, Jonathan; Kopp, Janel L.; Canaday, Pamela S.; Fox, Alan J.; Smirnova, Olga; Duncan, Andrew W.; Finegold, Milton J.; Sander, Maike; Kaestner, Klaus H.; Grompe, Markus

    2011-01-01

    The molecular identification of adult hepatic stem/progenitor cells has been hampered by the lack of truly specific markers. To isolate putative adult liver progenitor cells, we used cell surface-marking antibodies, including MIC1-1C3, to isolate subpopulations of liver cells from normal adult mice or those undergoing an oval cell response and tested their capacity to form bilineage colonies in vitro. Robust clonogenic activity was found to be restricted to a subset of biliary duct cells antigenically defined as CD45−/CD11b−/CD31−/MIC1-1C3+/CD133+/CD26−, at a frequency of one of 34 or one of 25 in normal or oval cell injury livers, respectively. Gene expression analyses revealed that Sox9 was expressed exclusively in this subpopulation of normal liver cells and was highly enriched relative to other cell fractions in injured livers. In vivo lineage tracing using Sox9creERT2-R26RYFP mice revealed that the cells that proliferate during progenitor-driven liver regeneration are progeny of Sox9-expressing precursors. A comprehensive array-based comparison of gene expression in progenitor-enriched and progenitor-depleted cells from both normal and DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine or diethyl1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate)-treated livers revealed new potential regulators of liver progenitors. PMID:21632826

  12. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats

    PubMed Central

    AHN, JI HYEON; CHEN, BAI HUI; SHIN, BICH-NA; LEE, TAE-KYEONG; CHO, JEONG HWI; KIM, IN HYE; PARK, JOON HA; LEE, JAE-CHUL; TAE, HYUN-JIN; LEE, CHOONG-HYUN; WON, MOO-HO; LEE, YUN LYUL; CHOI, SOO YOUNG; HONG, SEONGKWEON

    2016-01-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN-immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  13. Splenomegaly and adrenal weight changes in isolated adult mice chronically exposed to Lead

    SciTech Connect

    Ogilvie, D.M.; Martin, A.H.

    1981-05-01

    Inorganic lead is an environmental contaminant of continuing toxicological concern. Since the effects of chronic lead ingestion are most pronounced in neonatal or very young animals, investigations relating to the mental health effects of lead on children have to date been of prime importance. As the perspective of lead toxicity has widened, however, concern about the effects of lead exposure in adults has also been expressed, and several studies have now documented lead-induced learning abnormalities in adult animals. Recently research has shown that lead-treated adult mice fail to develop the isolation-induced aggressiveness typical of untreated control animals. Animal aggression has both neural and endocrine substrates, and with regard to the latter, it is well known that many mammals exhibit changes of adrenal weight and function when subjected to irritable aggression associated with the pressure of population density. Although impairment of adrenal gland functioning has been reported for lead-poisoned humans, few animal studies have yet investigated the effects of chronic lead exposure on the pituitary-adrenal axis. In this paper, changes are described in adrenal weights for mice subjected to isolation and lead exposure. In addition, since it is well known that lead exposure can reduce the survival time of red blood cells, the possibility that the spleen, the disposal center for discarded red cells, might also be affected by lead exposure was investigated.

  14. Alpha/Beta Interferon Protects Adult Mice from Fatal Sindbis Virus Infection and Is an Important Determinant of Cell and Tissue Tropism

    PubMed Central

    Ryman, Kate D.; Klimstra, William B.; Nguyen, Khuong B.; Biron, Christine A.; Johnston, Robert E.

    2000-01-01

    Infection of adult 129 Sv/Ev mice with consensus Sindbis virus strain TR339 is subclinical due to an inherent restriction in early virus replication and viremic dissemination. By comparing the pathogenesis of TR339 in 129 Sv/Ev mice and alpha/beta interferon receptor null (IFN-α/βR−/−) mice, we have assessed the contribution of IFN-α/β in restricting virus replication and spread and in determining cell and tissue tropism. In adult 129 Sv/Ev mice, subcutaneous inoculation with 100 PFU of TR339 led to extremely low-level virus replication and viremia, with clearance under way by 96 h postinoculation (p.i.). In striking contrast, adult IFN-α/βR−/− mice inoculated subcutaneously with 100 PFU of TR339 succumbed to the infection within 84 h. By 24 h p.i. a high-titer serum viremia had seeded infectious virus systemically, coincident with the systemic induction of the proinflammatory cytokines interleukin-12 (IL-12) p40, IFN-γ, tumor necrosis factor alpha, and IL-6. Replicating virus was located in macrophage-dendritic cell (DC)-like cells at 24 h p.i. in the draining lymph node and in the splenic marginal zone. By 72 h p.i. virus replication was widespread in macrophage-DC-like cells in the spleen, liver, lung, thymus, and kidney and in fibroblast-connective tissue and periosteum, with sporadic neuroinvasion. IFN-α/β-mediated restriction of TR339 infection was mimicked in vitro in peritoneal exudate cells from 129 Sv/Ev versus IFN-α/βR−/− mice. Thus, IFN-α/β protects the normal adult host from viral infection by rapidly conferring an antiviral state on otherwise permissive cell types, both locally and systemically. Ablation of the IFN-α/β system alters the apparent cell and tissue tropism of the virus and renders macrophage-DC-lineage cells permissive to infection. PMID:10708454

  15. Effect of extract of Hibiscus on the ultrastructure of the testis in adult mice.

    PubMed

    Mahmoud, Yomna Ibrahim

    2012-07-01

    Hibiscus sabdariffa extract is a popular beverage in many tropical and sub-tropical countries. Although, Hibiscus tea is known for its medicinal effects for thousands of years, scientific evidence of its systemic safety is very limited. The current study aimed to assess the potential adverse effects of H. sabdariffa extract on sperm morphology and testicular ultrastructure of albino mice. Thirty adult male albino mice were divided into three equal groups and were given: (a) distilled water, (b) cold Hibiscus aqueous extract, and (c) boiled Hibiscus aqueous extract. Hibiscus extract was administered orally daily for 4 weeks in a dose of 200 mg/kg body weight/mouse. Twenty-four hours after the last treatment, mice were decapitated and the testes and epididymides were excised and processed for transmission electron microscopy to assess ultrastructural and sperm abnormalities. The results clearly demonstrate that aqueous extracts from dried calyx of H. sabdariffa, either cold or boiled, alter normal sperm morphology and testicular ultrastructure and adversely influence the male reproductive fertility in albino mice. The current data suggest that Hibiscus extract should be consumed with caution, and reasonable estimates of the human risk associated with its consumption should be provided. PMID:21798576

  16. Pubertal cadmium exposure impairs testicular development and spermatogenesis via disrupting testicular testosterone synthesis in adult mice.

    PubMed

    Ji, Yan-Li; Wang, Hua; Liu, Ping; Wang, Qun; Zhao, Xian-Feng; Meng, Xiu-Hong; Yu, Tao; Zhang, Heng; Zhang, Cheng; Zhang, Ying; Xu, De-Xiang

    2010-04-01

    Cadmium (Cd) is a well-known testicular toxicant. However, the effects of pubertal Cd exposure on testicular development and spermatogenesis remained to be elucidated. The present study investigated the effects of pubertal Cd exposure on testicular development and spermatogenesis. Male CD-1 mice were intraperitoneally injected with CdCl(2) (1mg/kg) daily from postnatal day 35 (PND35) to PND70. As expected, pubertal Cd exposure significantly decreased the number of spermatozoa in epididymides. In addition, pubertal Cd exposure markedly reduced the weights of testes, epididymides and prostate and seminal vesicle in adult mice. A significant decrease in serum and testicular testosterone (T) was observed in mice exposed to Cd during puberty. Moreover, pubertal Cd exposure markedly reduced mRNA and protein levels of testicular StAR, P450scc, P450(17alpha) and 17beta-HSD. Taken together, these results suggest that the decreased testicular T synthesis might partially contribute to pubertal Cd-induced impairment on testicular development and spermatogenesis in mice. PMID:19897027

  17. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    PubMed

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings. PMID:26960969

  18. Early Life Inorganic Lead Exposure Induces Testicular Teratoma and Renal and Urinary Bladder Preneoplasia in Adult Metallothionein-Knockout Mice but Not in Wild Type Mice

    PubMed Central

    Tokar, Erik J.; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2010-01-01

    Inorganic lead compounds are carcinogenic in animals and have carcinogenic potential in humans. In mice, lead (Pb) is a transplacental carcinogen in the kidney. Metallothionein (MT) is a metal-binding protein that can reduce the toxicity of various metals, including Pb, either by direct sequestration or as an antioxidant for metals that generate reactive oxygen species. Although MT appears to reduce Pb carcinogenicity in adult mice it is unknown how MT deficiency may affect Pb carcinogenicity from early life exposure. Thus, groups (n = 10) of pregnant MT-I/II double knockout (MT-null) or 129/SVJ MT wild type (WT) mice were exposed to Pb acetate in the drinking water (0, 2000, 4000 ppm Pb) from gestation day 8 through birth and during lactation. Maternal drinking water Pb exposure continued to weaning at 4 weeks of age and the male offspring were then directly exposed to Pb until 8 weeks of age and observed until 2 years old. High dose (4000 ppm) but not low dose (2000 ppm) Pb reduced survival in the latter part of the study in both MT-null and WT mice. In MT-null mice, but not WT, early life Pb exposure caused a dose-related increase in testicular teratomas, to a maximum incidence of 28% compared to control (4%). Pb-induced renal cystic hyperplasia, considered preneoplastic, were a prominent occurrence in MT-null mice but nearly absent in WT mice. Pb dose-related increases in renal cystic hyperplasia occurred in adult MT-null with early life exposure with maximal incidence of 52%. Pb-treated MT-null mice also showed dose-related increases in urinary bladder hyperplasia with occasional papilloma that were absent in WT mice. Thus, MT deficiency made mice more sensitive to early life Pb exposure with regard to testes tumors, and renal and urinary bladder preneoplastic lesions. PMID:20600549

  19. Cellular origins of cold-induced brown adipocytes in adult mice

    PubMed Central

    Lee, Yun-Hee; Petkova, Anelia P.; Konkar, Anish A.; Granneman, James G.

    2015-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα+ cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreERT2) and adiponectin-CreERT2, respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα+ cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreERT2-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment.—Lee, Y.-H., Petkova, A. P., Konkar, A. A., Granneman, J. G. Cellular origins of cold-induced brown adipocytes in adult mice. PMID:25392270

  20. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice

    PubMed Central

    Sauter, Kristin A.; Pridans, Clare; Sehgal, Anuj; Tsai, Yi Ting; Bradford, Barry M.; Raza, Sobia; Moffat, Lindsey; Gow, Deborah J.; Beard, Philippa M.; Mabbott, Neil A.; Smith, Lee B.; Hume, David A.

    2014-01-01

    We investigated the role of CSF1R signaling in adult mice using prolonged treatment with anti-CSF1R antibody. Mutation of the CSF1 gene in the op/op mouse produces numerous developmental abnormalities. Mutation of the CSF1R has an even more penetrant phenotype, including perinatal lethality, because of the existence of a second ligand, IL-34. These effects on development provide limited insight into functions of CSF1R signaling in adult homeostasis. The carcass weight and weight of several organs (spleen, kidney, and liver) were reduced in the treated mice, but overall body weight gain was increased. Despite the complete loss of Kupffer cells, there was no effect on liver gene expression. The treatment ablated OCL, increased bone density and trabecular volume, and prevented the decline in bone mass seen in female mice with age. The op/op mouse has a deficiency in pancreatic β cells and in Paneth cells in the gut wall. Only the latter was reproduced by the antibody treatment and was associated with increased goblet cell number but no change in villus architecture. Male op/op mice are infertile as a result of testosterone insufficiency. Anti-CSF1R treatment ablated interstitial macrophages in the testis, but there was no sustained effect on testosterone or LH. The results indicate an ongoing requirement for CSF1R signaling in macrophage and OCL homeostasis but indicate that most effects of CSF1 and CSF1R mutations are due to effects on development. PMID:24652541

  1. A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1(+/-) mice.

    PubMed

    Zhang, Jingzhong; Götz, Sebastian; Vogt Weisenhorn, Daniela M; Simeone, Antonio; Wurst, Wolfgang; Prakash, Nilima

    2015-10-01

    The protracted and age-dependent degeneration of dopamine (DA)-producing neurons of the Substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) in the mammalian midbrain is a hallmark of human Parkinson's Disease (PD) and of certain genetic mouse models of PD, such as mice heterozygous for the homeodomain transcription factor Engrailed 1 (En1(+/-) mice). Neurotoxin-based animal models of PD, in contrast, are characterized by the fast and partly reversible degeneration of the SNc and VTA DA neurons. The secreted protein WNT1 was previously shown to be strongly induced in the neurotoxin-injured adult ventral midbrain (VM), and to protect the SNc and VTA DA neurons from cell death in this context. We demonstrate here that the sustained and ectopic expression of Wnt1 in the SNc and VTA DA neurons of En1(+/Wnt1) mice also protected these genetically affected En1 heterozygote (En1(+/-)) neurons from their premature degeneration in the adult mouse VM. We identified a developmental gene cascade that is up-regulated in the adult En1(+/Wnt1) VM, including the direct WNT1/β-catenin signaling targets Lef1, Lmx1a, Fgf20 and Dkk3, as well as the indirect targets Pitx3 (activated by LMX1A) and Bdnf (activated by PITX3). We also show that the secreted neurotrophin BDNF and the secreted WNT modulator DKK3, but not the secreted growth factor FGF20, increased the survival of En1 mutant dopaminergic neurons in vitro. The WNT1-mediated signaling pathway and its downstream targets BDNF and DKK3 might thus provide a useful means to treat certain genetic and environmental (neurotoxic) forms of human PD.

  2. α-Aminoadipate Induces Progenitor Cell Properties of Müller Glia in Adult Mice

    PubMed Central

    Takeda, Masumi; Takamiya, Akira; Jiao, Jian-wei; Cho, Kin-Sang; Trevino, Simon G.; Matsuda, Takahiko; Chen, Dong F.

    2008-01-01

    PURPOSE Retinal Müller glia in higher vertebrates have been reported to possess progenitor cell properties and the ability to generate new neurons after injury. This study was conducted to determine the signals that can activate this dormant capacity of Müller glia in adult mice, by studying their behavior during glutamate stimulation. METHODS Various concentrations of glutamate and its analogue α-aminoadipate, which specifically binds Müller glia, were injected subretinally in adult mice. Proliferating retinal cells were labeled by subretinal injection of 5′-bromo-2′-deoxyuridine (BrdU) followed by immunohistochemistry. Müller cell fates were analyzed in retinal sections by using double immunolabeling with primary antibodies against Müller and other retinaspecific cell markers. The effects of glutamate and α-aminoadipate were also determined in purified Müller cell cultures. RESULTS Although high levels of glutamate induce retinal damage, subtoxic levels of glutamate directly stimulate Müller glia to re-enter the cell cycle and induce neurogenesis in vivo and in purified Müller cell cultures. α-Aminoadipate, which selectively target glial cells, also induced expression of progenitor cell markers by Müller cells in vitro or stimulated Müller cell migration to the outer nuclear layer (ONL) and to differentiate into photoreceptors in vivo. CONCLUSIONS Mature Müller glia in adult mice can be induced to dedifferentiate, migrate, and generate new retinal neurons and photoreceptor cells by α-aminoadipate or glutamate signaling. The results of this study suggest a novel potential strategy for treating retinal neurodegeneration, including retinitis pigmentosa and age-related macular degeneration, without transplanting exogenous cells. PMID:18326742

  3. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells.

  4. Distinct Effects of Chronic Dopaminergic Stimulation on Hippocampal Neurogenesis and Striatal Doublecortin Expression in Adult Mice

    PubMed Central

    Salvi, Rachele; Steigleder, Tobias; Schlachetzki, Johannes C. M.; Waldmann, Elisabeth; Schwab, Stefan; Winner, Beate; Winkler, Jürgen; Kohl, Zacharias

    2016-01-01

    While adult neurogenesis is considered to be restricted to the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ), recent studies in humans and rodents provide evidence for newly generated neurons in regions generally considered as non-neurogenic, e.g., the striatum. Stimulating dopaminergic neurotransmission has the potential to enhance adult neurogenesis in the SVZ and the DG most likely via D2/D3 dopamine (DA) receptors. Here, we investigated the effect of two distinct preferential D2/D3 DA agonists, Pramipexole (PPX), and Ropinirole (ROP), on adult neurogenesis in the hippocampus and striatum of adult naïve mice. To determine newly generated cells in the DG incorporating 5-bromo-2′-deoxyuridine (BrdU) a proliferation paradigm was performed in which two BrdU injections (100 mg/kg) were applied intraperitoneally within 12 h after a 14-days-DA agonist treatment. Interestingly, PPX, but not ROP significantly enhanced the proliferation in the DG by 42% compared to phosphate buffered saline (PBS)-injected control mice. To analyze the proportion of newly generated cells differentiating into mature neurons, we quantified cells co-expressing BrdU and Neuronal Nuclei (NeuN) 32 days after the last of five BrdU injections (50 mg/kg) applied at the beginning of 14-days DA agonist or PBS administration. Again, PPX only enhanced neurogenesis in the DG significantly compared to ROP- and PBS-injected mice. Moreover, we explored the pro-neurogenic effect of both DA agonists in the striatum by quantifying neuroblasts expressing doublecortin (DCX) in the entire striatum, as well as in the dorsal and ventral sub-regions separately. We observed a significantly higher number of DCX+ neuroblasts in the dorsal compared to the ventral sub-region of the striatum in PPX-injected mice. These results suggest that the stimulation of hippocampal and dorsal striatal neurogenesis may be up-regulated by PPX. The increased generation of neural cells, both in constitutively active

  5. Increases in the Numerical Density of GAT-1 Positive Puncta in the Barrel Cortex of Adult Mice after Fear Conditioning

    PubMed Central

    Siucinska, Ewa; Hamed, Adam; Jasinska, Malgorzata

    2014-01-01

    Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS) with a tail shock (unconditioned stimulus, UCS) expands the representation of “trained” vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1) increases GABAergic markers in the hollows of “trained” barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS) affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS) led to increase expression of neuronal and astroglial GAT-1 puncta in the “trained” row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA. PMID:25333489

  6. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring

    PubMed Central

    Beauchamp, Brittany; Thrush, A. Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y.; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-01-01

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. PMID:26182362

  7. Comparative analysis of different oral approaches to treat Vibrio cholerae infection in adult mice.

    PubMed

    Jaiswal, Abhishek; Koley, Hemanta; Mitra, Soma; Saha, Dhira Rani; Sarkar, Banwarilal

    2014-05-01

    In this study, we have established an oral phage cocktail therapy in adult mice model and also performed a comparative analysis between phage cocktail, antibiotic and oral rehydration treatment for orally developed Vibrio cholerae infection. Four groups of mice were orally infected with Vibrio cholerae MAK 757 strain. Phage cocktail and antibiotic treated groups received 1×10(8) plaque forming unit/ml (once a daily) and 40mg/kg (once a daily) as an oral dose respectively for consecutive three days after bacterial infection. In case of oral rehydration group, the solution was supplied after bacterial infection mixed with the drinking water. To evaluate the better and safer approach of treatment, tissue and serum samples were collected. Here, phage cocktail treated mice reduced the log10 numbers of colony per gram by 3log10 (p<0.05); however, ciprofloxacin treated mice reduced the viable numbers up to 5log10 (p<0.05). Whereas, the oral rehydration solution application was not able to reduce the viable bacterial count but the disease progress was much more diminished (p>0.05). Besides, it was evident that antibiotic and phage cocktail treated group had a gradual decrease in both IL-6 and TNF-α level for 3 days (p<0.05) but the scenario was totally opposite in bacterial control and oral hydration treated group. Histological examinations also endorsed the phage cocktail and ciprofloxacin treatment in mice. Although, in this murine model of cholera ciprofloxacin was found to be a better antimicrobial agent, but from the safety and specificity point of view, a better method of application could fill the bridge and advances the phages as a valuable agent in treating Vibrio cholerae infection.

  8. Acute social defeat stress increases the conditioned rewarding effects of cocaine in adult but not in adolescent mice.

    PubMed

    Montagud-Romero, S; Aguilar, M A; Maldonado, C; Manzanedo, C; Miñarro, J; Rodríguez-Arias, M

    2015-08-01

    Stressful experiences modify activity in areas of the brain involved in the rewarding effects of psychostimulants. In the present study we evaluated the influence of acute social defeat (ASD) on the conditioned rewarding effects of cocaine in adolescent (PND 29-32) and adult (PND 50-53) male mice in the conditioned place preference (CPP) paradigm. Experimental mice were exposed to social defeat in an agonistic encounter before each session of conditioning with 1mg/kg or 25mg/kg of cocaine. The effects of social defeat on corticosterone levels were also evaluated. Adult mice exposed to ASD showed an increase in the conditioned reinforcing effects of cocaine. Only these mice developed cocaine-induced CPP with the subthreshold dose of cocaine, and they needed a higher number of extinction sessions for the 25mg/kg cocaine-induced CPP to be extinguished. In adolescent mice, on the other hand, ASD reduced the conditioned reinforcing effects of cocaine, since CPP was not produced with the lower dose of cocaine and was extinguished faster when they were conditioned with 25mg/kg. Adult mice exposed to social defeat displayed higher levels of corticosterone than their controls and adolescent mice. Our results confirm that the effect of social defeat stress on the acquisition and reinstatement of the CPP induced by cocaine varies depending on the age at which this stress is experienced.

  9. Effects of acute social stress on the conditioned place preference induced by MDMA in adolescent and adult mice.

    PubMed

    García-Pardo, Maria P; Rodríguez-Arias, Marta; Maldonado, Concepcion; Manzanedo, Carmen; Miñarro, Jose; Aguilar, Maria A

    2014-09-01

    Exposure to social defeat stress increases the rewarding effects of psychostimulants in animal models, but its effect on 3,4-methylenedioxymethylamphetamine (MDMA) reward has received little attention. In the present study, we evaluated the influence of social defeat on the rewarding effects of MDMA in adolescent [postnatal day (PND) 29-40] and adult (PND 50-61) male mice using the conditioned place preference paradigm. Experimental mice were exposed to social defeat in an agonistic encounter before each session of conditioning with 1.25 or 10 mg/kg of MDMA. The effects of social defeat on corticosterone levels and the motor or the anxiogenic effects of MDMA were also evaluated. Mice exposed to social defeat during adulthood did not show conditioned place preference after conditioning with either dose of MDMA. Conversely, social defeat did not affect the anxiogenic and motor effects of MDMA. Adult mice exposed to social defeat showed higher levels of corticosterone than their controls and adolescent mice. Social stress did not induce behavioural effects in adolescent mice. Our results show that stress induced by social defeat decreases the sensitivity of adult mice to the rewarding effects of MDMA.

  10. Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice.

    PubMed

    Sanchez Vega, Michelle C; Chong, Suyinn; Burne, Thomas H J

    2013-09-01

    Alcohol consumption during pregnancy has deleterious effects on the developing foetus ranging from subtle physical deficits to severe behavioural abnormalities and is encompassed under a broad umbrella term, foetal alcohol spectrum disorders (FASD). High levels of exposure show distinct effects, whereas the consequences of moderate exposures have been less well studied. The aim of this study was to examine the effects of a moderate dose ethanol exposure using an ad libitum drinking procedure during the first eight days of gestation in mice on the behavioural phenotype of adult offspring. Adult female C57Bl/6J mice were mated and exposed to either 10% (v/v) ethanol or water for the first 8 days of gestation (GD 0-8), and then offered water for the rest of gestation. Early developmental milestone achievement was assessed in offspring at postnatal days (P) 7, 14 and 21. Adult offspring underwent a comprehensive battery of behavioural tests to examine a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception, as well as spatial memory in a water maze. Ethanol-exposed mice had similar postnatal developmental trajectories to water-exposed mice. However, the ethanol-exposed mice showed increased hyperlocomotion at P 14, 21 and 70 (p<0.05). Increased exploration and heightened motivation were also observed in adult mice. Furthermore, ethanol-exposed mice showed a significant improvement in memory in the water maze. The main findings were that mice had persistent and long lasting alterations in behaviour, including hyperactivity and enhanced spatial memory. These data suggest that even moderate dose ethanol exposure in early gestation has long term consequences on brain function and behaviour in mice. PMID:23756143

  11. Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice.

    PubMed

    Sanchez Vega, Michelle C; Chong, Suyinn; Burne, Thomas H J

    2013-09-01

    Alcohol consumption during pregnancy has deleterious effects on the developing foetus ranging from subtle physical deficits to severe behavioural abnormalities and is encompassed under a broad umbrella term, foetal alcohol spectrum disorders (FASD). High levels of exposure show distinct effects, whereas the consequences of moderate exposures have been less well studied. The aim of this study was to examine the effects of a moderate dose ethanol exposure using an ad libitum drinking procedure during the first eight days of gestation in mice on the behavioural phenotype of adult offspring. Adult female C57Bl/6J mice were mated and exposed to either 10% (v/v) ethanol or water for the first 8 days of gestation (GD 0-8), and then offered water for the rest of gestation. Early developmental milestone achievement was assessed in offspring at postnatal days (P) 7, 14 and 21. Adult offspring underwent a comprehensive battery of behavioural tests to examine a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception, as well as spatial memory in a water maze. Ethanol-exposed mice had similar postnatal developmental trajectories to water-exposed mice. However, the ethanol-exposed mice showed increased hyperlocomotion at P 14, 21 and 70 (p<0.05). Increased exploration and heightened motivation were also observed in adult mice. Furthermore, ethanol-exposed mice showed a significant improvement in memory in the water maze. The main findings were that mice had persistent and long lasting alterations in behaviour, including hyperactivity and enhanced spatial memory. These data suggest that even moderate dose ethanol exposure in early gestation has long term consequences on brain function and behaviour in mice.

  12. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis.

    PubMed

    Garthe, Alexander; Roeder, Ingo; Kempermann, Gerd

    2016-02-01

    We here show that living in a stimulus-rich environment (ENR) improves water maze learning with respect to specific key indicators that in previous loss-of-function experiments have been shown to rely on adult hippocampal neurogenesis. Analyzing the strategies employed by mice to locate the hidden platform in the water maze revealed that ENR facilitated task acquisition by increasing the probability to use effective search strategies. ENR also enhanced the animals' behavioral flexibility, when the escape platform was moved to a new location. Treatment with temozolomide, which is known to reduce adult neurogenesis, abolished the effects of ENR on both acquisition and flexibility, while leaving other aspects of water maze learning untouched. These characteristic effects and interdependencies were not seen in parallel experiments with voluntary wheel running (RUN), a second pro-neurogenic behavioral stimulus. Since the histological assessment of adult neurogenesis is by necessity an end-point measure, the levels of neurogenesis over the course of the experiment can only be inferred and the present study focused on behavioral parameters as analytical endpoints. Although the correlation of physical activity with precursor cell proliferation and of learning and the survival of new neurons is well established, how the specific functional effects described here relate to dynamic changes in the stem cell niche remains to be addressed. Nevertheless, our findings support the hypothesis that adult neurogenesis is a critical mechanism underlying the beneficial effects of leading an active live, rich in experiences.

  13. The importance of basonuclin 2 in adult mice and its relation to basonuclin 1.

    PubMed

    Vanhoutteghem, Amandine; Delhomme, Brigitte; Hervé, Françoise; Nondier, Isabelle; Petit, Jean-Maurice; Araki, Masatake; Araki, Kimi; Djian, Philippe

    2016-05-01

    BNC2 is an extremely conserved zinc finger protein with important functions in the development of craniofacial bones and male germ cells. Because disruption of the Bnc2 gene in mice causes neonatal lethality, the function of the protein in adult animals has not been studied. Until now BNC2 was considered to have a wider tissue distribution than its paralog, BNC1, but the precise cell types expressing Bnc2 are largely unknown. We identify here the cell types containing BNC2 in the mouse and we show the unexpected presence of BNC1 in many BNC2-containing cells. BNC1 and BNC2 are colocalized in male and female germ cells, ovarian epithelial cells, sensory neurons, hair follicle keratinocytes and connective cells of organ capsules. In many cell lineages, the two basonuclins appear and disappear synchronously. Within the male germ cell lineage, BNC1 and BNC2 are found in prospermatogonia and undifferentiated spermatogonia, and disappear abruptly from differentiating spermatogonia. During oogenesis, the two basonuclins accumulate specifically in maturing oocytes. During the development of hair follicles, BNC1 and BNC2 concentrate in the primary hair germs. As follicle morphogenesis proceeds, cells possessing BNC1 and BNC2 invade the dermis and surround the papilla. During anagen, BNC1 and BNC2 are largely restricted to the basal layer of the outer root sheath and the matrix. During catagen, the compartment of cells possessing BNC1 and BNC2 regresses, and in telogen, the two basonuclins are confined to the secondary hair germ. During the next anagen, the BNC1/BNC2-containing cell population regenerates the hair follicle. By examining Bnc2(-/-) mice that have escaped the neonatal lethality usually associated with lack of BNC2, we demonstrate that BNC2 possesses important functions in many of the cell types where it resides. Hair follicles of postnatal Bnc2(-/-) mice do not fully develop during the first cycle and thereafter remain blocked in telogen. It is concluded that

  14. Tacrine treatment at high dose suppresses the recognition memory in juvenile and adult mice with attention to hepatotoxicity.

    PubMed

    Pan, Si-Yuan; Guo, Bao-Feng; Zhang, Yi; Yu, Qing; Yu, Zhi-Ling; Dong, Hang; Ye, Yan; Han, Yi-Fan; Ko, Kam-Ming

    2011-06-01

    It is well established that cholinergic over-stimulation can interfere with memory processes. The aim of this study was to evaluate the effect of tacrine, an acetylcholinesterase inhibitor, on recognition memory as well as the associated hepatotoxicity in juvenile (20-day-old) and adult (100-day-old) ICR male mice. Recognition memory was assessed by open-field test and step-through task without footshocks for three sessions between 08:00 and 13:00, with a 24-hr retention interval. Tacrine (10 or 40 μmol/kg) or vehicle was administered (s.c.) 20 min. prior to the first session. During the acquisition session, tacrine suppressed the open-field behaviours, including locomotor activity, rearing, grooming and defecation (by 77-100%) in mice of both ages. During the recall (observable in both ages) and re-recall (observable in juvenile mice) session, the locomotor activity and rearing number were significantly increased, indicative of impairment in recognition memory, in mice treated with tacrine 40 μmol/kg. During the training trial, tacrine decreased the step-through number in mice of both ages. In contrast, during the retention and re-retention trials, the step-through number was increased (by 92% and 93%, respectively), indicative of impairment in step-through memory, in juvenile but not adult mice treated with tacrine 40 μmol/kg. Tacrine 40 μmol/kg elevated the serum alanine aminotransferase (ALT) activity (by 135%) in juvenile mice, but reduced the ALT activity (by 42%) in adult mice. The results indicated that 20-day-old mice seemed to be more sensitive than 100-day-old mice to tacrine-induced impairment in recognition memory and the associated liver damage.

  15. Physical Exercise Preserves Adult Visual Plasticity in Mice and Restores it after a Stroke in the Somatosensory Cortex

    PubMed Central

    Kalogeraki, Evgenia; Pielecka-Fortuna, Justyna; Hüppe, Janika M.; Löwel, Siegrid

    2016-01-01

    The primary visual cortex (V1) is widely used to study brain plasticity, which is not only crucial for normal brain function, such as learning and memory, but also for recovery after brain injuries such as stroke. In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in V1 declines with age and is compromised by a lesion in adjacent and distant cortical regions. In contrast, mice raised in an enriched environment (EE), exhibit lifelong OD plasticity and are protected from losing OD plasticity after a stroke-lesion in the somatosensory cortex. Since SC mice with an access to a running wheel (RW) displayed preserved OD plasticity during aging, we investigated whether physical exercise might also provide a plasticity promoting effect after a cortical stroke. To this end, we tested if adult RW-raised mice preserved OD plasticity after stroke and also if short-term running after stroke restored OD plasticity to SC mice. Indeed, unlike mice without a RW, adult RW mice continued to show OD plasticity even after stroke, and a 2 weeks RW experience after stroke already restored lost OD plasticity. Additionally, the experience-enabled increase of the spatial frequency and contrast threshold of the optomotor reflex of the open eye, normally lost after a stroke, was restored in both groups of RW mice. Our data suggest that physical exercise alone can not only preserve visual plasticity into old age, but also restore it after a cortical stroke. PMID:27708575

  16. Glucose transporters GLUT4 and GLUT8 are upregulated after facial nerve axotomy in adult mice

    PubMed Central

    Gómez, Olga; Ballester-Lurbe, Begoña; Mesonero, José E; Terrado, José

    2011-01-01

    Peripheral nerve axotomy in adult mice elicits a complex response that includes increased glucose uptake in regenerating nerve cells. This work analyses the expression of the neuronal glucose transporters GLUT3, GLUT4 and GLUT8 in the facial nucleus of adult mice during the first days after facial nerve axotomy. Our results show that whereas GLUT3 levels do not vary, GLUT4 and GLUT8 immunoreactivity increases in the cell body of the injured motoneurons after the lesion. A sharp increase in GLUT4 immunoreactivity was detected 3 days after the nerve injury and levels remained high on Day 8, but to a lesser extent. GLUT8 also increased the levels but later than GLUT4, as they only rose on Day 8 post-lesion. These results indicate that glucose transport is activated in regenerating motoneurons and that GLUT4 plays a main role in this function. These results also suggest that metabolic defects involving impairment of glucose transporters may be principal components of the neurotoxic mechanisms leading to motoneuron death. PMID:21740425

  17. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus.

    PubMed

    Groves, Natalie J; Bradford, DanaKai; Sullivan, Robert K P; Conn, Kyna-Anne; Aljelaify, Rasha Fahad; McGrath, John J; Burne, Thomas H J

    2016-01-01

    Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD) deficiency in BALB/c mice was associated with (a) adult hippocampal neurogenesis at baseline, b) following 6 weeks of voluntary wheel running and (c) a depressive-like phenotype on the forced swim test (FST), which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX), and incorporation of 5-Bromo-2'-Deoxyuridine (BrdU) within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis. PMID:27043014

  18. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus

    PubMed Central

    Groves, Natalie J.; Bradford, DanaKai; Sullivan, Robert K. P.; Conn, Kyna-Anne; Aljelaify, Rasha Fahad; McGrath, John J.; Burne, Thomas H. J.

    2016-01-01

    Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD) deficiency in BALB/c mice was associated with (a) adult hippocampal neurogenesis at baseline, b) following 6 weeks of voluntary wheel running and (c) a depressive-like phenotype on the forced swim test (FST), which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX), and incorporation of 5-Bromo-2’-Deoxyuridine (BrdU) within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis. PMID:27043014

  19. Sustained Engraftment of Cryopreserved Human Bone Marrow CD34(+) Cells in Young Adult NSG Mice.

    PubMed

    Wiekmeijer, Anna-Sophia; Pike-Overzet, Karin; Brugman, Martijn H; Salvatori, Daniela C F; Egeler, R Maarten; Bredius, Robbert G M; Fibbe, Willem E; Staal, Frank J T

    2014-06-01

    Hematopoietic stem cells (HSCs) are defined by their ability to repopulate the bone marrow of myeloablative conditioned and/or (lethally) irradiated recipients. To study the repopulating potential of human HSCs, murine models have been developed that rely on the use of immunodeficient mice that allow engraftment of human cells. The NSG xenograft model has emerged as the current standard for this purpose allowing for engraftment and study of human T cells. Here, we describe adaptations to the original NSG xenograft model that can be readily implemented. These adaptations encompass use of adult mice instead of newborns and a short ex vivo culture. This protocol results in robust and reproducible high levels of lympho-myeloid engraftment. Immunization of recipient mice with relevant antigen resulted in specific antibody formation, showing that both T cells and B cells were functional. In addition, bone marrow cells from primary recipients exhibited repopulating ability following transplantation into secondary recipients. Similar results were obtained with cryopreserved human bone marrow samples, thus circumventing the need for fresh cells and allowing the use of patient derived bio-bank samples. Our findings have implications for use of this model in fundamental stem cell research, immunological studies in vivo and preclinical evaluations for HSC transplantation, expansion, and genetic modification.

  20. Effect size of memory deficits in mice with adult-onset P301L tau expression.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Weitzner, Daniel S; Zhang, Chong; Tosto, David E; Knowlan, Kevin; Xu, Ying; Reed, Miranda N

    2014-10-01

    Transgenic mice expressing mutations in tau have yielded essential discoveries for Alzheimer's disease. One of the most commonly used tau mouse models is the tet-off Tg(tauP301L)4510 model that expresses P301L human tau driven by the calcium-calmodulin kinase IIα (CaMKIIα) promoter system. Tau expression in this model is regulatable, allowing for suppression of mutant tau expression until adulthood and prevention of possible developmental alterations resulting from P301L tau expression during development. Here, we compared the effect and sample sizes needed for three learning and memory tasks in mice with adult-onset P301L tau expression. Our findings indicate that the Incremental Repeated Acquisition (IRA) and trace fear conditioning tasks, neither of which have previously been published with these mice, were highly sensitive to P301L tau expression, whereas the Morris water maze, the most commonly used task with this model, was the least sensitive. Memory deficits were observed at a time when tau pathology was subtle and prior to readily detectable neuronal loss. Thus, we provide essential information (effect and sample sizes needed) for establishing experimental designs at a time point when memory deficits are likely to go undetected if inadequate sample sizes are used. Our work also suggests the tet-off Tg4510 model provides a way to avoid mutant tau expression during the perinatal and early postnatal stages, thereby preventing possible developmental alterations unrelated to Alzheimer's disease.

  1. Prenatal exposure to permethrin influences vascular development of fetal brain and adult behavior in mice offspring.

    PubMed

    Imanishi, Satoshi; Okura, Masahiro; Zaha, Hiroko; Yamamoto, Toshifumi; Akanuma, Hiromi; Nagano, Reiko; Shiraishi, Hiroaki; Fujimaki, Hidekazu; Sone, Hideko

    2013-11-01

    Pyrethroids are one of the most widely used classes of insecticides and show neurotoxic effects that induce oxidative stress in the neonatal rat brain. However, little is still known about effects of prenatal exposure to permethrin on vascular development in fetal brain, central nervous system development, and adult offspring behaviors. In this study, the effects of prenatal exposure to permethrin on the development of cerebral arteries in fetal brains, neurotransmitter in neonatal brains, and locomotor activities in offspring mice were investigated. Permethrin (0, 2, 10, 50, and 75 mg/kg) was orally administered to pregnant females once on gestation day 10.5. The brains of permethrin-treated fetuses showed altered vascular formation involving shortened lengths of vessels, an increased number of small branches, and, in some cases, insufficient fusion of the anterior communicating arteries in the area of circle of Willis. The prenatal exposure to permethrin altered neocortical and hippocampus thickness in the mid brain and significantly increased norepinephrine and dopamine levels at postnatal day 7 mice. For spontaneous behavior, the standing ability test using a viewing jar and open-field tests showed significant decrease of the standing ability and locomotor activity in male mice at 8 or 12 weeks of age, respectively. The results suggest that prenatal exposure to permethrin may affect insufficient development of the brain through alterations of vascular development.

  2. Metabolic Effects of Social Isolation in Adult C57BL/6 Mice

    PubMed Central

    Sun, Meng; Choi, Eugene Y.; Magee, Daniel J.; Stets, Colin W.; During, Matthew J.; Lin, En-Ju D.

    2014-01-01

    Obesity and metabolic dysfunction are risk factors for a number of chronic diseases, such as type 2 diabetes, hypertension, heart disease, stroke, and certain forms of cancers. Both animal studies and human population-based and clinical studies have suggested that chronic stress is a risk factor for metabolic disorders. A good social support system is known to exert positive effects on the mental and physical well-being of an individual. On the other hand, long-term deprivation of social contacts may represent a stressful condition that has negative effects on health. In the present study, we investigated the effects of chronic social isolation on metabolic parameters in adult C57BL/6 mice. We found that individually housed mice had increased adipose mass compared to group-housed mice, despite comparable body weight. The mechanism for the expansion of white adipose tissue mass was depot-specific. Notably, food intake was reduced in the social isolated animals, which occurred around the light-dark phase transition periods. Similarly, reductions in heat generated and the respiratory exchange ratio were observed during the light-dark transitions. These phase-specific changes due to long-term social isolation have not been reported previously. Our study shows social isolation contributes to increased adiposity and altered metabolic functions. PMID:27433503

  3. Androgens inhibit the osteogenic response to mechanical loading in adult male mice.

    PubMed

    Sinnesael, Mieke; Laurent, Michaël R; Jardi, Ferran; Dubois, Vanessa; Deboel, Ludo; Delisser, Peter; Behets, Geert J; D'Haese, Patrick C; Carmeliet, Geert; Claessens, Frank; Vanderschueren, Dirk

    2015-04-01

    Androgens are well known to enhance exercise-induced muscle hypertrophy; however, whether androgens also influence bone's adaptive response to mechanical loading remains unclear. We studied the adaptive osteogenic response to unilateral in vivo mechanical loading of tibia in adult male mice in both a long- and a short-term experimental set-up. Mice were divided into four groups: sham operated, orchidectomized (ORX), T (ORX+T), or nonaromatizable dihydrotestosterone (ORX+DHT) replacement. Significant interactions between androgen status and osteogenic response to mechanical loading were observed. Cortical thickness increased by T (0.14 vs 0.11 mm sham, P<.05) and DHT (0.17 vs 0.11 mm sham, P<.05). However, T partially (+36%) and DHT completely (+10%) failed to exhibit the loading-related increase observed in sham (+107%) and ORX (+131%, all P<.05) mice. ORX decreased periosteal bone formation, which was restored to sham levels by T and DHT. However, both androgens completely suppressed the loading-related increase in periosteal bone formation. Short-term loading decreased the number of sclerostin-positive osteocytes in sham, whereas in control fibulas, ORX decreased and T increased the number of sclerostin-positive osteocytes. Loading no longer down-regulated sclerostin in the ORX or T groups. In conclusion, both T and DHT suppress the osteogenic response to mechanical loading.

  4. LED Update

    SciTech Connect

    Johnson, Mark L.; Gordon, Kelly L.

    2006-09-01

    This article, which will appear in RESIDENTIAL LIGHTING MAGAZINE, interviews PNNL's Kelly Gordon and presents the interview in question and answer format. The topic is a light emitting diode (LED) lighting also known as solid state lighting. Solid state lighting will be a new category in an energy efficient lighting fixture design competition called Lighting for Tomorrow sponsored by the US Department of Energy Emerging Technologies Office, the American Institute for Lighting, and the Consortium for Energy Efficiency. LED technology has been around since the ’60s, but it has been used mostly for indicator lights on electronics equipment. The big breakthrough was the development in the 1990s of blue LEDs which can be combined with the red and green LEDs that already existed to make white light. LEDs produce 25 to 40 lumens of light per watt of energy used, almost as much as a CFL (50 lumens per watt) and much more efficient than incandescent sources, which are around 15 lumens per watt. They are much longer lived and practical in harsh environments unsuitable for incandescent lighting. They are ready for niche applications now, like under-counter lighting and may be practical for additional applications as technological challenges are worked out and the technology is advancing in leaps and bounds.

  5. Antagonistic effect of Lepidium meyenii (red maca) on prostatic hyperplasia in adult mice.

    PubMed

    Gonzales, G F; Gasco, M; Malheiros-Pereira, A; Gonzales-Castañeda, C

    2008-06-01

    The plants from the Lepidium gender have demonstrated to have effect on the size of the prostate. Lepidium meyenii (Maca) is a Peruvian plant that grows exclusively over 4000 m above sea level. The present study was designed to determine the effect of red maca (RM) in the prostate hyperplasia induced with testosterone enanthate (TE) in adult mice. Prostate hyperplasia was induced by administering TE, and then these animals (n = 6, each group) were treated with RM or Finasteride (positive control) for 21 days. There was an additional group without prostate hyperplasia (vehicle). Mice were killed on days 7, 14 and 21 after treatment with RM. Testosterone and oestradiol levels were measured on the last day of treatment. Prostatic stroma, epithelium and acini were measured histologically. RM reduced prostate weight at 21 days of treatment. Weights of seminal vesicles, testis and epididymis were not affected by RM treatment. The reduction in prostate size by RM was 1.59 times. Histological analysis showed that TE increased 2-fold the acinar area, effect prevented in the groups receiving TE + RM for 14 (P < 0.05) and 21 (P < 0.05) days and the group receiving TE + Finasteride for 21 days (P < 0.05). TE increased prostatic stroma area and this effect was prevented by treatment with RM since 7 days of treatment or Finasteride. The reduction in prostatic stroma area by RM was 1.42 times. RM has an anti-hyperplastic effect on the prostate of adult mice when hyperplasia was induced with TE acting first at prostatic stromal level. PMID:18477205

  6. Antagonistic effect of Lepidium meyenii (red maca) on prostatic hyperplasia in adult mice.

    PubMed

    Gonzales, G F; Gasco, M; Malheiros-Pereira, A; Gonzales-Castañeda, C

    2008-06-01

    The plants from the Lepidium gender have demonstrated to have effect on the size of the prostate. Lepidium meyenii (Maca) is a Peruvian plant that grows exclusively over 4000 m above sea level. The present study was designed to determine the effect of red maca (RM) in the prostate hyperplasia induced with testosterone enanthate (TE) in adult mice. Prostate hyperplasia was induced by administering TE, and then these animals (n = 6, each group) were treated with RM or Finasteride (positive control) for 21 days. There was an additional group without prostate hyperplasia (vehicle). Mice were killed on days 7, 14 and 21 after treatment with RM. Testosterone and oestradiol levels were measured on the last day of treatment. Prostatic stroma, epithelium and acini were measured histologically. RM reduced prostate weight at 21 days of treatment. Weights of seminal vesicles, testis and epididymis were not affected by RM treatment. The reduction in prostate size by RM was 1.59 times. Histological analysis showed that TE increased 2-fold the acinar area, effect prevented in the groups receiving TE + RM for 14 (P < 0.05) and 21 (P < 0.05) days and the group receiving TE + Finasteride for 21 days (P < 0.05). TE increased prostatic stroma area and this effect was prevented by treatment with RM since 7 days of treatment or Finasteride. The reduction in prostatic stroma area by RM was 1.42 times. RM has an anti-hyperplastic effect on the prostate of adult mice when hyperplasia was induced with TE acting first at prostatic stromal level.

  7. LED lamp

    SciTech Connect

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  8. Cortical hypoplasia and ventriculomegaly of p73-deficient mice: Developmental and adult analysis.

    PubMed

    Medina-Bolívar, Carolina; González-Arnay, Emilio; Talos, Flaminia; González-Gómez, Miriam; Moll, Ute M; Meyer, Gundela

    2014-08-01

    Trp73, a member of the p53 gene family, plays a crucial role in neural development. We describe two main phenotypic variants of p73 deficiency in the brain, a severe one characterized by massive apoptosis in the cortex leading to early postnatal death and a milder, non-/low-apoptosis one in which 50% of pups may reach adulthood using an intensive-care breeding protocol. Both variants display the core triad of p73 deficiency: cortical hypoplasia, hippocampal malformations, and ventriculomegaly. We studied the development of the neocortex in p73 KO mice from early embryonic life into advanced age (25 months). Already at E14.5, the incipient cortical plate of the p73 KO brains showed a reduced width. Examination of adult neocortex revealed a generalized, nonprogressive reduction by 10-20%. Area-specific architectonic landmarks and lamination were preserved in all cortical areas. The surviving adult animals had moderate ventricular distension, whereas pups of the early lethal phenotypic variant showed severe ventriculomegaly. Ependymal cells of wild-type ventricles strongly express p73 and are particularly vulnerable to p73 deficiency. Ependymal denudation by apoptosis and reduction of ependymal cilia were already evident in young mice, with complete absence of cilia in older animals. Loss of p73 function in the ependyma may thus be one determining factor for chronic hydrocephalus, which leads to atrophy of subcortical structures (striatum, septum, amygdala). p73 Is thus involved in a variety of CNS activities ranging from embryonic regulation of brain size to the control of cerebrospinal fluid homeostasis in the adult brain via maintenance of the ependyma.

  9. Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running.

    PubMed

    Fujimaki, Shin; Hidaka, Ryo; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2014-03-14

    Muscle represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle-derived stem cells, called satellite cells, play essential roles in regeneration after muscle injury in adult skeletal muscle. Although the molecular mechanism of muscle regeneration process after an injury has been extensively investigated, the regulation of satellite cells under steady state during the adult stage, including the reaction to exercise stimuli, is relatively unknown. Here, we show that voluntary wheel running exercise, which is a low stress exercise, converts satellite cells to the activated state due to accelerated Wnt signaling. Our analysis showed that up-regulated canonical Wnt/β-catenin signaling directly modulated chromatin structures of both MyoD and Myf5 genes, resulting in increases in the mRNA expression of Myf5 and MyoD and the number of proliferative Pax7(+)Myf5(+) and Pax7(+) MyoD(+) cells in skeletal muscle. The effect of Wnt signaling on the activation of satellite cells, rather than Wnt-mediated fibrosis, was observed in both adult and aged mice. The association of β-catenin, T-cell factor, and lymphoid enhancer transcription factors of multiple T-cell factor/lymphoid enhancer factor regulatory elements, conserved in mouse, rat, and human species, with the promoters of both the Myf5 and MyoD genes drives the de novo myogenesis in satellite cells even in aged muscle. These results indicate that exercise-stimulated extracellular Wnts play a critical role in the regulation of satellite cells in adult and aged skeletal muscle.

  10. Dnmt3a in the Medial Prefrontal Cortex Regulates Anxiety-Like Behavior in Adult Mice.

    PubMed

    Elliott, Evan; Manashirov, Sharon; Zwang, Raaya; Gil, Shosh; Tsoory, Michael; Shemesh, Yair; Chen, Alon

    2016-01-20

    Recently, it has been suggested that alterations in DNA methylation mediate the molecular changes and psychopathologies that can occur following trauma. Despite the abundance of DNA methyltransferases (Dnmts) in the brain, which are responsible for catalyzing DNA methylation, their roles in behavioral regulation and in response to stressful challenges remain poorly understood. Here, we demonstrate that adult mice which underwent chronic social defeat stress (CSDS) displayed elevated anxiety-like behavior that was accompanied by a reduction in medial prefrontal cortex (mPFC)-DNA methyltransferase 3a (Dnmt3a) mRNA levels and a subsequent decrease in mPFC-global DNA methylation. To explore the role of mPFC-Dnmt3a in mediating the behavioral responses to stressful challenges we established lentiviral-based mouse models that express lower (knockdown) or higher (overexpression) levels of Dnmt3a specifically within the mPFC. Nonstressed mice injected with knockdown Dnmt3a lentiviruses specifically into the mPFC displayed the same anxiogenic phenotype as the CSDS mice, whereas overexpression of Dnmt3a induced an opposite, anxiolytic, effect in wild-type mice. In addition, overexpression of Dnmt3a in the mPFC of CSDS mice attenuated stress-induced anxiety. Our results indicate a central role for mPFC-Dnmt3a as a mediator of stress-induced anxiety. Significance statement: DNA methylation is suggested to mediate the molecular mechanisms linking environmental challenges, such as chronic stress or trauma, to increased susceptibility to psychopathologies. Here, we show that chronic stress-induced increase in anxiety-like behavior is accompanied by a reduction in DNA methyltransferase 3a (Dnmt3a) mRNA levels and global DNA methylation in the medial prefrontal cortex (mPFC). Overexpression or knockdown of mPFC-Dnmt3a levels induces decrease or increase in anxiety-like behavior, respectively. In addition, overexpression of Dnmt3a in the mPFC of chronic stressed mice attenuated

  11. Dnmt3a in the Medial Prefrontal Cortex Regulates Anxiety-Like Behavior in Adult Mice.

    PubMed

    Elliott, Evan; Manashirov, Sharon; Zwang, Raaya; Gil, Shosh; Tsoory, Michael; Shemesh, Yair; Chen, Alon

    2016-01-20

    Recently, it has been suggested that alterations in DNA methylation mediate the molecular changes and psychopathologies that can occur following trauma. Despite the abundance of DNA methyltransferases (Dnmts) in the brain, which are responsible for catalyzing DNA methylation, their roles in behavioral regulation and in response to stressful challenges remain poorly understood. Here, we demonstrate that adult mice which underwent chronic social defeat stress (CSDS) displayed elevated anxiety-like behavior that was accompanied by a reduction in medial prefrontal cortex (mPFC)-DNA methyltransferase 3a (Dnmt3a) mRNA levels and a subsequent decrease in mPFC-global DNA methylation. To explore the role of mPFC-Dnmt3a in mediating the behavioral responses to stressful challenges we established lentiviral-based mouse models that express lower (knockdown) or higher (overexpression) levels of Dnmt3a specifically within the mPFC. Nonstressed mice injected with knockdown Dnmt3a lentiviruses specifically into the mPFC displayed the same anxiogenic phenotype as the CSDS mice, whereas overexpression of Dnmt3a induced an opposite, anxiolytic, effect in wild-type mice. In addition, overexpression of Dnmt3a in the mPFC of CSDS mice attenuated stress-induced anxiety. Our results indicate a central role for mPFC-Dnmt3a as a mediator of stress-induced anxiety. Significance statement: DNA methylation is suggested to mediate the molecular mechanisms linking environmental challenges, such as chronic stress or trauma, to increased susceptibility to psychopathologies. Here, we show that chronic stress-induced increase in anxiety-like behavior is accompanied by a reduction in DNA methyltransferase 3a (Dnmt3a) mRNA levels and global DNA methylation in the medial prefrontal cortex (mPFC). Overexpression or knockdown of mPFC-Dnmt3a levels induces decrease or increase in anxiety-like behavior, respectively. In addition, overexpression of Dnmt3a in the mPFC of chronic stressed mice attenuated

  12. Effects of a major androgen-dependent urinary protein,. alpha. 2u-globulin on the pituitary-gonadal axis and hypothalamic monoamines in adult male mice

    SciTech Connect

    Ghosh, P.K.; Chandrashekar, V.; Steger, R. Bartke, A. )

    1990-01-01

    The purpose of the present study was to evaluate the effects of alpha-2u-globulin, a sex-dependent male rat urinary protein on pituitary-gonadal functions and hypothalamic monamine contents in male mice. Adult male mice, maintained under standardized laboratory conditions were injected subcutaneously with alpha-2u-globulin or with vehicle daily for 14 days and killed 16 h after the last injection. Plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone (T) and testicular levels of T were measured by radioimmunoassays. The concentrations of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) in medial basal hypothalamus (MBH) and anterior hypothalamus (AH) were measured by high performance liquid chromatography. Administration of alpha-2u-globulin led to a significant increase in plasma FSH and LH levels. In the MBH of alpha-2u-globulin treated mice, there were significant elevations of NE, DA and 5-HT contents. In the AH, both DA and 5-HT contents were decreased while NE content remained unaltered.

  13. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    PubMed Central

    Ieraci, Alessandro; Mallei, Alessandra; Popoli, Maurizio

    2016-01-01

    Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice. PMID:26881124

  14. Conditional Deletion of NF-κB-Inducing Kinase (NIK) in Adult Mice Disrupts Mature B Cell Survival and Activation.

    PubMed

    Brightbill, Hans D; Jackman, Janet K; Suto, Eric; Kennedy, Heather; Jones, Charles; Chalasani, Sreedevi; Lin, Zhonghua; Tam, Lucinda; Roose-Girma, Meron; Balazs, Mercedesz; Austin, Cary D; Lee, Wyne P; Wu, Lawren C

    2015-08-01

    NF-κB-inducing kinase (NIK) is a primary regulator of the noncanonical NF-κB signaling pathway, which plays a vital role downstream of BAFF, CD40L, lymphotoxin, and other inflammatory mediators. Germline deletion or inactivation of NIK in mice results in the defective development of B cells and secondary lymphoid organs, but the role of NIK in adult animals has not been studied. To address this, we generated mice containing a conditional allele of NIK. Deletion of NIK in adult mice results in decreases in B cell populations in lymph nodes and spleen, similar to what is observed upon blockade of BAFF. Consistent with this, B cells from mice in which NIK is acutely deleted fail to respond to BAFF stimulation in vitro and in vivo. In addition, mice with induced NIK deletion exhibit a significant decrease in germinal center B cells and serum IgA, which is indicative of roles for NIK in additional pathways beyond BAFF signaling. Our conditional NIK-knockout mice may be broadly useful for assessing the postdevelopmental and cell-specific roles of NIK and the noncanonical NF-κB pathway in mice.

  15. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice.

    PubMed

    Ieraci, Alessandro; Mallei, Alessandra; Popoli, Maurizio

    2016-01-01

    Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice. PMID:26881124

  16. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis

    PubMed Central

    Garthe, Alexander; Roeder, Ingo

    2016-01-01

    ABSTRACT We here show that living in a stimulus‐rich environment (ENR) improves water maze learning with respect to specific key indicators that in previous loss‐of‐function experiments have been shown to rely on adult hippocampal neurogenesis. Analyzing the strategies employed by mice to locate the hidden platform in the water maze revealed that ENR facilitated task acquisition by increasing the probability to use effective search strategies. ENR also enhanced the animals’ behavioral flexibility, when the escape platform was moved to a new location. Treatment with temozolomide, which is known to reduce adult neurogenesis, abolished the effects of ENR on both acquisition and flexibility, while leaving other aspects of water maze learning untouched. These characteristic effects and interdependencies were not seen in parallel experiments with voluntary wheel running (RUN), a second pro‐neurogenic behavioral stimulus. Since the histological assessment of adult neurogenesis is by necessity an end‐point measure, the levels of neurogenesis over the course of the experiment can only be inferred and the present study focused on behavioral parameters as analytical endpoints. Although the correlation of physical activity with precursor cell proliferation and of learning and the survival of new neurons is well established, how the specific functional effects described here relate to dynamic changes in the stem cell niche remains to be addressed. Nevertheless, our findings support the hypothesis that adult neurogenesis is a critical mechanism underlying the beneficial effects of leading an active live, rich in experiences. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:26311488

  17. Generation of cloned mice from adult neurons by direct nuclear transfer.

    PubMed

    Mizutani, Eiji; Oikawa, Mami; Kassai, Hidetoshi; Inoue, Kimiko; Shiura, Hirosuke; Hirasawa, Ryutaro; Kamimura, Satoshi; Matoba, Shogo; Ogonuki, Narumi; Nagatomo, Hiroaki; Abe, Kuniya; Wakayama, Teruhiko; Aiba, Atsu; Ogura, Atsuo

    2015-03-01

    Whereas cloning mammals by direct somatic cell nuclear transfer has been successful using a wide range of donor cell types, neurons from adult brain remain "unclonable" for unknown reasons. Here, using a combination of two epigenetic approaches, we examined whether neurons from adult mice could be cloned. First, we used a specific antibody to discover cell types with reduced amounts of a repressive histone mark-dimethylated histone H3 lysine 9 (H3K9me2)-and identified CA1 pyramidal cells in the hippocampus and Purkinje cells in the cerebellum as candidates. Second, reconstructed embryos were treated with trichostatin A (TSA), a potent histone deacetylase inhibitor. Using CA1 cells, cloned offspring were obtained at high rates, reaching 10.2% and 4.6% (of embryos transferred) for male and female donors, respectively. Cerebellar Purkinje cell nuclei were too large to maintain their genetic integrity during nuclear transfer, leading to developmental arrest of embryos. However, gene expression analysis using cloned blastocysts corroborated a high rate of genomic reprogrammability of CA1 pyramidal and Purkinje cells. Neurons from the hippocampal dentate gyrus and cerebral cortex, which had higher amounts of H3K9me2, could also be used for producing cloned offspring, but the efficiencies were low. A more thorough analysis revealed that TSA treatment was essential for cloning adult neuronal cells. This study demonstrates, to our knowledge for the first time, that adult neurons can be cloned by nuclear transfer. Furthermore, our data imply that reduced amounts of H3K9me2 and increased histone acetylation appear to act synergistically to improve the development of cloned embryos.

  18. Ultrasonic vocalizations of adult male Foxp2-mutant mice: behavioral contexts of arousal and emotion.

    PubMed

    Gaub, S; Fisher, S E; Ehret, G

    2016-02-01

    Adult mouse ultrasonic vocalizations (USVs) occur in multiple behavioral and stimulus contexts associated with various levels of arousal, emotion and social interaction. Here, in three experiments of increasing stimulus intensity (water; female urine; male interacting with adult female), we tested the hypothesis that USVs of adult males express the strength of arousal and emotion via different USV parameters (18 parameters analyzed). Furthermore, we analyzed two mouse lines with heterozygous Foxp2 mutations (R552H missense, S321X nonsense), known to produce severe speech and language disorders in humans. These experiments allowed us to test whether intact Foxp2 function is necessary for developing full adult USV repertoires, and whether mutations of this gene influence instinctive vocal expressions based on arousal and emotion. The results suggest that USV calling rate characterizes the arousal level, while sound pressure and spectrotemporal call complexity (overtones/harmonics, type of frequency jumps) may provide indices of levels of positive emotion. The presence of Foxp2 mutations did not qualitatively affect the USVs; all USV types that were found in wild-type animals also occurred in heterozygous mutants. However, mice with Foxp2 mutations displayed quantitative differences in USVs as compared to wild-types, and these changes were context dependent. Compared to wild-type animals, heterozygous mutants emitted mainly longer and louder USVs at higher minimum frequencies with a higher occurrence rate of overtones/harmonics and complex frequency jump types. We discuss possible hypotheses about Foxp2 influence on emotional vocal expressions, which can be investigated in future experiments using selective knockdown of Foxp2 in specific brain circuits.

  19. In Utero Exposure to Second-Hand Smoke Aggravates the Response to Ovalbumin in Adult Mice

    PubMed Central

    Xiao, Rui; Perveen, Zakia; Rouse, Rodney L.; Le Donne, Viviana; Paulsen, Daniel B.; Ambalavanan, Namasivayam

    2013-01-01

    Second-hand smoke (SHS) exposure in utero exacerbates adult responses to environmental irritants. We tested the hypothesis that effects of in utero SHS exposure on modulating physiological and transcriptome responses in BALB/c mouse lungs after ovalbumin (OVA) challenge extend well into adulthood, and that the responses show a sex bias. We exposed BALB/c mice in utero to SHS or filtered air (AIR), then sensitized and challenged all offspring with OVA from 19 to 23 weeks of age. At the end of the adult OVA challenge, we evaluated pulmonary function, examined histopathology, analyzed bronchoalveolar lavage fluid (BALF), and assessed gene expression changes in the lung samples. All groups exhibited lung inflammation and inflammatory cell infiltration. Pulmonary function testing (airway hyperresponsiveness [AHR], breathing frequency [f]) and BALF (cell differentials, Th1/Th2 cytokines) assessments showed significantly more pronounced lung responses in the SHS-OVA groups than in AIR-OVA groups (AHR, f; eosinophils, neutrophils; IFN-γ, IL-1b, IL-4, IL-5, IL-10, IL-13, KC/CXCL1, TNF-α), with the majority of responses being more pronounced in males than in females. SHS exposure in utero also significantly altered lung gene expression profiles, primarily of genes associated with inflammatory responses and respiratory diseases, including lung cancer and lung fibrosis. Altered expression profiles of chemokines (Cxcl2, Cxcl5, Ccl8, Ccl24), cytokines (Il1b, Il6, Il13) and acute phase response genes (Saa1, Saa3) were confirmed by qRT-PCR. In conclusion, in utero exposure to SHS exacerbates adult lung responses to OVA challenge and promotes a pro-asthmatic milieu in adult lungs; further, males are generally more affected by SHS-OVA than are females. PMID:23898987

  20. Epidermal growth factor receptor plays a role in the regulation of liver and plasma lipid levels in adult male mice.

    PubMed

    Scheving, Lawrence A; Zhang, Xiuqi; Garcia, Oscar A; Wang, Rebecca F; Stevenson, Mary C; Threadgill, David W; Russell, William E

    2014-03-01

    Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies.

  1. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    PubMed

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P < 0.05) and endurance capacity (-47%; P < 0.05), which did not persist after 8 wk. In skmVEGF-/- mice, gastrocnemius complex time to fatigue measured in situ was 71% lower than control mice. Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity.

  2. Molecular Mechanisms Mediating a Deficit in Recall of Fear Extinction in Adult Mice Exposed to Cocaine In Utero

    PubMed Central

    Kabir, Zeeba D.; Katzman, Aaron C.; Kosofsky, Barry E.

    2013-01-01

    Prenatal cocaine exposure has been shown to alter cognitive processes of exposed individuals, presumed to be a result of long-lasting molecular alterations in the brain. In adult prenatal cocaine exposed (PCOC) mice we have identified a deficit in recall of fear extinction, a behavior that is dependent on the medial prefrontal cortex (mPFC) and the hippocampus. While we observed no change in the constitutive expression of brain derived neurotrophic factor (BDNF) protein and mRNA in the mPFC and hippocampus of adult PCOC mice, we observed blunted BDNF signaling in the mPFC of adult PCOC mice after fear extinction compared to the control animals. Specifically, during the consolidation phase of the extinction memory, we observed a decrease in BDNF protein and it’s phospho-TrkB receptor expression. Interestingly, at this same time point there was a significant increase in total Bdnf mRNA levels in the mPFC of PCOC mice as compared with controls. In the Bdnf gene, we identified decreased constitutive binding of the transcription factors, MeCP2 and P-CREB at the promoters of Bdnf exons I and IV in the mPFC of PCOC mice, that unlike control mice remained unchanged when measured during the behavior. Finally, bilateral infusion of recombinant BDNF protein into the infralimbic subdivision of the mPFC during the consolidation phase of the extinction memory rescued the behavioral deficit in PCOC mice. In conclusion, these findings extend our knowledge of the neurobiologic impact of prenatal cocaine exposure on the mPFC of mice, which may lead to improved clinical recognition and treatment of exposed individuals. PMID:24358339

  3. Epidermal growth factor receptor plays a role in the regulation of liver and plasma lipid levels in adult male mice.

    PubMed

    Scheving, Lawrence A; Zhang, Xiuqi; Garcia, Oscar A; Wang, Rebecca F; Stevenson, Mary C; Threadgill, David W; Russell, William E

    2014-03-01

    Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies. PMID:24407590

  4. Epidermal growth factor receptor plays a role in the regulation of liver and plasma lipid levels in adult male mice

    PubMed Central

    Zhang, Xiuqi; Garcia, Oscar A.; Wang, Rebecca F.; Stevenson, Mary C.; Threadgill, David W.; Russell, William E.

    2014-01-01

    Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies. PMID:24407590

  5. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    PubMed

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P < 0.05) and endurance capacity (-47%; P < 0.05), which did not persist after 8 wk. In skmVEGF-/- mice, gastrocnemius complex time to fatigue measured in situ was 71% lower than control mice. Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. PMID:27225953

  6. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice.

    PubMed

    Rubin, Nicole; Harrison, Michael R; Krainock, Michael; Kim, Richard; Lien, Ching-Ling

    2016-10-01

    Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models.

  7. Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis.

    PubMed

    Fenrich, Keith K; Weber, Pascal; Rougon, Genevieve; Debarbieux, Franck

    2013-12-21

    Experimental autoimmune encephalomyelitis (EAE) in adult rodents is the standard experimental model for studying autonomic demyelinating diseases such as multiple sclerosis. Here we present a low-cost and reproducible glass window implantation protocol that is suitable for intravital microscopy and studying the dynamics of spinal cord cytoarchitecture with subcellular resolution in live adult mice with EAE. Briefly, we surgically expose the vertebrae T12-L2 and construct a chamber around the exposed vertebrae using a combination of cyanoacrylate and dental cement. A laminectomy is performed from T13 to L1, and a thin layer of transparent silicone elastomer is applied to the dorsal surface of the exposed spinal cord. A modified glass cover slip is implanted over the exposed spinal cord taking care that the glass does not directly contact the spinal cord. To reduce the infiltration of inflammatory cells between the window and spinal cord, anti-inflammatory treatment is administered every 2 days (as recommended by ethics committee) for the first 10 days after implantation. EAE is induced only 2-3 weeks after the cessation of anti-inflammatory treatment. Using this approach we successfully induced EAE in 87% of animals with implanted windows and, using Thy1-CFP-23 mice (blue axons in dorsal spinal cord), quantified axonal loss throughout EAE progression. Taken together, this protocol may be useful for studying the recruitment of various cell populations as well as their interaction dynamics, with subcellular resolution and for extended periods of time. This intravital imaging modality represents a valuable tool for developing therapeutic strategies to treat autoimmune demyelinating diseases such as EAE.

  8. Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice

    NASA Technical Reports Server (NTRS)

    Hayes, N. L.; Nowakowski, R. S.

    2002-01-01

    The output potential of proliferating populations in either the developing or the adult nervous system is critically dependent on the length of the cell cycle (T(c)) and the size of the proliferating population. We developed a new approach for analyzing the cell cycle, the 'Saturate and Survive Method' (SSM), that also reveals the dynamic behaviors in the proliferative population and estimates of the size of the proliferating population. We used this method to analyze the proliferating population of the adult dentate gyrus in 60 day old mice of two inbred strains, C57BL/6J and BALB/cByJ. The results show that the number of cells labeled by exposure to BUdR changes dramatically with time as a function of the number of proliferating cells in the population, the length of the S-phase, cell division, the length of the cell cycle, dilution of the S-phase label, and cell death. The major difference between C57BL/6J and BALB/cByJ mice is the size of the proliferating population, which differs by a factor of two; the lengths of the cell cycle and the S-phase and the probability that a newly produced cell will die within the first 10 days do not differ in these two strains. This indicates that genetic regulation of the size of the proliferating population is independent of the genetic regulation of cell death among those newly produced cells. The dynamic changes in the number of labeled cells as revealed by the SSM protocol also indicate that neither single nor repeated daily injections of BUdR accurately measure 'proliferation.'.

  9. Memory-enhancing effects of Cuscuta japonica Choisy via enhancement of adult hippocampal neurogenesis in mice.

    PubMed

    Moon, Minho; Jeong, Hyun Uk; Choi, Jin Gyu; Jeon, Seong Gak; Song, Eun Ji; Hong, Seon-Pyo; Oh, Myung Sook

    2016-09-15

    It is generally accepted that functional and structural changes within the hippocampus are involved in learning and memory and that adult neurogenesis in this region may modulate cognition. The extract of Cuscuta japonica Choisy (CJ) is a well-known traditional Chinese herbal medicine that has been used since ancient times as a rejuvenation remedy. The systemic effects of this herb are widely known and can be applied for the treatment of a number of physiological diseases, but there is a lack of evidence describing its effects on brain function. Thus, the present study investigated whether CJ would enhance memory function and/or increase hippocampal neurogenesis using mice orally administered with CJ water extract or vehicle for 21days. Performance on the novel object recognition and passive avoidance tests revealed that treatment with CJ dose-dependently improved the cognitive function of mice. Additionally, CJ increased the Ki-67-positive proliferating cells and the number of doublecortin-stained neuroblasts in the dentate gyrus (DG) of the hippocampus, and double labeling with 5-bromo-2-deoxyuridine and neuronal specific nuclear protein showed that CJ increased the number of mature neurons in the DG. Finally, CJ resulted in the upregulated expression of neurogenic differentiation factor, which is essential for the maturation and differentiation of granule cells in the hippocampus. Taken together, the present findings indicate that CJ stimulated neuronal cell proliferation, differentiation, and maturation, which are all processes associated with neurogenesis. Additionally, these findings suggest that CJ may improve learning and memory via the enhancement of adult hippocampal neurogenesis.

  10. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice

    PubMed Central

    Darvish-Ghane, Soroush; Yamanaka, Manabu

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  11. Reproductive abnormalities in adult male mice following preimplantation exposures to estradiol or pesticide methoxychlor.

    PubMed

    Amstislavsky, Sergei Ya; Amstislavskaya, Tamara G; Amstislavsky, Vjacheslav S; Tibeikina, Marina A; Osipov, Kiril V; Eroschenko, Victor P

    2006-02-01

    Adult females of ICR strain of mice were bred, separated into different experimental groups, and treated as follows. On Days 2-4 of pregnancy, the mice received daily subcutaneous injections of either 0.05 ml sesame oil (vehicle) or same volume of 5.0mg of purified methoxychlor (MXC) suspended in the vehicle. Another group received a single subcutaneous injection of 1.0 microg of estradiol-17beta (E) on Day 2 of pregnancy only. Male offspring were tested at 3 and 6 months of age. At 3 months, E or MXC did not alter the weights of seminal vesicles, preputial glands, or testes, although after exposure for 30 min to a female in estrus behind a partition, testosterone levels were significantly reduced in treated males in comparison to control males exposed to the same partition test. At 6 months, the preputial glands and testes weight remained unchanged, while the seminal vesicles were significantly heavier in E- and MXC-treated males. Same partition tests again revealed that in E and MXC groups, testosterone levels remained significantly lower in comparison to control males. MXC or E exposures during preimplantation appear to induce long-term effects on the sexual development in 3 and 6 month-old-males by compromising their sexual arousal and altering seminal vesicles weights in the older group.

  12. Maternal separation facilitates extinction of social fear in adult male mice.

    PubMed

    Zoicas, Iulia; Neumann, Inga D

    2016-01-15

    Early life stress, such as child abuse or neglect, is a risk factor for the development of psychopathologies characterized by abnormal social and emotional behaviors. In rodents, long-lasting changes in stress coping and emotional behavior can be induced by separating pups from their mother. We used maternal separation (MS; 3h daily on postnatal days 1-14) to test whether early life stress alters acquisition and extinction of social fear in adult male mice as studied in a specific model of social fear, i.e., in the social fear conditioning paradigm. We show that MS facilitated extinction of social fear without altering acquisition or expression of social fear. This facilitatory effect of MS on social fear extinction was not due to improved social learning and memory abilities or to increased social interest, as MS rather impaired social memory in the social discrimination test and did not alter social preference in the social preference-avoidance test. In contrast, MS did not alter acquisition and extinction of non-social, cued fear, or non-social memory as assessed in the object discrimination test and non-social anxiety as assessed in the elevated plus-maze. These results suggest that a social stress like MS in early life may improve coping with and recovery from a traumatic social experience in adulthood in mice. PMID:26497106

  13. Retroviral induction of acute lymphoproliferative disease and profound immunosuppression in adult C57BL/6 mice

    PubMed Central

    1985-01-01

    We have shown that a mixture of murine leukemia viruses (MuLV) causes the acute onset of lymphoproliferation and immunosuppression when injected into adult C57BL/6 mice. The ecotropic/MCF (mink cell focus- inducing) mixture of MuLV stimulates polyclonal B lymphocyte proliferation and differentiation to antibody-secreting cells. Serum Ig levels are elevated for all isotypes except IgA. The viral infection leads to a rapid decline in T lymphocyte responses to mitogens and alloantigens, as well as a decrease in helper cell activity. Specific antibody responses to both T-dependent and T-independent antigens are impaired, and the response of B lymphocytes to mitogens is abolished. The profound immunosuppression seems to be due to the MuLV-induced polyclonal activation of lymphocytes. No active suppression of normal lymphocyte responses by cells from virus-infected mice was observed. The disease induced by the LP-BM5 MuLV isolate thus seems a promising model for the study of lymphocyte activation and the mechanisms of retrovirus-induced immunosuppression. PMID:2984305

  14. Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice.

    PubMed Central

    Wong-Riley, M T; Welt, C

    1980-01-01

    The posteromedial barrel subfield of the somatosensory cortex of mice was examined histochemically for cytochrome oxidase activity (cytochrome c oxidase; ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1). In normal mice a high enzymatic activity was found within the barrel hollows, rather than in the sides and septa. Electron microscopic examination indicated that within the hollows reactive mitochondria reside in many dendrites, in some axonal terminals, and in a few neuronal perikarya. After neonatal cauterization of selected row(s) of vibrissae, the corresponding row(s) of barrels appeared as narrowed fused band(s) and their cytochrome oxidase activity was much reduced. Removal of vibrissae in the adult, by either cauterization or repeated plucking, did not cause size changes of cortical barrels. However, there was a significant decrease in the oxidative enzymatic activity within these barrels. Thus, the deprivation of sensory input through damage to, or removal of, the peripheral sensory organ induces an enzymatic response in neurons that are at least two to three synapses away from the periphery. Images PMID:6246540

  15. Renal and hepatotoxic alterations in adult mice on inhalation of specific mixture of organic solvents.

    PubMed

    Ketan, Vaghasia K; Bhavyata, Kalariya; Linzbuoy, George; Hyacinth, Highland N

    2015-12-01

    This study was aimed at investigating alterations in renal and hepatic toxicity induced by exposing to a combination of three solvents, namely, benzene, toluene and xylene in adult mice. The mice were divided into three groups (control, low-dose-treated (450 ppm) and high-dose (675 ppm) groups) using randomization methods. The treated groups were exposed to vapours of a mixture of benzene, toluene and xylene at doses of 450 and 675 ppm, for 6 h day(-1) for a short-term of 7-day exposure period. The study revealed that the solvent exposure resulted in an increase in the weight of liver and kidney as compared to the control. Biochemical analyses indicated a significant decline in the activities of superoxide dismutase and catalase in both the treated groups, with concomitant increase in lipid peroxidation. Liver aminotransferases (alanine aminotransferase and aspartate aminotransferase) were elevated with significant alterations in the levels of protein, creatinine and cholesterol in these tissues upon solvent exposure. Correlated with these changes, serum thyroid hormones T3 and T4 were also significantly altered. This study, therefore, demonstrates that inhalation of vapours from the solvent mixture resulted in significant dose-dependent biochemical and functional changes in the vital tissues (liver and kidney) studied. The study has specific relevance since humans are increasingly being exposed to such solvents due to increased industrial use in such combinations.

  16. Aberrant Neural Stem Cell Proliferation and Increased Adult Neurogenesis in Mice Lacking Chromatin Protein HMGB2

    PubMed Central

    Reddy, Avanish S.; Maletic-Savatic, Mirjana; Aguirre, Adan; Tsirka, Stella E.

    2013-01-01

    Neural stem and progenitor cells (NSCs/NPCs) are distinct groups of cells found in the mammalian central nervous system (CNS). Previously we determined that members of the High Mobility Group (HMG) B family of chromatin structural proteins modulate NSC proliferation and self-renewal. Among them HMGB2 was found to be dynamically expressed in proliferating and differentiating NSCs, suggesting that it may regulate NSC maintenance. We report now that Hmgb2−/− mice exhibit SVZ hyperproliferation, increased numbers of SVZ NSCs, and a trend towards aberrant increases in newly born neurons in the olfactory bulb (OB) granule cell layer. Increases in the levels of the transcription factor p21 and the Neural cell adhesion molecule (NCAM), along with down-regulation of the transcription/pluripotency factor Oct4 in the Hmgb2−/− SVZ point to a possible pathway for this increased proliferation/differentiation. Our findings suggest that HMGB2 functions as a modulator of neurogenesis in young adult mice through regulation of NSC proliferation, and identify a potential target via which CNS repair could be amplified following trauma or disease-based neuronal degeneration. PMID:24391977

  17. Maternal separation facilitates extinction of social fear in adult male mice.

    PubMed

    Zoicas, Iulia; Neumann, Inga D

    2016-01-15

    Early life stress, such as child abuse or neglect, is a risk factor for the development of psychopathologies characterized by abnormal social and emotional behaviors. In rodents, long-lasting changes in stress coping and emotional behavior can be induced by separating pups from their mother. We used maternal separation (MS; 3h daily on postnatal days 1-14) to test whether early life stress alters acquisition and extinction of social fear in adult male mice as studied in a specific model of social fear, i.e., in the social fear conditioning paradigm. We show that MS facilitated extinction of social fear without altering acquisition or expression of social fear. This facilitatory effect of MS on social fear extinction was not due to improved social learning and memory abilities or to increased social interest, as MS rather impaired social memory in the social discrimination test and did not alter social preference in the social preference-avoidance test. In contrast, MS did not alter acquisition and extinction of non-social, cued fear, or non-social memory as assessed in the object discrimination test and non-social anxiety as assessed in the elevated plus-maze. These results suggest that a social stress like MS in early life may improve coping with and recovery from a traumatic social experience in adulthood in mice.

  18. Environmental modulations of the number of midbrain dopamine neurons in adult mice.

    PubMed

    Tomas, Doris; Prijanto, Augustinus H; Burrows, Emma L; Hannan, Anthony J; Horne, Malcolm K; Aumann, Tim D

    2015-01-01

    Long-lasting changes in the brain or 'brain plasticity' underlie adaptive behavior and brain repair following disease or injury. Furthermore, interactions with our environment can induce brain plasticity. Increasingly, research is trying to identify which environments stimulate brain plasticity beneficial for treating brain and behavioral disorders. Two environmental manipulations are described which increase or decrease the number of tyrosine hydroxylase immunopositive (TH+, the rate-limiting enzyme in dopamine (DA) synthesis) neurons in the adult mouse midbrain. The first comprises pairing male and female mice together continuously for 1 week, which increases midbrain TH+ neurons by approximately 12% in males, but decreases midbrain TH+ neurons by approximately 12% in females. The second comprises housing mice continuously for 2 weeks in 'enriched environments' (EE) containing running wheels, toys, ropes, nesting material, etc., which increases midbrain TH+ neurons by approximately 14% in males. Additionally, a protocol is described for concurrently infusing drugs directly into the midbrain during these environmental manipulations to help identify mechanisms underlying environmentally-induced brain plasticity. For example, EE-induction of more midbrain TH+ neurons is abolished by concurrent blockade of synaptic input onto midbrain neurons. Together, these data indicate that information about the environment is relayed via synaptic input to midbrain neurons to switch on or off expression of 'DA' genes. Thus, appropriate environmental stimulation, or drug targeting of the underlying mechanisms, might be helpful for treating brain and behavioral disorders associated with imbalances in midbrain DA (e.g. Parkinson's disease, attention deficit and hyperactivity disorder, schizophrenia, and drug addiction).

  19. Effect of Selenium on Neurotoxicity in Adult Male Mice Exposed to Formaldehyde

    PubMed Central

    Mohammadi, Shabnam

    2014-01-01

    Background: Formaldehyde is used in medicine and industry, and it is known to have detrimental effects on various systems including the nervous system, by increasing oxidative stress. However, data are scarce related to substances that can protect against the neurotoxicity induced by formaldehyde. Therefore, this study was designed to assess the protective effects of selenium against the toxic effect of this compound. Methods: A total of 48 adult male mice were divided randomly into six groups, i.e., (1) control, (2) treated with formaldehyde, (3) treated with formaldehyde plus 0.1 mg/kg selenium, (4) treated with formaldehyde plus 0.2 mg/kg selenium, (5) treated with formaldehyde plus 0.4 mg/kg selenium, and (6) treated with formaldehyde plus 0.8 mg/kg selenium. At the end of 14 days, the cerebellums were removed for histological evaluation. Morphological changes were examined using Image J software. The data were analyzed using SPSS software version 20.0 and analysis of variance (ANOVA). Results: Formaldehyde caused a reduction in the numbers and sizes of Purkinje cells and granular cells; in addition, the thickness of the granular layer was thinner than that in the control mice (P < 0.05). Treatment with 0.1 mg/kg selenium resulted in an increase in the number of Purkinje cells as well as the area of the gray matter compared to those of the control mice. Conclusion: Formaldehyde-induced neuronal damage was prevented by the administration of 0.1 mg/kg selenium, hence this treatment shows therapeutic potential for the treatment of neurotoxicity PMID:25763172

  20. Cellular origins of cold-induced brown adipocytes in adult mice.

    PubMed

    Lee, Yun-Hee; Petkova, Anelia P; Konkar, Anish A; Granneman, James G

    2015-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα(+) cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreER(T2)) and adiponectin-CreER(T2), respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα(+) cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreER(T2)-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment.

  1. Postanesthetic Effects of Isoflurane on Behavioral Phenotypes of Adult Male C57BL/6J Mice

    PubMed Central

    Asakura, Ayako; Kobayashi, Ayako; Takase, Kenkichi; Goto, Takahisa

    2015-01-01

    Isoflurane was previously the major clinical anesthetic agent but is now mainly used for veterinary anesthesia. Studies have reported widespread sites of action of isoflurane, suggesting a wide array of side effects besides sedation. In the present study, we phenotyped isoflurane-treated mice to investigate the postanesthetic behavioral effects of isoflurane. We applied comprehensive behavioral test batteries comprising sensory test battery, motor test battery, anxiety test battery, depression test battery, sociability test battery, attention test battery, and learning test battery, which were started 7 days after anesthesia with 1.8% isoflurane. In addition to the control group, we included a yoked control group that was exposed to the same stress of handling as the isoflurane-treated animals before being anesthetized. Our comprehensive behavioral test batteries revealed impaired latent inhibition in the isoflurane-treated group, but the concentration of residual isoflurane in the brain was presumably negligible. The yoked control group and isoflurane-treated group exhibited higher anxiety in the elevated plus-maze test and impaired learning function in the cued fear conditioning test. No influences were observed in sensory functions, motor functions, antidepressant behaviors, and social behaviors. A number of papers have reported an effect of isoflurane on animal behaviors, but no systematic investigation has been performed. To the best of our knowledge, this study is the first to systematically investigate the general health, neurological reflexes, sensory functions, motor functions, and higher behavioral functions of mice exposed to isoflurane as adults. Our results suggest that the postanesthetic effect of isoflurane causes attention deficit in mice. Therefore, isoflurane must be used with great care in the clinical setting and veterinary anesthesia. PMID:25806517

  2. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits

    PubMed Central

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait. PMID:26941592

  3. REPRODUCTIVE EFFECTS OF THE WATER DISINFECTANT BYPRODUCT BROMOCHLOROACETIC ACID (BCA) IN ADULT AND JUVENILE MALE C57BL/6 MICE

    EPA Science Inventory

    REPRODUCTIVE EFFECTS OF THE WATER DISINFECTANT BYPRODUCT BROMOCHLOROACETIC ACID (BCA) IN ADULT AND JUVENILE MALE C57BL/6 MICE.
    JC Rockett, JC Luft, JB Garges and DJ Dix. Reproductive Toxicology Division, USEPA, RTP, NC, USA.
    Sponsor: G Klinefelter
    The development of wate...

  4. MECHANISTIC DESCRIPTION OF DOSE-DEPENDENT URINARY ELIMINATION OF PBDE-47 IN ADULT MICE USING A PHYSIOLOGICAL BASED PHARMACOKINETIC MODEL

    EPA Science Inventory

    Abstract Polybrominated diphenyl ethers (PBDEs) are used as additive flame-retardants. In North America, scientists have noted continuing increases in human body burdens. Our laboratory has previously described urinary elimination of parent compound in adult mice for at l...

  5. Adult but Not Aged C57BL/6 Male Mice Are Capable of Using Geometry for Orientation

    ERIC Educational Resources Information Center

    Schachner, Melitta; Morellini, Fabio; Fellini, Laetitia

    2006-01-01

    Geometry, e.g., the shape of the environment, can be used by numerous animal species to orientate, but data concerning the mouse are lacking. We addressed the question of whether mice are capable of using geometry for navigating. To test whether aging could affect searching strategies, we compared adult (3- to 5-mo old) and aged (20- to 21-mo old)…

  6. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CDl Mice.

    EPA Science Inventory

    Inorganic arsenic exposure is carcinogenic in humans and rodents. When pregnant mice are exposed to inorganic arsenic in the drinking water their offspring, when adults, develop tumors and proliferative lesions at several sites, such as lung, liver, adrenal, uterus, ovary and ovi...

  7. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    PubMed

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1. PMID:27035649

  8. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    PubMed

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  9. Tenascin-R restricts posttraumatic remodeling of motoneuron innervation and functional recovery after spinal cord injury in adult mice.

    PubMed

    Apostolova, Ivayla; Irintchev, Andrey; Schachner, Melitta

    2006-07-26

    Tenascin-R (TNR) is an extracellular glycoprotein in the CNS implicated in neural development and plasticity. Its repellent properties for growing axons in a choice situation with a conducive substrate in vitro have indicated that TNR may impede regeneration in the adult mammalian CNS. Here we tested whether constitutive lack of TNR has beneficial impacts on recovery from spinal cord injury in adult mice. Using the Basso, Beattie, Bresnahan (BBB) locomotor rating scale, we found that open-field locomotion in TNR-deficient (TNR-/-) mice recovered better that in wild-type (TNR+/+) littermates after compression of the thoracic spinal cord. We also designed, validated, and applied a motion analysis approach allowing numerical assessment of motor functions. We found, in agreement with the BBB score, that functions requiring low levels of supraspinal control such as plantar stepping improved more in TNR-/- mice. This was not the case for motor tasks demanding precision such as ladder climbing. Morphological analyses revealed no evidence that improved recovery of some functions in the mutant mice were attributable to enhanced tissue sparing or axonal regrowth. Estimates of perisomatic puncta revealed reduced innervation by cholinergic and GABAergic terminals around motoneurons in intact TNR-/- compared with TNR+/+ mice. Relative to nonlesioned animals, spinal cord repair was associated with increase in GABAergic and decrease of glutamatergic puncta in TNR-/- but not in TNR+/+ mice. Our results suggest that TNR restricts functional recovery by limiting posttraumatic remodeling of synapses around motoneuronal cell bodies where TNR is normally expressed in perineuronal nets.

  10. Regulation of cpg15 expression during single whisker experience in the barrel cortex of adult mice.

    PubMed

    Harwell, Corey; Burbach, Barry; Svoboda, Karel; Nedivi, Elly

    2005-10-01

    Regulation of gene transcription by neuronal activity is thought to be key to the translation of sensory experience into long-term changes in synaptic structure and function. Here we show that cpg15, a gene encoding an extracellular signaling molecule that promotes dendritic and axonal growth and synaptic maturation, is regulated in the somatosensory cortex by sensory experience capable of inducing cortical plasticity. Using in situ hybridization, we monitored cpg15 expression in 4-week-old mouse barrel cortex after trimming all whiskers except D1. We found that cpg15 expression is depressed in the deprived barrels and enhanced in the barrel column corresponding to the spared D1 whisker. Changes in cpg15 mRNA levels first appear in layer IV, peak 12 h after deprivation, and then decline rapidly. In layers II/III, changes in cpg15 expression appear later, peak at 24 h, and persist for days. Induction of cpg15 expression is significantly diminished in adolescent as well as adult CREB knockout mice. cpg15's spatio-temporal expression pattern and its regulation by CREB are consistent with a role in experience-dependent plasticity of cortical circuits. Our results suggest that local structural and/or synaptic changes may be a mechanism by which the adult cortex can adapt to peripheral manipulations. PMID:16010668

  11. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    PubMed

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number. PMID:26701416

  12. Motor impairment induced by oral exposure to methylmercury in adult mice.

    PubMed

    Dietrich, Marcelo O; Mantese, Carlos E; Anjos, Gabriel Dos; Souza, Diogo O; Farina, Marcelo

    2005-01-01

    The effects of oral exposure to methylmercury chloride (MeHg) on locomotor control and activity in adult mice were investigated in the present study. MeHg was diluted in drinking water (0, 20 and 40mg/L - as methylmercury chloride) and locomotion (spontaneous locomotor activity) and motor impairment tests (beam walking, footprint and clasping) were performed at 7, 14 and 21 days after the beginning of the treatment. MeHg exposure caused a significant decrease in spontaneous locomotor activity and this effect was dose- and time-dependent. Significant dose- and duration-dependent increases in beam walking latency were observed following chronic MeHg exposure. Furthermore, dose- and duration-dependent locomotor deficits on footprint coordination were also observed. Taken together, these results show that MeHg-induced impairment on locomotor activity is not limited to exposures that take place during neural development. We discuss the possible relationship between our findings and the similar clinical signs observed in adult humans exposed to MeHg. PMID:21783473

  13. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    SciTech Connect

    Fox, Donald A.; Hamilton, W. Ryan; Johnson, Jerry E.; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B.; O'Callaghan, James P.

    2011-11-15

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was {<=} 1, {<=} 10, {approx} 25 and {approx} 40 {mu}g/dL, respectively, on PN10 and by PN30 all were {<=} 1 {mu}g/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: Black-Right-Pointing-Pointer Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: {<=} 1, {<=} 10, 25 and 40 {mu}g/dL Black

  14. Assessment of fertility and reproductive toxicity in adult female mice after long-term exposure to Pueraria mirifica herb.

    PubMed

    Jaroenporn, Sukanya; Malaivijitnond, Suchinda; Wattanasirmkit, Kingkaew; Watanabe, Gen; Taya, Kazuyoshi; Cherdshewasart, Wichai

    2007-10-01

    The present study investigated the effects of long-term administration of Pueraria mirifica (PM) at non-toxic doses on the ovarian function and fertility of adult female mice based on evaluation of hematological and biochemical parameters. Female mice were divided into 4 groups (36 mice/group). Groups 1-3 were orally treated with a dose of 0 (PM-0), 10 (PM-10) or 100 mg/kg BW/day PM (PM-100), and group 4 was subcutaneously injected with 200 mug/kg BW/day of synthetic estrogen diethylstilbestrol (DES). The treatment schedule was separated into treatment and post-treatment periods. The duration of each period was 8 weeks. The PM-10 mice exhibited regular estrous cycles, while the PM-100 and DES treatments induced prolonged estrous cycles. Although no changes were observed in the uterus and ovary weights of the mice after the PM-100 and DES treatments, hyperplasia of the uterine endothelium and a decrease in the number of growing ovarian follicles were detected. The changes in the ovarian histologies of the PM-100 and DES mice were related to reductions in the levels of LH and FSH, which subsequently caused a decrease in mating efficiency. Once the PM mice were able to copulate, they were capable of successfully becoming pregnant and mothering offspring. No abnormalities were observed in the external morphologies and reproductive organ weights of the 50-day-old offspring. In conclusion, our results suggest that long-term exposure to 100 mg/kg BW of PM has adverse effects on the mating efficiency and reproduction of adult female mice and that administration of 10 mg/kg BW of PM does not induce any changes in the hypothalamic-pituitary-ovarian-uterine axis.

  15. Neonatal infection with neurotropic influenza A virus affects working memory and expression of type III Nrg1 in adult mice.

    PubMed

    Asp, Linnéa; Beraki, Simret; Kristensson, Krister; Ogren, Sven Ove; Karlsson, Håkan

    2009-08-01

    Epidemiological studies suggest that early life infections may contribute to the development of psychiatric disorders characterized by cognitive deficits. Here, we studied the effects of a neonatal influenza A/WSN/33 virus infection on locomotor activity, working memory and emotional behavior in adult mice. In addition to wild type mice, immunodeficient (Tap1(-/-)) mice lacking functional CD8(+) T cells, were included in the study to model the potential influence of a genetic deficit relating to virus clearance. Three to four months after the infection, infected Tap1(-/-) mice, but not wild type mice, exhibited deficits in working memory as well as increased rearing activity and anxiety. In the medial prefrontal cortices of these infected Tap1(-/-) mice reduced levels of type III Nrg1 transcripts were observed supporting a role for neuregulin 1 signaling in neuronal circuits involved in working memory. Virus replication, distribution or clearance did not differ between the two genotypes. The lack of CD8(+) T cells, however, appeared to contribute to a more pronounced glia response in Tap1(-/-) than in wild type mice. Thus, the present study suggest that the risk of developing deficits in cognitive and emotional behavior following a CNS infection during brain development is influenced by genetic variation in genes involved in the immune response.

  16. Few Foxp3⁺ regulatory T cells are sufficient to protect adult mice from lethal autoimmunity.

    PubMed

    Mayer, Christian T; Ghorbani, Peyman; Kühl, Anja A; Stüve, Philipp; Hegemann, Maike; Berod, Luciana; Gershwin, M Eric; Sparwasser, Tim

    2014-10-01

    Foxp3 specifies the Treg cell lineage and is indispensable for immune tolerance. Accordingly, rare Foxp3 mutations cause lethal autoimmunity. The mechanisms precipitating more prevalent human autoimmune diseases are poorly understood, but involve a combination of genetic and environmental factors. Many autoimmune diseases associate with a partial Treg-cell dysfunction, yet mouse models reflecting such complex pathophysiological processes are rare. Around 95% of Foxp3(+) Treg cells can be specifically depleted in bacterial artifical chromosome (BAC)-transgenic Depletion of REGulatory T cells (DEREG) mice through diphtheria toxin (DT) treatment. However, Treg-cell depletion fails to cause autoimmunity in adult DEREG mice for unclear reasons. By crossing Foxp3(GFP) knock-in mice to DEREG mice, we introduced additional genetic susceptibility that does not affect untreated mice. Strikingly, DT treatment of DEREG × Foxp3(GFP) mice rapidly causes autoimmunity characterized by blepharitis, tissue damage, and autoantibody production. This inflammatory disease is associated with augmented T-cell activation, increased Th2 cytokine production and myeloproliferation, and is caused by defective Treg-cell homeostasis, preventing few DT-insensitive Treg cells from repopulating the niche after Treg-cell depletion. Our study provides important insights into self-tolerance. We further highlight DEREG × Foxp3(GFP) mice as a model to investigate the role of environmental factors in precipitating autoimmunity. This may help to better understand and treat human autoimmunity. PMID:25042334

  17. Localization and osteoblastic differentiation potential of neural crest-derived cells in oral tissues of adult mice.

    PubMed

    Ono, Miki; Suzawa, Tetsuo; Takami, Masamichi; Yamamoto, Gou; Hosono, Tomohiko; Yamada, Atsushi; Suzuki, Dai; Yoshimura, Kentaro; Watahiki, Junichi; Hayashi, Ryuhei; Arata, Satoru; Mishima, Kenji; Nishida, Kohji; Osumi, Noriko; Maki, Koutaro; Kamijo, Ryutaro

    2015-09-01

    In embryos, neural crest cells emerge from the dorsal region of the fusing neural tube and migrate throughout tissues to differentiate into various types of cells including osteoblasts. In adults, subsets of neural crest-derived cells (NCDCs) reside as stem cells and are considered to be useful cell sources for regenerative medicine strategies. Numerous studies have suggested that stem cells with a neural crest origin persist into adulthood, especially those within the mammalian craniofacial compartment. However, their distribution as well as capacity to differentiate into osteoblasts in adults is not fully understood. To analyze the precise distribution and characteristics of NCDCs in adult oral tissues, we utilized an established line of double transgenic (P0-Cre/CAG-CAT-EGFP) mice in which NCDCs express green fluorescent protein (GFP) throughout their life. GFP-positive cells were scattered like islands throughout tissues of the palate, gingiva, tongue, and buccal mucosa in adult mice, with those isolated from the latter shown to form spheres, typical cell clusters composed of stem cells, under low-adherent conditions. Furthermore, GFP-positive cells had markedly increased alkaline phosphatase (a marker enzyme of osteoblast differentiation) activity and mineralization as shown by alizarin red staining, in the presence of bone morphogenetic protein (BMP)-2. These results suggest that NCDCs reside in various adult oral tissues and possess potential to differentiate into osteoblastic cells. NCDCs in adults may be a useful cell source for bone regeneration strategies.

  18. Single and repeated sevoflurane or desflurane exposure does not impair spatial memory performance of young adult mice.

    PubMed

    Kilicaslan, Alper; Belviranli, Muaz; Okudan, Nilsel; Nurullahoglu Atalik, Esra

    2013-12-01

    Volatile anesthetics are known to disturb the spatial memory in aged rodents, but there is insufficient information on their effects on young adult rodents. The aim of this study was to compare the effects of single and repeated exposure to desflurane and sevoflurane on spatial learning and memory functions in young adult mice. Balb/c mice (2 months old) were randomly divided into six equal groups (n = 8). The groups with single inhalation were exposed to 3.3% sevoflurane or 7.8% desflurane or vehicle gas for 4 h, respectively. The groups with repeated inhalation were exposed to 3.3% sevoflurane or 7.8% desflurane or vehicle gas for 2 h a day during 5 consecutive days. Spatial learning and memory were tested in the Morris water maze 24 h after exposure. In the learning phase, the parameters associated with finding the hidden platform and swimming speed, and in the memory phase, time spent in the target quadrant and the adjacent quadrants, were assessed and compared between the groups. In the 4-day learning process, there was no significant difference between the groups in terms of mean latency to platform, mean distance traveled and average speed (P > 0.05). During the memory-test phase, all mice exhibited spatial memory, but there was no significant difference between the groups in terms of time spent in the target quadrant (P > 0.05). Sevoflurane and desflurane anesthesia did not impair acquisition learning and retention memory in young adult mice.

  19. Intake of a milk-based wolfberry formulation enhances the immune response of young-adult and aged mice.

    PubMed

    Vidal, Karine; Benyacoub, Jalil; Sanchez-Garcia, José; Foata, Francis; Segura-Roggero, Iris; Serrant, Patrick; Moser, Mireille; Blum, Stephanie

    2010-02-01

    Aging is associated with alterations of immune responses. Wolfberry, a popular Chinese functional ingredient, is prized for its anti-aging properties; however, little is known about the immunological effect of wolfberry intake. The purpose of this study was to examine the effect of dietary intake of a milk-based formulation of wolfberry, named Lacto-Wolfberry, on in vivo and ex vivo parameters of adaptive immunity in young-adult and aged mice. Over 44 days, young-adult (2 months) and aged (21 months) C57BL/6J mice were fed ad libitum with a controlled diet and received drinking water supplemented or not with 0.5% (wt/vol) Lacto-Wolfberry. All mice were immunized on day 15 and challenged on day 22 with a T cell- dependent antigen, keyhole limpet hemocyanin (KLH). Lacto-Wolfberry supplementation significantly increased in vivo systemic immune markers that are known to decline with aging. Indeed, both antigen-(KLH) specific humoral response and cell-mediated immune responses in young-adult and aged mice were enhanced when compared to their respective controls. No significant effect of Lacto-Wolfberry supplementation was observed on ex vivo spleen cells proliferative response to mitogens and on splenocyte T cell subsets. In conclusion, dietary intake of Lacto-Wolfberry may favorably modulate the poor responsiveness to antigenic challenge observed with aging. PMID:20230278

  20. Sod1 gene ablation in adult mice leads to physiological changes at the neuromuscular junction similar to changes that occur in old wild-type mice.

    PubMed

    Ivannikov, Maxim V; Van Remmen, Holly

    2015-07-01

    Reactive oxygen species (ROS) are believed to be important mediators of muscle atrophy and weakness in aging and many degenerative conditions. However, the mechanisms and physiological processes specifically affected by elevated ROS in neuromuscular units that contribute to muscle weakness during aging are not well defined. Here we investigate the effects of chronic oxidative stress on neurotransmission and excitation-contraction (EC) coupling mechanisms in the levator auris longus (LAL) muscle from young (4-8 months) and old (22-28 months) wild-type mice and young adult Cu-Zn superoxide dismutase 1 knockout (Sod1(-/-)) mice. The frequency of spontaneous neurotransmitter release and the amplitude of evoked neurotransmitter release in young Sod1(-/-) and old wild-type LAL neuromuscular junctions were significantly reduced from the young wild-type values, and those declines were mirrored by decreases in synaptic vesicle pool size. Presynaptic cytosolic calcium concentration and mitochondrial calcium uptake amplitudes showed substantial increases in stimulated young Sod1(-/-) and old axon terminals. Surprisingly, LAL muscle fibers from old mice showed a greater excitability than fibers from either young wild-type or young Sod1(-/-) LAL. Both evoked excitatory junction potential (EJP) and spontaneous mini EJP amplitudes were considerably higher in LAL muscles from old mice than in fibers from young Sod1(-/-) LAL muscle. Despite a greater excitability, sarcoplasmic calcium influx in both old wild-type and young Sod1(-/-) LAL muscle fibers was significantly less. Sarcoplasmic reticulum calcium levels were also reduced in both old wild-type and young Sod1(-/-) mice, but the difference was not statistically significant in muscle fibers from old wild-type mice. The protein ratio of triad calcium channels RyR1/DHPR was not different in all groups. However, fibers from both young Sod1(-/-) and old mice had substantially elevated levels of protein carbonylation and S

  1. Infections of neonatal and adult mice with murine CMV HaNa1 strain upon oronasal inoculation: New insights in the pathogenesis of natural primary CMV infections.

    PubMed

    Xiang, Jun; Zhang, Shunchuan; Nauwynck, Hans

    2016-01-01

    In healthy individuals, naturally acquired infections of human cytomegalovirus (HCMV) are generally asymptomatic. Animal models mimicking the natural primary HCMV infections in infants and adults are scarce. Here, neonatal and adult BALB/c mice were inoculated oronasally with a Belgian isolate HaNa1 of murine cytomegalovirus (MCMV). None of the mice showed clinical symptoms. In neonatal mice, a typical systemic infection occurred. In adult mice, viral replication was restricted to the nasal mucosa and submandibular glands. Infectious virus was not detected in trachea, oral mucosa, pharynx, esophagus, small intestines of both neonatal and adult mice at all time points. Nose was demonstrated to be the entry site. Double immunofluorescence staining showed that in nose infected cells were olfactory neurons and sustentacular cells in olfactory epithelium and were macrophages and dendritic cells in nasopharynx-associated lymphoid tissues (NALT). Neonatal and adult mice developed similar antibody response pattern, though former magnitude was lower. In summary, we have established intranasal (without anesthesia) infections of neonatal and adult mice with murine CMV HaNa1 strain, which mimic the range and extent of virus replication during natural primary HCMV infections in healthy infants and adults. These findings might bring new insights in the pathogenesis of natural primary CMV infections. PMID:26474525

  2. Impaired long-term memory retention: common denominator for acutely or genetically reduced hippocampal neurogenesis in adult mice.

    PubMed

    Ben Abdallah, Nada M-B; Filipkowski, Robert K; Pruschy, Martin; Jaholkowski, Piotr; Winkler, Juergen; Kaczmarek, Leszek; Lipp, Hans-Peter

    2013-09-01

    In adult rodents, decreasing hippocampal neurogenesis experimentally using different approaches often impairs performance in hippocampus-dependent processes. Nonetheless, functional relevance of adult neurogenesis is far from being unraveled, and deficits so far described in animal models often lack reproducibility. One hypothesis is that such differences might be the consequence of the extent of the methodological specificity used to alter neurogenesis rather than the extent to which adult neurogenesis is altered. To address this, we focused on cranial irradiation, the most widely used technique to impair hippocampal neurogenesis and consequentially induce hippocampus-dependent behavioral deficits. To investigate the specificity of the technique, we thus exposed 4-5 months old female cyclin D2 knockout mice, a model lacking physiological levels of olfactory and hippocampal neurogenesis, to an X-ray dose of 10 Gy, reported to specifically affect transiently amplifying precursors. After a recovery period of 1.5 months, behavioral tests were performed and probed for locomotor activity, habituation, anxiety, and spatial learning and memory. Spatial learning in the Morris water maze was intact in all experimental groups. Although spatial memory retention assessed 24h following acquisition was also intact in all mice, irradiated wild type and cyclin D2 knockout mice displayed memory deficits one week after acquisition. In addition, we observed significant differences in tests addressing anxiety and locomotor activity dependent on the technique used to alter neurogenesis. Whereas irradiated mice were hyperactive regardless of their genotype, cyclin D2 knockout mice were hypoactive in most of the tests and displayed altered habituation. The present study emphasizes that different approaches aimed at decreasing adult hippocampal neurogenesis may result in distinct behavioral impairments related to locomotion and anxiety. In contrast, spatial long-term memory retention is

  3. Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment.

    PubMed

    Chabout, Jonathan; Serreau, Pierre; Ey, Elodie; Bellier, Ludovic; Aubin, Thierry; Bourgeron, Thomas; Granon, Sylvie

    2012-01-01

    Social interactions in mice are frequently analysed in genetically modified strains in order to get insight of disorders affecting social interactions such as autism spectrum disorders. Different types of social interactions have been described, mostly between females and pups, and between adult males and females. However, we recently showed that social interactions between adult males could also encompass cognitive and motivational features. During social interactions, rodents emit ultrasonic vocalizations (USVs), but it remains unknown if call types are differently used depending of the context and if they are correlated with motivational state. Here, we recorded the calls of adult C57BL/6J male mice in various behavioral conditions, such as social interaction, novelty exploration and restraint stress. We introduced a modulator for the motivational state by comparing males maintained in isolation and males maintained in groups before the experiments. Male mice uttered USVs in all social and non-social situations, and even in a stressful restraint context. They nevertheless emitted the most important number of calls with the largest diversity of call types in social interactions, particularly when showing a high motivation for social contact. For mice maintained in social isolation, the number of calls recorded was positively correlated with the duration of social contacts, and most calls were uttered during contacts between the two mice. This correlation was not observed in mice maintained in groups. These results open the way for a deeper understanding and characterization of acoustic signals associated with social interactions. They can also help evaluating the role of motivational states in the emission of acoustic signals.

  4. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice

    PubMed Central

    Pristerà, Alessandro; Lin, Wei; Kaufmann, Anna-Kristin; Brimblecombe, Katherine R.; Threlfell, Sarah; Dodson, Paul D.; Magill, Peter J.; Fernandes, Cathy; Cragg, Stephanie J.; Ang, Siew-Lan

    2015-01-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by l-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice. PMID:26283356

  5. Effects of synchronous and asynchronous embryo transfer on postnatal development, adult health, and behavior in mice.

    PubMed

    López-Cardona, Angela P; Fernández-González, Raúl; Pérez-Crespo, Miriam; Alén, Francisco; de Fonseca, Fernando Rodriguez; Orio, Laura; Gutierrez-Adan, Alfonso

    2015-10-01

    Asynchronous embryo transfer (ET) is a common assisted reproduction technique used in several species, but its biological effects on postnatal and early development remain unknown. The aim of this study was to determine whether asynchronous ET produces long-term effects in mice. Postnatal development, animal weight, systolic blood pressure (SBP), relative organ weight (liver, spleen, kidneys, heart, lungs, brain, and testicles), and behavior (assessed in open-field and elevated plus maze tests) were assessed in CD1 mice produced by different ET procedures: 1) the transfer of Day 3.5 (D3.5) blastocysts to the uterus (BL-UT); 2) the transfer of D3.5 blastocysts to the oviduct (BL-OV); or 3) the transfer of D0.5 zygotes to the oviduct (Z-OV). In vivo conceived animals served as controls (CT). The transfer of blastocysts to the uterus or zygotes to the oviduct was defined as synchronous, and transfer of blastocysts to the oviduct was defined as asynchronous. Both synchronous and asynchronous ET resulted in increased weight at birth that normalized thereafter with the exception of asynchronous ET females. In this group, female BL-OV, a clear lower body weight was recorded along postnatal life when compared with controls (P < 0.05). No effects on animal weight were produced during postnatal development in the synchronous ET groups (BL-UT, Z-OV, and CT). Both synchronous and asynchronous ET had impacts on adult (Wk 30) organ weight. SBP was modified in animals derived from blastocyst but not zygote ET. Effects on behavior (anxiety in the plus maze) were only detected in the BL-UT group (P < 0.05). Our findings indicate that zygotes are less sensitive than blastocysts to ET and that both synchronous and asynchronous blastocyst ET may have long-term consequences on health, with possible impacts on weight, arterial pressure, relative organ weight, and behavior.

  6. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    PubMed

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model.

  7. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    PubMed

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model. PMID:25870909

  8. Effect of dietary selenium and cancer cell xenograft on peripheral T and B lymphocytes in adult nude mice.

    PubMed

    Cheng, Wen-Hsing; Holmstrom, Alexandra; Li, Xiangdong; Wu, Ryan T Y; Zeng, Huawei; Xiao, Zhengguo

    2012-05-01

    Selenium (Se) is known to regulate tumorigenesis and immunity at the nutritional and supranutritional levels. Because the immune system provides critical defenses against cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop CD8(+) and CD4(+) T cells, we investigated whether B and T cell maturation could be modulated by dietary Se and by tumorigenesis in nude mice. Fifteen homozygous nude mice were fed a Se-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se+) or 1.0 (Se++) mg Se/kg (as Na(2)SeO(4)) for 6 months, followed by a 7-week time course of PC-3 prostate cancer cell xenograft (2 × 10(6) cells/site, 2 sites/mouse). Here, we show that peripheral B cell levels decreased in nude mice fed the Se -  or Se++ diet and the CD4(+) T cell levels increased in mice fed the Se++ diet. During the PC-3 cell tumorigenesis, dietary Se status did not affect peripheral CD4(+) or CD8(+) T cells in nude mice whereas mice fed with the Se++ diet appeared to exhibit greater peripheral CD25(+)CD4(+) T cells on day 9. Dietary Se status did not affect spleen weight in nude mice 7 weeks after the xenograft. Spleen weight was associated with frequency of peripheral CD4(+), but not CD8(+) T cells. Taken together, dietary Se at the nutritional and supranutritional levels regulates peripheral B and T cells in adult nude mice before and after xenograft with PC-3 prostate cancer cells.

  9. Behavioral disturbances in adult mice following neonatal virus infection or kynurenine treatment – role of brain kynurenic acid

    PubMed Central

    Liu, Xicong; Holtze, Maria; Powell, Susan B; Terrando, Niccolò; Larsson, Markus K.; Persson, Anna; Olsson, Sara K.; Orhan, Funda; Kegel, Magdalena; Asp, Linnea; Goiny, Michel; Schwieler, Lilly; Engberg, Göran; Karlsson, Håkan; Erhardt, Sophie

    2014-01-01

    Exposure to infections in early life is considered a risk-factor for developing schizophrenia. Recently we reported that a neonatal CNS infection with influenza A virus in mice resulted in a transient induction of the brain kynurenine pathway, and subsequent behavioral disturbances in immune-deficient adult mice. The aim of the present study was to investigate a potential role in this regard of kynurenic acid (KYNA), an endogenous antagonist at the glycine site of the N-methyl-D-aspartic acid (NMDA) receptor and at the cholinergic α7 nicotinic receptor. C57BL/6 mice were injected i.p. with neurotropic influenza A/WSN/33 virus (2400 plaque-forming units) at postnatal day (P) 3 or with L-kynurenine (2×200 mg/kg/day) at P7-16. In mice neonatally treated with L-kynurenine prepulse inhibition of the acoustic startle, anxiety, and learning and memory were also assessed. Neonatally infected mice showed enhanced sensitivity to d-amphetamine-induced (5 mg/kg i.p.) increase in locomotor activity as adults. Neonatally L-kynurenine treated mice showed enhanced sensitivity to d-amphetamine-induced (5 mg/kg i.p.) increase in locomotor activity as well as mild impairments in prepulse inhibition and memory. Also, d-amphetamine tended to potentiate dopamine release in the striatum in kynurenine-treated mice. These long-lasting behavioral and neurochemical alterations suggest that the kynurenine pathway can link early-life infection with the development of neuropsychiatric disturbances in adulthood. PMID:24140727

  10. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period.

    PubMed

    Furukawa, Yusuke; Tanemura, Kentaro; Igarashi, Katsuhide; Ideta-Otsuka, Maky; Aisaki, Ken-Ichi; Kitajima, Satoshi; Kitagawa, Masanobu; Kanno, Jun

    2016-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R) mediated signaling (GABA-R signal) during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ) or the non-benzodiazepine drug zolpidem (ZP). We detected learning and memory deficits in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs), which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible learning and memory deficits in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause learning and memory deficits. PMID:27489535

  11. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period

    PubMed Central

    Furukawa, Yusuke; Tanemura, Kentaro; Igarashi, Katsuhide; Ideta-Otsuka, Maky; Aisaki, Ken-Ichi; Kitajima, Satoshi; Kitagawa, Masanobu; Kanno, Jun

    2016-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R) mediated signaling (GABA-R signal) during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ) or the non-benzodiazepine drug zolpidem (ZP). We detected learning and memory deficits in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs), which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible learning and memory deficits in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause learning and memory deficits. PMID:27489535

  12. Effects of tamoxifen on autosomal genes regulating ovary maintenance in adult mice.

    PubMed

    Yu, Mingxi; Liu, Wei; Wang, Jingyun; Qin, Junwen; Wang, Yongan; Wang, Yu

    2015-12-01

    Environmental endocrine-disrupting chemicals (EDCs), known to bind to estrogen/androgen receptors and mimic native estrogens, have been implicated as a main source for increasing human reproductive and developmental deficiencies and diseases. Tamoxifen (TAM) is one of the most well-known antiestrogens with defined adverse effects on the female reproductive tract, but the mechanisms related to autosomal gene regulation governing ovary maintenance in mammals remain unclear. The expression pattern and levels of key genes and proteins involved in maintaining the ovarian phenotype in mice were analyzed. The results showed that TAM induced significant upregulation of Sox9, which is the testis-determining factor gene. The results showed that TAM induced significant upregulation of Sox9, the testis-determining factor gene, and the expression level of Sox9 mRNA in the ovaries of mice exposed to 75 or 225 mg/kg bw TAM was 2- and 10-fold that in the control group, respectively (p < 0.001). Furthermore, the testicular fibroblast growth factor gene, Fgf9, was also elevated in TAM-treated ovaries. Accordingly, expression of the ovary development marker, forkhead transcription factor (FOXL2), and WNT4/FST signaling, were depressed. The levels of protein expression changed consistently with the target genes. Moreover, the detection of platelet/endothelial cell adhesion molecule 1 (PECAM-1) in TAM-treated ovaries suggested the formation of vascular endothelial cells, which is a further evidence for the differentiation of the ovaries to a testis-like phenotype. During this period, the level of 17β-estradiol, progesterone, and luteinizing hormone decreased, while that of testosterone increased by 3.3-fold (p = 0.013). The activation of a testis-specific molecular signaling cascade was a potentially important mechanism contributing to the gender disorder induced by TAM, which resulted in the differentiation of the ovaries to a testis-like phenotype in adult mice. Limited with

  13. Effects of tamoxifen on autosomal genes regulating ovary maintenance in adult mice.

    PubMed

    Yu, Mingxi; Liu, Wei; Wang, Jingyun; Qin, Junwen; Wang, Yongan; Wang, Yu

    2015-12-01

    Environmental endocrine-disrupting chemicals (EDCs), known to bind to estrogen/androgen receptors and mimic native estrogens, have been implicated as a main source for increasing human reproductive and developmental deficiencies and diseases. Tamoxifen (TAM) is one of the most well-known antiestrogens with defined adverse effects on the female reproductive tract, but the mechanisms related to autosomal gene regulation governing ovary maintenance in mammals remain unclear. The expression pattern and levels of key genes and proteins involved in maintaining the ovarian phenotype in mice were analyzed. The results showed that TAM induced significant upregulation of Sox9, which is the testis-determining factor gene. The results showed that TAM induced significant upregulation of Sox9, the testis-determining factor gene, and the expression level of Sox9 mRNA in the ovaries of mice exposed to 75 or 225 mg/kg bw TAM was 2- and 10-fold that in the control group, respectively (p < 0.001). Furthermore, the testicular fibroblast growth factor gene, Fgf9, was also elevated in TAM-treated ovaries. Accordingly, expression of the ovary development marker, forkhead transcription factor (FOXL2), and WNT4/FST signaling, were depressed. The levels of protein expression changed consistently with the target genes. Moreover, the detection of platelet/endothelial cell adhesion molecule 1 (PECAM-1) in TAM-treated ovaries suggested the formation of vascular endothelial cells, which is a further evidence for the differentiation of the ovaries to a testis-like phenotype. During this period, the level of 17β-estradiol, progesterone, and luteinizing hormone decreased, while that of testosterone increased by 3.3-fold (p = 0.013). The activation of a testis-specific molecular signaling cascade was a potentially important mechanism contributing to the gender disorder induced by TAM, which resulted in the differentiation of the ovaries to a testis-like phenotype in adult mice. Limited with

  14. Neonatal tryptophan depletion and corticosterone supplementation modify emotional responses in adult male mice.

    PubMed

    Zoratto, Francesca; Fiore, Marco; Ali, Syed F; Laviola, Giovanni; Macrì, Simone

    2013-01-01

    The serotonergic system and the hypothalamic-pituitary-adrenal (HPA) axis are crucially involved in the regulation of emotions. Specifically, spontaneous and/or environmentally mediated modulations of the functionality of these systems early in development may favour the onset of depressive- and anxiety-related phenotypes. While the independent contribution of each of these systems to the emergence of abnormal phenotypes has been detailed in clinical and experimental studies, only rarely has their interaction been systematically investigated. Here, we addressed the effects of reduced serotonin and environmental stress during the early stages of postnatal life on emotional regulations in mice. To this aim, we administered, to outbred CD1 mouse dams, during their first week of lactation, a tryptophan deficient diet (T) and corticosterone via drinking water (C; 80μg/ml). Four groups of dams (animal facility rearing, AFR; T treated, T; C treated, C; T and C treated, TC) and their male offspring were used in the study. Maternal care was scored throughout treatment and adult offspring were tested for: anhedonia (progressive ratio schedule); anxiety-related behaviour (approach-avoidance conflict paradigm); BDNF, dopamine and serotonin concentrations in selected brain areas. T, C and TC treatments reduced active maternal care compared to AFR. Adult TC offspring showed significantly increased anxiety- and anhedonia-related behaviours, reduced striatal and increased hypothalamic BDNF and reduced dopamine and serotonin in the prefrontal cortex and their turnover in the hippocampus. Thus, present findings support the view that neonatal variations in the functionality of the serotonergic system and of HPA axis may jointly contribute to induce emotional disturbances in adulthood.

  15. Altered cocaine-induced behavioral sensitization in adult mice exposed to cocaine in utero.

    PubMed

    Crozatier, Claire; Guerriero, Rejean M; Mathieu, Flavie; Giros, Bruno; Nosten-Bertrand, Marika; Kosofsky, Barry E

    2003-12-30

    Behavioral sensitization induced by psychostimulants is characterized by increased locomotion and stereotypy and may reflect aspects of neuronal adaptations underlying drug addiction in humans. To study the developmental contributions to addictive behaviors, we measured behavioral responses in adult offspring to a cocaine sensitization paradigm following prenatal cocaine exposure. Pregnant Swiss-Webster (SW) mice were injected twice daily from embryonic days 8 to 17 (E8-E17, inclusive) with cocaine (20 or 40 mg/kg/day; COC20 and COC40, respectively), or saline vehicle (SAL and SPF40) subcutaneously (s.c.). A nutritional control group of dams were 'pair-fed' with COC40 dams (SPF40). P120 male offspring from each prenatal treatment group were assigned to a behavioral sensitization group and injected with cocaine (15 mg/kg) or saline intraperitoneally (i.p.) every other day for seven doses. Locomotor activity and stereotypy were measured during habituation, cocaine initiation, and following a cocaine challenge 21 days after the last initiation injection. As expected, animals demonstrated significantly more locomotion and stereotypic behavior following acute and recurrent injection of cocaine compared to saline-injected animals. However, for each prenatal treatment group, cocaine-sensitized animals showed unique temporal profiles for the increase in locomotor sensitization and stereotypy over the course of the sensitization protocol. Two features that distinguished the altered behavioral progression of prenatally cocaine-exposed animals (COC40) from control (SAL) animals included blunted augmentation of locomotion and enhanced patterns of stereotypic behavior. These findings provide evidence that the behavioral activating effects of cocaine in adult animals are altered following exposure to cocaine in utero.

  16. Chronic stress alters inhibitory networks in the medial prefrontal cortex of adult mice.

    PubMed

    Gilabert-Juan, Javier; Castillo-Gomez, Esther; Guirado, Ramón; Moltó, Maria Dolores; Nacher, Juan

    2013-11-01

    Chronic stress in experimental animals induces dendritic atrophy and decreases spine density in principal neurons of the medial prefrontal cortex (mPFC). This structural plasticity may play a neuroprotective role and underlie stress-induced behavioral changes. Different evidences indicate that the prefrontocortical GABA system is also altered by stress and in major depression patients. In the amygdala, chronic stress induces dendritic remodeling both in principal neurons and in interneurons. However, it is not known whether similar structural changes occur in mPFC interneurons. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these changes, because it is known to influence the dendritic organization of adult cortical interneurons. We have analyzed the dendritic arborization and spine density of mPFC interneurons in adult mice after 21 days of restraint stress and have found dendritic hypertrophy in a subpopulation of interneurons identified mainly as Martinotti cells. This aversive experience also decreases the number of glutamate decarboxylase enzyme, 67 kDa isoform (GAD67) expressing somata, without affecting different parameters related to apoptosis, but does not alter the number of interneurons expressing PSA-NCAM. Quantitative retrotranscription-polymerase chain reaction (qRT-PCR) analysis of genes related to general and inhibitory neurotransmission and of PSA synthesizing enzymes reveals increases in the expression of NCAM, synaptophysin and GABA(A)α1. Together these results show that mPFC inhibitory networks are affected by chronic stress and suggest that structural plasticity may be an important feature of stress-related psychiatric disorders where this cortical region, specially their GABAergic system, is altered.

  17. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice

    PubMed Central

    Xirouchaki, Chrysovalantou E.; Mangiafico, Salvatore P.; Bate, Katherine; Ruan, Zheng; Huang, Amy M.; Tedjosiswoyo, Bing Wilari; Lamont, Benjamin; Pong, Wynne; Favaloro, Jenny; Blair, Amy R.; Zajac, Jeffrey D.; Proietto, Joseph; Andrikopoulos, Sofianos

    2016-01-01

    Objective Muscle glucose storage and muscle glycogen synthase (gys1) defects have been associated with insulin resistance. As there are multiple mechanisms for insulin resistance, the specific role of glucose storage defects is not clear. The aim of this study was to examine the effects of muscle-specific gys1 deletion on glucose metabolism and exercise capacity. Methods Tamoxifen inducible and muscle specific gys-1 KO mice were generated using the Cre/loxP system. Mice were subjected to glucose tolerance tests, euglycemic/hyperinsulinemic clamps and exercise tests. Results gys1-KO mice showed ≥85% reduction in muscle gys1 mRNA and protein concentrations, 70% reduction in muscle glycogen levels, postprandial hyperglycaemia and hyperinsulinaemia and impaired glucose tolerance. Under insulin-stimulated conditions, gys1-KO mice displayed reduced glucose turnover and muscle glucose uptake, indicative of peripheral insulin resistance, as well as increased plasma and muscle lactate levels and reductions in muscle hexokinase II levels. gys1-KO mice also exhibited markedly reduced exercise and endurance capacity. Conclusions Thus, muscle-specific gys1 deletion in adult mice results in glucose intolerance due to insulin resistance and reduced muscle glucose uptake as well as impaired exercise and endurance capacity. In brief This study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity. PMID:26977394

  18. Neuropathologic and biochemical changes during disease progression in liver X receptor beta-/- mice, a model of adult neuron disease.

    PubMed

    Bigini, Paolo; Steffensen, Knut R; Ferrario, Anna; Diomede, Luisa; Ferrara, Giovanni; Barbera, Sara; Salzano, Sonia; Fumagalli, Elena; Ghezzi, Pietro; Mennini, Tiziana; Gustafsson, Jan-Ake

    2010-06-01

    In amyotrophic lateral sclerosis (ALS), there is selective degeneration of motor neurons that leads to paralysis and death. Although the etiology of ALS is unclear, its heterogeneity suggests that a combination of factors (endogenous and/or environmental) may induce progressive motor neuron stress that results in the activation of different cell death pathways. Alterations of brain cholesterol homeostasis have recently been considered as possible cofactors in many neurodegenerative disorders, including ALS. The liver X receptor beta (LXRbeta) receptor is involved in lipogenesis and cholesterol metabolism, and we previously found that adult-onset motor neuron pathology occurs in LXRbeta mice. Here, we investigated neuromuscular alterations of LXRbeta mice from ages 3 to 24 months. Increased cholesterol levels, gliosis, and inflammation preceded motor neuron loss and clinical disease onset; the mice showed progressivemotor neuron deficits starting from age 7 months. The numbers ofmotor neurons and neuromuscular junctions were decreased in 24-month-old mice, but neither paralysis nor reduced life span was observed. Moreover, other spinal neurons were also lost in these mice. These results suggest that LXRbeta may inhibit neuroinflammation and maintain cholesterol homeostasis, and that LXRbeta mice represent a potential model for investigating the role of cholesterol in ALS and other neurodegenerative disorders.

  19. The investigation of neonatal MK-801 administration and physical environmental enrichment on emotional and cognitive functions in adult Balb/c mice.

    PubMed

    Akillioglu, Kubra; Babar Melik, Emine; Melik, Enver; Kocahan, Sayad

    2012-09-01

    N-methyl-D-aspartate (NMDA) receptors play an important role in brain maturation and developmental processes. It is known that growing up in an enriched environment has effects on emotional and cognitive performance. In our study, we evaluated the effects of physically enriched environment on the emotional and cognitive functions of the adult brain in the setting of previous NMDA receptor hypoactivity during the critical developmental period of the nervous system. In this study, NMDA receptor blockade was induced 5-10 days postnatally (PD5-10) using MK-801 in mice Balb/c (twice a day 0.25 mg/kg, for 5 days, intraperitoneal). MK-801 was given to developing mice living in a standard (SE) and an enrichment environment (EE) and once the animals reached adulthood, emotional behaviors were evaluated using an open field test (OF) and an elevated plus maze (EPM) test whereas cognitive processes were evaluated using the Morris water-maze (MWM). The EE group showed decreased locomotor activity (p<0.05) in the OF and increased exploratory behaviour (p<0.01) and decreased fear of heights/anxiety-like behaviour (p<0.05) in the EPM test. The EE had positive effects on spatial learning in the MWM (p<0.05). Blockade of the NMDA receptor increased the fear of height (p<0.05), decreased exploratory behaviour and locomotor activity (p<0.001). Also, it led to decreased spatial learning (p<0.05). The decreases in spatial learning and exploratory behaviours and the increase in fear of heights/anxiety-like behaviour with NMDA receptor blockade was not reversed by EE. NMDA receptor blockade during the critical period of development led to deterioration in the emotional and cognitive processes during adulthood. An enriched environmental did not reverse the deleterious effects of the NMDA receptor blockade on emotional and cognitive functions.

  20. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice)

    PubMed Central

    Todorov, Teodor

    2016-01-01

    The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice.

  1. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice)

    PubMed Central

    Todorov, Teodor

    2016-01-01

    The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice. PMID:27689088

  2. Toll-like receptor 2 mediates ischemia-reperfusion injury of the small intestine in adult mice.

    PubMed

    Watanabe, Toshio; Tanigawa, Tetsuya; Kobata, Atsushi; Takeda, Shogo; Nadatani, Yuji; Otani, Koji; Yamagami, Hirokazu; Shiba, Masatsugu; Tominaga, Kazunari; Fujiwara, Yasuhiro; Arakawa, Tetsuo

    2014-01-01

    Toll-like receptor 2 (TLR2) recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R) injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO), a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and cyclooxygenase-2 (COX-2) in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory mediators

  3. Survival of adult generated hippocampal neurons is altered in circadian arrhythmic mice.

    PubMed

    Rakai, Brooke D; Chrusch, Michael J; Spanswick, Simon C; Dyck, Richard H; Antle, Michael C

    2014-01-01

    The subgranular zone of the hippocampal formation gives rise to new neurons that populate the dentate gyrus throughout life. Cells in the hippocampus exhibit rhythmic clock gene expression and the circadian clock is known to regulate the cycle of cell division in other areas of the body. These facts suggest that the circadian clock may regulate adult neurogenesis in the hippocampus as well. In the present study, neurogenesis in the hippocampal subgranular zone was examined in arrhythmic Bmal1 knockout (-KO) mice and their rhythmic heterozygous and wildtype littermates. Proliferation and survival of newly generated subgranular zone cells were examined using bromodeoxyuridine labelling, while pyknosis (a measure of cell death) and hippocampal volume were examined in cresyl violet stained sections. There was no significant difference in cellular proliferation between any of the groups, yet survival of proliferating cells, 6 weeks after the bromodeoxyuridine injection, was significantly greater in the BMAL1-KO animals. The number of pyknotic cells was significantly decreased in Bmal1-KO animals, yet hippocampal volume remained the same across genotypes. These findings suggest that while a functional circadian clock is not necessary for normal proliferation of neuronal precursor cells, the normal pruning of newly generated neurons in the hippocampus may require a functional circadian clock. PMID:24941219

  4. Nicotine-Cadmium Interaction Alters Exploratory Motor Function and Increased Anxiety in Adult Male Mice

    PubMed Central

    Chris Ajonijebu, Duyilemi; Adeyemi Adeniyi, Philip; Oloruntoba Adekeye, Adeshina; Peter Olatunji, Babawale; Olakunle Ishola, Azeez; Michael Ogundele, Olalekan

    2014-01-01

    In this study we evaluated the time dependence in cadmium-nicotine interaction and its effect on motor function, anxiety linked behavioural changes, serum electrolytes, and weight after acute and chronic treatment in adult male mice. Animals were separated randomly into four groups of n = 6 animals each. Treatment was done with nicotine, cadmium, or nicotine-cadmium for 21 days. A fourth group received normal saline for the same duration (control). Average weight was determined at 7-day interval for the acute (D1-D7) and chronic (D7-D21) treatment phases. Similarly, the behavioural tests for exploratory motor function (open field test) and anxiety were evaluated. Serum electrolytes were measured after the chronic phase. Nicotine, cadmium, and nicotine-cadmium treatments caused no significant change in body weight after the acute phase while cadmium-nicotine and cadmium caused a decline in weight after the chronic phase. This suggests the role of cadmium in the weight loss observed in tobacco smoke users. Both nicotine and cadmium raised serum Ca2+ concentration and had no significant effect on K+ ion when compared with the control. In addition, nicotine-cadmium treatment increased bioaccumulation of Cd2+ in the serum which corresponded to a decrease in body weight, motor function, and an increase in anxiety. PMID:26317007

  5. Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice

    PubMed Central

    2012-01-01

    Background Neuroinflammation involves the activation of glial cells in neurodegenerative diseases such as Alzheimer’s disease (AD). Plasmalogens (Pls) are glycerophospholipids constituting cellular membranes and play significant roles in membrane fluidity and cellular processes such as vesicular fusion and signal transduction. Methods In this study the preventive effects of Pls on systemic lipopolysaccharide (LPS)-induced neuroinflammation were investigated using immunohistochemistry, real-time PCR methods and analysis of brain glycerophospholipid levels in adult mice. Results Intraperitoneal (i.p.) injections of LPS (250 μg/kg) for seven days resulted in increases in the number of Iba-1-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes in the prefrontal cortex (PFC) and hippocampus accompanied by the enhanced expression of IL-1β and TNF-α mRNAs. In addition, β-amyloid (Aβ3–16)-positive neurons appeared in the PFC and hippocampus of LPS-injected animals. The co-administration of Pls (i.p., 20 mg/kg) after daily LPS injections significantly attenuated both the activation of glial cells and the accumulation of Aβ proteins. Finally, the amount of Pls in the PFC and hippocampus decreased following the LPS injections and this reduction was suppressed by co-treatment with Pls. Conclusions These findings suggest that Pls have anti-neuroinflammatory and anti-amyloidogenic effects, thereby indicating the preventive or therapeutic application of Pls against AD. PMID:22889165

  6. Toxic effects of bortezomib on primary sensory neurons and Schwann cells of adult mice.

    PubMed

    Alé, Albert; Bruna, Jordi; Herrando, Mireia; Navarro, Xavier; Udina, Esther

    2015-05-01

    The proteasome inhibitor bortezomib is nowadays first line treatment for multiple myeloma. One of the most significant adverse events is peripheral neuropathy, mainly involving sensory nerve fibers that can lead to withdrawal of treatment. Here we develop an in vitro model to compare the effects of bortezomib on primary sensory neurons and Schwann cells of adult mice. We observed that sensory neurons were more susceptible to bortezomib, and their viability was reduced at a concentration of 6 nM, that only affected Schwann cell proliferation but not survival. At concentration higher than 8 nM Schwann cell viability was also compromised. Already at low concentrations, surviving neurons presented alterations in neurite outgrowth. Neurites were shorter and had dystrophic appearance, with alterations in neurofilament staining. However, neurites were able to regrow after removing bortezomib from the medium, thus indicating reversibility of the neurotoxicity. We confirmed in vivo that bortezomib produced alterations in neurofilaments at early stages of the treatment. After an accumulated dose of 2 mg/kg bortezomib, dorsal root ganglia neurons of treated animals showed accumulation of neurofilament in the soma. To evaluate if this accumulation was related with alterations in axonal transport, we tested the ability of sensory neurons to retrogradely transport a retrotracer applied at the distal nerve. Treated animals showed a lower amount of retrotracer in the soma 24 h after its application to the tibial nerve, therefore suggesting that axonal transport was affected by bortezomib.

  7. Characterization of the ovarian and reproductive abnormalities in prepubertal and adult estrogen non-responsive estrogen receptor alpha knock-in (ENERKI) mice.

    PubMed

    Sinkevicius, K W; Woloszyn, K; Laine, M; Jackson, K S; Greene, G L; Woodruff, T K; Burdette, J E

    2009-11-01

    Estrogen non-responsive estrogen receptor alpha (ERalpha) knock-in (ENERKI) mice have a mutation (glycine 525 to leucine, G525L) in the ligand-binding domain of ERalpha. The mutant ERalpha protein has a significantly lower affinity and response to endogenous estrogens, while not altering growth factor activated ligand-independent pathways. ENERKI females demonstrated signs of early follicle development as determined by a significant increase in antral follicle formation by 20 days of age. Adult ENERKI females were infertile, had hemorrhagic ovarian follicular cysts, and failed to develop corpora lutea in response to a superovulation regimen. These results illustrate the importance of ERalpha ligand-induced signaling for ovarian development and for estrogen feedback on the hypothalamus and pituitary. Although ERalpha ligand-induced signaling by endogenous estrogens is lost in ENERKI females, the ERalpha selective agonist propyl pyrazole triol (PPT), a synthetic nonsteroidal compound, is still able to activate G525L ERalphain vivo to increase uterine weight. To test whether PPT could restore ligand-dependent receptor activation, ENERKI females were treated with PPT and evaluated for spontaneous ovulation, ovarian hemorrhagic cysts, and LH serum levels. Daily PPT treatments beginning on day 4 of life prevented formation of ovarian hemorrhagic cysts in adult ENERKI animals. In accordance with this result, preputial gland weight and LH levels were also lowered in these animals, indicating PPT treatments most likely led to restoration of ERalpha negative feedback of the hypothalamic-pituitary axis.

  8. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.

    PubMed

    Guo, Zhibao; Wang, Xijuan; Xiao, Jun; Wang, Yihui; Lu, Hong; Teng, Junfang; Wang, Wei

    2013-09-26

    Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice.

  9. Sex-specific effects of bisphenol-A on memory and synaptic structural modification in hippocampus of adult mice.

    PubMed

    Xu, Xiaohong; Liu, Xingyi; Zhang, Qin; Zhang, Guangxia; Lu, Yingjun; Ruan, Qin; Dong, Fangni; Yang, Yanling

    2013-05-01

    Humans are routinely exposed to low levels of bisphenol A (BPA), a synthetic xenoestrogen widely used in the production of polycarbonate plastics. The effects of long-term exposure to BPA on memory and modification of synaptic structure in hippocampus of adult mice were investigated in the present study. The adult mice were exposed to BPA (0.4, 4, and 40 mg/kg/day) or arachis oil for 12 weeks. In open field test, BPA at 0.4, 4, or 40 mg/kg/day increased the frequency of rearing and time in the central area of the males, while BPA at 0.4 mg/kg/day reduced the frequency of rearing in the females. Exposure to BPA (0.4 or 40 mg/kg/day) extended the average escape pathlength to the hidden platform in Morris water maze task and shortened the step-down latency 24 h after footshock of the males, but no changes were found in the females for these measures. Meanwhile, BPA induced a reduced numeric synaptic density and a negative effect on the structural parameters of synaptic interface, including an enlarged synaptic cleft and the reduced length of active zone and PSD thickness, in the hippocampus of the male mice. Western blot analyses further indicated that BPA down-regulated expressions of synaptic proteins (synapsin I and PSD-95) and synaptic NMDA receptor subunit NR1 and AMPA receptor subunit GluR1 in the hippocampus of the males. These results suggest that long-term exposure to low levels of BPA in adulthood sex-specifically impaired spatial and passive avoidance memory of mice. These effects may be associated with the higher susceptibility of the hippocampal synaptic plasticity processes, such as remodeling of spinal synapses and the expressions of synaptic proteins (e.g. synapsin I and PSD-95) and NMDA and AMPA receptors, to BPA in the adult male mice.

  10. Sex-specific effects of bisphenol-A on memory and synaptic structural modification in hippocampus of adult mice.

    PubMed

    Xu, Xiaohong; Liu, Xingyi; Zhang, Qin; Zhang, Guangxia; Lu, Yingjun; Ruan, Qin; Dong, Fangni; Yang, Yanling

    2013-05-01

    Humans are routinely exposed to low levels of bisphenol A (BPA), a synthetic xenoestrogen widely used in the production of polycarbonate plastics. The effects of long-term exposure to BPA on memory and modification of synaptic structure in hippocampus of adult mice were investigated in the present study. The adult mice were exposed to BPA (0.4, 4, and 40 mg/kg/day) or arachis oil for 12 weeks. In open field test, BPA at 0.4, 4, or 40 mg/kg/day increased the frequency of rearing and time in the central area of the males, while BPA at 0.4 mg/kg/day reduced the frequency of rearing in the females. Exposure to BPA (0.4 or 40 mg/kg/day) extended the average escape pathlength to the hidden platform in Morris water maze task and shortened the step-down latency 24 h after footshock of the males, but no changes were found in the females for these measures. Meanwhile, BPA induced a reduced numeric synaptic density and a negative effect on the structural parameters of synaptic interface, including an enlarged synaptic cleft and the reduced length of active zone and PSD thickness, in the hippocampus of the male mice. Western blot analyses further indicated that BPA down-regulated expressions of synaptic proteins (synapsin I and PSD-95) and synaptic NMDA receptor subunit NR1 and AMPA receptor subunit GluR1 in the hippocampus of the males. These results suggest that long-term exposure to low levels of BPA in adulthood sex-specifically impaired spatial and passive avoidance memory of mice. These effects may be associated with the higher susceptibility of the hippocampal synaptic plasticity processes, such as remodeling of spinal synapses and the expressions of synaptic proteins (e.g. synapsin I and PSD-95) and NMDA and AMPA receptors, to BPA in the adult male mice. PMID:23523742

  11. Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice

    PubMed Central

    Soumiya, Hitomi; Godai, Ayumi; Araiso, Hiromi; Mori, Shingo; Furukawa, Shoei; Fukumitsu, Hidefumi

    2016-01-01

    Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD). While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neuronal circuits related to the emotional regulation of social interactions. In neonatal rodents, whiskers are the most important tactile apparatus, so bilateral whisker trimming is used as a model of early tactile deprivation. To address the influence of tactile deprivation on adult behavior, we performed bilateral whisker trimming in mice for 10 days after birth (BWT10 mice) and examined social behaviors, tactile discrimination, and c-Fos expression, a marker of neural activation, in adults after full whisker regrowth. Adult BWT10 mice exhibited significantly shorter crossable distances in the gap-crossing test than age-matched controls, indicating persistent deficits in whisker-dependent tactile perception. In contrast to controls, BWT10 mice exhibited no preference for the social compartment containing a conspecific in the three-chamber test. Furthermore, the development of amygdala circuitry was severely affected in BWT10 mice. Based on the c-Fos expression pattern, hyperactivity was found in BWT10 amygdala circuits for processing fear/anxiety-related responses to height stress but not in circuits for processing reward stimuli during whisker-dependent cued learning. These results demonstrate that neonatal whisker trimming and concomitant whisker-dependent tactile discrimination impairment severely disturbs the development of amygdala-dependent emotional regulation. PMID:27362655

  12. Hippocampal long-term potentiation in adult Lurcher mutant mice: effect of embryonic cerebellar graft and motor training.

    PubMed

    Barcal, J; Cendelín, J; Vozeh, F

    2008-01-01

    Possible effect of trophic factors from embryonic cerebellar graft transplanted in adult Lurcher mutant mice on LTP as electrophysiological marker of learning and memory process was studied. Also the combination of the transplantation and long-term forced motor training was investigated. An evaluation of LTP ability in four animal groups (transplanted, sham-operated, with and without forced motor activity) and comparison among them showed the highest LTP improvement in the group with combination of both influences (ie. transplantation and motor training).

  13. Frequency of Teriparatide Administration Affects the Histological Pattern of Bone Formation in Young Adult Male Mice.

    PubMed

    Yamamoto, Tomomaya; Hasegawa, Tomoka; Sasaki, Muneteru; Hongo, Hiromi; Tsuboi, Kanako; Shimizu, Tomohiro; Ota, Masahiro; Haraguchi, Mai; Takahata, Masahiko; Oda, Kimimitsu; Luiz de Freitas, Paulo Henrique; Takakura, Aya; Takao-Kawabata, Ryoko; Isogai, Yukihiro; Amizuka, Norio

    2016-07-01

    Evidence supports that daily and once-weekly administration of teriparatide, human (h)PTH(1-34), enhance bone mass in osteoporotic patients. However, it is uncertain whether different frequencies of hPTH(1-34) administration would induce bone formation similarly in terms of quantity and quality. To investigate that issue, mice were subjected to different frequencies of PTH administration, and their bones were histologically examined. Frequencies of administration were 1 time/2 days, 1 time a day, and 2 and 4 times a day. Mice were allocated to either to control or to 3 different dosing regimens: 80 μg/kg of hPTH(1-34) per injection (80 μg/kg per dose), 80 μg/kg of hPTH(1-34) per day (80 μg/kg · d), or 20 μg/kg of hPTH(1-34) per day (20 μg/kg · d). With the regimens of 80 μg/kg per dose and 80 μg/kg · d, high-frequency hPTH(1-34) administration increased metaphyseal trabecular number. However, 4 doses per day induced the formation of thin trabeculae, whereas the daily PTH regimen resulted in thicker trabeculae. A similar pattern was observed with the lower daily hPTH(1-34) dose (20 μg/kg · d): more frequent PTH administration led to the formation of thin trabeculae, showing a thick preosteoblastic cell layer, several osteoclasts, and scalloped cement lines that indicated accelerated bone remodeling. On the other hand, low-frequency PTH administration induced new bone with mature osteoblasts lying on mildly convex surfaces representative of arrest lines, which suggests minimodeling-based bone formation. Thus, high-frequency PTH administration seems to increase bone mass rapidly by forming thin trabeculae through accelerated bone remodeling. Alternatively, low-frequency PTH administration leads to the formation of thicker trabeculae through bone remodeling and minimodeling. PMID:27227535

  14. Long-term exposure to decabrominated diphenyl ether impairs CD8 T-cell function in adult mice

    PubMed Central

    Zeng, Weihong; Wang, Ying; Liu, Zhicui; Khanniche, Asma; Hu, Qingliang; Feng, Yan; Ye, Weiyi; Yang, Jianglong; Wang, Shujun; Zhou, Lin; Shen, Hao; Wang, Yan

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants that accumulate to high levels in human populations that are subject to occupational or regional industry exposure. PBDEs have been shown to affect human neuronal, endocrine and reproductive systems, but their effect on the immune system is not well understood. In this study, experimental adult mice were intragastrically administered 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209) at doses of 8, 80 or 800 mg/kg of body weight (bw) at 2-day intervals. Our results showed that continuous exposure to BDE-209 resulted in high levels of BDE-209 in the plasma that approached the levels found in people who work in professions with high risks of PDBE exposure. Reduced leukocytes, decreased cytokine (IFN-γ, IL-2 and TNF-α) production and lower CD8 T-cell proliferation were observed in the mice exposed to BDE-209. Additionally, mice with long-term BDE-209 exposure had lower numbers of antigen-specific CD8 T cells after immunization with recombinant Listeria monocytogenes expressing ovalbumin (rLm-OVA) and the OVA-specific CD8 T cells had reduced functionality. Taken together, our study demonstrates that continuous BDE-209 exposure causes adverse effects on the number and functionality of immune cells in adult mice. PMID:24705197

  15. Altered resistance to Trichinella spiralis infection following subchronic exposure of adult mice to chemicals of environmental concern

    SciTech Connect

    Luebke, R.W.

    1981-01-01

    The effects of subchronic chemical exposure on expulsion of adult Trichinella spiralis from the small intestine of mice and encystment of newborn larvae in the host's musculature were investigated. Exposure to diethylstilbestrol, benzo(a)pyrene, tris-(1,3-dichloro-2-propyl) phosphate, cyclophosphamide, phorbol myristate acetate, and dimethylvinylchloride prior to infection of mice with 200 infective larvae resulted in larger worm burdens in treated animals than in controls 14 days after infection. Worm expulsion was not affected by exposure to tris-(2,3-dibromopropyl)phosphate, orthophenylphenol, and indomethacin. Increased burdens of muscle-phase larvae were found in animals that maintained significant numbers of adult worms in the gut at 14 days, except in mice administered diethylstilbestrol and dimethylvinylchloride. Exposure to diethylstilbestrol and cyclophosphamide resulted in decreased inflammatory reactions in the tissues of the small intestine and development of bone marrow eosinophilia in infected mice. Marrow eosinophilia was likewise decreased in mice given tris-(1,3-dichloro-2-propyl)phosphate before infection. Additional studies with diethylstilbestrol administered either before, at the time of, or after infection showed inhibition of worm expulsion. Drug exposure during a primary infection inhibited the expulsion of a second T. spiralis infection, but did not affect worm elimination when given during a second infection. Treatment with diethylstilbestrol after artificial sensitization of mice with Trichinella antigens decreased delayed hypersensitivity responses to the sensitizing antigen. Immune functions, assessed by lymphoproliferative responses to mitogens and antibody responses to sheep red blood cells, generally correlated with altered host resistance to T. spiralis infection.

  16. Environmental enrichment and social interaction improve cognitive function and decrease reactive oxidative species in normal adult mice.

    PubMed

    Doulames, Vanessa; Lee, Sangmook; Shea, Thomas B

    2014-05-01

    Environmental stimulation and increased social interactions stimulate cognitive performance, while decrease in these parameters can exacerbate cognitive decline as a function of illness, injury, or age. We examined the impact of environmental stimulation and social interactions on cognitive performance in healthy adult C57B1/6J mice. Mice were housed for 1 month individually or in groups of three (to prevent or allow social interaction) in either a standard environment (SE) or an enlarged cage containing nesting material and items classically utilized to stimulate exploration and activity ("enriched environment"; EE). Cognitive performance was tested by Y maze navigation and Novel Object Recognition (NOR; which compares the relative amount of time mice spent investigating a novel vs. a familiar object). Mice maintained for 1 month under isolated conditions in the SE statistically declined in performance versus baseline in the Y maze (p < 0.02; ANOVA). Performance under all other conditions did not change from baseline. Maintenance in groups in the SE statistically improved NOR (p < 0.01), whereas maintenance in isolation in the SE did not alter performance from baseline. Maintenance in the EE statistically improved performance in NOR for mice housed in groups and individually (p < 0.01). Maintenance under isolated conditions slightly increased reactive oxygen/nitrogen species (ROS/RNS) in brain. Environmental enrichment did not influence ROS/RNS. These findings indicate that environmental and social enrichment can positively influence cognitive performance in healthy adult mice, and support the notion that proactive approaches may delay age-related cognitive decline.

  17. Postnatal Proteasome Inhibition Induces Neurodegeneration and Cognitive Deficiencies in Adult Mice: A New Model of Neurodevelopment Syndrome

    PubMed Central

    Romero-Granados, Rocío; Fontán-Lozano, Ángela; Aguilar-Montilla, Francisco Javier; Carrión, Ángel Manuel

    2011-01-01

    Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation. PMID:22174927

  18. Developmental dioxin exposure of either parent is associated with an increased risk of preterm birth in adult mice.

    PubMed

    Ding, Tianbing; McConaha, Melinda; Boyd, Kelli L; Osteen, Kevin G; Bruner-Tran, Kaylon L

    2011-04-01

    We have previously described diminished uterine progesterone response and increased uterine sensitivity to inflammation in adult female mice with a history of developmental exposure to TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin). Since parturition in mammals is an inflammatory process mediated in part by a decline in progesterone action, toxicant-mediated disruption of progesterone receptor (PR) expression at the maternal-fetal interface would likely impact the timing of birth. Therefore, in the current study, we examined pregnancy outcomes in adult female mice with a similar in utero exposure to TCDD. We also examined the impact of in utero TCDD exposure of male mice on pregnancy outcomes in unexposed females since the placenta, a largely paternally derived organ, plays a major role in the timing of normal parturition via inflammatory signaling. Our studies indicate that developmental exposure of either parent to TCDD is associated with preterm birth in a subsequent adult pregnancy due to altered PR expression and placental inflammation.

  19. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels

    PubMed Central

    Jeon, Seong Gak; Kim, Kyoung Ah; Chung, Hyunju; Choi, Junghyun; Song, Eun Ji; Han, Seung-Yun; Oh, Myung Sook; Park, Jong Hwan; Kim, Jin-il; Moon, Minho

    2016-01-01

    Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic. PMID:27432189

  20. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels.

    PubMed

    Jeon, Seong Gak; Kim, Kyoung Ah; Chung, Hyunju; Choi, Junghyun; Song, Eun Ji; Han, Seung-Yun; Oh, Myung Sook; Park, Jong Hwan; Kim, Jin-Il; Moon, Minho

    2016-08-31

    Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic. PMID:27432189

  1. Brain-Derived Neurotrophic Factor Signaling Does Not Stimulate Subventricular Zone Neurogenesis in Adult Mice and Rats

    PubMed Central

    Galvão, Rui P.; Garcia-Verdugo, José Manuel; Alvarez-Buylla, Arturo

    2009-01-01

    In rodents, the adult subventricular zone (SVZ) generates neuroblasts which migrate to the olfactory bulb (OB) and differentiate into interneurons. Recent work suggests that the neurotrophin Brain-Derived Neurotrophic Factor (BDNF) can enhance adult SVZ neurogenesis, but the mechanism by which it acts is unknown. Here, we analyzed the role of BDNF and its receptor TrkB in adult SVZ neurogenesis. We found that TrkB is the most prominent neurotrophin receptor in the mouse SVZ, but only the truncated, kinase-negative isoform (TrkB-TR) was detected. TrkB-TR is expressed in SVZ astrocytes and ependymal cells, but not in neuroblasts. TrkB mutants have reduced SVZ proliferation and survival and fewer new OB neurons. To test if this effect is cell-autonomous, we grafted SVZ cells from TrkB knockout mice (TrkB-KO) into the SVZ of wild-type mice (WT). Grafted progenitors generated neuroblasts that migrated to the OB in the absence of TrkB. The survival and differentiation of granular interneurons and Calbindin+ periglomerular interneurons seemed unaffected by the loss of TrkB, while dopaminergic periglomerular neurons were reduced. Intra-ventricular infusion of BDNF yielded different results depending on the animal species, having no effect on neuron production from mouse SVZ, while decreasing it in rats. Interestingly, mice and rats also differ in their expression of the neurotrophin receptor, p75. Our results indicate that TrkB is not essential for adult SVZ neurogenesis and do not support the current view that delivering BDNF to the SVZ can enhance adult neurogenesis. PMID:19074010

  2. Effect of Infection Duration on Habitat Selection and Morphology of Adult Echinostoma caproni (Digenea: Echinostomatidae) in ICR Mice.

    PubMed

    Platt, Thomas R; Zelmer, Derek A

    2016-02-01

    The course of infection of Echinostoma caproni was followed in female ICR mice, a permissive laboratory host, from infection to natural termination. Twenty-one mice were infected with 20 metacercariae via oral intubation and housed 3 per cage. Three mice from a randomly selected cage were necropsied at 1 mo intervals. A second group of 15 mice was infected approximately 1 yr later to replace mice negative at necropsy in the first group. Mice in the second group were examined weekly for the presence of eggs in the feces. Mice negative for eggs on consecutive days were killed and necropsied. The location of individual worms and worm clusters were located in 20 segments of the small intestine. Adult worms were killed and fixed in hot formalin, stained, and prepared as whole mounts. Standard measurements were taken using a compound microscope fitted with an ocular micrometer. The infection spontaneously resolved in 10 mice from 7 to 32 wk PI, indicating the host response is highly variable and extending the maximum recorded length of E. caproni infections in ICR mice to 31 wk. A moribund worm was found in the feces of an animal that continued to pass eggs for an additional 2 mo indicating individual variation in worm responses. Worms located preferentially in the ileum (segments 11-13) during the first 3 mo of the infection but shifted to the jejunum (segments 8-9) during weeks 4-6. Morphologically, worms of different ages clustered together in multivariate space, with substantial overlap between the 3- and 4-mo-old infrapopulations and between the 5- and 6-mo-old infrapopulations. Muscular structures increased in size throughout the experiment, while the gonads increased in size for the first 3 mo and then declined during the last 3 mo. The relationship between E. caproni and ICR mice is more nuanced than previously reported. The reduction in gonad size and the shift from the ileum to the jejunum in the last 3 mo likely are related. These changes might be attributable

  3. Loss of endothelial-ARNT in adult mice contributes to dampened circulating proangiogenic cells and delayed wound healing.

    PubMed

    Han, Yu; Tao, Jiayi; Gomer, Alla; Ramirez-Bergeron, Diana L

    2014-12-01

    The recruitment and homing of circulating bone marrow-derived cells include endothelial progenitor cells (EPCs) that are critical to neovascularization and tissue regeneration of various vascular pathologies. We report here that conditional inactivation of hypoxia-inducible factor's (HIF) transcriptional activity in the endothelium of adult mice (Arnt(ΔiEC) mice) results in a disturbance of infiltrating cells, a hallmark of neoangiogenesis, during the early phases of wound healing. Cutaneous biopsy punches show distinct migration of CD31(+) cells into wounds of control mice by 36 hours. However, a significant decline in numbers of infiltrating cells with immature vascular markers, as well as decreased transcript levels of genes associated with their expression and recruitment, were identified in wounds of Arnt(ΔiEC) mice. Matrigel plug assays further confirmed neoangiogenic deficiencies alongside a reduction in numbers of proangiogenic progenitor cells from bone marrow and peripheral blood samples of recombinant vascular endothelial growth factor-treated Arnt(ΔiEC) mice. In addition to HIF's autocrine requirements in endothelial cells, our data implicate that extrinsic microenvironmental cues provided by endothelial HIF are pivotal for early migration of proangiogenic cells, including those involved in wound healing.

  4. Effects of docosahexaenoic acid and sardine oil diets on the ultrastructure of jejunal absorptive cells in adult mice.

    PubMed

    Tamura, M; Suzuki, H

    1996-01-01

    The influence of docosahexaenoic acid (DHA) and sardine oil diets on the ultrastructure of jejunal absorptive cells was studied. Adult male Crj:CD-1 (ICR) mice were fed a fat-free semisynthetic diet supplemented with 5% (by weight) purified DHA ethyl ester, refined sardine oil, or palm oil. The mice received the DHA or palm oil diets for 7 days (groups 1 and 2) and the refined sardine oil or palm oil diets for 30 days (groups 3 and 4). There were significant ultrastructural changes in the jejunal absorptive cells between the mice fed on the palm oil diet and those receiving the DHA and sardine oil diets. The endoplasmic reticulum and Golgi apparatus of some jejunal absorptive cells in the mice fed on the palm oil diet for 7 and 30 days developed vacuolation on the upper site of the nucleus. In contrast, many granules, which appeared to be lipid droplets, were observed in the endoplasmic reticulum and Golgi apparatus of the jejunal absorptive cells in the DHA and sardine oil diet groups. These results suggest that ultrastructural differences in the jejunal absorptive cells between mice in the omega-3 fatty acid and palm oil diet groups may be associated with the changes in lipid metabolism.

  5. Morphology of the external genitalia of the adult male and female mice as an endpoint of sex differentiation.

    PubMed

    Weiss, Dana A; Rodriguez, Esequiel; Cunha, Tristan; Menshenina, Julia; Barcellos, Dale; Chan, Lok Yun; Risbridger, Gail; Baskin, Laurence; Cunha, Gerald

    2012-05-01

    Adult external genitalia (ExG) are the endpoints of normal sex differentiation. Detailed morphometric analysis and comparison of adult mouse ExG has revealed 10 homologous features distinguishing the penis and clitoris that define masculine vs. feminine sex differentiation. These features have enabled the construction of a simple metric to evaluate various intersex conditions in mutant or hormonally manipulated mice. This review focuses on the morphology of the adult mouse penis and clitoris through detailed analysis of histologic sections, scanning electron microscopy, and three-dimensional reconstruction. We also present previous results from evaluation of "non-traditional" mammals, such as the spotted hyena and wallaby to demonstrate the complex process of sex differentiation that involves not only androgen-dependent processes, but also estrogen-dependent and hormone-independent mechanisms. PMID:21893161

  6. Morphology of the external genitalia of the adult male and female mice as an endpoint of sex differentiation

    PubMed Central

    Weiss, Dana A.; Rodriguez, Esequiel; Cunha, Tristan; Menshenina, Julia; Barcellos, Dale; Chan, Lok Yun; Risbridger, Gail; Baskin, Laurence; Cunha, Gerald

    2013-01-01

    Adult external genitalia (ExG) are the endpoints of normal sex differentiation. Detailed morphometric analysis and comparison of adult mouse ExG has revealed 10 homologous features distinguishing the penis and clitoris that define masculine vs. feminine sex differentiation. These features have enabled the construction of a simple metric to evaluate various intersex conditions in mutant or hormonally manipulated mice. This review focuses on the morphology of the adult mouse penis and clitoris through detailed analysis of histologic sections, scanning electron microscopy, and three-dimensional reconstruction. We also present previous results from evaluation of “non-traditional” mammals, such as the spotted hyena and wallaby to demonstrate the complex process of sex differentiation that involves not only androgen-dependent processes, but also estrogen-dependent and hormone-independent mechanisms. PMID:21893161

  7. Acceptability and Preliminary Outcomes of a Peer-Led Depression Prevention Intervention for African American Adolescents and Young Adults in Employment Training Programs

    ERIC Educational Resources Information Center

    Tandon, Darius; Mendelson, Tamar; Mance, GiShawn

    2011-01-01

    This study examines the acceptability and preliminary outcomes from an open trial of a depression prevention intervention for low-income African American adolescents and young adults in employment training programs. The sample (N=42) consisted of predominately African American adolescents and young adults (mean age=19.1) exhibiting subclinical…

  8. Effects of Allogeneic Hematopoietic Stem Cell Transplantation Plus Thymus Transplantation on Malignant Tumors: Comparison Between Fetal, Newborn, and Adult Mice

    PubMed Central

    Zhang, Yuming; Hosaka, Naoki; Cui, Yunze; Shi, Ming

    2011-01-01

    We have recently shown that allogeneic intrabone marrow–bone marrow transplantation + adult thymus transplantation (TT) is effective for hosts with malignant tumors. However, since thymic and hematopoietic cell functions differ with age, the most effective age for such intervention needed to be determined. We performed hematopoietic stem cell transplantation (HSCT) using the intrabone marrow method with or without TT from fetal, newborn, and adult B6 mice (H-2b) into BALB/c mice (H-2d) bearing Meth-A sarcoma (H-2d). The mice treated with all types of HSCT + TT showed more pronounced regression and longer survival than those treated with HSCT alone in all age groups. Those treated with HSCT + TT showed increased numbers of CD4+ and CD8+ T cells but decreased numbers of Gr-1/Mac-1 myeloid suppressor cells and decreased percentages of FoxP3 cells in CD4+ T cells, compared with those treated with HSCT alone. In all mice, those treated with fetal liver cell (as fetal HSCs) transplantation + fetal TT or with newborn liver cell (as newborn HSCs) transplantation (NLT) + newborn TT (NTT) showed the most regression, and the latter showed the longest survival. The number of Gr-1/Mac-1 cells was the lowest, whereas the percentage of CD62L−CD44+ effector memory T cells and the production of interferon γ (IFN-γ) were highest in the mice treated with NLT + NTT. These findings indicate that, at any age, HSCT + TT is more effective against cancer than HSCT alone and that NLT + NTT is most effective. PMID:20672991

  9. Post-training, intrahippocampal HDAC inhibition differentially impacts neural circuits underlying spatial memory in adult and aged mice.

    PubMed

    Dagnas, Malorie; Micheau, Jacques; Decorte, Laurence; Beracochea, Daniel; Mons, Nicole

    2015-07-01

    Converging evidence indicates that pharmacologically elevating histone acetylation using post-training, systemic or intrahippocampal, administration of histone deacetylase inhibitor (HDACi) can enhance memory consolidation processes in young rodents but it is not yet clear, whether such treatment is sufficient to prevent memory impairments associated with aging. To address this question, we used a 1-day massed spatial learning task in the water maze to investigate the effects of immediate post-training injection of the HDACi trichostatin A (TSA) into the dorsal hippocampus on long-term memory consolidation in 3-4 and 18-20 month-old mice. We show that TSA improved the 24 h-memory retention for the hidden platform location in young-adults, but failed to rescue memory impairments in older mice. The results further indicate that Young-TSA mice sacrificed 1 h after training had a robust increase in histone H4 acetylation in the dorsal hippocampal CA1 region (dCA1) and the dorsomedial part of the striatum (DMS), a structure important for spatial information processing. Importantly, TSA infusion in aged mice completely rescued altered H4 acetylation in the dCA1 but failed to alleviate age-associated decreased H4 acetylation in the DMS. Moreover, intrahippocampal TSA infusion produced concomitant decreases (in adults) or increases (in older mice) of acetylated histone levels in the ventral hippocampus (vCA1 and vCA3) and the lateral amygdala, two structures critically involved in stress and emotional responses. These data suggest that the failure of post-training, intrahippocampal TSA injection to reverse age-associated memory impairments may be related to an inability to recruit appropriate circuit-specific epigenetic patterns during early consolidation processes.

  10. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21.

    PubMed

    Lees, Emma K; Król, Elżbieta; Grant, Louise; Shearer, Kirsty; Wyse, Cathy; Moncur, Eleanor; Bykowska, Aleksandra S; Mody, Nimesh; Gettys, Thomas W; Delibegovic, Mirela

    2014-10-01

    Methionine restriction (MR) decreases body weight and adiposity and improves glucose homeostasis in rodents. Similar to caloric restriction, MR extends lifespan, but is accompanied by increased food intake and energy expenditure. Most studies have examined MR in young animals; therefore, the aim of this study was to investigate the ability of MR to reverse age-induced obesity and insulin resistance in adult animals. Male C57BL/6J mice aged 2 and 12 months old were fed MR (0.172% methionine) or control diet (0.86% methionine) for 8 weeks or 48 h. Food intake and whole-body physiology were assessed and serum/tissues analyzed biochemically. Methionine restriction in 12-month-old mice completely reversed age-induced alterations in body weight, adiposity, physical activity, and glucose tolerance to the levels measured in healthy 2-month-old control-fed mice. This was despite a significant increase in food intake in 12-month-old MR-fed mice. Methionine restriction decreased hepatic lipogenic gene expression and caused a remodeling of lipid metabolism in white adipose tissue, alongside increased insulin-induced phosphorylation of the insulin receptor (IR) and Akt in peripheral tissues. Mice restricted of methionine exhibited increased circulating and hepatic gene expression levels of FGF21, phosphorylation of eIF2a, and expression of ATF4, with a concomitant decrease in IRE1α phosphorylation. Short-term 48-h MR treatment increased hepatic FGF21 expression/secretion and insulin signaling and improved whole-body glucose homeostasis without affecting body weight. Our findings suggest that MR feeding can reverse the negative effects of aging on body mass, adiposity, and insulin resistance through an FGF21 mechanism. These findings implicate MR dietary intervention as a viable therapy for age-induced metabolic syndrome in adult humans. PMID:24935677

  11. Decreased spermatogenesis led to alterations of testis-specific gene expression in male mice following nano-TiO2 exposure.

    PubMed

    Hong, Fashui; Zhao, Xiaoyang; Si, Wenhui; Ze, Yuguan; Wang, Ling; Zhou, Yingjun; Hong, Jie; Yu, Xiaohong; Sheng, Lei; Liu, Dong; Xu, Bingqing; Zhang, Jianhao

    2015-12-30

    Although TiO2 nanoparticles (NPs) exposure has been demonstrated to cross blood-testis barrier and accumulate in the testis resulting in the reduction of sperm numbers, limited data with respect to the molecular mechanism of decreased spermatogenesis caused by TiO2 NP exposure. In this research, testicular damage, sperm number and alterations in testis-specific gene expressions in male mice induced by intragastric administration with TiO2 NPs for six months were investigated. It was found out that TiO2 NPs could migrate to cells, deposit in the testis and epididymis and thus cause damages to relevant organs, which are, to be more specific, the reductions of total sperm concentrations and sperm motility and an enhancement in the number of abnormal sperms in the cauda epididymis. Furthermore, the individual expression regarding to the mRNAs and proteins of testis-specific genes, including Cdc2, Cyclin B1, Dmcl, TERT, Tesmin, TESP-1, XPD and XRCCI, were significantly declined, whereas Gsk3-β and PGAM4 expressions were greatly elevated in mouse testis due to the exposures, which in fact implied that the reduced spermatogenesis may be involved in the alternated testis-specific gene expressions in those exposed male mice.

  12. Neonatal Bacillus Calmette-Guérin vaccination alleviates lipopolysaccharide-induced neurobehavioral impairments and neuroinflammation in adult mice

    PubMed Central

    Yang, Junhua; Qi, Fangfang; Yao, Zhibin

    2016-01-01

    The Bacillus Calmette-Guérin (BCG) vaccine is routinely administered to human neonates worldwide. BCG has recently been identified as a neuroprotective immune mediator in several neuropathological conditions, exerting neuroprotection in a mouse model of Parkinson's disease and slowing the progression of clinically isolated syndrome in patients with multiple sclerosis. The immune system is significantly involved in brain development, and several types of neonatal immune activations exert influences on the brain and behavior following a secondary immune challenge in adulthood. However, whether the neonatal BCG vaccination affects the brain in adulthood remains to be elucidated. In the present study, newborn C57BL/6 mice were injected subcutaneously with BCG (105 colony forming units) or phosphate-buffered saline (PBS). A total of 12 weeks later, the mice were injected intraperitoneally with 330 µg/kg lipopolysaccharide (LPS) or PBS. The present study reported that the neonatal BCG vaccination alleviated sickness, anxiety and depression-like behavior, lessened the impairments in hippocampal cell proliferation and downregulated the proinflammatory responses in the serum and brain that were induced by the adult LPS challenge. However, BCG vaccination alone had no evident influence on the brain and behavior in adulthood. In conclusion, the neonatal BCG vaccination alleviated the neurobehavioral impairments and neuroinflammation induced by LPS exposure in adult mice, suggesting a potential neuroprotective role of the neonatal BCG vaccination in adulthood. PMID:27357155

  13. The bed nucleus of the stria terminalis has developmental and adult forms in mice, with the male bias in the developmental form being dependent on testicular AMH.

    PubMed

    Wittmann, Walter; McLennan, Ian S

    2013-09-01

    Canonically, the sexual dimorphism in the brain develops perinatally, with adult sexuality emerging due to the activating effects of pubescent sexual hormones. This concept does not readily explain why children have a gender identity and exhibit sex-stereotypic behaviours. These phenomena could be explained if some aspects of the sexual brain networks have childhood forms, which are transformed at puberty to generate adult sexuality. The bed nucleus of stria terminalis (BNST) is a dimorphic nucleus that is sex-reversed in transsexuals but not homosexuals. We report here that the principal nucleus of the BNST (BNSTp) of mice has developmental and adult forms that are differentially regulated. In 20-day-old prepubescent mice, the male bias in the principal nucleus of the BNST (BNSTp) was moderate (360 ± 6 vs 288 ± 12 calbindin(+ve) neurons, p < 0.0001), and absent in mice that lacked a gonadal hormone, AMH. After 20 days, the number of BNSTp neurons increased in the male mice by 25% (p < 0.0001) and decreased in female mice by 15% (p = 0.0012), independent of AMH. Adult male AMH-deficient mice had a normal preference for sniffing female pheromones (soiled bedding), but exhibited a relative disinterest in both male and female pheromones. This suggests that male mice require AMH to undergo normal social development. The reported observations provide a rationale for examining AMH levels in children with gender identity disorders and disorders of socialization that involve a male bias.

  14. Blocking glucocorticoid receptors at adolescent age prevents enhanced freezing between repeated cue-exposures after conditioned fear in adult mice raised under chronic early life stress.

    PubMed

    Arp, J Marit; Ter Horst, Judith P; Loi, Manila; den Blaauwen, Jan; Bangert, Eline; Fernández, Guillén; Joëls, Marian; Oitzl, Melly S; Krugers, Harm J

    2016-09-01

    Early life adversity can have long-lasting impact on learning and memory processes and increase the risk to develop stress-related psychopathologies later in life. In this study we investigated (i) how chronic early life stress (ELS) - elicited by limited nesting and bedding material from postnatal day 2 to 9 - affects conditioned fear in adult mice and (ii) whether these effects can be prevented by blocking glucocorticoid receptors (GRs) at adolescent age. In adult male and female mice, ELS did not affect freezing behavior to the first tone 24h after training in an auditory fear-conditioning paradigm. Exposure to repeated tones 24h after training also resulted in comparable freezing behavior in ELS and control mice, both in males and females. However, male (but not female) ELS compared to control mice showed significantly more freezing behavior between the tone-exposures, i.e. during the cue-off periods. Intraperitoneal administration of the GR antagonist RU38486 during adolescence (on postnatal days 28-30) fully prevented enhanced freezing behavior during the cue-off period in adult ELS males. Western blot analysis revealed no effects of ELS on hippocampal expression of glucocorticoid receptors, neither at postnatal day 28 nor at adult age, when mice were behaviorally tested. We conclude that ELS enhances freezing behavior in adult mice in a potentially safe context after cue-exposure, which can be normalized by brief blockade of glucocorticoid receptors during the critical developmental window of adolescence. PMID:27246249

  15. Exposure to neonatal cigarette smoke causes durable lung changes but does not potentiate cigarette smoke-induced chronic obstructive pulmonary disease in adult mice.

    PubMed

    McGrath-Morrow, Sharon; Malhotra, Deepti; Lauer, Thomas; Collaco, J Michael; Mitzner, Wayne; Neptune, Enid; Wise, Robert; Biswal, Shyam

    2011-08-01

    The impact of early childhood cigarette smoke (CS) exposure on CS-induced chronic obstructive pulmonary disease (COPD) is unknown. This study was performed to evaluate the individual and combined effects of neonatal and adult CS exposure on lung structure, function, and gene expression in adult mice. To model a childhood CS exposure, neonatal C57/B6 mice were exposed to 14 days of CS (Neo CS). At 10 weeks of age, Neo CS and control mice were exposed to 4 months of CS. Pulmonary function tests, bronchoalveolar lavage, and lung morphometry were measured and gene expression profiling was performed on lung tissue. Mean chord lengths and lung volumes were increased in neonatal and/or adult CS-exposed mice. Differences in immune, cornified envelope protein, muscle, and erythrocyte genes were found in CS-exposed lung. Neonatal CS exposure caused durable structural and functional changes in the adult lung but did not potentiate CS-induced COPD changes. Cornified envelope protein gene expression was decreased in all CS-exposed mice, whereas myosin and erythrocyte gene expression was increased in mice exposed to both neonatal and adult CS, suggesting an adaptive response. Additional studies may be warranted to determine the utility of these genes as biomarkers of respiratory outcomes.

  16. A history of chronic morphine exposure during adolescence increases despair-like behaviour and strain-dependently promotes sociability in abstinent adult mice

    PubMed Central

    Lutz, PE; Reiss, D; Ouagazzal, AM; Kieffer, BL

    2013-01-01

    A crucial issue in treating opiate addiction, a chronic relapsing disorder, is to maintain a drug-free abstinent state. Prolonged abstinence associates with mood disorders, strongly contributing to relapse. In particular, substance use disorders occurring during adolescence predispose to depression later in adulthood. Using our established mouse model of opiate abstinence, we characterized emotional consequences into adulthood of morphine exposure during adolescence. Our results indicate that morphine treatment in adolescent mice has no effect on anxiety-like behaviours in adult mice, after abstinence. In contrast, morphine treatment during adolescence increases behavioural despair in adult mice. We also show that morphine exposure strain-dependently enhances sociability in adult mice. Additional research will be required to understand where and how morphine acts during brain maturation to affect emotional and social behaviours into adulthood. PMID:23295400

  17. Circadian cycle dependent EEG biomarkers of pathogenicity in adult mice following prenatal exposure to in utero inflammation

    PubMed Central

    Adler, Daniel A; Ammanuel, Simon; Lei, Jun; Dada, Tahani; Borbiev, Talaibek; Johnston, Michael.V.; Kadam, Shilpa.D.; Burd, Irina

    2014-01-01

    Intrauterine infection or inflammation in preterm neonates is a known risk for adverse neurological outcomes, including cognitive, motor and behavioral disabilities. Our previous data suggest that there is acute fetal brain inflammation in a mouse model of intrauterine exposure to lipopolysaccharides (LPS). We hypothesized that the in utero inflammation induced by LPS produces long-term EEG biomarkers of neurodegeneration in the exposed mice that could be determined by using continuous quantitative video-EEG-EMG analyses. A single LPS injection at E17 was performed in pregnant CD1 dams. Control dams were injected with same volumes of saline (LPS n=10, Control n=8). At postnatal age of P90-100, 24h synchronous video/EEG/EMG recordings were done using a tethered recording system and implanted subdural electrodes. Behavioral state scoring was performed blind to treatment group, on each 10 second EEG epochs using synchronous video, EMG and EEG trace signatures to generate individual hypnograms. Automated EEG power spectrums were analyzed for delta and theta-beta power ratios during wake vs. sleep cycles. Both control and LPS hypnograms showed an ultradian wake/sleep cycling. Since rodents are nocturnal animals, control mice showed the expected diurnal variation with significantly longer time spent in wake states during the dark cycle phase. In contrast, the LPS treated mice lost this circadian rhythm. Sleep microstructure also showed significant alteration in the LPS mice specifically during the dark cycle, caused by significantly longer average NREM cycle durations. No significance was found between treatment groups for the delta power data; however, significant activity dependent changes in theta-beta power ratios seen in controls were absent in the LPS-exposed mice. In conclusion, exposure to in utero inflammation in CD1 mice resulted in significantly altered sleep architecture as adults that were circadian cycle and activity state dependent. PMID:24954445

  18. Cessation of voluntary wheel running increases anxiety-like behavior and impairs adult hippocampal neurogenesis in mice.

    PubMed

    Nishijima, Takeshi; Llorens-Martín, María; Tejeda, Gonzalo Sanchez; Inoue, Koshiro; Yamamura, Yuhei; Soya, Hideaki; Trejo, José Luis; Torres-Alemán, Ignacio

    2013-05-15

    While increasing evidence demonstrates that physical exercise promotes brain health, little is known on how the reduction of physical activity affects brain function. We investigated whether the cessation of wheel running alters anxiety-like and depression-like behaviors and its impact on adult hippocampal neurogenesis in mice. Male C57BL/6 mice (4 weeks old) were assigned to one of the following groups, and housed until 21 weeks old; (1) no exercise control (noEx), housed in a standard cage; (2) exercise (Ex), housed in a running wheel cage; and (3) exercise-no exercise (Ex-noEx), housed in a running wheel cage for 8 weeks and subsequently in a standard cage. Behavioral evaluations suggested that Ex-noEx mice were more anxious compared to noEx control mice, but no differences were found in depression-like behavior. The number of BrdU-labeled surviving cells in the dentate gyrus was significantly higher in Ex but not in Ex-noEx compared with noEx, indicating that the facilitative effects of exercise on cell survival are reversible. Surprisingly, the ratio of differentiation of BrdU-positive cells to doublecortin-positive immature neurons was significantly lower in Ex-noEx compared to the other groups, suggesting that the cessation of wheel running impairs an important component of hippocampal neurogenesis in mice. These results indicate that hippocampal adaptation to physical inactivity is not simply a return to the conditions present in sedentary mice. As the impaired neurogenesis is predicted to increase a vulnerability to stress-induced mood disorders, the reduction of physical activity may contribute to a greater risk of these disorders.

  19. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    PubMed Central

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R.; Newman, John W.; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring. PMID:25076055

  20. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    PubMed

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R; Newman, John W; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  1. Developmental exposure of mice to TCDD elicits a similar uterine phenotype in adult animals as observed in women with endometriosis.

    PubMed

    Nayyar, Tultul; Bruner-Tran, Kaylon L; Piestrzeniewicz-Ulanska, Dagmara; Osteen, Kevin G

    2007-01-01

    Whether environmental toxicants impact an individual woman's risk for developing endometriosis remains uncertain. Although the growth of endometrial glands and stroma at extra-uterine sites is associated with retrograde menstruation, our studies suggest that reduced responsiveness to progesterone may increase the invasive capacity of endometrial tissue in women with endometriosis. Interestingly, our recent studies using isolated human endometrial cells in short-term culture suggest that experimental exposure to the environmental contaminant 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) can alter the expression of progesterone receptor isotypes. Compared to adult exposure, toxicant exposure during development can exert a significantly greater biological impact, potentially affecting the incidence of endometriosis in adults. To address this possibility, we exposed mice to TCDD at critical developmental time points and subsequently examined uterine progesterone receptor expression and steroid responsive transforming growth factor-beta2 expression in adult animals. We find that the uterine phenotype of toxicant-exposed mice is markedly similarly to the endometrial phenotype of women with endometriosis.

  2. Conditional Deletion of Fgfr3 in Chondrocytes leads to Osteoarthritis-like Defects in Temporomandibular Joint of Adult Mice

    PubMed Central

    Zhou, Siru; Xie, Yangli; Li, Wei; Huang, Junlan; Wang, Zuqiang; Tang, Junzhou; Xu, Wei; Sun, Xianding; Tan, Qiaoyan; Huang, Shuo; Luo, Fengtao; Xu, Meng; Wang, Jun; Wu, Tingting; chen, Liang; Chen, Hangang; Su, Nan; Du, Xiaolan; Shen, Yue; Chen, Lin

    2016-01-01

    Osteoarthritis (OA) in the temporomandibular joint (TMJ) is a common degenerative disease in adult, which is characterized by progressive destruction of the articular cartilage. To investigate the role of FGFR3 in the homeostasis of TMJ cartilage during adult stage, we generated Fgfr3f/f; Col2a1-CreERT2 (Fgfr3 cKO) mice, in which Fgfr3 was deleted in chondrocytes at 2 months of age. OA-like defects were observed in Fgfr3 cKO TMJ cartilage. Immunohistochemical staining and quantitative real-time PCR analyses revealed a significant increase in expressions of COL10, MMP13 and AMAMTS5. In addition, there was a sharp increase in chondrocyte apoptosis at the Fgfr3 cKO articular surface, which was accompanied by a down-regulation of lubricin expression. Importantly, the expressions of RUNX2 and Indian hedgehog (IHH) were up-regulated in Fgfr3 cKO TMJ. Primary Fgfr3 cKO chondrocytes were treated with IHH signaling inhibitor, which significantly reduced expressions of Runx2, Col10, Mmp13 and Adamts5. Furthermore, the IHH signaling inhibitor partially alleviated OA-like defects in the TMJ of Fgfr3 cKO mice, including restoration of lubricin expression and improvement of the integrity of the articular surface. In conclusion, our study proposes that FGFR3/IHH signaling pathway plays a critical role in maintaining the homeostasis of TMJ articular cartilage during adult stage. PMID:27041063

  3. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice.

    PubMed

    Stephenson, Erin J; Ragauskas, Alyse; Jaligama, Sridhar; Redd, JeAnna R; Parvathareddy, Jyothi; Peloquin, Matthew J; Saravia, Jordy; Han, Joan C; Cormier, Stephania A; Bridges, Dave

    2016-06-01

    We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion-derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle.

  4. CT-GalNAc transferase overexpression in adult mice is associated with extrasynaptic utrophin in skeletal muscle fibres.

    PubMed

    Durko, Margaret; Allen, Carol; Nalbantoglu, Josephine; Karpati, George

    2010-09-01

    Duchenne muscular dystrophy is a genetic muscle disease characterized by the absence of sub-sarcolemmal dystrophin that results in muscle fibre necrosis, progressive muscle wasting and is fatal. Numerous experimental studies with dystrophin-deficient mdx mice, an animal model for the disease, have demonstrated that extrasynaptic upregulation of utrophin, an analogue of dystrophin, can prevent muscle fibre deterioration and reduce or negate the dystrophic phenotype. A different approach for ectopic expression of utrophin relies on augmentation of CT-GalNAc transferase in muscle fibre. We investigated whether CT-GalNAc transferase overexpression in adult mice influence appearance of utrophin in the extrasynaptic sarcolemma. After electrotransfer of plasmid DNA carrying an expression cassette of CT-GalNAc transferase into tibialis anterior muscle of wild type and dystrophic mice, muscle sections were examined by immunofluorescence. CT-GalNAc transgene expression augmented sarcolemmal carbohydrate glycosylation and was accompanied by extrasynaptic utrophin. A 6-week time course study showed that the highest efficiency of utrophin overexpression in a plasmid harboured muscle fibres was 32.2% in CD-1 and 52% in mdx mice, 2 and 4 weeks after CT-GalNAc gene transfer, respectively. The study provides evidence that postnatal CT-GalNAc transferase overexpression stimulates utrophin upregulation that is inherently beneficial for muscle structure and strength restoration. Thus CT-GalNAc may provide an important therapeutic molecule for treatment of dystrophin deficiency in Duchenne muscular dystrophy.

  5. Chronic social defeat stress increases dopamine D2 receptor dimerization in the prefrontal cortex of adult mice.

    PubMed

    Bagalkot, T R; Jin, H-M; Prabhu, V V; Muna, S S; Cui, Y; Yadav, B K; Chae, H-J; Chung, Y-C

    2015-12-17

    The present study aimed to examine the effects of chronic social defeat stress on the dopamine receptors and proteins involved in post-endocytic trafficking pathways. Adult mice were divided into susceptible and unsusceptible groups after 10 days of social defeat stress. Western blot analysis was used to measure the protein expression levels of dopamine D2 receptors (D2Rs), a short (D2S) and a long form (D2L) and, D2R monomers and dimers, dopamine D1 receptors (D1Rs), neuronal calcium sensor-1 (NCS-1) and G protein-coupled receptor-associated sorting protein-1 (GASP-1), and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the mRNA expression levels of D2S, D2L, D2R monomers and dimers, and D1Rs in different brain areas. We observed increased expression of D2S, D2L and D2Rs dimers in the prefrontal cortex (PFC) of susceptible and/or unsusceptible mice compared with controls. The only significant findings with regard to mRNA expression levels were lower expression of D2S mRNA in the amygdala (AMYG) of susceptible and unsusceptible mice compared with controls. The present study demonstrated that chronic social defeat stress induced increased expression of D2S, D2L, and D2R dimers in the PFC of susceptible and/or unsusceptible mice. PMID:26484605

  6. Only watching others making their experiences is insufficient to enhance adult neurogenesis and water maze performance in mice

    PubMed Central

    Iggena, Deetje; Klein, Charlotte; Garthe, Alexander; Winter, York; Kempermann, Gerd; Steiner, Barbara

    2015-01-01

    In the context of television consumption and its opportunity costs the question arises how far experiencing mere representations of the outer world would have the same neural and cognitive consequences than actively interacting with that environment. Here we demonstrate that physical interaction and direct exposition are essential for the beneficial effects of environmental enrichment. In our experiment, the mice living in a simple standard cage placed in the centre of a large enriched environment only indirectly experiencing the stimulus-rich surroundings (IND) did not display increased adult hippocampal neurogenesis. In contrast, the mice living in and directly experiencing the surrounding enriched environment (DIR) and mice living in a similar enriched cage containing an uninhabited inner cage (ENR) showed enhanced neurogenesis compared to mice in control conditions (CTR). Similarly, the beneficial effects of environmental enrichment on learning performance in the Morris Water maze depended on the direct interaction of the individual with the enrichment. In contrast, indirectly experiencing a stimulus-rich environment failed to improve memory functions indicating that direct interaction and activity within the stimulus-rich environment are necessary to induce structural and functional changes in the hippocampus. PMID:26369255

  7. Lentiviral Transduction of Neurons in Adult Brain: Evaluation of Inflammatory Response and Cognitive Effects in Mice.

    PubMed

    Kunitsyna, T A; Ivashkina, O I; Roshchina, M A; Toropova, K A; Anokhin, K V

    2016-06-01

    We evaluated the effect of hippocampal injection of lentiviral particles p156-CMV-EGFP on behavior, learning, and microglial Iba1(+) cells activation in mice. Testing in the open field and elevated plus-maze revealed higher anxiety levels in lentiviral-injected mice in comparison with animals injected with vehicle. At the same time, lentivirus injection did not change learning and memory of mice in the hippocampal-dependent fear conditioning task. Microglia density in lentivirus-injected mice was significantly higher than in vehicle-injected mice. Thus, hippocampal injection of lentiviral particles with minimum content of transgenes produced evident inflammation process, changed anxiety level of experimental animals, but had no effect on hippocampal-dependent learning and memory. PMID:27383167

  8. Effects of neuron-specific estrogen receptor (ER) α and ERβ deletion on the acute estrogen negative feedback mechanism in adult female mice.

    PubMed

    Cheong, Rachel Y; Porteous, Robert; Chambon, Pierre; Abrahám, István; Herbison, Allan E

    2014-04-01

    The negative feedback mechanism through which 17β-estradiol (E2) acts to suppress the activity of the GnRH neurons remains unclear. Using inducible and cell-specific genetic mouse models, we examined the estrogen receptor (ER) isoforms expressed by neurons that mediate acute estrogen negative feedback. Adult female mutant mice in which ERα was deleted from all neurons in the neonatal period failed to exhibit estrous cycles or negative feedback. Adult mutant female mice with neonatal neuronal ERβ deletion exhibited normal estrous cycles, but a failure of E2 to suppress LH secretion was seen in ovariectomized mice. Mutant mice with a GnRH neuron-selective deletion of ERβ exhibited normal cycles and negative feedback, suggesting no critical role for ERβ in GnRH neurons in acute negative feedback. To examine the adult roles of neurons expressing ERα, an inducible tamoxifen-based Cre-LoxP approach was used to ablate ERα from neurons that express calmodulin kinase IIα in adults. This resulted in mice with no estrous cycles, a normal increase in LH after ovariectomy, but an inability of E2 to suppress LH secretion. Finally, acute administration of ERα- and ERβ-selective agonists to adult ovariectomized wild-type mice revealed that activation of ERα suppressed LH secretion, whereas ERβ agonists had no effect. This study highlights the differences in adult reproductive phenotypes that result from neonatal vs adult ablation of ERα in the brain. Together, these experiments expand previous global knockout studies by demonstrating that neurons expressing ERα are essential and probably sufficient for the acute estrogen negative feedback mechanism in female mice. PMID:24476134

  9. Effects of spaced learning in the water maze on development of dentate granule cells generated in adult mice.

    PubMed

    Trinchero, Mariela F; Koehl, Muriel; Bechakra, Malik; Delage, Pauline; Charrier, Vanessa; Grosjean, Noelle; Ladeveze, Elodie; Schinder, Alejandro F; Abrous, D Nora

    2015-11-01

    New dentate granule cells (GCs) are generated in the hippocampus throughout life. These adult-born neurons are required for spatial learning in the Morris water maze (MWM). In rats, spatial learning shapes the network by regulating their number and dendritic development. Here, we explored whether such modulatory effects exist in mice. New GCs were tagged using thymidine analogs or a GFP-expressing retrovirus. Animals were exposed to a reference memory protocol for 10-14 days (spaced training) at different times after newborn cells labeling. Cell proliferation, cell survival, cell death, neuronal phenotype, and dendritic and spine development were examined using immunohistochemistry. Surprisingly, spatial learning did not modify any of the parameters under scrutiny including cell number and dendritic morphology. These results suggest that although new GCs are required in mice for spatial learning in the MWM, they are, at least for the developmental intervals analyzed here, refractory to behavioral stimuli generated in the course of learning in the MWM.

  10. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice

    PubMed Central

    Yu, Qinghui; Teixeira, Cátia M.; Mahadevia, Darshini; Huang, Yung-Yu; Balsam, Daniel; Mann, J John; Gingrich, Jay A; Ansorge, Mark S.

    2014-01-01

    Pharmacologic blockade of monoamine oxidase A (MAOA) or serotonin transporter (5-HTT) has antidepressant and anxiolytic efficacy in adulthood. Yet, genetically conferred MAOA or 5-HTT hypo-activity is associated with altered aggression and increased anxiety/depression. Here we test the hypothesis that increased monoamine signaling during development causes these paradoxical aggressive and affective phenotypes. We find that pharmacologic MAOA blockade during early postnatal development (P2-P21) but not during peri-adolescence (P22-41) increases anxiety- and depression-like behavior in adult (> P90) mice, mimicking the effect of P2-21 5-HTT inhibition. Moreover, MAOA blockade during peri-adolescence, but not P2-21 or P182-201, increases adult aggressive behavior, and 5-HTT blockade from P22-P41 reduced adult aggression. Blockade of the dopamine transporter, but not the norepinephrine transporter, during P22-41 also increases adult aggressive behavior. Thus, P2-21 is a sensitive period during which 5-HT modulates adult anxiety/depression-like behavior, and P22-41 is a sensitive period during which DA and 5-HT bi-directionally modulate adult aggression. Permanently altered DAergic function as a consequence of increased P22-P41 monoamine signaling might underlie altered aggression. In support of this hypothesis, we find altered aggression correlating positively with locomotor response to amphetamine challenge in adulthood. Proving that altered DA function and aggression are causally linked, we demonstrate that optogenetic activation of VTA DAergic neurons increases aggression. It therefore appears that genetic and pharmacologic factors impacting dopamine and serotonin signaling during sensitive developmental periods can modulate adult monoaminergic function and thereby alter risk for aggressive and emotional dysfunction. PMID:24589889

  11. Low-magnitude whole-body vibration does not enhance the anabolic skeletal effects of intermittent PTH in adult mice.

    PubMed

    Lynch, Michelle A; Brodt, Michael D; Stephens, Abby L; Civitelli, Roberto; Silva, Matthew J

    2011-04-01

    Whole-body vibration (WBV) is a low-magnitude mechanical stimulus that may be anabolic for bone, yet we recently found that WBV did not improve bone properties in adult mice. Because intermittent parathyroid hormone (PTH) enhances the anabolic effects of high-magnitude skeletal loading, we sought to determine the skeletal effects of WBV in combination with PTH. Seven-month-old male BALB/c mice were assigned to six groups (n = 13-14/group) based on magnitude of applied acceleration (0 or 0.3 G) and PTH dose (0, 10, or 40 µg/kg/day). Mice were exposed to WBV (0.3 G, 90 Hz, sine wave) or sham loading (0 G) for 15 min/day, 5 days/week for 8 weeks. Vehicle or hPTH (1-34) was administered prior to each WBV session. Whole-body bone mineral content increased by ~ 5% from 0 to 8 weeks in the 40 µg/kg PTH group only, independent of WBV loading. Similarly, PTH treatment increased tibial cortical bone volume by ~5% from 0 to 8 weeks, independent of WBV loading. Neither PTH nor WBV stimulated trabecular bone formation. Consistent with the cortical bone effect, tibias from the 40 µg/kg PTH group had significantly greater ultimate force and energy to failure than tibias in the 0 and 10 µg/kg PTH groups, independent of WBV treatment. In summary, 8 weeks of intermittent PTH treatment increased cortical bone volume and strength in adult male BALB/c mice. Daily exposure to low-magnitude WBV by itself did not improve skeletal properties and did not enhance the PTH effect. No WBV-PTH synergy was found in this preclinical study.

  12. Unusual Repertoire of Vocalizations in Adult BTBR T+tf/J Mice During Three Types of Social Encounters

    PubMed Central

    Scattoni, Maria Luisa; Ricceri, Laura; Crawley, Jacqueline N.

    2010-01-01

    BTBR T+tf/J (BTBR) is an inbred mouse strain that displays social deficits and repetitive behaviors analogous to the first and third diagnostic symptoms of autism. We previously reported an unusual pattern of ultrasonic vocalizations in BTBR pups that may represent a behavioral homologue to the second diagnostic symptom of autism, impaired communication. The present study investigated the social and vocal repertoire in adult BTBR mice, to evaluate the role of ultrasonic vocalizations in multiple social situations at the adult stage of development. Three different social contexts were considered: male-female, male-male (resident-intruder) and female-female interactions. Behavioral responses and ultrasonic vocalizations were recorded for BTBR and for the highly social control strain C57BL/6J (B6). No episodes of overt fighting or mating were observed during the short durations of the three different experimental encounters. BTBR displayed lower levels of vocalizations and social investigation in all three social contexts as compared to B6. In addition, the correlation analyses between social investigation and USVs emission rate revealed that in B6 mice the two variables were positively correlated in all the three different social settings, whereas in BTBR mice the positive correlation was significant only in the male-female interactions. These findings strongly support the value of simultaneously recording two aspects of the mouse social repertoire, social motivation and bioacoustic communication. Moreover, our findings in adults are consistent with previous results in pups, showing an unusual vocal repertoire in BTBR as compared to B6. PMID:20618443

  13. Pubertal exposure to di-(2-ethylhexyl) phthalate influences social behavior and dopamine receptor D2 of adult female mice.

    PubMed

    Wang, Ran; Xu, Xiaohong; Zhu, Qingjie

    2016-02-01

    DEHP, one of the most commonly phthalates used in plastics and many other products, is an environmental endocrine disruptor (EED). Puberty is another critical period for the brain development besides the neonatal period and is sensitive to EEDs. Social behavior is organized during puberty, so the present study is to investigate whether pubertal exposure to DEHP influenced social behavior of adult female mice. The results showed that pubertal exposure to DEHP for 2 weeks did not change the serum level of 17β-estradiol and the weight of uterus of adult females, but decreased the number of grid crossings and the frequency of rearing, and increased grooming in open field. DEHP reduced the open arm entries and the time spent in open arms in the elevated plus maze. DEHP reduced mutual sniffing and grooming between unfamiliar conspecifics in social play task and reduced the right chamber (containing unfamiliar female mouse) entries and the frequency of sniffing unfamiliar female mouse. DEHP at 1 mg kg(-1) d(-1) reduced the time spent in right chamber. Furthermore, Western blot analyses showed that DEHP decreased the levels of estrogen receptor β (ERβ), dopamine receptor D2, and the phosphorylation of ERKs in striatum. These results suggest that pubertal exposure to DEHP impaired social investigation and sociability and influenced anxiety-like state of adult female mice. The decreased activity of ERK1/2, and the down-regulated D2 and ERβ in striatum may be associated with the DEHP-induced changes of emotional and social behavior in mice. PMID:26524146

  14. Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice.

    PubMed

    Bo, E; Farinetti, A; Marraudino, M; Sterchele, D; Eva, C; Gotti, S; Panzica, G

    2016-07-01

    Tributyltin (TBT), a pesticide used in antifouling paints, is toxic for aquatic invertebrates. In vertebrates, TBT may act in obesogen- inducing adipogenetic gene transcription for adipocyte differentiation. In a previous study, we demonstrated that acute administration of TBT induces c-fos expression in the arcuate nucleus. Therefore, in this study, we tested the hypothesis that adult exposure to TBT may alter a part of the nervous pathways controlling animal food intake. In particular, we investigated the expression of neuropeptide Y (NPY) immunoreactivity. This neuropeptide forms neural circuits dedicated to food assumption and its action is mediated by Y1 receptors that are widely expressed in the hypothalamic nuclei responsible for the regulation of food intake and energy homeostasis. To this purpose, TBT was orally administered at a dose of 0.025 mg/kg/day/body weight to adult animals [male and female C57BL/6 (Y1-LacZ transgenic mice] for 4 weeks. No differences were found in body weight and fat deposition, but we observed a significant increase in feed efficiency in TBT-treated male mice and a significant decrease in circulating leptin in both sexes. Computerized quantitative analysis of NPY immunoreactivity and Y1-related β-galactosidase activity demonstrated a statistically significant reduction in NPY and Y1 transgene expression in the hypothalamic circuit controlling food intake of treated male mice in comparison with controls. In conclusion, the present results indicate that adult exposure to TBT is profoundly interfering with the nervous circuits involved in the stimulation of food intake. PMID:27310180

  15. Pubertal exposure to di-(2-ethylhexyl) phthalate influences social behavior and dopamine receptor D2 of adult female mice.

    PubMed

    Wang, Ran; Xu, Xiaohong; Zhu, Qingjie

    2016-02-01

    DEHP, one of the most commonly phthalates used in plastics and many other products, is an environmental endocrine disruptor (EED). Puberty is another critical period for the brain development besides the neonatal period and is sensitive to EEDs. Social behavior is organized during puberty, so the present study is to investigate whether pubertal exposure to DEHP influenced social behavior of adult female mice. The results showed that pubertal exposure to DEHP for 2 weeks did not change the serum level of 17β-estradiol and the weight of uterus of adult females, but decreased the number of grid crossings and the frequency of rearing, and increased grooming in open field. DEHP reduced the open arm entries and the time spent in open arms in the elevated plus maze. DEHP reduced mutual sniffing and grooming between unfamiliar conspecifics in social play task and reduced the right chamber (containing unfamiliar female mouse) entries and the frequency of sniffing unfamiliar female mouse. DEHP at 1 mg kg(-1) d(-1) reduced the time spent in right chamber. Furthermore, Western blot analyses showed that DEHP decreased the levels of estrogen receptor β (ERβ), dopamine receptor D2, and the phosphorylation of ERKs in striatum. These results suggest that pubertal exposure to DEHP impaired social investigation and sociability and influenced anxiety-like state of adult female mice. The decreased activity of ERK1/2, and the down-regulated D2 and ERβ in striatum may be associated with the DEHP-induced changes of emotional and social behavior in mice.

  16. Successful semiallogeneic and allogeneic bone marrow reconstitution of lethally irradiated adult mice mediated by neonatal spleen cells

    SciTech Connect

    LaFace, D.M.; Peck, A.B.

    1987-11-01

    Spleens of fetal/newborn mice less than 3-4 days of age contain a naturally occurring cell population capable of suppressing T-dependent and T-independent immune responses of third-party adult cells both in vitro and in vivo. We have utilized newborn spleen cells to prevent acute graft-versus-host (GVH) disease in lethally irradiated adult hosts reconstituted with semiallogeneic or even allogeneic bone marrow cells. Pretreatment of reconstituting cell populations with newborn spleen cells reduced the incidence of GVH disease from 100% to 20% in semiallogeneic and from 100% to 40% in allogeneic combinations. Long-term-surviving reconstituted hosts proved immunologically unresponsive to both donor and host histocompatibility antigens, yet possessed a fully chimeric lymphoid system responsive to T and B cell mitogens, as well as unrelated third-party alloantigens.

  17. LEDs for Efficient Energy

    ERIC Educational Resources Information Center

    Guerin, David A.

    1978-01-01

    Light-emitting diodes (LEDs) are described and three classroom experiments are given, one to prove the, low power requirements and efficiency of LEDs, an LED on-off detector circuit, and the third an LED photoelectric smoke detector. (BB)

  18. Intrahepatic transplantation of CD34+ cord blood stem cells into newborn and adult NOD/SCID mice induce differential organ engraftment.

    PubMed

    Wulf-Goldenberg, Annika; Keil, Marlen; Fichtner, Iduna; Eckert, Klaus

    2012-04-01

    In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34(+) cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation. Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34(+) cord blood stem cell preparations.

  19. Environmental enrichment enhances episodic-like memory in association with a modified neuronal activation profile in adult mice.

    PubMed

    Leger, Marianne; Quiedeville, Anne; Paizanis, Eleni; Natkunarajah, Sharuja; Freret, Thomas; Boulouard, Michel; Schumann-Bard, Pascale

    2012-01-01

    Although environmental enrichment is well known to improve learning and memory in rodents, the underlying neuronal networks' plasticity remains poorly described. Modifications of the brain activation pattern by enriched condition (EC), especially in the frontal cortex and the baso-lateral amygdala, have been reported during an aversive memory task in rodents. The aims of our study were to examine 1) whether EC modulates episodic-like memory in an object recognition task and 2) whether EC modulates the task-induced neuronal networks. To this end, adult male mice were housed either in standard condition (SC) or in EC for three weeks before behavioral experiments (n = 12/group). Memory performances were examined in an object recognition task performed in a Y-maze with a 2-hour or 24-hour delay between presentation and test (inter-session intervals, ISI). To characterize the mechanisms underlying the promnesiant effect of EC, the brain activation profile was assessed after either the presentation or the test sessions using immunohistochemical techniques with c-Fos as a neuronal activation marker. EC did not modulate memory performances after a 2 h-ISI, but extended object recognition memory to a 24 h-ISI. In contrast, SC mice did not discriminate the novel object at this ISI. Compared to SC mice, no activation related to the presentation session was found in selected brain regions of EC mice (in particular, no effect was found in the hippocampus and the perirhinal cortex and a reduced activation was found in the baso-lateral amygdala). On the other hand, an activation of the hippocampus and the infralimbic cortex was observed after the test session for EC, but not SC mice. These results suggest that the persistence of object recognition memory in EC could be related to a reorganization of neuronal networks occurring as early as the memory encoding.

  20. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    PubMed

    Buscariollo, Daniela L; Fang, Xiefan; Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A; Wendler, Christopher C

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  1. Comparison of the deleterious effects of binge drinking-like alcohol exposure in adolescent and adult mice.

    PubMed

    Lacaille, Hélène; Duterte-Boucher, Dominique; Liot, Donovan; Vaudry, Hubert; Naassila, Mickael; Vaudry, David

    2015-03-01

    A major cause of alcohol toxicity is the production of reactive oxygen species generated during ethanol metabolism. The aim of this study was to compare the effect of binge drinking-like alcohol exposure on a panel of genes implicated in oxidative mechanisms in adolescent and adult mice. In adolescent animals, alcohol decreased the expression of genes involved in the repair and protection of oxidative DNA damage such as atr, gpx7, or nudt15 and increased the expression of proapoptotic genes such as casp3. In contrast, in the adult brain, genes activated by alcohol were mainly associated with protective mechanisms that prevent cells from oxidative damage. Whatever the age, iterative binge-like episodes provoked the same deleterious effects as those observed after a single binge episode. In adolescent mice, multiple binge ethanol exposure substantially reduced neurogenesis in the dentate gyrus and impaired short-term memory in the novel object and passive avoidance tests. Taken together, our results indicate that alcohol causes deleterious effects in the adolescent brain which are distinct from those observed in adults. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity. The effects of alcohol exposure were investigated on genes involved in oxidative mechanisms. In adolescent animals, alcohol decreased the expression of genes involved in DNA repair, a potential cause of the observed decrease of neurogenesis. In contrast, in the adult brain, alcohol increased the expression of genes associated with antioxidant mechanisms. Apoptosis was increase in all groups and converged with other biochemical alterations to enhance short-term memory impairment in the adolescent brain. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity. PMID:25556946

  2. Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    PubMed Central

    Capilla-Gonzalez, Vivian; Gil-Perotin, Sara; Ferragud, Antonio; Bonet-Ponce, Luis; Canales, Juan Jose; Garcia-Verdugo, Jose Manuel

    2012-01-01

    Background Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. Methodology/Principal Findings 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. Conclusions/Significance The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits. PMID:22238669

  3. Long-term voluntary running improves diet-induced adiposity in young adult mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of long-term voluntary running on diet-induced adiposity in male C57BL/6 mice. Four-week old mice (n = 15 per group) were fed the AIN93G diet or a 45% high-fat diet (% kcal.) with or without access to in-cage activity wheels for 14 weeks. The high-fat die...

  4. Two different pathways for the maintenance of trabecular bone in adult male mice.

    PubMed

    Lindberg, Marie K; Movérare, Sofia; Skrtic, Stanko; Alatalo, Sari; Halleen, Jussi; Mohan, Subburaman; Gustafsson, J A; Ohlsson, Claes

    2002-04-01

    Androgens may regulate the male skeleton either directly via activation of the androgen receptor (AR) or indirectly via aromatization of androgens into estrogen and, thereafter, via activation of estrogen receptors (ERs). There are two known estrogen receptors, ER-alpha and ER-beta. The aim of this study was to investigate the relative roles of ER-alpha, ER-beta, and AR in the maintenance of trabecular bone in male mice. Seven-month-old male mice, lacking ER-alpha (ERKO), ER-beta (BERKO), or both receptors (DERKO), were orchidectomized (orx) and treated for 3 weeks with 0.7 microg/mouse per day of 17beta-estradiol or vehicle. No reduction in trabecular bone mineral density (BMD) was seen in ERKO, BERKO, or DERKO mice before orx, showing that neither ER-a nor ER-beta is required for the maintenance of a normal trabecular BMD in male mice. After orx, there was a pronounced decrease in trabecular BMD, similar for all groups, resulting in equal levels of trabecular BMD in all genotypes. This reduction was reversed completely in wild-type (WT) and BERKO mice treated with estrogen, and no significant effect of estrogen was found in ERKO or DERKO mice. In summary, the trabecular bone is preserved both by a testicular factor, presumably testosterone acting via AR and by an estrogen-induced activation of ER-alpha. These results indicate that AR and ER-alpha are redundant in the maintenance of the trabecular bone in male mice. In contrast, ER-beta is of no importance for the regulation of trabecular bone in male mice.

  5. The In-Service Training of Adult Literacy, Numeracy and English for Speakers of Other Languages Teachers in England; the Challenges of a "Standards-Led Model"

    ERIC Educational Resources Information Center

    Lucas, Norman

    2007-01-01

    Drawing upon two research projects, this paper analyses changes affecting the in-service training of adult literacy, numeracy and teachers of English for Speakers of Other Languages in England. There are many issues raised in this paper, particularly how in-service teacher education programmes in England can meet the diversity of learner need, how…

  6. Longitudinal comparison of a physiotherapist-led, home-based and group-based program for increasing physical activity in community-dwelling middle-aged adults.

    PubMed

    Freene, Nicole; Waddington, Gordon; Davey, Rachel; Cochrane, Tom

    2015-01-01

    Few studies have compared the longer-term effects of physical activity interventions. Here we compare a 6-month physiotherapist-led, home-based physical activity program to a community group exercise program over 2 years. Healthy, sedentary community-dwelling 50-65 year olds were recruited to a non-randomised community group exercise program (G, n = 93) or a physiotherapist-led, home-based physical activity program (HB, n = 65). Outcomes included 'sufficient' physical activity (Active Australia Survey), minutes of moderate-vigorous physical activity (ActiGraph GT1M), aerobic capacity (2-min step-test), quality of life (SF-12v2), blood pressure, waist circumference, waist-to-hip ratio and body mass index. Outcome measures were collected at baseline, 6, 12, 18 and 24 months. Using intention-to-treat analysis, both interventions resulted in significant and sustainable increases in the number of participants achieving 'sufficient' physical activity (HB 22 v. 41%, G 22 v. 47%, P ≤ 0.001) and decreases in waist circumference (HB 90 v. 89 cm, G 93 v. 91 cm, P < 0.001) over 2 years. The home-based program was less costly (HB A$47 v. G $84 per participant) but less effective in achieving the benefits at 2 years. The physiotherapist-led, home-based physical activity program may be a low-cost alternative to increase physical activity levels for those not interested in, or unable to attend, a group exercise program.

  7. Longitudinal comparison of a physiotherapist-led, home-based and group-based program for increasing physical activity in community-dwelling middle-aged adults.

    PubMed

    Freene, Nicole; Waddington, Gordon; Davey, Rachel; Cochrane, Tom

    2015-01-01

    Few studies have compared the longer-term effects of physical activity interventions. Here we compare a 6-month physiotherapist-led, home-based physical activity program to a community group exercise program over 2 years. Healthy, sedentary community-dwelling 50-65 year olds were recruited to a non-randomised community group exercise program (G, n = 93) or a physiotherapist-led, home-based physical activity program (HB, n = 65). Outcomes included 'sufficient' physical activity (Active Australia Survey), minutes of moderate-vigorous physical activity (ActiGraph GT1M), aerobic capacity (2-min step-test), quality of life (SF-12v2), blood pressure, waist circumference, waist-to-hip ratio and body mass index. Outcome measures were collected at baseline, 6, 12, 18 and 24 months. Using intention-to-treat analysis, both interventions resulted in significant and sustainable increases in the number of participants achieving 'sufficient' physical activity (HB 22 v. 41%, G 22 v. 47%, P ≤ 0.001) and decreases in waist circumference (HB 90 v. 89 cm, G 93 v. 91 cm, P < 0.001) over 2 years. The home-based program was less costly (HB A$47 v. G $84 per participant) but less effective in achieving the benefits at 2 years. The physiotherapist-led, home-based physical activity program may be a low-cost alternative to increase physical activity levels for those not interested in, or unable to attend, a group exercise program. PMID:26509205

  8. Not all water mazes are created equal: cyclin D2 knockout mice with constitutively suppressed adult hippocampal neurogenesis do show specific spatial learning deficits.

    PubMed

    Garthe, A; Huang, Z; Kaczmarek, L; Filipkowski, R K; Kempermann, G

    2014-04-01

    Studies using the Morris water maze to assess hippocampal function in animals, in which adult hippocampal neurogenesis had been suppressed, have yielded seemingly contradictory results. Cyclin D2 knockout (Ccnd2(-/-)) mice, for example, have constitutively suppressed adult hippocampal neurogenesis but had no overt phenotype in the water maze. In other paradigms, however, ablation of adult neurogenesis was associated with specific deficits in the water maze. Therefore, we hypothesized that the neurogenesis-related phenotype might also become detectable in Ccnd2(-/-) mice, if we used the exact setup and protocol that in our previous study had revealed deficits in mice with suppressed adult neurogenesis. Ccnd2(-/-) mice indeed learned the task and developed a normal preference for the goal quadrant, but were significantly less precise for the exact goal position and were slower in acquiring efficient and spatially more precise search strategies. Upon goal reversal (when the hidden platform was moved to a new position) Ccnd2(-/-) mice showed increased perseverance at the former platform location, implying that they were less flexible in updating the previously learned information. Both with respect to adult neurogenesis and behavioral performance, Ccnd2(+/-) mice ranged between wild types and knockouts. Importantly, hippocampus-dependent learning was not generally impaired by the mutation, but specifically functional aspects relying on precise and flexible encoding were affected. Whether ablation of adult neurogenesis causes a specific behavioral phenotype thus also depends on the actual task demands. The test parameters appear to be important variables influencing whether a task can pick up a contribution of adult neurogenesis to test performance.

  9. Increased macrophage colony-stimulating factor in neonatal and adult autoimmune MRL-lpr mice.

    PubMed Central

    Yui, M. A.; Brissette, W. H.; Brennan, D. C.; Wuthrich, R. P.; Rubin-Kelley, V. E.

    1991-01-01

    Abnormal macrophages in MRL-lpr mice are implicated in the pathogenesis of autoimmune disease. These mice die of lupus nephritis by 5 to 6 months of age. This study reports that MRL-lpr mice have an increased level of circulating macrophage colony-stimulating factor (M-CSF) detectable as early as 1 week of age. Macrophage colony-stimulating factor decreased between 2 and 4 months and then steadily increased beginning at 4 months of age. In contrast, M-CSF was not detected in sera from congenic MRL-++ mice, normal C3H/FeJ mice, two other mouse strains with the lpr gene (B6-lpr and C3H-lpr), or another lupus model, the NZB/W mouse. These observations indicate that the lpr gene alone is not responsible for inducing this growth factor, and elevated M-CSF is not required for all forms of murine lupus. The entire source of serum M-CSF is not clear. The unique T cells regulated by the lpr gene are not responsible for the increased serum M-CSF levels, as no M-CSFs could be detected in supernatants from cultured lymph nodes from MRL-lpr mice, and the steady-state levels of M-CSF mRNA in lymph nodes and spleens in MRL-lpr, C3H-lpr mice and in their respective congenic strains were similar. The steady-state M-CSF mRNA transcripts in liver, lung, and bone marrow in MRL-lpr, MRL-++, and C3H/FeJ mice were also similar. Macrophage colony-stimulating factor transcripts were clearly elevated in the kidneys of MRL-lpr mice, suggesting a renal source of circulating M-CSF. The increase of M-CSF might be responsible for the increased numbers and enhanced functions of macrophages, which in turn cause tissue destruction in MRL-lpr mice. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1867317

  10. Delivery of Human EV71 Receptors by Adeno-Associated Virus Increases EV71 Infection-Induced Local Inflammation in Adult Mice

    PubMed Central

    Hsiao, Hung-Bo; Chou, Ai-Hsiang; Lin, Su-I; Lien, Shu-Pei; Tao, Mi-Hua

    2014-01-01

    Enterovirus71 (EV71) is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD). However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV) vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1) or a scavenger receptor class-B member-2 (hSCARB2) into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system. PMID:25243194

  11. Delivery of human EV71 receptors by adeno-associated virus increases EV71 infection-induced local inflammation in adult mice.

    PubMed

    Hsiao, Hung-Bo; Chou, Ai-Hsiang; Lin, Su-I; Lien, Shu-Pei; Liu, Chia-Chyi; Chong, Pele; Chen, Chih-Yeh; Tao, Mi-Hua; Liu, Shih-Jen

    2014-01-01

    Enterovirus71 (EV71) is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD). However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV) vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1) or a scavenger receptor class-B member-2 (hSCARB2) into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  12. Long-term caffeine consumption reverses tumor-induced suppression of the innate immune response in adult mice.

    PubMed

    Mandal, Anup; Poddar, Mrinal K

    2008-12-01

    Caffeine (1,3,7-trimethylxanthine), the active principle alkaloid of coffee ( Coffea arabica) and tea ( Camellia sinensis) possesses a restraining effect on tumor-induced suppression of the specific immune response in adult mice. The present study deals with the effect of long-term consumption of caffeine in the development of Ehrlich ascites carcinoma (EAC) cells in adult Swiss female mice, in relation to the innate immune response and tumor growth. Although the consumption of caffeine alone for more than 12 consecutive days did not affect the innate immune response parameters, continuation of its treatment following intraperitoneal EAC cell inoculation not only reduced the IN VIVO tumor growth but also reduced/restored the EAC cell-induced suppression of the innate immune response. These results suggest that caffeine may inhibit IN VIVO tumor growth through reduction of the cancer cell-induced suppression of the innate immune response. CNS:central nervous system EAC:Ehrlich ascites carcinoma ESR:erythrocyte sedimentation rate GABA:gamma-aminobutyric acid Hb:hemoglobin HPA:hypothalamic-pituitary-adrenal HPG:hypothalamic-pituitary-gonadal PCV:packed cell volume RBC:red blood cell WBC:white blood cell.

  13. Opposite-sex attraction in male mice requires testosterone-dependent regulation of adult olfactory bulb neurogenesis

    PubMed Central

    Schellino, Roberta; Trova, Sara; Cimino, Irene; Farinetti, Alice; Jongbloets, Bart C.; Pasterkamp, R. Jeroen; Panzica, Giancarlo; Giacobini, Paolo; De Marchis, Silvia; Peretto, Paolo

    2016-01-01

    Opposite-sex attraction in most mammals depends on the fine-tuned integration of pheromonal stimuli with gonadal hormones in the brain circuits underlying sexual behaviour. Neural activity in these circuits is regulated by sensory processing in the accessory olfactory bulb (AOB), the first central station of the vomeronasal system. Recent evidence indicates adult neurogenesis in the AOB is involved in sex behaviour; however, the mechanisms underlying this function are unknown. By using Semaphorin 7A knockout (Sema7A ko) mice, which show a reduced number of gonadotropin-releasing-hormone neurons, small testicles and subfertility, and wild-type males castrated during adulthood, we demonstrate that the level of circulating testosterone regulates the sex-specific control of AOB neurogenesis and the vomeronasal system activation, which influences opposite-sex cue preference/attraction in mice. Overall, these data highlight adult neurogenesis as a hub for the integration of pheromonal and hormonal cues that control sex-specific responses in brain circuits. PMID:27782186

  14. Melatonin synergizes with citalopram to induce antidepressant-like behavior and to promote hippocampal neurogenesis in adult mice.

    PubMed

    Ramírez-Rodríguez, Gerardo; Vega-Rivera, Nelly Maritza; Oikawa-Sala, Julián; Gómez-Sánchez, Ariadna; Ortiz-López, Leonardo; Estrada-Camarena, Erika

    2014-05-01

    Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (<14-33%) and citalopram (<17-30%). Additionally, the MLTCITAL combination also decreased immobility (<22-35%) in comparison with control mice, reflecting an antidepressant-like effect after 14 days of treatment. Moreover, MLTCITAL decreased plasma corticosterone levels (≤13%) and increased cell proliferation (>29%), survival (>39%), and the absolute number of -associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant-like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression.

  15. Environmental enrichment improves recent but not remote memory in association with a modified brain metabolic activation profile in adult mice.

    PubMed

    Leger, Marianne; Bouet, Valentine; Freret, Thomas; Darmaillacq, Anne-Sophie; Dacher, Matthieu; Dauphin, François; Boulouard, Michel; Schumann-Bard, Pascale

    2012-03-01

    Environmental enrichment is known to improve learning and memory in adult rodents. Whereas the morphological changes underlying these beneficial effects are well documented, few studies have addressed the influence of this housing condition on the neuronal networks underlying memory processes. We assessed the effects of environmental enrichment on behavioural performances and brain metabolic activation during a memory task in mice. Adult mice were housed in standard (SC) or enriched (EC) conditions for 3 weeks. Then, recent and remote memory performances were measured in the passive avoidance test. After testing, brain metabolic activation was assessed through cytochrome oxidase (CO) activity. EC improved recent memory, in association with an increased metabolic activation in the frontal and prefrontal cortices and a decreased activation in the baso-lateral amygdala and the hippocampus. EC did not improve remote memory, and globally decreased CO activity. Our findings suggest the involvement of regions of pivotal importance during recent memory, such as the frontal cortex, in the beneficial effects of EC.

  16. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    SciTech Connect

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A.; and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  17. The anabolic steroids testosterone propionate and nandrolone, but not 17alpha-methyltestosterone, induce conditioned place preference in adult mice.

    PubMed

    Parrilla-Carrero, Jeffrey; Figueroa, Orialis; Lugo, Alejandro; García-Sosa, Rebecca; Brito-Vargas, Paul; Cruz, Beatriz; Rivera, Mélanis; Barreto-Estrada, Jennifer L

    2009-02-01

    Anabolic androgenic steroids (AAS) are often misused by adolescents and athletes. Their effects vary according to chemical structure and metabolism, route of administration, and AAS regimen. In this study, adult C57Bl/6 male mice were systemically exposed to testosterone propionate (TP), nandrolone or 17alpha-methyltestosterone (17alpha-meT), type I, type II and type III AAS, respectively, in order to determine the hedonic or aversive properties of each drug. For this purpose, the conditioned place preference (CPP) test was employed at three different AAS doses (0.075, 0.75 and 7.5 mg/kg). Other behavioral domains monitored were light-dark transitions (side changes) and general activity. TP shifted place preference at all doses tested, and nandrolone shifted place preference at 0.75 and 7.5 mg/kg, but not at 0.075 mg/kg, the lower dose tested. Conversely, mice receiving 17alpha-meT did not show alteration in the preference score. The lower dose of nandrolone did modify exploratory-based anxiety showing a decrease in light-dark transitions if compared to vehicle-treated animals, while mice treated with TP or 17alpha-meT were not affected. Our data suggest that when studying hedonic and rewarding properties of synthetic androgens, distinction has to be made based on type of AAS and metabolism.

  18. Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice.

    PubMed

    Angelucci, Francesco; Fiore, Marco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-09-01

    It has been shown that music might be able to improve mood state in people affected by psychiatric disorders, ameliorate cognitive deficits in people with dementia and increase motor coordination in Parkinson patients. Robust experimental evidence explaining the central effects of music, however, is missing. This study was designed to investigate the effect of music on brain neurotrophin production and behavior in the mouse. We exposed young adult mice to music with a slow rhythm (6 h/day; mild sound pressure levels, between 50 and 60 db) for 21 consecutive days. At the end of the treatment, mice were tested for passive avoidance learning and then killed for analysis of brain-derived neurotrophic factor (BDNF) and nerve growth factor with enzyme-linked immunosorbent assay (ELISA) in selected brain regions. We found that music-exposed mice showed increased BDNF, but not nerve growth factor in the hippocampus. Furthermore, we observed that music exposure significantly enhanced learning performance, as measured by the passive avoidance test. Our results demonstrate that exposure to music can modulate the activity of the hippocampus by influencing BDNF production. Our findings also suggest that music exposure might be of help in several central nervous system pathologies. PMID:17762517

  19. THE ANABOLIC STEROIDS TESTOSTERONE PROPIONATE AND NANDROLONE, BUT NOT 17α-METHYLTESTOSTERONE, INDUCE CONDITIONED PLACE PREFERENCE IN ADULT MICE

    PubMed Central

    Parrilla-Carrero, Jeffrey; Figueroa, Orialis; Lugo, Alejandro; García-Sosa, Rebecca; Brito-Vargas, Paul; Cruz, Beatriz; Rivera, Melanis; Barreto-Estrada, Jennifer L.

    2009-01-01

    Anabolic androgenic steroids (AAS) are often misused by adolescents and athletes. Their effects vary according to chemical structure and metabolism, route of administration, and AAS regimen. In this study, adult C57Bl/6 male mice were systemically exposed to testosterone propionate (TP), nandrolone or 17α-methyltestosterone (17α-meT), type I, type II and type III AAS, respectively, in order to determine the hedonic or aversive properties of each drug. For this purpose, the conditioned place preference (CPP) test was employed at three different AAS doses (0.075, 0.75 and 7.5 mg/kg). Other behavioral domains monitored were light-dark transitions (side changes) and general activity. TP shifted place preference at all doses tested, and nandrolone shifted place preference at 0.75 and 7.5mg/kg, but not at 0.075 mg/kg, the lower dose tested. Conversely, mice receiving 17α-meT did not show alteration in the preference score. The lower dose of nandrolone did modify exploratory based-anxiety showing a decrease in light-dark transitions if compared to vehicle-treated animals, while mice treated with TP or 17α-meT were not affected. Our data suggest that when studying hedonic and rewarding properties of synthetic androgens, distinction has to be made based on type of AAS and metabolism. PMID:19028026

  20. A Foxp2 Mutation Implicated in Human Speech Deficits Alters Sequencing of Ultrasonic Vocalizations in Adult Male Mice

    PubMed Central

    Chabout, Jonathan; Sarkar, Abhra; Patel, Sheel R.; Radden, Taylor; Dunson, David B.; Fisher, Simon E.; Jarvis, Erich D.

    2016-01-01

    Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here, we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex (LMC) layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans. PMID:27812326

  1. Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice.

    PubMed

    Angelucci, Francesco; Fiore, Marco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-09-01

    It has been shown that music might be able to improve mood state in people affected by psychiatric disorders, ameliorate cognitive deficits in people with dementia and increase motor coordination in Parkinson patients. Robust experimental evidence explaining the central effects of music, however, is missing. This study was designed to investigate the effect of music on brain neurotrophin production and behavior in the mouse. We exposed young adult mice to music with a slow rhythm (6 h/day; mild sound pressure levels, between 50 and 60 db) for 21 consecutive days. At the end of the treatment, mice were tested for passive avoidance learning and then killed for analysis of brain-derived neurotrophic factor (BDNF) and nerve growth factor with enzyme-linked immunosorbent assay (ELISA) in selected brain regions. We found that music-exposed mice showed increased BDNF, but not nerve growth factor in the hippocampus. Furthermore, we observed that music exposure significantly enhanced learning performance, as measured by the passive avoidance test. Our results demonstrate that exposure to music can modulate the activity of the hippocampus by influencing BDNF production. Our findings also suggest that music exposure might be of help in several central nervous system pathologies.

  2. The Student Human Papillomavirus Survey: Nurse Led Instrument Development and Psychometric Testing to Increase HPV Vaccine Series Completion in Young Adults

    PubMed Central

    Thomas, Tami L.; Dalmida, Safiya; Higgins, Melinda

    2015-01-01

    Background and Purpose The Student Human Papillomavirus Survey (SHPVS) was developed to examine students’ perceived benefits or barriers to HPV vaccination. The purpose of this paper is to describe the development and results of the psychometric evaluation of the SHPVS developed in 2008. Methods Survey development included: 1) two-phase integrative literature reviews; 2) draft of survey items based on the literature; 3) critique of survey items by young adults, nursing and psychology faculty, and healthcare providers; and 4) pilot testing. The psychometric properties of the SHPVS were evaluated using classical item analysis and exploratory factor analysis (EFA) among a sample of 527 university students’ ages 18 to 24 years. Results The estimated Cronbach’s alpha for the SHPVS is 0.74. Conclusions The SHPVS is a reliable measure of young adults HPV perceived vulnerability, perceived severity, perceived barriers and perceived benefits of HPV vaccination. PMID:27535311

  3. Memory formation and retention are affected in adult miR-132/212 knockout mice.

    PubMed

    Hernandez-Rapp, Julia; Smith, Pascal Y; Filali, Mohammed; Goupil, Claudia; Planel, Emmanuel; Magill, Stephen T; Goodman, Richard H; Hébert, Sébastien S

    2015-01-01

    The miR-132/212 family is thought to play an important role in neural function and plasticity, while its misregulation has been observed in various neurodegenerative disorders. In this study, we analyzed 6-month-old miR-132/212 knockout mice in a battery of cognitive and non-cognitive behavioral tests. No significant changes were observed in reflexes and basic sensorimotor functions as determined by the SHIRPA primary screen. Accordingly, miR-132/212 knockout mice did not differ from wild-type controls in general locomotor activity in an open-field test. Furthermore, no significant changes of anxiety were measured in an elevated plus maze task. However, the mutant mice showed retention phase defects in a novel object recognition test and in the T-water maze. Moreover, the learning and probe phases in the Barnes maze were clearly altered in knockout mice when compared to controls. Finally, changes in BDNF, CREB, and MeCP2 were identified in the miR-132/212-deficient mice, providing a potential mechanism for promoting memory loss. Taken together, these results further strengthen the role of miR-132/212 in memory formation and retention, and shed light on the potential consequences of its deregulation in neurodegenerative diseases.

  4. Therapeutic rAAVrh10 Mediated SOD1 Silencing in Adult SOD1(G93A) Mice and Nonhuman Primates.

    PubMed

    Borel, Florie; Gernoux, Gwladys; Cardozo, Brynn; Metterville, Jake P; Toro Cabreja, Gabriela C; Song, Lina; Su, Qin; Gao, Guang Ping; Elmallah, Mai K; Brown, Robert H; Mueller, Christian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease; survival in ALS is typically 3-5 years. No treatment extends patient survival by more than three months. Approximately 20% of familial ALS and 1-3% of sporadic ALS patients carry a mutation in the gene encoding superoxide dismutase 1 (SOD1). In a transgenic ALS mouse model expressing the mutant SOD1(G93A) protein, silencing the SOD1 gene prolongs survival. One study reports a therapeutic effect of silencing the SOD1 gene in systemically treated adult ALS mice; this was achieved with a short hairpin RNA, a silencing molecule that has raised multiple safety concerns, and recombinant adeno-associated virus (rAAV) 9. We report here a silencing method based on an artificial microRNA termed miR-SOD1 systemically delivered using adeno-associated virus rAAVrh10, a serotype with a demonstrated safety profile in CNS clinical trials. Silencing of SOD1 in adult SOD1(G93A) transgenic mice with this construct profoundly delayed both disease onset and death in the SOD1(G93A) mice, and significantly preserved muscle strength and motor and respiratory functions. We also document that intrathecal delivery of the same rAAVrh10-miR-SOD1 in nonhuman primates significantly and safely silences SOD1 in lower motor neurons. This study supports the view that rAAVrh10-miR-SOD1 merits further development for the treatment of SOD1-linked ALS in humans. PMID:26710998

  5. Protective effect of early prenatal stress on the induction of asthma in adult mice: Sex-specific differences.

    PubMed

    Vargas, Mauro Henrique Moraes; Campos, Natália Evangelista; de Souza, Rodrigo Godinho; da Cunha, Aline Andrea; Nuñez, Nailê Karine; Pitrez, Paulo Márcio; Donadio, Márcio Vinícius Fagundes

    2016-10-15

    Adversities faced during the prenatal period can be related to the onset of diseases in adulthood. However, little is known about the effects on the respiratory system. This study aimed to evaluate the effects of prenatal stress in two different time-points during pregnancy on pulmonary function and on the inflammatory profile of mice exposed to an asthma model. Male and female BALB/c mice were divided into 3 groups: control (CON), prenatal stress from the second week of pregnancy (PNS1) and prenatal stress on the last week of pregnancy (PNS2). Both PNS1 and PNS2 pregnant females were submitted to restraint stress. As adults, fear/anxiety behaviors were assessed, and animals were subjected to an asthma model induced by ovalbumin. Pulmonary function, inflammatory parameters in bronchoalveolar lavage (BAL) and histology were evaluated. There was a significant decrease in the number of entries and time spent in the central quadrant on the open field test for the PNS1 animals. Females (PNS1) showed improved pulmonary function (airway resistance, tissue damping and pulmonary elastance), significant increase in the percentage of neutrophils and lymphocytes and a decrease in eosinophils when compared to controls. There was a significant decrease in inflammatory cytokines in BAL of both males (IL-5 and IL-13) and females (IL-4, IL-5 and IL-13) from PNS1 and PNS2 when compared to the CON group. Prenatal stress starting from the beginning of pregnancy reduces the impact of asthma development in adult female mice, showing an improved pulmonary function and a lower inflammatory response in the lungs. PMID:27568231

  6. Therapeutic rAAVrh10 Mediated SOD1 Silencing in Adult SOD1G93A Mice and Nonhuman Primates

    PubMed Central

    Borel, Florie; Gernoux, Gwladys; Cardozo, Brynn; Metterville, Jake P.; Toro Cabreja, Gabriela C.; Song, Lina; Su, Qin; Gao, Guang Ping; Elmallah, Mai K.; Brown, Robert H.; Mueller, Christian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease; survival in ALS is typically 3–5 years. No treatment extends patient survival by more than three months. Approximately 20% of familial ALS and 1–3% of sporadic ALS patients carry a mutation in the gene encoding superoxide dismutase 1 (SOD1). In a transgenic ALS mouse model expressing the mutant SOD1G93A protein, silencing the SOD1 gene prolongs survival. One study reports a therapeutic effect of silencing the SOD1 gene in systemically treated adult ALS mice; this was achieved with a short hairpin RNA, a silencing molecule that has raised multiple safety concerns, and recombinant adeno-associated virus (rAAV) 9. We report here a silencing method based on an artificial microRNA termed miR-SOD1 systemically delivered using adeno-associated virus rAAVrh10, a serotype with a demonstrated safety profile in CNS clinical trials. Silencing of SOD1 in adult SOD1G93A transgenic mice with this construct profoundly delayed both disease onset and death in the SOD1G93A mice, and significantly preserved muscle strength and motor and respiratory functions. We also document that intrathecal delivery of the same rAAVrh10-miR-SOD1 in nonhuman primates significantly and safely silences SOD1 in lower motor neurons. This study supports the view that rAAVrh10-miR-SOD1 merits further development for the treatment of SOD1-linked ALS in humans. PMID:26710998

  7. Protective effect of early prenatal stress on the induction of asthma in adult mice: Sex-specific differences.

    PubMed

    Vargas, Mauro Henrique Moraes; Campos, Natália Evangelista; de Souza, Rodrigo Godinho; da Cunha, Aline Andrea; Nuñez, Nailê Karine; Pitrez, Paulo Márcio; Donadio, Márcio Vinícius Fagundes

    2016-10-15

    Adversities faced during the prenatal period can be related to the onset of diseases in adulthood. However, little is known about the effects on the respiratory system. This study aimed to evaluate the effects of prenatal stress in two different time-points during pregnancy on pulmonary function and on the inflammatory profile of mice exposed to an asthma model. Male and female BALB/c mice were divided into 3 groups: control (CON), prenatal stress from the second week of pregnancy (PNS1) and prenatal stress on the last week of pregnancy (PNS2). Both PNS1 and PNS2 pregnant females were submitted to restraint stress. As adults, fear/anxiety behaviors were assessed, and animals were subjected to an asthma model induced by ovalbumin. Pulmonary function, inflammatory parameters in bronchoalveolar lavage (BAL) and histology were evaluated. There was a significant decrease in the number of entries and time spent in the central quadrant on the open field test for the PNS1 animals. Females (PNS1) showed improved pulmonary function (airway resistance, tissue damping and pulmonary elastance), significant increase in the percentage of neutrophils and lymphocytes and a decrease in eosinophils when compared to controls. There was a significant decrease in inflammatory cytokines in BAL of both males (IL-5 and IL-13) and females (IL-4, IL-5 and IL-13) from PNS1 and PNS2 when compared to the CON group. Prenatal stress starting from the beginning of pregnancy reduces the impact of asthma development in adult female mice, showing an improved pulmonary function and a lower inflammatory response in the lungs.

  8. Spectrographic analysis of the ultrasonic vocalisations of adult male and female BALB/c mice

    NASA Astrophysics Data System (ADS)

    Gourbal, Benjamin E. F.; Barthelemy, Mathieu; Petit, Gilles; Gabrion, Claude

    In this study, a spectrographic analysis was designed to improve the description of the shape, the modulations, the rate, length and frequencies of BALB/c mouse calls in different behavioural situations. Male and female calls emitted during investigation of cages with clean bedding, soiled with male or female bedding, and during same-sex encounters, were recorded and described. BALB/c male mice uttered different types of vocalisations both when investigating counterpart odour cues and when interacting with same-sex counterparts. BALB/c female mice vocalised solely during same-sex counterpart encounters and it appeared that calls were uttered mainly by the resident females. Male and female mice present a complex array of calls, which seem to be linked to particular behavioural situations. Further studies using this technology may help to improve our understanding of the role of vocal communication in natural rodent populations.

  9. Morphine administration or sexual segregation in infancy affect the response to the same drug in adult mice.

    PubMed

    Laviola, G; Terranova, M L; Alleva, E

    1993-01-01

    Several experiments indicate that CNS opioid regulatory systems show a remarkable plasticity during development. The same systems respond to a wide range of environmental stimuli, particularly those which can affect the threshold of pain sensitivity (e.g., Environmentally Induced Analgesia). This paper summarizes a series of studies using outbred CD-1 mice, aimed at assessing: a) morphine effects on pain sensitivity and locomotor activity at two ages during development, namely, before and after weaning, and b) the consequences of such exposure on adult sensitivity to the same drug. The development of hot-plate response consisted mainly of a progressive decrease of latencies and of a parallel reduction of sensitivity to morphine. While morphine depressed activity on day 14, it increased or had apparently no effect on day 21. With respect to carry-over consequences of early drug and test exposure, the animals with a history of testing at the preweanling stage were more sensitive to the depressant effect of morphine (10 mg/kg) than those pretested at a later stage. By contrast, morphine analgesia was attenuated by drug pre-exposure, independently of the age of previous testing. In sum, the age of early exposure and type of early treatment interacted to determine the level of adult pain sensitivity in the no-drug state. Finally, the long-term effects of sexual segregation in infancy on the response to painful stimulation and morphine were assessed. Adult male mice-reared from birth to weaning in litters containing either only male pups (MM), or both male and female pups (MF)--were challenged in a hot-plate test upon morphine or saline injection.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Neurokinin B is critical for normal timing of sexual maturation but dispensable for adult reproductive function in female mice.

    PubMed

    True, Cadence; Nasrin Alam, Sayeda; Cox, Kimberly; Chan, Yee-Ming; Seminara, Stephanie B

    2015-04-01

    Humans carrying mutations in neurokinin B (NKB) or the NKB receptor fail to undergo puberty due to decreased secretion of GnRH. Despite this pubertal delay, many of these patients go on to achieve activation of their hypothalamic-pituitary-gonadal axis in adulthood, a phenomenon termed reversal, indicating that NKB signaling may play a more critical role for the timing of pubertal development than adult reproductive function. NKB receptor-deficient mice are hypogonadotropic but have no defects in the timing of sexual maturation. The current study has performed the first phenotypic evaluation of mice bearing mutations in Tac2, the gene encoding the NKB ligand, to determine whether they have impaired sexual development similar to their human counterparts. Male Tac2-/- mice showed no difference in the timing of sexual maturation or fertility compared with wild-type littermates and were fertile. In contrast, Tac2-/- females had profound delays in sexual maturation, with time to vaginal opening and first estrus occurring significantly later than controls, and initial abnormalities in estrous cycles. However, cycling recovered in adulthood and Tac2-/- females were fertile, although they produced fewer pups per litter. Thus, female Tac2-/- mice parallel humans harboring NKB pathway mutations, with delayed sexual maturation and activation of the reproductive cascade later in life. Moreover, direct comparison of NKB ligand and receptor-deficient females confirmed that only NKB ligand-deficient animals have delayed sexual maturation, suggesting that in the absence of the NKB receptor, NKB may regulate the timing of sexual maturation through other tachykinin receptors.

  11. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    PubMed

    Chugh, Deepti; Ali, Idrish; Bakochi, Anahita; Bahonjic, Elma; Etholm, Lars; Ekdahl, Christine T

    2015-01-01

    Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age) and tonic-clonic (3.5-4 months) phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread. PMID:26177381

  12. Multi-Vitamin B Supplementation Reverses Hypoxia-Induced Tau Hyperphosphorylation and Improves Memory Function in Adult Mice.

    PubMed

    Yu, Lixia; Chen, Yuan; Wang, Weiguang; Xiao, Zhonghai; Hong, Yan

    2016-08-01

    Hypobaric hypoxia (HH) leads to reduced oxygen delivery to brain. It could trigger cognitive dysfunction and increase the risk of dementia including Alzheimer's disease (AD). The present study was undertaken in order to examine whether B vitamins (B6, B12, folate, and choline) could exert protective effects on hypoxia-induced memory deficit and AD related molecular events in mice. Adult male Kunming mice were assigned to five groups: normoxic control, hypoxic model (HH), hypoxia+vitamin B6/B12/folate (HB), hypoxia+choline (HC), hypoxia+vitamin B6/B12/folate+choline (HBC). Mice in the hypoxia, HB, HC, and HBC groups were exposed to hypobaric hypoxia for 8 h/day for 28 days in a decompression chamber mimicking 5500 meters of high altitude. Spatial and passive memories were assessed by radial arm and step-through passive test, respectively. Levels of tau and glycogen synthase kinase (GSK)-3β phosphorylation were detected by western blot. Homocysteine (Hcy) concentrations were determined using enzymatic cycling assay. Mice in the HH group exhibited significant spatial working and passive memory impairment, increased tau phosphorylation at Thr181, Ser262, Ser202/Thr205, and Ser396 in the cortex and hippocampus, and elevated Hcy levels compared with controls. Concomitantly, the levels of Ser9-phosphorylated GSK-3β were significantly decreased in brain after hypoxic treatment. Supplementations of vitamin B6/B12/folate+choline could significantly ameliorate the hypoxia-induced memory deficits, observably decreased Hcy concentrations in serum, and markedly attenuated tau hyperphosphorylation at multiple AD-related sites through upregulating inhibitory Ser9-phosphorylated GSK-3β. Our finding give further insight into combined neuroprotective effects of vitamin B6, B12, folate, and choline on brain against hypoxia. PMID:27497480

  13. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  14. Aging in the cerebellum and hippocampus and associated behaviors over the adult life span of CB6F1 mice

    PubMed Central

    Kennard, John A.; Brown, Kevin L.; Woodruff-Pak, Diana S.

    2013-01-01

    In the present study we examined the effects of normal aging in the hippocampus and cerebellum, as well as behaviors associated with these substrates. A total of 67 CB6F1 hybrid mice were tested at one of five ages (4, 8, 12, 18 or 25 months) on the context pre-exposure facilitation effect modification of fear conditioning (CPFE), rotorod, Barnes maze, acoustic startle, Morris water maze (MWM) and 500 ms trace eyeblink classical conditioning (EBCC). Behavioral tasks were chosen to increase the ability to detect age-related changes in learning, as trace EBCC is considered a more difficult paradigm (compared to delay EBCC) and the CPFE has been found to be more sensitive to hippocampus insults than standard contextual fear conditioning. To assess the effects of age on the brain, hippocampus volume was calculated and unbiased stereology was used to estimate the number of Purkinje neurons in the cerebellar cortex. A significant, age-related loss of Purkinje neurons was found—beginning at 12 months of age—and hippocampus volume remained stable over the adult life span. Age-related impairment was found, beginning at 12–18 months in the rotorod, and mice with fewer Purkinje neurons showed greater impairment in this task. CB6F1 mice retained auditory acuity across the life span and mice aged 25 months showed significant age-related impairment in the EBCC task; however, deficits were not associated with the loss of Purkinje neurons. Although the CPFE task is considered more sensitive to hippocampus insult, no age-related impairment was found. Spatial memory retention was impaired in the Barnes maze at 25 months, but no significant deficits were seen in the MWM. These results support the finding of differential aging in the hippocampus and cerebellum. PMID:23764510

  15. Co-transplantation of human fetal thymus, bone and CD34(+) cells into young adult immunodeficient NOD/SCID IL2Rγ(null) mice optimizes humanized mice that mount adaptive antibody responses.

    PubMed

    Chung, Yun Shin; Son, Jin Kyung; Choi, Bongkum; Joo, Sung-Yeon; Lee, Yong-Soo; Park, Jae Berm; Moon, Hana; Kim, Tae Jin; Kim, Se Ho; Hong, Seokmann; Chang, Jun; Kang, Myung-Soo; Kim, Sung Joo

    2015-04-01

    Both the thymus (T) and bone (B) are necessary hematopoietic niches in adult humans. We previously showed that co-transplantation of human fetal T and B tissues into neonatal immunodeficient NOD/SCID IL2Rγ(null) (NSG, N) mice facilitated hematopoiesis. However, transplantation into neonatal mice resulted in high frequency of early death, making it unrealistic for repetitive experiments. In this study, young adult N mice were pre-engrafted with T and B, T alone, B alone or no tissues. The animals were irradiated and injected with autologous fetal liver (FL)-derived CD34(+) cells (34). The resultant mice were TB34N, T34N, B34N and 34N, respectively, and challenged with T cell dependent antigens (Ags). The humanized TB34N mice showed best performance of these mouse models in many aspects resembling the adult human Ag-experienced spleen. The TB34N mice exhibited better hematopoietic reconstitution; balanced development of T- and B-cell, and common progenitor cells; follicular lymphoid structures with a functional germinal center (GC) enriched with follicular dendritic cells (FDCs) and plasma cells (PCs); secretion of hIgG in the sera in response to Ags at comparable levels to those of human; derivations of hIgG mAb-secreting hybridoma clones. Collectively, the humanized TB34N mice could develop an adaptive immunity that was capable of producing Ag-specific hIgG at a significant level via class switching. This unprecedented TB34N platform in humanized mice would be useful in dissecting human immunity, for generating human Abs and clinical applications. PMID:25725428

  16. Co-transplantation of human fetal thymus, bone and CD34(+) cells into young adult immunodeficient NOD/SCID IL2Rγ(null) mice optimizes humanized mice that mount adaptive antibody responses.

    PubMed

    Chung, Yun Shin; Son, Jin Kyung; Choi, Bongkum; Joo, Sung-Yeon; Lee, Yong-Soo; Park, Jae Berm; Moon, Hana; Kim, Tae Jin; Kim, Se Ho; Hong, Seokmann; Chang, Jun; Kang, Myung-Soo; Kim, Sung Joo

    2015-04-01

    Both the thymus (T) and bone (B) are necessary hematopoietic niches in adult humans. We previously showed that co-transplantation of human fetal T and B tissues into neonatal immunodeficient NOD/SCID IL2Rγ(null) (NSG, N) mice facilitated hematopoiesis. However, transplantation into neonatal mice resulted in high frequency of early death, making it unrealistic for repetitive experiments. In this study, young adult N mice were pre-engrafted with T and B, T alone, B alone or no tissues. The animals were irradiated and injected with autologous fetal liver (FL)-derived CD34(+) cells (34). The resultant mice were TB34N, T34N, B34N and 34N, respectively, and challenged with T cell dependent antigens (Ags). The humanized TB34N mice showed best performance of these mouse models in many aspects resembling the adult human Ag-experienced spleen. The TB34N mice exhibited better hematopoietic reconstitution; balanced development of T- and B-cell, and common progenitor cells; follicular lymphoid structures with a functional germinal center (GC) enriched with follicular dendritic cells (FDCs) and plasma cells (PCs); secretion of hIgG in the sera in response to Ags at comparable levels to those of human; derivations of hIgG mAb-secreting hybridoma clones. Collectively, the humanized TB34N mice could develop an adaptive immunity that was capable of producing Ag-specific hIgG at a significant level via class switching. This unprecedented TB34N platform in humanized mice would be useful in dissecting human immunity, for generating human Abs and clinical applications.

  17. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    PubMed

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner. PMID:27317840

  18. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    PubMed

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner.

  19. The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice.

    PubMed

    Sohn, Jiho; Orosco, Lori; Guo, Fuzheng; Chung, Seung-Hyuk; Bannerman, Peter; Mills Ko, Emily; Zarbalis, Kostas; Deng, Wenbin; Pleasure, David

    2015-03-01

    Astrocytes are the most abundant cells in the CNS, and have many essential functions, including maintenance of blood-brain barrier integrity, and CNS water, ion, and glutamate homeostasis. Mammalian astrogliogenesis has generally been considered to be completed soon after birth, and to be reactivated in later life only under pathological circumstances. Here, by using genetic fate-mapping, we demonstrate that new corpus callosum astrocytes are continuously generated from nestin(+) subventricular zone (SVZ) neural progenitor cells (NPCs) in normal adult mice. These nestin fate-mapped corpus callosum astrocytes are uniformly postmitotic, express glutamate receptors, and form aquaporin-4(+) perivascular endfeet. The entry of new astrocytes from the SVZ into the corpus callosum appears to be balanced by astroglial apoptosis, because overall numbers of corpus callosum astrocytes remain constant during normal adulthood. Nestin fate-mapped astrocytes also flow anteriorly from the SVZ in association with the rostral migratory stream, but do not penetrate into the deeper layers of the olfactory bulb. Production of new astrocytes from nestin(+) NPCs is absent in the normal adult cortex, striatum, and spinal cord. Our study is the first to demonstrate ongoing SVZ astrogliogenesis in the normal adult mammalian forebrain.

  20. Evaluation of response to restraint stress by salivary corticosterone levels in adult male mice

    PubMed Central

    NOHARA, Masakatsu; TOHEI, Atsushi; SATO, Takumi; AMAO, Hiromi

    2016-01-01

    Saliva as a sampling method is a low invasive technique for the detection of physiologically active substances, as opposed to sampling the plasma or serum. In this study, we obtained glucocorticoids transferred from the blood to the saliva from mice treated with 2.0 mg/kg via an intraperitoneal injection of cortisol. Next, to evaluate the effect of restraint stress using mouse saliva—collected under anesthesia by mixed anesthetic agents—we measured plasma and salivary corticosterone levels at 60 min after restraint stress. Moreover, to evaluate salivary corticosterone response to stress in the same individual mouse, an adequate recovery period (1, 3 and 7 days) after anesthesia was examined. The results demonstrate that exogenous cortisol was detected in the saliva and the plasma, in mice treated with cortisol. Restraint stress significantly increased corticosterone levels in both the plasma and saliva (P<0.001). Monitoring the results of individual mice showed that restraint stress significantly increased salivary corticosterone levels in all three groups (1-, 3- and 7-day recovery). However, the statistical evidence of corticosterone increase is stronger in the 7-day recovery group (P<0.001) than in the others (P<0.05). These results suggest that the corticosterone levels in saliva reflect its levels in the plasma, and salivary corticosterone is a useful, less-invasive biomarker of physical stress in mice. The present study may contribute to concepts of Reduction and Refinement of the three Rs in small animal experiments. PMID:26852731

  1. Neurexin dysfunction in adult neurons results in autistic-like behavior in mice.

    PubMed

    Rabaneda, Luis G; Robles-Lanuza, Estefanía; Nieto-González, José Luis; Scholl, Francisco G

    2014-07-24

    Autism spectrum disorders (ASDs) comprise a group of clinical phenotypes characterized by repetitive behavior and social and communication deficits. Autism is generally viewed as a neurodevelopmental disorder where insults during embryonic or early postnatal periods result in aberrant wiring and function of neuronal circuits. Neurexins are synaptic proteins associated with autism. Here, we generated transgenic βNrx1ΔC mice in which neurexin function is selectively impaired during late postnatal stages. Whole-cell recordings in cortical neurons show an impairment of glutamatergic synaptic transmission in the βNrx1ΔC mice. Importantly, mutant mice exhibit autism-related symptoms, such as increased self-grooming, deficits in social interactions, and altered interaction for nonsocial olfactory cues. The autistic-like phenotype of βNrx1ΔC mice can be reversed after removing the mutant protein in aged animals. The defects resulting from disruption of neurexin function after the completion of embryonic and early postnatal development suggest that functional impairment of mature circuits can trigger autism-related phenotypes.

  2. Zika Kills Vital Nervous System Cells in Adult Mice, Study Finds

    MedlinePlus

    ... effects of the Zika-related changes in neural stem cell numbers in mice. However, research with animals often doesn't translate to similar findings in humans. SOURCE: Cell Stem Cell , news release, Aug. 18, 2016 HealthDay Copyright ( ...

  3. Matrix metalloproteinase-9 is essential for physiological Beta cell function and islet vascularization in adult mice.

    PubMed

    Christoffersson, Gustaf; Waldén, Tomas; Sandberg, Monica; Opdenakker, Ghislain; Carlsson, Per-Ola; Phillipson, Mia

    2015-04-01

    The availability of paracrine factors in the islets of Langerhans, and the constitution of the beta cell basement membrane can both be affected by proteolytic enzymes. This study aimed to investigate the effects of the extracellular matrix-degrading enzyme gelatinase B/matrix metalloproteinase-9 (Mmp-9) on islet function in mice. Islet function of Mmp9-deficient (Mmp9(-/-)) mice and their wild-type littermates was evaluated both in vivo and in vitro. The pancreata of Mmp9(-/-) mice did not differ from wild type in islet mass or distribution. However, Mmp9(-/-) mice had an impaired response to a glucose load in vivo, with lower serum insulin levels. The glucose-stimulated insulin secretion was reduced also in vitro in isolated Mmp9(-/-) islets. The vascular density of Mmp9(-/-) islets was lower, and the capillaries had fewer fenestrations, whereas the islet blood flow was threefold higher. These alterations could partly be explained by compensatory changes in the expression of matrix-related proteins. This in-depth investigation of the effects of the loss of MMP-9 function on pancreatic islets uncovers a deteriorated beta cell function that is primarily due to a shift in the beta cell phenotype, but also due to islet vascular aberrations. This likely reflects the importance of a normal islet matrix turnover exerted by MMP-9, and concomitant release of paracrine factors sequestered on the matrix.

  4. Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice

    PubMed Central

    Villares, Ricardo; Gutiérrez, Julio; Fütterer, Agnes; Trachana, Varvara; Gutiérrez del Burgo, Fernando; Martínez-A, Carlos

    2015-01-01

    Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia. PMID:25825751

  5. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice.

    PubMed

    Bonnet, Nicolas; Gineyts, Evelyne; Ammann, Patrick; Conway, Simon J; Garnero, Patrick; Ferrari, Serge

    2013-01-01

    Bone damage removal and callus formation in response to fatigue loading are essential to prevent fractures. Periostin (Postn) is a matricellular protein that mediates adaptive response of cortical bone to loading. Whether and how periostin influences damage and the injury response to fatigue remains unknown. We investigated the skeletal response of Postn(-/-) and Postn(+/+) mice after fatigue stimulus by axial compression of their tibia. In Postn(+/+) mice, cracks number and surface (CsNb, CsS) increased 1h after fatigue, with a decrease in strength compared to non-fatigued tibia. At 15 days, CsNb had started to decline, while CtTV and CtBV increased in fatigued vs non-fatigued tibia, reflecting a woven bone response that was present in 75% of the fatigued bones. Cortical porosity and remodelling also prominently increased in the fatigued tibia of Postn(+/+) mice. At 30 days, paralleling a continuous removal of cortical damage, strength of the fatigued tibia was similar to the non-fatigue tibia. In Postn(-/-) mice, cracks were detectable even in the absence of fatigue, while the amount of collagen crosslinks and tissue hardness was decreased compared to Postn(+/+). Fatigue significantly increased CsNb and CsS in Postn(-/-), but was not associated with changes in CtTV and CtBV, as only 16% of the fatigued bones formed some woven bone. Cortical porosity and remodelling did not increase either after fatigue in Postn(-/-), and the level of damage remained high even after 30 days. As a result, strength remained compromised in Postn(-/-) mice. Contrary to Postn(+/+), which osteocytic lacunae showed a change in the degree of anisotropy (DA) after fatigue, Postn(-/-) showed no DA change. Hence periostin appears to influence bone materials properties, damage accumulation and repair, including local modeling/remodeling processes in response to fatigue. These observations suggest that the level of periostin expression could influence the propensity to fatigue fractures. PMID

  6. Microcephalia with mandibular and dental dysplasia in adult Zmpste24-deficient mice

    PubMed Central

    de Carlos, F; Varela, I; Germanà, A; Montalbano, G; Freije, J M P; Vega, J A; López-Otin, C; Cobo, J M

    2008-01-01

    ZMPSTE24 (also called FACE-1) is a zinc-metalloprotease involved in the post-translational processing of prelamin A to mature lamin A, a major component of the nuclear envelope. Mutations in the ZMPSTE24 gene or in that encoding its substrate prelamin A (LMNA) result in a series of human inherited diseases known collectively as laminopathies and showing regional or systemic manifestations (i.e. the Hutchinson–Gilford progeria syndrome). Typically, patients suffering some laminopathies show craniofacial or mandible anomalies, aberrant dentition or facial features characteristic of aged persons. To analyse whether Zmpste24−/– mice reproduce the cranial phenotype observed in humans due to mutations in ZMPSTE24or LMNA, we conducted a craniometric study based on micro-computer tomography (µCT) images. Furthermore, using simple radiology, µCT, µCT-densitometry and scanning electron microscopy, we analysed the mandible and the teeth from Zmpste24−/– mice. Finally, the structure of the lower incisor was investigated using an H&E technique. The results demonstrate that Zmpste24−/– mice are microcephalic and show mandibular and dental dysplasia affecting only the mandible teeth. In all cases, the lower incisor of mice lacking Zmpste24 was smaller than in control animals, showed cylindrical morphology and a transverse fissure at the incisal edge, and the pulpal cavity was severely reduced. Structurally, the dental layers were normally arranged but cellular layers were disorganized. The inferior molars showed a reduced cusp size. Taken together, these data strongly suggest that Zmpste24−/– mice represent a good model to analyse the craniofacial and teeth malformations characteristic of lamin-related pathologies, and might contribute to a better understanding of the molecular events underlying these diseases. PMID:19014358

  7. Comparison of apoptosis between adult worms of Schistosoma japonicum from susceptible (BALB/c mice) and less-susceptible (Wistar rats) hosts.

    PubMed

    Wang, Tao; Guo, Xiaoyong; Hong, Yang; Han, Hongxiao; Cao, Xiaodan; Han, Yanhui; Zhang, Min; Wu, Miaoli; Fu, Zhiqiang; Lu, Ke; Li, Hao; Zhao, Zhixin; Lin, Jiaojiao

    2016-10-30

    Schistosomiasis remains a serious public health concern in China. BALB/c mice are susceptible to Schistosoma japonicum infection, whereas the Wistar rats are less susceptible. Apoptosis phenomenon was observed in 42d adult worms of S. japonicum from both rats and mice at the morphologic, DNA, cellular, and gene levels by transmission electron microscopy (TEM), fluorometric terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis, fluorescein isothiocyanate-annexin-V/propidium iodide staining flow cytometry (FCM) analysis, and real-time PCR. The results showed that the apoptotic state in worms from two different susceptible hosts was diverse. Several classical hallmarks of apoptosis, including cell shrinkage, chromatin condensation and lunate marginalization, splitting of the nucleoli, nuclear shrinkage and apoptotic body formation were observed by TEM. TUNEL analysis showed that there were much more apoptosis spots in adult worms from rats than those from mice. Statistical analysis revealed that the degree of apoptosis and percentage of necrotic cells in adult worms from Wistar rats were significantly greater (P<0.01) than those from BALB/c mice by flow cytometry. A total of 15 apoptosis-associated genes including the major components of an intrinsic cell-death pathway were identified from S. japonicum in this study, suggested that a similar apoptosis pathway might occur in S. japonicum. Real-time PCR analyses revealed that the expression levels of most of the tested apoptosis-associated genes, except CASP7, were significantly higher or at the similar level in adult worms from Wistar rats, as compared to those from BALB/c mice. The results obtained in this study collectively demonstrated that differential development of adult S. japonicum in less-susceptible rats and susceptible mice was significantly associated with apoptosis in the worm, and provided valuable information to guide further investigations of the mechanisms governing

  8. Comparison of apoptosis between adult worms of Schistosoma japonicum from susceptible (BALB/c mice) and less-susceptible (Wistar rats) hosts.

    PubMed

    Wang, Tao; Guo, Xiaoyong; Hong, Yang; Han, Hongxiao; Cao, Xiaodan; Han, Yanhui; Zhang, Min; Wu, Miaoli; Fu, Zhiqiang; Lu, Ke; Li, Hao; Zhao, Zhixin; Lin, Jiaojiao

    2016-10-30

    Schistosomiasis remains a serious public health concern in China. BALB/c mice are susceptible to Schistosoma japonicum infection, whereas the Wistar rats are less susceptible. Apoptosis phenomenon was observed in 42d adult worms of S. japonicum from both rats and mice at the morphologic, DNA, cellular, and gene levels by transmission electron microscopy (TEM), fluorometric terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis, fluorescein isothiocyanate-annexin-V/propidium iodide staining flow cytometry (FCM) analysis, and real-time PCR. The results showed that the apoptotic state in worms from two different susceptible hosts was diverse. Several classical hallmarks of apoptosis, including cell shrinkage, chromatin condensation and lunate marginalization, splitting of the nucleoli, nuclear shrinkage and apoptotic body formation were observed by TEM. TUNEL analysis showed that there were much more apoptosis spots in adult worms from rats than those from mice. Statistical analysis revealed that the degree of apoptosis and percentage of necrotic cells in adult worms from Wistar rats were significantly greater (P<0.01) than those from BALB/c mice by flow cytometry. A total of 15 apoptosis-associated genes including the major components of an intrinsic cell-death pathway were identified from S. japonicum in this study, suggested that a similar apoptosis pathway might occur in S. japonicum. Real-time PCR analyses revealed that the expression levels of most of the tested apoptosis-associated genes, except CASP7, were significantly higher or at the similar level in adult worms from Wistar rats, as compared to those from BALB/c mice. The results obtained in this study collectively demonstrated that differential development of adult S. japonicum in less-susceptible rats and susceptible mice was significantly associated with apoptosis in the worm, and provided valuable information to guide further investigations of the mechanisms governing

  9. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice.

    PubMed

    Leite, Nayara Carvalho; de Paula, Flávia; Borck, Patrícia Cristine; Vettorazzi, Jean Franciesco; Branco, Renato Chaves Souto; Lubaczeuski, Camila; Boschero, Antonio Carlos; Zoppi, Claudio Cesar; Carneiro, Everardo Magalhães

    2016-01-01

    Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity.

  10. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice

    PubMed Central

    Leite, Nayara Carvalho; de Paula, Flávia; Borck, Patrícia Cristine; Vettorazzi, Jean Franciesco; Branco, Renato Chaves Souto; Lubaczeuski, Camila; Boschero, Antonio Carlos; Zoppi, Claudio Cesar; Carneiro, Everardo Magalhães

    2016-01-01

    Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity. PMID:27633083

  11. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice.

    PubMed

    Leite, Nayara Carvalho; de Paula, Flávia; Borck, Patrícia Cristine; Vettorazzi, Jean Franciesco; Branco, Renato Chaves Souto; Lubaczeuski, Camila; Boschero, Antonio Carlos; Zoppi, Claudio Cesar; Carneiro, Everardo Magalhães

    2016-01-01

    Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity. PMID:27633083

  12. Relationship between brain accumulation of manganese and aberration of hippocampal adult neurogenesis after oral exposure to manganese chloride in mice.

    PubMed

    Kikuchihara, Yoh; Abe, Hajime; Tanaka, Takeshi; Kato, Mizuho; Wang, Liyun; Ikarashi, Yoshiaki; Yoshida, Toshinori; Shibutani, Makoto

    2015-05-01

    We previously found persistent aberration of hippocampal adult neurogenesis, along with brain manganese (Mn) accumulation, in mouse offspring after developmental exposure to 800-ppm dietary Mn. Reduction of parvalbumin (Pvalb)(+) γ-aminobutyric acid (GABA)-ergic interneurons in the hilus of the dentate gyrus along with promoter region hypermethylation are thought to be responsible for this aberrant neurogenesis. The present study was conducted to examine the relationship between the induction of aberrant neurogenesis and brain Mn accumulation after oral Mn exposure as well as the responsible mechanism in young adult animals. We used two groups of mice with 28- or 56-day exposure periods to oral MnCl2·xH2O at 800 ppm as Mn, a dose sufficient to lead to aberrant neurogenesis after developmental exposure. A third group of mice received intravenous injections of Mn at 5-mg/kg body weight once weekly for 28 days. The 28-day oral Mn exposure did not cause aberrations in neurogenesis. In contrast, 56-day oral exposure caused aberrations in neurogenesis suggestive of reductions in type 2b and type 3 progenitor cells and immature granule cells in the dentate subgranular zone. Brain Mn accumulation in 56-day exposed cases, as well as in directly Mn-injected cases occurred in parallel with reduction of Pvalb(+) GABAergic interneurons in the dentate hilus, suggesting that this may be responsible for aberrant neurogenesis. For reduction of Pvalb(+) interneurons, suppression of brain-derived neurotrophic factor-mediated signaling of mature granule cells may occur via suppression of c-Fos-mediated neuronal plasticity due to direct Mn-toxicity rather than promoter region hypermethylation of Pvalb.

  13. Identification of gene function and functional pathways by systemic plasmid-based ribozyme targeting in adult mice

    PubMed Central

    Kashani-Sabet, Mohammed; Liu, Yong; Fong, Sylvia; Desprez, Pierre-Yves; Liu, Shuqing; Tu, Guanghuan; Nosrati, Mehdi; Handumrongkul, Chakkrapong; Liggitt, Denny; Thor, Ann D.; Debs, Robert J.

    2002-01-01

    To date, functional genomic studies have been confined to either cell-based assays or germline mutations, using transgenic or knockout animals. However, these approaches are often unable either to recapitulate complex biologic phenotypes, such as tumor metastasis, or to identify the specific genes and functional pathways that produce serious diseases in adult animals. Although the transcription factor NF-κB transactivates many metastasis-related genes in cells, the precise genes and functional-pathways through which NF-κB regulates metastasis in tumor-bearing hosts are poorly understood. Here, we show that the systemic delivery of plasmid-based ribozymes targeting NF-κB in adult, tumor-bearing mice suppressed NF-κB expression in metastatic melanoma cells, as well as in normal cell types, and significantly reduced metastatic spread. Plasmid-based ribozymes suppressed target-gene expression with sequence specificity not achievable by using synthetic oligonucleotide-based approaches. NF-κB seemed to regulate tumor metastasis through invasion-related, rather than angiogenesis-, cell-cycle- or apoptosis-related pathways in tumor-bearing mice. Furthermore, ribozymes targeting either of the NF-κB-regulated genes, integrin β3 or PECAM-1 (a ligand-receptor pair linked to cell adhesion), reduced tumor metastasis at a level comparable to NF-κB. These studies demonstrate the utility of gene targeting by means of systemic, plasmid-based ribozymes to dissect out the functional genomics of complex biologic phenotypes, including tumor metastasis. PMID:11891271

  14. CXC receptor knockout mice: characterization of skeletal features and membranous bone healing in the adult mouse.

    PubMed

    Bischoff, David S; Sakamoto, Taylor; Ishida, Kenji; Makhijani, Nalini S; Gruber, Helen E; Yamaguchi, Dean T

    2011-02-01

    The potential role of CXC chemokines bearing the glu-leu-arg (ELR) motif in bone repair was studied using a cranial defect (CD) model in mice lacking the CXC receptor (mCXCR(-/-) knockout mice), which is homologous to knockout of the human CXC receptor 2 (CXCR2) gene. During the inflammatory stage of bone repair, ELR CXC chemokines are released by inflammatory cells and serve as chemotactic and angiogenic factors. mCXCR(-/-) mice were smaller in weight and length from base of tail to nose tip, compared to WT littermates. DEXA analysis indicated that bone mineral density (BMD), bone mineral content (BMC), total area (TA), bone area (BA), and total tissue mass (TTM) were decreased in the mCXCR(-/-) mice at 6, 12, and 18 weeks of age. Trabecular bone characteristics in mCXCR(-/-) (% bone, connectivity, number, and thickness) were reduced, and trabecular spacing was increased as evidenced by μCT. There was no difference in bone formation or resorption indices measured by bone histomorphometry. Trabecular BMD was not altered. Cortical bone volume, BMD, and thickness were reduced; whereas, bone marrow volume was increased in mCXCR(-/-). Decreased polar moment of inertia (J) in the tibias/femurs suggested that the mCXCR(-/-) long bones are weaker. This was confirmed by three-point bending testing of the femurs. CDs created in 6-week-old male mCXCR(-/-) and WT littermates were not completely healed at 12 weeks; WT animals, however, had significantly more bone in-growth than mCXCR(-/-). New bone sites were identified using polarized light and assessed for numbers of osteocyte (OCy) lacunae and blood vessels (BlV) around the original CD. In new bone, the number of BlV in WT was >2× that seen in mCXCR(-/-). Bone histomorphometry parameters in the cranial defect did not show any difference in bone formation or resorption markers. In summary, studies showed that mCXCR(-/-) mice have (1) reduced weight and size; (2) decreased BMD and BMC; (3) decreased amounts of trabecular

  15. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    SciTech Connect

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.; Shyamala, G.; Moses, Harold L.; Barcellos-Hoff, Mary Helen

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha} co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.

  16. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation

    PubMed Central

    Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Soto-Rodríguez, Sofía; González-Perez, Oscar

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD. PMID:27579149

  17. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation.

    PubMed

    López-Armas, Gabriela; Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Jave-Suarez, Luis Felipe; Soto-Rodríguez, Sofía; Rusanova, Iryna; Acuña-Castroviejo, Dario; González-Perez, Oscar; González-Castañeda, Rocío Elizabeth

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD.

  18. Effects of spaced learning in the water maze on development of dentate granule cells generated in adult mice.

    PubMed

    Trinchero, Mariela F; Koehl, Muriel; Bechakra, Malik; Delage, Pauline; Charrier, Vanessa; Grosjean, Noelle; Ladeveze, Elodie; Schinder, Alejandro F; Abrous, D Nora

    2015-11-01

    New dentate granule cells (GCs) are generated in the hippocampus throughout life. These adult-born neurons are required for spatial learning in the Morris water maze (MWM). In rats, spatial learning shapes the network by regulating their number and dendritic development. Here, we explored whether such modulatory effects exist in mice. New GCs were tagged using thymidine analogs or a GFP-expressing retrovirus. Animals were exposed to a reference memory protocol for 10-14 days (spaced training) at different times after newborn cells labeling. Cell proliferation, cell survival, cell death, neuronal phenotype, and dendritic and spine development were examined using immunohistochemistry. Surprisingly, spatial learning did not modify any of the parameters under scrutiny including cell number and dendritic morphology. These results suggest that although new GCs are required in mice for spatial learning in the MWM, they are, at least for the developmental intervals analyzed here, refractory to behavioral stimuli generated in the course of learning in the MWM. PMID:25740272

  19. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation.

    PubMed

    López-Armas, Gabriela; Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Jave-Suarez, Luis Felipe; Soto-Rodríguez, Sofía; Rusanova, Iryna; Acuña-Castroviejo, Dario; González-Perez, Oscar; González-Castañeda, Rocío Elizabeth

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD. PMID:27579149

  20. Protective effects of vitamin E and Cornus mas fruit extract on methotrexate-induced cytotoxicity in sperms of adult mice

    PubMed Central

    Zarei, Leila; Sadrkhanlou, Rajabali; Shahrooz, Rasoul; Malekinejad, Hassan; Eilkhanizadeh, Behroz; Ahmadi, Abbas

    2014-01-01

    This study was aimed to assess the protective effects of Cornus mas fruit extract (CMFE) and vitamin E (Vit E) on sperm quality parameters in the methotrexate (MTX)-treated mice. Forty-eight young adult male mice (8-12 weeks) were randomly divided into six groups including control and test groups. The control group received normal saline orally , and the test groups were treated MTX (20 mg kg-1, ip, once weekly), MTX + CMFE (250 mg kg-1), MTX + CMFE (500 mg kg-1), MTX + CMFE (1000 mg kg-1), and MTX + Vit E (100 IU kg-1, po) for 35 consecutive days. On day 35, after euthanasia the epididymal sperms were isolated. Then the total mean sperm count, sperm viability and motility were determined. The total antioxidant capacity (TAOC) of all experimental groups were also evaluated. The MTX-treated animals showed a significant changes in all parameters of sperm quality assessment compared to the control group. Both Vit E and CMFE were able to protect from MTX-induced effects on sperm maturity and DNA damage. Co-administration of MTX and CMFE and/or Vit E resulted in protection from MTX-reduced TAOC. In conclusion, these data suggested that MTX administration could adversely affect the sperm quality. Moreover, the protective effect of Vit E and CMFE on MTX-induced sperm toxicity was also documented. PMID:25568688

  1. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice.

    PubMed

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Baron-Van Evercooren, Anne

    2015-09-01

    Induced pluripotent stem cell-derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent-derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin-derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS.

  2. Effect of intermittent exposure to ethanol and MDMA during adolescence on learning and memory in adult mice

    PubMed Central

    2012-01-01

    Background Heavy binge drinking is increasingly frequent among adolescents, and consumption of 3,4-methylenedioxymethamphetamine (MDMA) is often combined with ethanol (EtOH). The long-lasting effects of intermittent exposure to EtOH and MDMA during adolescence on learning and memory were evaluated in adult mice using the Hebb-Williams maze. Methods Adolescent OF1 mice were exposed to EtOH (1.25 g/kg) on two consecutive days at 48-h intervals over a 14-day period (from PD 29 to 42). MDMA (10 or 20 mg/kg) was injected twice daily at 4-h intervals over two consecutive days, and this schedule was repeated six days later (PD 33, 34, 41 and 42), resulting in a total of eight injections. Animals were initiated in the Hebb-Williams maze on PND 64. The concentration of brain monoamines in the striatum and hippocampus was then measured. Results At the doses employed, both EtOH and MDMA, administered alone or together, impaired learning in the Hebb-Williams maze, as treated animals required more time to reach the goal than their saline-treated counterparts. The groups treated during adolescence with EtOH, alone or plus MDMA, also presented longer latency scores and needed more trials to reach the acquisition criterion score. MDMA induced a decrease in striatal DA concentration, an effect that was augmented by the co-administration of EtOH. All the treatment groups displayed an imbalance in the interaction DA/serotonin. Conclusions The present findings indicate that the developing brain is highly vulnerable to the damaging effects of EtOH and/or MDMA, since mice receiving these drugs in a binge pattern during adolescence exhibit impaired learning and memory in adulthood. PMID:22716128

  3. Commentary to Krishna et al. (2014): brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water.

    PubMed

    Kumasaka, Mayuko Y; Yajima, Ichiro; Ohgami, Nobutaka; Naito, Hisao; Omata, Yasuhiro; Kato, Masashi

    2014-05-01

    Krishna et al. (Arch Toxicol 88(1):47-64, 2014) recently published the results of a study in which adult C57BL/6 mice were subchronically exposed to 400,000 μg/L manganese (Mn) using manganese chloride via drinking water for 8 weeks and examined the neurotoxic effects. After 5 weeks of Mn exposure, significant deposition of Mn in all of the brain regions examined by magnetic resonance imaging was detected. After 6 weeks of Mn exposure, neurobehavioral deficits in an open field test, a grip strength test, and a forced swim test were observed. Eight weeks of Mn exposure increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) levels, but did not alter the levels of striatal dopamine, its metabolites and serotonin. Krishna et al. also reported significant increases in mRNA levels of GFAP (an astrocyte activation marker), HO-1 (an oxidative stress marker) and NOS2 (a nitrosative stress marker), and in protein expression level of GFAP in the substantia nigra pars reticulata after 8 weeks of Mn exposure. These results suggest that 400,000 μg/L Mn exposure via drinking water in mice induces neurobehavioral deficits, serotonergic imbalance, and glial activation accompanied by an increase in brain Mn deposition. The report by Krishna et al. is interesting because the studies on the neurobehavioral effect of Mn exposure by drinking water in mice are very limited. However, Mn concentrations previously reported in well drinking water (Agusa et al. in Vietnam Environ Pollut 139(1):95-106, 2006; Buschmann et al. in Environ Int 34(6):756-764, 2008; Hafeman et al. in Environ Health Perspect 115(7):1107-1112, 2007; Wasserman et al. in Bangladesh Environ Health Perspect 114(1):124-129, 2006) were lower than 400,000 μg/L.

  4. Altered gene expression and spine density in nucleus accumbens of adolescent and adult male mice exposed to emotional and physical stress

    PubMed Central

    Warren, Brandon L; Sial, Omar K.; Alcantara, Lyonna F.; Greenwood, Maria A.; Brewer, Jacob S.; Rozofsky, John P.; Parise, Eric M.; Bolaños-Guzmán, Carlos A.

    2014-01-01

    Stressful early life experiences are implicated in lifelong health. However, little is known about the consequences of emotional or physical stress on neurobiology. Therefore, the following set of experiments was designed to assess changes in transcription and translation of key proteins within the nucleus accumbens (NAc). Male adolescent (postnatal day [PD] 35) or adult (eight-week old) mice were exposed to emotional (ES) or physical stress (PS) using a vicarious social defeat paradigm. Twenty-four hours after the last stress session, we measured levels of specific mRNAs and proteins within the NAc. Spine density was also assessed in separate groups of mice. Exposure to ES or PS disrupted ERK2, reduced transcription of ΔFosB, and had no effect on CREB mRNA. Western blots revealed that exposure to ES or PS decreased ERK2 phosphorylation in adolescents, whereas the same stress regimen increased ERK2 phosphorylation in adults. Exposure to ES or PS had no effect on ΔFosB or CREB phosphorylation. ES and PS increased spine density in the NAc of adolescent-exposed mice, but only exposure to PS increased spine density in adults. Together, these findings demonstrate that exposure to ES or PS is a potent stressor in adolescent and adult mice, and can disturb the integrity of the NAc by altering transcription and translation of important signaling molecules in an age-dependent manner. Furthermore, exposure to ES and PS induces substantial synaptic plasticity of the NAc. PMID:24943326

  5. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  6. Inducible activation of Cre recombinase in adult mice causes gastric epithelial atrophy, metaplasia, and regenerative changes in the absence of “floxed” alleles

    PubMed Central

    Jae Huh, Won; Mysorekar, Indira U.

    2010-01-01

    The epithelium of the mammalian gastric body comprises multiple cell types replenished by a single stem cell. The adult conformation of cell lineages occurs well after birth; hence, study of genes regulating stem cell activity is facilitated by inducible systems for gene deletion. However, there is a potential pitfall involving the commonly used inducible Cre recombinase system to delete genes: we report here that induction of Cre using standard doses of tamoxifen led to marked spasmolytic polypeptide-expressing metaplasia of the stomach within days and profound atrophy of the entire epithelium with foci of hyperplasia by 2 wk even in the absence of loxP-flanked alleles. Cre induction caused genotoxicity with TdT-mediated dUTP nick-end labeling (TUNEL)-positive apoptosis (TUNEL-positive cells) and increased levels of DNA damage markers (γH2AX, p53, DDIT3, GADD45A). Although Cre was expressed globally by use of a chicken actin promoter, the effects were almost entirely stomach specific. Despite severe injury, a subset of mice showed near complete healing of the gastric mucosa 11–12 wk after Cre induction, suggesting substantial gastric regenerative capacity. Finally, we show that nongenotoxic doses of tamoxifen could be used to specifically delete loxP-flanked Bmpr1a, the receptor for bone morphogenetic protein 2, 4, and 7, causing antral polyps and marked antral-pyloric hyperplasia, consistent with previous reports on Bmpr1a. Together, the results show dose-dependent, potentially reversible sensitivity of the gastric mucosa to Cre genotoxicity. Thus we propose that tamoxifen induction of Cre could be used to induce genotoxic injury to study the regenerative capacity of the gastric epithelial stem cell. PMID:20413717

  7. A pubertal immune challenge alters the antidepressant-like effects of chronic estradiol treatment in inbred and outbred adult female mice

    PubMed Central

    Ismail, Nafissa; Kumlin, Ashley M.; Blaustein, Jeffrey D.

    2012-01-01

    Puberty is a period characterized by brain reorganization that contributes to the development of neural and behavioral responses to gonadal steroids. A single injection of the bacterial endotoxin, lipopolysaccharide (LPS), during the pubertal period decreases sexual receptivity in response to ovarian hormones in adulthood. Because chronic estradiol treatment alleviates depression-like symptoms in ovariectomized adult mice, we investigated the effect of pubertal LPS treatment on estradiol’s antidepressant effects. We hypothesized that pubertal LPS treatment would decrease the antidepressant-like effect of estradiol in adult ovariectomized female mice, as it decreases other behavioral responses to ovarian hormones. As expected, chronic estradiol treatment decreased depression-like behavior, as measured by the duration of immobility, in saline-treated mice from two different strains, as well as in mice treated with LPS in adulthood. In contrast, in mice treated pubertally with LPS, estradiol strikingly increased the duration of immobility. No difference in body weight and in locomotion was found among the groups, suggesting that the differences in depression-like behavior were not due to differences in body weight or locomotor activity between LPS-treated and control mice. These results suggest that exposure to an immune challenge during the pubertal period alters the responsiveness of depression-like behavior to estradiol. PMID:23036617

  8. Effects of neonatal corticosterone and environmental enrichment on retinal ERK1/2 and CREB phosphorylation in adult mice.

    PubMed

    Matteucci, Andrea; Ceci, Chiara; Mallozzi, Cinzia; Macrì, Simone; Malchiodi-Albedi, Fiorella; Laviola, Giovanni

    2014-11-01

    Exposure to Stimulating Environments (SE) during development may improve neuroplasticity in central nervous system, protect against neurotoxic damage, and promote neuronal recovery in adult life. While biochemical mechanisms of SE-promoted neuronal plasticity are well known in the brain, much less is known on the signaling cascade governing plasticity and neuroprotection in the retina. In order to investigate if in the retina signaling molecules involved in neuronal plasticity are affected by SE, neonatal CD-1 mice were exposed to moderate corticosterone levels (NC), supplemented through maternal milk during the first postnatal week, or to environmental enrichment (EE) conditions (physical and social stimuli) from early adolescence. Our results showed that both NC and EE increased the phosphorylation level of Extracellularly Regulated Kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB) in the adult retinal tissue. Furthermore, we observed that activated ERK1/2 was restricted to Müller cells, while pCREB was mostly present in the nuclei of retinal neurons. Neither NC, nor EE modified the expression of GFAP, a marker of Müller cells activation. In conclusion our results indicate that both NC and EE activate ERK1/2 and CREB in the retina and provide a biochemical background for the neuroprotective activity exerted by SE against retinal damage. Furthermore, they support the role of Müller glia as a key cell determinant of retinal neuroplasticity.

  9. Hippocampal neuroligin-2 links early-life stress with impaired social recognition and increased aggression in adult mice.

    PubMed

    Kohl, Christine; Wang, Xiao-Dong; Grosse, Jocelyn; Fournier, Céline; Harbich, Daniela; Westerholz, Sören; Li, Ji-Tao; Bacq, Alexandre; Sippel, Claudia; Hausch, Felix; Sandi, Carmen; Schmidt, Mathias V

    2015-05-01

    Early-life stress is a key risk factor for the development of neuropsychiatric disorders later in life. Neuronal cell adhesion molecules have been strongly implicated in the pathophysiology of psychiatric disorders and in modulating social behaviors associated with these diseases. Neuroligin-2 is a synaptic cell adhesion molecule, located at the postsynaptic membrane of inhibitory GABAergic synapses, and is involved in synaptic stabilization and maturation. Alterations in neuroligin-2 expression have previously been associated with changes in social behavior linked to psychiatric disorders, including schizophrenia and autism. In this study, we show that early-life stress, induced by limited nesting and bedding material, leads to impaired social recognition and increased aggression in adult mice, accompanied by increased expression levels of hippocampal neuroligin-2. Viral overexpression of hippocampal neuroligin-2 in adulthood mimics early-life stress-induced alterations in social behavior and social cognition. Moreover, viral knockdown of neuroligin-2 in the adult hippocampus attenuates the early-life stress-induced behavioral changes. Our results highlight the importance of neuroligin-2 in mediating early-life stress effects on social behavior and social cognition and its promising role as a novel therapeutic target for neuropsychiatric disorders.

  10. Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice.

    PubMed

    Al-Massadi, Omar; Porteiro, Begoña; Kuhlow, Doreen; Köhler, Markus; Gonzalez-Rellan, María J; Garcia-Lavandeira, Montserrat; Díaz-Rodríguez, Esther; Quiñones, Mar; Senra, Ana; Alvarez, Clara V; López, Miguel; Diéguez, Carlos; Schulz, Tim J; Nogueiras, Rubén

    2016-07-01

    p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage.

  11. Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice.

    PubMed

    Al-Massadi, Omar; Porteiro, Begoña; Kuhlow, Doreen; Köhler, Markus; Gonzalez-Rellan, María J; Garcia-Lavandeira, Montserrat; Díaz-Rodríguez, Esther; Quiñones, Mar; Senra, Ana; Alvarez, Clara V; López, Miguel; Diéguez, Carlos; Schulz, Tim J; Nogueiras, Rubén

    2016-07-01

    p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage. PMID:27183316

  12. Selective improvement of cognitive function in adult and aged APP/PS1 transgenic mice by continuous non-shock treadmill exercise.

    PubMed

    Ke, Hsing-Chieh; Huang, Hei-Jen; Liang, Keng-Chen; Hsieh-Li, Hsiu Mei

    2011-07-27

    Exercise may contribute to prevention of the cognitive decline and delay the onset of the Alzheimer's disease (AD). We evaluated the effects of continuous non-shock treadmill exercise in adult and aged male APP/PS1 double mutant transgenic mice. Adult (7-8 month-old) and aged (24 month-old) male APP/PS1 transgenic and wild-type mice were randomly assigned to either sedentary or exercise groups. The exercise program included a one-week treadmill acclimatization to adapt to the novel environment. After acclimation, mice ran on a treadmill 5 days/week until sacrificed for pathological analyses. During exercise training, no tail shock was used in the exercise paradigm; only gentle tail touching was used to induce the mice to run, to minimize the stress otherwise associated with treadmill exercise. We found that the exercise program selectively improved the spatial learning and memory associated with an increase in both cholinergic neurons in the medial septum (MS)/vertical diagonal band (VDB) and serotonergic neurons in the raphe nucleus of aged APP/PS1 transgenic mice. In adult APP/PS1 transgenic mice, the exercise paradigm increased exploratory activity and reduced anxiety with an associated increase in numbers of serotonergic neurons in the raphe nucleus. In addition, the exercise paradigm also reduced amyloid-β peptide (Aβ) levels and microglia activation, but not enough to reduce the plaque loading in the hippocampus of the APP/PS1 transgenic mice. Therefore, these findings suggest that there may exist an age-related difference in the effect of continuous non-shock treadmill exercise training on AD.

  13. Aniracetam Does Not Alter Cognitive and Affective Behavior in Adult C57BL/6J Mice

    PubMed Central

    Elston, Thomas W.; Pandian, Ashvini; Smith, Gregory D.; Holley, Andrew J.; Gao, Nanjing; Lugo, Joaquin N.

    2014-01-01

    There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs. PMID:25099639

  14. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    PubMed Central

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061

  15. Litter Environment Affects Behavior and Brain Metabolic Activity of Adult Knockout Mice

    PubMed Central

    Crews, David; Rushworth, David; Gonzalez-Lima, Francisco; Ogawa, Sonoko

    2009-01-01

    In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s), the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual's behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for sex ratio and genotype ratio (wild type pups versus pups lacking a functional estrogen receptor α). In both males and females, the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks. PMID:19707539

  16. Effects of Rice Bran Oil on the Intestinal Microbiota and Metabolism of Isoflavones in Adult Mice

    PubMed Central

    Tamura, Motoi; Hori, Sachiko; Hoshi, Chigusa; Nakagawa, Hiroyuki

    2012-01-01

    This study examined the effects of rice bran oil (RBO) on mouse intestinal microbiota and urinary isoflavonoids. Dietary RBO affects intestinal cholesterol absorption. Intestinal microbiota seem to play an important role in isoflavone metabolism. We hypothesized that dietary RBO changes the metabolism of isoflavonoids and intestinal microbiota in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 10% RBO diet (RO group) and those fed a 0.05% daidzein with 10% lard control diet (LO group) for 30 days. Urinary amounts of daidzein and dihydrodaidzein were significantly lower in the RO group than in the LO group. The ratio of equol/daidzein was significantly higher in the RO group (p < 0.01) than in the LO group. The amount of fecal bile acids was significantly greater in the RO group than in the LO group. The composition of cecal microbiota differed between the RO and LO groups. The occupation ratios of Lactobacillales were significantly higher in the RO group (p < 0.05). Significant positive correlation (r = 0.591) was observed between the occupation ratios of Lactobacillales and fecal bile acid content of two dietary groups. This study suggests that dietary rice bran oil has the potential to affect the metabolism of daidzein by altering the metabolic activity of intestinal microbiota. PMID:22949864

  17. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    PubMed

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  18. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy

    PubMed Central

    Naviaux, J C; Schuchbauer, M A; Li, K; Wang, L; Risbrough, V B; Powell, S B; Naviaux, R K

    2014-01-01

    Autism spectrum disorders (ASDs) now affect 1–2% of the children born in the United States. Hundreds of genetic, metabolic and environmental factors are known to increase the risk of ASD. Similar factors are known to influence the risk of schizophrenia and bipolar disorder; however, a unifying mechanistic explanation has remained elusive. Here we used the maternal immune activation (MIA) mouse model of neurodevelopmental and neuropsychiatric disorders to study the effects of a single dose of the antipurinergic drug suramin on the behavior and metabolism of adult animals. We found that disturbances in social behavior, novelty preference and metabolism are not permanent but are treatable with antipurinergic therapy (APT) in this model of ASD and schizophrenia. A single dose of suramin (20 mg kg−1 intraperitoneally (i.p.)) given to 6-month-old adults restored normal social behavior, novelty preference and metabolism. Comprehensive metabolomic analysis identified purine metabolism as the key regulatory pathway. Correction of purine metabolism normalized 17 of 18 metabolic pathways that were disturbed in the MIA model. Two days after treatment, the suramin concentration in the plasma and brainstem was 7.64 μM pmol μl−1 (±0.50) and 5.15 pmol mg−1 (±0.49), respectively. These data show good uptake of suramin into the central nervous system at the level of the brainstem. Most of the improvements associated with APT were lost after 5 weeks of drug washout, consistent with the 1-week plasma half-life of suramin in mice. Our results show that purine metabolism is a master regulator of behavior and metabolism in the MIA model, and that single-dose APT with suramin acutely reverses these abnormalities, even in adults. PMID:24937094

  19. Functional Analysis of Neurovascular Adaptations to Exercise in the Dentate Gyrus of Young Adult Mice Associated With Cognitive Gain

    PubMed Central

    Clark, Peter J.; Brzezinska, Weronika J.; Puchalski, Emily K.; Krone, David A.; Rhodes, Justin S.

    2009-01-01

    The discovery that aerobic exercise increases adult hippocampal neurogenesis and can enhance cognitive performance holds promise as a model for regenerative medicine. This study adds two new pieces of information to the rapidly growing field. First, we tested whether exercise increases vascular density in the granular layer of the dentate gyrus, whole hippocampus, and striatum in C57BL/6J mice known to display procognitive effects of exercise. Second, we determined the extent to which new neurons from exercise participate in the acute neuronal response to high levels of running in B6D2F1/J (F1 hybrid of C57BL/6J female by DBA/2J male). Mice were housed with or without a running wheel for 50 days (runner vs. sedentary). The first 10 days, they received daily injections of BrdU to label dividing cells. The last 10 days, mice were tested for performance on the Morris water maze and rotarod and then euthanized to measure neurogenesis, c-Fos induction from running and vascular density. In C57BL/6J, exercise increased neurogenesis, density of blood vessels in the dentate gyrus and striatum (but not whole hippocampus), and enhanced performance on the water maze and rotarod. In B6D2F1/J, exercise also increased hippocampal neurogenesis but not vascular density in the granular layer. Improvement on the water maze from exercise was marginal, and no gain was seen for rotarod, possibly because of a ceiling effect. Running increased the number of c-Fos positive neurons in the granular layer by fivefold, and level of running was strongly correlated with c-Fos within 90 min before euthanasia. In runners, ~3.3% (±0.008 S.E.) of BrdU-positive neurons in the middle of the granule layer displayed c-Fos when compared with 0.8% (±0.001) of BrdU-negative neurons. Results suggest that procognitive effects of exercise are associated with increased vascular density in the dentate gyrus and striatum in C57BL/6J mice, and that new neurons from exercise preferentially function in the

  20. Insulin-Producing Cells From Adult Human Bone Marrow Mesenchymal Stem Cells Control Streptozotocin-Induced Diabetes In Nude Mice

    PubMed Central

    Gabr, Mahmoud M.; Zakaria, Mahmoud M.; Refaie, Ayman F.; Ismail, Amani M.; Abou-El-Mahasen, Mona A.; Ashamallah, Sylvia A.; Khater, Sherry M.; El-Halawani, Sawsan M.; Ibrahim, Rana Y.; Uin, Gan Shu; Kloc, Malgorzata; Calne, Roy Y.; Ghoneim, Mohamed A.

    2013-01-01

    Harvesting, expansion and directed differentiation of human bone marrow-derived mesenchymal stem cells (BM-MSCs) could provide an autologous source of surrogate β-cells that would alleviate the limitations of availability and/or allogenic rejection following pancreatic or islet transplantation. Bone marrow cells were obtained from three adult type 2 diabetic volunteers and 3 non-diabetic donors. After 3 days in culture, adherent MSCs were expanded for 2 passages. At passage 3, differentiation was carried out in a 3-staged procedure. Cells were cultured in a glucose-rich medium containing several activation and growth factors. Cells were evaluated in-vitro by flow cytometry, immunolabelling, Rt-PCR and human insulin and c-peptide release in responses to increasing glucose concentrations. One thousand cell-clusters were inserted under the renal capsule of diabetic nude mice followed by monitoring of their diabetic status. At the end of differentiation, ~5–10% of cells were immunofluorescent for insulin, c-peptide or glucagon; insulin and c-peptide were co-expressed. Nanogold immunolabelling for electron microscopy demonstrated the presence of c-peptide in the rough endoplasmic reticulum. Insulin-producing cells (IPCs) expressed transcription factors and genes of pancreatic hormones similar to those expressed by pancreatic islets. There was a stepwise increase in human insulin and c-peptide release by IPCs in response to increasing glucose concentrations. Transplantation of IPCs into nude diabetic mice resulted in control of their diabetic status for 3 months. The sera of IPC-transplanted mice contained human insulin and c-peptide but negligible levels of mouse insulin. When the IPCs-bearing kidneys were removed, rapid return of diabetic state was noted. BM-MSCs from diabetic and non-diabetic human subjects could be differentiated without genetic manipulation to form IPCs which, when transplanted, could maintain euglycaemia in diabetic mice for 3 months

  1. Functional analysis of neurovascular adaptations to exercise in the dentate gyrus of young adult mice associated with cognitive gain.

    PubMed

    Clark, Peter J; Brzezinska, Weronika J; Puchalski, Emily K; Krone, David A; Rhodes, Justin S

    2009-10-01

    The discovery that aerobic exercise increases adult hippocampal neurogenesis and can enhance cognitive performance holds promise as a model for regenerative medicine. This study adds two new pieces of information to the rapidly growing field. First, we tested whether exercise increases vascular density in the granular layer of the dentate gyrus, whole hippocampus, and striatum in C57BL/6J mice known to display procognitive effects of exercise. Second, we determined the extent to which new neurons from exercise participate in the acute neuronal response to high levels of running in B6D2F1/J (F1 hybrid of C57BL/6J female by DBA/2J male). Mice were housed with or without a running wheel for 50 days (runner vs. sedentary). The first 10 days, they received daily injections of BrdU to label dividing cells. The last 10 days, mice were tested for performance on the Morris water maze and rotarod and then euthanized to measure neurogenesis, c-Fos induction from running and vascular density. In C57BL/6J, exercise increased neurogenesis, density of blood vessels in the dentate gyrus and striatum (but not whole hippocampus), and enhanced performance on the water maze and rotarod. In B6D2F1/J, exercise also increased hippocampal neurogenesis but not vascular density in the granular layer. Improvement on the water maze from exercise was marginal, and no gain was seen for rotarod, possibly because of a ceiling effect. Running increased the number of c-Fos positive neurons in the granular layer by fivefold, and level of running was strongly correlated with c-Fos within 90 min before euthanasia. In runners, approximately 3.3% (+/-0.008 S.E.) of BrdU-positive neurons in the middle of the granule layer displayed c-Fos when compared with 0.8% (+/-0.001) of BrdU-negative neurons. Results suggest that procognitive effects of exercise are associated with increased vascular density in the dentate gyrus and striatum in C57BL/6J mice, and that new neurons from exercise preferentially

  2. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice.

    PubMed

    Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing

    2015-01-01

    The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.

  3. Adult female wildtype, but not oestrogen receptor β knockout, mice have decreased depression-like behaviour during pro-oestrus and following administration of oestradiol or diarylpropionitrile

    PubMed Central

    Walf, AA; Koonce, CJ; Frye, CA

    2013-01-01

    Studies in people and animal models suggest that depression is influenced by natural, fluctuations in the levels of 17β-oestradiol (E2), as well as administration of E2-based therapies, such as selective oestrogen receptor modulators (SERMs). Elucidating the effects and mechanisms of E2 is important to improve future E2-based therapeutics. An important question is whether effects of E2 or SERMs for mood regulation act at the α or β isoform of the oestrogen receptor (ER) because some of the unwanted trophic effects of E2-based therapies may involve actions at ERα, rather than ERβ. In the present study, whether there are sex differences in depression-like behaviour of adult mice (experiment 1), and the effects of natural fluctuations in E2 (experiment 2), or administration of E2 or a SERM that has higher affinity for ERβ than for ERα (diarylpropionitrile; DPN) to ovariectomised (experiment 3) wildtype and ERβ knockout (βERKO) mice were investigated. Results of this study supported our hypotheses that: there would be sex differences favouring males for depression-like behaviour and endogenous increases in, or exogenous administration of, E2 or administration of an ERβ SERM would decrease depression-like behaviour in wildtype, but not βERKO, mice. In experiment 1, adult male mice spent less time immobile in the forced swim test (i.e., showed less depression-like behaviour) compared with female mice. In experiment 2, pro-oestrous (higher circulating E2 levels), compared with dioestrous (lower circulating E2 levels), mice had reduced immobility in the forced swim test; this effect was not observed in βERKO mice. In experiment 3, administration of E2 or DPN to ovariectomised wildtype, but not βERKO, mice decreased immobility compared with vehicle administration, these data suggest that ERβ may be required for some of the anti–depressant-like effects of E2. PMID:18562442

  4. Adenosine A2A receptors are necessary and sufficient to trigger memory impairment in adult mice

    PubMed Central

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-01-01

    Background and Purpose Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer’s disease, an effect mimicked by adenosine A2A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. Experimental Approach We determined whether A2A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Key Results Scopolamine (1.0 mg·kg−1, i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2A receptor antagonist (SCH 58261, 0.1–1.0 mg·kg−1, i.p.) and by the A1 receptor antagonist (DPCPX, 0.2–5.0 mg·kg−1, i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2A receptors with CGS 21680 (0.1–0.5 mg·kg−1, i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg−1, i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. Conclusions and Implications These results show that A2A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. PMID:25939452

  5. High frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

    PubMed

    Hadden, Hélène

    2013-01-15

    We tested the hypothesis that high frequency ventilation affects respiratory system mechanical functions in C57BL/6J and BALB/c mice. We measured respiratory mechanics by the forced oscillation technique over 1h in anesthetized, intubated, ventilated BALB/c and C57BL/6J male mice. We did not detect any change in airway resistance, Rn, tissue damping, G, tissue elastance, H and hysteresivity, eta in BALB/c mice during 1h of ventilation at 150 or at 450 breaths/min; nor did we find a difference between BALB/c mice ventilated at 150 breaths/min compared with 450 breaths/min. Among C57BL/6J mice, except for H, all parameters remained unchanged over 1h of ventilation in mice ventilated at 150 breaths/min. However, after 10 and 30 min of ventilation at 450 breaths/min, Rn, and respiratory system compliance were lower, and eta was higher, than their starting value. We conclude that high frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

  6. Similar L-dopa-stimulated motor activity in mice with adult-onset 6-hydroxydopamine-induced symmetric dopamine denervation and in transcription factor Pitx3 null mice with perinatal-onset symmetric dopamine denervation.

    PubMed

    Li, Li; Sagot, Ben; Zhou, Fu-Ming

    2015-07-30

    The transcription factor Pitx3 null mutant (Pitx3Null) mice have a constitutive perinatal-onset and symmetric bilateral dopamine (DA) loss in the striatum. In these mice l-3,4-dihydroxyphenylalanine (l-dopa) induces apparently normal horizontal movements (walking) but also upward movements consisting of the vertical body trunk and waving paws that are absent in normal animals and in animals with the classic unilateral 6-hydroxydopamine (6-OHDA) lesion-induced DA denervation. Thus, a concern is that the perinatal timing of the DA loss and potential developmental abnormalities in Pitx3Null mice may underlie these upward movements, thus reducing the usefulness as a DA denervation model. Here we show that in normal wild-type (Pitx3WT) mice with adult-onset symmetric, bilateral 6-OHDA-induced DA lesion in the dorsal striatum, l-dopa induces normal horizontal movements and upward movements that are qualitatively identical to those in Pitx3Null mice. Furthermore, after unilateral 6-OHDA lesion of the residual DA innervation in the striatum in Pitx3Null mice, l-dopa induces contraversive rotation that is similar to that in Pitx3WT mice with the classic unilateral 6-OHDA lesion. These results indicate that in Pitx3Null mice, the bilateral symmetric DA denervation in the dorsal striatum is sufficient for expressing the l-dopa-induced motor phenotype and the perinatal timing of their DA loss is not a determining factor, providing further evidence that Pitx3Null mice are a convenient and suitable mouse model to study the consequences of DA loss and dopaminergic replacement therapy in Parkinson's disease.

  7. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice.

    PubMed

    Fabel, Klaus; Wolf, Susanne A; Ehninger, Dan; Babu, Harish; Leal-Galicia, Perla; Kempermann, Gerd

    2009-01-01

    Voluntary physical exercise (wheel running, RUN) and environmental enrichment both stimulate adult hippocampal neurogenesis but do so by different mechanisms. RUN induces precursor cell proliferation, whereas ENR exerts a survival-promoting effect on newborn cells. In addition, continued RUN prevented the physiologically occurring age-related decline in precursor cell in the dentate gyrus but did not lead to a corresponding increase in net neurogenesis. We hypothesized that in the absence of appropriate cognitive stimuli the potential for neurogenesis could not be realized but that an increased potential by proliferating precursor cells due to RUN could actually lead to more adult neurogenesis if an appropriate survival-promoting stimulus follows the exercise. We thus asked whether a sequential combination of RUN and ENR (RUNENR) would show additive effects that are distinct from the application of either paradigm alone. We found that the effects of 10 days of RUN followed by 35 days of ENR were additive in that the combined stimulation yielded an approximately 30% greater increase in new neurons than either stimulus alone, which also increased neurogenesis. Surprisingly, this result indicates that although overall the amount of proliferating cells in the dentate gyrus is poorly predictive of net adult neurogenesis, an increased neurogenic potential nevertheless provides the basis for a greater efficiency of the same survival-promoting stimulus. We thus propose that physical activity can "prime" the neurogenic region of the dentate gyrus for increased neurogenesis in the case the animal is exposed to an additional cognitive stimulus, here represented by the enrichment paradigm.

  8. Adult mice voluntarily progress to nicotine dependence in an oral self-selection assay.

    PubMed

    Locklear, Laura L; McDonald, Craig G; Smith, Robert F; Fryxell, Karl J

    2012-09-01

    Nicotine has both rewarding and aversive properties in rodents, as shown by intravenous self-administration, intracranial self-stimulation, and conditioned place preference experiments. However, high throughput models of nicotine reward have not been developed in mice. In previous two-bottle studies, mice often chose to drink less from the nicotine bottle than from the water bottle, which raises the question whether these paradigms provide a model of the reinforcing properties of oral nicotine. We hypothesized that previous two-bottle choice paradigms included factors (such as the brief duration of trials, the addition of flavorings to both bottles, water bottles located relatively close to each other, etc.) that may have obstructed the formation of a learned association between the taste of nicotine and its delayed pharmacological effects. Here we show that a paradigm designed to simplify the acquisition of a learned association resulted in nicotine consumption by various strains and sexes that diverged progressively over a period of seven weeks. The strain and sex with the highest nicotine consumption (C57BL/6J females) showed steady and statistically significant increases in nicotine consumption throughout this period. C57BL/6J females were clearly responding to the reinforcing properties of nicotine because they chose to drink over 70% of their fluids from the nicotine bottle. Moreover, they became nicotine dependent, as shown by highly significant nicotine withdrawal symptoms after the nicotine bottle was removed. The strain and sex with the lowest consumption (A/J males) showed a significant decrease in nicotine consumption, and by the end of the experiment were drinking only 24% of their fluids from the nicotine bottle.

  9. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype

    PubMed Central

    Yin, Hao; Xue, Wen; Chen, Sidi; Bogorad, Roman L; Benedetti, Eric; Grompe, Markus; Koteliansky, Victor; Sharp, Phillip A; Jacks, Tyler; Anderson, Daniel G

    2014-01-01

    We demonstrate CRISPR-Cas9–mediated correction of a Fah mutation in hepatocytes in a mouse model of the human disease hereditary tyrosinemia. Delivery of components of the CRISPR-Cas9 system by hydrodynamic injection resulted in initial expression of the wild-type Fah protein in ~1/250 liver cells. Expansion of Fah-positive hepatocytes rescued the body weight loss phenotype. Our study indicates that CRISPR-Cas9–mediated genome editing is possible in adult animals and has potential for correction of human genetic diseases. PMID:24681508

  10. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype.

    PubMed

    Yin, Hao; Xue, Wen; Chen, Sidi; Bogorad, Roman L; Benedetti, Eric; Grompe, Markus; Koteliansky, Victor; Sharp, Phillip A; Jacks, Tyler; Anderson, Daniel G

    2014-06-01

    We demonstrate CRISPR-Cas9-mediated correction of a Fah mutation in hepatocytes in a mouse model of the human disease hereditary tyrosinemia. Delivery of components of the CRISPR-Cas9 system by hydrodynamic injection resulted in initial expression of the wild-type Fah protein in ∼1/250 liver cells. Expansion of Fah-positive hepatocytes rescued the body weight loss phenotype. Our study indicates that CRISPR-Cas9-mediated genome editing is possible in adult animals and has potential for correction of human genetic diseases.

  11. LED Color Characteristics

    SciTech Connect

    2012-01-01

    Color quality is an important consideration when evaluating LED-based products for general illumination. This fact sheet reviews the basics regarding light and color and summarizes the most important color issues related to white-light LED systems.

  12. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    PubMed

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice.

  13. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    PubMed

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice. PMID:24398264

  14. Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis.

    PubMed

    Gutiérrez, Laura; Tsukamoto, Saho; Suzuki, Mikiko; Yamamoto-Mukai, Harumi; Yamamoto, Masayuki; Philipsen, Sjaak; Ohneda, Kinuko

    2008-04-15

    The transcription factor Gata1 is expressed in several hematopoietic lineages and plays essential roles in normal hematopoietic development during embryonic stages. The lethality of Gata1-null embryos has precluded determination of its role in adult erythropoiesis. Here we have examined the effects of Gata1 loss in adult erythropoiesis using conditional Gata1 knockout mice expressing either interferon- or tamoxifen-inducible Cre recombinase (Mx-Cre and Tx-Cre, respectively). Mx-Cre-mediated Gata1 recombination, although incomplete, resulted in maturation arrest of Gata1-null erythroid cells at the proerythroblast stage, thrombocytopenia, and excessive proliferation of megakaryocytes in the spleen. Tx-Cre-mediated Gata1 recombination resulted in depletion of the erythroid compartment in bone marrow and spleen. Formation of the early and late erythroid progenitors in bone marrow was significantly reduced in the absence of Gata1. Furthermore, on treatment with a hemolytic agent, these mice failed to activate a stress erythropoietic response, despite the rising erythropoietin levels. These results indicate that, in addition to the requirement of Gata1 in adult megakaryopoiesis, Gata1 is necessary for steady-state erythropoiesis and for erythroid expansion in response to anemia. Thus, ablation of Gata1 in adult mice results in a condition resembling aplastic crisis in human.

  15. Effects of fasting and/or oxidizing and reducing agents on absorption of neptunium from the gastrointestinal tract of mice and adult or neonatal rats.

    PubMed

    Sullivan, M F; Ruemmler, P S; Ryan, J L

    1984-12-01

    Neptunium-237(V) nitrate was administered by gavage to groups of fed or fasted adult and 5-day-old rats. Some groups also received the oxidants quinhydrone or ferric iron, and others received the reducing agent ferrous iron. Adult mice received ferric or ferrous iron and 235Np. When the adult rats were killed at 7 days after gavage, measurements showed that, compared with rats that were fed, a 24-hr fast caused a fivefold increase in 237Np absorption and retention. Both quinhydrone and ferric iron caused an even greater increase in absorption in both fed and fasted rats. Ferrous iron, on the other hand, decreased absorption in fasted rats to values lower than those obtained in fed rats. Similar results were obtained in mice treated with 235Np and either ferric or ferrous iron. The highest absorption obtained after gavage of ferric iron to fasted rats and mice was about two orders of magnitude higher than the value obtained in animals that were fed before gavage. The effects of ferric and ferrous iron on neptunium absorption by neonatal rats were similar to their effects on adult animals but of lesser magnitude. These results are consistent with the hypothesis that Np(V), when given in small mass quantities to fed animals, is reduced in the gastrointestinal tract to Np(IV), which is less well absorbed than Np(V).

  16. The effect of the anabolic steroid, nandrolone, in conditioned place preference and D1 dopamine receptor expression in adolescent and adult mice

    PubMed Central

    Martínez-Rivera, Freddyson J.; Natal-Albelo, Eduardo J.; Martínez, Namyr A.; Orozco-Vega, Roberto A.; Muñiz-Seda, Oscar A.; Barreto-Estrada, Jennifer L.

    2015-01-01

    Adolescents and adults engage in anabolic-androgenic steroid (AAS) misuse seeking their anabolic effects, even though later on, many could develop neuropsychological dependence. Previously, we have shown that nandrolone induces conditioned place preference (CPP) in adult male mice. However, whether nandrolone induces CPP during adolescence remains unknown. In this study, the CPP test was used to determine the rewarding properties of nandrolone (7.5 mg/kg) in adolescent mice. In addition, since D1 dopamine receptors (D1DR) are critical for reward-related processes, the effect of nandrolone on the expression of D1DR in the nucleus accumbens (NAc) was investigated by Western blot analysis. Similar to our previous results, nandrolone induced CPP in adults. However, in adolescents, nandrolone failed to produce place preference. At the molecular level, nandrolone decreased D1DR expression in the NAc only in adult mice. Our data suggest that nandrolone may not be rewarding in adolescents at least during short-term use. The lack of nandrolone rewarding effects in adolescents may be due, in part to differences in D1DR expression during development. PMID:25612844

  17. The effect of the anabolic steroid, nandrolone, in conditioned place preference and D1 dopamine receptor expression in adolescent and adult mice.

    PubMed

    Martínez-Rivera, Freddyson J; Natal-Albelo, Eduardo J; Martínez, Namyr A; Orozco-Vega, Roberto A; Muñiz-Seda, Oscar A; Barreto-Estrada, Jennifer L

    2015-04-01

    Adolescents and adults engage in anabolic-androgenic steroid (AAS) misuse seeking their anabolic effects, even though later on, many could develop neuropsychological dependence. Previously, we have shown that nandrolone induces conditioned place preference (CPP) in adult male mice. However, whether nandrolone induces CPP during adolescence remains unknown. In this study, the CPP test was used to determine the rewarding properties of nandrolone (7.5 mg/kg) in adolescent mice. In addition, since D1 dopamine receptors (D1DR) are critical for reward-related processes, the effect of nandrolone on the expression of D1DR in the nucleus accumbens (NAc) was investigated by Western blot analysis. Similar to our previous results, nandrolone induced CPP in adults. However, in adolescents, nandrolone failed to produce place preference. At the molecular level, nandrolone decreased D1DR expression in the NAc only in adult mice. Our data suggest that nandrolone may not be rewarding in adolescents at least during short-term use. The lack of nandrolone rewarding effects in adolescents may be due, in part to differences in D1DR expression during development.

  18. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    PubMed Central

    Li, Guoxi; Zhou, Libin; Zhu, Ying; Wang, Conghui; Sha, Sha; Xian, Xunde; Ji, Yong; Liu, George; Chen, Ling

    2015-01-01

    ABSTRACT The seipin gene (BSCL2) was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2). Neuronal seipin-knockout (seipin-nKO) mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ). The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG) and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT) mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi). In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1) and neurogenic differentiation 1 (NeuroD1) mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705) was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice. PMID

  19. High Fetal Estrogen Concentrations: Correlation with Increased Adult Sexual Activity and Decreased Aggression in Male Mice

    NASA Astrophysics Data System (ADS)

    Vom Saal, Frederick S.; Grant, William M.; McMullen, Carol W.; Laves, Kurt S.

    1983-06-01

    In the house mouse (Mus musculus), fetuses may develop in utero next to siblings of the same or opposite sex. The amniotic fluid of the female fetuses contains higher concentrations of estradiol than that of male fetuses. Male fetuses that developed in utero between female fetuses had higher concentrations of estradiol in their amniotic fluid than males that were located between other male fetusesw during intrauterine development. They were also more sexually active as adults, less aggressive, and had smaller seminal vesicles than males that had developed between other male fetuses in utero. These findings raise the possibility that during fetal life circulating estrogens may interact with circulating androgens both in regulating the development of sex differences between males and females and in producing variation in phenotype among males and among females.

  20. Isolation of intact astrocytes from the optic nerve head of adult mice

    PubMed Central

    Choi, Hee Joo; Sun, Daniel; Jakobs, Tatjana C.

    2015-01-01

    The astrocytes of the optic nerve head are a specialized subtype of white matter astrocytes that form the direct cellular environment of the unmyelinated ganglion cell axons. Due to their potential involvement in glaucoma, these astrocytes have become a target of research. Due to the heterogeneity of the optic nerve tissue, which also contains other cell types, in some cases it may be desirable to conduct gene expression studies on small numbers of well-characterized astrocytes or even individual cells. Here, we describe a simple method to isolate individual astrocytes. This method permits obtaining astrocytes with intact morphology from the adult mouse optic nerve and reduces contamination of the isolated astrocytes by other cell types. Individual astrocytes can be recognized by their morphology and collected under microscopic control. The whole procedure can be completed in 2-3 hours. We also discuss downstream applications like multiplex single-cell PCR and quantitative PCR (qPCR). PMID:26093274

  1. FE65 and FE65L1 amyloid precursor protein–binding protein compound null mice display adult-onset cataract and muscle weakness

    PubMed Central

    Suh, Jaehong; Moncaster, Juliet A.; Wang, Lirong; Hafeez, Imran; Herz, Joachim; Tanzi, Rudolph E.; Goldstein, Lee E.; Guénette, Suzanne Y.

    2015-01-01

    FE65 and FE65L1 are cytoplasmic adaptor proteins that bind a variety of proteins, including the amyloid precursor protein, and that mediate the assembly of multimolecular complexes. We previously reported that FE65/FE65L1 double knockout (DKO) mice display disorganized laminin in meningeal fibroblasts and a cobblestone lissencephaly-like phenotype in the developing cortex. Here, we examined whether loss of FE65 and FE65L1 causes ocular and muscular deficits, 2 phenotypes that frequently accompany cobblestone lissencephaly. Eyes of FE65/FE65L1 DKO mice develop normally, but lens degeneration becomes apparent in young adult mice. Abnormal lens epithelial cell migration, widespread small vacuole formation, and increased laminin expression underneath lens capsules suggest impaired interaction between epithelial cells and capsular extracellular matrix in DKO lenses. Cortical cataracts develop in FE65L1 knockout (KO) mice aged 16 months or more but are absent in wild-type or FE65 KO mice. FE65 family KO mice show attenuated grip strength, and the nuclei of DKO muscle cells frequently locate in the middle of muscle fibers. These findings reveal that FE65 and FE65L1 are essential for the maintenance of lens transparency, and their loss produce phenotypes in brain, eye, and muscle that are comparable to the clinical features of congenital muscular dystrophies in humans.—Suh, J., Moncaster, J. A., Wang, L., Hafeez, I., Herz, J., Tanzi, R. E., Goldstein, L. E., Guénette, S. Y. FE65 and FE65L1 amyloid precursor protein–binding protein compound null mice display adult-onset cataract and muscle weakness. PMID:25757569

  2. Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression.

    PubMed

    Smagin, Dmitry A; Park, June-Hee; Michurina, Tatyana V; Peunova, Natalia; Glass, Zachary; Sayed, Kasim; Bondar, Natalya P; Kovalenko, Irina N; Kudryavtseva, Natalia N; Enikolopov, Grigori

    2015-01-01

    Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights. PMID:26648838

  3. Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression

    PubMed Central

    Smagin, Dmitry A.; Park, June-Hee; Michurina, Tatyana V.; Peunova, Natalia; Glass, Zachary; Sayed, Kasim; Bondar, Natalya P.; Kovalenko, Irina N.; Kudryavtseva, Natalia N.; Enikolopov, Grigori

    2015-01-01

    Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights. PMID:26648838

  4. Priming of hepatocytes enhances in vivo liver transduction with lentiviral vectors in adult mice.

    PubMed

    Pichard, Virginie; Boni, Sébastien; Baron, William; Nguyen, Tuan Huy; Ferry, Nicolas

    2012-02-01

    Lentiviral vectors are promising tools for liver disease gene therapy, because they can achieve protracted expression of transgenes in hepatocytes. However, the question as to whether cell division is required for optimal hepatocyte transduction has still not been completely answered. Liver gene-transfer efficiency after in vivo administration of recombinant lentiviral vectors carrying a green fluorescent protein reporter gene under the control of a liver-specific promoter in mice that were either hepatectomized or treated with cholic acid or phenobarbital was compared. Phenobarbital is known as a weak inducer of hepatocyte proliferation, whereas cholic acid has no direct effect on the cell cycle. This study shows that cholic acid is able to prime hepatocytes without mitosis induction. Both phenobarbital and cholic acid significantly increased hepatocyte transduction six- to ninefold, although cholic acid did not modify the mitotic index or cell-cycle entry. However, the effect of either compound was weaker than that observed after partial hepatectomy. In no cases was there a correlation between the expression of cell-cycle marker and transduction efficiency. We conclude that priming of hepatocytes should be considered a clinically applicable strategy to enhance in vivo liver gene therapy with lentiviral vectors.

  5. Helicobacter pylori Infection Induces Anemia, Depletes Serum Iron Storage, and Alters Local Iron-Related and Adult Brain Gene Expression in Male INS-GAS Mice

    PubMed Central

    Burns, Monika; Muthupalani, Sureshkumar; Ge, Zhongming; Wang, Timothy C.; Bakthavatchalu, Vasudevan; Cunningham, Catriona; Ennis, Kathleen; Georgieff, Michael; Fox, James G.

    2015-01-01

    of Hp SS1-infected INS-GAS mice will be an appropriate animal model for further study of the effects of concurrent H. pylori infection and anemia on iron homeostasis and adult iron-dependent brain gene expression. PMID:26575645

  6. LEDs in automotive lighting

    NASA Astrophysics Data System (ADS)

    Eichhorn, Karsten

    2006-02-01

    Light emitting diodes (LED) are becoming more and more significant in interior and exterior automotive lighting. The long service life, energy and space savings, shock and vibration resistance and new styling potential are the main advantages of using LEDs in automotive applications. Today, most central high mounted stop lamps use LEDs. In rear combination lamps the number of LEDs in amber and red is increasing rapidly. This year, a first rear combination lamp using LEDs for all functionalities including the back-up lamp function was realized. In addition, first signal functions in headlamps using white High Power LEDs were launched onto the market. The long service life characteristic makes LEDs especially predestined for the DRL function combined with the position/parking light. Exterior automotive applications, including requirements and performance will be discussed and an outlook will be given on future scenarios.

  7. Spleen cells from adult mice given total lymphoid irradiation (TLI) or from newborn mice have similar regulatory effects in the mixed leukocyte reaction (MLR). II. Generation of antigen-specific suppressor cells in the MLR after the addition of spleen cells from newborn mice

    SciTech Connect

    Okada, S.; Strober, S.

    1982-11-01

    Spleen cells from newborn BALB/c mice were added to the mixed leukocyte reaction (MLR) between a variety of responder and stimulator cells. The newborn cells nonspecifically suppressed the uptake of (/sup 3/H)-thymidine and the generation of cytolytic cells regardless of the responder-stimulator combination used. Suppressor cell activity fell rapidly during the first 4 days after birth, and could not be detected by day 20. Newborn spleen cells inhibited the generation of nonspecific suppressor cells during the MLR but did not inhibit the generation of antigen-specific suppressor cells. Thus, newborn spleen cells exhibit a pattern of regulation of the MLR similar to that reported previously for spleen cells from adult mice given total lymphoid irradiation (TLI). These regulatory interactions provide a model that explains the ease of induction of transplantation tolerance in vivo in newborn mice and in TLI-treated adult mice.

  8. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    SciTech Connect

    Chen, Yanchun; Guan, Yingjun; Liu, Huancai; Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei; Wang, Xin

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  9. Impact of Environmental Microbes on the Composition of the Gut Microbiota of Adult BALB/c Mice

    PubMed Central

    Li, Na; Bai, Zhiyu; Zhang, Liling; Xue, Zhencheng; Jiang, Haitao; Song, Yuan; Zhou, Dongrui

    2016-01-01

    To investigate the impact of microbes within the living environment on the gut microbiota of adults, we raised three groups of BALB/c mice from 3–4 weeks age in the same specific-pathogen-free animal room for 8 weeks. The control group lived in cages with sterilized bedding (pelletized cardboard), the probiotics group had three probiotics added to the sterilized bedding, and the intestinal microbes (IM) group had the intestinal microbes of a healthy goat added to the bedding. All other variables such as diet, age, genetic background, physiological status, original gut microbiota, and living room were controlled. Using high-throughput sequencing of the 16S rRNA gene, we observed that the control and probiotics groups had similar diversity and richness of gut microbiota. The two groups had significantly lower diversity than the IM group. We also observed that the IM group had a specific structure of gut microbial community compared with the control and probiotics groups. However, the dominate bacteria changed slightly upon exposure to intestinal microbes, and the abundance of the non-dominate species changed significantly. In addition, exposure to intestinal microbes inhibited DNFB-induced elevation of serum IgE levels. Our results provide new evidence in support of the microflora and hygiene hypotheses. PMID:27518814

  10. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice

    PubMed Central

    Falk, Darin J; Soustek, Meghan S; Todd, Adrian Gary; Mah, Cathryn S; Cloutier, Denise A; Kelley, Jeffry S; Clement, Nathalie; Fuller, David D; Byrne, Barry J

    2015-01-01

    Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA)). Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa–/– mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES) or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT)). Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa–/– animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc) at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea). However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease. PMID:26029718

  11. Modulation of elevated plus maze behavior after chronic exposure to the anabolic steroid 17alpha-methyltestosterone in adult mice.

    PubMed

    Rojas-Ortiz, Yoel Antonio; Rundle-González, Valerie; Rivera-Ramos, Isamar; Jorge, Juan Carlos

    2006-01-01

    Exposure to supraphysiological doses of androgens may disrupt affective components of behavior. In this study, behavior of adult C57Bl/6 male mice was studied after exposure to the anabolic androgenic steroid (AAS) 17alpha-methyltestosterone (17alpha-meT; 7.5 mg/kg) via a subcutaneous osmotic pump for 17 days. Controls received vehicle implants (0.9% NaCl + 30% cyclodextrine). On day 15, experimental animals were challenged with an ethanol (EtOH) injection (i.p.; 1 g/kg) while controls received saline injections. Five minutes after the injection, animals were tested in an automated elevated plus maze (EPM) or in automated activity chambers. In addition, injection-free animals were tested for ethanol consumption on day 16 after an overnight water deprivation period. Whereas chronic exposure to 17alpha-meT did not modulate open arm behavior, EtOH-exposed animals made more entries into the open arms than controls (P < 0.05). A significant reduction of risk assessment behaviors (rearing, flat approach behavior, and stretch attended posture) over the EPM was noted for EtOH-exposed animals whereas a reduction in stretch attended postures was observed among 17alpha-meT-exposed animals. Locomotor activity, and light-dark transitions in activity chambers remained unaltered. Exposure to AAS did not modulate EtOH consumption. Our data suggest that exposure to a supraphysiological dose of 17alpha-meT has minimal effects on exploratory-based anxiety.

  12. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice

    PubMed Central

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species. PMID:25915857

  13. Impact of Environmental Microbes on the Composition of the Gut Microbiota of Adult BALB/c Mice.

    PubMed

    Bai, Zhimao; Zhang, Honglin; Li, Na; Bai, Zhiyu; Zhang, Liling; Xue, Zhencheng; Jiang, Haitao; Song, Yuan; Zhou, Dongrui

    2016-01-01

    To investigate the impact of microbes within the living environment on the gut microbiota of adults, we raised three groups of BALB/c mice from 3-4 weeks age in the same specific-pathogen-free animal room for 8 weeks. The control group lived in cages with sterilized bedding (pelletized cardboard), the probiotics group had three probiotics added to the sterilized bedding, and the intestinal microbes (IM) group had the intestinal microbes of a healthy goat added to the bedding. All other variables such as diet, age, genetic background, physiological status, original gut microbiota, and living room were controlled. Using high-throughput sequencing of the 16S rRNA gene, we observed that the control and probiotics groups had similar diversity and richness of gut microbiota. The two groups had significantly lower diversity than the IM group. We also observed that the IM group had a specific structure of gut microbial community compared with the control and probiotics groups. However, the dominate bacteria changed slightly upon exposure to intestinal microbes, and the abundance of the non-dominate species changed significantly. In addition, exposure to intestinal microbes inhibited DNFB-induced elevation of serum IgE levels. Our results provide new evidence in support of the microflora and hygiene hypotheses.

  14. Impact of Environmental Microbes on the Composition of the Gut Microbiota of Adult BALB/c Mice.

    PubMed

    Bai, Zhimao; Zhang, Honglin; Li, Na; Bai, Zhiyu; Zhang, Liling; Xue, Zhencheng; Jiang, Haitao; Song, Yuan; Zhou, Dongrui

    2016-01-01

    To investigate the impact of microbes within the living environment on the gut microbiota of adults, we raised three groups of BALB/c mice from 3-4 weeks age in the same specific-pathogen-free animal room for 8 weeks. The control group lived in cages with sterilized bedding (pelletized cardboard), the probiotics group had three probiotics added to the sterilized bedding, and the intestinal microbes (IM) group had the intestinal microbes of a healthy goat added to the bedding. All other variables such as diet, age, genetic background, physiological status, original gut microbiota, and living room were controlled. Using high-throughput sequencing of the 16S rRNA gene, we observed that the control and probiotics groups had similar diversity and richness of gut microbiota. The two groups had significantly lower diversity than the IM group. We also observed that the IM group had a specific structure of gut microbial community compared with the control and probiotics groups. However, the dominate bacteria changed slightly upon exposure to intestinal microbes, and the abundance of the non-dominate species changed significantly. In addition, exposure to intestinal microbes inhibited DNFB-induced elevation of serum IgE levels. Our results provide new evidence in support of the microflora and hygiene hypotheses. PMID:27518814

  15. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes.

    PubMed

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda; Sánchez-Gutiérrez, Manuel; Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo; Piña-Guzmán, Belem; Shibayama, Mineko; Hernández-Ochoa, Isabel

    2015-12-15

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kgbw/day BPA for a period encompassing the first three reproductive cycles (12-15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability.

  16. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes.

    PubMed

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda; Sánchez-Gutiérrez, Manuel; Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo; Piña-Guzmán, Belem; Shibayama, Mineko; Hernández-Ochoa, Isabel

    2015-12-15

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kgbw/day BPA for a period encompassing the first three reproductive cycles (12-15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability. PMID:26493930

  17. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  18. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes.

  19. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    PubMed

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  20. Differential effect of lithium on cell number in hippocampus and prefrontal cortex in adult mice: a stereological study

    PubMed Central

    Rajkowska, G.; Clarke, G.; Mahajan, G.; Licht, C.M.M.; van de Werd, H.J.J. M.; Yuan, P.; Stockmeier, C.A.; Manji, H.K.; Uylings, H.B.M.

    2015-01-01

    Objectives Neuroimaging studies note lithium-related increases in the volume of gray matter in prefrontal cortex (PFC) and hippocampus. Postmortem human studies report alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered. Methods Using stereological methods, this study estimated the total number of neurons, glia and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium and evaluated the total volume of these regions and the entire neocortex. Results Lithium treatment increased the total number of neurons and glia in the DG (25% and 21%, respectively) and the density of astrocytes but did not alter the total number in the PFC. However, the volume of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium. Conclusions Both neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the number of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus. PMID:26842627

  1. Mice lacking the PSD-95-interacting E3 ligase, Dorfin/Rnf19a, display reduced adult neurogenesis, enhanced long-term potentiation, and impaired contextual fear conditioning.

    PubMed

    Park, Hanwool; Yang, Jinhee; Kim, Ryunhee; Li, Yan; Lee, Yeunkum; Lee, Chungwoo; Park, Jongil; Lee, Dongmin; Kim, Hyun; Kim, Eunjoon

    2015-11-10

    Protein ubiquitination has a significant influence on diverse aspects of neuronal development and function. Dorfin, also known as Rnf19a, is a RING finger E3 ubiquitin ligase implicated in amyotrophic lateral sclerosis and Parkinson's disease, but its in vivo functions have not been explored. We report here that Dorfin is a novel binding partner of the excitatory postsynaptic scaffolding protein PSD-95. Dorfin-mutant (Dorfin(-/-)) mice show reduced adult neurogenesis and enhanced long-term potentiation in the hippocampal dentate gyrus, but normal long-term potentiation in the CA1 region. Behaviorally, Dorfin(-/-) mice show impaired contextual fear conditioning, but normal levels of cued fear conditioning, fear extinction, spatial learning and memory, object recognition memory, spatial working memory, and pattern separation. Using a proteomic approach, we also identify a number of proteins whose ubiquitination levels are decreased in the Dorfin(-/-) brain. These results suggest that Dorfin may regulate adult neurogenesis, synaptic plasticity, and contextual fear memory.

  2. Restoration of cocaine stimulation and reward by reintroducing wild type dopamine transporter in adult knock-in mice with a cocaine-insensitive dopamine transporter.

    PubMed

    Wu, Haiyin; O'Neill, Brian; Han, Dawn D; Thirtamara-Rajamani, Keerthi; Wang, Yanlin; Gu, Howard H

    2014-11-01

    In previous studies, we generated knock-in mice with a cocaine-insensitive dopamine transporter (DAT-CI mice) and found cocaine does not stimulate locomotion or produce reward in these mice, indicating DAT inhibition is necessary for cocaine stimulation and reward. However, DAT uptake is reduced in DAT-CI mice and thus the lack of cocaine responses could be due to adaptive changes. To test this, we used adeno-associated virus (AAV) to reintroduce the cocaine-sensitive wild type DAT (AAV-DATwt) back into adult DAT-CI mice, which restores cocaine inhibition of DAT in affected brain regions but does not reverse the adaptive changes. In an earlier study we showed that AAV-DATwt injections in regions covering the lateral nucleus accumbens (NAc) and lateral caudate-putamen (CPu) restored cocaine stimulation but not cocaine reward. In the current study, we expanded the AAV-DATwt infected areas to cover the olfactory tubercle (Tu) and the ventral midbrain (vMB) containing the ventral tegmental area (VTA) and substantia nigra (SN) in addition to CPu and NAc with multiple injections. These mice displayed the restoration of both locomotor stimulation and cocaine reward. We further found that AAV-DATwt injection in the vMB alone was sufficient to restore both cocaine stimulation and reward in DAT-CI mice. AAV injected in the VTA and SN resulted in DATwt expression and distribution to the DA terminal regions. In summary, cocaine induced locomotion and reward can be restored in fully developed DAT-CI mice, and cocaine inhibition of DAT expressed in dopaminergic neurons originated from the ventral midbrain mediates cocaine reward and stimulation.

  3. The Effects of a Single Developmentally Entrained Pulse of Testosterone in Female Neonatal Mice on Reproductive and Metabolic Functions in Adult Life

    PubMed Central

    Jang, Hyeran; Bhasin, Shalender; Guarneri, Tyler; Serra, Carlo; Schneider, Mary; Lee, Mi-Jeong; Guo, Wen; Fried, Susan K.; Pencina, Karol

    2015-01-01

    Early postnatal exposures to sex steroids have been well recognized to modulate predisposition to diseases of adulthood. There is a complex interplay between timing, duration and dose of endocrine exposures through environmental or dietary sources that may alter the sensitivity of target tissues to the exogenous stimuli. In this study, we determined the metabolic and reproductive programming effects of a single developmentally entrained pulse of testosterone (T) given to female mice in early postnatal period. CD-1 female mice pups were injected with either 5 μg of T enanthate (TE) or vehicle (control [CON] group) within 24 hours after birth and followed to adult age. A total of 66% of T-treated mice exhibited irregular cycling, anovulatory phenotype, and significantly higher ovarian weights than vehicle-treated mice. Longitudinal nuclear magnetic resonance measurements revealed that TE group had greater body weight, whole-body lean, and fat mass than the CON group. Adipose tissue cellularity analysis in TE group revealed a trend toward higher size and number than their littermate CONs. The brown adipose tissue of TE mice exhibited white fat infiltration with down-regulation of several markers, including uncoupling protein 1 (UCP-1), cell death-inducing DNA fragmentation factor, α-subunit-like effector A, bone morphogenetic protein 7 as well as brown adipose tissue differentiation-related transcription regulators. T-injected mice were also more insulin resistant than CON mice. These reproductive and metabolic reprogramming effects were not observed in animals exposed to TE at 3 and 6 weeks of age. Collectively, these data suggest that sustained reproductive and metabolic alterations may result in female mice from a transient exposure to T during a narrow postnatal developmental window. PMID:26132920

  4. Restoration of Cocaine Stimulation and Reward by Reintroducing Wild Type Dopamine Transporter in Adult Knock-in Mice with a Cocaine-Insensitive Dopamine Transporter

    PubMed Central

    Wu, Haiyin; O’Neill, Brian; Han, Dawn D.; Thirtamara-Rajamani, Keerthi; Wang, Yanlin; Gu, Howard H.

    2014-01-01

    In previous studies, we generated knock-in mice with a cocaine-insensitive dopamine transporter (DAT-CI mice) and found cocaine does not stimulate locomotion or produce reward in these mice, indicating DAT inhibition is necessary for cocaine stimulation and reward. However, DAT uptake is reduced in DAT-CI mice and thus the lack of cocaine responses could be due to adaptive changes. To test this, we used adeno-associated virus (AAV) to reintroduce the cocaine-sensitive wild type DAT (AAV-DATwt) back into adult DAT-CI mice, which restores cocaine inhibition of DAT in affected brain regions but does not reverse the adaptive changes. In an earlier study we showed that AAV-DATwt injections in regions covering the lateral nucleus accumbens (NAc) and lateral caudate-putamen (CPu) restored cocaine stimulation but not cocaine reward. In the current study, we expanded the AAV-DATwt infected areas to cover the olfactory tubercle (Tu) and the ventral midbrain (vMB) containing the ventral tegmental area (VTA) and substantia nigra (SN) in addition to CPu and NAc with multiple injections. These mice displayed the restoration of both locomotor stimulation and cocaine reward. We further found that AAV-DATwt injection in the vMB alone was sufficient to restore both cocaine stimulation and reward in DAT-CI mice. AAV injected in the VTA and SN resulted in DATwt expression and distribution to the DA terminal regions. In summary, cocaine induced locomotion and reward can be restored in fully developed DAT-CI mice, and cocaine inhibition of DAT expressed in dopaminergic neurons originated from the ventral midbrain mediates cocaine reward and stimulation. PMID:24835281

  5. Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice

    PubMed Central

    Seong, Kyung-Joo; Lee, Hyun-Gwan; Kook, Min Suk; Ko, Hyun-Mi

    2016-01-01

    Adult hippocampal dentate granule neurons are generated from neural stem cells (NSCs) in the mammalian brain, and the fate specification of adult NSCs is precisely controlled by the local niches and environment, such as the subventricular zone (SVZ), dentate gyrus (DG), and Toll-like receptors (TLRs). Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid in green tea that has neuroprotective activities, but there is no clear understanding of the role of EGCG in adult neurogenesis in the DG after neuroinflammation. Here, we investigate the effect and the mechanism of EGCG on adult neurogenesis impaired by lipopolysaccharides (LPS). LPS-induced neuroinflammation inhibited adult neurogenesis by suppressing the proliferation and differentiation of neural stem cells in the DG, which was indicated by the decreased number of Bromodeoxyuridine (BrdU)-, Doublecortin (DCX)- and Neuronal Nuclei (NeuN)-positive cells. In addition, microglia were recruited with activatingTLR4-NF-κB signaling in the adult hippocampus by LPS injection. Treating LPS-injured mice with EGCG restored the proliferation and differentiation of NSCs in the DG, which were decreased by LPS, and EGCG treatment also ameliorated the apoptosis of NSCs. Moreover, pro-inflammatory cytokine production induced by LPS was attenuated by EGCG treatment through modulating the TLR4-NF-κB pathway. These results illustrate that EGCG has a beneficial effect on impaired adult neurogenesis caused by LPSinduced neuroinflammation, and it may be applicable as a therapeutic agent against neurodegenerative disorders caused by inflammation. PMID:26807022

  6. LED champing: statistically blessed?

    PubMed

    Wang, Zhuo

    2015-06-10

    LED champing (smart mixing of individual LEDs to match the desired color and lumens) and color mixing strategies have been widely used to maintain the color consistency of light engines. Light engines with champed LEDs can easily achieve the color consistency of a couple MacAdam steps with widely distributed LEDs to begin with. From a statistical point of view, the distributions for the color coordinates and the flux after champing are studied. The related statistical parameters are derived, which facilitate process improvements such as Six Sigma and are instrumental to statistical quality control for mass productions. PMID:26192863

  7. Combination of neonatal PolyI:C and adolescent phencyclidine treatments is required to induce behavioral abnormalities with overexpression of GLAST in adult mice.

    PubMed

    Hida, Hirotake; Mouri, Akihiro; Ando, Yu; Mori, Kentaro; Mamiya, Takayoshi; Iwamoto, Kunihiro; Ozaki, Norio; Yamada, Kiyofumi; Nabeshima, Toshitaka; Noda, Yukihiro

    2014-01-01

    Cumulative incidences of multiple risk factors are related to pathology of psychiatric disorders. The present study was designed to examine combinative effects of a neonatal immune challenge with adolescent abused substance treatment on the psychological behaviors and molecular expressions in the adult. C57BL/6J mice were neonatally treated, with polyriboinosinic-polyribocytidylic acid (PolyI:C: 5mg/kg) during postnatal days (PD) 2-6, then with phencyclidine (PCP: 10mg/kg) during adolescence (PD35-41). Locomotor activity was analyzed to evaluate sensitivity to PCP on PD35 and PD41. Emotional and cognitive tests were carried out on PD42-48. Neonatal PolyI:C treatment markedly enhanced sensitivity to PCP- and methamphetamine-induced hyperactivity in the adolescent. Mice treated with both neonatal PolyI:C and adolescent PCP (PolyI:C/PCP) showed social deficit and object recognition memory impairment. The expression of glutamate/aspartate transporter (GLAST) in the prefrontal cortex (PFC) was significantly increased in the (PolyI:C/PCP)-treated mice. Infusion of glutamate transporter inhibitor (DL-TBOA: 1 nmol/bilaterally) into the PFC reversed the object recognition impairment in the (PolyI:C/PCP)-treated mice. These results indicate that the combined treatment of neonatal PolyI:C with adolescent PCP leads to behavioral abnormalities, which were associated with increase of GLAST expression in the adult PFC.

  8. Transient postnatal fluoxetine decreases brain concentrations of 20-HETE and 15-epi-LXA4, arachidonic acid metabolites in adult mice

    PubMed Central

    Yuan, Zhi-Xin; Rapoport, Stanley I

    2015-01-01

    Background Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). Hypothesis Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. Methods Male mice pups were injected i.p. daily with fluoxetine (10 mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. Results Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (−70.3%) and 15-epi-lipoxin A4 (−60%) in adult mice, but did not change other eicosanoid concentrations. Conclusions Transient postnatal administration of fluoxetine to mice results in reduced brain ARA metabolism involving CYP4A and 20-HETE formation during their adulthood. PMID:26234927

  9. Characterization of a Unique Cell Population Marked by Transgene Expression in the Adult Cochlea of Nestin-CreERT2/tdTomato-Reporter Mice

    PubMed Central

    Chow, Cynthia L.; Guo, Weixiang; Trivedi, Parul; Zhao, Xinyu; Gubbels, Samuel P.

    2015-01-01

    Hair cells in the adult mammalian cochlea cannot spontaneously regenerate after damage resulting in the permanency of hearing loss. Stem cells have been found to be present in the cochlea of young rodents; however, there has been little evidence for their existence into adulthood. We used nestin-CreERT2/tdTomato-reporter mice to trace the lineage of putative nestin-expressing cells and their progeny in the cochleae of adult mice. Nestin, an intermediate filament found in neural progenitor cells during early development and adulthood, is regarded as a multi-potent and neural stem cell marker. Other investigators have reported its presence in postnatal and young adult rodents; however, there are discrepancies amongst these reports. Using lineage tracing, we documented a robust population of tdTomato-expressing cells and evaluated these cells at a series of adult time points. Upon activation of the nestin promoter, tdTomato was observed just below and medial to the inner hair cell layer. All cells co-localized with the stem cell and cochlear-supporting-cell marker Sox2 as well as the supporting cell and Schwann cell marker Sox10; however, they did not co-localize with the Schwann cell marker Krox20, spiral ganglion marker NF200, or GFAP-expressing supporting cell marker. The cellular identity of this unique population of tdTomato-expressing cells in the adult cochlea of nestin-CreERT2/tdTomato mice remains unclear however these cells may represent a type of supporting cell on the neural aspect of the inner hair cell layer. PMID:25611038

  10. Characterization of a unique cell population marked by transgene expression in the adult cochlea of nestin-CreER(T2)/tdTomato-reporter mice.

    PubMed

    Chow, Cynthia L; Guo, Weixiang; Trivedi, Parul; Zhao, Xinyu; Gubbels, Samuel P

    2015-07-01

    Hair cells in the adult mammalian cochlea cannot spontaneously regenerate after damage, resulting in the permanency of hearing loss. Stem cells have been found to be present in the cochlea of young rodents; however, there has been little evidence for their existence into adulthood. We used nestin-CreER(T2)/tdTomato-reporter mice to trace the lineage of putative nestin-expressing cells and their progeny in the cochleae of adult mice. Nestin, an intermediate filament found in neural progenitor cells during early development and adulthood, is regarded as a multipotent and neural stem cell marker. Other investigators have reported its presence in postnatal and young adult rodents; however, there are discrepancies among these reports. Using lineage tracing, we documented a robust population of tdTomato-expressing cells and evaluated these cells at a series of adult time points. Upon activation of the nestin promoter, tdTomato was observed just below and medial to the inner hair cell layer. All cells colocalized with the stem cell and cochlear-supporting-cell marker Sox2 as well as the supporting cell and Schwann cell marker Sox10; however, they did not colocalize with the Schwann cell marker Krox20, spiral ganglion marker NF200, nor glial fibrillary acidic acid (GFAP)-expressing supporting cell marker. The cellular identity of this unique population of tdTomato-expressing cells in the adult cochlea of nestin-CreER(T2)/tdTomato mice remains unclear; however, these cells may represent a type of supporting cell on the neural aspect of the inner hair cell layer. PMID:25611038

  11. Diodes stabilize LED output

    NASA Technical Reports Server (NTRS)

    Deters, R. A.

    1977-01-01

    Small-signal diodes are placed in series with light-emitting diodes (LED's) to stabilize LED output against temperature fluctuations. Simple inexpensive method compensates for thermal fluctuations over a broad temperature range. Requiring few components, technique is particularly useful where circuit-board space is limited.

  12. Age-related deterioration of cortical responses to slow FM sounds in the auditory belt region of adult C57BL/6 mice.

    PubMed

    Tsukano, Hiroaki; Horie, Masao; Honma, Yuusuke; Ohga, Shinpei; Hishida, Ryuichi; Takebayashi, Hirohide; Takahashi, Sugata; Shibuki, Katsuei

    2013-11-27

    To compare age-related deterioration of neural responses in each subfield of the auditory cortex in C57BL/6 mice, we evaluated amplitudes of tonal responses in young (5-11 weeks old) and adult (16-23 weeks old) groups using transcranial flavoprotein fluorescence imaging. Cortical responses to 20-kHz amplitude-modulated (AM) sounds, which were mainly found in the anterior auditory field (AAF) and the primary auditory cortex (AI) of the core region, were not markedly different between the two groups. In contrast, cortical responses to direction reversal of slow frequency-modulated (FM) sounds, which were mainly found in the ultrasonic field (UF), were significantly disrupted in the adult group compared with those in the young group. To investigate the mechanisms underlying such age-related deterioration, biotinylated dextran amine (BDA) was injected into UF. The number of retrograde labeled neurons in the dorsal division of the medial geniculate body (MGd) was markedly reduced in the adult group compared with that in the young group. These results strongly suggest that cortical responses to FM direction reversal in UF of adult C57BL/6 mice are mainly deteriorated by loss of non-lemniscal thalamic inputs from MGd to UF due to aging.

  13. The Intrauterine and Nursing Period Is a Window of Susceptibility for Development of Obesity and Intestinal Tumorigenesis by a High Fat Diet in Min/+ Mice as Adults

    PubMed Central

    Ngo, Ha Thi; Hetland, Ragna Bogen; Steffensen, Inger-Lise

    2015-01-01

    We studied how obesogenic conditions during various life periods affected obesity and intestinal tumorigenesis in adult C57BL/6J-Min (multiple intestinal neoplasia)/+ mice. The mice were given a 10% fat diet throughout life (negative control) or a 45% fat diet in utero, during nursing, during both in utero and nursing, during adult life, or during their whole life-span, and terminated at 11 weeks for tumorigenesis (Min/+) or 23 weeks for obesogenic effect (wild-type). Body weight at 11 weeks was increased after a 45% fat diet during nursing, during both in utero and nursing, and throughout life, but had normalized at 23 weeks. In the glucose tolerance test, the early exposure to a 45% fat diet in utero, during nursing, or during both in utero and nursing, did not affect blood glucose, whereas a 45% fat diet given to adults or throughout life did. However, a 45% fat diet during nursing or during in utero and nursing increased the number of small intestinal tumors. So did exposures to a 45% fat diet in adult life or throughout life, but without increasing the tumor numbers further. The intrauterine and nursing period is a window of susceptibility for dietary fat-induced obesity and intestinal tumor development. PMID:25874125

  14. A multicentre, pragmatic, parallel group, randomised controlled trial to compare the clinical and cost-effectiveness of three physiotherapy-led exercise interventions for knee osteoarthritis in older adults: the BEEP trial protocol (ISRCTN: 93634563)

    PubMed Central

    2014-01-01

    Background Exercise is consistently recommended for older adults with knee pain related to osteoarthritis. However, the effects from exercise are typically small and short-term, likely linked to insufficient individualisation of the exercise programme and limited attention to supporting exercise adherence over time. The BEEP randomised trial aims to improve patients’ short and long-term outcomes from exercise. It will test the overall effectiveness and cost-effectiveness of two physiotherapy-led exercise interventions (Individually Tailored Exercise and Targeted Exercise Adherence) to improve the individual tailoring of, and adherence to exercise, compared with usual physiotherapy care. Methods/design Based on the learning from a pilot study (ISRCTN 23294263), the BEEP trial is a multi-centre, pragmatic, parallel group, individually randomised controlled trial, with embedded longitudinal qualitative interviews. 500 adults in primary care, aged 45 years and over with knee pain will be randomised to 1 of 3 treatment groups delivered by fully trained physiotherapists in up to 6 NHS services. These are: Usual Physiotherapy Care (control group consisting of up to 4 treatment sessions of advice and exercise), Individually Tailored Exercise (an individualised, supervised and progressed lower-limb exercise programme) or Targeted Exercise Adherence (supporting patients to adhere to exercise and to engage in general physical activity over the longer-term). The primary outcomes are pain and function as measured by the Western Ontario and McMaster Osteoarthritis index. A comprehensive range of secondary outcomes are also included. Outcomes are measured at 3, 6 (primary outcome time-point), 9, 18 and 36 months. Data on adverse events will also be collected. Semi-structured, qualitative interviews with a subsample of 30 participants (10 from each treatment group) will be undertaken at two time-points (end of treatment and 12 to 18 months later) and analysed thematically

  15. The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice.

    PubMed

    Llanos, Paola; Contreras-Ferrat, Ariel; Georgiev, Tihomir; Osorio-Fuentealba, Cesar; Espinosa, Alejandra; Hidalgo, Jorge; Hidalgo, Cecilia; Jaimovich, Enrique

    2015-02-15

    Insulin stimulates glucose uptake in adult skeletal muscle by promoting the translocation of GLUT4 glucose transporters to the transverse tubule (T-tubule) membranes, which have particularly high cholesterol levels. We investigated whether T-tubule cholesterol content affects insulin-induced glucose transport. Feeding mice a high-fat diet (HFD) for 8 wk increased by 30% the T-tubule cholesterol content of triad-enriched vesicular fractions from muscle tissue compared with triads from control mice. Additionally, isolated muscle fibers (flexor digitorum brevis) from HFD-fed mice showed a 40% decrease in insulin-stimulated glucose uptake rates compared with fibers from control mice. In HFD-fed mice, four subcutaneous injections of MβCD, an agent reported to extract membrane cholesterol, improved their defective glucose tolerance test and normalized their high fasting glucose levels. The preincubation of isolated muscle fibers with relatively low concentrations of MβCD increased both basal and insulin-induced glucose uptake in fibers from controls or HFD-fed mice and decreased Akt phosphorylation without altering AMPK-mediated signaling. In fibers from HFD-fed mice, MβCD improved insulin sensitivity even after Akt or CaMK II inhibition and increased membrane GLUT4 content. Indinavir, a GLUT4 antagonist, prevented the stimulatory effects of MβCD on glucose uptake. Addition of MβCD elicited ryanodine receptor-mediated calcium signals in isolated fibers, which were essential for glucose uptake. Our findings suggest that T-tubule cholesterol content exerts a critical regulatory role on insulin-stimulated GLUT4 translocation and glucose transport and that partial cholesterol removal from muscle fibers may represent a useful strategy to counteract insulin resistance.

  16. Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice

    PubMed Central

    Salinas-Navarro, Manuel; Alarcón-Martínez, Luis; Valiente-Soriano, Francisco Javier; Ortín-Martínez, Arturo; Jiménez-López, Manuel; Avilés-Trigueros, Marcelino; Villegas-Pérez, María Paz; de la Villa, Pedro

    2009-01-01

    Purpose To investigate the effects of laser photocoagulation (LP)-induced ocular hypertension (OHT) on the survival and retrograde axonal transport of retinal ganglion cells (RGC), as well as on the function of retinal layers. Methods Adult albino Swiss mice (35–45 g) received laser photocoagulation of limbal and episcleral veins in the left eye. Mice were sacrificed at 8, 17, 35, and 63 days. Intraocular pressure (IOP) in both eyes was measured with a Tono-Lab before LP and at various days after LP. Flash electroretinogram (ERG) scotopic threshold response (STR) and a- and b-wave amplitudes were recorded before LP and at various times after LP. RGCs were labeled with 10% hydroxystilbamidine methanesulfonate (OHSt) applied to both superior colliculi before sacrifice and in some mice, with dextran tetramethylrhodamine (DTMR) applied to the ocular stump of the intraorbitally transected optic nerve. Retinas were immunostained for RT97 or Brn3a. Retinas were prepared as whole-mounts and photographed under a fluorescence microscope. Labeled RGCs were counted using image analysis software, and an isodensity contour plot was generated for each retina. Results IOP increased to twice its basal values by 24 h and was maintained until day 5, after which IOP gradually declined to reach basal values by 1 wk. Similar IOP increases were observed in all groups. The mean total number of OHSt+ RGCs was 13,428±6,295 (n=12), 10,456±14,301 (n=13), 12,622±14,174 (n=21), and 10,451±13,949 (n=13) for groups I, II, III, and IV, respectively; these values represented 28%, 23%, 26%, and 22% of the values found in their contralateral fellow retinas. The mean total population of Brn3a+ RGCs was 24,343±5,739 (n=12) and 10,219±8,887 (n=9), respectively, for groups I and III; these values represented 49% and 20%, respectively, of the values found in their fellow eyes. OHT retinas showed an absence of OHSt+ and DTMR+ RGCs in both focal wedge-shaped and diffuse regions of the retina. By 1

  17. Vaccination of adult and newborn mice of a resistant strain (C57BL/6J) against challenge with leukemias induced by Moloney murine leukemia virus

    SciTech Connect

    Reif, A.E.

    1985-01-01

    Adult or newborn C57BL/6J mice were immunized with isogenic Moloney strain MuLV-induced leukemia cells irradiated with 10,000 rads or treated with low concentrations of formalin. Groups of immunized and control mice were challenged with a range of doses of viable leukemia cells, and tumor deaths were recorded for 90 days after challenge. Then, the doses of challenge cells which produced 50% tumor deaths were calculated for immunized and control mice. The logarithm of their ratio quantified the degree of protection provided by immunization. For adult C57BL/6J mice, a single immunization with MuLV-induced leukemia cells was not effective; either cells plus Bacillus Calmette-Guerin or Corynebacterium parvum, or else two immunizations with irradiated leukemia cells were needed to produce statistically significant increases in the values of the doses of challenge cells which produced 50% tumor deaths. Cross-protection was obtained by immunization with other isogenic MuLV-induced leukemias, but not by immunization with isogenic carcinogen-induced tumors or with an isogenic spontaneous leukemia. For newborn mice, a single injection of irradiated leukemia cells provided 1.3 to 1.5 logs of protection, and admixture of B. Calmette-Guerin or C. parvum increased this protection to 2.4 to 2.7 logs. Since irradiated and frozen-thawed MuLV-induced leukemia cells contained viable MuLV, leukemia cells treated with 0.5 or 1.0% formalin were tested as an alternative. A single injection of formalin-treated isogenic leukemia cells admixed with C. parvum provided between 1.7 and 2.8 logs of protection. These results demonstrate that a single vaccination of newborn animals against a highly antigenic virally induced leukemia produces strong protection against a subsequent challenge with viable leukemia cells.

  18. Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice.

    PubMed

    Porrero, Cesar; Rubio-Garrido, Pablo; Avendaño, Carlos; Clascá, Francisco

    2010-07-23

    Transgenic mouse lines in which a fluorescent protein is constitutively expressed under the Thy1 gene promoter have become important models in cell biology and pathology studies of specific neuronal populations. As a result of positional insertion and/or copy number effects on the transgene, the populations expressing the fluorescent protein (eYFP+) vary markedly among the different mice lines. However, identification of the eYFP+ subpopulations has remained sketchy and fragmentary even for the most widely used lines such as Thy1-eYFP-H mice (Feng, G., Mellor, R.H., Bernstein, M., Keller-Peck, C., Nguyen, Q.T., Wallace, M., Nerbonne, J.M., Lichtman and J.W., Sanes. J.R. 2000. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41-51). Here, we provide a comprehensive mapping of labeled cell types throughout the central nervous system in adult and postnatal (P0-P30) Thy1-eYFP-H mice. Cell type identification was based on somatodendritic morphology, axon trajectories, and, for cortical cells, retrograde labeling with Fast Blue to distinguish between subpopulations with different axonal targets. In the neocortex, eYFP+ cells are layers 5 and 6 pyramidal neurons, whose abundance and sublaminar distribution varies markedly between areas. Labeling is particularly prevalent in the corticospinal cells; as a result, the pyramidal pathway axons are conspicuously labeled down to the spinal cord. Large populations of hippocampal, subicular and amygdaloid projection neurons are eYFP+ as well. Additional eYFP+ cell groups are located in specific brainstem nuclei. Present results provide a comprehensive reference dataset for adult and developmental studies using the Thy1-eYFP-H mice strain, and show that this animal model may be particularly suitable for studies on the cell biology of corticospinal neurons.

  19. LEDs Are Diodes.

    ERIC Educational Resources Information Center

    Lisensky, George C.; Condren, S. Michael; Widstrand, Cynthia G.; Breitzer, Jonathan; Ellis, Arthur B.

    2001-01-01

    Describes an activity comparing incandescent bulbs and LEDs powered by dc and ac voltage sources to illustrate properties of matter and the interactions of energy and matter. Includes both instructor information and student activity sheet. (Author/YDS)

  20. Modeling LED street lighting.

    PubMed

    Moreno, Ivan; Avendaño-Alejo, Maximino; Saucedo-A, Tonatiuh; Bugarin, Alejandra

    2014-07-10

    LED luminaires may deliver precise illumination patterns to control light pollution, comfort, visibility, and light utilization efficiency. Here, we provide simple equations to determine how the light distributes in the streets. In particular, we model the illuminance spatial distribution as a function of Cartesian coordinates on a floor, road, or street. The equations show explicit dependence on the luminary position (pole height and arm length), luminary angle (fixture tilt), and the angular intensity profile (radiation pattern) of the LED l