Science.gov

Sample records for adult mice showed

  1. Not all water mazes are created equal: cyclin D2 knockout mice with constitutively suppressed adult hippocampal neurogenesis do show specific spatial learning deficits.

    PubMed

    Garthe, A; Huang, Z; Kaczmarek, L; Filipkowski, R K; Kempermann, G

    2014-04-01

    Studies using the Morris water maze to assess hippocampal function in animals, in which adult hippocampal neurogenesis had been suppressed, have yielded seemingly contradictory results. Cyclin D2 knockout (Ccnd2(-/-)) mice, for example, have constitutively suppressed adult hippocampal neurogenesis but had no overt phenotype in the water maze. In other paradigms, however, ablation of adult neurogenesis was associated with specific deficits in the water maze. Therefore, we hypothesized that the neurogenesis-related phenotype might also become detectable in Ccnd2(-/-) mice, if we used the exact setup and protocol that in our previous study had revealed deficits in mice with suppressed adult neurogenesis. Ccnd2(-/-) mice indeed learned the task and developed a normal preference for the goal quadrant, but were significantly less precise for the exact goal position and were slower in acquiring efficient and spatially more precise search strategies. Upon goal reversal (when the hidden platform was moved to a new position) Ccnd2(-/-) mice showed increased perseverance at the former platform location, implying that they were less flexible in updating the previously learned information. Both with respect to adult neurogenesis and behavioral performance, Ccnd2(+/-) mice ranged between wild types and knockouts. Importantly, hippocampus-dependent learning was not generally impaired by the mutation, but specifically functional aspects relying on precise and flexible encoding were affected. Whether ablation of adult neurogenesis causes a specific behavioral phenotype thus also depends on the actual task demands. The test parameters appear to be important variables influencing whether a task can pick up a contribution of adult neurogenesis to test performance.

  2. New Hippocampal Neurons Are Not Obligatory for Memory Formation; Cyclin D2 Knockout Mice with No Adult Brain Neurogenesis Show Learning

    ERIC Educational Resources Information Center

    Jaholkowski, Piotr; Kiryk, Anna; Jedynak, Paulina; Abdallah, Nada M. Ben; Knapska, Ewelina; Kowalczyk, Anna; Piechal, Agnieszka; Blecharz-Klin, Kamilla; Figiel, Izabela; Lioudyno, Victoria; Widy-Tyszkiewicz, Ewa; Wilczynski, Grzegorz M.; Lipp, Hans-Peter; Kaczmarek, Leszek; Filipkowski, Robert K.

    2009-01-01

    The role of adult brain neurogenesis (generating new neurons) in learning and memory appears to be quite firmly established in spite of some criticism and lack of understanding of what the new neurons serve the brain for. Also, the few experiments showing that blocking adult neurogenesis causes learning deficits used irradiation and various drugs…

  3. In Utero and Lactational Exposure to PCBs in Mice: Adult Offspring Show Altered Learning and Memory Depending on Cyp1a2 and Ahr Genotypes

    PubMed Central

    Curran, Christine P.; Genter, Mary Beth; Patel, Krishna V.; Schaefer, Tori L.; Skelton, Matthew R.; Williams, Michael T.; Vorhees, Charles V.

    2011-01-01

    Background: Both coplanar and noncoplanar polychlorinated biphenyls (PCBs) exhibit neurotoxic effects in animal studies, but individual congeners do not always produce the same effects as PCB mixtures. Humans genetically have > 60-fold differences in hepatic cytochrome P450 1A2 (CYP1A2)-uninduced basal levels and > 12-fold variability in aryl hydrocarbon receptor (AHR)affinity; because CYP1A2 is known to sequester coplanar PCBs and because AHR ligands include coplanar PCBs, both genotypes can affect PCB response. Objectives: We aimed to develop a mouse paradigm with extremes in Cyp1a2 and Ahr genotypes to explore genetic susceptibility to PCB-induced developmental neurotoxicity using an environmentally relevant mixture of PCBs. Methods: We developed a mixture of eight PCBs to simulate human exposures based on their reported concentrations in human tissue, breast milk, and food supply. We previously characterized specific differences in PCB congener pharmacokinetics and toxicity, comparing high-affinity–AHR Cyp1a2 wild-type [Ahrb1_Cyp1a2(+/+)], poor-affinity–AHR Cyp1a2 wild-type [Ahrd_Cyp1a2(+/+)], and high-affinity–AHR Cyp1a2 knockout [Ahrb1_Cyp1a2(–/–)] mouse lines [Curran CP, Vorhees CV, Williams MT, Genter MB, Miller ML, Nebert DW. 2011. In utero and lactational exposure to a complex mixture of polychlorinated biphenyls: toxicity in pups dependent on the Cyp1a2 and Ahr genotypes. Toxicol Sci 119:189–208]. Dams received a mixture of three coplanar and five noncoplanar PCBs on gestational day 10.5 and postnatal day (PND) 5. In the present study we conducted behavioral phenotyping of exposed offspring at PND60, examining multiple measures of learning, memory, and other behaviors. Results: We observed the most significant deficits in response to PCB treatment in Ahrb1_Cyp1a2(–/–) mice, including impaired novel object recognition and increased failure rate in the Morris water maze. However, all PCB-treated genotypes showed significant differences on

  4. Gene expression: RNA interference in adult mice

    NASA Astrophysics Data System (ADS)

    McCaffrey, Anton P.; Meuse, Leonard; Pham, Thu-Thao T.; Conklin, Douglas S.; Hannon, Gregory J.; Kay, Mark A.

    2002-07-01

    RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.

  5. Bex1 knock out mice show altered skeletal muscle regeneration

    SciTech Connect

    Koo, Jae Hyung Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-11-16

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca{sup 2+}/CaM may be involved in skeletal muscle regeneration.

  6. Drug-induced regeneration in adult mice

    PubMed Central

    Zhang, Yong; Strehin, Iossif; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise; Leferovich, John; Messersmith, Phillip B.; Heber-Katz, Ellen

    2015-01-01

    Whereas amphibians regenerate lost appendages spontaneously, mammals generally form scars over the injury site through the process of wound repair. The MRL mouse strain is an exception among mammals because it shows a spontaneous regenerative healing trait and so can be used to investigate proregenerative interventions in mammals. We report that hypoxia-inducible factor 1α (HIF-1α) is a central molecule in the process of regeneration in adult MRL mice. The degradation of HIF-1α protein, which occurs under normoxic conditions, is mediated by prolyl hydroxylases (PHDs). We used the drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), a PHD inhibitor, to stabilize constitutive expression of HIF-1α protein. A locally injectable hydrogel containing 1,4-DPCA was designed to achieve controlled delivery of the drug over 4 to 10 days. Subcutaneous injection of the 1,4-DPCA/hydrogel into Swiss Webster mice that do not show a regenerative phenotype increased stable expression of HIF-1α protein over 5 days, providing a functional measure of drug release in vivo. Multiple peripheral subcutaneous injections of the 1,4-DPCA/hydrogel over a 10-day period led to regenerative wound healing in Swiss Webster mice after ear hole punch injury. Increased expression of the HIF-1α protein may provide a starting point for future studies on regeneration in mammals. PMID:26041709

  7. Otoconia-deficient mice show selective spatial deficits.

    PubMed

    Yoder, Ryan M; Kirby, Seth L

    2014-10-01

    The vestibular system contributes to the performance of various spatial memory tasks, but few studies have attempted to disambiguate the roles of the semicircular canals and otolith organs in this performance. This study tested the otolithic contribution to spatial working and reference memory by evaluating the performance of otoconia-deficient tilted mice on a radial arm maze and a Barnes maze. One radial arm maze task provided both intramaze and extramaze cues, whereas the other task provided only extramaze cues. The Barnes maze task provided only extramaze cues. On the radial arm maze, tilted mice performed similar to control mice when intramaze cues were available, but committed more working and reference memory errors than control mice when only extramaze cues were available. On the Barnes maze task, control and tilted mice showed similar latency, distance, and errors during acquisition training. On the subsequent probe trial, both groups spent the greatest percentage of time in the goal quadrant, indicating they were able to use extramaze cues to guide their search. Overall, these results suggest signals originating in the otolith organs contribute to spatial memory, but are not necessary for all aspects of spatial performance.

  8. Doublecortin knockout mice show normal hippocampal-dependent memory despite CA3 lamination defects.

    PubMed

    Germain, Johanne; Bruel-Jungerman, Elodie; Grannec, Gael; Denis, Cécile; Lepousez, Gabriel; Giros, Bruno; Francis, Fiona; Nosten-Bertrand, Marika

    2013-01-01

    Mutations in the human X-linked doublecortin gene (DCX) cause major neocortical disorganization associated with severe intellectual disability and intractable epilepsy. Although Dcx knockout (KO) mice exhibit normal isocortical development and architecture, they show lamination defects of the hippocampal pyramidal cell layer largely restricted to the CA3 region. Dcx-KO mice also exhibit interneuron abnormalities. As well as the interest of testing their general neurocognitive profile, Dcx-KO mice also provide a relatively unique model to assess the effects of a disorganized CA3 region on learning and memory. Based on its prominent anatomical and physiological features, the CA3 region is believed to contribute to rapid encoding of novel information, formation and storage of arbitrary associations, novelty detection, and short-term memory. We report here that Dcx-KO adult males exhibit remarkably preserved hippocampal- and CA3-dependant cognitive processes using a large battery of classical hippocampus related tests such as the Barnes maze, contextual fear conditioning, paired associate learning and object recognition. In addition, we show that hippocampal adult neurogenesis, in terms of proliferation, survival and differentiation of granule cells, is also remarkably preserved in Dcx-KO mice. In contrast, following social deprivation, Dcx-KO mice exhibit impaired social interaction and reduced aggressive behaviors. In addition, Dcx-KO mice show reduced behavioral lateralization. The Dcx-KO model thus reinforces the association of neuropsychiatric behavioral impairments with mouse models of intellectual disability.

  9. Doublecortin Knockout Mice Show Normal Hippocampal-Dependent Memory Despite CA3 Lamination Defects

    PubMed Central

    Grannec, Gael; Denis, Cécile; Lepousez, Gabriel; Giros, Bruno; Francis, Fiona; Nosten-Bertrand, Marika

    2013-01-01

    Mutations in the human X-linked doublecortin gene (DCX) cause major neocortical disorganization associated with severe intellectual disability and intractable epilepsy. Although Dcx knockout (KO) mice exhibit normal isocortical development and architecture, they show lamination defects of the hippocampal pyramidal cell layer largely restricted to the CA3 region. Dcx-KO mice also exhibit interneuron abnormalities. As well as the interest of testing their general neurocognitive profile, Dcx-KO mice also provide a relatively unique model to assess the effects of a disorganized CA3 region on learning and memory. Based on its prominent anatomical and physiological features, the CA3 region is believed to contribute to rapid encoding of novel information, formation and storage of arbitrary associations, novelty detection, and short-term memory. We report here that Dcx-KO adult males exhibit remarkably preserved hippocampal- and CA3-dependant cognitive processes using a large battery of classical hippocampus related tests such as the Barnes maze, contextual fear conditioning, paired associate learning and object recognition. In addition, we show that hippocampal adult neurogenesis, in terms of proliferation, survival and differentiation of granule cells, is also remarkably preserved in Dcx-KO mice. In contrast, following social deprivation, Dcx-KO mice exhibit impaired social interaction and reduced aggressive behaviors. In addition, Dcx-KO mice show reduced behavioral lateralization. The Dcx-KO model thus reinforces the association of neuropsychiatric behavioral impairments with mouse models of intellectual disability. PMID:24073232

  10. Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response

    PubMed Central

    Ojeda-Fernández, Luisa; Recio-Poveda, Lucía; Aristorena, Mikel; Lastres, Pedro; Blanco, Francisco J.; Sanz-Rodríguez, Francisco; Gallardo-Vara, Eunate; de las Casas-Engel, Mateo; Corbí, Ángel; Arthur, Helen M.; Bernabeu, Carmelo; Botella, Luisa M.

    2016-01-01

    Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients. PMID:27010826

  11. Croton grewioides Baill. (Euphorbiaceae) Shows Antidiarrheal Activity in Mice

    PubMed Central

    da Silva, Anne Dayse Soares; de Melo e Silva, Karoline; Neto, José Clementino; Costa, Vicente Carlos de Oliveira; Pessôa, Hilzeth de Luna F.; Tavares, Josean Fechine; da Silva, Marcelo Sobral; Cavalcante, Fabiana de Andrade

    2016-01-01

    Based on chemotaxonomy, we decided to investigate the possible antidiarrheal activity in mice of a crude ethanolic extract obtained from aerial parts of Croton grewioides (CG-EtOH). We tested for any possible toxicity in rat erythrocytes and acute toxicity in mice. Antidiarrheal activity was assessed by determining the effect of CG-EtOH on defecation frequency, liquid stool, intestinal motility and intestinal fluid accumulation. CG-EtOH showed no in vitro cytotoxicity and was not orally lethal. In contrast, the extract given intraperitoneally (at 2000 mg/kg) was lethal, but only in females. CG-EtOH produced a significant and equipotent antidiarrheal activity, both in defecation frequency (ED50 = 106.0 ± 8.1 mg/kg) and liquid stools (ED50 = 105.0 ± 9.2 mg/kg). However, CG-EtOH (125 mg/kg) decreased intestinal motility by only 22.7% ± 4.4%. Moreover, extract markedly inhibited the castor oil-induced intestinal contents (ED50 = 34.6 ± 5.4 mg/kg). We thus conclude that CG-EtOH is not orally lethal and contains active principles with antidiarrheal activity, and this effect seems to involve mostly changes in intestinal secretion. SUMMARY CG-EtOH showed no in vitro cytotoxicity and was not orally lethal. In contrast, the extract given intraperitoneally (at 2000 mg/kg) was lethal, but only in females.CG-EtOH probably contains active metabolites with antidiarrheal activity.CG-EtOH reduced the frequency and number of liquid stools.Metabolites presents in the CG-EtOH act mainly by reducing intestinal fluid and, to a lesser extent, reducing intestinal motility. Abbreviations Used: CG-EtOH: crude ethanolic extract obtained from the aerial parts of C. grewioides; WHO: World Health Organization; ED50: dose of a drug that produces 50% of its maximum effect; Emax: maximum effect PMID:27365990

  12. Attraction to male pheromones and sexual behaviour show different regulatory mechanisms in female mice.

    PubMed

    Moncho-Bogani, Jose; Lanuza, Enrique; Lorente, Maria José; Martinez-Garcia, Fernando

    2004-05-01

    In rodents, female sexual behaviour is under hormonal control. The attraction females show for male-derived nonvolatile chemicals (pheromones) can be regarded as the first step of this behaviour, but it is unknown whether this attraction is also modulated by sexual steroids. To test this possibility, ovariectomized adult female mice with no experience of chemical signals from adult males were randomly assigned to four groups that received oil (control), progesterone, estradiol (E) or estradiol+progesterone (E+P) injections, respectively. Females were then tested for their attraction to male-soiled bedding and, subsequently, for their proceptive behaviour when confronted to adult males. Females showed attraction to male-soiled bedding irrespective of the hormonal treatment, whereas only those females treated with E or E+P showed proceptive behaviour. Therefore, in contrast to proceptive and copulatory behaviour, the female attraction to male pheromones is independent of sexual steroids, thus indicating that those parts of the vomeronasal system involved in this attraction do not respond to steroids. In summary, sexual behaviour in female mice can be seen as a two-step process. First, females are attracted by male pheromones, a process which is independent of their hormonal status. After encountering the males, females show proceptive behaviour only in estrous, when fertilization is more likely. The attraction exerted by male sexual pheromones promotes female autostimulation that might ensure anticipatory endocrine changes leading to ovulation by the time of sexual intercourse.

  13. Mice lacking synapsin III show abnormalities in explicit memory and conditioned fear

    PubMed Central

    Porton, Barbara; Rodriguiz, Ramona M.; Phillips, Lindsey E.; Gilbert, John W.; Feng, Jian; Greengard, Paul; Kao, Hung-Teh; Wetsel, William C.

    2010-01-01

    Synapsin III is a neuron-specific phosphoprotein that plays an important role in synaptic transmission and neural development. While synapsin III is abundant in embryonic brain, expression of the protein in adults is reduced and limited primarily to the hippocampus, olfactory bulb, and cerebral cortex. Given the specificity of synapsin III to these brain areas and because it plays a role in neurogenesis in the dentate gyrus, we investigated whether it may affect learning and memory processes in mice. To address this point, synapsin III knockout mice were examined in a general behavioral screen, several tests to assess learning and memory function, and conditioned fear. Mutant animals displayed no anomalies in sensory and motor function or in anxiety- and depressive-like behaviors. Although mutants showed minor alterations in the Morris water maze, they were deficient in object recognition 24 hr and 10 days after training and in social transmission of food preference at 20 min and 24 hr. Additionally, mutants displayed abnormal responses in contextual and cued fear conditioning when tested 1 or 24 hr after conditioning. The synapsin III knockout mice also showed aberrant responses in fear-potentiated startle. Since synapsin III protein is decreased in schizophrenic brain and because the mutant mice do not harbor obvious anatomical deficits or neurological disorders, these mutants may represent a unique neurodevelopmental model for dissecting the molecular pathways that are related to certain aspects of schizophrenia and related disorders. PMID:20050925

  14. Timp3 Deficient Mice Show Resistance to Developing Breast Cancer

    PubMed Central

    Jackson, Hartland W.; Hojilla, Carlo V.; Weiss, Ashley; Sanchez, Otto H.; Wood, Geoffrey A.; Khokha, Rama

    2015-01-01

    Timp3 is commonly silenced in breast cancer, but mechanistic studies have identified both tumor promotion and suppression effects of this gene. We have taken a genetic approach to determine the impact of Timp3 loss on two mouse models of breast cancer. Interestingly, MMTV-PyMT Timp3−⁄− mice have delayed tumor onset and 36% of MMTV-Neu Timp3−⁄− mice remain tumor free. TIMP3 is a regulator of TNF signaling and similar to Timp3, Tnf or Tnfr1 loss delays early tumorigenesis. The tumor suppression in Timp3 null mice requires Tnfr1, but does not result in alterations in the local immune compartment. In the mammary gland, Timps are highly expressed in the stroma and through the transplantation of tumor cells we observe that Timp3 deficiency in the host is sufficient to delay the growth of early, but not advanced tumor cells. Together our data is the first to identify a tumor promoting role of endogenous Timp3 in vivo, the spatial and temporal windows of this effect, and its dependence on Tnfr1. PMID:25807548

  15. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    PubMed

    Kesby, James P; Kim, Jane J; Scadeng, Miriam; Woods, Gina; Kado, Deborah M; Olefsky, Jerrold M; Jeste, Dilip V; Achim, Cristian L; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions.

  16. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    PubMed

    Kesby, James P; Kim, Jane J; Scadeng, Miriam; Woods, Gina; Kado, Deborah M; Olefsky, Jerrold M; Jeste, Dilip V; Achim, Cristian L; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions. PMID:26448649

  17. Myogenin Regulates Exercise Capacity but Is Dispensable for Skeletal Muscle Regeneration in Adult mdx Mice

    PubMed Central

    Klein, William H.

    2011-01-01

    Duchenne muscular dystrophy (DMD) is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myogflox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myogflox/flox mice (mdx), Myogflox/flox mice (wild-type), and mdx:MyogfloxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted). mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function. PMID:21264243

  18. Narp knockout mice show normal reactivity to novelty but attenuated recovery from neophobia.

    PubMed

    Blouin, Ashley M; Lee, Jongah J; Tao, Bo; Smith, Dani R; Johnson, Alexander W; Baraban, Jay M; Reti, Irving M

    2013-11-15

    Narp knockout (KO) mice demonstrate cognitive inflexibility and addictive behavior, which are associated with abnormal reactivity to a novel stimulus. To assess reactivity to novelty, we tested Narp KO and wild-type (WT) mice on a neophobia procedure. Both Narp KO and WT mice showed a similar decrease in consumption upon initial exposure to a novel flavor, but Narp KO mice did not increase consumption with subsequent exposures to the novel flavor like the WT mice. Therefore, Narp KO mice do not have abnormal reactivity to novelty but show deficits in adapting behavior to reflect the updated value of a stimulus.

  19. Simvastatin and artesunate impact the structural organization of adult Schistosoma mansoni in hypercholesterolemic mice.

    PubMed

    Alencar, Alba Cristina Miranda de Barros; Santos, Thais da Silva; Neves, Renata Heisler; Lopes Torres, Eduardo José; Nogueira-Neto, José Firmino; Machado-Silva, José Roberto

    2016-08-01

    Experimental data have shown that simvastatin and artesunate possess activity against Schistosoma mansoni worms in mice fed standard chow. However, little is known regarding the roles of these drugs in mice fed high-fat chow. We have extended past studies by measuring the effects of these drugs on the structural organization of adult schistosomes in hypercholesterolemic mice. For this purpose, mice were gavaged with either simvastatin or artesunate at nine weeks post-infection and were euthanized by cervical dislocation at two weeks post-treatment. Adult worms were then collected and examined by conventional light microscopy, morphometry and confocal laser scanning microscopy. Plasma total cholesterol and worm reduction rates were significantly increased in mice fed high-fat chow compared with their respective control groups. Simvastatin and artesunate caused changes in the tegument, tubercles, and reproductive system (testicular lobes, vitelline glands and ovarian cells), particularly when administered to mice fed high-fat chow. In particular, the tegument and tubercles were significantly thinner in artesunate-treated worms in mice fed high-fat chow compared with mice fed standard chow. This study thus demonstrated that simvastatin and artesunate have several novel effects on the structural organization of adult worms. Together, these results show, for the first time, that simvastatin and artesunate display antischistosomal activity in hypercholesterolemic mice.

  20. Analysis of lymphocytes in, and host environment of, mice showing conditioned immunosuppression to cyclophosphamide

    SciTech Connect

    Gorczynski, R.M.

    1987-03-01

    Mice were subjected to repeated exposures to cyclophosphamide: saccharin (conditioned) or cyclophosphamide:saccharin followed by saccharin only (conditioned:extinguished). Animals in the former group but not the latter subsequently showed diminished IgG antibody-forming cells (AFC) after challenge with sheep red blood cells followed by reexposure to immunologically inert cues (saccharin). When these animals were used as irradiated recipients of syngeneic spleen lymphocytes, reconstituted irradiated conditioned mice showed augmented IgG AFC on transfer of naive spleen cells and reexposure to saccharin. The expected diminished IgG AFC response was seen when cells from conditioned mice were transferred. However, the latter cells gave augmented IgG AFC when transferred to naive irradiated mice. Both of the effects seen with cells from conditioned animals (increased IgG AFC in control recipients; decreased IgG AFC in conditioned mice reexposed to saccharin) were regulated by adoptively transferred T cells in the spleen cell population.

  1. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    PubMed

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans. PMID:27096360

  2. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    PubMed

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.

  3. Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/- BDNF mutant mice.

    PubMed

    Dluzen, D E; Gao, X; Story, G M; Anderson, L I; Kucera, J; Walro, J M

    2001-07-01

    Deletion of a single copy of the BDNF gene has been shown to affect the nigrostriatal dopaminergic system of young adult BDNF mice. In the present report we evaluated various indices of nigrostriatal dopaminergic function between 9-month-old wild-type (+/+) and heterozygous (+/-) BDNF mutant mice. Performance in a sensorimotor beam walking task was significantly decreased in +/- mice as indicated by increased times required to traverse both a wide (21 mm) and narrow (6 mm) beam. No differences in spontaneous locomotor behavior were observed between the +/+ and +/- mice. Amphetamine-stimulated (5 mg/kg) locomotor behavior was increased to a greater degree in the +/- mice, with the number of movements performed by these mice being significantly greater than their +/+ controls. Corpus striatal dopamine concentrations were significantly greater in the +/- BDNF mice. The absence of any significant differences for dopamine concentrations within the hypothalamus and olfactory bulb of these mice, as well as an absence of any difference in striatal norepinephrine concentrations, suggested a relative specificity of these effects to the corpus striatum. Both the +/- and +/+ mice showed similar reductions in striatal dopamine concentrations in response to a neurotoxic regimen of methamphetamine (20 mg/kg). Collectively these data show increased levels of striatal dopamine concentrations associated with altered behavioral responses involving the nigrostriatal dopaminergic system within the heterozygous BDNF mutant mice. PMID:11421589

  4. Heart regeneration in adult MRL mice

    NASA Astrophysics Data System (ADS)

    Leferovich, John M.; Bedelbaeva, Khamilia; Samulewicz, Stefan; Zhang, Xiang-Ming; Zwas, Donna; Lankford, Edward B.; Heber-Katz, Ellen

    2001-08-01

    The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models. We have previously shown that the MRL mouse strain has an extraordinary capacity to heal surgical wounds, a complex trait that maps to at least seven genetic loci. Here, we extend these studies to cardiac wounds and demonstrate that a severe transmural, cryogenically induced infarction of the right ventricle heals extensively within 60 days, with the restoration of normal myocardium and function. Scarring is markedly reduced in MRL mice compared with C57BL/6 mice, consistent with both the reduced hydroxyproline levels seen after injury and an elevated cardiomyocyte mitotic index of 10-20% for the MRL compared with 1-3% for the C57BL/6. The myocardial response to injury observed in these mice resembles the regenerative process seen in amphibians.

  5. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice.

    PubMed

    Dansie, L E; Phommahaxay, K; Okusanya, A G; Uwadia, J; Huang, M; Rotschafer, S E; Razak, K A; Ethell, D W; Ethell, I M

    2013-08-29

    Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder. Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in "fragile X mental retardation gene" knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4- and 8-week-long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model.

  6. Neurobiological Sequelae of Witnessing Stressful Events in Adult Mice

    PubMed Central

    Warren, Brandon L.; Vialou, Vincent F.; Iñiguez, Sergio D.; Alcantara, Lyonna F.; Wright, Katherine N.; Feng, Jiang; Kennedy, Pamela J.; LaPlant, Quincey; Shen, Li; Nestler, Eric J.; Bolaños-Guzmán, Carlos A.

    2012-01-01

    Background It is well known that exposure to severe stress increases the risk for developing mood disorders. However, most chronic stress models in rodents involve at least some form of physically experiencing traumatic events. Methods This study assessed the effects of a novel social stress paradigm that is insulated from the effects of physical stress. Specifically, adult male C57BL/6J mice were exposed to either emotional (ES) or physical stress (PS) for ten minutes per day for ten days. ES mice were exposed to the social defeat of a PS mouse by a larger more aggressive CD-1 mouse from the safety of an adjacent compartment. Results Like PS mice, ES mice exhibited a range of depression- and anxiety-like behaviors both 24 hr and 1 month after the stress. Increased levels of serum corticosterone, part of the stress response, accompanied these behavioral deficits. Based on prior work which implicated gene expression changes in the ventral tegmental area (a key brain reward region) in the PS phenotype, we compared genome-wide mRNA expression patterns in this brain region of ES and PS mice using RNA-seq. We found significant overlap between these conditions, which suggests several potential gene targets for mediating the behavioral abnormalities observed. Conclusions Together, these findings demonstrate that witnessing traumatic events is a potent stress in adult male mice capable of inducing long-lasting neurobiological perturbations. PMID:22795644

  7. Localized brain differences in Arc expression between mice showing low vs. high propensity to ethanol sensitization.

    PubMed

    Nona, Christina N; Lam, Marcus; Nobrega, José N

    2016-03-01

    Behavioral sensitization to ethanol (EtOH) manifests as a progressive and enduring increase in locomotor activity with repeated drug exposure. However, not all mice sensitize to EtOH and the neuronal mechanisms mediating vulnerability and resistance to EtOH sensitization remain unclear. We examined regional brain expression of the immediate early gene activity-regulated cytoskeleton-associated protein (Arc) in order to identify brain areas in which neuroplastic changes may contribute to the development and expression of EtOH sensitization. Male DBA/2J mice received 5 biweekly injections of EtOH (2.2g/kg, i.p.) or saline (SAL). They were categorized as high- (HS) or low-sensitized (LS) on the basis of final locomotor activity scores. In both LS and HS mice sacrificed after the last sensitization injection, Arc expression was decreased throughout the brain in comparison to SAL animals. A similar pattern was seen in mice sacrificed after an EtOH challenge two weeks after the last sensitization injection. However in this cohort, Arc expression was significantly increased in the central amygdala (CeA) in LS mice and in SAL mice receiving EtOH for the first time. No significant increases in Arc expression were seen in brains of sensitized (HS) animals. These results indicate an acute EtOH challenge results in different patterns of Arc expression in brains of LS, HS, and SAL mice. The dramatic increases in Arc expression in the CeA in LS and SAL mice showing little or no behavioral activation suggests that neural activity in this region may serve to inhibit the stimulant effects of EtOH. The observation that HS mice do not show increases in Arc expression with an EtOH challenge suggests the possibility that increased tolerance to the Arc-inducing effects of EtOH may be a factor in behavioral sensitization.

  8. Adoptive transfer of macrophages from adult mice reduces mortality in mice infected with human enterovirus 71.

    PubMed

    Liu, Jiangning; Li, Xiaoying; Fan, Xiaoxu; Ma, Chunmei; Qin, Chuan; Zhang, Lianfeng

    2013-02-01

    Human enterovirus 71 (EV71) causes hand, foot and mouth disease in children under 6 years of age, and the neurological complications of this virus can lead to death. Until now, no vaccines or drugs have been available for the clinical control of this epidemic. Macrophages can engulf pathogens and mediate a series of host immune responses that play a role in the defence against infectious diseases. Using immunohistochemistry, we observed the localizations of virus in muscle tissues of EV71-infected mice. The macrophages isolated from the adult mice could kill the virus gradually in vitro, as shown using quantitative real-time PCR (qRT-PCR) and virus titration. Co-localisation of lysosomes and virus within macrophages suggested that the lysosomes were possibly responsible for the phagocytosis of EV71. Activation of the macrophages in the peritoneal cavity of mice four days pre-infection reduced the mortality of mice upon lethal EV71 infection. The adoptive transfer of macrophages from adult mice inhibited virus replication in the muscle tissues of infected mice, and this was followed by a relief of symptoms and a significant reduction of mortality, which suggested that the adoptive transfer of macrophages from adult humans represents a potential strategy to treat EV71-infected patients.

  9. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    PubMed

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression.

  10. A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice.

    PubMed

    Hammerschmidt, K; Schreiweis, C; Minge, C; Pääbo, S; Fischer, J; Enard, W

    2015-11-01

    The transcription factor FOXP2 has been linked to severe speech and language impairments in humans. An analysis of the evolution of the FOXP2 gene has identified two amino acid substitutions that became fixed after the split of the human and chimpanzee lineages. Studying the functional consequences of these two substitutions in the endogenous Foxp2 gene of mice showed alterations in dopamine levels, striatal synaptic plasticity, neuronal morphology and cortico-striatal-dependent learning. In addition, ultrasonic vocalizations (USVs) of pups had a significantly lower average pitch than control littermates. To which degree adult USVs would be affected in mice carrying the 'humanized' Foxp2 variant remained unclear. In this study, we analyzed USVs of 68 adult male mice uttered during repeated courtship encounters with different females. Mice carrying the Foxp2(hum/hum) allele did not differ significantly in the number of call elements, their element structure or in their element composition from control littermates. We conclude that neither the structure nor the usage of USVs in adult mice is affected by the two amino acid substitutions that occurred in FOXP2 during human evolution. The reported effect for pup vocalization thus appears to be transient. These results are in line with accumulating evidence that mouse USVs are hardly influenced by vocal learning. Hence, the function and evolution of genes that are necessary, but not sufficient for vocal learning in humans, must be either studied at a different phenotypic level in mice or in other organisms.

  11. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    PubMed

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-01

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. PMID:27589891

  12. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    PubMed

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-01

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes.

  13. Litter Size Predicts Adult Stereotypic Behavior in Female Laboratory Mice

    PubMed Central

    Bechard, Allison; Nicholson, Anthony; Mason, Georgia

    2012-01-01

    Stereotypic behaviors are repetitive invariant behaviors that are common in many captive species and potentially indicate compromised welfare and suitability as research subjects. Adult laboratory mice commonly perform stereotypic bar-gnawing, route-tracing, and back-flipping, although great individual variation in frequency occurs. Early life factors (for example, level of maternal care received) have lasting effects on CNS functioning and abilities to cope with stress and therefore may also affect stereotypic behavior in offspring. Access to maternal resources and care are influenced by the number of pups in a litter; therefore, we examined both litter size and its potential correlate, weight at weaning, as early environmental predictors of adult stereotypic behavior in laboratory mice. Further, we assessed the effects on offspring stereotypic behavior of delaying the separation of mother and pups (weaning) beyond the standard 21 d of age. Analyzing stereotypic behavior in 3 different mouse colonies composed of 2 inbred strains (C57BL/6N and C57BL/6J) and an outbred stock (CD1[ICR]) revealed significant positive correlation between litter size and stereotypic behavior in female, but not male, mice. Weight and age at weaning did not significantly affect levels of stereotypy in either sex. Litter size therefore may be a useful indicator of individual predisposition to stereotypic behavior in female laboratory mice. PMID:23043805

  14. Long-lived growth hormone receptor knockout mice show a delay in age-related changes of body composition and bone characteristics.

    PubMed

    Bonkowski, Michael S; Pamenter, Richard W; Rocha, Juliana S; Masternak, Michal M; Panici, Jacob A; Bartke, Andrzej

    2006-06-01

    There is conflicting information on the physiological role of growth hormone (GH) in the control of aging. This study reports dual-energy x-ray absorptiometry (DXA) measurements of body composition and bone characteristics in young, adult, and aged long-lived GH receptor knockout (GHR-KO) and normal mice to determine the effects of GH resistance during aging. Compared to controls, GHR-KO mice showed an increased percentage of body fat. GHR-KO mice have reduced total-body bone mineral density (BMD), bone mineral content, and bone area, but these parameters increased with age. In addition, GHR-KO mice have decreased femur length, femur BMD, and lower lumbar BMD compared to controls in all age groups. These parameters also continued to increase with age. Our results indicate that GH resistance alters body composition, bone growth, and bone maintenance during aging in GHR-KO mice.

  15. Acute Multiple Organ Failure in Adult Mice Deleted for the Developmental Regulator Wt1

    PubMed Central

    Chau, You-Ying; Brownstein, David; Mjoseng, Heidi; Lee, Wen-Chin; Buza-Vidas, Natalija; Nerlov, Claus; Jacobsen, Sten Eirik; Perry, Paul; Berry, Rachel; Thornburn, Anna; Sexton, David; Morton, Nik; Hohenstein, Peter; Freyer, Elisabeth; Samuel, Kay; van't Hof, Rob; Hastie, Nicholas

    2011-01-01

    There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal–epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover. PMID:22216009

  16. Histaminergic modulation of the intact respiratory network of adult mice.

    PubMed

    Dutschmann, M; Bischoff, A M; Büsselberg, D; Richter, D W

    2003-02-01

    Histaminergic modulation of neuronal activity in the respiratory network was investigated under normoxic and hypoxic conditions in the working heart-brainstem preparation of adult mice. Systemic application of histamine, as well as the H-1 and H-3 receptor agonists 6-[2-(4-imidazolyl)ethylamino]- N-(4-trifluoromethylphenyl) heptanecarboxamide (HTMT) and imetit, 0.5-10 micro M, significantly increased the frequency of respiratory burst discharges. Dimaprit, an H-2 receptor agonist, had no effect on respiratory activity. To test for ongoing histaminergic modulation we applied the histamine receptor antagonists pyrilamine (H-1); cimetidine (H-2) and thioperamide (H-3), each 0.5-10 micro M. Only the H-1 receptor antagonist had significant effects, viz. reduction of respiratory frequency and depression of burst amplitude. Underlying effects of histamine receptor activation were identified at the cellular level. Intracellular recordings showed that histamine mediated an increase in synaptic drive potentials in inspiratory neurones while augmentation of inhibitory and excitatory synaptic activity was observed in expiratory neurones. The augmented synaptic depolarisation of inspiratory neurones was blocked by the H-1 receptor antagonist. Histaminergic modulation is also involved in the hypoxic response of the respiratory network. Blockade of H-1 receptors significantly attenuated secondary depression of the biphasic hypoxic responses, while hypoxic augmentation was not affected. We conclude that histamine is a functional neuromodulator, which is tonically active in the respiratory network and is activated further during hypoxia. The data indicate that histaminergic neuromodulation acts predominantly via H-1 receptors.

  17. Endogenous brain erythropoietin is a potent sex-specific respiratory stimulant in adult and newborn mice.

    PubMed

    Ballot, Orlane; Joseph, Vincent; Soliz, Jorge

    2015-06-01

    We tested the hypothesis that endogenous brain Epo is a respiratory stimulant. Adult (3 mo) and newborn (10 days) male and female mice received an intracisternal (cisterna magna) injection of soluble Epo receptor (sEpoR; competes with EpoR to bind Epo; 50 μg/ml) or vehicle (0.1% BSA in PBS). Twenty-four hours after injection, we used whole body plethysmography to record minute ventilation (V̇e) tidal volume (VT), respiratory frequency (fR), O2 consumption (V̇o2), and CO2 production (V̇co2) under normoxia and progressive exposure to hypoxia (12-10-6% O2; 10 min each). In adult male and female mice sEpoR decreased normoxic V̇e (-25%), due to a decrease of VT in males and fR in females. Moreover, sEpoR injection decreased the ventilatory response to 12% O2, assessed as V̇e/V̇o2 or V̇e/V̇co2, in male but not in female mice. In newborn male and female mice sEpoR decreased V̇e (-37% in males, -59% in females) and VT (-38% in males, -47% in females) in normoxia and fR in females. During hypoxia, sEpoR decreased V̇e/V̇o2 and V̇e/V̇co2 in mice of both sexes. Upon extreme hypoxia (6% O2), the newborn mice treated with sEpoR showed respiratory depression, signs of asphyxia (gasping) and a high mortality rate in males and females. We concluded that endogenous brain Epo is a potent respiratory stimulant under normoxia and hypoxia in adult and newborn mice. Because sex-specific effects are different in newborn male and female, sex steroids secreted at different ages mice appear to modulate the effects of Epo on respiratory regulation in normoxia and in response to hypoxia. PMID:25792712

  18. LFA-1-deficient mice show normal CTL responses to virus but fail to reject immunogenic tumor

    PubMed Central

    1996-01-01

    The leukocyte integrin LFA-1 (CD11a/CD18) plays an important role in lymphocyte recirculation and homotypic interactions. Leukocytes from mice lacking CD11a displayed defects in in vitro homotypic aggregation, in proliferation in mixed lymphocyte reactions, and in response to mitogen. Mutant mice mounted normal cytotoxic T cell (CTL) responses against systemic LCMV and VSV infections and showed normal ex vivo CTL function. However, LFA-1-deficient mice did not reject immunogenic tumors grafted into footpads and did not demonstrate priming response against tumor-specific antigen. Thus CD11a deficiency causes a selective defect in induction of peripheral immune responses whereas responses to systemic infection are normal. PMID:8666900

  19. [Effect of alcohol in combination with stress in the prenatal period on adult mice behaviour].

    PubMed

    Morozova, M V; Popova, N K

    2010-11-01

    The aim of the present study was to investigate the effects of the prenatal alcohol and stress on behaviour of adult CBA/LacJ male mice. Pregnant mice were given ethanol 11% from to 21 days of the gestation and were exposed to restraint stress for two hours daily from 15 to 21 days gestation. At 3 months of age, the offspring were tested for behaviour. Alcohol and stress-exposed animals buried more marbles in the marble-burying test, which models obsessive-compulsive disorders (OCD). In addition, the alcohol and stress-exposed males showed increased social activity. No significant effects of the prenatal alcohol and stress exposure on locomotor activity, anxiety, exploring activity of the adult male mice were revealed. Conclusion was made that exposure to the alcohol and stress combination in prenatal period produces predisposition to OCD.

  20. Juvenile ethanol exposure increases rewarding properties of cocaine and morphine in adult DBA/2J mice.

    PubMed

    Molet, Jenny; Hervé, Denis; Thiébot, Marie-Hélène; Hamon, Michel; Lanfumey, Laurence

    2013-12-01

    Convergent data showed that ethanol exposure during adolescence can alter durably ethanol-related behaviour at adulthood. However, the consequences of juvenile ethanol exposure on the reinforcing effects of other drugs of abuse remain unclear. In the present work, we evaluated in adult male DBA/2J mice the effects of early ethanol exposure on the sensitivity to the incentive effects of cocaine and morphine, and on extracellular signal-regulated kinase (ERK) activation in response to cocaine. Juvenile male mice received intragastric administration of ethanol (2×2.5g/kg/day) or water for 5 days starting on postnatal day 28. When reaching adult age (10 week-old), animals were subjected to an unbiased procedure to assess conditioned place preference (CPP) to cocaine or morphine. In addition, activation of ERK in response to an acute injection of cocaine was investigated using immunoblotting in the striatum and the nucleus accumbens. Mice that have been subjected to early ethanol exposure developed CPP to doses of cocaine (5mg/kg) or morphine (10mg/kg) below the threshold doses to induce CPP in water pre-exposed mice. In addition, early ethanol administration significantly increased striatal ERK phosphorylation normally induced by acute cocaine (10 and 20mg/kg) in adult mice. These results show that, in DBA/2J mice, early exposure to ethanol enhanced the perception of the incentive effects of cocaine and morphine. Ethanol pre-exposure also induced a positive modulation of striatal ERK signalling, in line with the inference that juvenile ethanol intake may contribute to the development of addictive behaviour at adult age. PMID:23619165

  1. Lens specific RLIP76 transgenic mice show a phenotype similar to microphthalmia.

    PubMed

    Sahu, Mukesh; Sharma, Rajendra; Yadav, Sushma; Wakamiya, Maki; Chaudhary, Pankaj; Awasthi, Sanjay; Awasthi, Yogesh C

    2014-01-01

    RALBP1/RLIP76 is a ubiquitously expressed protein, involved in promotion and regulation of functions initiated by Ral and R-Ras small GTPases. Presence of multiple domains in its structure enables RLIP76 to be involved in a number of physiological processes such as endocytosis, exocytosis, mitochondrial fission, actin cytoskeleton remodeling, and transport of exogenous and endogenous toxicants. Previously, we have established that RLIP76 provides protection to ocular tissues against oxidative stress by transporting the glutathione-conjugates of the toxic, electrophilic products of lipid peroxidation generated during oxidative stress. Therefore, we developed lens specific RLIP76 transgenic mice (lensRLIP76 Tg) to elucidate the role of RLIP76 in protection against oxidative stress, but these transgenic mice showed impaired lens development and a phenotype with small eyes similar to that observed in microphthalmia. These findings prompted us to investigate the mechanisms via which RLIP76 affects lens and eye development. In the present study, we report engineering of lensRLIP76 Tg mice, characterization of the associated phenotype, and the possible molecular mechanisms that lead to the impaired development of eye and lens in these mice. The results of microarray array analysis indicate that the genes involved in pathways for G-Protein signaling, actin cytoskeleton reorganization, endocytosis, and apoptosis are affected in these transgenic mice. The expression of transcription factors, Pax6, Hsf1, and Hsf4b known to be involved in lens development is down regulated in the lens of these Tg mice. However, the expression of heat shock proteins (Hsps), the downstream targets of Hsfs, is differentially affected in the lens showing down regulation of Hsp27, Hsp40, up regulation of Hsp60, and no effect on Hsp70 and Hsp90 expression. The disruption in the organization of actin cytoskeleton of these Tg mice was associated with the inhibition of the activation of Cdc42 and

  2. Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice.

    PubMed

    Pan, Weihong; Hsuchou, Hung; He, Yi; Sakharkar, Amul; Cain, Courtney; Yu, Chuanhui; Kastin, Abba J

    2008-06-01

    The agouti viable yellow (A vy) spontaneous mutation generates an unusual mouse phenotype of agouti-colored coat and adult-onset obesity with metabolic syndrome. Persistent production of agouti signaling protein in A vy mice antagonizes melanocortin receptors in the hypothalamus. To determine how this disruption of neuroendocrine circuits affects leptin transport across the blood-brain barrier (BBB), we measured leptin influx in A vy and B6 control mice after the development of obesity, hyperleptinemia, and increased adiposity. After iv bolus injection, (125)I-leptin crossed the BBB significantly faster in young (2 month old) B6 mice than in young A vy mice or in older (8 month old) mice of either strain. This difference was not observed by in situ brain perfusion studies, indicating the cause being circulating factors, such as elevated leptin levels or soluble receptors. Thus, A vy mice showed peripheral leptin resistance. ObRa, the main transporting receptor for leptin at the BBB, showed no change in mRNA expression in the cerebral microvessels between the age-matched (2 month old) A vy and B6 mice. Higher ObRb mRNA was seen in the A vy microvasculature with unknown significance. Immunofluorescent staining unexpectedly revealed that many of the ObR(+) cells were astrocytes and that the A vy mice showed significantly more ObR(+) astrocytes in the hypothalamus than the B6 mice. Although leptin permeation from the circulation was slower in the A vy mice, the increased ObR expression in astrocytes and increased ObRb mRNA in microvessels suggest the possibility of heightened central nervous system sensitivity to circulating leptin.

  3. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin Aα null mice.

    PubMed

    Madsen, Kirsten; Reddy, Ramesh N; Price, S Russ; Williams, Clintoria R; Gooch, Jennifer L

    2013-01-01

    Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα) were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2) expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout animals. PMID:23638102

  4. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference.

    PubMed

    Bahi, Amine; Tolle, Virginie; Fehrentz, Jean-Alain; Brunel, Luc; Martinez, Jean; Tomasetto, Catherine-Laure; Karam, Sherif M

    2013-05-01

    Recent work suggests that stomach-derived hormone ghrelin receptor (GHS-R1A) antagonism may reduce motivational aspects of ethanol intake. In the current study we hypothesized that the endogenous GHS-R1A agonist ghrelin modulates alcohol reward mechanisms. For this purpose ethanol-induced conditioned place preference (CPP), ethanol-induced locomotor stimulation and voluntary ethanol consumption in a two-bottle choice drinking paradigm were examined under conditions where ghrelin and its receptor were blocked, either using ghrelin knockout (KO) mice or the specific ghrelin receptor (GHS-R1A) antagonist "JMV2959". We showed that ghrelin KO mice displayed lower ethanol-induced CPP than their wild-type (WT) littermates. Consistently, when injected during CPP-acquisition, JMV2959 reduced CPP-expression in C57BL/6 mice. In addition, ethanol-induced locomotor stimulation was lower in ghrelin KO mice. Moreover, GHS-R1A blockade, using JMV2959, reduced alcohol-stimulated locomotion only in WT but not in ghrelin KO mice. When alcohol consumption and preference were assessed using the two-bottle choice test, both genetic deletion of ghrelin and pharmacological antagonism of the GHS-R1A (JMV2959) reduced voluntary alcohol consumption and preference. Finally, JMV2959-induced reduction of alcohol intake was only observed in WT but not in ghrelin KO mice. Taken together, these results suggest that ghrelin neurotransmission is necessary for the stimulatory effect of ethanol to occur, whereas lack of ghrelin leads to changes that reduce the voluntary intake as well as conditioned reward by ethanol. Our findings reveal a major, novel role for ghrelin in mediating ethanol behavior, and add to growing evidence that ghrelin is a key mediator of the effects of multiple abused drugs. PMID:23428971

  5. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference.

    PubMed

    Bahi, Amine; Tolle, Virginie; Fehrentz, Jean-Alain; Brunel, Luc; Martinez, Jean; Tomasetto, Catherine-Laure; Karam, Sherif M

    2013-05-01

    Recent work suggests that stomach-derived hormone ghrelin receptor (GHS-R1A) antagonism may reduce motivational aspects of ethanol intake. In the current study we hypothesized that the endogenous GHS-R1A agonist ghrelin modulates alcohol reward mechanisms. For this purpose ethanol-induced conditioned place preference (CPP), ethanol-induced locomotor stimulation and voluntary ethanol consumption in a two-bottle choice drinking paradigm were examined under conditions where ghrelin and its receptor were blocked, either using ghrelin knockout (KO) mice or the specific ghrelin receptor (GHS-R1A) antagonist "JMV2959". We showed that ghrelin KO mice displayed lower ethanol-induced CPP than their wild-type (WT) littermates. Consistently, when injected during CPP-acquisition, JMV2959 reduced CPP-expression in C57BL/6 mice. In addition, ethanol-induced locomotor stimulation was lower in ghrelin KO mice. Moreover, GHS-R1A blockade, using JMV2959, reduced alcohol-stimulated locomotion only in WT but not in ghrelin KO mice. When alcohol consumption and preference were assessed using the two-bottle choice test, both genetic deletion of ghrelin and pharmacological antagonism of the GHS-R1A (JMV2959) reduced voluntary alcohol consumption and preference. Finally, JMV2959-induced reduction of alcohol intake was only observed in WT but not in ghrelin KO mice. Taken together, these results suggest that ghrelin neurotransmission is necessary for the stimulatory effect of ethanol to occur, whereas lack of ghrelin leads to changes that reduce the voluntary intake as well as conditioned reward by ethanol. Our findings reveal a major, novel role for ghrelin in mediating ethanol behavior, and add to growing evidence that ghrelin is a key mediator of the effects of multiple abused drugs.

  6. Emotional disorders in adult mice heterozygous for the transcription factor Phox2b.

    PubMed

    Bollen, Bieke; Ramanantsoa, Nelina; Naert, Arne; Matrot, Boris; Van den Bergh, Omer; D'Hooge, Rudi; Gallego, Jorge

    2015-03-15

    Phox2b is an essential transcription factor for the development of the autonomic nervous system. Mice carrying one invalidated Phox2b allele (Phox2b(+/-)) show mild autonomic disorders including sleep apneas, and impairments in chemosensitivity and thermoregulation that recover within 10days of postnatal age. Because Phox2b is not expressed above the pons nor in the cerebellum, this mutation is not expected to affect brain development and cognitive functioning directly. However, the transient physiological disorders in Phox2b(+/-) mice might impair neurodevelopment. To examine this possibility, we conducted a behavioral test battery of emotional, motor, and cognitive functioning in adult Phox2b(+/-) mice and their wildtype littermates (Phox2b(+/+)). Adult Phox2b(+/-) mice showed altered exploratory behavior in the open field and in the elevated plus maze, both indicative of anxiety. Phox2b(+/-) mice did not show cognitive or motor impairments. These results suggest that also mild autonomic control deficits may disturb long-term emotional development. PMID:25582512

  7. Emotional disorders in adult mice heterozygous for the transcription factor Phox2b.

    PubMed

    Bollen, Bieke; Ramanantsoa, Nelina; Naert, Arne; Matrot, Boris; Van den Bergh, Omer; D'Hooge, Rudi; Gallego, Jorge

    2015-03-15

    Phox2b is an essential transcription factor for the development of the autonomic nervous system. Mice carrying one invalidated Phox2b allele (Phox2b(+/-)) show mild autonomic disorders including sleep apneas, and impairments in chemosensitivity and thermoregulation that recover within 10days of postnatal age. Because Phox2b is not expressed above the pons nor in the cerebellum, this mutation is not expected to affect brain development and cognitive functioning directly. However, the transient physiological disorders in Phox2b(+/-) mice might impair neurodevelopment. To examine this possibility, we conducted a behavioral test battery of emotional, motor, and cognitive functioning in adult Phox2b(+/-) mice and their wildtype littermates (Phox2b(+/+)). Adult Phox2b(+/-) mice showed altered exploratory behavior in the open field and in the elevated plus maze, both indicative of anxiety. Phox2b(+/-) mice did not show cognitive or motor impairments. These results suggest that also mild autonomic control deficits may disturb long-term emotional development.

  8. Pathological impact of SMN2 mis-splicing in adult SMA mice

    PubMed Central

    Sahashi, Kentaro; Ling, Karen K Y; Hua, Yimin; Wilkinson, John Erby; Nomakuchi, Tomoki; Rigo, Frank; Hung, Gene; Xu, David; Jiang, Ya-Ping; Lin, Richard Z; Ko, Chien-Ping; Bennett, C Frank; Krainer, Adrian R

    2013-01-01

    Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. The related SMN2 gene expresses suboptimal levels of functional SMN protein, due to a splicing defect. Many SMA patients reach adulthood, and there is also adult-onset (type IV) SMA. There is currently no animal model for adult-onset SMA, and the tissue-specific pathogenesis of post-developmental SMN deficiency remains elusive. Here, we use an antisense oligonucleotide (ASO) to exacerbate SMN2 mis-splicing. Intracerebroventricular ASO injection in adult SMN2-transgenic mice phenocopies key aspects of adult-onset SMA, including delayed-onset motor dysfunction and relevant histopathological features. SMN2 mis-splicing increases during late-stage disease, likely accelerating disease progression. Systemic ASO injection in adult mice causes peripheral SMN2 mis-splicing and affects prognosis, eliciting marked liver and heart pathologies, with decreased IGF1 levels. ASO dose–response and time-course studies suggest that only moderate SMN levels are required in the adult central nervous system, and treatment with a splicing-correcting ASO shows a broad therapeutic time window. We describe distinctive pathological features of adult-onset and early-onset SMA. PMID:24014320

  9. Antisense Reduction of Tau in Adult Mice Protects against Seizures

    PubMed Central

    DeVos, Sarah L.; Goncharoff, Dustin K.; Chen, Guo; Kebodeaux, Carey S.; Yamada, Kaoru; Stewart, Floy R.; Schuler, Dorothy R.; Maloney, Susan E.; Wozniak, David F.; Rigo, Frank; Bennett, C. Frank; Cirrito, John R.; Holtzman, David M.

    2013-01-01

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS—brain and spinal cord tissue, interstitial fluid, and CSF—while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability. PMID:23904623

  10. Discovery of nigral dopaminergic neurogenesis in adult mice

    PubMed Central

    Morrison, Brad E.

    2016-01-01

    Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra. As a result, intensive efforts have focused upon mechanisms that facilitate the death of mature dopaminergic neurons. Unfortunately, these efforts have been unsuccessful in providing an effective treatment to address neurodegeneration in this disease. Therefore, alternative theories of pathogenesis are being explored. Adult neurogenesis of dopaminergic neurons is an attractive concept that would provide a possible mechanism of neurodegeneration as well as offer an endogenous means to replenish affected neurons. To determine whether dopaminergic neurons experience neurogenesis in adult mice we developed a novel cell lineage tracing model that permitted detection of neurogenesis without many of the issues associated with popular techniques. Remarkably, we discovered that dopaminergic neurons are replenished in adult mice by Nestin+/Sox2- progenitor cells. What's more, the rate of neurogenesis is similar to the rate of dopaminergic neuron loss reported using a chronic, systemic inflammatory response mouse model. This observation may indicate that neuron loss in Parkinson's disease results from inhibition of neurogenesis. PMID:27482200

  11. AML1 deletion in adult mice causes splenomegaly and lymphomas.

    PubMed

    Putz, G; Rosner, A; Nuesslein, I; Schmitz, N; Buchholz, F

    2006-02-01

    AML1 (RUNX1) encodes a DNA-binding subunit of the CBF transcription factor family and is required for the establishment of definitive hematopoiesis. AML1 is one of the most frequently mutated genes associated with human acute leukemia, suggesting that genetic alterations of the gene contribute to leukemogenesis. Here, we report the analysis of mice carrying conditional AML1 knockout alleles that were inactivated using the Cre/loxP system. AML1 was deleted in adult mice by inducing Cre activity to replicate AML1 deletions found in human MDS, familial platelet disorder and rare de novo human AML. At a latency of 2 months after induction, the thymus was reduced in size and frequently populated by immature double negative thymocytes, indicating defective T-lymphocyte maturation, resulting in lymphatic diseases with 50% penetrance, including atypical hyperplasia and thymic lymphoma. Metastatic lymphomas to the liver and the meninges were observed. Mice also developed splenomegaly with an expansion of the myeloid compartment. Increased Howell-Jolly body counts indicated splenic hypofunction. Thrombocytopenia occurred due to immaturity of mini-megakaryocytes in the bone marrow. Together with mild lymphocytopenia in the peripheral blood and increased fractions of immature cells in the bone marrow, AML1 deficient mice display features of a myelodysplastic syndrome, suggesting a preleukemic state.

  12. Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice.

    PubMed

    Cordoba-Chacon, Jose; Majumdar, Neena; List, Edward O; Diaz-Ruiz, Alberto; Frank, Stuart J; Manzano, Anna; Bartrons, Ramon; Puchowicz, Michelle; Kopchick, John J; Kineman, Rhonda D

    2015-09-01

    Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have low growth hormone (GH) production and/or hepatic GH resistance. GH replacement can resolve the fatty liver condition in diet-induced obese rodents and in GH-deficient patients. However, it remains to be determined whether this inhibitory action of GH is due to direct regulation of hepatic lipid metabolism. Therefore, an adult-onset, hepatocyte-specific, GH receptor (GHR) knockdown (aLivGHRkd) mouse was developed to model hepatic GH resistance in humans that may occur after sexual maturation. Just 7 days after aLivGHRkd, hepatic de novo lipogenesis (DNL) was increased in male and female chow-fed mice, compared with GHR-intact littermate controls. However, hepatosteatosis developed only in male and ovariectomized female aLivGHRkd mice. The increase in DNL observed in aLivGHRkd mice was not associated with hyperactivation of the pathway by which insulin is classically considered to regulate DNL. However, glucokinase mRNA and protein levels as well as fructose-2,6-bisphosphate levels were increased in aLivGHRkd mice, suggesting that enhanced glycolysis drives DNL in the GH-resistant liver. These results demonstrate that hepatic GH actions normally serve to inhibit DNL, where loss of this inhibitory signal may explain, in part, the inappropriate increase in hepatic DNL observed in NAFLD patients. PMID:26015548

  13. Communal nesting increases pup growth but has limited effects on adult behavior and neurophysiology in inbred mice.

    PubMed

    Heiderstadt, Kathleen M; Vandenbergh, David J; Gyekis, Joseph P; Blizard, David A

    2014-03-01

    Laboratory mice preferentially rear their offspring in communal nests (CN), with all mothers contributing to maternal care and feeding of all the pups. Previous studies using primarily outbred mice have shown that offspring reared under CN conditions may display increased preweaning growth rates and differences in adult behavior and neurobiology compared with mice reared under single-nesting (SN; one dam with her litter) conditions. Here we compared pup mortality; weaning and adult body weights; adult behavior; and gene expression in the hippocampus and frontal cortex between C57BL/6J, DBA/2J and 129x1/SvJ mice reared by using CN (3 dams and their litters sharing a single nest) or SN. Male and female pups of all 3 strains reared in CN cages showed higher body weight at weaning than did SN pups of the same strain, with no significant difference in pup mortality between groups. Adult male offspring reared in CN showed no differences in any behavioral test when compared with SN offspring. Combining CN dams and litters after parturition revealed greater cortical brain-derived neurotropic factor expression in adult male C57BL/6J offspring and cortical glucocorticoid receptor expression in adult male C57BL/6J and 129x1/SvJ offspring as compared with SN offspring of the same strain. Communal rearing can enhance juvenile growth rates but does not change adult behavior in inbred mouse strains, although potential effects on adult neurophysiology are possible.

  14. Ghrelin O-acyltransferase knockout mice show resistance to obesity when fed high-sucrose diet.

    PubMed

    Kouno, Tetsuya; Akiyama, Nobuteru; Ito, Takahito; Okuda, Tomohiko; Nanchi, Isamu; Notoya, Mitsuru; Oka, Shogo; Yukioka, Hideo

    2016-02-01

    Ghrelin is an appetite-stimulating hormone secreted from stomach. Since the discovery that acylation of the serine-3 residue by ghrelin O-acyltransferase (GOAT) is essential for exerting its functions, GOAT has been regarded as an therapeutic target for attenuating appetite, and thus for the treatment of obesity and diabetes. However, contrary to the expectations, GOAT-knockout (KO) mice have not shown meaningful body weight reduction, under high-fat diet. Here, in this study, we sought to determine whether GOAT has a role in body weight regulation and glucose metabolism with a focus on dietary sucrose, because macronutrient composition of diet is important for appetite regulation. We found that peripherally administered acylated-ghrelin, but not unacylated one, stimulated sucrose consumption in a two-bottle-drinking test. The role of acylated-ghrelin in sucrose preference was further supported by the finding that GOAT KO mice consumed less sucrose solution compared with WT littermates. Then, we investigated the effect of dietary composition of sucrose on food intake and body weight in GOAT KO and WT mice. As a result, when fed on high-fat diet, food intake and body weight were similar between GOAT KO and WT mice. However, when fed on high-fat, high-sucrose diet, GOAT KO mice showed significantly reduced food intake and marked resistance to obesity, leading to amelioration of glucose metabolism. These results suggest that blockade of acylated-ghrelin production offers therapeutic potential for obesity and metabolic disorders caused by overeating of palatable food.

  15. Hepatic isometallothioneins in mice: induction in adults and postnatal ontogeny.

    PubMed

    Kershaw, W C; Lehman-McKeeman, L D; Klaassen, C D

    1990-06-15

    The purpose of this study was to quantitate hepatic metallothionein-I (MT-I) and metallothionein-II (MT-II) in adult mice pretreated with various dosages of selected inorganic and organic compounds and in nonchemically treated neonatal mice. Male CF-1 mice received Zn (0.38-6.0 mmol/kg, sc), Cd (5-80 mumol/kg, sc), dexamethasone (10-1000 mumol/kg, sc), or ethanol (60-180 mmol/kg, po). Liver cytosol was prepared 24 hr after the administration of each compound. In another experiment, liver cytosols were prepared from male and female neonates 1 to 35 days after parturition. MT-I and MT-II in liver cytosols were isolated by high-performance anion-exchange chromatography and quantitated by atomic absorption spectrometry. Hepatic MT-I and MT-II concentrations in adult controls were 5.1 +/- 1.3 and 3.7 +/- 1.0 micrograms/g liver, respectively. All compounds increased hepatic MT levels in a dose-dependent manner over a narrow range of dosages. The lowest dosages of Zn, Cd, dexamethasone, and ethanol that produced a significant increase in total MT content (MT-I plus MT-II) were 0.38, 0.005, 0.3, and 90 mmol/kg, respectively. Maximal induction of total MT following the highest dosages of Zn, Cd, ethanol, and dexamethasone was 58, 34, 24, and 13 times the control value (8.8 +/- 2.4 micrograms total MT/g liver), respectively. The relationship between dose and hepatic MT content was linear following ethanol administration and log-linear following Zn, Cd, and dexamethasone administration. The ratio of MT-I/MT-II was approximately 2.4 following all dosages of metals. Following low and high dosages of organic compounds, the ratio of MT-I/MT-II was approximately 1.0 and 1.5, respectively. Total MT concentration in livers of 1- to 14-day-old mice was approximately 40 times that observed in adult liver (5.5 +/- 1.6 micrograms total MT/g liver) and returned toward adult levels 21 days after parturition. The ratio of MT-I/MT-II was approximately 1.8 during Postpartum Days 1 through 14

  16. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice.

    PubMed

    Ali, Amira A H; Schwarz-Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-06-01

    Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.

  17. NOGO-66 receptor deficient mice show slow acquisition of spatial memory task performance.

    PubMed

    van Gaalen, Marcel M; Relo, Ana L; Mueller, Bernhard K; Gross, Gerhard; Mezler, Mario

    2012-02-21

    The Nogo-66 receptor (NgR1) is part of a co-receptor complex on neurons that transmits a signal for inhibition of neurite outgrowth. In addition, NgR1 function has also been related to other disorders such as schizophrenia and Alzheimer's disease. Here, we studied the effect of life-long deletion of NgR1 (ngr(-/-)) in tests for cognition and positive symptoms of schizophrenia. In the water maze, ngr(-/-) mice learned to locate the hidden platform as well as wild type mice, although with slower acquisition. Deletion of NgR1 did not affect amphetamine- or phencyclidine (PCP)-induced hyperactivity, two models of positive symptoms of schizophrenia. Taken together, ngr(-/-) animals show slower acquisition of a spatial learning and memory task.

  18. Mice lacking Gad2 show altered behavioral effects of ethanol, flurazepam and gabaxadol

    PubMed Central

    Blednov, Yuri A.; Walker, Danielle L.; Iyer, Sangeetha V.; Homanics, Gregg; Harris, Adron R.

    2011-01-01

    γ-Aminobutyric acid (GABA) is synthesized in brain by two isoforms of glutamic acid decarboxylase (Gad), Gad1 and Gad2. Gad1 provides most of the GABA in brain, but Gad2 can be rapidly activated in times of high GABA demand. Mice lacking Gad2 are viable whereas deletion of Gad1 is lethal. We produced null mutant mice for Gad2 on three different genetic backgrounds: predominantly C57BL/6J and one or two generations of backcrossing to 129S1/SvimJ (129N1, 129N2).We used these mice to determine if actions of alcohol are regulated by synthesis of GABA from this isoform. We also studied behavioral responses to a benzodiazepine (flurazepam) and a GABAA receptor agonist (gabaxadol). Deletion of Gad2 increased ethanol palatability and intake and slightly reduced the severity of ethanol-induced withdrawal, but these effects depended strongly on genetic background. Mutant mice on the 129N2 background showed the above three ethanol behavioral phenotypes, but the C57BL/6J inbred background did not show any of these phenotypes. Effects on ethanol consumption also depended on the test as the mutation did not alter consumption in limited access models. Deletion of Gad2 reduced the effect of flurazepam on motor incoordination and increased the effect of extrasynaptic GABAA receptor agonist gabaxadol without changing the duration of loss of righting reflex produced by these drugs. These results are consistent with earlier proposals that deletion of Gad2 (on 129N2 background) reduces synaptic GABA but also suggest changes in extrasynaptic receptor function. PMID:20002022

  19. Social experience modulates ocular dominance plasticity differentially in adult male and female mice.

    PubMed

    Balog, Jenny; Matthies, Ulrike; Naumann, Lisa; Voget, Mareike; Winter, Christine; Lehmann, Konrad

    2014-12-01

    Environmental factors have long been known to regulate brain plasticity. We investigated the potential influence of social experience on ocular dominance plasticity. Fully adult female or male mice were monocularly deprived for four days and kept a) either alone or in pairs of the same sex and b) either in a small cage or a large, featureless arena. While mice kept alone did not show ocular dominance plasticity, no matter whether in a cage or in an arena, paired female mice in both environmental conditions displayed a shift of ocular dominance towards the open eye. Paired male mice, in contrast, showed no plasticity in the cage, but a very strong ocular dominance shift in the arena. This effect was not due to increased locomotion, since the covered distance was similar in single and paired male mice in the arena, and furnishing cages with a running wheel did not enable ocular dominance plasticity in cage-housed mice. Confirming recent results in rats, the plasticity-enhancing effect of the social environment was shown to be mediated by serotonin. Our results demonstrate that social experience has a strong effect on cortical plasticity that is sex-dependent. This has potential consequences both for animal research and for human education and rehabilitation.

  20. Environmental factors during early developmental period influence psychobehavioral abnormalities in adult PACAP-deficient mice.

    PubMed

    Ishihama, Toshihiro; Ago, Yukio; Shintani, Norihito; Hashimoto, Hitoshi; Baba, Akemichi; Takuma, Kazuhiro; Matsuda, Toshio

    2010-06-19

    Mice lacking the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) (PACAP(-/-)) display behavioral abnormalities, and genetic variants of the genes encoding PACAP are associated with schizophrenia. Clinical studies show that environmental factors, besides genetic factors, play a key role in etiology of many psychiatric disorders. This study examined the effects of environmental factors such as short-term social isolation and an enriched environment on behavioral abnormalities of PACAP(-/-) mice. Rearing in isolation for 2-weeks from 4-weeks old induced hyperlocomotion and aggressive behaviors in the PACAP(-/-) mice without affecting the behavioral performance of the wild-type controls. Adult PACAP(-/-) mice showed not only hyperactivity, jumping behavior, and depression-like behavior, but also decreased social interaction. These abnormal behaviors were improved by rearing for 4-weeks in an early enriched environment (from 4-weeks old), although the deficits of prepulse inhibition (PPI) were not influenced by the enriched condition. In contrast, rearing for 4-weeks in late enriched environment (from 8-weeks old) did not affect the hyperactivity and jumping behaviors in the PACAP(-/-) mice. These results suggest that abnormal behaviors except PPI deficits in PACAP(-/-) mice depend on the environmental factors during the early stages of development.

  1. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    PubMed

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  2. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    PubMed

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders.

  3. Dengue virus 3 clinical isolates show different patterns of virulence in experimental mice infection.

    PubMed

    Ferreira, Gustavo P; Figueiredo, Leandra B; Coelho, Luiz F L; S, Policarpo A; Cecilio, Alzira B; Ferreira, Paulo C P; Bonjardim, Cláudio A; Arantes, Rosa M E; Campos, Marco A; Kroon, Erna G

    2010-07-01

    Dengue virus (DENV) may cause symptomatic infection with mild, undifferentiated febrile illness called classical dengue fever (DF) or a more severe disease, potentially fatal, known as dengue hemorrhagic fever (DHF) or dengue shock syndrome. The pathogenesis of DHF is based on the virulence of the infecting DENV and depends on the infecting serotypes and genotypes; it is also based on the immunopathogenesis that is mediated by host immune responses, including dengue virus-cross-reactive antibodies that augment the severity of infections. Involvement of central nervous system (CNS) is extensively described. The present study describes the virulence of DENV-3 isolates in a mouse model by intracranial (i.c.) inoculation with genotypes I and III. Our data suggest that, in this experimental model, DENV-3 genotype I may have the propensity to cause neurological disease in mice, whereas the genotype III is associated with asymptomatic infection in mice. Additionally, the symptomatic mice show a decrease of white blood cell count, infectious DENV in the brains and alterations in levels of IFN-gamma, IL-6 and MCP-1. The results confirm the mouse model as a way to study the biology of DENV-3 isolates and to improve the knowledge about the neurovirulence of the different genotypes of DENV.

  4. A Safe and Stable Neonatal Vaccine Targeting GAPDH Confers Protection against Group B Streptococcus Infections in Adult Susceptible Mice

    PubMed Central

    Alves, Joana; Madureira, Pedro; Baltazar, Maria Teresa; Barros, Leandro; Oliveira, Liliana; Dinis-Oliveira, Ricardo Jorge; Andrade, Elva Bonifácio; Ribeiro, Adília; Vieira, Luís Mira; Trieu-Cuot, Patrick; Duarte, José Alberto; Carvalho, Félix; Ferreira, Paula

    2015-01-01

    Group B Streptococcus (GBS), a commensal organism, can turn into a life-threatening pathogen in neonates and elderly, or in adults with severe underlying diseases such as diabetes. We developed a vaccine targeting the GBS glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme detected at the bacterial surface, which was proven to be effective in a neonatal mouse model of infection. Since this bacterium has emerged as an important pathogen in non-pregnant adults, here we investigated whether this vaccine also confers protection in an adult susceptible and in a diabetic mouse model of infection. For immunoprotection studies, sham or immunized adult mice were infected with GBS serotype Ia and V strains, the two most prevalent serotypes isolated in adults. Sham and vaccinated mice were also rendered diabetic and infected with a serotype V GBS strain. For toxicological (pre-clinical) studies, adult mice were vaccinated three times, with three concentrations of recombinant GAPDH adjuvanted with Allydrogel, and the toxicity parameters were evaluated twenty-four hours after the last immunization. For the stability tests, the vaccine formulations were maintained at 4°C for 6 and 12 months prior immunization. The results showed that all tested doses of the vaccine, including the stability study formulations, were immunogenic and that the vaccine was innocuous. The organs (brain, blood, heart, and liver) of vaccinated susceptible or diabetic adult mice were significantly less colonized compared to those of control mice. Altogether, these results demonstrate that the GAPDH-based vaccine is safe and stable and protects susceptible and diabetic adult mice against GBS infections. It is therefore a promising candidate as a global vaccine to prevent GBS-induced neonatal and adult diseases. PMID:26673420

  5. A Safe and Stable Neonatal Vaccine Targeting GAPDH Confers Protection against Group B Streptococcus Infections in Adult Susceptible Mice.

    PubMed

    Alves, Joana; Madureira, Pedro; Baltazar, Maria Teresa; Barros, Leandro; Oliveira, Liliana; Dinis-Oliveira, Ricardo Jorge; Andrade, Elva Bonifácio; Ribeiro, Adília; Vieira, Luís Mira; Trieu-Cuot, Patrick; Duarte, José Alberto; Carvalho, Félix; Ferreira, Paula

    2015-01-01

    Group B Streptococcus (GBS), a commensal organism, can turn into a life-threatening pathogen in neonates and elderly, or in adults with severe underlying diseases such as diabetes. We developed a vaccine targeting the GBS glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme detected at the bacterial surface, which was proven to be effective in a neonatal mouse model of infection. Since this bacterium has emerged as an important pathogen in non-pregnant adults, here we investigated whether this vaccine also confers protection in an adult susceptible and in a diabetic mouse model of infection. For immunoprotection studies, sham or immunized adult mice were infected with GBS serotype Ia and V strains, the two most prevalent serotypes isolated in adults. Sham and vaccinated mice were also rendered diabetic and infected with a serotype V GBS strain. For toxicological (pre-clinical) studies, adult mice were vaccinated three times, with three concentrations of recombinant GAPDH adjuvanted with Allydrogel, and the toxicity parameters were evaluated twenty-four hours after the last immunization. For the stability tests, the vaccine formulations were maintained at 4°C for 6 and 12 months prior immunization. The results showed that all tested doses of the vaccine, including the stability study formulations, were immunogenic and that the vaccine was innocuous. The organs (brain, blood, heart, and liver) of vaccinated susceptible or diabetic adult mice were significantly less colonized compared to those of control mice. Altogether, these results demonstrate that the GAPDH-based vaccine is safe and stable and protects susceptible and diabetic adult mice against GBS infections. It is therefore a promising candidate as a global vaccine to prevent GBS-induced neonatal and adult diseases. PMID:26673420

  6. Effects of acute social stress on the conditioned place preference induced by MDMA in adolescent and adult mice.

    PubMed

    García-Pardo, Maria P; Rodríguez-Arias, Marta; Maldonado, Concepcion; Manzanedo, Carmen; Miñarro, Jose; Aguilar, Maria A

    2014-09-01

    Exposure to social defeat stress increases the rewarding effects of psychostimulants in animal models, but its effect on 3,4-methylenedioxymethylamphetamine (MDMA) reward has received little attention. In the present study, we evaluated the influence of social defeat on the rewarding effects of MDMA in adolescent [postnatal day (PND) 29-40] and adult (PND 50-61) male mice using the conditioned place preference paradigm. Experimental mice were exposed to social defeat in an agonistic encounter before each session of conditioning with 1.25 or 10 mg/kg of MDMA. The effects of social defeat on corticosterone levels and the motor or the anxiogenic effects of MDMA were also evaluated. Mice exposed to social defeat during adulthood did not show conditioned place preference after conditioning with either dose of MDMA. Conversely, social defeat did not affect the anxiogenic and motor effects of MDMA. Adult mice exposed to social defeat showed higher levels of corticosterone than their controls and adolescent mice. Social stress did not induce behavioural effects in adolescent mice. Our results show that stress induced by social defeat decreases the sensitivity of adult mice to the rewarding effects of MDMA.

  7. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury.

    PubMed

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T; Sinske, Daniela; Knöll, Bernd

    2016-08-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce 'effector' RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  8. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury

    PubMed Central

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T.; Sinske, Daniela

    2016-01-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  9. Environmental enrichment is associated with rapid volumetric brain changes in adult mice.

    PubMed

    Scholz, Jan; Allemang-Grand, Rylan; Dazai, Jun; Lerch, Jason P

    2015-04-01

    Environmental enrichment is a model of increased structural brain plasticity. Previous histological observations have shown molecular and cellular changes in a few pre-determined areas of the rodent brain. However, little is known about the time course of enrichment-induced brain changes and how they distribute across the whole brain. Here we expose adult mice to three weeks of environmental enrichment using a novel re-configurable maze design. In-vivo MRI shows volumetric brain changes in brain areas related to spatial memory, navigation, and sensorimotor experience, such as the hippocampal formation and the sensorimotor cortex. Evidence from a second cohort of mice indicates that these plastic changes might occur as early as 24h after exposure. This suggests that novel experiences are powerful modulators of plasticity even in the adult brain. Understanding and harnessing the underlying molecular mechanisms could advance future treatments of neurological disease.

  10. Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice.

    PubMed

    Sanchez Vega, Michelle C; Chong, Suyinn; Burne, Thomas H J

    2013-09-01

    Alcohol consumption during pregnancy has deleterious effects on the developing foetus ranging from subtle physical deficits to severe behavioural abnormalities and is encompassed under a broad umbrella term, foetal alcohol spectrum disorders (FASD). High levels of exposure show distinct effects, whereas the consequences of moderate exposures have been less well studied. The aim of this study was to examine the effects of a moderate dose ethanol exposure using an ad libitum drinking procedure during the first eight days of gestation in mice on the behavioural phenotype of adult offspring. Adult female C57Bl/6J mice were mated and exposed to either 10% (v/v) ethanol or water for the first 8 days of gestation (GD 0-8), and then offered water for the rest of gestation. Early developmental milestone achievement was assessed in offspring at postnatal days (P) 7, 14 and 21. Adult offspring underwent a comprehensive battery of behavioural tests to examine a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception, as well as spatial memory in a water maze. Ethanol-exposed mice had similar postnatal developmental trajectories to water-exposed mice. However, the ethanol-exposed mice showed increased hyperlocomotion at P 14, 21 and 70 (p<0.05). Increased exploration and heightened motivation were also observed in adult mice. Furthermore, ethanol-exposed mice showed a significant improvement in memory in the water maze. The main findings were that mice had persistent and long lasting alterations in behaviour, including hyperactivity and enhanced spatial memory. These data suggest that even moderate dose ethanol exposure in early gestation has long term consequences on brain function and behaviour in mice. PMID:23756143

  11. Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice.

    PubMed

    Sanchez Vega, Michelle C; Chong, Suyinn; Burne, Thomas H J

    2013-09-01

    Alcohol consumption during pregnancy has deleterious effects on the developing foetus ranging from subtle physical deficits to severe behavioural abnormalities and is encompassed under a broad umbrella term, foetal alcohol spectrum disorders (FASD). High levels of exposure show distinct effects, whereas the consequences of moderate exposures have been less well studied. The aim of this study was to examine the effects of a moderate dose ethanol exposure using an ad libitum drinking procedure during the first eight days of gestation in mice on the behavioural phenotype of adult offspring. Adult female C57Bl/6J mice were mated and exposed to either 10% (v/v) ethanol or water for the first 8 days of gestation (GD 0-8), and then offered water for the rest of gestation. Early developmental milestone achievement was assessed in offspring at postnatal days (P) 7, 14 and 21. Adult offspring underwent a comprehensive battery of behavioural tests to examine a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception, as well as spatial memory in a water maze. Ethanol-exposed mice had similar postnatal developmental trajectories to water-exposed mice. However, the ethanol-exposed mice showed increased hyperlocomotion at P 14, 21 and 70 (p<0.05). Increased exploration and heightened motivation were also observed in adult mice. Furthermore, ethanol-exposed mice showed a significant improvement in memory in the water maze. The main findings were that mice had persistent and long lasting alterations in behaviour, including hyperactivity and enhanced spatial memory. These data suggest that even moderate dose ethanol exposure in early gestation has long term consequences on brain function and behaviour in mice.

  12. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells.

  13. Impaired spatial learning and reduced adult hippocampal neurogenesis in histamine H1-receptor knockout mice.

    PubMed

    Ambrée, Oliver; Buschert, Jens; Zhang, Weiqi; Arolt, Volker; Dere, Ekrem; Zlomuzica, Armin

    2014-08-01

    The histamine H1-receptor (H1R) is expressed in wide parts of the brain including the hippocampus, which is involved in spatial learning and memory. Previous studies in H1R knockout (H1R-KO) mice revealed deficits in a variety of learning and memory tasks. It was also proposed that H1R activation is crucial for neuronal differentiation of neural progenitors. Therefore, the aim of this study was to investigate negatively reinforced spatial learning in the water-maze and to assess survival and neuronal differentiation of newborn cells in the adult hippocampus of H1R-KO mice. H1R-KO and wild-type (WT) mice were subjected to the following sequence of tests: (a) cued version, (b) place learning, (c) spatial probe, (d) long-term retention and (e) reversal learning. Furthermore hippocampal neurogenesis in terms of survival and differentiation was assessed in H1R-KO and WT mice. H1R-KO mice showed normal cued learning, but impaired place and reversal learning as well as impaired long-term retention performance. In addition, a marked reduction of newborn neurons in the hippocampus but no changes in differentiation of neural progenitors into neuronal and glial lineage was found in H1R-KO mice. Our data suggest that H1R deficiency in mice is associated with pronounced deficits in hippocampus-dependent spatial learning and memory. Furthermore, we herein provide first evidence that H1R deficiency in the mouse leads to a reduced neurogenesis. However, the exact mechanisms for the reduced number of cells in H1R-KO mice remain elusive and might be due to a reduced survival of newborn hippocampal neurons and/or a reduction in cell proliferation.

  14. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    PubMed

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life.

  15. Evaluation of Oogenesis Aspects in Neonatal and Adult Mice after Toloaldoxime Treatment

    PubMed Central

    Fazeltabar Malekshah, Mohammad; Sedighi, Mahsa; Parivar, Kazem; Mohseni Kouchesfahani, Homa; Bigdeli, Mohamadali

    2015-01-01

    Objective Oximes are important materials in organic chemistry. Synparamethyl benzal- dehyde oxime (toloaldoxime) is structurally similar to other oximes, hence we have studied its effects on the neonatal and adult female Balb/c mice reproductive systems in order to provide a platform for future studies on the production of female contraceptive drugs. Materials and Methods In experimental study, we studied the effects of toloaldoxime on ovary growth and gonadal hormones of neonatal and adult Balb/c mice. A regression model for prediction was presented. Results The effects of toloaldoxime on neonatal mice were more than adult mice. The greatest effect was on the number of Graafian follicles (59.6% in adult mice and 31.83% in neonatal mice). The least effect was on ovary weight, and blood serum lev- els of follicle stimulating hormone (FSH) and luteinizing hormone (LH). Conclusion According to the data obtained, toloaldoxime can be considered an anti- pregnancy substance. PMID:26464830

  16. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear

    PubMed Central

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-01-01

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant D-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifest by freezing during the presentation of a tone 48 hours after it had been paired with a shock. During the 30 minutes following tone presentation they showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders. PMID:25841792

  17. SOD1 aggregation in ALS mice shows simplistic test tube behavior

    PubMed Central

    Lang, Lisa; Zetterström, Per; Brännström, Thomas; Marklund, Stefan L.; Danielsson, Jens; Oliveberg, Mikael

    2015-01-01

    A longstanding challenge in studies of neurodegenerative disease has been that the pathologic protein aggregates in live tissue are not amenable to structural and kinetic analysis by conventional methods. The situation is put in focus by the current progress in demarcating protein aggregation in vitro, exposing new mechanistic details that are now calling for quantitative in vivo comparison. In this study, we bridge this gap by presenting a direct comparison of the aggregation kinetics of the ALS-associated protein superoxide dismutase 1 (SOD1) in vitro and in transgenic mice. The results based on tissue sampling by quantitative antibody assays show that the SOD1 fibrillation kinetics in vitro mirror with remarkable accuracy the spinal cord aggregate buildup and disease progression in transgenic mice. This similarity between in vitro and in vivo data suggests that, despite the complexity of live tissue, SOD1 aggregation follows robust and simplistic rules, providing new mechanistic insights into the ALS pathology and organism-level manifestation of protein aggregation phenomena in general. PMID:26221023

  18. Acute social defeat stress increases the conditioned rewarding effects of cocaine in adult but not in adolescent mice.

    PubMed

    Montagud-Romero, S; Aguilar, M A; Maldonado, C; Manzanedo, C; Miñarro, J; Rodríguez-Arias, M

    2015-08-01

    Stressful experiences modify activity in areas of the brain involved in the rewarding effects of psychostimulants. In the present study we evaluated the influence of acute social defeat (ASD) on the conditioned rewarding effects of cocaine in adolescent (PND 29-32) and adult (PND 50-53) male mice in the conditioned place preference (CPP) paradigm. Experimental mice were exposed to social defeat in an agonistic encounter before each session of conditioning with 1mg/kg or 25mg/kg of cocaine. The effects of social defeat on corticosterone levels were also evaluated. Adult mice exposed to ASD showed an increase in the conditioned reinforcing effects of cocaine. Only these mice developed cocaine-induced CPP with the subthreshold dose of cocaine, and they needed a higher number of extinction sessions for the 25mg/kg cocaine-induced CPP to be extinguished. In adolescent mice, on the other hand, ASD reduced the conditioned reinforcing effects of cocaine, since CPP was not produced with the lower dose of cocaine and was extinguished faster when they were conditioned with 25mg/kg. Adult mice exposed to social defeat displayed higher levels of corticosterone than their controls and adolescent mice. Our results confirm that the effect of social defeat stress on the acquisition and reinstatement of the CPP induced by cocaine varies depending on the age at which this stress is experienced.

  19. Early Life Inorganic Lead Exposure Induces Testicular Teratoma and Renal and Urinary Bladder Preneoplasia in Adult Metallothionein-Knockout Mice but Not in Wild Type Mice

    PubMed Central

    Tokar, Erik J.; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2010-01-01

    Inorganic lead compounds are carcinogenic in animals and have carcinogenic potential in humans. In mice, lead (Pb) is a transplacental carcinogen in the kidney. Metallothionein (MT) is a metal-binding protein that can reduce the toxicity of various metals, including Pb, either by direct sequestration or as an antioxidant for metals that generate reactive oxygen species. Although MT appears to reduce Pb carcinogenicity in adult mice it is unknown how MT deficiency may affect Pb carcinogenicity from early life exposure. Thus, groups (n = 10) of pregnant MT-I/II double knockout (MT-null) or 129/SVJ MT wild type (WT) mice were exposed to Pb acetate in the drinking water (0, 2000, 4000 ppm Pb) from gestation day 8 through birth and during lactation. Maternal drinking water Pb exposure continued to weaning at 4 weeks of age and the male offspring were then directly exposed to Pb until 8 weeks of age and observed until 2 years old. High dose (4000 ppm) but not low dose (2000 ppm) Pb reduced survival in the latter part of the study in both MT-null and WT mice. In MT-null mice, but not WT, early life Pb exposure caused a dose-related increase in testicular teratomas, to a maximum incidence of 28% compared to control (4%). Pb-induced renal cystic hyperplasia, considered preneoplastic, were a prominent occurrence in MT-null mice but nearly absent in WT mice. Pb dose-related increases in renal cystic hyperplasia occurred in adult MT-null with early life exposure with maximal incidence of 52%. Pb-treated MT-null mice also showed dose-related increases in urinary bladder hyperplasia with occasional papilloma that were absent in WT mice. Thus, MT deficiency made mice more sensitive to early life Pb exposure with regard to testes tumors, and renal and urinary bladder preneoplastic lesions. PMID:20600549

  20. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice.

    PubMed

    Wang, Hong; Warner-Schmidt, Jennifer; Varela, Santiago; Enikolopov, Grigori; Greengard, Paul; Flajolet, Marc

    2015-08-01

    Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell-cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors.

  1. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice

    PubMed Central

    Wang, Hong; Warner-Schmidt, Jennifer; Varela, Santiago; Enikolopov, Grigori; Greengard, Paul; Flajolet, Marc

    2015-01-01

    Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell–cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors. PMID:26195764

  2. Chronic and progressive Parkinson's disease MPTP model in adult and aged mice.

    PubMed

    Muñoz-Manchado, Ana B; Villadiego, Javier; Romo-Madero, Sonia; Suárez-Luna, Nela; Bermejo-Navas, Alfonso; Rodríguez-Gómez, José A; Garrido-Gil, Pablo; Labandeira-García, José L; Echevarría, Miriam; López-Barneo, José; Toledo-Aral, Juan J

    2016-01-01

    Despite the different animal models of Parkinson's disease developed during the last years, they still present limitations modelling the slow and progressive process of neurodegeneration. Here, we undertook a histological, neurochemical and behavioural analysis of a new chronic parkinsonian mouse model generated by the subcutaneous administration of low doses of MPTP (20 mg/kg, 3 times per week) for 3 months, using both young adult and aged mice. The MPTP-induced nigrostriatal neurodegeneration was progressive and was accompanied by a decrease in striatal dopamine levels and motor impairment. We also demonstrated the characteristic neuroinflammatory changes (microglial activation and astrogliosis) associated with the neurodegenerative process. Aged animals showed both a faster time course of neurodegeneration and an altered neuroinflammatory response. The long-term systemic application of low MPTP doses did not induce any increase in mortality in either young adult or aged mice and better resembles the slow evolution of the neurodegenerative process. This treatment could be useful to model different stages of Parkinson's disease, providing a better understanding of the pathophysiology of the disease and facilitating the testing of both protective and restorative treatments. Here, we show a new chronic and progressive parkinsonian mouse model, in young and aged mice. This model produces a stable degeneration of the dopaminergic nigrostriatal pathway, continuous neuroinflammatory reaction and motor deficits. Aged animals showed a faster neurodegeneration and an altered neuroinflammatory response. This treatment could be useful to model different stages of PD and to test both protective and restorative therapeutic approaches.

  3. Steroidogenic factor 1 differentially regulates fetal and adult leydig cell development in male mice.

    PubMed

    Karpova, Tatiana; Ravichandiran, Kumarasamy; Insisienmay, Lovella; Rice, Daren; Agbor, Valentine; Heckert, Leslie L

    2015-10-01

    The nuclear receptor steroidogenic factor 1 (SF-1, AD4BP, NR5A1) is a key regulator of the endocrine axes and is essential for adrenal and gonad development. Partial rescue of Nr5a1(-/-) mice with an SF-1-expressing transgene caused a hypomorphic phenotype that revealed its roles in Leydig cell development. In contrast to controls, all male rescue mice (Nr5a1(-/-);tg(+/0)) showed varying signs of androgen deficiency, including spermatogenic arrest, cryptorchidism, and poor virilization. Expression of various Leydig cell markers measured by immunohistochemistry, Western blot analysis, and RT-PCR indicated fetal and adult Leydig cell development were differentially impaired. Whereas fetal Leydig cell development was delayed in Nr5a1(-/-);tg(+/0) embryos, it recovered to control levels by birth. In contrast, Sult1e1, Vcam1, and Hsd3b6 transcript levels in adult rescue testes indicated complete blockage in adult Leydig cell development. In addition, between Postnatal Days 8 and 12, peritubular cells expressing PTCH1, SF-1, and CYP11A1 were observed in control testes but not in rescue testes, indicating SF-1 is needed for either survival or differentiation of adult Leydig cell progenitors. Cultured prepubertal rat peritubular cells also expressed SF-1 and PTCH1, but Cyp11a1 was expressed only after treatment with cAMP and retinoic acid. Together, data show SF-1 is needed for proper development of fetal and adult Leydig cells but with distinct primary functions; in fetal Leydig cells, it regulates differentiation, whereas in adult Leydig cells it regulates progenitor cell formation and/or survival. PMID:26269506

  4. Steroidogenic factor 1 differentially regulates fetal and adult leydig cell development in male mice.

    PubMed

    Karpova, Tatiana; Ravichandiran, Kumarasamy; Insisienmay, Lovella; Rice, Daren; Agbor, Valentine; Heckert, Leslie L

    2015-10-01

    The nuclear receptor steroidogenic factor 1 (SF-1, AD4BP, NR5A1) is a key regulator of the endocrine axes and is essential for adrenal and gonad development. Partial rescue of Nr5a1(-/-) mice with an SF-1-expressing transgene caused a hypomorphic phenotype that revealed its roles in Leydig cell development. In contrast to controls, all male rescue mice (Nr5a1(-/-);tg(+/0)) showed varying signs of androgen deficiency, including spermatogenic arrest, cryptorchidism, and poor virilization. Expression of various Leydig cell markers measured by immunohistochemistry, Western blot analysis, and RT-PCR indicated fetal and adult Leydig cell development were differentially impaired. Whereas fetal Leydig cell development was delayed in Nr5a1(-/-);tg(+/0) embryos, it recovered to control levels by birth. In contrast, Sult1e1, Vcam1, and Hsd3b6 transcript levels in adult rescue testes indicated complete blockage in adult Leydig cell development. In addition, between Postnatal Days 8 and 12, peritubular cells expressing PTCH1, SF-1, and CYP11A1 were observed in control testes but not in rescue testes, indicating SF-1 is needed for either survival or differentiation of adult Leydig cell progenitors. Cultured prepubertal rat peritubular cells also expressed SF-1 and PTCH1, but Cyp11a1 was expressed only after treatment with cAMP and retinoic acid. Together, data show SF-1 is needed for proper development of fetal and adult Leydig cells but with distinct primary functions; in fetal Leydig cells, it regulates differentiation, whereas in adult Leydig cells it regulates progenitor cell formation and/or survival.

  5. Physical Exercise Preserves Adult Visual Plasticity in Mice and Restores it after a Stroke in the Somatosensory Cortex

    PubMed Central

    Kalogeraki, Evgenia; Pielecka-Fortuna, Justyna; Hüppe, Janika M.; Löwel, Siegrid

    2016-01-01

    The primary visual cortex (V1) is widely used to study brain plasticity, which is not only crucial for normal brain function, such as learning and memory, but also for recovery after brain injuries such as stroke. In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in V1 declines with age and is compromised by a lesion in adjacent and distant cortical regions. In contrast, mice raised in an enriched environment (EE), exhibit lifelong OD plasticity and are protected from losing OD plasticity after a stroke-lesion in the somatosensory cortex. Since SC mice with an access to a running wheel (RW) displayed preserved OD plasticity during aging, we investigated whether physical exercise might also provide a plasticity promoting effect after a cortical stroke. To this end, we tested if adult RW-raised mice preserved OD plasticity after stroke and also if short-term running after stroke restored OD plasticity to SC mice. Indeed, unlike mice without a RW, adult RW mice continued to show OD plasticity even after stroke, and a 2 weeks RW experience after stroke already restored lost OD plasticity. Additionally, the experience-enabled increase of the spatial frequency and contrast threshold of the optomotor reflex of the open eye, normally lost after a stroke, was restored in both groups of RW mice. Our data suggest that physical exercise alone can not only preserve visual plasticity into old age, but also restore it after a cortical stroke. PMID:27708575

  6. Infections of neonatal and adult mice with murine CMV HaNa1 strain upon oronasal inoculation: New insights in the pathogenesis of natural primary CMV infections.

    PubMed

    Xiang, Jun; Zhang, Shunchuan; Nauwynck, Hans

    2016-01-01

    In healthy individuals, naturally acquired infections of human cytomegalovirus (HCMV) are generally asymptomatic. Animal models mimicking the natural primary HCMV infections in infants and adults are scarce. Here, neonatal and adult BALB/c mice were inoculated oronasally with a Belgian isolate HaNa1 of murine cytomegalovirus (MCMV). None of the mice showed clinical symptoms. In neonatal mice, a typical systemic infection occurred. In adult mice, viral replication was restricted to the nasal mucosa and submandibular glands. Infectious virus was not detected in trachea, oral mucosa, pharynx, esophagus, small intestines of both neonatal and adult mice at all time points. Nose was demonstrated to be the entry site. Double immunofluorescence staining showed that in nose infected cells were olfactory neurons and sustentacular cells in olfactory epithelium and were macrophages and dendritic cells in nasopharynx-associated lymphoid tissues (NALT). Neonatal and adult mice developed similar antibody response pattern, though former magnitude was lower. In summary, we have established intranasal (without anesthesia) infections of neonatal and adult mice with murine CMV HaNa1 strain, which mimic the range and extent of virus replication during natural primary HCMV infections in healthy infants and adults. These findings might bring new insights in the pathogenesis of natural primary CMV infections. PMID:26474525

  7. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

    PubMed

    Tolson, Kristen P; Gemelli, Terry; Meyer, Donna; Yazdani, Umar; Kozlitina, Julia; Zinn, Andrew R

    2014-07-01

    Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1's physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus. PMID:24773343

  8. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

    PubMed

    Tolson, Kristen P; Gemelli, Terry; Meyer, Donna; Yazdani, Umar; Kozlitina, Julia; Zinn, Andrew R

    2014-07-01

    Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1's physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus.

  9. Antidepressant-like effect of lead in adult mice.

    PubMed

    Mantovani, M; Matteussi, A S; Rodrigues, A L

    1999-12-01

    It has been reported that lead can cause behavioral impairment by inhibiting the N-methyl-D-aspartate (NMDA) receptor complex. MK-801, a noncompetitive NMDA receptor antagonist, exhibits an antidepressant-like action in the forced swimming test. The purpose of the present study was to determine whether subacute lead exposure in adult male Swiss mice weighing 30-35 g causes an antidepressant-like action in a forced swimming test. Mice were injected intraperitoneally (ip) with 10 mg/kg lead acetate or saline daily for 7 consecutive days. Twenty-four hours after the last treatment, the saline and lead-treated mice received an injection of MK-801 (0.01 mg/kg, ip) or saline and were tested in forced swimming and in open-field tests. Immobility time was similarly reduced in the saline-MK-801, Pb-saline and Pb-MK-801 groups compared to the saline-saline group (mean +/- SEM; 197.3 +/- 18.5, 193.5 +/- 15.8, 191.3 +/- 12.3 and 264.0 +/- 14.4 s, respectively; N = 9). These data indicate that lead may exert its effect on the forced swimming test by directly or indirectly inhibiting the NMDA receptor complex. Lead treatment caused no deficit in memory of habituation and did not affect locomotor activity in an open-field (N = 14). However, mice that received MK-801 after lead exhibited a deficit in habituation (22% reduction in rearing responses between session 3 and 1; N = 14) as compared to control (41% reduction in rearing responses; N = 15), further suggesting that lead may have affected the NMDA receptor activity. Forced-swim immobility in a basin in two daily consecutive sessions was also significantly decreased by lead exposure (mean +/- SEM; day 1 = 10.6 +/- 3.2, day 2 = 19.6 +/- 3.6; N = 16) as compared to control (day 1 = 18.4 +/- 3.8, day 2 = 34.0 +/- 3.7; N = 17), whereas the number of crossings was not affected by lead treatment, further indicating a specific antidepressant-like action of lead.

  10. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    PubMed Central

    Ieraci, Alessandro; Mallei, Alessandra; Popoli, Maurizio

    2016-01-01

    Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice. PMID:26881124

  11. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice.

    PubMed

    Ieraci, Alessandro; Mallei, Alessandra; Popoli, Maurizio

    2016-01-01

    Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice. PMID:26881124

  12. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    SciTech Connect

    Wang, Yuehai; Lu, Huixia; Huang, Ziyang; Lin, Huili; Lei, Zhenmin; Tang, Mengxiong; Gao, Fei; Dong, Mei; Li, Rongda; Lin, Ling

    2014-07-18

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • The spleen weights and glomerular areas were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE{sup −/−} mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE{sup −/−}) mice is a classic model of atherosclerosis. We have found that ApoE{sup −/−} mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared with C57B6/L (B6) mice. However, whether ApoE{sup −/−} mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE{sup −/−}, Fas{sup −/−} and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas{sup −/−} mice, a model of systemic lupus erythematosus (SLE), ApoE{sup −/−} mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE{sup −/−} mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE{sup −/−} mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta.

  13. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    PubMed

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings. PMID:26960969

  14. Adolescent earthquake survivors' show increased prefrontal cortex activation to masked earthquake images as adults.

    PubMed

    Du, Xue; Wei, Dongtao; Ganzel, Barbara L; Kim, Pilyoung; Zhang, Qinglin; Qiu, Jiang

    2015-03-01

    The great Sichuan earthquake in China on May 12, 2008 was a traumatic event to many who live near the earthquake area. However, at present, there are few studies that explore the long-term impact of the adolescent trauma exposure on adults' brain function. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the brain activation evoked by masked trauma-related stimuli (earthquake versus neutral images) in 14 adults who lived near the epicenter of the great Sichuan earthquake when they were adolescents (trauma-exposed group) and 14 adults who lived farther from the epicenter of the earthquake when they were adolescents (control group). Compared with the control group, the trauma-exposed group showed significant elevation of activation in the right anterior cingulate cortex (ACC) and the medial prefrontal cortex (MPFC) in response to masked earthquake-related images. In the trauma-exposed group, the right ACC activation was negatively correlated with the frequency of symptoms of post-traumatic stress disorder (PTSD). These findings differ markedly from the long-term effects of trauma exposure in adults. This suggests that trauma exposure during adolescence may have a unique long-term impact on ACC/MPFC function, top-down modulation of trauma-related information, and subsequent symptoms of PTSD.

  15. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus.

    PubMed

    Groves, Natalie J; Bradford, DanaKai; Sullivan, Robert K P; Conn, Kyna-Anne; Aljelaify, Rasha Fahad; McGrath, John J; Burne, Thomas H J

    2016-01-01

    Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD) deficiency in BALB/c mice was associated with (a) adult hippocampal neurogenesis at baseline, b) following 6 weeks of voluntary wheel running and (c) a depressive-like phenotype on the forced swim test (FST), which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX), and incorporation of 5-Bromo-2'-Deoxyuridine (BrdU) within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis. PMID:27043014

  16. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus

    PubMed Central

    Groves, Natalie J.; Bradford, DanaKai; Sullivan, Robert K. P.; Conn, Kyna-Anne; Aljelaify, Rasha Fahad; McGrath, John J.; Burne, Thomas H. J.

    2016-01-01

    Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD) deficiency in BALB/c mice was associated with (a) adult hippocampal neurogenesis at baseline, b) following 6 weeks of voluntary wheel running and (c) a depressive-like phenotype on the forced swim test (FST), which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX), and incorporation of 5-Bromo-2’-Deoxyuridine (BrdU) within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis. PMID:27043014

  17. Fmr1 knockout mice show reduced anxiety and alterations in neurogenesis that are specific to the ventral dentate gyrus.

    PubMed

    Eadie, B D; Zhang, W N; Boehme, F; Gil-Mohapel, J; Kainer, L; Simpson, J M; Christie, B R

    2009-11-01

    Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the selective loss of the expression of the Fmr1 gene. Key symptoms in FXS include intellectual impairment and abnormal anxiety-related behaviors. Fmr1 knockout (KO) mice exhibited reduced anxiety on two behavioral tests as well as a blunted corticosterone response to acute stress. Spatial learning and memory was not impaired when tested with both the classic Morris water and Plus-shaped mazes. Adult hippocampal neurogenesis has been associated with spatial learning and memory and emotions such as anxiety and depression. The process of neurogenesis appears abnormal in young adult Fmr1 KO mice, with significantly fewer bromodeoxyuridine-positive cells surviving for at least 4 weeks in the ventral subregion of the dentate gyrus (DG), a hippocampal subregion more closely associated with emotion than the dorsal DG. Within this smaller pool of surviving cells, we observed a concomitant increase in the proportion of surviving cells that acquire a neuronal phenotype. We did not observe a clear difference in cell proliferation using both endogenous and exogenous markers. This work indicates that loss of Fmr1 expression can alter anxiety-related behaviors in mice as well as produce region-specific alterations in hippocampal adult neurogenesis.

  18. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    PubMed Central

    Ho, New Fei; Han, Siew Ping; Dawe, Gavin S

    2009-01-01

    Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU). Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease. PMID:19500352

  19. Deletion of RBP-J in adult mice leads to the onset of aortic valve degenerative diseases.

    PubMed

    Li, Zhi; Feng, Lei; Wang, Chun-Mei; Zheng, Qi-Jun; Zhao, Bi-Jun; Yi, Wei; Zhang, Jin-Zhou; Wang, Yue-Min; Guo, Hai-Tao; Yi, Ding-Hua; Han, Hua

    2012-04-01

    Transcription factor RBP-J-mediated Notch signaling has been implicated in several inherited cardiovascular diseases including aortic valve diseases (AVD). But whether Notch signal plays a role in AVD in adults has been unclear. This study aims to test whether the deletion of RBP-J in adult mice would lead to AVD and to investigate the underlying mechanisms. Cre-LoxP-mediated gene deletion was employed to disrupt Notch signal in adult mice. Immunofluorescence and electron microscope observations showed that deletion of RBP-J in adult mice led to early morphological changes of AVD. The size of aortic valve was enlarged. The endothelial homeostasis was perturbed, probably due to the up-regulation of VEGFR2. The endothelial cells exhibited increased proliferation and loose endothelial junctions. The valvular mesenchyme displayed significant fibrosis, consistent with the up-regulation of TGF-β1 and activation of endothelial-mesenchymal transition. We observed melanin-producing cells in aortic valves. The number of melanin-producing cells increased significantly, and their location changed from the mesenchyme to subendothelial layer of valve cusps in RBP-J deficient mice. These results suggest that RBP-J-mediated Notch signaling in aortic valves may be critically involved in valve homeostasis and valve diseases as well. These findings will be helpful for the understanding of the molecular mechanisms of AVD in adults.

  20. Ultrasonic Vocalizations of Male Mice Differ among Species and Females Show Assortative Preferences for Male Calls

    PubMed Central

    Musolf, Kerstin; Meindl, Stefanie; Larsen, Angela L.; Kalcounis-Rueppell, Matina C.; Penn, Dustin J.

    2015-01-01

    Male house mice (Mus musculus) emit ultrasonic vocalizations (USVs) during courtship, which attract females, and we aimed to test whether females use these vocalizations for species or subspecies recognition of potential mates. We recorded courtship USVs of males from different Mus species, Mus musculus subspecies, and populations (F1 offspring of wild-caught Mus musculus musculus, Mus musculus domesticus (and F1 hybrid crosses), and Mus spicilegus), and we conducted playback experiments to measure female preferences for male USVs. Male vocalizations contained at least seven distinct syllable types, whose frequency of occurrence varied among species, subspecies, and populations. Detailed analyses of multiple common syllable types indicated that Mus musculus and Mus spicilegus could be discriminated based on spectral and temporal characteristics of their vocalizations, and populations of Mus musculus were also distinctive regardless of the classification model used. Females were able to discriminate USVs from different species, and showed assortative preferences for conspecific males. We found no evidence that females discriminate USVs of males from a different subspecies or separate populations of the same species, even though our spectral analyses identified acoustic features that differ between species, subspecies, and populations of the same species. Our results provide the first comparison of USVs between Mus species or between Mus musculus subspecies, and the first evidence that male USVs potentially facilitate species recognition. PMID:26309246

  1. Impaired adult myelination in the prefrontal cortex of socially isolated mice

    PubMed Central

    Liu, Jia; Dietz, Karen; DeLoyht, Jacqueline M; Pedre, Xiomara; Kelkar, Dipti; Kaur, Jasbir; Vialou, Vincent; Lobo, Mary Kay; Dietz, David M; Nestler, Eric J; Dupree, Jeffrey; Casaccia, Patrizia

    2013-01-01

    Protracted social isolation of adult mice induced behavioral, transcriptional and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC) and impaired adult myelination. Social re-integration was sufficient to normalize behavioral and transcriptional changes. Short periods of isolation affected chromatin and myelin, but did not induce behavioral changes. Thus, myelinating oligodendrocytes in the adult PFC respond to social interaction with chromatin changes, suggesting that myelination acts as a form of adult plasticity. PMID:23143512

  2. Abnormal Motor Phenotype at Adult Stages in Mice Lacking Type 2 Deiodinase

    PubMed Central

    Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Background Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3′-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. Aim This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Results Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. Conclusions The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders. PMID:25083788

  3. Prenatal exposure to permethrin influences vascular development of fetal brain and adult behavior in mice offspring.

    PubMed

    Imanishi, Satoshi; Okura, Masahiro; Zaha, Hiroko; Yamamoto, Toshifumi; Akanuma, Hiromi; Nagano, Reiko; Shiraishi, Hiroaki; Fujimaki, Hidekazu; Sone, Hideko

    2013-11-01

    Pyrethroids are one of the most widely used classes of insecticides and show neurotoxic effects that induce oxidative stress in the neonatal rat brain. However, little is still known about effects of prenatal exposure to permethrin on vascular development in fetal brain, central nervous system development, and adult offspring behaviors. In this study, the effects of prenatal exposure to permethrin on the development of cerebral arteries in fetal brains, neurotransmitter in neonatal brains, and locomotor activities in offspring mice were investigated. Permethrin (0, 2, 10, 50, and 75 mg/kg) was orally administered to pregnant females once on gestation day 10.5. The brains of permethrin-treated fetuses showed altered vascular formation involving shortened lengths of vessels, an increased number of small branches, and, in some cases, insufficient fusion of the anterior communicating arteries in the area of circle of Willis. The prenatal exposure to permethrin altered neocortical and hippocampus thickness in the mid brain and significantly increased norepinephrine and dopamine levels at postnatal day 7 mice. For spontaneous behavior, the standing ability test using a viewing jar and open-field tests showed significant decrease of the standing ability and locomotor activity in male mice at 8 or 12 weeks of age, respectively. The results suggest that prenatal exposure to permethrin may affect insufficient development of the brain through alterations of vascular development.

  4. Epidermal growth factor receptor plays a role in the regulation of liver and plasma lipid levels in adult male mice.

    PubMed

    Scheving, Lawrence A; Zhang, Xiuqi; Garcia, Oscar A; Wang, Rebecca F; Stevenson, Mary C; Threadgill, David W; Russell, William E

    2014-03-01

    Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies.

  5. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    PubMed

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P < 0.05) and endurance capacity (-47%; P < 0.05), which did not persist after 8 wk. In skmVEGF-/- mice, gastrocnemius complex time to fatigue measured in situ was 71% lower than control mice. Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity.

  6. Epidermal growth factor receptor plays a role in the regulation of liver and plasma lipid levels in adult male mice.

    PubMed

    Scheving, Lawrence A; Zhang, Xiuqi; Garcia, Oscar A; Wang, Rebecca F; Stevenson, Mary C; Threadgill, David W; Russell, William E

    2014-03-01

    Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies. PMID:24407590

  7. Epidermal growth factor receptor plays a role in the regulation of liver and plasma lipid levels in adult male mice

    PubMed Central

    Zhang, Xiuqi; Garcia, Oscar A.; Wang, Rebecca F.; Stevenson, Mary C.; Threadgill, David W.; Russell, William E.

    2014-01-01

    Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies. PMID:24407590

  8. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    PubMed

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P < 0.05) and endurance capacity (-47%; P < 0.05), which did not persist after 8 wk. In skmVEGF-/- mice, gastrocnemius complex time to fatigue measured in situ was 71% lower than control mice. Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. PMID:27225953

  9. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    PubMed

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1. PMID:27035649

  10. B-Cell-Deficient Mice Show an Exacerbated Inflammatory Response in a Model of Chlamydophila abortus Infection

    PubMed Central

    Buendía, Antonio J.; Del Río, Laura; Ortega, Nieves; Sánchez, Joaquín; Gallego, María C.; Caro, María R.; Navarro, Jose A.; Cuello, Francisco; Salinas, Jesús

    2002-01-01

    The resolution of Chlamydophila abortus (Chlamydia psittaci serotype 1) infection is dependent on gamma interferon and CD8+ T cells, and classically, B cells have been considered to play a minimal role in host defense. The role of B cells in the immune response was studied by using a model of infection in mice with genetically modified immunoglobulin M transmembrane domains (μMT). In the absence of B cells, infection with C. abortus leads to an acute severe fatal disease that involves a disseminated intravascular coagulation syndrome. μMT mice displayed an increased level of proinflammatory cytokines in serum, and an increased number of neutrophils was observed in the lesions. The possible deleterious role of neutrophils in the pathogenesis of disease in μMT mice was determined by depletion of the neutrophils with the monoclonal antibody RB6-8C5. This led to an enhancement of the bacterial burden and early mortality in both μMT and wild-type mice, while necrotic lesions remained. Analysis of the presence of immunoregulatory cytokines showed significantly lower levels of transforming growth factor β in the sera of μMT mice. However, mice lacking mature B cells were able to establish a specific immune response that protected them from a secondary challenge. Taken together, these data suggest an immunomodulatory role for B cells in the early events of C. abortus primary infection that can protect mice against an exaggerated inflammatory response. PMID:12438369

  11. B-cell-deficient mice show an exacerbated inflammatory response in a model of Chlamydophila abortus infection.

    PubMed

    Buendía, Antonio J; Del Río, Laura; Ortega, Nieves; Sánchez, Joaquín; Gallego, María C; Caro, María R; Navarro, Jose A; Cuello, Francisco; Salinas, Jesús

    2002-12-01

    The resolution of Chlamydophila abortus (Chlamydia psittaci serotype 1) infection is dependent on gamma interferon and CD8(+) T cells, and classically, B cells have been considered to play a minimal role in host defense. The role of B cells in the immune response was studied by using a model of infection in mice with genetically modified immunoglobulin M transmembrane domains ( micro MT). In the absence of B cells, infection with C. abortus leads to an acute severe fatal disease that involves a disseminated intravascular coagulation syndrome. micro MT mice displayed an increased level of proinflammatory cytokines in serum, and an increased number of neutrophils was observed in the lesions. The possible deleterious role of neutrophils in the pathogenesis of disease in micro MT mice was determined by depletion of the neutrophils with the monoclonal antibody RB6-8C5. This led to an enhancement of the bacterial burden and early mortality in both micro MT and wild-type mice, while necrotic lesions remained. Analysis of the presence of immunoregulatory cytokines showed significantly lower levels of transforming growth factor beta in the sera of micro MT mice. However, mice lacking mature B cells were able to establish a specific immune response that protected them from a secondary challenge. Taken together, these data suggest an immunomodulatory role for B cells in the early events of C. abortus primary infection that can protect mice against an exaggerated inflammatory response.

  12. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus.

  13. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels

    PubMed Central

    Jeon, Seong Gak; Kim, Kyoung Ah; Chung, Hyunju; Choi, Junghyun; Song, Eun Ji; Han, Seung-Yun; Oh, Myung Sook; Park, Jong Hwan; Kim, Jin-il; Moon, Minho

    2016-01-01

    Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic. PMID:27432189

  14. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels.

    PubMed

    Jeon, Seong Gak; Kim, Kyoung Ah; Chung, Hyunju; Choi, Junghyun; Song, Eun Ji; Han, Seung-Yun; Oh, Myung Sook; Park, Jong Hwan; Kim, Jin-Il; Moon, Minho

    2016-08-31

    Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic. PMID:27432189

  15. A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1(+/-) mice.

    PubMed

    Zhang, Jingzhong; Götz, Sebastian; Vogt Weisenhorn, Daniela M; Simeone, Antonio; Wurst, Wolfgang; Prakash, Nilima

    2015-10-01

    The protracted and age-dependent degeneration of dopamine (DA)-producing neurons of the Substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) in the mammalian midbrain is a hallmark of human Parkinson's Disease (PD) and of certain genetic mouse models of PD, such as mice heterozygous for the homeodomain transcription factor Engrailed 1 (En1(+/-) mice). Neurotoxin-based animal models of PD, in contrast, are characterized by the fast and partly reversible degeneration of the SNc and VTA DA neurons. The secreted protein WNT1 was previously shown to be strongly induced in the neurotoxin-injured adult ventral midbrain (VM), and to protect the SNc and VTA DA neurons from cell death in this context. We demonstrate here that the sustained and ectopic expression of Wnt1 in the SNc and VTA DA neurons of En1(+/Wnt1) mice also protected these genetically affected En1 heterozygote (En1(+/-)) neurons from their premature degeneration in the adult mouse VM. We identified a developmental gene cascade that is up-regulated in the adult En1(+/Wnt1) VM, including the direct WNT1/β-catenin signaling targets Lef1, Lmx1a, Fgf20 and Dkk3, as well as the indirect targets Pitx3 (activated by LMX1A) and Bdnf (activated by PITX3). We also show that the secreted neurotrophin BDNF and the secreted WNT modulator DKK3, but not the secreted growth factor FGF20, increased the survival of En1 mutant dopaminergic neurons in vitro. The WNT1-mediated signaling pathway and its downstream targets BDNF and DKK3 might thus provide a useful means to treat certain genetic and environmental (neurotoxic) forms of human PD.

  16. Heterozygous caveolin-3 mice show increased susceptibility to palmitate-induced insulin resistance.

    PubMed

    Talukder, M A Hassan; Preda, Marilena; Ryzhova, Larisa; Prudovsky, Igor; Pinz, Ilka M

    2016-03-01

    Insulin resistance and diabetes are comorbidities of obesity and affect one in 10 adults in the United States. Despite the high prevalence, the mechanisms of cardiac insulin resistance in obesity are still unclear. We test the hypothesis that the insulin receptor localizes to caveolae and is regulated through binding to caveolin-3 (CAV3). We further test whether haploinsufficiency forCAV3 increases the susceptibility to high-fat-induced insulin resistance. We used in vivo and in vitro studies to determine the effect of palmitate exposure on global insulin resistance, contractile performance of the heart in vivo, glucose uptake in the heart, and on cellular signaling downstream of theIR We show that haploinsufficiency forCAV3 increases susceptibility to palmitate-induced global insulin resistance and causes cardiomyopathy. On the basis of fluorescence energy transfer (FRET) experiments, we show thatCAV3 andIRdirectly interact in cardiomyocytes. Palmitate impairs insulin signaling by a decrease in insulin-stimulated phosphorylation of Akt that corresponds to an 87% decrease in insulin-stimulated glucose uptake inHL-1 cardiomyocytes. Despite loss of Akt phosphorylation and lower glucose uptake, palmitate increased insulin-independent serine phosphorylation ofIRS-1 by 35%. In addition, we found lipid induced downregulation ofCD36, the fatty acid transporter associated with caveolae. This may explain the problem the diabetic heart is facing with the simultaneous impairment of glucose uptake and lipid transport. Thus, these findings suggest that loss ofCAV3 interferes with downstream insulin signaling and lipid uptake, implicatingCAV3 as a regulator of theIRand regulator of lipid uptake in the heart. PMID:27033451

  17. Selenium status alters the immune response and expulsion of adult Heligmosomodies bakeri in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri was delayed in selenium (Se) deficient mice. ...

  18. Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin.

    PubMed

    Lopes, Luiza da Silva; Slobodian, Ili; Del Bigio, Marc R

    2009-09-01

    Hydrocephalus is a common neurological problem in humans, usually caused by an impairment of cerebrospinal fluid (CSF) flow or absorption. A reliable induced model of chronic hydrocephalus in mice would be useful to test hypotheses using genetic mutants. Our goal was to characterize behavioral and histological changes in juvenile and young adult mice with kaolin (aluminum silicate)-induced hydrocephalus. Seven-day old and 7-8 week old mice received injection of kaolin into the cisterna magna. Behavior was assessed repeatedly. Seven or 14 days following kaolin, magnetic resonance (MR) imaging was used to assess ventricle size. In hydrocephalic mice, body weight was significantly lower than in age-matched saline-injected sham controls and the gait and posture score were impaired. Juvenile mice developed severe ventriculomegaly and had reduced corpus callosum thickness with gross white matter destruction by 14 days. Reactive astroglial change in white matter and cortex and reduced cellular proliferation in the subependymal zone were also apparent. Young adult mice developed only moderate ventricular enlargement without overt white matter destruction, although there was corpus callosum atrophy and mild astroglial reaction in white matter. Glial fibrillary acidic protein content was significantly higher in juvenile and young adult hydrocephalic mice at 7 and 14 days, but myelin basic protein content was not significantly altered. In conclusion, hydrocephalus induced by percutaneous injection of kaolin in juvenile and young adult mice is feasible. The associated periventricular alterations are essentially the same as those reported in rats of comparable ages.

  19. Vaccination of mice with liposome-entrapped adult antigens of Nippostrongylus brasiliensis.

    PubMed

    Rhalem, A; Bourdieu, C; Luffau, G; Pery, P

    1988-01-01

    An immunization procedure was developed to induce protection of mice against the gastrointestinal helminth Nippostrongylus brasiliensis. Mice immunized by the oral route with antigens which were released by adult worms during their in vitro survival in a detergent-containing medium and which were entrapped in liposomes were protected against a challenge infection.

  20. Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies

    SciTech Connect

    Wang, Yuehai; Huang, Ziyang; Lu, Huixia; Lin, Huili; Wang, Zhenhua; Chen, Xiaoqing; Ouyang, Qiufang; Tang, Mengxiong; Hao, Panpan; Ni, Jingqin; Xu, Dongming; Zhang, Mingxiang; Zhang, Qunye; Lin, Ling; and others

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Titers of ANA and anti-dsDNA antibodies were higher in ApoE{sup -/-} than C57B6/L mice. Black-Right-Pointing-Pointer Spleen was greater and splenocyte apoptosis lower in ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer Level of TLR4 was lower in spleen tissue of ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer The TLR4 pathway may participate in maintaining the balance of splenocyte apoptosis. Black-Right-Pointing-Pointer The TLR4 pathway may participate in antibody production in spleen tissue. -- Abstract: Apolipoprotein E-knockout (ApoE{sup -/-}) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE{sup -/-} mice. The spleens of all ApoE{sup -/-} and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE{sup -/-} mice after 4 weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE{sup -/-} mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE{sup -/-} than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE{sup -/-} spleen tissue. The

  1. Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice

    PubMed Central

    Martini, Mariangela; Calandreau, Ludovic; Jouhanneau, Mélanie; Mhaouty-Kodja, Sakina; Keller, Matthieu

    2014-01-01

    During perinatal life, sex steroids, such as estradiol, have marked effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are man-made chemicals, which animal and human population encounter in the environment and which are able to disrupt the functioning of the endocrine system. Scientific interest in the effects of exposure to xenoestrogens has focused more on fertility and reproductive behaviors, while the effects on cognitive behaviors have received less attention. Therefore, the present study explored whether the organochlorine insecticide Methoxychlor (MXC), with known xenoestrogens properties, administered during the perinatal period (from gestational day 11 to postnatal day 8) to pregnant-lactating females, at an environmentally relevant dose (20 µg/kg (body weight)/day), would also affect learning and memory functions depending on the hippocampus of male and female offspring mice in adulthood. When tested in adulthood, MXC perinatal exposure led to an increase in anxiety-like behavior and in short-term spatial working memory in both sexes. Emotional learning was also assessed using a contextual fear paradigm and MXC treated male and female mice showed an enhanced freezing behavior compared to controls. These results were correlated with an increased survival of adult generated cells in the adult hippocampus. In conclusion, our results show that perinatal exposure to an environmentally relevant dose of MXC has an organizational effect on hippocampus-dependent memory and emotional behaviors. PMID:24982620

  2. PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress.

    PubMed

    Lehmann, Michael L; Mustafa, Tomris; Eiden, Adrian M; Herkenham, Miles; Eiden, Lee E

    2013-05-01

    The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) regulates activation of the hypothalamic-pituitary-adrenal (HPA) axis and the adrenal gland in response to various stressors. We previously found that in response to acute psychological stress (restraint), elevated corticotrophin-releasing hormone (CRH) mRNA levels in the hypothalamic paraventricular nucleus (PVN) as well as elevated plasma corticosterone (CORT) were profoundly attenuated in PACAP-deficient mice. To determine whether HPA axis responses and stress-induced depressive-like behaviors in a chronic stress paradigm are affected by PACAP deficiency, we subjected mice to 14 days of social defeat stress. Defeat-exposed PACAP-/- mice showed a marked attenuation of stress-induced increases in serum CORT levels, cellular PVN ΔFosB immunostaining, and depressive-like behaviors (social interaction and forced swim tests) compared to wild-type control mice. The PACAP-/- mice showed reduced PVN FosB-positive cell numbers, but relatively elevated cell counts in several forebrain areas including the medial prefrontal cortex, after social stress. PACAP appears to be specific for mediating HPA activation only in psychological stress because marked elevations in plasma CORT after a systemic stressor (lipopolysaccharide administration) occurred regardless of genotype. We conclude that chronically elevated CORT is a key component of depressive effects of social defeat, and that attenuation of the CORT response at the level of the PVN, as well as extrahypothalamic forebrain regions, in PACAP-deficient mice protects from development of depressive behavior.

  3. Targeted deletion of Vegfa in adult mice induces vision loss.

    PubMed

    Kurihara, Toshihide; Westenskow, Peter D; Bravo, Stephen; Aguilar, Edith; Friedlander, Martin

    2012-11-01

    Current therapies directed at controlling vascular abnormalities in cancers and neovascular eye diseases target VEGF and can slow the progression of these diseases. While the critical role of VEGF in development has been well described, the function of locally synthesized VEGF in the adult eye is incompletely understood. Here, we show that conditionally knocking out Vegfa in adult mouse retinal pigmented epithelial (RPE) cells, which regulate retinal homeostasis, rapidly leads to vision loss and ablation of the choriocapillaris, the major blood supply for the outer retina and photoreceptor cells. This deletion also caused rapid dysfunction of cone photoreceptors, the cells responsible for fine visual acuity and color vision. Furthermore, Vegfa deletion showed significant downregulation of multiple angiogenic genes in both physiological and pathological states, whereas the deletion of the upstream regulatory transcriptional factors HIFs did not affect the physiological expressions of angiogenic genes. These results suggest that endogenous VEGF provides critical trophic support necessary for retinal function. Targeting factors upstream of VEGF, such as HIFs, may be therapeutically advantageous compared with more potent and selective VEGF antagonists, which may have more off-target inhibitory trophic effects. PMID:23093773

  4. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis.

    PubMed

    Garthe, Alexander; Roeder, Ingo; Kempermann, Gerd

    2016-02-01

    We here show that living in a stimulus-rich environment (ENR) improves water maze learning with respect to specific key indicators that in previous loss-of-function experiments have been shown to rely on adult hippocampal neurogenesis. Analyzing the strategies employed by mice to locate the hidden platform in the water maze revealed that ENR facilitated task acquisition by increasing the probability to use effective search strategies. ENR also enhanced the animals' behavioral flexibility, when the escape platform was moved to a new location. Treatment with temozolomide, which is known to reduce adult neurogenesis, abolished the effects of ENR on both acquisition and flexibility, while leaving other aspects of water maze learning untouched. These characteristic effects and interdependencies were not seen in parallel experiments with voluntary wheel running (RUN), a second pro-neurogenic behavioral stimulus. Since the histological assessment of adult neurogenesis is by necessity an end-point measure, the levels of neurogenesis over the course of the experiment can only be inferred and the present study focused on behavioral parameters as analytical endpoints. Although the correlation of physical activity with precursor cell proliferation and of learning and the survival of new neurons is well established, how the specific functional effects described here relate to dynamic changes in the stem cell niche remains to be addressed. Nevertheless, our findings support the hypothesis that adult neurogenesis is a critical mechanism underlying the beneficial effects of leading an active live, rich in experiences.

  5. Monocular Deprivation in Adult Mice Alters Visual Acuity and Single-Unit Activity

    ERIC Educational Resources Information Center

    Evans, Scott; Lickey, Marvin E.; Pham, Tony A.; Fischer, Quentin S.; Graves, Aundrea

    2007-01-01

    It has been discovered recently that monocular deprivation in young adult mice induces ocular dominance plasticity (ODP). This contradicts the traditional belief that ODP is restricted to a juvenile critical period. However, questions remain. ODP of young adults has been observed only using methods that are indirectly related to vision, and the…

  6. The importance of basonuclin 2 in adult mice and its relation to basonuclin 1.

    PubMed

    Vanhoutteghem, Amandine; Delhomme, Brigitte; Hervé, Françoise; Nondier, Isabelle; Petit, Jean-Maurice; Araki, Masatake; Araki, Kimi; Djian, Philippe

    2016-05-01

    BNC2 is an extremely conserved zinc finger protein with important functions in the development of craniofacial bones and male germ cells. Because disruption of the Bnc2 gene in mice causes neonatal lethality, the function of the protein in adult animals has not been studied. Until now BNC2 was considered to have a wider tissue distribution than its paralog, BNC1, but the precise cell types expressing Bnc2 are largely unknown. We identify here the cell types containing BNC2 in the mouse and we show the unexpected presence of BNC1 in many BNC2-containing cells. BNC1 and BNC2 are colocalized in male and female germ cells, ovarian epithelial cells, sensory neurons, hair follicle keratinocytes and connective cells of organ capsules. In many cell lineages, the two basonuclins appear and disappear synchronously. Within the male germ cell lineage, BNC1 and BNC2 are found in prospermatogonia and undifferentiated spermatogonia, and disappear abruptly from differentiating spermatogonia. During oogenesis, the two basonuclins accumulate specifically in maturing oocytes. During the development of hair follicles, BNC1 and BNC2 concentrate in the primary hair germs. As follicle morphogenesis proceeds, cells possessing BNC1 and BNC2 invade the dermis and surround the papilla. During anagen, BNC1 and BNC2 are largely restricted to the basal layer of the outer root sheath and the matrix. During catagen, the compartment of cells possessing BNC1 and BNC2 regresses, and in telogen, the two basonuclins are confined to the secondary hair germ. During the next anagen, the BNC1/BNC2-containing cell population regenerates the hair follicle. By examining Bnc2(-/-) mice that have escaped the neonatal lethality usually associated with lack of BNC2, we demonstrate that BNC2 possesses important functions in many of the cell types where it resides. Hair follicles of postnatal Bnc2(-/-) mice do not fully develop during the first cycle and thereafter remain blocked in telogen. It is concluded that

  7. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    PubMed

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. PMID:26210720

  8. Female mice lacking Xist RNA show partial dosage compensation and survive to term.

    PubMed

    Yang, Lin; Kirby, James E; Sunwoo, Hongjae; Lee, Jeannie T

    2016-08-01

    X-chromosome inactivation (XCI) compensates for differences in X-chromosome number between male and female mammals. XCI is orchestrated by Xist RNA, whose expression in early development leads to transcriptional silencing of one X chromosome in the female. Knockout studies have established a requirement for Xist with inviability of female embryos that inherit an Xist deletion from the father. Here, we report that female mice lacking Xist RNA can, surprisingly, develop and survive to term. Xist-null females are born at lower frequency and are smaller at birth, but organogenesis is mostly normal. Transcriptomic analysis indicates significant overexpression of hundreds of X-linked genes across multiple tissues. Therefore, Xist-null mice can develop to term in spite of a deficiency of dosage compensation. However, the degree of X-autosomal dosage imbalance was less than anticipated (1.14-fold to 1.36-fold). Thus, partial dosage compensation can be achieved without Xist, supporting the idea of inherent genome balance. Nevertheless, to date, none of the mutant mice has survived beyond weaning stage. Sudden death is associated with failure of postnatal organ maturation. Our data suggest Xist-independent mechanisms of dosage compensation and demonstrate that small deviations from X-autosomal balance can have profound effects on overall fitness. PMID:27542829

  9. Connexin30-deficient mice show increased emotionality and decreased rearing activity in the open-field along with neurochemical changes.

    PubMed

    Dere, E; De Souza-Silva, M A; Frisch, C; Teubner, B; Söhl, G; Willecke, K; Huston, J P

    2003-08-01

    Gap-junction channels in the brain, formed by connexin (Cx) proteins with a distinct regional/cell-type distribution, allow intercellular electrical and metabolic communication. In astrocytes, mainly the connexins 43, 26 and 30 are expressed. In addition, connexin30 is expressed in ependymal and leptomeningeal cells, as well as in skin and cochlea. The functional implications of the astrocytic gap-junctional network are not well understood and evidence regarding their behavioural relevance is lacking. Thus, we have tested groups of Cx30-/-, Cx30+/-, and Cx30+/+ mice in the open-field, an object exploration task, in the graded anxiety test and on the rotarod. The Cx30-/- mice showed reduced exploratory activity in terms of rearings but not locomotion in the open-field and object exploration task. Furthermore, Cx30-/- mice exhibited anxiogenic behaviour as shown by higher open-field centre avoidance and corner preference. Graded anxiety test and rotarod performance was similar across groups. The Cx30-/- mice had elevated choline levels in the ventral striatum, possibly related to their aberrant behavioural phenotypes. The Cx30+/- mice had lower dopamine and metabolite levels in the amygdala and ventral striatum and lower hippocampal 5-hydroxyindole acid (5-HIAA) concentrations relative to Cx30+/+ mice. Furthermore, the Cx30+/- mice had lower acetylcholine concentrations in the ventral striatum and higher choline levels in the neostriatum, relative to Cx30+/+ mice. Our data suggest that the elimination of connexin30 can alter the reactivity to novel environments, pointing to the importance of gap-junctional signalling in behavioural processes.

  10. Factor XIII-A transglutaminase deficient mice show signs of metabolically healthy obesity on high fat diet

    PubMed Central

    Myneni, Vamsee D.; Mousa, Aisha; Kaartinen, Mari T.

    2016-01-01

    F13A1 gene, which encodes for Factor XIII-A blood clotting factor and a transglutaminase enzyme, was recently identified as a potential causative gene for obesity in humans. In our previous in vitro work, we showed that FXIII-A regulates preadipocyte differentiation and modulates insulin signaling via promoting plasma fibronectin assembly into the extracellular matrix. To understand the role of FXIII-A in whole body energy metabolism, here we have characterized the metabolic phenotype of F13a1−/− mice. F13a1−/− and F13a1+/+ type mice were fed chow or obesogenic, high fat diet for 20 weeks. Weight gain, total fat mass and fat pad mass, glucose handling, insulin sensitivity, energy expenditure and, morphological and biochemical analysis of adipose tissue was performed. We show that mice lacking FXIII-A gain weight on obesogenic diet, similarly as wild type mice, but exhibit a number of features of metabolically healthy obesity such as protection from developing diet-induced insulin resistance and hyperinsulinemia. Mice also show normal fasting glucose levels, larger adipocytes, decreased extracellular matrix accumulation and inflammation of adipose tissue, as well as decreased circulating triglycerides. This study reveals that FXIII-A transglutaminase can regulate whole body insulin sensitivity and may have a role in the development of diet-induced metabolic disturbances. PMID:27759118

  11. Cerebellar Nuclei Neurons Show Only Small Excitatory Responses to Optogenetic Olivary Stimulation in Transgenic Mice: In Vivo and In Vitro Studies

    PubMed Central

    Lu, Huo; Yang, Bo; Jaeger, Dieter

    2016-01-01

    To study the olivary input to the cerebellar nuclei (CN) we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2) in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC) and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO) with a blue laser (single pulse, 10–50 ms duration). Peri-stimulus histograms (PSTHs) were constructed to show the spike rate changes after optical stimulation. Among 29 CN neurons recorded, 15 showed a decrease in spike rate of variable strength and duration, and only 1 showed a transient spiking response. These results suggest that direct olivary input to CN neurons is usually overridden by stronger PC inhibition triggered by climbing fiber responses. To further investigate the direct input from the climbing fiber collaterals we also conducted whole cell recordings in brain slices, where we used local stimulation with blue light. Due to the expression of ChR2 in PC axons as well as the IO in our transgenic line, strong inhibitory responses could be readily triggered with optical stimulation (13 of 15 neurons). After blocking this inhibition with GABAzine, only in 5 of 13 CN neurons weak excitatory responses were revealed. Therefore our in vitro results support the in vivo findings that the excitatory input to CN neurons from climbing fiber collaterals in adult mice is masked by the inhibition under normal conditions. PMID:27047344

  12. Glucose transporters GLUT4 and GLUT8 are upregulated after facial nerve axotomy in adult mice

    PubMed Central

    Gómez, Olga; Ballester-Lurbe, Begoña; Mesonero, José E; Terrado, José

    2011-01-01

    Peripheral nerve axotomy in adult mice elicits a complex response that includes increased glucose uptake in regenerating nerve cells. This work analyses the expression of the neuronal glucose transporters GLUT3, GLUT4 and GLUT8 in the facial nucleus of adult mice during the first days after facial nerve axotomy. Our results show that whereas GLUT3 levels do not vary, GLUT4 and GLUT8 immunoreactivity increases in the cell body of the injured motoneurons after the lesion. A sharp increase in GLUT4 immunoreactivity was detected 3 days after the nerve injury and levels remained high on Day 8, but to a lesser extent. GLUT8 also increased the levels but later than GLUT4, as they only rose on Day 8 post-lesion. These results indicate that glucose transport is activated in regenerating motoneurons and that GLUT4 plays a main role in this function. These results also suggest that metabolic defects involving impairment of glucose transporters may be principal components of the neurotoxic mechanisms leading to motoneuron death. PMID:21740425

  13. Sustained Engraftment of Cryopreserved Human Bone Marrow CD34(+) Cells in Young Adult NSG Mice.

    PubMed

    Wiekmeijer, Anna-Sophia; Pike-Overzet, Karin; Brugman, Martijn H; Salvatori, Daniela C F; Egeler, R Maarten; Bredius, Robbert G M; Fibbe, Willem E; Staal, Frank J T

    2014-06-01

    Hematopoietic stem cells (HSCs) are defined by their ability to repopulate the bone marrow of myeloablative conditioned and/or (lethally) irradiated recipients. To study the repopulating potential of human HSCs, murine models have been developed that rely on the use of immunodeficient mice that allow engraftment of human cells. The NSG xenograft model has emerged as the current standard for this purpose allowing for engraftment and study of human T cells. Here, we describe adaptations to the original NSG xenograft model that can be readily implemented. These adaptations encompass use of adult mice instead of newborns and a short ex vivo culture. This protocol results in robust and reproducible high levels of lympho-myeloid engraftment. Immunization of recipient mice with relevant antigen resulted in specific antibody formation, showing that both T cells and B cells were functional. In addition, bone marrow cells from primary recipients exhibited repopulating ability following transplantation into secondary recipients. Similar results were obtained with cryopreserved human bone marrow samples, thus circumventing the need for fresh cells and allowing the use of patient derived bio-bank samples. Our findings have implications for use of this model in fundamental stem cell research, immunological studies in vivo and preclinical evaluations for HSC transplantation, expansion, and genetic modification.

  14. Metabolic Effects of Social Isolation in Adult C57BL/6 Mice

    PubMed Central

    Sun, Meng; Choi, Eugene Y.; Magee, Daniel J.; Stets, Colin W.; During, Matthew J.; Lin, En-Ju D.

    2014-01-01

    Obesity and metabolic dysfunction are risk factors for a number of chronic diseases, such as type 2 diabetes, hypertension, heart disease, stroke, and certain forms of cancers. Both animal studies and human population-based and clinical studies have suggested that chronic stress is a risk factor for metabolic disorders. A good social support system is known to exert positive effects on the mental and physical well-being of an individual. On the other hand, long-term deprivation of social contacts may represent a stressful condition that has negative effects on health. In the present study, we investigated the effects of chronic social isolation on metabolic parameters in adult C57BL/6 mice. We found that individually housed mice had increased adipose mass compared to group-housed mice, despite comparable body weight. The mechanism for the expansion of white adipose tissue mass was depot-specific. Notably, food intake was reduced in the social isolated animals, which occurred around the light-dark phase transition periods. Similarly, reductions in heat generated and the respiratory exchange ratio were observed during the light-dark transitions. These phase-specific changes due to long-term social isolation have not been reported previously. Our study shows social isolation contributes to increased adiposity and altered metabolic functions. PMID:27433503

  15. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    PubMed

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model.

  16. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    PubMed

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model. PMID:25870909

  17. Cortical hypoplasia and ventriculomegaly of p73-deficient mice: Developmental and adult analysis.

    PubMed

    Medina-Bolívar, Carolina; González-Arnay, Emilio; Talos, Flaminia; González-Gómez, Miriam; Moll, Ute M; Meyer, Gundela

    2014-08-01

    Trp73, a member of the p53 gene family, plays a crucial role in neural development. We describe two main phenotypic variants of p73 deficiency in the brain, a severe one characterized by massive apoptosis in the cortex leading to early postnatal death and a milder, non-/low-apoptosis one in which 50% of pups may reach adulthood using an intensive-care breeding protocol. Both variants display the core triad of p73 deficiency: cortical hypoplasia, hippocampal malformations, and ventriculomegaly. We studied the development of the neocortex in p73 KO mice from early embryonic life into advanced age (25 months). Already at E14.5, the incipient cortical plate of the p73 KO brains showed a reduced width. Examination of adult neocortex revealed a generalized, nonprogressive reduction by 10-20%. Area-specific architectonic landmarks and lamination were preserved in all cortical areas. The surviving adult animals had moderate ventricular distension, whereas pups of the early lethal phenotypic variant showed severe ventriculomegaly. Ependymal cells of wild-type ventricles strongly express p73 and are particularly vulnerable to p73 deficiency. Ependymal denudation by apoptosis and reduction of ependymal cilia were already evident in young mice, with complete absence of cilia in older animals. Loss of p73 function in the ependyma may thus be one determining factor for chronic hydrocephalus, which leads to atrophy of subcortical structures (striatum, septum, amygdala). p73 Is thus involved in a variety of CNS activities ranging from embryonic regulation of brain size to the control of cerebrospinal fluid homeostasis in the adult brain via maintenance of the ependyma.

  18. Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running.

    PubMed

    Fujimaki, Shin; Hidaka, Ryo; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2014-03-14

    Muscle represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle-derived stem cells, called satellite cells, play essential roles in regeneration after muscle injury in adult skeletal muscle. Although the molecular mechanism of muscle regeneration process after an injury has been extensively investigated, the regulation of satellite cells under steady state during the adult stage, including the reaction to exercise stimuli, is relatively unknown. Here, we show that voluntary wheel running exercise, which is a low stress exercise, converts satellite cells to the activated state due to accelerated Wnt signaling. Our analysis showed that up-regulated canonical Wnt/β-catenin signaling directly modulated chromatin structures of both MyoD and Myf5 genes, resulting in increases in the mRNA expression of Myf5 and MyoD and the number of proliferative Pax7(+)Myf5(+) and Pax7(+) MyoD(+) cells in skeletal muscle. The effect of Wnt signaling on the activation of satellite cells, rather than Wnt-mediated fibrosis, was observed in both adult and aged mice. The association of β-catenin, T-cell factor, and lymphoid enhancer transcription factors of multiple T-cell factor/lymphoid enhancer factor regulatory elements, conserved in mouse, rat, and human species, with the promoters of both the Myf5 and MyoD genes drives the de novo myogenesis in satellite cells even in aged muscle. These results indicate that exercise-stimulated extracellular Wnts play a critical role in the regulation of satellite cells in adult and aged skeletal muscle.

  19. Sacral chordoma in an adult showing an aggressive clinical course: A case report

    PubMed Central

    ENDO, KOJI; YAMASHITA, HIDEKI; NAGASHIMA, HIDEKI; TESHIMA, RYOTA

    2014-01-01

    The current report presents a case of a 78-year-old male with sacral chordoma, showing an aggressive clinical course. The patient underwent sacral resection, however, nine months later, multiple metastases were detected by magnetic resonance imaging. The metastases progressed rapidly and 15 months following surgery the patient succumbed to respiratory dysfunction. An autopsy revealed multiple metastases of the lung, liver, heart, kidneys and vertebrae. Pathologically, the tumors did not show proliferation of anaplastic cells or dedifferentiation; however, the metastatic tumor cells were smaller than the primary tumor cells. The Ki-67 labeling indices were <5% in all of the patient’s tumors, therefore, the capacity for cellular proliferation of the tumors was considered to be low. Chordoma in adults are generally slow-growing tumors and are associated with a relatively prolonged course and frequent local recurrences. Therefore, it must be recognized that chordoma may grow rapidly and show an aggressive clinical course, even when the Ki-67 labeling index is low. PMID:24765153

  20. Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment.

    PubMed

    Chabout, Jonathan; Serreau, Pierre; Ey, Elodie; Bellier, Ludovic; Aubin, Thierry; Bourgeron, Thomas; Granon, Sylvie

    2012-01-01

    Social interactions in mice are frequently analysed in genetically modified strains in order to get insight of disorders affecting social interactions such as autism spectrum disorders. Different types of social interactions have been described, mostly between females and pups, and between adult males and females. However, we recently showed that social interactions between adult males could also encompass cognitive and motivational features. During social interactions, rodents emit ultrasonic vocalizations (USVs), but it remains unknown if call types are differently used depending of the context and if they are correlated with motivational state. Here, we recorded the calls of adult C57BL/6J male mice in various behavioral conditions, such as social interaction, novelty exploration and restraint stress. We introduced a modulator for the motivational state by comparing males maintained in isolation and males maintained in groups before the experiments. Male mice uttered USVs in all social and non-social situations, and even in a stressful restraint context. They nevertheless emitted the most important number of calls with the largest diversity of call types in social interactions, particularly when showing a high motivation for social contact. For mice maintained in social isolation, the number of calls recorded was positively correlated with the duration of social contacts, and most calls were uttered during contacts between the two mice. This correlation was not observed in mice maintained in groups. These results open the way for a deeper understanding and characterization of acoustic signals associated with social interactions. They can also help evaluating the role of motivational states in the emission of acoustic signals.

  1. Antagonistic effect of Lepidium meyenii (red maca) on prostatic hyperplasia in adult mice.

    PubMed

    Gonzales, G F; Gasco, M; Malheiros-Pereira, A; Gonzales-Castañeda, C

    2008-06-01

    The plants from the Lepidium gender have demonstrated to have effect on the size of the prostate. Lepidium meyenii (Maca) is a Peruvian plant that grows exclusively over 4000 m above sea level. The present study was designed to determine the effect of red maca (RM) in the prostate hyperplasia induced with testosterone enanthate (TE) in adult mice. Prostate hyperplasia was induced by administering TE, and then these animals (n = 6, each group) were treated with RM or Finasteride (positive control) for 21 days. There was an additional group without prostate hyperplasia (vehicle). Mice were killed on days 7, 14 and 21 after treatment with RM. Testosterone and oestradiol levels were measured on the last day of treatment. Prostatic stroma, epithelium and acini were measured histologically. RM reduced prostate weight at 21 days of treatment. Weights of seminal vesicles, testis and epididymis were not affected by RM treatment. The reduction in prostate size by RM was 1.59 times. Histological analysis showed that TE increased 2-fold the acinar area, effect prevented in the groups receiving TE + RM for 14 (P < 0.05) and 21 (P < 0.05) days and the group receiving TE + Finasteride for 21 days (P < 0.05). TE increased prostatic stroma area and this effect was prevented by treatment with RM since 7 days of treatment or Finasteride. The reduction in prostatic stroma area by RM was 1.42 times. RM has an anti-hyperplastic effect on the prostate of adult mice when hyperplasia was induced with TE acting first at prostatic stromal level. PMID:18477205

  2. Antagonistic effect of Lepidium meyenii (red maca) on prostatic hyperplasia in adult mice.

    PubMed

    Gonzales, G F; Gasco, M; Malheiros-Pereira, A; Gonzales-Castañeda, C

    2008-06-01

    The plants from the Lepidium gender have demonstrated to have effect on the size of the prostate. Lepidium meyenii (Maca) is a Peruvian plant that grows exclusively over 4000 m above sea level. The present study was designed to determine the effect of red maca (RM) in the prostate hyperplasia induced with testosterone enanthate (TE) in adult mice. Prostate hyperplasia was induced by administering TE, and then these animals (n = 6, each group) were treated with RM or Finasteride (positive control) for 21 days. There was an additional group without prostate hyperplasia (vehicle). Mice were killed on days 7, 14 and 21 after treatment with RM. Testosterone and oestradiol levels were measured on the last day of treatment. Prostatic stroma, epithelium and acini were measured histologically. RM reduced prostate weight at 21 days of treatment. Weights of seminal vesicles, testis and epididymis were not affected by RM treatment. The reduction in prostate size by RM was 1.59 times. Histological analysis showed that TE increased 2-fold the acinar area, effect prevented in the groups receiving TE + RM for 14 (P < 0.05) and 21 (P < 0.05) days and the group receiving TE + Finasteride for 21 days (P < 0.05). TE increased prostatic stroma area and this effect was prevented by treatment with RM since 7 days of treatment or Finasteride. The reduction in prostatic stroma area by RM was 1.42 times. RM has an anti-hyperplastic effect on the prostate of adult mice when hyperplasia was induced with TE acting first at prostatic stromal level.

  3. Increasing the effectiveness of intracerebral injections in adult and neonatal mice: a neurosurgical point of view.

    PubMed

    Mathon, Bertrand; Nassar, Mérie; Simonnet, Jean; Le Duigou, Caroline; Clemenceau, Stéphane; Miles, Richard; Fricker, Desdemona

    2015-12-01

    Intracerebral injections of tracers or viral constructs in rodents are now commonly used in the neurosciences and must be executed perfectly. The purpose of this article is to update existing protocols for intracerebral injections in adult and neonatal mice. Our procedure for stereotaxic injections in adult mice allows the investigator to improve the effectiveness and safety, and save time. Furthermore, for the first time, we describe a two-handed procedure for intracerebral injections in neonatal mice that can be performed by a single operator in a very short time. Our technique using the stereotaxic arm allows a higher precision than freehand techniques previously described. Stereotaxic injections in adult mice can be performed in 20 min and have >90% efficacy in targeting the injection site. Injections in neonatal mice can be performed in 5 min. Efficacy depends on the difficulty of precisely localizing the injection sites, due to the small size of the animal. We describe an innovative, effortless, and reproducible surgical protocol for intracerebral injections in adult and neonatal mice.

  4. CpG Improves Influenza Vaccine Efficacy in Young Adult but Not Aged Mice.

    PubMed

    Ramirez, Alejandro; Co, Mary; Mathew, Anuja

    2016-01-01

    Several studies have shown a reduced efficacy of influenza vaccines in the elderly compared to young adults. In this study, we evaluated the immunogenicity and protective efficacy of a commercially available inactivated influenza vaccine (Fluzone®) in young adult and aged mice. C57/BL6 mice were administered a single or double immunization of Fluzone® with or without CpG and challenged intranasally with H1N1 A/California/09 virus. A double immunization of Fluzone® adjuvanted with CpG elicited the highest level of protection in young adult mice which was associated with increases in influenza specific IgG, elevated HAI titres, reduced viral titres and lung inflammation. In contrast, the vaccine schedule which provided fully protective immunity in young adult mice conferred limited protection in aged mice. Antigen presenting cells from aged mice were found to be less responsive to in vitro stimulation by Fluzone and CpG which may partially explain this result. Our data are supportive of studies that have shown limited effectiveness of influenza vaccines in the elderly and provide important information relevant to the design of more immunogenic vaccines in this age group. PMID:26934728

  5. A history of chronic morphine exposure during adolescence increases despair-like behaviour and strain-dependently promotes sociability in abstinent adult mice

    PubMed Central

    Lutz, PE; Reiss, D; Ouagazzal, AM; Kieffer, BL

    2013-01-01

    A crucial issue in treating opiate addiction, a chronic relapsing disorder, is to maintain a drug-free abstinent state. Prolonged abstinence associates with mood disorders, strongly contributing to relapse. In particular, substance use disorders occurring during adolescence predispose to depression later in adulthood. Using our established mouse model of opiate abstinence, we characterized emotional consequences into adulthood of morphine exposure during adolescence. Our results indicate that morphine treatment in adolescent mice has no effect on anxiety-like behaviours in adult mice, after abstinence. In contrast, morphine treatment during adolescence increases behavioural despair in adult mice. We also show that morphine exposure strain-dependently enhances sociability in adult mice. Additional research will be required to understand where and how morphine acts during brain maturation to affect emotional and social behaviours into adulthood. PMID:23295400

  6. Behavioral disturbances in adult mice following neonatal virus infection or kynurenine treatment – role of brain kynurenic acid

    PubMed Central

    Liu, Xicong; Holtze, Maria; Powell, Susan B; Terrando, Niccolò; Larsson, Markus K.; Persson, Anna; Olsson, Sara K.; Orhan, Funda; Kegel, Magdalena; Asp, Linnea; Goiny, Michel; Schwieler, Lilly; Engberg, Göran; Karlsson, Håkan; Erhardt, Sophie

    2014-01-01

    Exposure to infections in early life is considered a risk-factor for developing schizophrenia. Recently we reported that a neonatal CNS infection with influenza A virus in mice resulted in a transient induction of the brain kynurenine pathway, and subsequent behavioral disturbances in immune-deficient adult mice. The aim of the present study was to investigate a potential role in this regard of kynurenic acid (KYNA), an endogenous antagonist at the glycine site of the N-methyl-D-aspartic acid (NMDA) receptor and at the cholinergic α7 nicotinic receptor. C57BL/6 mice were injected i.p. with neurotropic influenza A/WSN/33 virus (2400 plaque-forming units) at postnatal day (P) 3 or with L-kynurenine (2×200 mg/kg/day) at P7-16. In mice neonatally treated with L-kynurenine prepulse inhibition of the acoustic startle, anxiety, and learning and memory were also assessed. Neonatally infected mice showed enhanced sensitivity to d-amphetamine-induced (5 mg/kg i.p.) increase in locomotor activity as adults. Neonatally L-kynurenine treated mice showed enhanced sensitivity to d-amphetamine-induced (5 mg/kg i.p.) increase in locomotor activity as well as mild impairments in prepulse inhibition and memory. Also, d-amphetamine tended to potentiate dopamine release in the striatum in kynurenine-treated mice. These long-lasting behavioral and neurochemical alterations suggest that the kynurenine pathway can link early-life infection with the development of neuropsychiatric disturbances in adulthood. PMID:24140727

  7. Hippocampal long-term potentiation in adult Lurcher mutant mice: effect of embryonic cerebellar graft and motor training.

    PubMed

    Barcal, J; Cendelín, J; Vozeh, F

    2008-01-01

    Possible effect of trophic factors from embryonic cerebellar graft transplanted in adult Lurcher mutant mice on LTP as electrophysiological marker of learning and memory process was studied. Also the combination of the transplantation and long-term forced motor training was investigated. An evaluation of LTP ability in four animal groups (transplanted, sham-operated, with and without forced motor activity) and comparison among them showed the highest LTP improvement in the group with combination of both influences (ie. transplantation and motor training).

  8. PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress

    PubMed Central

    Lehmann, Michael L.; Mustafa, Tomris; Eiden, Adrian M.; Herkenham, Miles; Eiden, Lee E.

    2012-01-01

    Summary The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) regulates activation of the hypothalamic-pituitary-adrenal (HPA) axis and the adrenal gland in response to various stressors. We previously found that in response to acute psychological stress (restraint), elevated corticotrophin-releasing hormone (CRH) mRNA levels in the hypothalamic paraventricular nucleus (PVN) as well as elevated plasma corticosterone (CORT) were profoundly attenuated in PACAP-deficient mice. To determine whether HPA axis responses and stress-induced depressive-like behaviors in a chronic stress paradigm are affected by PACAP deficiency, we subjected mice to 14 days of social defeat stress. Defeat-exposed PACAP−/− mice showed a marked attenuation of stress-induced increases in serum CORT levels, cellular PVN ΔFosB immunostaining, and depressive-like behaviors (social interaction and forced swim tests) compared to wild-type control mice. The PACAP−/− mice showed reduced PVN FosB-positive cell numbers, but relatively elevated cell counts in several forebrain areas including the medial prefrontal cortex, after social stress. PACAP appears to be specific for mediating HPA activation only in psychological stress because marked elevations in plasma CORT after a systemic stressor (lipopolysaccharide administration) occurred regardless of genotype. We conclude that chronically elevated CORT is a key component of depressive effects of social defeat, and that attenuation of the CORT response at the level of the PVN, as well as extrahypothalamic forebrain regions, in PACAP-deficient mice protects from development of depressive behavior. PMID:23062748

  9. Habituation under stress: shocked mice show nonassociative learning in a T-maze.

    PubMed

    Mitchell, D; Osborne, E W; O'Boyle, M W

    1985-03-01

    Conflicting predictions of reinforcement and neophobia-arousal theories were evaluated in a simple choice task. Four groups of C57BL/6J mice were administered daily two-trial tests in a uniform T-maze for 10 consecutive days. For three groups, the contingencies of footshock treatments were manipulated to reinforce alternation, perseveration, or both. A control group that was not administered footshock alternated, but all three groups that were stressed perseverated more and more across tests, despite the differences in reinforcement contingencies. These results are inconsistent with the predictions of reinforcement theory but consistent with the view that stressed or aroused animals are neophobic and use nonassociative learning (habituation) to distinguish between novel and familiar alternatives.

  10. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice

    PubMed Central

    Xirouchaki, Chrysovalantou E.; Mangiafico, Salvatore P.; Bate, Katherine; Ruan, Zheng; Huang, Amy M.; Tedjosiswoyo, Bing Wilari; Lamont, Benjamin; Pong, Wynne; Favaloro, Jenny; Blair, Amy R.; Zajac, Jeffrey D.; Proietto, Joseph; Andrikopoulos, Sofianos

    2016-01-01

    Objective Muscle glucose storage and muscle glycogen synthase (gys1) defects have been associated with insulin resistance. As there are multiple mechanisms for insulin resistance, the specific role of glucose storage defects is not clear. The aim of this study was to examine the effects of muscle-specific gys1 deletion on glucose metabolism and exercise capacity. Methods Tamoxifen inducible and muscle specific gys-1 KO mice were generated using the Cre/loxP system. Mice were subjected to glucose tolerance tests, euglycemic/hyperinsulinemic clamps and exercise tests. Results gys1-KO mice showed ≥85% reduction in muscle gys1 mRNA and protein concentrations, 70% reduction in muscle glycogen levels, postprandial hyperglycaemia and hyperinsulinaemia and impaired glucose tolerance. Under insulin-stimulated conditions, gys1-KO mice displayed reduced glucose turnover and muscle glucose uptake, indicative of peripheral insulin resistance, as well as increased plasma and muscle lactate levels and reductions in muscle hexokinase II levels. gys1-KO mice also exhibited markedly reduced exercise and endurance capacity. Conclusions Thus, muscle-specific gys1 deletion in adult mice results in glucose intolerance due to insulin resistance and reduced muscle glucose uptake as well as impaired exercise and endurance capacity. In brief This study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity. PMID:26977394

  11. MRL/MpJ mice show unique pathological features after experimental kidney injury.

    PubMed

    Shiozuru, Daichi; Ichii, Osamu; Kimura, Junpei; Nakamura, Teppei; Elewa, Yaser Hosny Ali; Otsuka-Kanazawa, Saori; Kon, Yasuhiro

    2016-02-01

    Clarification of the renal repair process is crucial for developing novel therapeutic strategies for kidney injury. MRL/MpJ mice have a unique repair process characterized by low scar formation. The pathological features of experimentally injured MRL/MpJ and C57BL/6 mouse kidneys were compared to examine the renal repair process. The dilation and atrophy of renal tubules were observed in folic acid (FA)-induced acute kidney injury (AKI) in both strains, and the histopathological injury scores and number of interleukin (IL)-1F6-positive damaged distal tubules and kidney injury molecule 1 (KIM-1)-positive damaged proximal tubules drastically increased 1 day after AKI induction. However, KIM-1-positive tubules and the elevation of serum renal function markers were significantly fewer and lower, respectively, in MRL/MpJ mice at days 2 and 7 after AKI. After traumatic kidney injury (TKI) via needle puncture, severe tubular necrotic lesions in the punctured area and fibrosis progressed in both strains. Indices for fibrosis such as aniline blue-positive area, number of alpha smooth muscle actin-positive myofibroblasts, and messenger RNA expression levels of Tgfb1 and Mmp2 indicated lower fibrotic activity in MRL/MpJ kidneys. Characteristically, only MRL/MpJ kidneys manifested remarkable calcification around the punctured area beginning 7 days after TKI. The pathological features of injured MRL/MpJ and C57BL/6 kidneys differed, especially those of kidneys with mild proximal tubular injuries after FA-induced AKI. Lower fibrotic activity and increased calcification after TKI were observed in MRL/MpJ kidneys. These findings clarified the unique pathological characteristics of MRL/MpJ mouse kidneys and contribute to understanding of the renal repair process after kidney injury.

  12. Hippocampal CA1 pyramidal neurons of Mecp2 mutant mice show a dendritic spine phenotype only in the presymptomatic stage.

    PubMed

    Chapleau, Christopher A; Boggio, Elena Maria; Calfa, Gaston; Percy, Alan K; Giustetto, Maurizio; Pozzo-Miller, Lucas

    2012-01-01

    Alterations in dendritic spines have been documented in numerous neurodevelopmental disorders, including Rett Syndrome (RTT). RTT, an X chromosome-linked disorder associated with mutations in MECP2, is the leading cause of intellectual disabilities in women. Neurons in Mecp2-deficient mice show lower dendritic spine density in several brain regions. To better understand the role of MeCP2 on excitatory spine synapses, we analyzed dendritic spines of CA1 pyramidal neurons in the hippocampus of Mecp2(tm1.1Jae) male mutant mice by either confocal microscopy or electron microscopy (EM). At postnatal-day 7 (P7), well before the onset of RTT-like symptoms, CA1 pyramidal neurons from mutant mice showed lower dendritic spine density than those from wildtype littermates. On the other hand, at P15 or later showing characteristic RTT-like symptoms, dendritic spine density did not differ between mutant and wildtype neurons. Consistently, stereological analyses at the EM level revealed similar densities of asymmetric spine synapses in CA1 stratum radiatum of symptomatic mutant and wildtype littermates. These results raise caution regarding the use of dendritic spine density in hippocampal neurons as a phenotypic endpoint for the evaluation of therapeutic interventions in symptomatic Mecp2-deficient mice. However, they underscore the potential role of MeCP2 in the maintenance of excitatory spine synapses.

  13. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice

    PubMed Central

    Pristerà, Alessandro; Lin, Wei; Kaufmann, Anna-Kristin; Brimblecombe, Katherine R.; Threlfell, Sarah; Dodson, Paul D.; Magill, Peter J.; Fernandes, Cathy; Cragg, Stephanie J.; Ang, Siew-Lan

    2015-01-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by l-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice. PMID:26283356

  14. Older Adults Show Deficits in Retrieving and Decoding Associative Mediators Generated at Study

    ERIC Educational Resources Information Center

    Hertzog, Christopher; Fulton, Erika K.; Mandviwala, Lulua; Dunlosky, John

    2013-01-01

    We instructed the use of mediators to encode paired-associate items, and then measured both cued recall of targets and mediators. Older adults (n = 49) and younger adults (n = 57) studied a mixed list of concrete and abstract noun pairs under instructions to either generate a sentence or an image to form a new association between normatively…

  15. Blocking glucocorticoid receptors at adolescent age prevents enhanced freezing between repeated cue-exposures after conditioned fear in adult mice raised under chronic early life stress.

    PubMed

    Arp, J Marit; Ter Horst, Judith P; Loi, Manila; den Blaauwen, Jan; Bangert, Eline; Fernández, Guillén; Joëls, Marian; Oitzl, Melly S; Krugers, Harm J

    2016-09-01

    Early life adversity can have long-lasting impact on learning and memory processes and increase the risk to develop stress-related psychopathologies later in life. In this study we investigated (i) how chronic early life stress (ELS) - elicited by limited nesting and bedding material from postnatal day 2 to 9 - affects conditioned fear in adult mice and (ii) whether these effects can be prevented by blocking glucocorticoid receptors (GRs) at adolescent age. In adult male and female mice, ELS did not affect freezing behavior to the first tone 24h after training in an auditory fear-conditioning paradigm. Exposure to repeated tones 24h after training also resulted in comparable freezing behavior in ELS and control mice, both in males and females. However, male (but not female) ELS compared to control mice showed significantly more freezing behavior between the tone-exposures, i.e. during the cue-off periods. Intraperitoneal administration of the GR antagonist RU38486 during adolescence (on postnatal days 28-30) fully prevented enhanced freezing behavior during the cue-off period in adult ELS males. Western blot analysis revealed no effects of ELS on hippocampal expression of glucocorticoid receptors, neither at postnatal day 28 nor at adult age, when mice were behaviorally tested. We conclude that ELS enhances freezing behavior in adult mice in a potentially safe context after cue-exposure, which can be normalized by brief blockade of glucocorticoid receptors during the critical developmental window of adolescence. PMID:27246249

  16. Dnmt3a in the Medial Prefrontal Cortex Regulates Anxiety-Like Behavior in Adult Mice.

    PubMed

    Elliott, Evan; Manashirov, Sharon; Zwang, Raaya; Gil, Shosh; Tsoory, Michael; Shemesh, Yair; Chen, Alon

    2016-01-20

    Recently, it has been suggested that alterations in DNA methylation mediate the molecular changes and psychopathologies that can occur following trauma. Despite the abundance of DNA methyltransferases (Dnmts) in the brain, which are responsible for catalyzing DNA methylation, their roles in behavioral regulation and in response to stressful challenges remain poorly understood. Here, we demonstrate that adult mice which underwent chronic social defeat stress (CSDS) displayed elevated anxiety-like behavior that was accompanied by a reduction in medial prefrontal cortex (mPFC)-DNA methyltransferase 3a (Dnmt3a) mRNA levels and a subsequent decrease in mPFC-global DNA methylation. To explore the role of mPFC-Dnmt3a in mediating the behavioral responses to stressful challenges we established lentiviral-based mouse models that express lower (knockdown) or higher (overexpression) levels of Dnmt3a specifically within the mPFC. Nonstressed mice injected with knockdown Dnmt3a lentiviruses specifically into the mPFC displayed the same anxiogenic phenotype as the CSDS mice, whereas overexpression of Dnmt3a induced an opposite, anxiolytic, effect in wild-type mice. In addition, overexpression of Dnmt3a in the mPFC of CSDS mice attenuated stress-induced anxiety. Our results indicate a central role for mPFC-Dnmt3a as a mediator of stress-induced anxiety. Significance statement: DNA methylation is suggested to mediate the molecular mechanisms linking environmental challenges, such as chronic stress or trauma, to increased susceptibility to psychopathologies. Here, we show that chronic stress-induced increase in anxiety-like behavior is accompanied by a reduction in DNA methyltransferase 3a (Dnmt3a) mRNA levels and global DNA methylation in the medial prefrontal cortex (mPFC). Overexpression or knockdown of mPFC-Dnmt3a levels induces decrease or increase in anxiety-like behavior, respectively. In addition, overexpression of Dnmt3a in the mPFC of chronic stressed mice attenuated

  17. Dnmt3a in the Medial Prefrontal Cortex Regulates Anxiety-Like Behavior in Adult Mice.

    PubMed

    Elliott, Evan; Manashirov, Sharon; Zwang, Raaya; Gil, Shosh; Tsoory, Michael; Shemesh, Yair; Chen, Alon

    2016-01-20

    Recently, it has been suggested that alterations in DNA methylation mediate the molecular changes and psychopathologies that can occur following trauma. Despite the abundance of DNA methyltransferases (Dnmts) in the brain, which are responsible for catalyzing DNA methylation, their roles in behavioral regulation and in response to stressful challenges remain poorly understood. Here, we demonstrate that adult mice which underwent chronic social defeat stress (CSDS) displayed elevated anxiety-like behavior that was accompanied by a reduction in medial prefrontal cortex (mPFC)-DNA methyltransferase 3a (Dnmt3a) mRNA levels and a subsequent decrease in mPFC-global DNA methylation. To explore the role of mPFC-Dnmt3a in mediating the behavioral responses to stressful challenges we established lentiviral-based mouse models that express lower (knockdown) or higher (overexpression) levels of Dnmt3a specifically within the mPFC. Nonstressed mice injected with knockdown Dnmt3a lentiviruses specifically into the mPFC displayed the same anxiogenic phenotype as the CSDS mice, whereas overexpression of Dnmt3a induced an opposite, anxiolytic, effect in wild-type mice. In addition, overexpression of Dnmt3a in the mPFC of CSDS mice attenuated stress-induced anxiety. Our results indicate a central role for mPFC-Dnmt3a as a mediator of stress-induced anxiety. Significance statement: DNA methylation is suggested to mediate the molecular mechanisms linking environmental challenges, such as chronic stress or trauma, to increased susceptibility to psychopathologies. Here, we show that chronic stress-induced increase in anxiety-like behavior is accompanied by a reduction in DNA methyltransferase 3a (Dnmt3a) mRNA levels and global DNA methylation in the medial prefrontal cortex (mPFC). Overexpression or knockdown of mPFC-Dnmt3a levels induces decrease or increase in anxiety-like behavior, respectively. In addition, overexpression of Dnmt3a in the mPFC of chronic stressed mice attenuated

  18. Coumarin compounds of Biebersteinia multifida roots show potential anxiolytic effects in mice

    PubMed Central

    2013-01-01

    Background Traditional preparations of the root of Biebersteinia multifida DC (Geraniaceae), a native medicinal plant of Irano-Turanian floristic region, have been used for the treatment of phobias as anxiolytic herbal preparation. Methods We utilized the phobic behavior of mice in an elevated plus-maze as a model to evaluate the anxiolytic effect of the plant extract and bio-guided fractionation was applied to isolate the active compounds. Total root extract, alkaline and ether fraction were administered to mice at different doses 30 and 90 min prior to the maze test. Saline and diazepam were administered as negative and positive controls, respectively. The time spent in open and closed arms, an index of anxiety behavior and entry time, was measured as an index of animal activity. Results The total root extract exhibited anxiolytic effect which was comparable to diazepam but with longer duration. This sustained effect of the crude extract was sustained for 90 min and was even more after injection of 45 mg/kg while the effect of diazepam had been reduced by 90 min. The anxiolytic effect factor was only present in the alkaline fraction and displayed its effect at lower doses than diazepam while pure vasicinone as the previously known alkaloid did not shown anxiolytic effect. The effect of the alkaline fraction was in a dose dependent manner starting at 0.2 mg/kg with a maximum at 1.0 mg/kg. Bio-guided fractionation using a variety of chromatographic methods led to isolation and purification of three coumarin derivatives from the bioactive fraction, including umbelliferone, scopoletin, and ferulic acid. Conclusion For the first time, bio-guided fractionation of the root extract of B. multifida indicates significant sustained anxiolytic effects which led to isolation of three coumarin derivatives with well-known potent MAO inhibitory and anti-anxiety effects. These data contribute to evidence-based traditional use of B. multifida root for anxiety disorders. PMID

  19. In Utero Exposure to Second-Hand Smoke Aggravates the Response to Ovalbumin in Adult Mice

    PubMed Central

    Xiao, Rui; Perveen, Zakia; Rouse, Rodney L.; Le Donne, Viviana; Paulsen, Daniel B.; Ambalavanan, Namasivayam

    2013-01-01

    Second-hand smoke (SHS) exposure in utero exacerbates adult responses to environmental irritants. We tested the hypothesis that effects of in utero SHS exposure on modulating physiological and transcriptome responses in BALB/c mouse lungs after ovalbumin (OVA) challenge extend well into adulthood, and that the responses show a sex bias. We exposed BALB/c mice in utero to SHS or filtered air (AIR), then sensitized and challenged all offspring with OVA from 19 to 23 weeks of age. At the end of the adult OVA challenge, we evaluated pulmonary function, examined histopathology, analyzed bronchoalveolar lavage fluid (BALF), and assessed gene expression changes in the lung samples. All groups exhibited lung inflammation and inflammatory cell infiltration. Pulmonary function testing (airway hyperresponsiveness [AHR], breathing frequency [f]) and BALF (cell differentials, Th1/Th2 cytokines) assessments showed significantly more pronounced lung responses in the SHS-OVA groups than in AIR-OVA groups (AHR, f; eosinophils, neutrophils; IFN-γ, IL-1b, IL-4, IL-5, IL-10, IL-13, KC/CXCL1, TNF-α), with the majority of responses being more pronounced in males than in females. SHS exposure in utero also significantly altered lung gene expression profiles, primarily of genes associated with inflammatory responses and respiratory diseases, including lung cancer and lung fibrosis. Altered expression profiles of chemokines (Cxcl2, Cxcl5, Ccl8, Ccl24), cytokines (Il1b, Il6, Il13) and acute phase response genes (Saa1, Saa3) were confirmed by qRT-PCR. In conclusion, in utero exposure to SHS exacerbates adult lung responses to OVA challenge and promotes a pro-asthmatic milieu in adult lungs; further, males are generally more affected by SHS-OVA than are females. PMID:23898987

  20. Transient Suppression of Dbx1 PreBötzinger Interneurons Disrupts Breathing in Adult Mice

    PubMed Central

    Vann, Nikolas C.; Pham, Francis D.; Hayes, John A.; Kottick, Andrew; Del Negro, Christopher A.

    2016-01-01

    Interneurons derived from Dbx1-expressing precursors located in the brainstem preBötzinger complex (preBötC) putatively form the core oscillator for inspiratory breathing movements. We tested this Dbx1 core hypothesis by expressing archaerhodopsin in Dbx1-derived interneurons and then transiently hyperpolarizing these neurons while measuring respiratory rhythm in vitro or breathing in vagus-intact adult mice. Transient illumination of the preBötC interrupted inspiratory rhythm in both slice preparations and sedated mice. In awake mice, light application reduced breathing frequency and prolonged the inspiratory duration. Support for the Dbx1 core hypothesis previously came from embryonic and perinatal mouse experiments, but these data suggest that Dbx1-derived preBötC interneurons are rhythmogenic in adult mice too. The neural origins of breathing behavior can be attributed to a localized and genetically well-defined interneuron population. PMID:27611210

  1. Transient Suppression of Dbx1 PreBötzinger Interneurons Disrupts Breathing in Adult Mice.

    PubMed

    Vann, Nikolas C; Pham, Francis D; Hayes, John A; Kottick, Andrew; Del Negro, Christopher A

    2016-01-01

    Interneurons derived from Dbx1-expressing precursors located in the brainstem preBötzinger complex (preBötC) putatively form the core oscillator for inspiratory breathing movements. We tested this Dbx1 core hypothesis by expressing archaerhodopsin in Dbx1-derived interneurons and then transiently hyperpolarizing these neurons while measuring respiratory rhythm in vitro or breathing in vagus-intact adult mice. Transient illumination of the preBötC interrupted inspiratory rhythm in both slice preparations and sedated mice. In awake mice, light application reduced breathing frequency and prolonged the inspiratory duration. Support for the Dbx1 core hypothesis previously came from embryonic and perinatal mouse experiments, but these data suggest that Dbx1-derived preBötC interneurons are rhythmogenic in adult mice too. The neural origins of breathing behavior can be attributed to a localized and genetically well-defined interneuron population. PMID:27611210

  2. Effect of dietary selenium and cancer cell xenograft on peripheral T and B lymphocytes in adult nude mice.

    PubMed

    Cheng, Wen-Hsing; Holmstrom, Alexandra; Li, Xiangdong; Wu, Ryan T Y; Zeng, Huawei; Xiao, Zhengguo

    2012-05-01

    Selenium (Se) is known to regulate tumorigenesis and immunity at the nutritional and supranutritional levels. Because the immune system provides critical defenses against cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop CD8(+) and CD4(+) T cells, we investigated whether B and T cell maturation could be modulated by dietary Se and by tumorigenesis in nude mice. Fifteen homozygous nude mice were fed a Se-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se+) or 1.0 (Se++) mg Se/kg (as Na(2)SeO(4)) for 6 months, followed by a 7-week time course of PC-3 prostate cancer cell xenograft (2 × 10(6) cells/site, 2 sites/mouse). Here, we show that peripheral B cell levels decreased in nude mice fed the Se -  or Se++ diet and the CD4(+) T cell levels increased in mice fed the Se++ diet. During the PC-3 cell tumorigenesis, dietary Se status did not affect peripheral CD4(+) or CD8(+) T cells in nude mice whereas mice fed with the Se++ diet appeared to exhibit greater peripheral CD25(+)CD4(+) T cells on day 9. Dietary Se status did not affect spleen weight in nude mice 7 weeks after the xenograft. Spleen weight was associated with frequency of peripheral CD4(+), but not CD8(+) T cells. Taken together, dietary Se at the nutritional and supranutritional levels regulates peripheral B and T cells in adult nude mice before and after xenograft with PC-3 prostate cancer cells.

  3. Effects of cage density on behavior in young adult mice.

    PubMed

    Davidson, Lauren P; Chedester, Alan L; Cole, Marlene N

    2007-08-01

    Optimal housing conditions for mice can be achieved by minimizing environmental variables, such as those that may contribute to anxiety-like behavior. This study evaluated the effects of cage size on juvenile mice through assessment of differences in weaning weight, locomotor skills, and anxiety-like behavior. Eighteen pairs of male and pregnant female Swiss-Webster (Cr:SW) mice were housed in 3 different caging scenarios, providing 429, 505, or 729 cm2 of space. Litters were standardized to 10 pups per litter in each cage. Mice reared in each caging scenario were assessed with the open-field, light-dark exploration, and elevated plus-maze tests. No differences in weaning weight were noted. Mice reared in the 505- and 729-cm2 cages explored a significantly larger area of the open-field arena than did those in the 429-cm2 cages. Those reared in the 505-cm2 cages spent more time in the center of the open field than did those in the 729-cm2 cages, suggesting that anxiety-like behavior may be increased in the animals housed in the larger cages. This study did not establish a consistent link between decreased floor space and increased anxiety-like behavior; neither does there appear to be a consistent effect of available floor area on the development of locomotor skills on mouse pups.

  4. Sod1 gene ablation in adult mice leads to physiological changes at the neuromuscular junction similar to changes that occur in old wild-type mice.

    PubMed

    Ivannikov, Maxim V; Van Remmen, Holly

    2015-07-01

    Reactive oxygen species (ROS) are believed to be important mediators of muscle atrophy and weakness in aging and many degenerative conditions. However, the mechanisms and physiological processes specifically affected by elevated ROS in neuromuscular units that contribute to muscle weakness during aging are not well defined. Here we investigate the effects of chronic oxidative stress on neurotransmission and excitation-contraction (EC) coupling mechanisms in the levator auris longus (LAL) muscle from young (4-8 months) and old (22-28 months) wild-type mice and young adult Cu-Zn superoxide dismutase 1 knockout (Sod1(-/-)) mice. The frequency of spontaneous neurotransmitter release and the amplitude of evoked neurotransmitter release in young Sod1(-/-) and old wild-type LAL neuromuscular junctions were significantly reduced from the young wild-type values, and those declines were mirrored by decreases in synaptic vesicle pool size. Presynaptic cytosolic calcium concentration and mitochondrial calcium uptake amplitudes showed substantial increases in stimulated young Sod1(-/-) and old axon terminals. Surprisingly, LAL muscle fibers from old mice showed a greater excitability than fibers from either young wild-type or young Sod1(-/-) LAL. Both evoked excitatory junction potential (EJP) and spontaneous mini EJP amplitudes were considerably higher in LAL muscles from old mice than in fibers from young Sod1(-/-) LAL muscle. Despite a greater excitability, sarcoplasmic calcium influx in both old wild-type and young Sod1(-/-) LAL muscle fibers was significantly less. Sarcoplasmic reticulum calcium levels were also reduced in both old wild-type and young Sod1(-/-) mice, but the difference was not statistically significant in muscle fibers from old wild-type mice. The protein ratio of triad calcium channels RyR1/DHPR was not different in all groups. However, fibers from both young Sod1(-/-) and old mice had substantially elevated levels of protein carbonylation and S

  5. Neuropathologic and biochemical changes during disease progression in liver X receptor beta-/- mice, a model of adult neuron disease.

    PubMed

    Bigini, Paolo; Steffensen, Knut R; Ferrario, Anna; Diomede, Luisa; Ferrara, Giovanni; Barbera, Sara; Salzano, Sonia; Fumagalli, Elena; Ghezzi, Pietro; Mennini, Tiziana; Gustafsson, Jan-Ake

    2010-06-01

    In amyotrophic lateral sclerosis (ALS), there is selective degeneration of motor neurons that leads to paralysis and death. Although the etiology of ALS is unclear, its heterogeneity suggests that a combination of factors (endogenous and/or environmental) may induce progressive motor neuron stress that results in the activation of different cell death pathways. Alterations of brain cholesterol homeostasis have recently been considered as possible cofactors in many neurodegenerative disorders, including ALS. The liver X receptor beta (LXRbeta) receptor is involved in lipogenesis and cholesterol metabolism, and we previously found that adult-onset motor neuron pathology occurs in LXRbeta mice. Here, we investigated neuromuscular alterations of LXRbeta mice from ages 3 to 24 months. Increased cholesterol levels, gliosis, and inflammation preceded motor neuron loss and clinical disease onset; the mice showed progressivemotor neuron deficits starting from age 7 months. The numbers ofmotor neurons and neuromuscular junctions were decreased in 24-month-old mice, but neither paralysis nor reduced life span was observed. Moreover, other spinal neurons were also lost in these mice. These results suggest that LXRbeta may inhibit neuroinflammation and maintain cholesterol homeostasis, and that LXRbeta mice represent a potential model for investigating the role of cholesterol in ALS and other neurodegenerative disorders.

  6. Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Signore, M.; Simeone, A.

    2001-01-01

    We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.

  7. Recombinant murine toxin from Yersinia pestis shows high toxicity and β-adrenergic blocking activity in mice.

    PubMed

    Fan, Yanxiao; Zhou, Yazhou; Feng, Na; Wang, Qiong; Tian, Guang; Wu, Xiaohong; Liu, Zizhong; Bi, Yujing; Yang, Ruifu; Wang, Xiaoyi

    2016-05-01

    Yersinia pestis murine toxin (Ymt) encoded on pMT1 is a 61-kDa protein, a member of the phospholipase D superfamily, which is found in all the domains of life. It is considered to be an intracellular protein required for the survival of Y. pestis in the midgut of the flea, but the exact role of Ymt in the pathogenesis of Y. pestis has not been clarified. Purified Ymt is highly toxic to mice and rats, but the exact mechanism of the animals' death is unclear. Here, we prepared a recombinant Ymt in Escherichia coli BL21 cells, and determined its toxicity and activity. We demonstrated that recombinant Ymt was as toxic to mice as the native protein when administered via the intraperitoneal or intravenous route, and inhibited the elevation of blood sugar caused by adrenaline. We also demonstrated that recombinant Ymt was highly toxic to mice when administered via the muscular or subcutaneous route. We also show that the multiple organ congestion or hemorrhage caused by Ymt poisoning may explain the death of the mice. PMID:26774329

  8. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit.

    PubMed

    Lee, Jiseok; Chung, Changuk; Ha, Seungmin; Lee, Dongmin; Kim, Do-Young; Kim, Hyun; Kim, Eunjoon

    2015-01-01

    Shank3 is a postsynaptic scaffolding protein implicated in synapse development and autism spectrum disorders. The Shank3 gene is known to produce diverse splice variants whose functions have not been fully explored. In the present study, we generated mice lacking Shank3 exon 9 (Shank3 (Δ9) mice), and thus missing five out of 10 known Shank3 splice variants containing the N-terminal ankyrin repeat region, including the longest splice variant, Shank3a. Our X-gal staining results revealed that Shank3 proteins encoded by exon 9-containing splice variants are abundant in upper cortical layers, striatum, hippocampus, and thalamus, but not in the olfactory bulb or cerebellum, despite the significant Shank3 mRNA levels in these regions. The hippocampal CA1 region of Shank3 (Δ9) mice exhibited reduced excitatory transmission at Schaffer collateral synapses and increased frequency of spontaneous inhibitory synaptic events in pyramidal neurons. In contrast, prelimbic layer 2/3 pyramidal neurons in the medial prefrontal cortex displayed decreased frequency of spontaneous inhibitory synaptic events, indicating alterations in the ratio of excitation/inhibition (E/I ratio) in the Shank3 (Δ9) brain. These mice displayed a mild increase in rearing in a novel environment and mildly impaired spatial memory, but showed normal social interaction and repetitive behavior. These results suggest that ankyrin repeat-containing Shank3 splice variants are important for E/I balance, rearing behavior, and spatial memory.

  9. Combination of glycosphingosomes and liposomal doxorubicin shows increased activity against dimethyl-α-benzanthracene-induced fibrosarcoma in mice

    PubMed Central

    Khan, Masood A; Aljarbou, Ahmed N; Aldebasi, Yousef H; Alorainy, Mohammed S; Khan, Arif

    2015-01-01

    The present study aimed to assess the antitumor effect of glycosphingolipid-incorporated liposomes (glycosphingosomes) in combination with liposomal doxorubicin (Lip-Dox) in a mouse model of fibrosarcoma. Glycosphingosomes were prepared by incorporating glycosphingolipids isolated from Sphingomonas paucimobilis into the liposomes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, cholesterol, and cardiolipin. Tumors were induced by administering dimethyl-α-benzanthracene, and tumor-bearing mice were treated with various formulations of Dox, including free Dox, Lip-Dox, or glycosphingosomes + Lip-Dox. Mice were observed for 90 days to monitor their survival and tumor size. Free Dox, but not Lip-Dox or a combination of glycosphingosomes and Lip-Dox, caused the substantial depletion of leukocytes and significantly increased the levels of lactate dehydrogenase and creatinine kinase in mice. Tumor-bearing mice treated with a combination of glycosphingosomes and Lip-Dox showed restricted tumor growth and increased survival when compared to those treated with free Dox or Lip-Dox. The results of the present study suggest that a combination of glycosphingosomes and Lip-Dox may prove to be very effective in the treatment of tumors. PMID:26504383

  10. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis

    PubMed Central

    Garthe, Alexander; Roeder, Ingo

    2016-01-01

    ABSTRACT We here show that living in a stimulus‐rich environment (ENR) improves water maze learning with respect to specific key indicators that in previous loss‐of‐function experiments have been shown to rely on adult hippocampal neurogenesis. Analyzing the strategies employed by mice to locate the hidden platform in the water maze revealed that ENR facilitated task acquisition by increasing the probability to use effective search strategies. ENR also enhanced the animals’ behavioral flexibility, when the escape platform was moved to a new location. Treatment with temozolomide, which is known to reduce adult neurogenesis, abolished the effects of ENR on both acquisition and flexibility, while leaving other aspects of water maze learning untouched. These characteristic effects and interdependencies were not seen in parallel experiments with voluntary wheel running (RUN), a second pro‐neurogenic behavioral stimulus. Since the histological assessment of adult neurogenesis is by necessity an end‐point measure, the levels of neurogenesis over the course of the experiment can only be inferred and the present study focused on behavioral parameters as analytical endpoints. Although the correlation of physical activity with precursor cell proliferation and of learning and the survival of new neurons is well established, how the specific functional effects described here relate to dynamic changes in the stem cell niche remains to be addressed. Nevertheless, our findings support the hypothesis that adult neurogenesis is a critical mechanism underlying the beneficial effects of leading an active live, rich in experiences. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:26311488

  11. Effect of chronic social defeat stress on behaviors and dopamine receptor in adult mice.

    PubMed

    Huang, Guang-Biao; Zhao, Tong; Gao, Xiao-Lei; Zhang, Hong-Xing; Xu, Yu-Ming; Li, Hao; Lv, Lu-Xian

    2016-04-01

    Victims of bullying often undergo depression, low self-esteem, high anxiety and post-traumatic stress disorder symptoms. The social defeat model has become widely accepted for studying experimental animal behavior changes associated with bullying; however, differences in the effects in susceptible and unsusceptible individuals have not been well studied. The present study investigated the effects of social defeat stress on behavior and the expression of dopamine receptors D1 and D2 in the brains of adult mice. Adult mice were divided into susceptible and unsusceptible groups after 10days of social defeat stress. Behavioral tests were conducted, and protein levels in the brains were assessed by Western blotting. The results indicate that all mice undergo decreased locomotion and increased anxiety behavior. However, decreased social interaction and impaired memory performance were only observed in susceptible mice. A significantly decreased expression of D1 was observed in the prefrontal cortex and amygdala of susceptible mice only. No significant differences in D2 expression were shown between control and defeated mice in any area studied. These data indicate that depression-like behavior and cognition impairment caused by social defeat stress in susceptible mice may be related to changes in the dopamine receptor D1. PMID:26655446

  12. Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones.

    PubMed

    Brock, Olivier; Keller, Matthieu; Douhard, Quentin; Bakker, Julie

    2012-01-01

    The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT) and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus) as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus), as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.

  13. Male mice housed in groups engage in frequent fighting and show a lower response to additional bone loading than females or individually housed males that do not fight.

    PubMed

    Meakin, Lee B; Sugiyama, Toshihiro; Galea, Gabriel L; Browne, William J; Lanyon, Lance E; Price, Joanna S

    2013-05-01

    Experiments to investigate bone's physiological adaptation to mechanical loading frequently employ models that apply dynamic loads to bones in vivo and assess the changes in mass and architecture that result. It is axiomatic that bones will only show an adaptive response if the applied artificial loading environment differs in a significant way from that to which the bones have been habituated by normal functional loading. It is generally assumed that this normal loading is similar between experimental groups. In the study reported here we found that this was not always the case. Male and female 17-week-old C57BL/6 mice were housed in groups of six, and a single episode (40 cycles) of non-invasive axial loading, engendering 2,200 με on the medial surface of the proximal tibiae in sample mice, was applied to right tibiae on alternate days for two weeks. This engendered an adaptive increase in bone mass in females, but not males. Observation revealed the main difference in behaviour between males and females was that males were involved in fights 1.3 times per hour, whereas the females never fought. We therefore housed all mice individually. In females, there was a similar significant osteogenic response to loading in cortical and trabecular bone of both grouped and individual mice. In contrast, in males, adaptive increases in the loaded compared with non-loaded control bones was only apparent in animals housed individually. Our interpretation of these findings is that the frequent vigorous fighting that occurs between young adult males housed in groups could be sufficient to engender peak strains and strain rates that equal or exceed the stimulus derived from artificial loading. This indicates the importance of ensuring that physical activity is consistent between groups. Reducing the background level of the naturally engendered strain environment allows adaptive responses to artificial loading to be demonstrated at lower loads.

  14. Characterization of motor units in behaving adult mice shows a wide primary range.

    PubMed

    Ritter, Laura K; Tresch, Matthew C; Heckman, C J; Manuel, Marin; Tysseling, Vicki M

    2014-08-01

    The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10-60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. PMID:24805075

  15. A multifunctional drug combination shows highly potent therapeutic efficacy against human cancer xenografts in athymic mice.

    PubMed

    Liu, Xiu-Jun; Zheng, Yan-Bo; Li, Yi; Wu, Shu-Ying; Zhen, Yong-Su

    2014-01-01

    The tumor microenvironment plays a crucial role during tumor development. Integrated combination of drugs that target tumor microenvironment is a promising approach to anticancer therapy. Here, we report a multifunctional combination of low-cytotoxic drugs composed of dipyridamole, bestatin and dexamethasone (DBDx) which mainly acts on the tumor microenvironment shows highly potent antitumor efficacy in vivo. In mouse hepatoma H22 model, the triple drug combination showed synergistic and highly potent antitumor efficacy. The combination indices of various combinations of the triple drugs were between 0.2 and 0.5. DBDx inhibited the growth of a panel of human tumor xenografts and showed no obvious systemic toxicity. At tolerated doses, DBDx suppressed the growth of human hepatocellular carcinoma BEL-7402, HepG2, and lung adenocarcinoma A549 xenografts by 94.5%, 93.7% and 96.9%, respectively. Clonogenic assay demonstrated that DBDx showed weak cytotoxicity. Western blot showed that Flk1 and Nos3 were down-regulated in the DBDx-treated group. Proteomic analysis showed that DBDx mainly affected the metabolic process and immune system process; in addition, the angiogenesis and VEGF signaling pathway were also affected. Conclusively, DBDx, a multifunctional drug combination of three low-cytotoxic drugs, shows synergistic and highly potent antitumor efficacy evidently mediated by the modulation of tumor microenvironment. Based on its low-cytotoxic attributes and its broad-spectrum antitumor therapeutic efficacy, this multifunctional combination might be useful in the treatment of cancers, especially those refractory to conventional chemotherapeutics.

  16. Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice.

    PubMed

    Aerts, Jeroen; Nys, Julie; Moons, Lieve; Hu, Tjing-Tjing; Arckens, Lutgarde

    2015-09-01

    Matrix metalloproteinases (MMPs) are Zn(2+)-dependent endopeptidases considered to be essential for normal brain development and neuroplasticity by modulating extracellular matrix proteins, receptors, adhesion molecules, growth factors and cytoskeletal proteins. Specifically, MMP-3 has recently been implicated in synaptic plasticity, hippocampus-dependent learning and neuronal development and migration in the cerebellum. However, the function(s) of this enzyme in the neocortex is understudied. Therefore, we explored the phenotypical characteristics of the neuronal architecture and the capacity for experience-dependent cortical plasticity in the visual cortex of adult MMP-3-deficient (MMP-3(-/-)) mice. Golgi-Cox stainings revealed a significant reduction in apical dendritic length and an increased number of apical obliques for layer V pyramidal neurons in the visual cortex of adult MMP-3(-/-) mice compared to wild-type (WT) animals. In addition, a significant upregulation of both phosphorylated and non-phosphorylated neurofilament protein (NF)-high, phosphorylated NF-medium, NF-low and α-internexin was detected in the visual cortex of MMP-3(-/-) mice. To assess the effect of MMP-3 deficiency on cortical plasticity, we monocularly enucleated adult MMP-3(-/-) mice and analyzed the reactivation of the contralateral visual cortex 7 weeks post-enucleation. In contrast to previous results in C57Bl/6J adult mice, activity remained confined to the binocular zone and did not expand into the monocular regions indicative for an aberrant open-eye potentiation. Permanent hypoactivity in the monocular cortex lateral and medial to V1 also indicated a lack of cross-modal plasticity. These observations demonstrate that genetic inactivation of MMP-3 has profound effects on the structural integrity and plasticity response of the visual cortex of adult mice.

  17. Maternal separation facilitates extinction of social fear in adult male mice.

    PubMed

    Zoicas, Iulia; Neumann, Inga D

    2016-01-15

    Early life stress, such as child abuse or neglect, is a risk factor for the development of psychopathologies characterized by abnormal social and emotional behaviors. In rodents, long-lasting changes in stress coping and emotional behavior can be induced by separating pups from their mother. We used maternal separation (MS; 3h daily on postnatal days 1-14) to test whether early life stress alters acquisition and extinction of social fear in adult male mice as studied in a specific model of social fear, i.e., in the social fear conditioning paradigm. We show that MS facilitated extinction of social fear without altering acquisition or expression of social fear. This facilitatory effect of MS on social fear extinction was not due to improved social learning and memory abilities or to increased social interest, as MS rather impaired social memory in the social discrimination test and did not alter social preference in the social preference-avoidance test. In contrast, MS did not alter acquisition and extinction of non-social, cued fear, or non-social memory as assessed in the object discrimination test and non-social anxiety as assessed in the elevated plus-maze. These results suggest that a social stress like MS in early life may improve coping with and recovery from a traumatic social experience in adulthood in mice. PMID:26497106

  18. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia.

    PubMed

    Fry, Christopher S; Lee, Jonah D; Mula, Jyothi; Kirby, Tyler J; Jackson, Janna R; Liu, Fujun; Yang, Lin; Mendias, Christopher L; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2015-01-01

    A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis.

  19. Maternal separation facilitates extinction of social fear in adult male mice.

    PubMed

    Zoicas, Iulia; Neumann, Inga D

    2016-01-15

    Early life stress, such as child abuse or neglect, is a risk factor for the development of psychopathologies characterized by abnormal social and emotional behaviors. In rodents, long-lasting changes in stress coping and emotional behavior can be induced by separating pups from their mother. We used maternal separation (MS; 3h daily on postnatal days 1-14) to test whether early life stress alters acquisition and extinction of social fear in adult male mice as studied in a specific model of social fear, i.e., in the social fear conditioning paradigm. We show that MS facilitated extinction of social fear without altering acquisition or expression of social fear. This facilitatory effect of MS on social fear extinction was not due to improved social learning and memory abilities or to increased social interest, as MS rather impaired social memory in the social discrimination test and did not alter social preference in the social preference-avoidance test. In contrast, MS did not alter acquisition and extinction of non-social, cued fear, or non-social memory as assessed in the object discrimination test and non-social anxiety as assessed in the elevated plus-maze. These results suggest that a social stress like MS in early life may improve coping with and recovery from a traumatic social experience in adulthood in mice.

  20. Effects of Allogeneic Hematopoietic Stem Cell Transplantation Plus Thymus Transplantation on Malignant Tumors: Comparison Between Fetal, Newborn, and Adult Mice

    PubMed Central

    Zhang, Yuming; Hosaka, Naoki; Cui, Yunze; Shi, Ming

    2011-01-01

    We have recently shown that allogeneic intrabone marrow–bone marrow transplantation + adult thymus transplantation (TT) is effective for hosts with malignant tumors. However, since thymic and hematopoietic cell functions differ with age, the most effective age for such intervention needed to be determined. We performed hematopoietic stem cell transplantation (HSCT) using the intrabone marrow method with or without TT from fetal, newborn, and adult B6 mice (H-2b) into BALB/c mice (H-2d) bearing Meth-A sarcoma (H-2d). The mice treated with all types of HSCT + TT showed more pronounced regression and longer survival than those treated with HSCT alone in all age groups. Those treated with HSCT + TT showed increased numbers of CD4+ and CD8+ T cells but decreased numbers of Gr-1/Mac-1 myeloid suppressor cells and decreased percentages of FoxP3 cells in CD4+ T cells, compared with those treated with HSCT alone. In all mice, those treated with fetal liver cell (as fetal HSCs) transplantation + fetal TT or with newborn liver cell (as newborn HSCs) transplantation (NLT) + newborn TT (NTT) showed the most regression, and the latter showed the longest survival. The number of Gr-1/Mac-1 cells was the lowest, whereas the percentage of CD62L−CD44+ effector memory T cells and the production of interferon γ (IFN-γ) were highest in the mice treated with NLT + NTT. These findings indicate that, at any age, HSCT + TT is more effective against cancer than HSCT alone and that NLT + NTT is most effective. PMID:20672991

  1. Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice

    NASA Technical Reports Server (NTRS)

    Hayes, N. L.; Nowakowski, R. S.

    2002-01-01

    The output potential of proliferating populations in either the developing or the adult nervous system is critically dependent on the length of the cell cycle (T(c)) and the size of the proliferating population. We developed a new approach for analyzing the cell cycle, the 'Saturate and Survive Method' (SSM), that also reveals the dynamic behaviors in the proliferative population and estimates of the size of the proliferating population. We used this method to analyze the proliferating population of the adult dentate gyrus in 60 day old mice of two inbred strains, C57BL/6J and BALB/cByJ. The results show that the number of cells labeled by exposure to BUdR changes dramatically with time as a function of the number of proliferating cells in the population, the length of the S-phase, cell division, the length of the cell cycle, dilution of the S-phase label, and cell death. The major difference between C57BL/6J and BALB/cByJ mice is the size of the proliferating population, which differs by a factor of two; the lengths of the cell cycle and the S-phase and the probability that a newly produced cell will die within the first 10 days do not differ in these two strains. This indicates that genetic regulation of the size of the proliferating population is independent of the genetic regulation of cell death among those newly produced cells. The dynamic changes in the number of labeled cells as revealed by the SSM protocol also indicate that neither single nor repeated daily injections of BUdR accurately measure 'proliferation.'.

  2. Memory-enhancing effects of Cuscuta japonica Choisy via enhancement of adult hippocampal neurogenesis in mice.

    PubMed

    Moon, Minho; Jeong, Hyun Uk; Choi, Jin Gyu; Jeon, Seong Gak; Song, Eun Ji; Hong, Seon-Pyo; Oh, Myung Sook

    2016-09-15

    It is generally accepted that functional and structural changes within the hippocampus are involved in learning and memory and that adult neurogenesis in this region may modulate cognition. The extract of Cuscuta japonica Choisy (CJ) is a well-known traditional Chinese herbal medicine that has been used since ancient times as a rejuvenation remedy. The systemic effects of this herb are widely known and can be applied for the treatment of a number of physiological diseases, but there is a lack of evidence describing its effects on brain function. Thus, the present study investigated whether CJ would enhance memory function and/or increase hippocampal neurogenesis using mice orally administered with CJ water extract or vehicle for 21days. Performance on the novel object recognition and passive avoidance tests revealed that treatment with CJ dose-dependently improved the cognitive function of mice. Additionally, CJ increased the Ki-67-positive proliferating cells and the number of doublecortin-stained neuroblasts in the dentate gyrus (DG) of the hippocampus, and double labeling with 5-bromo-2-deoxyuridine and neuronal specific nuclear protein showed that CJ increased the number of mature neurons in the DG. Finally, CJ resulted in the upregulated expression of neurogenic differentiation factor, which is essential for the maturation and differentiation of granule cells in the hippocampus. Taken together, the present findings indicate that CJ stimulated neuronal cell proliferation, differentiation, and maturation, which are all processes associated with neurogenesis. Additionally, these findings suggest that CJ may improve learning and memory via the enhancement of adult hippocampal neurogenesis.

  3. Long-term exposure to decabrominated diphenyl ether impairs CD8 T-cell function in adult mice

    PubMed Central

    Zeng, Weihong; Wang, Ying; Liu, Zhicui; Khanniche, Asma; Hu, Qingliang; Feng, Yan; Ye, Weiyi; Yang, Jianglong; Wang, Shujun; Zhou, Lin; Shen, Hao; Wang, Yan

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants that accumulate to high levels in human populations that are subject to occupational or regional industry exposure. PBDEs have been shown to affect human neuronal, endocrine and reproductive systems, but their effect on the immune system is not well understood. In this study, experimental adult mice were intragastrically administered 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209) at doses of 8, 80 or 800 mg/kg of body weight (bw) at 2-day intervals. Our results showed that continuous exposure to BDE-209 resulted in high levels of BDE-209 in the plasma that approached the levels found in people who work in professions with high risks of PDBE exposure. Reduced leukocytes, decreased cytokine (IFN-γ, IL-2 and TNF-α) production and lower CD8 T-cell proliferation were observed in the mice exposed to BDE-209. Additionally, mice with long-term BDE-209 exposure had lower numbers of antigen-specific CD8 T cells after immunization with recombinant Listeria monocytogenes expressing ovalbumin (rLm-OVA) and the OVA-specific CD8 T cells had reduced functionality. Taken together, our study demonstrates that continuous BDE-209 exposure causes adverse effects on the number and functionality of immune cells in adult mice. PMID:24705197

  4. Pubertal and adult Leydig cell function in Mullerian inhibiting substance-deficient mice.

    PubMed

    Wu, Xiufeng; Arumugam, Ramamani; Baker, Stephen P; Lee, Mary M

    2005-02-01

    Mullerian inhibiting substance (MIS) causes Mullerian duct regression during sexual differentiation and regulates postnatal Leydig cell development. MIS knockout (MIS-KO) mice with targeted deletions of MIS develop Leydig cell hyperplasia, but their circulating androgen concentrations are reportedly unaltered. We compared reproductive hormone profiles, androgen biosynthesis, and the expression of key steroidogenic and metabolic enzymes in MIS-KO and wild-type (WT) mice at puberty (36 d) and sexual maturity (60 d). In pubertal animals, basal testosterone and LH concentrations in plasma were lower in MIS-KO than WT mice, whereas human chorionic gonadotropin-stimulated testosterone concentrations were similar. In adults, basal LH, and both basal and human chorionic gonadotropin (hCG)-stimulated testosterone concentrations were similar. Purified Leydig cells from pubertal MIS-KO mice had lower testosterone but higher androstanediol and androstenedione production rates. In contrast, testosterone, androstanediol, and androstenedione production rates were all lower in adult MIS-KO Leydig cells. Steroidogenic acute regulatory protein expression was lower in pubertal MIS-KO mice compared with WT, whereas 17beta-hydroxy-steroid dehydrogenase and 5alpha-reductase were greater, and P450c17 and P450scc were similar. The expression of steroidogenic acute regulatory protein and 17beta-hydroxysteroid dehydrogenase was lower in adult MIS-KO mice, whereas that of 5alpha-reductase, P450c17, and P450scc was similar. Collectively, these results suggest that in the absence of MIS, Leydig cells remain less differentiated, causing an altered intratesticular androgen milieu that may contribute to the infertility of MIS-KO mice. In immature mice, this deficit in steroidogenic capacity appears to be mediated by a direct loss of MIS action in Leydig cells as well as by indirect effects via the hypothalamic-pituitary-gonadal axis.

  5. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  6. Intrahepatic transplantation of CD34+ cord blood stem cells into newborn and adult NOD/SCID mice induce differential organ engraftment.

    PubMed

    Wulf-Goldenberg, Annika; Keil, Marlen; Fichtner, Iduna; Eckert, Klaus

    2012-04-01

    In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34(+) cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation. Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34(+) cord blood stem cell preparations.

  7. Older adults show a self-reference effect for narrative information.

    PubMed

    Carson, Nicole; Murphy, Kelly J; Moscovitch, Morris; Rosenbaum, R Shayna

    2016-10-01

    The self-reference effect (SRE), enhanced memory for information encoded through self-related processing, has been established in younger and older adults using single trait adjective words. We sought to examine the generality of this phenomenon by studying narrative information in these populations. Additionally, we investigated retrieval experience at recognition and whether valence of stimuli influences memory differently in young and older adults. Participants encoded trait adjectives and narratives in self-reference, semantic, or structural processing conditions, followed by tests of recall and recognition. Experiment 1 revealed an SRE for trait adjective recognition and narrative cued recall in both age groups, although the existence of an SRE for narrative recognition was unclear due to ceiling effects. Experiment 2 revealed an SRE on an adapted test of narrative recognition. Self-referential encoding was shown to enhance recollection for both trait adjectives and narrative material in Experiment 1, whereas similar estimates of recollection for self-reference and semantic conditions were found in Experiment 2. Valence effects were inconsistent but generally similar in young and older adults when they were found. Results demonstrate that the self-reference technique extends to narrative information in young and older adults and may provide a valuable intervention tool for those experiencing age-related memory decline.

  8. Older adults show a self-reference effect for narrative information.

    PubMed

    Carson, Nicole; Murphy, Kelly J; Moscovitch, Morris; Rosenbaum, R Shayna

    2016-10-01

    The self-reference effect (SRE), enhanced memory for information encoded through self-related processing, has been established in younger and older adults using single trait adjective words. We sought to examine the generality of this phenomenon by studying narrative information in these populations. Additionally, we investigated retrieval experience at recognition and whether valence of stimuli influences memory differently in young and older adults. Participants encoded trait adjectives and narratives in self-reference, semantic, or structural processing conditions, followed by tests of recall and recognition. Experiment 1 revealed an SRE for trait adjective recognition and narrative cued recall in both age groups, although the existence of an SRE for narrative recognition was unclear due to ceiling effects. Experiment 2 revealed an SRE on an adapted test of narrative recognition. Self-referential encoding was shown to enhance recollection for both trait adjectives and narrative material in Experiment 1, whereas similar estimates of recollection for self-reference and semantic conditions were found in Experiment 2. Valence effects were inconsistent but generally similar in young and older adults when they were found. Results demonstrate that the self-reference technique extends to narrative information in young and older adults and may provide a valuable intervention tool for those experiencing age-related memory decline. PMID:26360612

  9. Do Adults with Mental Retardation Show Pictorial Superiority Effects in Recall and Recognition?

    ERIC Educational Resources Information Center

    Cherry, Katie E.; Applegate, Heather; Reese, Celinda M.

    2002-01-01

    A study examined memory for pictures and words in 16 adults with mental retardation and 24 controls. Pictorial superiority effects occurred in free recall and recognition for both intelligence-level groups. Correlational analyses indicated working memory span was primarily related to recall performance, irrespective of stimulus format. (Contains…

  10. Effect of Selenium on Neurotoxicity in Adult Male Mice Exposed to Formaldehyde

    PubMed Central

    Mohammadi, Shabnam

    2014-01-01

    Background: Formaldehyde is used in medicine and industry, and it is known to have detrimental effects on various systems including the nervous system, by increasing oxidative stress. However, data are scarce related to substances that can protect against the neurotoxicity induced by formaldehyde. Therefore, this study was designed to assess the protective effects of selenium against the toxic effect of this compound. Methods: A total of 48 adult male mice were divided randomly into six groups, i.e., (1) control, (2) treated with formaldehyde, (3) treated with formaldehyde plus 0.1 mg/kg selenium, (4) treated with formaldehyde plus 0.2 mg/kg selenium, (5) treated with formaldehyde plus 0.4 mg/kg selenium, and (6) treated with formaldehyde plus 0.8 mg/kg selenium. At the end of 14 days, the cerebellums were removed for histological evaluation. Morphological changes were examined using Image J software. The data were analyzed using SPSS software version 20.0 and analysis of variance (ANOVA). Results: Formaldehyde caused a reduction in the numbers and sizes of Purkinje cells and granular cells; in addition, the thickness of the granular layer was thinner than that in the control mice (P < 0.05). Treatment with 0.1 mg/kg selenium resulted in an increase in the number of Purkinje cells as well as the area of the gray matter compared to those of the control mice. Conclusion: Formaldehyde-induced neuronal damage was prevented by the administration of 0.1 mg/kg selenium, hence this treatment shows therapeutic potential for the treatment of neurotoxicity PMID:25763172

  11. Do Adults Show an Effect of Delayed First Language Acquisition When Calculating Scalar Implicatures?

    PubMed Central

    Davidson, Kathryn; Mayberry, Rachel I

    2015-01-01

    Language acquisition involves learning not only grammatical rules and a lexicon, but also what someone is intending to convey with their utterance: the semantic/pragmatic component of language. In this paper we separate the contributions of linguistic development and cognitive maturity to the acquisition of the semantic/pragmatic component of language by comparing deaf adults who had either early or late first exposure to their first language (ASL). We focus on the particular type of meaning at the semantic/pragmatic interface called scalar implicature, for which preschool-age children typically differ from adults. Children's behavior has been attributed to either their not knowing appropriate linguistic alternatives to consider or to cognitive developmental differences between children and adults. Unlike children, deaf adults with late language exposure are cognitively mature, although they never fully acquire some complex linguistic structures, and thus serve as a test for the role of language in such interpretations. Our results indicate an overall high performance by late learners, especially when implicatures are not based on conventionalized items. However, compared to early language learners, late language learners compute fewer implicatures when conventionalized linguistic alternatives are involved (e.g. ). We conclude that (i) in general, Gricean pragmatic reasoning does not seem to be impacted by delayed first language acquisition and can account for multiple quantity implicatures, but (ii) the creation of a scale based on lexical items can lead to ease in alternative creation that may be advantageously learned early in life, and that this may be one of several factors contributing to differences between adults and children on scalar implicature tasks. PMID:26997850

  12. Developmental and adult GAP-43 deficiency in mice dynamically alters hippocampal neurogenesis and mossy fiber volume.

    PubMed

    Latchney, Sarah E; Masiulis, Irene; Zaccaria, Kimberly J; Lagace, Diane C; Powell, Craig M; McCasland, James S; Eisch, Amelia J

    2014-01-01

    Growth-associated protein-43 (GAP-43) is a presynaptic protein that plays key roles in axonal growth and guidance and in modulating synapse formation. Previous work has demonstrated that mice lacking one allele of this gene (GAP-43+/- mice) exhibit hippocampal structural abnormalities, impaired spatial learning and stress-induced behavioral withdrawal and anxiety, behaviors that are dependent on proper hippocampal circuitry and function. Given the correlation between hippocampal function, synaptic connectivity and neurogenesis, we tested if behaviorally naïve GAP-43+/- mice had alterations in either neurogenesis or synaptic connectivity in the hippocampus during early postnatal development and young adulthood, and following behavior testing in older adults. To test our hypothesis, we examined hippocampal cell proliferation (Ki67), number of immature neuroblasts (doublecortin, DCX) and mossy fiber volume (synaptoporin) in behaviorally naïve postnatal day 9 (P9) and P26, and behaviorally experienced 5- to 7-month-old GAP-43+/- and +/+ littermate mice. P9 GAP-43+/- mice had fewer Ki67+ and DCX+ cells compared to +/+ mice, particularly in the posterior dentate gyrus, and smaller mossy fiber volume in the same region. In young adulthood, however, male GAP-43+/- mice had more Ki67+ and DCX+ cells and greater mossy fiber volume in the posterior dentate gyrus relative to male +/+ mice. These increases were not seen in females. In 5- to 7-month-old GAP-43+/- mice (whose behaviors were the focus of our prior publication), there was no global change in the number of proliferating or immature neurons relative to +/+ mice. However, more detailed analysis revealed fewer proliferative DCX+ cells in the anterior dentate gyrus of male GAP-43+/- mice compared to male +/+ mice. This reduction was not observed in females. These results suggest that young GAP-43+/- mice have decreased hippocampal neurogenesis and synaptic connectivity, but slightly older mice have greater hippocampal

  13. Altered resistance to Trichinella spiralis infection following subchronic exposure of adult mice to chemicals of environmental concern

    SciTech Connect

    Luebke, R.W.

    1981-01-01

    The effects of subchronic chemical exposure on expulsion of adult Trichinella spiralis from the small intestine of mice and encystment of newborn larvae in the host's musculature were investigated. Exposure to diethylstilbestrol, benzo(a)pyrene, tris-(1,3-dichloro-2-propyl) phosphate, cyclophosphamide, phorbol myristate acetate, and dimethylvinylchloride prior to infection of mice with 200 infective larvae resulted in larger worm burdens in treated animals than in controls 14 days after infection. Worm expulsion was not affected by exposure to tris-(2,3-dibromopropyl)phosphate, orthophenylphenol, and indomethacin. Increased burdens of muscle-phase larvae were found in animals that maintained significant numbers of adult worms in the gut at 14 days, except in mice administered diethylstilbestrol and dimethylvinylchloride. Exposure to diethylstilbestrol and cyclophosphamide resulted in decreased inflammatory reactions in the tissues of the small intestine and development of bone marrow eosinophilia in infected mice. Marrow eosinophilia was likewise decreased in mice given tris-(1,3-dichloro-2-propyl)phosphate before infection. Additional studies with diethylstilbestrol administered either before, at the time of, or after infection showed inhibition of worm expulsion. Drug exposure during a primary infection inhibited the expulsion of a second T. spiralis infection, but did not affect worm elimination when given during a second infection. Treatment with diethylstilbestrol after artificial sensitization of mice with Trichinella antigens decreased delayed hypersensitivity responses to the sensitizing antigen. Immune functions, assessed by lymphoproliferative responses to mitogens and antibody responses to sheep red blood cells, generally correlated with altered host resistance to T. spiralis infection.

  14. Mice with deficient BK channel function show impaired prepulse inhibition and spatial learning, but normal working and spatial reference memory.

    PubMed

    Typlt, Marei; Mirkowski, Magdalena; Azzopardi, Erin; Ruettiger, Lukas; Ruth, Peter; Schmid, Susanne

    2013-01-01

    Genetic variations in the large-conductance, voltage- and calcium activated potassium channels (BK channels) have been recently implicated in mental retardation, autism and schizophrenia which all come along with severe cognitive impairments. In the present study we investigate the effects of functional BK channel deletion on cognition using a genetic mouse model with a knock-out of the gene for the pore forming α-subunit of the channel. We tested the F1 generation of a hybrid SV129/C57BL6 mouse line in which the slo1 gene was deleted in both parent strains. We first evaluated hearing and motor function to establish the suitability of this model for cognitive testing. Auditory brain stem responses to click stimuli showed no threshold differences between knockout mice and their wild-type littermates. Despite of muscular tremor, reduced grip force, and impaired gait, knockout mice exhibited normal locomotion. These findings allowed for testing of sensorimotor gating using the acoustic startle reflex, as well as of working memory, spatial learning and memory in the Y-maze and the Morris water maze, respectively. Prepulse inhibition on the first day of testing was normal, but the knockout mice did not improve over the days of testing as their wild-type littermates did. Spontaneous alternation in the y-maze was normal as well, suggesting that the BK channel knock-out does not impair working memory. In the Morris water maze knock-out mice showed significantly slower acquisition of the task, but normal memory once the task was learned. Thus, we propose a crucial role of the BK channels in learning, but not in memory storage or recollection.

  15. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    EPA Science Inventory

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male mice
    John C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.
    1Reproductive Toxicology Division, National Health and Envir...

  16. Gonadectomy prior to puberty decreases normal parental behavior in adult mice

    PubMed Central

    Kercmar, Jasmina; Snoj, Tomaz; Tobet, Stuart A.; Majdic, Gregor

    2014-01-01

    Sex steroid hormones secreted by gonads influence development and expression of many behaviors including parental behaviors. The capacity to display many behaviors develops under the influence of sex steroid hormones; it begins with gonadal differentiation and lasts through puberty. The timing of gonadectomy may have important and long lasting effects on the organization and activation of neural circuits regulating the expression of different behaviors. The present study investigated the importance of exposure to endogenous gonadal steroid hormones during pubertal period/adolescence on parental behavior in adult mice. Male and female WT mice were gonadectomized either before puberty (25 days of age) or after puberty (60 days of age) and tested for parental behavior with and without estradiol benzoate (EB) replacement in adulthood. Additional groups of mice were gonadectomized at P25 and supplemented with estradiol (females) or testosterone (males) during puberty. Female mice gonadectomized after puberty or gonadectomized before puberty and supplemented with estradiol during puberty, displayed better pup directed parental behaviors in comparison to mice gonadectomized at 25 days of age regardless treatment with estradiol in adulthood. However, mice treated with EB in adulthood displayed better non-pup directed nest building behavior than when they were tested without EB treatment regardless of sex and time of gonadectomy. To examine whether the sensitivity to sex steroid hormones was altered due to differences in time without gonads prior to the testing, mice were also tested for female sex behavior and there were no differences between mice gonadectomized at P25 or P60, although this could not completely rule out the possibility that parental behavior is more sensitive to prolonged absence of steroid hormones than female sex behavior. These results suggest that the absence of gonads and thereby the absence of appropriate gonadal steroid hormones during puberty

  17. Regulation of cpg15 expression during single whisker experience in the barrel cortex of adult mice.

    PubMed

    Harwell, Corey; Burbach, Barry; Svoboda, Karel; Nedivi, Elly

    2005-10-01

    Regulation of gene transcription by neuronal activity is thought to be key to the translation of sensory experience into long-term changes in synaptic structure and function. Here we show that cpg15, a gene encoding an extracellular signaling molecule that promotes dendritic and axonal growth and synaptic maturation, is regulated in the somatosensory cortex by sensory experience capable of inducing cortical plasticity. Using in situ hybridization, we monitored cpg15 expression in 4-week-old mouse barrel cortex after trimming all whiskers except D1. We found that cpg15 expression is depressed in the deprived barrels and enhanced in the barrel column corresponding to the spared D1 whisker. Changes in cpg15 mRNA levels first appear in layer IV, peak 12 h after deprivation, and then decline rapidly. In layers II/III, changes in cpg15 expression appear later, peak at 24 h, and persist for days. Induction of cpg15 expression is significantly diminished in adolescent as well as adult CREB knockout mice. cpg15's spatio-temporal expression pattern and its regulation by CREB are consistent with a role in experience-dependent plasticity of cortical circuits. Our results suggest that local structural and/or synaptic changes may be a mechanism by which the adult cortex can adapt to peripheral manipulations. PMID:16010668

  18. Motor impairment induced by oral exposure to methylmercury in adult mice.

    PubMed

    Dietrich, Marcelo O; Mantese, Carlos E; Anjos, Gabriel Dos; Souza, Diogo O; Farina, Marcelo

    2005-01-01

    The effects of oral exposure to methylmercury chloride (MeHg) on locomotor control and activity in adult mice were investigated in the present study. MeHg was diluted in drinking water (0, 20 and 40mg/L - as methylmercury chloride) and locomotion (spontaneous locomotor activity) and motor impairment tests (beam walking, footprint and clasping) were performed at 7, 14 and 21 days after the beginning of the treatment. MeHg exposure caused a significant decrease in spontaneous locomotor activity and this effect was dose- and time-dependent. Significant dose- and duration-dependent increases in beam walking latency were observed following chronic MeHg exposure. Furthermore, dose- and duration-dependent locomotor deficits on footprint coordination were also observed. Taken together, these results show that MeHg-induced impairment on locomotor activity is not limited to exposures that take place during neural development. We discuss the possible relationship between our findings and the similar clinical signs observed in adult humans exposed to MeHg. PMID:21783473

  19. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  20. Effect of oral administration of Kudoa septempunctata genotype ST3 in adult BALB/c mice.

    PubMed

    Ahn, Meejung; Woo, Hochoon; Kang, Bongjo; Jang, Yeounghwan; Shin, Taekyun

    2015-01-01

    Kudoa septempunctata (Myxozoa: Multivalvulida) infects the muscles of olive flounder (Paralichthys olivaceus, Paralichthyidae) in the form of spores. To investigate the effect of K. septempunctata spores in mammals, adult BALB/c mice were fed with spores of K. septempunctata genotype ST3 (1.35 × 10(5) to 1.35 × 10(8) spores/mouse). After ingestion of spores, the mice remained clinically normal during the 24-h observation period. No spores were found in any tissue examined by histopathological screening. Quantitative PCR screening of the K. septempunctata 18S rDNA gene revealed that the K. septempunctata spores were detected only in the stool samples from the spore-fed groups. Collectively, these findings suggest that K. septempunctata spores are excreted in faeces and do not affect the gastrointestinal tract of adult mice. PMID:26630307

  1. Chronic methadone treatment shows a better cost/benefit ratio than chronic morphine in mice.

    PubMed

    Enquist, Johan; Ferwerda, Madeline; Milan-Lobo, Laura; Whistler, Jennifer L

    2012-02-01

    Chronic treatment of pain with opiate drugs can lead to analgesic tolerance and drug dependence. Although all opiate drugs can promote tolerance and dependence in practice, the severity of those unwanted side effects differs depending on the drug used. Although each opiate drug has its own unique set of pharmacological profiles, methadone is the only clinically used opioid drug that produces substantial receptor endocytosis at analgesic doses. Here, we examined whether moderate doses of methadone carry any benefits over chronic use of equianalgesic morphine, the prototypical opioid. Our data show that chronic administration of methadone produces significantly less analgesic tolerance than morphine. Furthermore, we found significantly reduced precipitated withdrawal symptoms after chronic methadone treatment than after chronic morphine treatment. Finally, using a novel animal model with a degrading μ-opioid receptor we showed that, although endocytosis seems to protect against tolerance development, endocytosis followed by receptor degradation produces a rapid onset of analgesic tolerance to methadone. Together, these data indicated that opioid drugs that promote receptor endocytosis and recycling, such as methadone, may be a better choice for chronic pain treatment than morphine and its derivatives that do not.

  2. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer

    PubMed Central

    Bernardes de Jesus, Bruno; Vera, Elsa; Schneeberger, Kerstin; Tejera, Agueda M; Ayuso, Eduard; Bosch, Fatima; Blasco, Maria A

    2012-01-01

    A major goal in aging research is to improve health during aging. In the case of mice, genetic manipulations that shorten or lengthen telomeres result, respectively, in decreased or increased longevity. Based on this, we have tested the effects of a telomerase gene therapy in adult (1 year of age) and old (2 years of age) mice. Treatment of 1- and 2-year old mice with an adeno associated virus (AAV) of wide tropism expressing mouse TERT had remarkable beneficial effects on health and fitness, including insulin sensitivity, osteoporosis, neuromuscular coordination and several molecular biomarkers of aging. Importantly, telomerase-treated mice did not develop more cancer than their control littermates, suggesting that the known tumorigenic activity of telomerase is severely decreased when expressed in adult or old organisms using AAV vectors. Finally, telomerase-treated mice, both at 1-year and at 2-year of age, had an increase in median lifespan of 24 and 13%, respectively. These beneficial effects were not observed with a catalytically inactive TERT, demonstrating that they require telomerase activity. Together, these results constitute a proof-of-principle of a role of TERT in delaying physiological aging and extending longevity in normal mice through a telomerase-based treatment, and demonstrate the feasibility of anti-aging gene therapy. PMID:22585399

  3. Cumulative neonatal oxygen exposure predicts response of adult mice infected with influenza A virus

    PubMed Central

    Maduekwe, Echezona T.; Buczynski, Bradley W.; Yee, Min; Rangasamy, Tiruamalai; Stevens, Timothy P.; Lawrence, B. Paige; O'Reilly, Michael A.

    2015-01-01

    Summary An acceptable level of oxygen exposure in preterm infants that maximizes efficacy and minimizes harm has yet to be determined. Quantifying oxygen exposure as an area-under-the curve (OAUC) has been predictive of later respiratory symptoms among former low birth weight infants. Here, we test the hypothesis that quantifying OAUC in newborn mice can predict their risk for altered lung development and respiratory viral infections as adults. Newborn mice were exposed to room air or a FiO2 of 100% oxygen for 4 days, 60% oxygen for 8 days, or 40% oxygen for 16 days (same cumulative dose of excess oxygen). At 8 weeks of age, mice were infected intranasally with a non-lethal dose of influenza A virus. Adult mice exposed to 100% oxygen for 4 days or 60% oxygen for 8 days exhibited alveolar simplification and altered elastin deposition compared to siblings birthed into room air, as well as increased inflammation and fibrotic lung disease following viral infection. These changes were not observed in mice exposed to 40% oxygen for 16 days. Our findings in mice support the concept that quantifying OAUC over a currently unspecified threshold can predict human risk for respiratory morbidity later in life. PMID:24850805

  4. Loss of endothelial-ARNT in adult mice contributes to dampened circulating proangiogenic cells and delayed wound healing.

    PubMed

    Han, Yu; Tao, Jiayi; Gomer, Alla; Ramirez-Bergeron, Diana L

    2014-12-01

    The recruitment and homing of circulating bone marrow-derived cells include endothelial progenitor cells (EPCs) that are critical to neovascularization and tissue regeneration of various vascular pathologies. We report here that conditional inactivation of hypoxia-inducible factor's (HIF) transcriptional activity in the endothelium of adult mice (Arnt(ΔiEC) mice) results in a disturbance of infiltrating cells, a hallmark of neoangiogenesis, during the early phases of wound healing. Cutaneous biopsy punches show distinct migration of CD31(+) cells into wounds of control mice by 36 hours. However, a significant decline in numbers of infiltrating cells with immature vascular markers, as well as decreased transcript levels of genes associated with their expression and recruitment, were identified in wounds of Arnt(ΔiEC) mice. Matrigel plug assays further confirmed neoangiogenic deficiencies alongside a reduction in numbers of proangiogenic progenitor cells from bone marrow and peripheral blood samples of recombinant vascular endothelial growth factor-treated Arnt(ΔiEC) mice. In addition to HIF's autocrine requirements in endothelial cells, our data implicate that extrinsic microenvironmental cues provided by endothelial HIF are pivotal for early migration of proangiogenic cells, including those involved in wound healing.

  5. Prenatal allergen and diesel exhaust exposure and their effects on allergy in adult offspring mice

    PubMed Central

    2010-01-01

    Background Multiple studies have suggested that prenatal exposure to either allergens or air pollution may increase the risk for the development of allergic immune responses in young offspring. However, the effects of prenatal environmental exposures on adult offspring have not been well-studied. We hypothesized that combined prenatal exposure to Aspergillus fumigatus (A. fumigatus) allergen and diesel exhaust particles will be associated with altered IgE production, airway inflammation, airway hyperreactivity (AHR), and airway remodeling of adult offspring. Methods Following sensitization via the airway route to A. fumigatus and mating, pregnant BALB/c mice were exposed to additional A. fumigatus and/or diesel exhaust particles. At age 9-10 weeks, their offspring were sensitized and challenged with A. fumigatus. Results We found that adult offspring from mice that were exposed to A. fumigatus or diesel exhaust particles during pregnancy experienced decreases in IgE production. Adult offspring of mice that were exposed to both A. fumigatus and diesel exhaust particles during pregnancy experienced decreases in airway eosinophilia. Conclusion These results suggest that, in this model, allergen and/or diesel administration during pregnancy may be associated with protection from developing systemic and airway allergic immune responses in the adult offspring. PMID:20459836

  6. The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice.

    PubMed

    Cacciottolo, Mafalda; Christensen, Amy; Moser, Alexandra; Liu, Jiahui; Pike, Christian J; Smith, Conor; LaDu, Mary Jo; Sullivan, Patrick M; Morgan, Todd E; Dolzhenko, Egor; Charidimou, Andreas; Wahlund, Lars-Olof; Wiberg, Maria Kristofferson; Shams, Sara; Chiang, Gloria Chia-Yi; Finch, Caleb E

    2016-01-01

    The apolipoprotein APOE4 allele confers greater risk of Alzheimer's disease (AD) for women than men, in conjunction with greater clinical deficits per unit of AD neuropathology (plaques, tangles). Cerebral microbleeds, which contribute to cognitive dysfunctions during AD, also show APOE4 excess, but sex-APOE allele interactions are not described. We report that elderly men diagnosed for mild cognitive impairment and AD showed a higher risk of cerebral cortex microbleeds with APOE4 allele dose effect in 2 clinical cohorts (ADNI and KIDS). Sex-APOE interactions were further analyzed in EFAD mice carrying human APOE alleles and familial AD genes (5XFAD (+/-) /human APOE(+/+)). At 7 months, E4FAD mice had cerebral cortex microbleeds with female excess, in contrast to humans. Cerebral amyloid angiopathy, plaques, and soluble Aβ also showed female excess. Both the cerebral microbleeds and cerebral amyloid angiopathy increased in proportion to individual Aβ load. In humans, the opposite sex bias of APOE4 allele for microbleeds versus the plaques and tangles is the first example of organ-specific, sex-linked APOE allele effects, and further shows AD as a uniquely human condition. PMID:26686669

  7. The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice.

    PubMed

    Cacciottolo, Mafalda; Christensen, Amy; Moser, Alexandra; Liu, Jiahui; Pike, Christian J; Smith, Conor; LaDu, Mary Jo; Sullivan, Patrick M; Morgan, Todd E; Dolzhenko, Egor; Charidimou, Andreas; Wahlund, Lars-Olof; Wiberg, Maria Kristofferson; Shams, Sara; Chiang, Gloria Chia-Yi; Finch, Caleb E

    2016-01-01

    The apolipoprotein APOE4 allele confers greater risk of Alzheimer's disease (AD) for women than men, in conjunction with greater clinical deficits per unit of AD neuropathology (plaques, tangles). Cerebral microbleeds, which contribute to cognitive dysfunctions during AD, also show APOE4 excess, but sex-APOE allele interactions are not described. We report that elderly men diagnosed for mild cognitive impairment and AD showed a higher risk of cerebral cortex microbleeds with APOE4 allele dose effect in 2 clinical cohorts (ADNI and KIDS). Sex-APOE interactions were further analyzed in EFAD mice carrying human APOE alleles and familial AD genes (5XFAD (+/-) /human APOE(+/+)). At 7 months, E4FAD mice had cerebral cortex microbleeds with female excess, in contrast to humans. Cerebral amyloid angiopathy, plaques, and soluble Aβ also showed female excess. Both the cerebral microbleeds and cerebral amyloid angiopathy increased in proportion to individual Aβ load. In humans, the opposite sex bias of APOE4 allele for microbleeds versus the plaques and tangles is the first example of organ-specific, sex-linked APOE allele effects, and further shows AD as a uniquely human condition.

  8. The course of LCMV infection in gnotobiotic and conventional adult mice pretreated with attenuated NDV vaccine.

    PubMed

    Szeri, I; Csatáry, L K; Anderlik, P; Bános, Z; Nász, I; Barna, Z

    1990-01-01

    A single intraperitoneal treatment with two different doses of live Newcastle Disease Virus (NDV) containing attenuated NDV vaccine one day before intracerebral inoculation with lymphocytic choriomeningitis virus (LCMV) had no influence on the ratio and time of deaths after infection with a 100 LD50 dose of LCMV either in gnotobiotic or in conventional mice. There was no difference either in the LD50 values determined on the basis of three parallel LCMV titration performed on mice pretreated with two different doses of vaccine or untreated. NDV vaccine pretreatment thus did not influence the cellular immune response to LCMV infection either in gnotobiotic or in conventional adult mice. As the NDV vaccine increased the cellular immune response to LCMV infection in suckling mice according to earlier results, the present results reinforce our earlier statement that the direction of immunomodulatory effects can be influenced by age.

  9. Growth Restriction, Leptin, and the Programming of Adult Behavior in Mice

    PubMed Central

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-01-01

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4–14, C57BL/6 mice were randomized to daily injections of saline or leptin (80 ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/−6 sec vs 87+/−7 sec for controls, p<0.05), but GR mice exhibited regression in their escape times on days 2 and 3 (56% regressed vs 22% of control saline mice, p<0.05). Compared to controls, GR mice entered the open arms of the elevated plus maze more often and stayed there longer (72+/−10 sec vs 36+/−5 sec, p<0.01). Neonatal leptin supplementation normalized the behavior of GR mice across all behavioral assays. In conclusion, GR alters the social interactions, learning and activity of mice, and supplementation with the neurotrophic hormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective. PMID:25196633

  10. Growth restriction, leptin, and the programming of adult behavior in mice.

    PubMed

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-12-15

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, p<0.05), but GR mice exhibited regression in their escape times on days 2 and 3 (56% regressed vs 22% of control saline mice, p<0.05). Compared to controls, GR mice entered the open arms of the elevated plus maze more often and stayed there longer (72+/-10s vs 36+/-5s, p<0.01). Neonatal leptin supplementation normalized the behavior of GR mice across all behavioral assays. In conclusion, GR alters the social interactions, learning and activity of mice, and supplementation with the neurotrophic hormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective.

  11. Circadian cycle dependent EEG biomarkers of pathogenicity in adult mice following prenatal exposure to in utero inflammation

    PubMed Central

    Adler, Daniel A; Ammanuel, Simon; Lei, Jun; Dada, Tahani; Borbiev, Talaibek; Johnston, Michael.V.; Kadam, Shilpa.D.; Burd, Irina

    2014-01-01

    Intrauterine infection or inflammation in preterm neonates is a known risk for adverse neurological outcomes, including cognitive, motor and behavioral disabilities. Our previous data suggest that there is acute fetal brain inflammation in a mouse model of intrauterine exposure to lipopolysaccharides (LPS). We hypothesized that the in utero inflammation induced by LPS produces long-term EEG biomarkers of neurodegeneration in the exposed mice that could be determined by using continuous quantitative video-EEG-EMG analyses. A single LPS injection at E17 was performed in pregnant CD1 dams. Control dams were injected with same volumes of saline (LPS n=10, Control n=8). At postnatal age of P90-100, 24h synchronous video/EEG/EMG recordings were done using a tethered recording system and implanted subdural electrodes. Behavioral state scoring was performed blind to treatment group, on each 10 second EEG epochs using synchronous video, EMG and EEG trace signatures to generate individual hypnograms. Automated EEG power spectrums were analyzed for delta and theta-beta power ratios during wake vs. sleep cycles. Both control and LPS hypnograms showed an ultradian wake/sleep cycling. Since rodents are nocturnal animals, control mice showed the expected diurnal variation with significantly longer time spent in wake states during the dark cycle phase. In contrast, the LPS treated mice lost this circadian rhythm. Sleep microstructure also showed significant alteration in the LPS mice specifically during the dark cycle, caused by significantly longer average NREM cycle durations. No significance was found between treatment groups for the delta power data; however, significant activity dependent changes in theta-beta power ratios seen in controls were absent in the LPS-exposed mice. In conclusion, exposure to in utero inflammation in CD1 mice resulted in significantly altered sleep architecture as adults that were circadian cycle and activity state dependent. PMID:24954445

  12. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    SciTech Connect

    Fox, Donald A.; Hamilton, W. Ryan; Johnson, Jerry E.; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B.; O'Callaghan, James P.

    2011-11-15

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was {<=} 1, {<=} 10, {approx} 25 and {approx} 40 {mu}g/dL, respectively, on PN10 and by PN30 all were {<=} 1 {mu}g/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: Black-Right-Pointing-Pointer Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: {<=} 1, {<=} 10, 25 and 40 {mu}g/dL Black

  13. A case of adult moyamoya disease showing progressive angiopathy on cerebral angiography.

    PubMed

    Shirane, R; Mikawa, S; Ebina, T

    1999-09-01

    In moyamoya disease, progression of carotid occlusive lesion in an adult patient is very rare. We report a case of adult moyamoya disease with acute angiographical stage progression and hemodynamic deterioration. A 56-year-old female complaining of left motor weakness visited our department. On MRI, infarct lesion was found in the right white matter. On cerebral angiography, occlusive lesions in the bilateral internal carotid arterial siphons and moyamoya vessels were found. The right side was stage V and the left side was stage III. On IMP-SPECT, decreased cerebral hemodynamic reserve of the right cerebral hemisphere was found. In this patient, right STA-MCA anastomosis was performed. After operation, she became possible to walk and discharged to home. Five months after operation, good collateral formation and improvement of hemodynamic reserve in the right hemisphere were found. However, on left carotid arteriography, the anterior and middle cerebral arteries were only slightly imaged, and the disease state progressed to stage IV. In addition, decreased blood flow and hemodynamic reserve were appeared in the left hemisphere.

  14. A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice.

    PubMed

    Jahagirdar, Ravi; Zhang, Haiyan; Azhar, Salman; Tobin, Jennifer; Attwell, Sarah; Yu, Raymond; Wu, Jin; McLure, Kevin G; Hansen, Henrik C; Wagner, Gregory S; Young, Peter R; Srivastava, Rai Ajit K; Wong, Norman C W; Johansson, Jan

    2014-09-01

    Despite the benefit of statins in reducing cardiovascular risk, a sizable proportion of patients still remain at risk. Since HDL reduces CVD risk through a process that involves formation of pre-beta particles that facilitates the removal of cholesterol from the lipid-laden macrophages in the arteries, inducing pre-beta particles, may reduce the risk of CVD. A novel BET bromodomain antagonist, RVX-208, was reported to raise apoA-I and increase preβ-HDL particles in non-human primates and humans. In the present study, we investigated the effect of RVX-208 on aortic lesion formation in hyperlipidemic apoE(-/-) mice. Oral treatments of apoE(-/-) mice with 150 mg/kg b.i.d RVX-208 for 12 weeks significantly reduced aortic lesion formation, accompanied by 2-fold increases in the levels of circulating HDL-C, and ∼50% decreases in LDL-C, although no significant changes in plasma apoA-I were observed. Circulating adhesion molecules as well as cytokines also showed significant reduction. Haptoglobin, a proinflammatory protein, known to bind with HDL/apoA-I, decreased >2.5-fold in the RVX-208 treated group. With a therapeutic dosing regimen in which mice were fed Western diet for 10 weeks to develop lesions followed by switching to a low fat diet and concurrent treatment with RVX-208 for 14 weeks, RVX-208 similarly reduced lesion formation by 39% in the whole aorta without significant changes in the plasma lipid parameters. RVX-208 significantly reduced the proinflammatory cytokines IP-10, MIP1(®) and MDC. These results show that the antiatherogenic activity of BET inhibitor, RVX-208, occurs via a combination of lipid changes and anti-inflammatory activities.

  15. Integration of CD45-positive leukocytes into newly forming lymphatics of adult mice.

    PubMed

    Buttler, K; Lohrberg, M; Gross, G; Weich, H A; Wilting, J

    2016-06-01

    The embryonic origin of lymphatic endothelial cells (LECs) has been a matter of controversy since more than a century. However, recent studies in mice have supported the concept that embryonic lymphangiogenesis is a complex process consisting of growth of lymphatics from specific venous segments as well as the integration of lymphangioblasts into the lymphatic networks. Similarly, the mechanisms of adult lymphangiogenesis are poorly understood and have rarely been studied. We have recently shown that endothelial progenitor cells isolated from the lung of adult mice have the capacity to form both blood vessels and lymphatics when grafted with Matrigel plugs into the skin of syngeneic mice. Here, we followed up on these experiments and studied the behavior of host leukocytes during lymphangiogenesis in the Matrigel plugs. We observed a striking co-localization of CD45(+) leukocytes with the developing lymphatics. Numerous CD45(+) cells expressed the LEC marker podoplanin and were obviously integrated into the lining of lymphatic capillaries. This indicates that, similar to inflammation-induced lymphangiogenesis in man, circulating CD45(+) cells of adult mice are capable of initiating lymphangiogenesis and of adopting a lymphvasculogenic cellular differentiation program. The data are discussed in the context of embryonic and inflammation-induced lymphangiogenesis. PMID:26748643

  16. Post-training, intrahippocampal HDAC inhibition differentially impacts neural circuits underlying spatial memory in adult and aged mice.

    PubMed

    Dagnas, Malorie; Micheau, Jacques; Decorte, Laurence; Beracochea, Daniel; Mons, Nicole

    2015-07-01

    Converging evidence indicates that pharmacologically elevating histone acetylation using post-training, systemic or intrahippocampal, administration of histone deacetylase inhibitor (HDACi) can enhance memory consolidation processes in young rodents but it is not yet clear, whether such treatment is sufficient to prevent memory impairments associated with aging. To address this question, we used a 1-day massed spatial learning task in the water maze to investigate the effects of immediate post-training injection of the HDACi trichostatin A (TSA) into the dorsal hippocampus on long-term memory consolidation in 3-4 and 18-20 month-old mice. We show that TSA improved the 24 h-memory retention for the hidden platform location in young-adults, but failed to rescue memory impairments in older mice. The results further indicate that Young-TSA mice sacrificed 1 h after training had a robust increase in histone H4 acetylation in the dorsal hippocampal CA1 region (dCA1) and the dorsomedial part of the striatum (DMS), a structure important for spatial information processing. Importantly, TSA infusion in aged mice completely rescued altered H4 acetylation in the dCA1 but failed to alleviate age-associated decreased H4 acetylation in the DMS. Moreover, intrahippocampal TSA infusion produced concomitant decreases (in adults) or increases (in older mice) of acetylated histone levels in the ventral hippocampus (vCA1 and vCA3) and the lateral amygdala, two structures critically involved in stress and emotional responses. These data suggest that the failure of post-training, intrahippocampal TSA injection to reverse age-associated memory impairments may be related to an inability to recruit appropriate circuit-specific epigenetic patterns during early consolidation processes.

  17. Co-transplantation of human fetal thymus, bone and CD34(+) cells into young adult immunodeficient NOD/SCID IL2Rγ(null) mice optimizes humanized mice that mount adaptive antibody responses.

    PubMed

    Chung, Yun Shin; Son, Jin Kyung; Choi, Bongkum; Joo, Sung-Yeon; Lee, Yong-Soo; Park, Jae Berm; Moon, Hana; Kim, Tae Jin; Kim, Se Ho; Hong, Seokmann; Chang, Jun; Kang, Myung-Soo; Kim, Sung Joo

    2015-04-01

    Both the thymus (T) and bone (B) are necessary hematopoietic niches in adult humans. We previously showed that co-transplantation of human fetal T and B tissues into neonatal immunodeficient NOD/SCID IL2Rγ(null) (NSG, N) mice facilitated hematopoiesis. However, transplantation into neonatal mice resulted in high frequency of early death, making it unrealistic for repetitive experiments. In this study, young adult N mice were pre-engrafted with T and B, T alone, B alone or no tissues. The animals were irradiated and injected with autologous fetal liver (FL)-derived CD34(+) cells (34). The resultant mice were TB34N, T34N, B34N and 34N, respectively, and challenged with T cell dependent antigens (Ags). The humanized TB34N mice showed best performance of these mouse models in many aspects resembling the adult human Ag-experienced spleen. The TB34N mice exhibited better hematopoietic reconstitution; balanced development of T- and B-cell, and common progenitor cells; follicular lymphoid structures with a functional germinal center (GC) enriched with follicular dendritic cells (FDCs) and plasma cells (PCs); secretion of hIgG in the sera in response to Ags at comparable levels to those of human; derivations of hIgG mAb-secreting hybridoma clones. Collectively, the humanized TB34N mice could develop an adaptive immunity that was capable of producing Ag-specific hIgG at a significant level via class switching. This unprecedented TB34N platform in humanized mice would be useful in dissecting human immunity, for generating human Abs and clinical applications. PMID:25725428

  18. Co-transplantation of human fetal thymus, bone and CD34(+) cells into young adult immunodeficient NOD/SCID IL2Rγ(null) mice optimizes humanized mice that mount adaptive antibody responses.

    PubMed

    Chung, Yun Shin; Son, Jin Kyung; Choi, Bongkum; Joo, Sung-Yeon; Lee, Yong-Soo; Park, Jae Berm; Moon, Hana; Kim, Tae Jin; Kim, Se Ho; Hong, Seokmann; Chang, Jun; Kang, Myung-Soo; Kim, Sung Joo

    2015-04-01

    Both the thymus (T) and bone (B) are necessary hematopoietic niches in adult humans. We previously showed that co-transplantation of human fetal T and B tissues into neonatal immunodeficient NOD/SCID IL2Rγ(null) (NSG, N) mice facilitated hematopoiesis. However, transplantation into neonatal mice resulted in high frequency of early death, making it unrealistic for repetitive experiments. In this study, young adult N mice were pre-engrafted with T and B, T alone, B alone or no tissues. The animals were irradiated and injected with autologous fetal liver (FL)-derived CD34(+) cells (34). The resultant mice were TB34N, T34N, B34N and 34N, respectively, and challenged with T cell dependent antigens (Ags). The humanized TB34N mice showed best performance of these mouse models in many aspects resembling the adult human Ag-experienced spleen. The TB34N mice exhibited better hematopoietic reconstitution; balanced development of T- and B-cell, and common progenitor cells; follicular lymphoid structures with a functional germinal center (GC) enriched with follicular dendritic cells (FDCs) and plasma cells (PCs); secretion of hIgG in the sera in response to Ags at comparable levels to those of human; derivations of hIgG mAb-secreting hybridoma clones. Collectively, the humanized TB34N mice could develop an adaptive immunity that was capable of producing Ag-specific hIgG at a significant level via class switching. This unprecedented TB34N platform in humanized mice would be useful in dissecting human immunity, for generating human Abs and clinical applications.

  19. SUPPRESSION OF IDIOTYPIC SPECIFICITIES IN ADULT MICE BY ADMINISTRATION OF ANTIIDIOTYPIC ANTIBODY

    PubMed Central

    Hart, David A.; Wang, Ai-Lan; Pawlak, Laura L.; Nisonoff, Alfred

    1972-01-01

    It has previously been shown that there are extensive idiotypic cross-reactions among antiphenylarsonate antibodies of A/J mice. The present work indicates that administration, into normal, adult A/J mice, of rabbit antiidiotypic antibody directed to A/J antiphenylarsonate antibody suppresses almost completely the subsequent production of antibody of the corresponding idiotype. No effect was noted on the formation of antibodies to the protein carrier or of antiphenylarsonate antibody of a different idiotype. The data are consistent with central suppression of production of the idiotypic antibody mediated through interaction with immunoglobulin receptors on lymphocytes. PMID:4623607

  20. HIV-1 Nef mutations abrogating downregulation of CD4 affect other Nef functions and show reduced pathogenicity in transgenic mice

    SciTech Connect

    Hanna, Zaher . E-mail: Zaher.Hanna@ircm.qc.ca; Priceputu, Elena; Hu, Chunyan; Vincent, Patrick; Jolicoeur, Paul

    2006-03-01

    HIV-1 Nef has the ability to downmodulate CD4 cell surface expression. Several studies have shown that CD4 downregulation is required for efficient virus replication and high infectivity. However, the pathophysiological relevance of this phenomenon in vivo, independently of its role in sustaining high virus loads, remains unclear. We studied the impact of the CD4 downregulation function of Nef on its pathogenesis in vivo, in the absence of viral replication, in the CD4C/HIV transgenic (Tg) mouse model. Two independent Nef mutants (RD35/36AA and D174K), known to abrogate CD4 downregulation, were tested in Tg mice. Flow cytometry analysis showed that downregulation of murine CD4 was severely decreased or abrogated on Tg T cells expressing respectively Nef{sup RD35/36AA} and Nef{sup D174K}. Similarly, the severe depletion of double-positive CD4{sup +}CD8{sup +} and of single-positive CD4{sup +}CD8{sup -} thymocytes, usually observed with Nef{sup Wt}, was not detected in Nef{sup RD35/36AA} and Nef{sup D174K} Tg mice. However, both mutant Tg mice showed a partial depletion of peripheral CD4{sup +} T cells. This was accompanied, as previously reported for Net{sup Wt} Tg mice, by the presence of an activated/memory-like phenotype (CD69{sup +}, CD25{sup +}, CD44{sup +}, CD45RB{sup Low}, CD62{sup Low}) of CD4{sup +} T cells expressing Nef{sup RD35/36AA} and to a lesser extent Nef{sup D174K}. In addition, both mutants retained the ability to block CD4{sup +} T cell proliferation in vitro after anti-CD3 stimulation, but not to enhance apoptosis/death of CD4{sup +} T cells. Therefore, it appears that Nef-mediated CD4 downregulation is associated with thymic defects, but segregates independently of the activated/memory-like phenotype, of the partial depletion and of the impaired in vitro proliferation of peripheral CD4{sup +} T cells. Histopathological assessment revealed the total absence of or decrease severity and frequency of organ AIDS-like diseases (lung, heart and kidney

  1. Adipose-derived stem cells from diabetic mice show impaired vascular stabilization in a murine model of diabetic retinopathy.

    PubMed

    Cronk, Stephen M; Kelly-Goss, Molly R; Ray, H Clifton; Mendel, Thomas A; Hoehn, Kyle L; Bruce, Anthony C; Dey, Bijan K; Guendel, Alexander M; Tavakol, Daniel N; Herman, Ira M; Peirce, Shayn M; Yates, Paul A

    2015-05-01

    Diabetic retinopathy is characterized by progressive vascular dropout with subsequent vision loss. We have recently shown that an intravitreal injection of adipose-derived stem cells (ASCs) can stabilize the retinal microvasculature, enabling repair and regeneration of damaged capillary beds in vivo. Because an understanding of ASC status from healthy versus diseased donors will be important as autologous cellular therapies are developed for unmet clinical needs, we took advantage of the hyperglycemic Akimba mouse as a preclinical in vivo model of diabetic retinopathy in an effort aimed at evaluating therapeutic efficacy of adipose-derived stem cells (mASCs) derived either from healthy, nondiabetic or from diabetic mice. To these ends, Akimba mice received intravitreal injections of media conditioned by mASCs or mASCs themselves, subsequent to development of substantial retinal capillary dropout. mASCs from healthy mice were more effective than diabetic mASCs in protecting the diabetic retina from further vascular dropout. Engrafted ASCs were found to preferentially associate with the retinal vasculature. Conditioned medium was unable to recapitulate the vasoprotection seen with injected ASCs. In vitro diabetic ASCs showed decreased proliferation and increased apoptosis compared with healthy mASCs. Diabetic ASCs also secreted less vasoprotective factors than healthy mASCs, as determined by high-throughput enzyme-linked immunosorbent assay. Our findings suggest that diabetic ASCs are functionally impaired compared with healthy ASCs and support the utility of an allogeneic injection of ASCs versus autologous or conditioned media approaches in the treatment of diabetic retinopathy.

  2. Cellulose Supplementation Early in Life Ameliorates Colitis in Adult Mice

    PubMed Central

    Nagy-Szakal, Dorottya; Hollister, Emily B.; Luna, Ruth Ann; Szigeti, Reka; Tatevian, Nina; Smith, C. Wayne; Versalovic, James; Kellermayer, Richard

    2013-01-01

    Decreased consumption of dietary fibers, such as cellulose, has been proposed to promote the emergence of inflammatory bowel diseases (IBD: Crohn disease [CD] and ulcerative colitis [UC]) where intestinal microbes are recognized to play an etiologic role. However, it is not known if transient fiber consumption during critical developmental periods may prevent consecutive intestinal inflammation. The incidence of IBD peaks in young adulthood indicating that pediatric environmental exposures may be important in the etiology of this disease group. We studied the effects of transient dietary cellulose supplementation on dextran sulfate sodium (DSS) colitis susceptibility during the pediatric period in mice. Cellulose supplementation stimulated substantial shifts in the colonic mucosal microbiome. Several bacterial taxa decreased in relative abundance (e.g., Coriobacteriaceae [p = 0.001]), and other taxa increased in abundance (e.g., Peptostreptococcaceae [p = 0.008] and Clostridiaceae [p = 0.048]). Some of these shifts persisted for 10 days following the cessation of cellulose supplementation. The changes in the gut microbiome were associated with transient trophic and anticolitic effects 10 days following the cessation of a cellulose-enriched diet, but these changes diminished by 40 days following reversal to a low cellulose diet. These findings emphasize the transient protective effect of dietary cellulose in the mammalian large bowel and highlight the potential role of dietary fibers in amelioration of intestinal inflammation. PMID:23437211

  3. Effects of tamoxifen on autosomal genes regulating ovary maintenance in adult mice.

    PubMed

    Yu, Mingxi; Liu, Wei; Wang, Jingyun; Qin, Junwen; Wang, Yongan; Wang, Yu

    2015-12-01

    Environmental endocrine-disrupting chemicals (EDCs), known to bind to estrogen/androgen receptors and mimic native estrogens, have been implicated as a main source for increasing human reproductive and developmental deficiencies and diseases. Tamoxifen (TAM) is one of the most well-known antiestrogens with defined adverse effects on the female reproductive tract, but the mechanisms related to autosomal gene regulation governing ovary maintenance in mammals remain unclear. The expression pattern and levels of key genes and proteins involved in maintaining the ovarian phenotype in mice were analyzed. The results showed that TAM induced significant upregulation of Sox9, which is the testis-determining factor gene. The results showed that TAM induced significant upregulation of Sox9, the testis-determining factor gene, and the expression level of Sox9 mRNA in the ovaries of mice exposed to 75 or 225 mg/kg bw TAM was 2- and 10-fold that in the control group, respectively (p < 0.001). Furthermore, the testicular fibroblast growth factor gene, Fgf9, was also elevated in TAM-treated ovaries. Accordingly, expression of the ovary development marker, forkhead transcription factor (FOXL2), and WNT4/FST signaling, were depressed. The levels of protein expression changed consistently with the target genes. Moreover, the detection of platelet/endothelial cell adhesion molecule 1 (PECAM-1) in TAM-treated ovaries suggested the formation of vascular endothelial cells, which is a further evidence for the differentiation of the ovaries to a testis-like phenotype. During this period, the level of 17β-estradiol, progesterone, and luteinizing hormone decreased, while that of testosterone increased by 3.3-fold (p = 0.013). The activation of a testis-specific molecular signaling cascade was a potentially important mechanism contributing to the gender disorder induced by TAM, which resulted in the differentiation of the ovaries to a testis-like phenotype in adult mice. Limited with

  4. Effects of tamoxifen on autosomal genes regulating ovary maintenance in adult mice.

    PubMed

    Yu, Mingxi; Liu, Wei; Wang, Jingyun; Qin, Junwen; Wang, Yongan; Wang, Yu

    2015-12-01

    Environmental endocrine-disrupting chemicals (EDCs), known to bind to estrogen/androgen receptors and mimic native estrogens, have been implicated as a main source for increasing human reproductive and developmental deficiencies and diseases. Tamoxifen (TAM) is one of the most well-known antiestrogens with defined adverse effects on the female reproductive tract, but the mechanisms related to autosomal gene regulation governing ovary maintenance in mammals remain unclear. The expression pattern and levels of key genes and proteins involved in maintaining the ovarian phenotype in mice were analyzed. The results showed that TAM induced significant upregulation of Sox9, which is the testis-determining factor gene. The results showed that TAM induced significant upregulation of Sox9, the testis-determining factor gene, and the expression level of Sox9 mRNA in the ovaries of mice exposed to 75 or 225 mg/kg bw TAM was 2- and 10-fold that in the control group, respectively (p < 0.001). Furthermore, the testicular fibroblast growth factor gene, Fgf9, was also elevated in TAM-treated ovaries. Accordingly, expression of the ovary development marker, forkhead transcription factor (FOXL2), and WNT4/FST signaling, were depressed. The levels of protein expression changed consistently with the target genes. Moreover, the detection of platelet/endothelial cell adhesion molecule 1 (PECAM-1) in TAM-treated ovaries suggested the formation of vascular endothelial cells, which is a further evidence for the differentiation of the ovaries to a testis-like phenotype. During this period, the level of 17β-estradiol, progesterone, and luteinizing hormone decreased, while that of testosterone increased by 3.3-fold (p = 0.013). The activation of a testis-specific molecular signaling cascade was a potentially important mechanism contributing to the gender disorder induced by TAM, which resulted in the differentiation of the ovaries to a testis-like phenotype in adult mice. Limited with

  5. Toxic effects of bortezomib on primary sensory neurons and Schwann cells of adult mice.

    PubMed

    Alé, Albert; Bruna, Jordi; Herrando, Mireia; Navarro, Xavier; Udina, Esther

    2015-05-01

    The proteasome inhibitor bortezomib is nowadays first line treatment for multiple myeloma. One of the most significant adverse events is peripheral neuropathy, mainly involving sensory nerve fibers that can lead to withdrawal of treatment. Here we develop an in vitro model to compare the effects of bortezomib on primary sensory neurons and Schwann cells of adult mice. We observed that sensory neurons were more susceptible to bortezomib, and their viability was reduced at a concentration of 6 nM, that only affected Schwann cell proliferation but not survival. At concentration higher than 8 nM Schwann cell viability was also compromised. Already at low concentrations, surviving neurons presented alterations in neurite outgrowth. Neurites were shorter and had dystrophic appearance, with alterations in neurofilament staining. However, neurites were able to regrow after removing bortezomib from the medium, thus indicating reversibility of the neurotoxicity. We confirmed in vivo that bortezomib produced alterations in neurofilaments at early stages of the treatment. After an accumulated dose of 2 mg/kg bortezomib, dorsal root ganglia neurons of treated animals showed accumulation of neurofilament in the soma. To evaluate if this accumulation was related with alterations in axonal transport, we tested the ability of sensory neurons to retrogradely transport a retrotracer applied at the distal nerve. Treated animals showed a lower amount of retrotracer in the soma 24 h after its application to the tibial nerve, therefore suggesting that axonal transport was affected by bortezomib.

  6. Comparison of apoptosis between adult worms of Schistosoma japonicum from susceptible (BALB/c mice) and less-susceptible (Wistar rats) hosts.

    PubMed

    Wang, Tao; Guo, Xiaoyong; Hong, Yang; Han, Hongxiao; Cao, Xiaodan; Han, Yanhui; Zhang, Min; Wu, Miaoli; Fu, Zhiqiang; Lu, Ke; Li, Hao; Zhao, Zhixin; Lin, Jiaojiao

    2016-10-30

    Schistosomiasis remains a serious public health concern in China. BALB/c mice are susceptible to Schistosoma japonicum infection, whereas the Wistar rats are less susceptible. Apoptosis phenomenon was observed in 42d adult worms of S. japonicum from both rats and mice at the morphologic, DNA, cellular, and gene levels by transmission electron microscopy (TEM), fluorometric terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis, fluorescein isothiocyanate-annexin-V/propidium iodide staining flow cytometry (FCM) analysis, and real-time PCR. The results showed that the apoptotic state in worms from two different susceptible hosts was diverse. Several classical hallmarks of apoptosis, including cell shrinkage, chromatin condensation and lunate marginalization, splitting of the nucleoli, nuclear shrinkage and apoptotic body formation were observed by TEM. TUNEL analysis showed that there were much more apoptosis spots in adult worms from rats than those from mice. Statistical analysis revealed that the degree of apoptosis and percentage of necrotic cells in adult worms from Wistar rats were significantly greater (P<0.01) than those from BALB/c mice by flow cytometry. A total of 15 apoptosis-associated genes including the major components of an intrinsic cell-death pathway were identified from S. japonicum in this study, suggested that a similar apoptosis pathway might occur in S. japonicum. Real-time PCR analyses revealed that the expression levels of most of the tested apoptosis-associated genes, except CASP7, were significantly higher or at the similar level in adult worms from Wistar rats, as compared to those from BALB/c mice. The results obtained in this study collectively demonstrated that differential development of adult S. japonicum in less-susceptible rats and susceptible mice was significantly associated with apoptosis in the worm, and provided valuable information to guide further investigations of the mechanisms governing

  7. Comparison of apoptosis between adult worms of Schistosoma japonicum from susceptible (BALB/c mice) and less-susceptible (Wistar rats) hosts.

    PubMed

    Wang, Tao; Guo, Xiaoyong; Hong, Yang; Han, Hongxiao; Cao, Xiaodan; Han, Yanhui; Zhang, Min; Wu, Miaoli; Fu, Zhiqiang; Lu, Ke; Li, Hao; Zhao, Zhixin; Lin, Jiaojiao

    2016-10-30

    Schistosomiasis remains a serious public health concern in China. BALB/c mice are susceptible to Schistosoma japonicum infection, whereas the Wistar rats are less susceptible. Apoptosis phenomenon was observed in 42d adult worms of S. japonicum from both rats and mice at the morphologic, DNA, cellular, and gene levels by transmission electron microscopy (TEM), fluorometric terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis, fluorescein isothiocyanate-annexin-V/propidium iodide staining flow cytometry (FCM) analysis, and real-time PCR. The results showed that the apoptotic state in worms from two different susceptible hosts was diverse. Several classical hallmarks of apoptosis, including cell shrinkage, chromatin condensation and lunate marginalization, splitting of the nucleoli, nuclear shrinkage and apoptotic body formation were observed by TEM. TUNEL analysis showed that there were much more apoptosis spots in adult worms from rats than those from mice. Statistical analysis revealed that the degree of apoptosis and percentage of necrotic cells in adult worms from Wistar rats were significantly greater (P<0.01) than those from BALB/c mice by flow cytometry. A total of 15 apoptosis-associated genes including the major components of an intrinsic cell-death pathway were identified from S. japonicum in this study, suggested that a similar apoptosis pathway might occur in S. japonicum. Real-time PCR analyses revealed that the expression levels of most of the tested apoptosis-associated genes, except CASP7, were significantly higher or at the similar level in adult worms from Wistar rats, as compared to those from BALB/c mice. The results obtained in this study collectively demonstrated that differential development of adult S. japonicum in less-susceptible rats and susceptible mice was significantly associated with apoptosis in the worm, and provided valuable information to guide further investigations of the mechanisms governing

  8. Round and Round and Round We Go: Behavior of Adult Female Mice on the ISS

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2016-01-01

    The NASA Decadal Survey (2011) emphasized the importance of long duration rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware and science capabilities supporting mouse studies in space were developed at Ames Research Center. Here we present a video-based behavioral analysis of ten C57BL6 female adult mice exposed to a total of 37 days in space compared with identically housed Ground Controls. Flight and Control mice exhibited the same range of behaviors, including feeding, drinking, exploratory behavior, grooming, and social interactions. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another. Overall activity was greater in Flt as compared to GC mice. Spontaneous, organized circling or race-tracking behavior emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. I will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral phenotyping revealed important insights into the overall health and adaptation of mice to the space environment, and identified unique behaviors that can guide future habitat development and research on rodents in space.

  9. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance

    PubMed Central

    Akman, Hasan O.; Dorado, Beatriz; López, Luis C.; García-Cazorla, Ángeles; Vilà, Maya R.; Tanabe, Lauren M.; Dauer, William T.; Bonilla, Eduardo; Tanji, Kurenai; Hirano, Michio

    2008-01-01

    Mitochondrial DNA (mtDNA) depletion syndrome (MDS), an autosomal recessive condition, is characterized by variable organ involvement with decreased mtDNA copy number and activities of respiratory chain enzymes in affected tissues. MtDNA depletion has been associated with mutations in nine autosomal genes, including thymidine kinase (TK2), which encodes a ubiquitous mitochondrial protein. To study the pathogenesis of TK2-deficiency, we generated mice harboring an H126N Tk2 mutation. Homozygous Tk2 mutant (Tk2−/−) mice developed rapidly progressive weakness after age 10 days and died between ages 2 and 3 weeks. Tk2−/− animals showed Tk2 deficiency, unbalanced dNTP pools, mtDNA depletion and defects of respiratory chain enzymes containing mtDNA-encoded subunits that were most prominent in the central nervous system. Histopathology revealed an encephalomyelopathy with prominent vacuolar changes in the anterior horn of the spinal cord. The H126N TK2 mouse is the first knock-in animal model of human MDS and demonstrates that the severity of TK2 deficiency in tissues may determine the organ-specific phenotype. PMID:18467430

  10. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    PubMed

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  11. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice

    PubMed Central

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-01-01

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes. PMID:26923756

  12. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    PubMed Central

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  13. Adolescent Mice, Unlike Adults, Consume More Alcohol in the Presence of Peers than Alone

    PubMed Central

    Logue, Sheree; Chein, Jason; Gould, Thomas; Holliday, Erica; Steinberg, Laurence

    2013-01-01

    One hallmark of adolescent risk taking is that it typically occurs when adolescents are with peers. It has been hypothesized that the presence of peers primes a reward-sensitive motivational state that overwhelms adolescents’ immature capacity for inhibitory control. We examined this hypothesis using a rodent model. A sample of mice were raised in same-sex triads and were tested for alcohol consumption either as juveniles or as adults, with half in each age group tested alone and half tested with their cagemates. The presence of “peers” increased alcohol consumption among adolescent mice, but not adults. The peer effect on human adolescent reward-seeking may reflect a hard-wired, evolutionarily conserved process through which the presence of agemates increases individuals’ sensitivity to potential rewards in their immediate environment. PMID:24341974

  14. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice.

    PubMed

    Bain, Calum C; Bravo-Blas, Alberto; Scott, Charlotte L; Gomez Perdiguero, Elisa; Geissmann, Frederic; Henri, Sandrine; Malissen, Bernard; Osborne, Lisa C; Artis, David; Mowat, Allan McI

    2014-10-01

    The paradigm that macrophages that reside in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate-mapping models and monocytopenic mice, together with bone marrow chimera and parabiotic models, we found that embryonic precursor cells seeded the intestinal mucosa and demonstrated extensive in situ proliferation during the neonatal period. However, these cells did not persist in the intestine of adult mice. Instead, they were replaced around the time of weaning by the chemokine receptor CCR2-dependent influx of Ly6C(hi) monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool.

  15. Pubertal exposure to di-(2-ethylhexyl) phthalate influences social behavior and dopamine receptor D2 of adult female mice.

    PubMed

    Wang, Ran; Xu, Xiaohong; Zhu, Qingjie

    2016-02-01

    DEHP, one of the most commonly phthalates used in plastics and many other products, is an environmental endocrine disruptor (EED). Puberty is another critical period for the brain development besides the neonatal period and is sensitive to EEDs. Social behavior is organized during puberty, so the present study is to investigate whether pubertal exposure to DEHP influenced social behavior of adult female mice. The results showed that pubertal exposure to DEHP for 2 weeks did not change the serum level of 17β-estradiol and the weight of uterus of adult females, but decreased the number of grid crossings and the frequency of rearing, and increased grooming in open field. DEHP reduced the open arm entries and the time spent in open arms in the elevated plus maze. DEHP reduced mutual sniffing and grooming between unfamiliar conspecifics in social play task and reduced the right chamber (containing unfamiliar female mouse) entries and the frequency of sniffing unfamiliar female mouse. DEHP at 1 mg kg(-1) d(-1) reduced the time spent in right chamber. Furthermore, Western blot analyses showed that DEHP decreased the levels of estrogen receptor β (ERβ), dopamine receptor D2, and the phosphorylation of ERKs in striatum. These results suggest that pubertal exposure to DEHP impaired social investigation and sociability and influenced anxiety-like state of adult female mice. The decreased activity of ERK1/2, and the down-regulated D2 and ERβ in striatum may be associated with the DEHP-induced changes of emotional and social behavior in mice. PMID:26524146

  16. Pubertal exposure to di-(2-ethylhexyl) phthalate influences social behavior and dopamine receptor D2 of adult female mice.

    PubMed

    Wang, Ran; Xu, Xiaohong; Zhu, Qingjie

    2016-02-01

    DEHP, one of the most commonly phthalates used in plastics and many other products, is an environmental endocrine disruptor (EED). Puberty is another critical period for the brain development besides the neonatal period and is sensitive to EEDs. Social behavior is organized during puberty, so the present study is to investigate whether pubertal exposure to DEHP influenced social behavior of adult female mice. The results showed that pubertal exposure to DEHP for 2 weeks did not change the serum level of 17β-estradiol and the weight of uterus of adult females, but decreased the number of grid crossings and the frequency of rearing, and increased grooming in open field. DEHP reduced the open arm entries and the time spent in open arms in the elevated plus maze. DEHP reduced mutual sniffing and grooming between unfamiliar conspecifics in social play task and reduced the right chamber (containing unfamiliar female mouse) entries and the frequency of sniffing unfamiliar female mouse. DEHP at 1 mg kg(-1) d(-1) reduced the time spent in right chamber. Furthermore, Western blot analyses showed that DEHP decreased the levels of estrogen receptor β (ERβ), dopamine receptor D2, and the phosphorylation of ERKs in striatum. These results suggest that pubertal exposure to DEHP impaired social investigation and sociability and influenced anxiety-like state of adult female mice. The decreased activity of ERK1/2, and the down-regulated D2 and ERβ in striatum may be associated with the DEHP-induced changes of emotional and social behavior in mice.

  17. CT-GalNAc transferase overexpression in adult mice is associated with extrasynaptic utrophin in skeletal muscle fibres.

    PubMed

    Durko, Margaret; Allen, Carol; Nalbantoglu, Josephine; Karpati, George

    2010-09-01

    Duchenne muscular dystrophy is a genetic muscle disease characterized by the absence of sub-sarcolemmal dystrophin that results in muscle fibre necrosis, progressive muscle wasting and is fatal. Numerous experimental studies with dystrophin-deficient mdx mice, an animal model for the disease, have demonstrated that extrasynaptic upregulation of utrophin, an analogue of dystrophin, can prevent muscle fibre deterioration and reduce or negate the dystrophic phenotype. A different approach for ectopic expression of utrophin relies on augmentation of CT-GalNAc transferase in muscle fibre. We investigated whether CT-GalNAc transferase overexpression in adult mice influence appearance of utrophin in the extrasynaptic sarcolemma. After electrotransfer of plasmid DNA carrying an expression cassette of CT-GalNAc transferase into tibialis anterior muscle of wild type and dystrophic mice, muscle sections were examined by immunofluorescence. CT-GalNAc transgene expression augmented sarcolemmal carbohydrate glycosylation and was accompanied by extrasynaptic utrophin. A 6-week time course study showed that the highest efficiency of utrophin overexpression in a plasmid harboured muscle fibres was 32.2% in CD-1 and 52% in mdx mice, 2 and 4 weeks after CT-GalNAc gene transfer, respectively. The study provides evidence that postnatal CT-GalNAc transferase overexpression stimulates utrophin upregulation that is inherently beneficial for muscle structure and strength restoration. Thus CT-GalNAc may provide an important therapeutic molecule for treatment of dystrophin deficiency in Duchenne muscular dystrophy.

  18. Only watching others making their experiences is insufficient to enhance adult neurogenesis and water maze performance in mice

    PubMed Central

    Iggena, Deetje; Klein, Charlotte; Garthe, Alexander; Winter, York; Kempermann, Gerd; Steiner, Barbara

    2015-01-01

    In the context of television consumption and its opportunity costs the question arises how far experiencing mere representations of the outer world would have the same neural and cognitive consequences than actively interacting with that environment. Here we demonstrate that physical interaction and direct exposition are essential for the beneficial effects of environmental enrichment. In our experiment, the mice living in a simple standard cage placed in the centre of a large enriched environment only indirectly experiencing the stimulus-rich surroundings (IND) did not display increased adult hippocampal neurogenesis. In contrast, the mice living in and directly experiencing the surrounding enriched environment (DIR) and mice living in a similar enriched cage containing an uninhabited inner cage (ENR) showed enhanced neurogenesis compared to mice in control conditions (CTR). Similarly, the beneficial effects of environmental enrichment on learning performance in the Morris Water maze depended on the direct interaction of the individual with the enrichment. In contrast, indirectly experiencing a stimulus-rich environment failed to improve memory functions indicating that direct interaction and activity within the stimulus-rich environment are necessary to induce structural and functional changes in the hippocampus. PMID:26369255

  19. Neonatal Colon Insult Alters Growth Factor Expression and TRPA1 Responses in Adult Mice

    PubMed Central

    Christianson, Julie A.; Bielefeldt, Klaus; Malin, Sacha A.; Davis, Brian M.

    2010-01-01

    Inflammation or pain during neonatal development can result in long-term structural and functional alterations of nociceptive pathways, ultimately altering pain perception in adulthood. We have developed a mouse model of neonatal colon irritation (NCI) to investigate the plasticity of pain processing within the viscerosensory system. Mouse pups received an intracolonic administration of 2% mustard oil (MO) on postnatal days 8 and 10. Distal colons were processed at subsequent timepoints for myeloperoxidase (MPO) activity and growth factor expression. Adult mice were assessed for visceral hypersensitivity by measuring the visceromotor response during colorectal distension. Dorsal root ganglion (DRG) neurons from adult mice were retrogradely labeled from the distal colon and calcium imaging was used to measure transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) responses to acute application of capsaicin and MO, respectively. Despite the absence of inflammation (as indicated by MPO activity), neonatal exposure to intracolonic MO transiently maintained a higher expression level of growth factor messenger RNA (mRNA). Adult NCI mice displayed significant visceral hypersensitivity, as well as increased sensitivity to mechanical stimulation of the hindpaw, compared to control mice. The percentage of TRPA1-expressing colon afferents was significantly increased in NCI mice, however they displayed no increase in the percentage of TRPV1-immunopositive or capsaicin-sensitive colon DRG neurons. These results suggest that early neonatal colon injury results in a long-lasting visceral hypersensitivity, possibly driven by an early increase in growth factor expression and maintained by permanent changes in TRPA1 function. PMID:20850221

  20. NGF induces appearance of adult-like response to spatial novelty in 18-day male mice.

    PubMed

    Calamandrei, Gemma; Valanzano, Angela; Ricceri, Laura

    2002-10-17

    We investigated the effects of Nerve Growth Factor (NGF) administration on the maturation of reactivity to spatial and non-spatial novelty in developing mice. CD-1 mice of both sexes received intracerebral administration of NGF on postnatal day (pnd) 15, and their response to object displacement (spatial novelty) and object substitution (object novelty) were assessed in a spatial open-field with four objects on pnd 18 or 28. On pnd 18, NGF induced only in males precocious appearance of spatial novelty discrimination, while increasing choline acetyltransferase activity in neocortex and hippocampus of both sexes. The behavioral and neurochemical effects disappeared by pnd 28. NGF triggers adult-like responding to spatial novelty in developing mice and such effect is gender-specific.

  1. Vitamin E Status and Metabolism in Adult and Aged Aryl Hydrocarbon Receptor Null Mice

    PubMed Central

    Traber, Maret G.; Mustacich, Debbie J.; Sullivan, Laura C.; Leonard, Scott W.; Ahern-Rindell, Amelia; Kerkvliet, Nancy

    2009-01-01

    The aryl hydrocarbon receptor (AhR) is involved in regulation of mechanisms for detoxification of xenobiotics, as well as vitamin A metabolism. Vitamin E is a fat-soluble nutrient whose metabolism is initialized via the cytochrome P450 system. Thus, AhR absence could alter hepatic regulation of α-tocopherol metabolism. To test this hypothesis, we assessed vitamin E status in adult (2–5 m) and old (21–22 m), wildtype and AhR-null mice. Plasma α-tocopherol concentrations in AhR null mice (2.3 ± 1.2 μmol/L, n= 19) were lower than those of wildtype mice (3.2 ± 1.2, n=17, P=0.0131); those in old mice (3.2 ± 1.2, n= 20) were higher than those of adults (2.2 ± 1.0, n=16, p=0.0075). Hepatic α-tocopherol concentrations were not different between genotypes, but were nearly double in old (32 ± 8 nmol/g, n=20) as compared with adult mice (17 ± 2, n=16, p<0.0001). Hepatic Cyp3a concentrations in AhR-null mice were greater than those in wildtypes (p=0.0011). Genotype (p=0.0047), sex (p<0.0001) and age (p<0.0001) were significant modifiers of liver α-tocopherol metabolite (α-CEHC) concentrations. In general, Cyp3a concentrations correlated with hepatic α-tocopherol (r= 0.3957, p<0.05) and α-CEHC (r=0.4260, p<0.05) concentrations. Since there were no significant genotype differences in the hepatic α- or γ-tocopherol concentrations, AhR null mice did not have dramatically altered vitamin E metabolism. Since they did have higher hepatic α-CEHC concentrations, these data suggest metabolism was up-regulated in the AhR null mice in order to maintain the hepatic tocopherol concentrations similar to those of wildtypes. PMID:20153623

  2. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    SciTech Connect

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  3. Neonatal tryptophan depletion and corticosterone supplementation modify emotional responses in adult male mice.

    PubMed

    Zoratto, Francesca; Fiore, Marco; Ali, Syed F; Laviola, Giovanni; Macrì, Simone

    2013-01-01

    The serotonergic system and the hypothalamic-pituitary-adrenal (HPA) axis are crucially involved in the regulation of emotions. Specifically, spontaneous and/or environmentally mediated modulations of the functionality of these systems early in development may favour the onset of depressive- and anxiety-related phenotypes. While the independent contribution of each of these systems to the emergence of abnormal phenotypes has been detailed in clinical and experimental studies, only rarely has their interaction been systematically investigated. Here, we addressed the effects of reduced serotonin and environmental stress during the early stages of postnatal life on emotional regulations in mice. To this aim, we administered, to outbred CD1 mouse dams, during their first week of lactation, a tryptophan deficient diet (T) and corticosterone via drinking water (C; 80μg/ml). Four groups of dams (animal facility rearing, AFR; T treated, T; C treated, C; T and C treated, TC) and their male offspring were used in the study. Maternal care was scored throughout treatment and adult offspring were tested for: anhedonia (progressive ratio schedule); anxiety-related behaviour (approach-avoidance conflict paradigm); BDNF, dopamine and serotonin concentrations in selected brain areas. T, C and TC treatments reduced active maternal care compared to AFR. Adult TC offspring showed significantly increased anxiety- and anhedonia-related behaviours, reduced striatal and increased hypothalamic BDNF and reduced dopamine and serotonin in the prefrontal cortex and their turnover in the hippocampus. Thus, present findings support the view that neonatal variations in the functionality of the serotonergic system and of HPA axis may jointly contribute to induce emotional disturbances in adulthood.

  4. Altered cocaine-induced behavioral sensitization in adult mice exposed to cocaine in utero.

    PubMed

    Crozatier, Claire; Guerriero, Rejean M; Mathieu, Flavie; Giros, Bruno; Nosten-Bertrand, Marika; Kosofsky, Barry E

    2003-12-30

    Behavioral sensitization induced by psychostimulants is characterized by increased locomotion and stereotypy and may reflect aspects of neuronal adaptations underlying drug addiction in humans. To study the developmental contributions to addictive behaviors, we measured behavioral responses in adult offspring to a cocaine sensitization paradigm following prenatal cocaine exposure. Pregnant Swiss-Webster (SW) mice were injected twice daily from embryonic days 8 to 17 (E8-E17, inclusive) with cocaine (20 or 40 mg/kg/day; COC20 and COC40, respectively), or saline vehicle (SAL and SPF40) subcutaneously (s.c.). A nutritional control group of dams were 'pair-fed' with COC40 dams (SPF40). P120 male offspring from each prenatal treatment group were assigned to a behavioral sensitization group and injected with cocaine (15 mg/kg) or saline intraperitoneally (i.p.) every other day for seven doses. Locomotor activity and stereotypy were measured during habituation, cocaine initiation, and following a cocaine challenge 21 days after the last initiation injection. As expected, animals demonstrated significantly more locomotion and stereotypic behavior following acute and recurrent injection of cocaine compared to saline-injected animals. However, for each prenatal treatment group, cocaine-sensitized animals showed unique temporal profiles for the increase in locomotor sensitization and stereotypy over the course of the sensitization protocol. Two features that distinguished the altered behavioral progression of prenatally cocaine-exposed animals (COC40) from control (SAL) animals included blunted augmentation of locomotion and enhanced patterns of stereotypic behavior. These findings provide evidence that the behavioral activating effects of cocaine in adult animals are altered following exposure to cocaine in utero.

  5. Chronic stress alters inhibitory networks in the medial prefrontal cortex of adult mice.

    PubMed

    Gilabert-Juan, Javier; Castillo-Gomez, Esther; Guirado, Ramón; Moltó, Maria Dolores; Nacher, Juan

    2013-11-01

    Chronic stress in experimental animals induces dendritic atrophy and decreases spine density in principal neurons of the medial prefrontal cortex (mPFC). This structural plasticity may play a neuroprotective role and underlie stress-induced behavioral changes. Different evidences indicate that the prefrontocortical GABA system is also altered by stress and in major depression patients. In the amygdala, chronic stress induces dendritic remodeling both in principal neurons and in interneurons. However, it is not known whether similar structural changes occur in mPFC interneurons. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these changes, because it is known to influence the dendritic organization of adult cortical interneurons. We have analyzed the dendritic arborization and spine density of mPFC interneurons in adult mice after 21 days of restraint stress and have found dendritic hypertrophy in a subpopulation of interneurons identified mainly as Martinotti cells. This aversive experience also decreases the number of glutamate decarboxylase enzyme, 67 kDa isoform (GAD67) expressing somata, without affecting different parameters related to apoptosis, but does not alter the number of interneurons expressing PSA-NCAM. Quantitative retrotranscription-polymerase chain reaction (qRT-PCR) analysis of genes related to general and inhibitory neurotransmission and of PSA synthesizing enzymes reveals increases in the expression of NCAM, synaptophysin and GABA(A)α1. Together these results show that mPFC inhibitory networks are affected by chronic stress and suggest that structural plasticity may be an important feature of stress-related psychiatric disorders where this cortical region, specially their GABAergic system, is altered.

  6. Generation of Venus reporter knock-in mice revealed MAGI-2 expression patterns in adult mice.

    PubMed

    Ihara, Kan-ichiro; Nishimura, Tomoki; Fukuda, Tomokazu; Ookura, Tetsuya; Nishimori, Katsuhiko

    2012-01-01

    The membrane-associated guanylate kinase inverted 2 (MAGI-2) protein, which is known to localize at the tight junction of epithelial cells, contains multiple copies of the PDZ and WW domains in its structure. Although the expression pattern of Magi2 mRNA in representative organs has been previously published, its detailed cellular distribution at the histological level remains unknown. Such detailed information would be useful to clarify the biological function of MAGI-2. Here, we report the generation of Venus reporter knock-in mice for Magi2 in which exon 6 of the gene was substituted by the Venus-encoding sequence. We detected the expression of the Venus reporter protein in kidney podocytes from these knock-in mice. We also detected Venus reporter protein expression in spermatids within the testes and within neurons in various regions of the brain. Detection of the reporter protein from these diverse locations indicated the endogenous expression of MAGI-2 in these tissues. Our data suggested a potential function of MAGI-2 in the glomerular filtration process and sperm cell maturation. These data indicate that the Venus reporter knock-in mouse for Magi2 is a useful model for the further study of Magi2 gene function.

  7. Theory of hantavirus infection spread incorporating localized adult and itinerant juvenile mice

    NASA Astrophysics Data System (ADS)

    Kenkre, V. M.; Giuggioli, L.; Abramson, G.; Camelo-Neto, G.

    2007-02-01

    A generalized model of the spread of the Hantavirus in mice populations is presented on the basis of recent observational findings concerning the movement characteristics of the mice that carry the infection. The factual information behind the generalization is based on mark-recapture observations reported in Giuggioli et al. [Bull. Math. Biol. 67, 1135 (2005)] that have necessitated the introduction of home ranges in the simple model of Hantavirus spread presented by Abramson and Kenkre [Phys. Rev. E 66, 11912 (2002)]. The essential feature of the model presented here is the existence of adult mice that remain largely confined to locations near their home ranges, and itinerant juvenile mice that are not so confined, and, during their search for their own homes, move and infect both other juveniles and adults that they meet during their movement. The model is presented at three levels of description: mean field, kinetic and configuration. Results of calculations are shown explicitly from the mean field equations and the simulation rules, and are found to agree in some respects and to differ in others. The origin of the differences is shown to lie in spatial correlations. It is indicated how mark-recapture observations in the field may be employed to verify the applicability of the theory.

  8. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice.

    PubMed

    Sauter, Kristin A; Pridans, Clare; Sehgal, Anuj; Tsai, Yi Ting; Bradford, Barry M; Raza, Sobia; Moffat, Lindsey; Gow, Deborah J; Beard, Philippa M; Mabbott, Neil A; Smith, Lee B; Hume, David A

    2014-08-01

    We investigated the role of CSF1R signaling in adult mice using prolonged treatment with anti-CSF1R antibody. Mutation of the CSF1 gene in the op/op mouse produces numerous developmental abnormalities. Mutation of the CSF1R has an even more penetrant phenotype, including perinatal lethality, because of the existence of a second ligand, IL-34. These effects on development provide limited insight into functions of CSF1R signaling in adult homeostasis. The carcass weight and weight of several organs (spleen, kidney, and liver) were reduced in the treated mice, but overall body weight gain was increased. Despite the complete loss of Kupffer cells, there was no effect on liver gene expression. The treatment ablated OCL, increased bone density and trabecular volume, and prevented the decline in bone mass seen in female mice with age. The op/op mouse has a deficiency in pancreatic β cells and in Paneth cells in the gut wall. Only the latter was reproduced by the antibody treatment and was associated with increased goblet cell number but no change in villus architecture. Male op/op mice are infertile as a result of testosterone insufficiency. Anti-CSF1R treatment ablated interstitial macrophages in the testis, but there was no sustained effect on testosterone or LH. The results indicate an ongoing requirement for CSF1R signaling in macrophage and OCL homeostasis but indicate that most effects of CSF1 and CSF1R mutations are due to effects on development.

  9. Immunosuppression transfer by spleen cells from young to adult mice previous to Histoplasma capsulatum infection.

    PubMed

    Reyes-Montes, M R; García-Camacho, M P; Casasola, J; Taylor, M L

    1988-02-01

    The passive transfer of spleen cells from 1 month old mice into adult syngeneic mice, abrogates their resistance to histoplasmal infection. This suppressive state was detected in two cell populations, one non-adherent and another adherent with radioresistant characteristics. The transferred spleen cells were treated by different anti-sera: anti-theta, anti-adherent cells (produced in rabbits) and monoclonal anti-Thy 1.2 respectively. The irradiated and non-irradiated adult recipient mice were infected with Histoplasma yeasts utilizing the Lethal Dose50 for 1 month old mice. The infection course was determined by death percentage, the histoplasmosis murine signs and the number of the fungal colony forming units (CFU) from the infected spleens. The results of the anti-sera treatment suggest that non-adherent as well as adherent cells participate in the suppressive phenomena. A lower number of CFU was identified in infected animals which received cells treated with anti-Thy 1.2 anti-sera.

  10. Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    PubMed Central

    Batista, Thiago M.; Alonso-Magdalena, Paloma; Vieira, Elaine; Amaral, Maria Esmeria C.; Cederroth, Christopher R.; Nef, Serge; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2012-01-01

    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit. In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes. PMID:22470480

  11. Psychological stress in adolescent and adult mice increases neuroinflammation and attenuates the response to LPS challenge

    PubMed Central

    2012-01-01

    Background There is ample evidence that psychological stress adversely affects many diseases. Recent evidence has shown that intense stressors can increase inflammation within the brain, a known mediator of many diseases. However, long-term outcomes of chronic psychological stressors that elicit a neuroinflammatory response remain unknown. Methods To address this, we have modified previously described models of rat/mouse predatory stress (PS) to increase the intensity of the interaction. We postulated that these modifications would enhance the predator-prey experience and increase neuroinflammation and behavioral dysfunction in prey animals. In addition, another group of mice were subjected to a modified version of chronic unpredictable stress (CUS), an often-used model of chronic stress that utilizes a combination of stressors that include physical, psychological, chemical, and other. The CUS model has been shown to exacerbate a number of inflammatory-related diseases via an unknown mechanism. Using these two models we sought to determine: 1) whether chronic PS or CUS modulated the inflammatory response as a proposed mechanism by which behavioral deficits might be mediated, and 2) whether chronic exposure to a pure psychological stressor (PS) leads to deficits similar to those produced by a CUS model containing psychological and physical stressors. Finally, to determine whether acute PS has neuroinflammatory consequences, adult mice were examined at various time-points after PS for changes in inflammation. Results Adolescent mice subjected to chronic PS had increased basal expression of inflammation within the midbrain. CUS and chronic PS mice also had an impaired inflammatory response to a subsequent lipopolysaccharide challenge and PS mice displayed increased anxiety- and depressive-like behaviors following chronic stress. Finally, adult mice subjected to acute predatory stress had increased gene expression of inflammatory factors. Conclusion Our results

  12. Unusual Repertoire of Vocalizations in Adult BTBR T+tf/J Mice During Three Types of Social Encounters

    PubMed Central

    Scattoni, Maria Luisa; Ricceri, Laura; Crawley, Jacqueline N.

    2010-01-01

    BTBR T+tf/J (BTBR) is an inbred mouse strain that displays social deficits and repetitive behaviors analogous to the first and third diagnostic symptoms of autism. We previously reported an unusual pattern of ultrasonic vocalizations in BTBR pups that may represent a behavioral homologue to the second diagnostic symptom of autism, impaired communication. The present study investigated the social and vocal repertoire in adult BTBR mice, to evaluate the role of ultrasonic vocalizations in multiple social situations at the adult stage of development. Three different social contexts were considered: male-female, male-male (resident-intruder) and female-female interactions. Behavioral responses and ultrasonic vocalizations were recorded for BTBR and for the highly social control strain C57BL/6J (B6). No episodes of overt fighting or mating were observed during the short durations of the three different experimental encounters. BTBR displayed lower levels of vocalizations and social investigation in all three social contexts as compared to B6. In addition, the correlation analyses between social investigation and USVs emission rate revealed that in B6 mice the two variables were positively correlated in all the three different social settings, whereas in BTBR mice the positive correlation was significant only in the male-female interactions. These findings strongly support the value of simultaneously recording two aspects of the mouse social repertoire, social motivation and bioacoustic communication. Moreover, our findings in adults are consistent with previous results in pups, showing an unusual vocal repertoire in BTBR as compared to B6. PMID:20618443

  13. Preterm birth and unintentional injuries: risks to children, adolescents and young adults show no consistent pattern

    PubMed Central

    Calling, Susanna; Palmér, Karolina; Jönsson, Lena; Sundquist, Jan; Winkleby, Marilyn; Sundquist, Kristina

    2012-01-01

    Aim Preterm birth is associated with a number of physical and mental health issues. The aim of this study was to find out if there was also any association between individuals born preterm in Sweden between 1984 and 2006 and the risk of unintentional injuries during childhood, adolescence and young adulthood. Methods The study followed 2,297,134 individuals, including 5.9% born preterm, from 1985 to 2007 for unintentional injuries leading to hospitalisation or death (n=244,021). The males and females were divided into four age groups: 1–5 years, 6–12 years, 13–18 years and 19–23 years. Hazard ratios were calculated for falls, transport injuries and other injuries. Results After adjusting for a comprehensive set of covariates, some of the preterm subgroups demonstrated slightly increased risks of unintentional injuries, while others showed slightly decreased risks. However, most of the estimates were borderline or non-significant in both males and females. In addition, the absolute risk differences between individuals born preterm and full term were small. Conclusion Despite the association between preterm birth and a variety of physical and mental health consequences, this study shows that there is no consistent risk pattern between preterm birth and unintentional injuries in childhood, adolescence and young adulthood. PMID:23181809

  14. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CD1 Mice

    EPA Science Inventory

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the bi...

  15. The effects of paradoxical sleep deprivation on amphetamine-induced behavioral sensitization in adult and adolescent mice.

    PubMed

    Kameda, Sonia R; Fukushiro, Daniela F; Trombin, Thaís F; Sanday, Leandro; Wuo-Silva, Raphael; Saito, Luis P; Tufik, Sergio; D'Almeida, Vânia; Frussa-Filho, Roberto

    2014-08-30

    Drug-induced behavioral sensitization (BS), paradoxical sleep deprivation (PSD) and adolescence in rodents are associated with changes in the mesolimbic dopaminergic system. We compared the effects of PSD on amphetamine-induced BS in adult and adolescent mice. Adult (90 days old) and adolescent (45 days old) Swiss mice were subjected to PSD for 48h. Immediately after PSD, mice received saline or 2.0mg/kg amphetamine intraperitoneally (i.p.), and their locomotion was quantified in activity chambers. Seven days later, all the animals were challenged with 2.0mg/kg amphetamine i.p., and their locomotion was quantified again. Acute amphetamine enhanced locomotion in both adult and adolescent mice, but BS was observed only in adolescent mice. Immediately after its termination, PSD decreased locomotion of both saline- and amphetamine-treated adolescent mice. Seven days later, previous PSD potentiated both the acute stimulatory effect of amphetamine and its sensitization in adolescent mice. In adult animals, previous PSD revealed BS. Our data suggest that adolescent mice are more vulnerable to both the immediate and long-term effects of PSD on amphetamine-induced locomotion. Because drug-induced BS in rodents shares neuroplastic changes with drug craving in humans, our findings also suggest that both adolescence and PSD could facilitate craving-related mechanisms in amphetamine abuse.

  16. Oestradiol Exposure Early in Life Programs Daily and Circadian Activity Rhythms in Adult Mice.

    PubMed

    Royston, S E; Bunick, D; Mahoney, M M

    2016-01-01

    Hormone signalling during critical periods organises the adult circadian timekeeping system by altering adult hormone sensitivity and shaping fundamental properties of circadian rhythmicity. However, the timing of when developmental oestrogens modify the timekeeping system is poorly understood. To test the hypothesis that alterations in postnatal oestrogenic signalling organise adult daily activity rhythms, we utilised aromatase knockout mice (ArKO), which lack the enzyme required for oestradiol synthesis. ArKO and wild-type (WT) males and females were administered either oestradiol (E) or oil (OIL) daily for the first 5 postnatal days (p1-5E and p1-5OIL , respectively) because this time encompasses the emergence of clock gene rhythmicity and light responsiveness in the suprachiasmatic nucleus, a bilateral hypothalamic structure regarded as the 'master oscillator'. After sexual maturation, gonadectomy and exogenous oestradiol supplementation, locomotor parameters were assessed. We determined that altered oestrogenic signalling in early life exerts organisational control over the expression of daily and circadian activity rhythms in adult mice. Specifically, p1-5E reduced total wheel running activity in male and female ArKO and female WT mice but had no effect on WT male activity levels. In females, wheel running was consolidated by p1-5E to the early versus late evening, a phenomenon characteristic of male mice. The time of peak activity was advanced by p1-5E in WT and ArKO females but not males. P1-5E shortened the length of the active phase (alpha) in WT males but had no effect on ArKO males or females of either genotypes. Finally, p1-5E altered the magnitude of photic-induced shifts, suggesting that developmental oestrogenic signalling impacts adult circadian functions. In the present study, we further define both a critical period of development of the adult timekeeping system and the role that oestrogenic signalling plays in the expression of daily and

  17. The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice.

    PubMed

    Holloway, Benjamin B; Viar, Kenneth E; Stornetta, Ruth L; Guyenet, Patrice G

    2015-09-01

    The retrotrapezoid nucleus (RTN) is a bilateral cluster of neurons located at the ventral surface of the brainstem below the facial nucleus. The RTN is activated by hypercapnia and stabilises arterial Pco2 by adjusting lung ventilation in a feedback manner. RTN neurons contain vesicular glutamate transporter-2 (Vglut2) transcripts (Slc17a6), and their synaptic boutons are Vglut2-immunoreactive. Here, we used optogenetics to test whether the RTN increases ventilation in conscious adult mice by releasing glutamate. Neurons located below the facial motor nucleus were transduced unilaterally to express channelrhodopsin-2 (ChR2)-enhanced yellow fluorescent protein, with lentiviral vectors that employ the Phox2b-activated artificial promoter PRSx8. The targeted population consisted of two types of Phox2b-expressing neuron: non-catecholaminergic neurons (putative RTN chemoreceptors) and catecholaminergic (C1) neurons. Opto-activation of a mix of ChR2-expressing RTN and C1 neurons produced a powerful stimulus frequency-dependent (5-15 Hz) stimulation of breathing in control conscious mice. Respiratory stimulation was comparable in mice in which dopamine-β-hydroxylase (DβH)-positive neurons no longer expressed Vglut2 (DβH(C) (re/0);;Vglut2(fl/fl)). In a third group of mice, i.e. DβH(+/+);;Vglut2(fl/fl) mice, we injected a mixture of PRSx8-Cre lentiviral vector and Cre-dependent ChR2 adeno-associated virus 2 unilaterally into the RTN; this procedure deleted Vglut2 from ChR2-expressing neurons regardless of whether or not they were catecholaminergic. The ventilatory response elicited by photostimulation of ChR2-positive neurons was almost completely absent in these mice. Resting ventilatory parameters were identical in the three groups of mice, and their brains contained similar numbers of ChR2-positive catecholaminergic and non-catecholaminergic neurons. From these results, we conclude that RTN neurons increase breathing in conscious adult mice by releasing glutamate.

  18. The anabolic steroids testosterone propionate and nandrolone, but not 17alpha-methyltestosterone, induce conditioned place preference in adult mice.

    PubMed

    Parrilla-Carrero, Jeffrey; Figueroa, Orialis; Lugo, Alejandro; García-Sosa, Rebecca; Brito-Vargas, Paul; Cruz, Beatriz; Rivera, Mélanis; Barreto-Estrada, Jennifer L

    2009-02-01

    Anabolic androgenic steroids (AAS) are often misused by adolescents and athletes. Their effects vary according to chemical structure and metabolism, route of administration, and AAS regimen. In this study, adult C57Bl/6 male mice were systemically exposed to testosterone propionate (TP), nandrolone or 17alpha-methyltestosterone (17alpha-meT), type I, type II and type III AAS, respectively, in order to determine the hedonic or aversive properties of each drug. For this purpose, the conditioned place preference (CPP) test was employed at three different AAS doses (0.075, 0.75 and 7.5 mg/kg). Other behavioral domains monitored were light-dark transitions (side changes) and general activity. TP shifted place preference at all doses tested, and nandrolone shifted place preference at 0.75 and 7.5 mg/kg, but not at 0.075 mg/kg, the lower dose tested. Conversely, mice receiving 17alpha-meT did not show alteration in the preference score. The lower dose of nandrolone did modify exploratory-based anxiety showing a decrease in light-dark transitions if compared to vehicle-treated animals, while mice treated with TP or 17alpha-meT were not affected. Our data suggest that when studying hedonic and rewarding properties of synthetic androgens, distinction has to be made based on type of AAS and metabolism.

  19. THE ANABOLIC STEROIDS TESTOSTERONE PROPIONATE AND NANDROLONE, BUT NOT 17α-METHYLTESTOSTERONE, INDUCE CONDITIONED PLACE PREFERENCE IN ADULT MICE

    PubMed Central

    Parrilla-Carrero, Jeffrey; Figueroa, Orialis; Lugo, Alejandro; García-Sosa, Rebecca; Brito-Vargas, Paul; Cruz, Beatriz; Rivera, Melanis; Barreto-Estrada, Jennifer L.

    2009-01-01

    Anabolic androgenic steroids (AAS) are often misused by adolescents and athletes. Their effects vary according to chemical structure and metabolism, route of administration, and AAS regimen. In this study, adult C57Bl/6 male mice were systemically exposed to testosterone propionate (TP), nandrolone or 17α-methyltestosterone (17α-meT), type I, type II and type III AAS, respectively, in order to determine the hedonic or aversive properties of each drug. For this purpose, the conditioned place preference (CPP) test was employed at three different AAS doses (0.075, 0.75 and 7.5 mg/kg). Other behavioral domains monitored were light-dark transitions (side changes) and general activity. TP shifted place preference at all doses tested, and nandrolone shifted place preference at 0.75 and 7.5mg/kg, but not at 0.075 mg/kg, the lower dose tested. Conversely, mice receiving 17α-meT did not show alteration in the preference score. The lower dose of nandrolone did modify exploratory based-anxiety showing a decrease in light-dark transitions if compared to vehicle-treated animals, while mice treated with TP or 17α-meT were not affected. Our data suggest that when studying hedonic and rewarding properties of synthetic androgens, distinction has to be made based on type of AAS and metabolism. PMID:19028026

  20. Construction and characterization of an infectious clone of coxsackievirus A6 that showed high virulence in neonatal mice.

    PubMed

    Yang, Lisheng; Li, Shuxuan; Liu, Yajing; Hou, Wangheng; Lin, Qiaona; Zhao, Huan; Xu, Longfa; He, Delei; Ye, Xiangzhong; Zhu, Hua; Cheng, Tong; Xia, Ningshao

    2015-12-01

    Atypical hand, foot, and mouth disease (aHFMD) outbreaks have been frequently reported worldwide in recent years. It is believed that coxsackievirus A6 (CA6) is the major pathogen for aHFMD. Studies regarding CA6 infection are limited and the genetic mechanism for the high pathogenicity of some new CA6 variants is still unclear. Infectious clones are powerful tools for studying the genetic mechanisms of RNA viruses. In this study, we describe the construction of a full-length cDNA clone of CA6 strain TW-2007-00141. The whole genome of CA6 was amplified in a single step and ligated into a plasmid vector through an efficient cloning method, Gibson assembly. The whole genome sequence of CA6 strain TW-2007-00141 was determined and phylogenetic analysis indicated that it shared a high degree of similarity (≥94%) with the CA6 strains found in Taiwan in 2009. The infectious clone of CA6 viruses were recovered by transfection into 293FT cells and showed similar biological properties to the parental virus. Viral particles were purified by CsCl isopycnic centrifugation, and two types of viral particles were observed under transmission electron microscopy. The rescued virus showed high virulence in one-day-old suckling mice. This clone may be useful for establishing animal models for the evaluation of CA6 vaccine efficiency in future.

  1. Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    PubMed Central

    Capilla-Gonzalez, Vivian; Gil-Perotin, Sara; Ferragud, Antonio; Bonet-Ponce, Luis; Canales, Juan Jose; Garcia-Verdugo, Jose Manuel

    2012-01-01

    Background Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. Methodology/Principal Findings 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. Conclusions/Significance The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits. PMID:22238669

  2. Of Mice and Men-Warning: Intact Versus Castrated Adult Male Mice as Xenograft Hosts Are Equivalent to Hypogonadal Versus Abiraterone Treated Aging Human Males, Respectively

    PubMed Central

    Sedelaar, J.P. Michiel; Dalrymple, Susan S.; Isaacs, John T.

    2014-01-01

    BACKGROUND Immune deficient male mice bearing human prostate cancer xenografts are used to evaluate therapeutic response to novel androgen ablation approaches and the results compared to surgical castration based upon assumption that testosterone microenvironment in intact and castrated adult male mice mimics eugonadal and castrated aging adult human males. METHODS To test these assumptions, serum total testosterone (TT) and free testosterone (FT) were determined longitudinally in groups (n > 20) of intact versus castrated adult male nude, NOG, and immune competent C57BL/6 mice. RESULTS In adult male mice, TT and FT varies by 30- to 100-fold within the same animal providing a microenvironment that is only equivalent to hypogonadal, not eugonadal, adult human males (TT is 1.7 ± 1.2 ng/ml [5.8 ± 4.1 nM] in nude and 2.5 ± 1.3 ng/ml [8.7 ± 4.4 nM] in NOG mice versus >4.2 ng/ml [14.7 nM] in eugonadal humans). This was confirmed based upon enhanced growth of androgen dependent human prostate cancer xenografts inoculated into mice supplemented with exogenous testosterone to elevate and chronically maintain serum TT at a level (5 ng/ml [18 nM]) equivalent to a 50-year-old eugonadal human male. In castrated mice, TT and FT range from 2 to 20 pg/ml (7–70 pM) and <0.8 pg/ml (<2.6 pM), respectively, which is equivalent to castrate resistant prostate cancer (CRPC) patients treated with abiraterone. This was confirmed based upon the inability of another CYP17A1 inhibitor, ketoconazole, to inhibit the growth of CRPC xenografts in castrated mice. CONCLUSIONS Adult male mice supplemented with testosterone mimic eugonadal human males, while unsupplemented animals mimic standard androgen ablation and castrated animals mimic abiraterone treated patients. These studies confirm what is claimed in Robert Burns’ poem “To a Mouse” that “The best laid schemes of mice and men/often go awry. PMID:23775398

  3. Photoperiodic regulation of hippocampal neurogenesis in adult male white-footed mice (Peromyscus leucopus).

    PubMed

    Walton, James C; Aubrecht, Taryn G; Weil, Zachary M; Leuner, Benedetta; Nelson, Randy J

    2014-08-01

    Photoperiodic organisms monitor environmental day length to engage in seasonally appropriate adaptions in physiology and behavior. Among these adaptations are changes in brain volume and neurogenesis, which have been well described in multiple species of birds, yet few studies have described such changes in the brains of adult mammals. White-footed mice (Peromyscus leucopus) are an excellent species in which to investigate the effects of day length on adult hippocampal neurogenesis, as males, in addition to having reduced hippocampal volume in short days (SD) with concomitant impairments in hippocampus-mediated behaviors, have photoperiod-dependent changes in olfactory bulb neurogenesis. We performed the current experiment to assess the effects of photoperiod on hippocampal neurogenesis longitudinally, using the thymidine analog bromodeoxyuridine at multiple time points across 10 weeks of SD exposure. Compared with counterparts held in long day (LD) lengths, across the first 8 weeks of SD exposure hippocampal neurogenesis was reduced. However, at 10 weeks in SD lengths neurogenic levels in the hippocampus were elevated above those levels in mice held in LD lengths. The current findings are consistent with the natural photoperiodic cycle of hippocampal function in male white-footed mice, and may help to inform research on photoperiodic plasticity in neurogenesis and provide insight into how the complex interplay among the environment, genes and adaptive responses to changing day lengths affects brain structure, function and behavior at multiple levels. PMID:24893623

  4. Photoperiodic regulation of hippocampal neurogenesis in adult male white-footed mice (Peromyscus leucopus).

    PubMed

    Walton, James C; Aubrecht, Taryn G; Weil, Zachary M; Leuner, Benedetta; Nelson, Randy J

    2014-08-01

    Photoperiodic organisms monitor environmental day length to engage in seasonally appropriate adaptions in physiology and behavior. Among these adaptations are changes in brain volume and neurogenesis, which have been well described in multiple species of birds, yet few studies have described such changes in the brains of adult mammals. White-footed mice (Peromyscus leucopus) are an excellent species in which to investigate the effects of day length on adult hippocampal neurogenesis, as males, in addition to having reduced hippocampal volume in short days (SD) with concomitant impairments in hippocampus-mediated behaviors, have photoperiod-dependent changes in olfactory bulb neurogenesis. We performed the current experiment to assess the effects of photoperiod on hippocampal neurogenesis longitudinally, using the thymidine analog bromodeoxyuridine at multiple time points across 10 weeks of SD exposure. Compared with counterparts held in long day (LD) lengths, across the first 8 weeks of SD exposure hippocampal neurogenesis was reduced. However, at 10 weeks in SD lengths neurogenic levels in the hippocampus were elevated above those levels in mice held in LD lengths. The current findings are consistent with the natural photoperiodic cycle of hippocampal function in male white-footed mice, and may help to inform research on photoperiodic plasticity in neurogenesis and provide insight into how the complex interplay among the environment, genes and adaptive responses to changing day lengths affects brain structure, function and behavior at multiple levels.

  5. Protective effect of early prenatal stress on the induction of asthma in adult mice: Sex-specific differences.

    PubMed

    Vargas, Mauro Henrique Moraes; Campos, Natália Evangelista; de Souza, Rodrigo Godinho; da Cunha, Aline Andrea; Nuñez, Nailê Karine; Pitrez, Paulo Márcio; Donadio, Márcio Vinícius Fagundes

    2016-10-15

    Adversities faced during the prenatal period can be related to the onset of diseases in adulthood. However, little is known about the effects on the respiratory system. This study aimed to evaluate the effects of prenatal stress in two different time-points during pregnancy on pulmonary function and on the inflammatory profile of mice exposed to an asthma model. Male and female BALB/c mice were divided into 3 groups: control (CON), prenatal stress from the second week of pregnancy (PNS1) and prenatal stress on the last week of pregnancy (PNS2). Both PNS1 and PNS2 pregnant females were submitted to restraint stress. As adults, fear/anxiety behaviors were assessed, and animals were subjected to an asthma model induced by ovalbumin. Pulmonary function, inflammatory parameters in bronchoalveolar lavage (BAL) and histology were evaluated. There was a significant decrease in the number of entries and time spent in the central quadrant on the open field test for the PNS1 animals. Females (PNS1) showed improved pulmonary function (airway resistance, tissue damping and pulmonary elastance), significant increase in the percentage of neutrophils and lymphocytes and a decrease in eosinophils when compared to controls. There was a significant decrease in inflammatory cytokines in BAL of both males (IL-5 and IL-13) and females (IL-4, IL-5 and IL-13) from PNS1 and PNS2 when compared to the CON group. Prenatal stress starting from the beginning of pregnancy reduces the impact of asthma development in adult female mice, showing an improved pulmonary function and a lower inflammatory response in the lungs. PMID:27568231

  6. Protective effect of early prenatal stress on the induction of asthma in adult mice: Sex-specific differences.

    PubMed

    Vargas, Mauro Henrique Moraes; Campos, Natália Evangelista; de Souza, Rodrigo Godinho; da Cunha, Aline Andrea; Nuñez, Nailê Karine; Pitrez, Paulo Márcio; Donadio, Márcio Vinícius Fagundes

    2016-10-15

    Adversities faced during the prenatal period can be related to the onset of diseases in adulthood. However, little is known about the effects on the respiratory system. This study aimed to evaluate the effects of prenatal stress in two different time-points during pregnancy on pulmonary function and on the inflammatory profile of mice exposed to an asthma model. Male and female BALB/c mice were divided into 3 groups: control (CON), prenatal stress from the second week of pregnancy (PNS1) and prenatal stress on the last week of pregnancy (PNS2). Both PNS1 and PNS2 pregnant females were submitted to restraint stress. As adults, fear/anxiety behaviors were assessed, and animals were subjected to an asthma model induced by ovalbumin. Pulmonary function, inflammatory parameters in bronchoalveolar lavage (BAL) and histology were evaluated. There was a significant decrease in the number of entries and time spent in the central quadrant on the open field test for the PNS1 animals. Females (PNS1) showed improved pulmonary function (airway resistance, tissue damping and pulmonary elastance), significant increase in the percentage of neutrophils and lymphocytes and a decrease in eosinophils when compared to controls. There was a significant decrease in inflammatory cytokines in BAL of both males (IL-5 and IL-13) and females (IL-4, IL-5 and IL-13) from PNS1 and PNS2 when compared to the CON group. Prenatal stress starting from the beginning of pregnancy reduces the impact of asthma development in adult female mice, showing an improved pulmonary function and a lower inflammatory response in the lungs.

  7. Presynaptic control of striatal dopamine neurotransmission in adult vesicular monoamine transporter 2 (VMAT2) mutant mice.

    PubMed

    Patel, Jyoti; Mooslehner, Katrin A; Chan, Pok Man; Emson, Piers C; Stamford, Jonathan A

    2003-05-01

    The vesicular monoamine transporter 2 (VMAT2) plays a pivotal role in regulating the size of vesicular and cytosolic dopamine (DA) storage pools within the CNS, and can thus influence extracellular DA neurotransmission. Transgenic mice have been generated with a dramatically reduced (by approximately 95%) expression of the VMAT2 gene which, unlike complete knockout lines, survive into adulthood. We compared the pre-synaptic regulation of both impulse-dependent (exocytotic) and carrier-mediated (via reversal of the DA transporter, DAT) DA release in the dorsolateral caudate putamen (CPu) of striatal slices derived from adult homozygous VMAT2 mutant and wild-type mice using fast cyclic voltammetry. Impulse-dependent DA release, evoked by a single electrical pulse, was lower in homozygous (116 nm) than wild-type mice (351 nm) indicating smaller vesicular DA stores, an observation supported by the evanescent effect of amfonelic acid (300 nm) in homozygous mice. Amphetamine (2 microm) increased extracellular DA via DAT reversal in both wild-type (by 459 nm) and VMAT2 mutant (by 168 nm, p < 0.01 vs. wild-type) mice. In both cases, the effect was blocked by the DAT inhibitor GBR12935 (1 microm). Simultaneously, amphetamine decreased impulse-dependent DA release, albeit less in homozygous (by 55%) than in wild-type (by 78%) mice. In wild-types, this decrement was largely reversed by GBR12935 but not by the D2/D3 autoreceptor antagonist (-)sulpiride (1 microm). Conversely, in homozygous VMAT2 mutant mice, it was attenuated by (-)sulpiride but not GBR12935. The D2/D3 receptor agonist quinpirole inhibited impulse-dependent DA release with a lower EC50 value in homozygous mice (12 nm) compared with wild-types (34 nm), indicating the compensatory presence of functionally supersensitive release-regulating autoreceptors. However, analysis of DA reuptake kinetics obtained in the absence and presence of DAT blockade (by cocaine and amfonelic acid) revealed only minor differences in

  8. Constrained tibial vibration does not produce an anabolic bone response in adult mice.

    PubMed

    Christiansen, Blaine A; Kotiya, Akhilesh A; Silva, Matthew J

    2009-10-01

    and exposure to anesthesia was associated with significant loss of trabecular and cortical bone. We conclude that direct vibrational loading of bone in anesthetized, adult mice is not anabolic.

  9. Constrained tibial vibration does not produce an anabolic bone response in adult mice.

    PubMed

    Christiansen, Blaine A; Kotiya, Akhilesh A; Silva, Matthew J

    2009-10-01

    and exposure to anesthesia was associated with significant loss of trabecular and cortical bone. We conclude that direct vibrational loading of bone in anesthetized, adult mice is not anabolic. PMID:19576309

  10. Aged neuronal nitric oxide knockout mice show preserved olfactory learning in both social recognition and odor-conditioning tasks.

    PubMed

    James, Bronwen M; Li, Qin; Luo, Lizhu; Kendrick, Keith M

    2015-01-01

    There is evidence for both neurotoxic and neuroprotective roles of nitric oxide (NO) in the brain and changes in the expression of the neuronal isoform of NO synthase (nNOS) gene occur during aging. The current studies have investigated potential support for either a neurotoxic or neuroprotective role of NO derived from nNOS in the context of aging by comparing olfactory learning and locomotor function in young compared to old nNOS knockout (nNOS(-/-)) and wildtype control mice. Tasks involving social recognition and olfactory conditioning paradigms showed that old nNOS(-/-) animals had improved retention of learning compared to similar aged wildtype controls. Young nNOS(-/-) animals showed superior reversal learning to wildtypes in a conditioned learning task, although their performance was weakened with age. Interestingly, whereas young nNOS(-/-) animals were impaired in long term memory for social odors compared to wildtype controls, in old animals this pattern was reversed, possibly indicating beneficial compensatory changes influencing olfactory memory may occur during aging in nNOS(-/-) animals. Possibly such compensatory changes may have involved increased NO from other NOS isoforms since the memory deficit in young nNOS(-/-) animals could be rescued by the NO-donor, molsidomine. Both nNOS(-/-) and wildtype animals showed an age-associated decline in locomotor activity although young nNOS(-/-) animals were significantly more active than wildtypes, possibly due to an increased interest in novelty. Overall our findings suggest that lack of NO release via nNOS may protect animals to some extent against age-associated cognitive decline in memory tasks typically involving olfactory and hippocampal regions, but not against declines in reversal learning or locomotor activity.

  11. Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice.

    PubMed

    Al-Massadi, Omar; Porteiro, Begoña; Kuhlow, Doreen; Köhler, Markus; Gonzalez-Rellan, María J; Garcia-Lavandeira, Montserrat; Díaz-Rodríguez, Esther; Quiñones, Mar; Senra, Ana; Alvarez, Clara V; López, Miguel; Diéguez, Carlos; Schulz, Tim J; Nogueiras, Rubén

    2016-07-01

    p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage.

  12. Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice.

    PubMed

    Al-Massadi, Omar; Porteiro, Begoña; Kuhlow, Doreen; Köhler, Markus; Gonzalez-Rellan, María J; Garcia-Lavandeira, Montserrat; Díaz-Rodríguez, Esther; Quiñones, Mar; Senra, Ana; Alvarez, Clara V; López, Miguel; Diéguez, Carlos; Schulz, Tim J; Nogueiras, Rubén

    2016-07-01

    p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage. PMID:27183316

  13. Guineensine is a novel inhibitor of endocannabinoid uptake showing cannabimimetic behavioral effects in BALB/c mice.

    PubMed

    Nicolussi, Simon; Viveros-Paredes, Juan Manuel; Gachet, María Salomé; Rau, Mark; Flores-Soto, Mario Eduardo; Blunder, Martina; Gertsch, Jürg

    2014-02-01

    High-content screening led to the identification of the N-isobutylamide guineensine from Piper nigrum as novel nanomolar inhibitor (EC50=290nM) of cellular uptake of the endocannabinoid anandamide (AEA). Noteworthy, guineensine did not inhibit endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL) nor interact with cannabinoid receptors or fatty acid binding protein 5 (FABP5), a major cytoplasmic AEA carrier. Activity-based protein profiling showed no inhibition of serine hydrolases. Guineensine also inhibited the cellular uptake of 2-arachidonoylglycerol (2-AG). Preliminary structure-activity relationships between natural guineensine analogs indicate the importance of the alkyl chain length interconnecting the pharmacophoric isobutylamide and benzodioxol moieties for AEA cellular uptake inhibition. Guineensine dose-dependently induced cannabimimetic effects in BALB/c mice shown by strong catalepsy, hypothermia, reduced locomotion and analgesia. The catalepsy and analgesia were blocked by the CB1 receptor antagonist rimonabant (SR141716A). Guineensine is a novel plant natural product which specifically inhibits endocannabinoid uptake in different cell lines independent of FAAH. Its scaffold may be useful to identify yet unknown targets involved in endocannabinoid transport.

  14. Clustered epitopes within a new poly-epitopic HIV-1 DNA vaccine shows immunogenicity in BALB/c mice.

    PubMed

    Jafarpour, Nazli; Memarnejadian, Arash; Aghasadeghi, Mohammad Reza; Kohram, Fatemeh; Aghababa, Haniyeh; Khoramabadi, Nima; Mahdavi, Mehdi

    2014-08-01

    Despite a huge number of studies towards vaccine development against human immunodeficiency virus-1, no effective vaccine has been approved yet. Thus, new vaccines should be provided with new formulations. Herein, a new DNA vaccine candidate encoding conserved and immunogenic epitopes from HIV-1 antigens of tat, pol, gag and env is designed and constructed. After bioinformatics analyses to find the best epitopes and their tandem, nucleotide sequence corresponding to the designed multiepitope was synthesized and cloned into pcDNA3.1+ vector. Expression of pcDNA3.1-tat/pol/gag/env plasmid was evaluated in HEK293T cells by RT-PCR and western-blotting. Seven groups of BALB/c mice were intramuscularly immunized three times either with 50, 100, 200 µg of plasmid in 2-week intervals or with similar doses of insert-free plasmid. Two weeks after the last injection, proliferation of T cells and secretion of IL4 and IFN-γ cytokines were evaluated using Brdu and ELISA methods, respectively. Results showed the proper expression of the plasmid in protein and mRNA levels. Moreover, the designed multiepitope plasmid was capable of induction of both proliferation responses as well as IFN-γ and IL-4 cytokine production in a considerable level compared to the control groups. Overall, our primary data warranted further detailed studies on the potency of this vaccine. PMID:24842263

  15. Hearts of Hypoxia-inducible Factor Prolyl 4-Hydroxylase-2 Hypomorphic Mice Show Protection against Acute Ischemia-Reperfusion Injury*

    PubMed Central

    Hyvärinen, Jaana; Hassinen, Ilmo E.; Sormunen, Raija; Mäki, Joni M.; Kivirikko, Kari I.; Koivunen, Peppi; Myllyharju, Johanna

    2010-01-01

    Hypoxia-inducible factor (HIF) has a pivotal role in oxygen homeostasis and cardioprotection mediated by ischemic preconditioning. Its stability is regulated by HIF prolyl 4-hydroxylases (HIF-P4Hs), the inhibition of which is regarded as a promising strategy for treating diseases such as anemia and ischemia. We generated a viable Hif-p4h-2 hypomorph mouse line (Hif-p4h-2gt/gt) that expresses decreased amounts of wild-type Hif-p4h-2 mRNA: 8% in the heart; 15% in the skeletal muscle; 34–47% in the kidney, spleen, lung, and bladder; 60% in the brain; and 85% in the liver. These mice have no polycythemia and show no signs of the dilated cardiomyopathy or hyperactive angiogenesis observed in mice with broad spectrum conditional Hif-p4h-2 inactivation. We focused here on the effects of chronic Hif-p4h-2 deficiency in the heart. Hif-1 and Hif-2 were stabilized, and the mRNA levels of glucose transporter-1, several enzymes of glycolysis, pyruvate dehydrogenase kinase 1, angiopoietin-2, and adrenomedullin were increased in the Hif-p4h-2gt/gt hearts. When isolated Hif-p4h-2gt/gt hearts were subjected to ischemia-reperfusion, the recovery of mechanical function and coronary flow rate was significantly better than in wild type, while cumulative release of lactate dehydrogenase reflecting the infarct size was reduced. The preischemic amount of lactate was increased, and the ischemic versus preischemic [CrP]/[Cr] and [ATP] remained at higher levels in Hif-p4h-2gt/gt hearts, indicating enhanced glycolysis and an improved cellular energy state. Our data suggest that chronic stabilization of Hif-1α and Hif-2α by genetic knockdown of Hif-p4h-2 promotes cardioprotection by induction of many genes involved in glucose metabolism, cardiac function, and blood pressure. PMID:20185832

  16. Opposite-sex attraction in male mice requires testosterone-dependent regulation of adult olfactory bulb neurogenesis

    PubMed Central

    Schellino, Roberta; Trova, Sara; Cimino, Irene; Farinetti, Alice; Jongbloets, Bart C.; Pasterkamp, R. Jeroen; Panzica, Giancarlo; Giacobini, Paolo; De Marchis, Silvia; Peretto, Paolo

    2016-01-01

    Opposite-sex attraction in most mammals depends on the fine-tuned integration of pheromonal stimuli with gonadal hormones in the brain circuits underlying sexual behaviour. Neural activity in these circuits is regulated by sensory processing in the accessory olfactory bulb (AOB), the first central station of the vomeronasal system. Recent evidence indicates adult neurogenesis in the AOB is involved in sex behaviour; however, the mechanisms underlying this function are unknown. By using Semaphorin 7A knockout (Sema7A ko) mice, which show a reduced number of gonadotropin-releasing-hormone neurons, small testicles and subfertility, and wild-type males castrated during adulthood, we demonstrate that the level of circulating testosterone regulates the sex-specific control of AOB neurogenesis and the vomeronasal system activation, which influences opposite-sex cue preference/attraction in mice. Overall, these data highlight adult neurogenesis as a hub for the integration of pheromonal and hormonal cues that control sex-specific responses in brain circuits. PMID:27782186

  17. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice

    PubMed Central

    Dorrell, Craig; Erker, Laura; Schug, Jonathan; Kopp, Janel L.; Canaday, Pamela S.; Fox, Alan J.; Smirnova, Olga; Duncan, Andrew W.; Finegold, Milton J.; Sander, Maike; Kaestner, Klaus H.; Grompe, Markus

    2011-01-01

    The molecular identification of adult hepatic stem/progenitor cells has been hampered by the lack of truly specific markers. To isolate putative adult liver progenitor cells, we used cell surface-marking antibodies, including MIC1-1C3, to isolate subpopulations of liver cells from normal adult mice or those undergoing an oval cell response and tested their capacity to form bilineage colonies in vitro. Robust clonogenic activity was found to be restricted to a subset of biliary duct cells antigenically defined as CD45−/CD11b−/CD31−/MIC1-1C3+/CD133+/CD26−, at a frequency of one of 34 or one of 25 in normal or oval cell injury livers, respectively. Gene expression analyses revealed that Sox9 was expressed exclusively in this subpopulation of normal liver cells and was highly enriched relative to other cell fractions in injured livers. In vivo lineage tracing using Sox9creERT2-R26RYFP mice revealed that the cells that proliferate during progenitor-driven liver regeneration are progeny of Sox9-expressing precursors. A comprehensive array-based comparison of gene expression in progenitor-enriched and progenitor-depleted cells from both normal and DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine or diethyl1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate)-treated livers revealed new potential regulators of liver progenitors. PMID:21632826

  18. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats

    PubMed Central

    AHN, JI HYEON; CHEN, BAI HUI; SHIN, BICH-NA; LEE, TAE-KYEONG; CHO, JEONG HWI; KIM, IN HYE; PARK, JOON HA; LEE, JAE-CHUL; TAE, HYUN-JIN; LEE, CHOONG-HYUN; WON, MOO-HO; LEE, YUN LYUL; CHOI, SOO YOUNG; HONG, SEONGKWEON

    2016-01-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN-immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  19. Splenomegaly and adrenal weight changes in isolated adult mice chronically exposed to Lead

    SciTech Connect

    Ogilvie, D.M.; Martin, A.H.

    1981-05-01

    Inorganic lead is an environmental contaminant of continuing toxicological concern. Since the effects of chronic lead ingestion are most pronounced in neonatal or very young animals, investigations relating to the mental health effects of lead on children have to date been of prime importance. As the perspective of lead toxicity has widened, however, concern about the effects of lead exposure in adults has also been expressed, and several studies have now documented lead-induced learning abnormalities in adult animals. Recently research has shown that lead-treated adult mice fail to develop the isolation-induced aggressiveness typical of untreated control animals. Animal aggression has both neural and endocrine substrates, and with regard to the latter, it is well known that many mammals exhibit changes of adrenal weight and function when subjected to irritable aggression associated with the pressure of population density. Although impairment of adrenal gland functioning has been reported for lead-poisoned humans, few animal studies have yet investigated the effects of chronic lead exposure on the pituitary-adrenal axis. In this paper, changes are described in adrenal weights for mice subjected to isolation and lead exposure. In addition, since it is well known that lead exposure can reduce the survival time of red blood cells, the possibility that the spleen, the disposal center for discarded red cells, might also be affected by lead exposure was investigated.

  20. Effect of extract of Hibiscus on the ultrastructure of the testis in adult mice.

    PubMed

    Mahmoud, Yomna Ibrahim

    2012-07-01

    Hibiscus sabdariffa extract is a popular beverage in many tropical and sub-tropical countries. Although, Hibiscus tea is known for its medicinal effects for thousands of years, scientific evidence of its systemic safety is very limited. The current study aimed to assess the potential adverse effects of H. sabdariffa extract on sperm morphology and testicular ultrastructure of albino mice. Thirty adult male albino mice were divided into three equal groups and were given: (a) distilled water, (b) cold Hibiscus aqueous extract, and (c) boiled Hibiscus aqueous extract. Hibiscus extract was administered orally daily for 4 weeks in a dose of 200 mg/kg body weight/mouse. Twenty-four hours after the last treatment, mice were decapitated and the testes and epididymides were excised and processed for transmission electron microscopy to assess ultrastructural and sperm abnormalities. The results clearly demonstrate that aqueous extracts from dried calyx of H. sabdariffa, either cold or boiled, alter normal sperm morphology and testicular ultrastructure and adversely influence the male reproductive fertility in albino mice. The current data suggest that Hibiscus extract should be consumed with caution, and reasonable estimates of the human risk associated with its consumption should be provided. PMID:21798576

  1. Pubertal cadmium exposure impairs testicular development and spermatogenesis via disrupting testicular testosterone synthesis in adult mice.

    PubMed

    Ji, Yan-Li; Wang, Hua; Liu, Ping; Wang, Qun; Zhao, Xian-Feng; Meng, Xiu-Hong; Yu, Tao; Zhang, Heng; Zhang, Cheng; Zhang, Ying; Xu, De-Xiang

    2010-04-01

    Cadmium (Cd) is a well-known testicular toxicant. However, the effects of pubertal Cd exposure on testicular development and spermatogenesis remained to be elucidated. The present study investigated the effects of pubertal Cd exposure on testicular development and spermatogenesis. Male CD-1 mice were intraperitoneally injected with CdCl(2) (1mg/kg) daily from postnatal day 35 (PND35) to PND70. As expected, pubertal Cd exposure significantly decreased the number of spermatozoa in epididymides. In addition, pubertal Cd exposure markedly reduced the weights of testes, epididymides and prostate and seminal vesicle in adult mice. A significant decrease in serum and testicular testosterone (T) was observed in mice exposed to Cd during puberty. Moreover, pubertal Cd exposure markedly reduced mRNA and protein levels of testicular StAR, P450scc, P450(17alpha) and 17beta-HSD. Taken together, these results suggest that the decreased testicular T synthesis might partially contribute to pubertal Cd-induced impairment on testicular development and spermatogenesis in mice. PMID:19897027

  2. Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice.

    PubMed

    Angelucci, Francesco; Fiore, Marco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-09-01

    It has been shown that music might be able to improve mood state in people affected by psychiatric disorders, ameliorate cognitive deficits in people with dementia and increase motor coordination in Parkinson patients. Robust experimental evidence explaining the central effects of music, however, is missing. This study was designed to investigate the effect of music on brain neurotrophin production and behavior in the mouse. We exposed young adult mice to music with a slow rhythm (6 h/day; mild sound pressure levels, between 50 and 60 db) for 21 consecutive days. At the end of the treatment, mice were tested for passive avoidance learning and then killed for analysis of brain-derived neurotrophic factor (BDNF) and nerve growth factor with enzyme-linked immunosorbent assay (ELISA) in selected brain regions. We found that music-exposed mice showed increased BDNF, but not nerve growth factor in the hippocampus. Furthermore, we observed that music exposure significantly enhanced learning performance, as measured by the passive avoidance test. Our results demonstrate that exposure to music can modulate the activity of the hippocampus by influencing BDNF production. Our findings also suggest that music exposure might be of help in several central nervous system pathologies. PMID:17762517

  3. Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice.

    PubMed

    Angelucci, Francesco; Fiore, Marco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-09-01

    It has been shown that music might be able to improve mood state in people affected by psychiatric disorders, ameliorate cognitive deficits in people with dementia and increase motor coordination in Parkinson patients. Robust experimental evidence explaining the central effects of music, however, is missing. This study was designed to investigate the effect of music on brain neurotrophin production and behavior in the mouse. We exposed young adult mice to music with a slow rhythm (6 h/day; mild sound pressure levels, between 50 and 60 db) for 21 consecutive days. At the end of the treatment, mice were tested for passive avoidance learning and then killed for analysis of brain-derived neurotrophic factor (BDNF) and nerve growth factor with enzyme-linked immunosorbent assay (ELISA) in selected brain regions. We found that music-exposed mice showed increased BDNF, but not nerve growth factor in the hippocampus. Furthermore, we observed that music exposure significantly enhanced learning performance, as measured by the passive avoidance test. Our results demonstrate that exposure to music can modulate the activity of the hippocampus by influencing BDNF production. Our findings also suggest that music exposure might be of help in several central nervous system pathologies.

  4. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  5. Aging in the cerebellum and hippocampus and associated behaviors over the adult life span of CB6F1 mice

    PubMed Central

    Kennard, John A.; Brown, Kevin L.; Woodruff-Pak, Diana S.

    2013-01-01

    In the present study we examined the effects of normal aging in the hippocampus and cerebellum, as well as behaviors associated with these substrates. A total of 67 CB6F1 hybrid mice were tested at one of five ages (4, 8, 12, 18 or 25 months) on the context pre-exposure facilitation effect modification of fear conditioning (CPFE), rotorod, Barnes maze, acoustic startle, Morris water maze (MWM) and 500 ms trace eyeblink classical conditioning (EBCC). Behavioral tasks were chosen to increase the ability to detect age-related changes in learning, as trace EBCC is considered a more difficult paradigm (compared to delay EBCC) and the CPFE has been found to be more sensitive to hippocampus insults than standard contextual fear conditioning. To assess the effects of age on the brain, hippocampus volume was calculated and unbiased stereology was used to estimate the number of Purkinje neurons in the cerebellar cortex. A significant, age-related loss of Purkinje neurons was found—beginning at 12 months of age—and hippocampus volume remained stable over the adult life span. Age-related impairment was found, beginning at 12–18 months in the rotorod, and mice with fewer Purkinje neurons showed greater impairment in this task. CB6F1 mice retained auditory acuity across the life span and mice aged 25 months showed significant age-related impairment in the EBCC task; however, deficits were not associated with the loss of Purkinje neurons. Although the CPFE task is considered more sensitive to hippocampus insult, no age-related impairment was found. Spatial memory retention was impaired in the Barnes maze at 25 months, but no significant deficits were seen in the MWM. These results support the finding of differential aging in the hippocampus and cerebellum. PMID:23764510

  6. Cellular origins of cold-induced brown adipocytes in adult mice

    PubMed Central

    Lee, Yun-Hee; Petkova, Anelia P.; Konkar, Anish A.; Granneman, James G.

    2015-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα+ cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreERT2) and adiponectin-CreERT2, respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα+ cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreERT2-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment.—Lee, Y.-H., Petkova, A. P., Konkar, A. A., Granneman, J. G. Cellular origins of cold-induced brown adipocytes in adult mice. PMID:25392270

  7. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice

    PubMed Central

    Sauter, Kristin A.; Pridans, Clare; Sehgal, Anuj; Tsai, Yi Ting; Bradford, Barry M.; Raza, Sobia; Moffat, Lindsey; Gow, Deborah J.; Beard, Philippa M.; Mabbott, Neil A.; Smith, Lee B.; Hume, David A.

    2014-01-01

    We investigated the role of CSF1R signaling in adult mice using prolonged treatment with anti-CSF1R antibody. Mutation of the CSF1 gene in the op/op mouse produces numerous developmental abnormalities. Mutation of the CSF1R has an even more penetrant phenotype, including perinatal lethality, because of the existence of a second ligand, IL-34. These effects on development provide limited insight into functions of CSF1R signaling in adult homeostasis. The carcass weight and weight of several organs (spleen, kidney, and liver) were reduced in the treated mice, but overall body weight gain was increased. Despite the complete loss of Kupffer cells, there was no effect on liver gene expression. The treatment ablated OCL, increased bone density and trabecular volume, and prevented the decline in bone mass seen in female mice with age. The op/op mouse has a deficiency in pancreatic β cells and in Paneth cells in the gut wall. Only the latter was reproduced by the antibody treatment and was associated with increased goblet cell number but no change in villus architecture. Male op/op mice are infertile as a result of testosterone insufficiency. Anti-CSF1R treatment ablated interstitial macrophages in the testis, but there was no sustained effect on testosterone or LH. The results indicate an ongoing requirement for CSF1R signaling in macrophage and OCL homeostasis but indicate that most effects of CSF1 and CSF1R mutations are due to effects on development. PMID:24652541

  8. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    PubMed

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  9. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation

    PubMed Central

    Hanai, Jun-ichi; Takenaka, Masaru

    2015-01-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosis in vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A. PMID:26232943

  10. α-Aminoadipate Induces Progenitor Cell Properties of Müller Glia in Adult Mice

    PubMed Central

    Takeda, Masumi; Takamiya, Akira; Jiao, Jian-wei; Cho, Kin-Sang; Trevino, Simon G.; Matsuda, Takahiko; Chen, Dong F.

    2008-01-01

    PURPOSE Retinal Müller glia in higher vertebrates have been reported to possess progenitor cell properties and the ability to generate new neurons after injury. This study was conducted to determine the signals that can activate this dormant capacity of Müller glia in adult mice, by studying their behavior during glutamate stimulation. METHODS Various concentrations of glutamate and its analogue α-aminoadipate, which specifically binds Müller glia, were injected subretinally in adult mice. Proliferating retinal cells were labeled by subretinal injection of 5′-bromo-2′-deoxyuridine (BrdU) followed by immunohistochemistry. Müller cell fates were analyzed in retinal sections by using double immunolabeling with primary antibodies against Müller and other retinaspecific cell markers. The effects of glutamate and α-aminoadipate were also determined in purified Müller cell cultures. RESULTS Although high levels of glutamate induce retinal damage, subtoxic levels of glutamate directly stimulate Müller glia to re-enter the cell cycle and induce neurogenesis in vivo and in purified Müller cell cultures. α-Aminoadipate, which selectively target glial cells, also induced expression of progenitor cell markers by Müller cells in vitro or stimulated Müller cell migration to the outer nuclear layer (ONL) and to differentiate into photoreceptors in vivo. CONCLUSIONS Mature Müller glia in adult mice can be induced to dedifferentiate, migrate, and generate new retinal neurons and photoreceptor cells by α-aminoadipate or glutamate signaling. The results of this study suggest a novel potential strategy for treating retinal neurodegeneration, including retinitis pigmentosa and age-related macular degeneration, without transplanting exogenous cells. PMID:18326742

  11. Adult female wildtype, but not oestrogen receptor β knockout, mice have decreased depression-like behaviour during pro-oestrus and following administration of oestradiol or diarylpropionitrile

    PubMed Central

    Walf, AA; Koonce, CJ; Frye, CA

    2013-01-01

    Studies in people and animal models suggest that depression is influenced by natural, fluctuations in the levels of 17β-oestradiol (E2), as well as administration of E2-based therapies, such as selective oestrogen receptor modulators (SERMs). Elucidating the effects and mechanisms of E2 is important to improve future E2-based therapeutics. An important question is whether effects of E2 or SERMs for mood regulation act at the α or β isoform of the oestrogen receptor (ER) because some of the unwanted trophic effects of E2-based therapies may involve actions at ERα, rather than ERβ. In the present study, whether there are sex differences in depression-like behaviour of adult mice (experiment 1), and the effects of natural fluctuations in E2 (experiment 2), or administration of E2 or a SERM that has higher affinity for ERβ than for ERα (diarylpropionitrile; DPN) to ovariectomised (experiment 3) wildtype and ERβ knockout (βERKO) mice were investigated. Results of this study supported our hypotheses that: there would be sex differences favouring males for depression-like behaviour and endogenous increases in, or exogenous administration of, E2 or administration of an ERβ SERM would decrease depression-like behaviour in wildtype, but not βERKO, mice. In experiment 1, adult male mice spent less time immobile in the forced swim test (i.e., showed less depression-like behaviour) compared with female mice. In experiment 2, pro-oestrous (higher circulating E2 levels), compared with dioestrous (lower circulating E2 levels), mice had reduced immobility in the forced swim test; this effect was not observed in βERKO mice. In experiment 3, administration of E2 or DPN to ovariectomised wildtype, but not βERKO, mice decreased immobility compared with vehicle administration, these data suggest that ERβ may be required for some of the anti–depressant-like effects of E2. PMID:18562442

  12. Mice Abundant in Muricholic Bile Acids Show Resistance to Dietary Induced Steatosis, Weight Gain, and to Impaired Glucose Metabolism

    PubMed Central

    Bonde, Ylva; Eggertsen, Gösta; Rudling, Mats

    2016-01-01

    High endogenous production of, or treatment with muricholic bile acids, strongly reduces the absorption of cholesterol. Mice abundant in muricholic bile acids may therefore display an increased resistance against dietary induced weight gain, steatosis, and glucose intolerance due to an anticipated general reduction in lipid absorption. To test this hypothesis, mice deficient in steroid 12-alpha hydroxylase (Cyp8b1-/-) and therefore abundant in muricholic acids were monitored for 11 weeks while fed a high fat diet. Food intake and body and liver weights were determined, and lipids in liver, serum and feces were measured. Further, responses during oral glucose and intraperitoneal insulin tolerance tests were evaluated. On the high fat diet, Cyp8b1-/- mice displayed less weight gain compared to wildtype littermates (Cyp8b1+/+). In addition, liver enlargement with steatosis and increases in serum LDL-cholesterol were strongly attenuated in Cyp8b1-/- mice on high fat diet. Fecal excretion of cholesterol was increased and there was a strong trend for doubled fecal excretion of free fatty acids, while excretion of triglycerides was unaltered, indicating dampened lipid absorption. On high fat diet, Cyp8b1-/- mice also presented lower serum glucose levels in response to oral glucose gavage or to intraperitoneal insulin injection compared to Cyp8b1+/+. In conclusion, following exposure to a high fat diet, Cyp8b1-/- mice are more resistant against weight gain, steatosis, and to glucose intolerance than Cyp8b1+/+ mice. Reduced lipid absorption may in part explain these findings. Overall, the results suggest that muricholic bile acids may be beneficial against the metabolic syndrome. PMID:26824238

  13. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    SciTech Connect

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A.; and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  14. Distinct Effects of Chronic Dopaminergic Stimulation on Hippocampal Neurogenesis and Striatal Doublecortin Expression in Adult Mice

    PubMed Central

    Salvi, Rachele; Steigleder, Tobias; Schlachetzki, Johannes C. M.; Waldmann, Elisabeth; Schwab, Stefan; Winner, Beate; Winkler, Jürgen; Kohl, Zacharias

    2016-01-01

    While adult neurogenesis is considered to be restricted to the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ), recent studies in humans and rodents provide evidence for newly generated neurons in regions generally considered as non-neurogenic, e.g., the striatum. Stimulating dopaminergic neurotransmission has the potential to enhance adult neurogenesis in the SVZ and the DG most likely via D2/D3 dopamine (DA) receptors. Here, we investigated the effect of two distinct preferential D2/D3 DA agonists, Pramipexole (PPX), and Ropinirole (ROP), on adult neurogenesis in the hippocampus and striatum of adult naïve mice. To determine newly generated cells in the DG incorporating 5-bromo-2′-deoxyuridine (BrdU) a proliferation paradigm was performed in which two BrdU injections (100 mg/kg) were applied intraperitoneally within 12 h after a 14-days-DA agonist treatment. Interestingly, PPX, but not ROP significantly enhanced the proliferation in the DG by 42% compared to phosphate buffered saline (PBS)-injected control mice. To analyze the proportion of newly generated cells differentiating into mature neurons, we quantified cells co-expressing BrdU and Neuronal Nuclei (NeuN) 32 days after the last of five BrdU injections (50 mg/kg) applied at the beginning of 14-days DA agonist or PBS administration. Again, PPX only enhanced neurogenesis in the DG significantly compared to ROP- and PBS-injected mice. Moreover, we explored the pro-neurogenic effect of both DA agonists in the striatum by quantifying neuroblasts expressing doublecortin (DCX) in the entire striatum, as well as in the dorsal and ventral sub-regions separately. We observed a significantly higher number of DCX+ neuroblasts in the dorsal compared to the ventral sub-region of the striatum in PPX-injected mice. These results suggest that the stimulation of hippocampal and dorsal striatal neurogenesis may be up-regulated by PPX. The increased generation of neural cells, both in constitutively active

  15. Two different pathways for the maintenance of trabecular bone in adult male mice.

    PubMed

    Lindberg, Marie K; Movérare, Sofia; Skrtic, Stanko; Alatalo, Sari; Halleen, Jussi; Mohan, Subburaman; Gustafsson, J A; Ohlsson, Claes

    2002-04-01

    Androgens may regulate the male skeleton either directly via activation of the androgen receptor (AR) or indirectly via aromatization of androgens into estrogen and, thereafter, via activation of estrogen receptors (ERs). There are two known estrogen receptors, ER-alpha and ER-beta. The aim of this study was to investigate the relative roles of ER-alpha, ER-beta, and AR in the maintenance of trabecular bone in male mice. Seven-month-old male mice, lacking ER-alpha (ERKO), ER-beta (BERKO), or both receptors (DERKO), were orchidectomized (orx) and treated for 3 weeks with 0.7 microg/mouse per day of 17beta-estradiol or vehicle. No reduction in trabecular bone mineral density (BMD) was seen in ERKO, BERKO, or DERKO mice before orx, showing that neither ER-a nor ER-beta is required for the maintenance of a normal trabecular BMD in male mice. After orx, there was a pronounced decrease in trabecular BMD, similar for all groups, resulting in equal levels of trabecular BMD in all genotypes. This reduction was reversed completely in wild-type (WT) and BERKO mice treated with estrogen, and no significant effect of estrogen was found in ERKO or DERKO mice. In summary, the trabecular bone is preserved both by a testicular factor, presumably testosterone acting via AR and by an estrogen-induced activation of ER-alpha. These results indicate that AR and ER-alpha are redundant in the maintenance of the trabecular bone in male mice. In contrast, ER-beta is of no importance for the regulation of trabecular bone in male mice.

  16. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring

    PubMed Central

    Beauchamp, Brittany; Thrush, A. Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y.; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-01-01

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. PMID:26182362

  17. Mice lacking the PSD-95-interacting E3 ligase, Dorfin/Rnf19a, display reduced adult neurogenesis, enhanced long-term potentiation, and impaired contextual fear conditioning.

    PubMed

    Park, Hanwool; Yang, Jinhee; Kim, Ryunhee; Li, Yan; Lee, Yeunkum; Lee, Chungwoo; Park, Jongil; Lee, Dongmin; Kim, Hyun; Kim, Eunjoon

    2015-11-10

    Protein ubiquitination has a significant influence on diverse aspects of neuronal development and function. Dorfin, also known as Rnf19a, is a RING finger E3 ubiquitin ligase implicated in amyotrophic lateral sclerosis and Parkinson's disease, but its in vivo functions have not been explored. We report here that Dorfin is a novel binding partner of the excitatory postsynaptic scaffolding protein PSD-95. Dorfin-mutant (Dorfin(-/-)) mice show reduced adult neurogenesis and enhanced long-term potentiation in the hippocampal dentate gyrus, but normal long-term potentiation in the CA1 region. Behaviorally, Dorfin(-/-) mice show impaired contextual fear conditioning, but normal levels of cued fear conditioning, fear extinction, spatial learning and memory, object recognition memory, spatial working memory, and pattern separation. Using a proteomic approach, we also identify a number of proteins whose ubiquitination levels are decreased in the Dorfin(-/-) brain. These results suggest that Dorfin may regulate adult neurogenesis, synaptic plasticity, and contextual fear memory.

  18. The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features.

    PubMed

    Garcia-Ovejero, Daniel; Arevalo-Martin, Angel; Paniagua-Torija, Beatriz; Florensa-Vila, José; Ferrer, Isidro; Grassner, Lukas; Molina-Holgado, Eduardo

    2015-06-01

    Several laboratories have described the existence of undifferentiated precursor cells that may act like stem cells in the ependyma of the rodent spinal cord. However, there are reports showing that this region is occluded and disassembled in humans after the second decade of life, although this has been largely ignored or interpreted as a post-mortem artefact. To gain insight into the patency, actual structure, and molecular properties of the adult human spinal cord ependymal region, we followed three approaches: (i) with MRI, we estimated the central canal patency in 59 control subjects, 99 patients with traumatic spinal cord injury, and 26 patients with non-traumatic spinal cord injuries. We observed that the central canal is absent from the vast majority of individuals beyond the age of 18 years, gender-independently, throughout the entire length of the spinal cord, both in healthy controls and after injury; (ii) with histology and immunohistochemistry, we describe morphological properties of the non-lesioned ependymal region, which showed the presence of perivascular pseudorosettes, a common feature of ependymoma; and (iii) with laser capture microdissection, followed by TaqMan® low density arrays, we studied the gene expression profile of the ependymal region and found that it is mainly enriched in genes compatible with a low grade or quiescent ependymoma (53 genes); this region is enriched only in 14 genes related to neurogenic niches. In summary, we demonstrate here that the central canal is mainly absent in the adult human spinal cord and is replaced by a structure morphologically and molecularly different from that described for rodents and other primates. The presented data suggest that the ependymal region is more likely to be reminiscent of a low-grade ependymoma. Therefore, a direct translation to adult human patients of an eventual therapeutic potential of this region based on animal models should be approached with caution. PMID:25882650

  19. The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features.

    PubMed

    Garcia-Ovejero, Daniel; Arevalo-Martin, Angel; Paniagua-Torija, Beatriz; Florensa-Vila, José; Ferrer, Isidro; Grassner, Lukas; Molina-Holgado, Eduardo

    2015-06-01

    Several laboratories have described the existence of undifferentiated precursor cells that may act like stem cells in the ependyma of the rodent spinal cord. However, there are reports showing that this region is occluded and disassembled in humans after the second decade of life, although this has been largely ignored or interpreted as a post-mortem artefact. To gain insight into the patency, actual structure, and molecular properties of the adult human spinal cord ependymal region, we followed three approaches: (i) with MRI, we estimated the central canal patency in 59 control subjects, 99 patients with traumatic spinal cord injury, and 26 patients with non-traumatic spinal cord injuries. We observed that the central canal is absent from the vast majority of individuals beyond the age of 18 years, gender-independently, throughout the entire length of the spinal cord, both in healthy controls and after injury; (ii) with histology and immunohistochemistry, we describe morphological properties of the non-lesioned ependymal region, which showed the presence of perivascular pseudorosettes, a common feature of ependymoma; and (iii) with laser capture microdissection, followed by TaqMan® low density arrays, we studied the gene expression profile of the ependymal region and found that it is mainly enriched in genes compatible with a low grade or quiescent ependymoma (53 genes); this region is enriched only in 14 genes related to neurogenic niches. In summary, we demonstrate here that the central canal is mainly absent in the adult human spinal cord and is replaced by a structure morphologically and molecularly different from that described for rodents and other primates. The presented data suggest that the ependymal region is more likely to be reminiscent of a low-grade ependymoma. Therefore, a direct translation to adult human patients of an eventual therapeutic potential of this region based on animal models should be approached with caution.

  20. Comparative analysis of different oral approaches to treat Vibrio cholerae infection in adult mice.

    PubMed

    Jaiswal, Abhishek; Koley, Hemanta; Mitra, Soma; Saha, Dhira Rani; Sarkar, Banwarilal

    2014-05-01

    In this study, we have established an oral phage cocktail therapy in adult mice model and also performed a comparative analysis between phage cocktail, antibiotic and oral rehydration treatment for orally developed Vibrio cholerae infection. Four groups of mice were orally infected with Vibrio cholerae MAK 757 strain. Phage cocktail and antibiotic treated groups received 1×10(8) plaque forming unit/ml (once a daily) and 40mg/kg (once a daily) as an oral dose respectively for consecutive three days after bacterial infection. In case of oral rehydration group, the solution was supplied after bacterial infection mixed with the drinking water. To evaluate the better and safer approach of treatment, tissue and serum samples were collected. Here, phage cocktail treated mice reduced the log10 numbers of colony per gram by 3log10 (p<0.05); however, ciprofloxacin treated mice reduced the viable numbers up to 5log10 (p<0.05). Whereas, the oral rehydration solution application was not able to reduce the viable bacterial count but the disease progress was much more diminished (p>0.05). Besides, it was evident that antibiotic and phage cocktail treated group had a gradual decrease in both IL-6 and TNF-α level for 3 days (p<0.05) but the scenario was totally opposite in bacterial control and oral hydration treated group. Histological examinations also endorsed the phage cocktail and ciprofloxacin treatment in mice. Although, in this murine model of cholera ciprofloxacin was found to be a better antimicrobial agent, but from the safety and specificity point of view, a better method of application could fill the bridge and advances the phages as a valuable agent in treating Vibrio cholerae infection.

  1. Similar L-dopa-stimulated motor activity in mice with adult-onset 6-hydroxydopamine-induced symmetric dopamine denervation and in transcription factor Pitx3 null mice with perinatal-onset symmetric dopamine denervation.

    PubMed

    Li, Li; Sagot, Ben; Zhou, Fu-Ming

    2015-07-30

    The transcription factor Pitx3 null mutant (Pitx3Null) mice have a constitutive perinatal-onset and symmetric bilateral dopamine (DA) loss in the striatum. In these mice l-3,4-dihydroxyphenylalanine (l-dopa) induces apparently normal horizontal movements (walking) but also upward movements consisting of the vertical body trunk and waving paws that are absent in normal animals and in animals with the classic unilateral 6-hydroxydopamine (6-OHDA) lesion-induced DA denervation. Thus, a concern is that the perinatal timing of the DA loss and potential developmental abnormalities in Pitx3Null mice may underlie these upward movements, thus reducing the usefulness as a DA denervation model. Here we show that in normal wild-type (Pitx3WT) mice with adult-onset symmetric, bilateral 6-OHDA-induced DA lesion in the dorsal striatum, l-dopa induces normal horizontal movements and upward movements that are qualitatively identical to those in Pitx3Null mice. Furthermore, after unilateral 6-OHDA lesion of the residual DA innervation in the striatum in Pitx3Null mice, l-dopa induces contraversive rotation that is similar to that in Pitx3WT mice with the classic unilateral 6-OHDA lesion. These results indicate that in Pitx3Null mice, the bilateral symmetric DA denervation in the dorsal striatum is sufficient for expressing the l-dopa-induced motor phenotype and the perinatal timing of their DA loss is not a determining factor, providing further evidence that Pitx3Null mice are a convenient and suitable mouse model to study the consequences of DA loss and dopaminergic replacement therapy in Parkinson's disease.

  2. Morphine administration or sexual segregation in infancy affect the response to the same drug in adult mice.

    PubMed

    Laviola, G; Terranova, M L; Alleva, E

    1993-01-01

    Several experiments indicate that CNS opioid regulatory systems show a remarkable plasticity during development. The same systems respond to a wide range of environmental stimuli, particularly those which can affect the threshold of pain sensitivity (e.g., Environmentally Induced Analgesia). This paper summarizes a series of studies using outbred CD-1 mice, aimed at assessing: a) morphine effects on pain sensitivity and locomotor activity at two ages during development, namely, before and after weaning, and b) the consequences of such exposure on adult sensitivity to the same drug. The development of hot-plate response consisted mainly of a progressive decrease of latencies and of a parallel reduction of sensitivity to morphine. While morphine depressed activity on day 14, it increased or had apparently no effect on day 21. With respect to carry-over consequences of early drug and test exposure, the animals with a history of testing at the preweanling stage were more sensitive to the depressant effect of morphine (10 mg/kg) than those pretested at a later stage. By contrast, morphine analgesia was attenuated by drug pre-exposure, independently of the age of previous testing. In sum, the age of early exposure and type of early treatment interacted to determine the level of adult pain sensitivity in the no-drug state. Finally, the long-term effects of sexual segregation in infancy on the response to painful stimulation and morphine were assessed. Adult male mice-reared from birth to weaning in litters containing either only male pups (MM), or both male and female pups (MF)--were challenged in a hot-plate test upon morphine or saline injection.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Neurokinin B is critical for normal timing of sexual maturation but dispensable for adult reproductive function in female mice.

    PubMed

    True, Cadence; Nasrin Alam, Sayeda; Cox, Kimberly; Chan, Yee-Ming; Seminara, Stephanie B

    2015-04-01

    Humans carrying mutations in neurokinin B (NKB) or the NKB receptor fail to undergo puberty due to decreased secretion of GnRH. Despite this pubertal delay, many of these patients go on to achieve activation of their hypothalamic-pituitary-gonadal axis in adulthood, a phenomenon termed reversal, indicating that NKB signaling may play a more critical role for the timing of pubertal development than adult reproductive function. NKB receptor-deficient mice are hypogonadotropic but have no defects in the timing of sexual maturation. The current study has performed the first phenotypic evaluation of mice bearing mutations in Tac2, the gene encoding the NKB ligand, to determine whether they have impaired sexual development similar to their human counterparts. Male Tac2-/- mice showed no difference in the timing of sexual maturation or fertility compared with wild-type littermates and were fertile. In contrast, Tac2-/- females had profound delays in sexual maturation, with time to vaginal opening and first estrus occurring significantly later than controls, and initial abnormalities in estrous cycles. However, cycling recovered in adulthood and Tac2-/- females were fertile, although they produced fewer pups per litter. Thus, female Tac2-/- mice parallel humans harboring NKB pathway mutations, with delayed sexual maturation and activation of the reproductive cascade later in life. Moreover, direct comparison of NKB ligand and receptor-deficient females confirmed that only NKB ligand-deficient animals have delayed sexual maturation, suggesting that in the absence of the NKB receptor, NKB may regulate the timing of sexual maturation through other tachykinin receptors.

  4. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    PubMed

    Chugh, Deepti; Ali, Idrish; Bakochi, Anahita; Bahonjic, Elma; Etholm, Lars; Ekdahl, Christine T

    2015-01-01

    Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age) and tonic-clonic (3.5-4 months) phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread. PMID:26177381

  5. Effects of fasting and/or oxidizing and reducing agents on absorption of neptunium from the gastrointestinal tract of mice and adult or neonatal rats.

    PubMed

    Sullivan, M F; Ruemmler, P S; Ryan, J L

    1984-12-01

    Neptunium-237(V) nitrate was administered by gavage to groups of fed or fasted adult and 5-day-old rats. Some groups also received the oxidants quinhydrone or ferric iron, and others received the reducing agent ferrous iron. Adult mice received ferric or ferrous iron and 235Np. When the adult rats were killed at 7 days after gavage, measurements showed that, compared with rats that were fed, a 24-hr fast caused a fivefold increase in 237Np absorption and retention. Both quinhydrone and ferric iron caused an even greater increase in absorption in both fed and fasted rats. Ferrous iron, on the other hand, decreased absorption in fasted rats to values lower than those obtained in fed rats. Similar results were obtained in mice treated with 235Np and either ferric or ferrous iron. The highest absorption obtained after gavage of ferric iron to fasted rats and mice was about two orders of magnitude higher than the value obtained in animals that were fed before gavage. The effects of ferric and ferrous iron on neptunium absorption by neonatal rats were similar to their effects on adult animals but of lesser magnitude. These results are consistent with the hypothesis that Np(V), when given in small mass quantities to fed animals, is reduced in the gastrointestinal tract to Np(IV), which is less well absorbed than Np(V).

  6. Tacrine treatment at high dose suppresses the recognition memory in juvenile and adult mice with attention to hepatotoxicity.

    PubMed

    Pan, Si-Yuan; Guo, Bao-Feng; Zhang, Yi; Yu, Qing; Yu, Zhi-Ling; Dong, Hang; Ye, Yan; Han, Yi-Fan; Ko, Kam-Ming

    2011-06-01

    It is well established that cholinergic over-stimulation can interfere with memory processes. The aim of this study was to evaluate the effect of tacrine, an acetylcholinesterase inhibitor, on recognition memory as well as the associated hepatotoxicity in juvenile (20-day-old) and adult (100-day-old) ICR male mice. Recognition memory was assessed by open-field test and step-through task without footshocks for three sessions between 08:00 and 13:00, with a 24-hr retention interval. Tacrine (10 or 40 μmol/kg) or vehicle was administered (s.c.) 20 min. prior to the first session. During the acquisition session, tacrine suppressed the open-field behaviours, including locomotor activity, rearing, grooming and defecation (by 77-100%) in mice of both ages. During the recall (observable in both ages) and re-recall (observable in juvenile mice) session, the locomotor activity and rearing number were significantly increased, indicative of impairment in recognition memory, in mice treated with tacrine 40 μmol/kg. During the training trial, tacrine decreased the step-through number in mice of both ages. In contrast, during the retention and re-retention trials, the step-through number was increased (by 92% and 93%, respectively), indicative of impairment in step-through memory, in juvenile but not adult mice treated with tacrine 40 μmol/kg. Tacrine 40 μmol/kg elevated the serum alanine aminotransferase (ALT) activity (by 135%) in juvenile mice, but reduced the ALT activity (by 42%) in adult mice. The results indicated that 20-day-old mice seemed to be more sensitive than 100-day-old mice to tacrine-induced impairment in recognition memory and the associated liver damage.

  7. Strain dependent effects of conditioned fear in adult C57Bl/6 and Balb/C mice following postnatal exposure to chlorpyrifos: relation to expression of brain acetylcholinesterase mRNA

    PubMed Central

    Oriel, Sarit; Kofman, Ora

    2015-01-01

    Following reports of emotional psychopathology in children and adults exposed to organophosphates, the effects of postnatal chlorpyrifos (CPF) on fear-conditioning and depression-like behaviors were tested in adult mice. Concomitant changes in expression of mRNA for synaptic and soluble splice variants of acetylcholinesterase (AChE) were examined in mouse pups and adults of the Balb/C and C57Bl/6 (B6) strains, which differ in their behavioral and hormonal stress response. Mice were injected subcutaneously with 1 mg/kg CPF on postnatal days 4–10 and tested as adults for conditioned fear, sucrose preference, and forced swim. Acetylcholinesterase activity was assessed in the brains of pups on the first and last day of treatment. Expression of soluble and synaptic AChE mRNA was assessed in brains of treated pups and fear-conditioned adults using real-time PCR. Adult Balb/C mice exposed postnatally to CPF showed exacerbated fear-conditioning and impaired active avoidance. Adult B6 mice exposed postnatally to CPF showed a more specific fear response to tones and less freezing in the inter-tone intervals, in contrast to the vehicle-pretreated mice. Chlorpyrifos also attenuated sweet preference and enhanced climbing in the forced swim test. Chlorpyrifos-treated mice had increased expression of both synaptic and readthrough AChE transcripts in the hippocampus of Balb/C mice and decreased expression in the amygdala following fear-conditioning. In conclusion, postnatal CPF had long-term effects on fear and depression, as well as on expression of AChE mRNA. These changes may be related to alteration in the interaction between hippocampus and amygdala in regulating negative emotions. PMID:25972795

  8. Mice lacking Programmed cell death-1 show a role for CD8+ T cells in long-term immunity against blood-stage malaria

    PubMed Central

    Horne-Debets, Joshua M.; Karunarathne, Deshapriya S.; Faleiro, Rebecca J.; Poh, Chek Meng; Renia, Laurent; Wykes, Michelle N.

    2016-01-01

    Even after years of experiencing malaria, caused by infection with Plasmodium species, individuals still have incomplete immunity and develop low-density parasitemia on re-infection. Previous studies using the P. chabaudi (Pch) mouse model to understand the reason for chronic malaria, found that mice with a deletion of programmed cell death-1 (PD-1KO) generate sterile immunity unlike wild type (WT) mice. Here we investigated if the mechanism underlying this defect during acute immunity also impacts on long-term immunity. We infected WT and PD-1KO mice with Pch-malaria and measured protection as well as immune responses against re-infections, 15 or 20 weeks after the original infection had cleared. WT mice showed approximately 1% parasitemia compared to sterile immunity in PD-1KO mice on re-infection. An examination of the mechanisms of immunity behind this long-term protection in PD-1KO mice showed a key role for parasite-specific CD8+ T cells even when CD4+ T cells and B cells responded to re-infection. These studies indicate that long-term CD8+ T cell-meditated protection requires consideration for future malaria vaccine design, as part of a multi-cell type response. PMID:27217330

  9. Reversible suppression of an essential gene in adult mice using transgenic RNA interference

    PubMed Central

    McJunkin, Katherine; Mazurek, Anthony; Premsrirut, Prem K.; Zuber, Johannes; Dow, Lukas E.; Simon, Janelle; Stillman, Bruce; Lowe, Scott W.

    2011-01-01

    RNAi has revolutionized loss-of-function genetics by enabling sequence-specific suppression of virtually any gene. Furthermore, tetracycline response elements (TRE) can drive expression of short hairpin RNAs (shRNAs) for inducible and reversible target gene suppression. Here, we demonstrate the feasibility of transgenic inducible RNAi for suppression of essential genes. We set out to directly target cell proliferation by screening an RNAi library against DNA replication factors and identified multiple shRNAs against Replication Protein A, subunit 3 (RPA3). We generated transgenic mice with TRE-driven Rpa3 shRNAs whose expression enforced a reversible cell cycle arrest. In adult mice, the block in cell proliferation caused rapid atrophy of the intestinal epithelium which led to weight loss and lethality within 8–11 d of shRNA induction. Upon shRNA withdrawal, villus atrophy and weight loss were fully reversible. Thus, shRpa3 transgenic mice provide an interesting tool to study tissue maintenance and regeneration. Overall, we have established a robust system that serves the purpose of temperature-sensitive alleles in other model organisms, enabling inducible and reversible suppression of essential genes in a mammalian system. PMID:21482754

  10. Effect size of memory deficits in mice with adult-onset P301L tau expression.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Weitzner, Daniel S; Zhang, Chong; Tosto, David E; Knowlan, Kevin; Xu, Ying; Reed, Miranda N

    2014-10-01

    Transgenic mice expressing mutations in tau have yielded essential discoveries for Alzheimer's disease. One of the most commonly used tau mouse models is the tet-off Tg(tauP301L)4510 model that expresses P301L human tau driven by the calcium-calmodulin kinase IIα (CaMKIIα) promoter system. Tau expression in this model is regulatable, allowing for suppression of mutant tau expression until adulthood and prevention of possible developmental alterations resulting from P301L tau expression during development. Here, we compared the effect and sample sizes needed for three learning and memory tasks in mice with adult-onset P301L tau expression. Our findings indicate that the Incremental Repeated Acquisition (IRA) and trace fear conditioning tasks, neither of which have previously been published with these mice, were highly sensitive to P301L tau expression, whereas the Morris water maze, the most commonly used task with this model, was the least sensitive. Memory deficits were observed at a time when tau pathology was subtle and prior to readily detectable neuronal loss. Thus, we provide essential information (effect and sample sizes needed) for establishing experimental designs at a time point when memory deficits are likely to go undetected if inadequate sample sizes are used. Our work also suggests the tet-off Tg4510 model provides a way to avoid mutant tau expression during the perinatal and early postnatal stages, thereby preventing possible developmental alterations unrelated to Alzheimer's disease.

  11. Androgens inhibit the osteogenic response to mechanical loading in adult male mice.

    PubMed

    Sinnesael, Mieke; Laurent, Michaël R; Jardi, Ferran; Dubois, Vanessa; Deboel, Ludo; Delisser, Peter; Behets, Geert J; D'Haese, Patrick C; Carmeliet, Geert; Claessens, Frank; Vanderschueren, Dirk

    2015-04-01

    Androgens are well known to enhance exercise-induced muscle hypertrophy; however, whether androgens also influence bone's adaptive response to mechanical loading remains unclear. We studied the adaptive osteogenic response to unilateral in vivo mechanical loading of tibia in adult male mice in both a long- and a short-term experimental set-up. Mice were divided into four groups: sham operated, orchidectomized (ORX), T (ORX+T), or nonaromatizable dihydrotestosterone (ORX+DHT) replacement. Significant interactions between androgen status and osteogenic response to mechanical loading were observed. Cortical thickness increased by T (0.14 vs 0.11 mm sham, P<.05) and DHT (0.17 vs 0.11 mm sham, P<.05). However, T partially (+36%) and DHT completely (+10%) failed to exhibit the loading-related increase observed in sham (+107%) and ORX (+131%, all P<.05) mice. ORX decreased periosteal bone formation, which was restored to sham levels by T and DHT. However, both androgens completely suppressed the loading-related increase in periosteal bone formation. Short-term loading decreased the number of sclerostin-positive osteocytes in sham, whereas in control fibulas, ORX decreased and T increased the number of sclerostin-positive osteocytes. Loading no longer down-regulated sclerostin in the ORX or T groups. In conclusion, both T and DHT suppress the osteogenic response to mechanical loading.

  12. Long-lived alphaMUPA transgenic mice show reduced SOD2 expression, enhanced apoptosis and reduced susceptibility to the carcinogen dimethylhydrazine.

    PubMed

    Tirosh, Oren; Pardo, Michal; Schwartz, Betty; Miskin, Ruth

    2005-12-01

    Calorie restriction (CR) extends the life span of various species through mechanisms that are as yet unclear. Recently, we have reported that mitochondrion-mediated apoptosis was enhanced in alphaMUPA transgenic mice that spontaneously eat less and live longer compared with their wild-type (WT) control mice. To understand the molecular mechanisms underlying the increased apoptosis, we compared alphaMUPA and WT mice for parameters associated with SOD2 (MnSOD), a mitochondrial antioxidant enzyme that converts superoxide radicals into H(2)O(2) and is also known to inhibit apoptosis. The SOD2-related parameters included the levels of SOD2 mRNA, immunoreactivity and enzymatic activity in the liver, lipid oxidation and aconitase activity in isolated liver mitochondria, and the sensitivity of the mice to paraquat, an agent that elicits oxidative stress. In addition, we compared the mice for the levels of SOD2 mRNA after treatment with bacterial lipopolysaccharides (LPS), and for the DNA binding activity of NFkappaB as a marker for the inflammatory state. We extended SOD2 determination to the colon, where we also examined the formation of pre-neoplastic aberrant crypt foci (ACF) following treatment with dimethylhydrazine (DMH), a colonic organotypic carcinogen. Overall, alphaMUPA mice showed reduced basal levels of SOD2 gene expression and activity concomitantly with reduced lipid oxidation, increased aconitase activity and enhanced paraquat sensitivity, while maintaining the capacity to produce high levels of SOD2 in response to the inflammatory stimulus. alphaMUPA mice also showed increased resistance to DMH-induced pre-neoplasia. Collectively, these data are consistent with a model, in which an optimal fine-tuning of SOD2 throughout a long-term regimen of reduced eating could contribute to longevity, at least in the alphaMUPA mice. PMID:16139868

  13. FE65 and FE65L1 amyloid precursor protein–binding protein compound null mice display adult-onset cataract and muscle weakness

    PubMed Central

    Suh, Jaehong; Moncaster, Juliet A.; Wang, Lirong; Hafeez, Imran; Herz, Joachim; Tanzi, Rudolph E.; Goldstein, Lee E.; Guénette, Suzanne Y.

    2015-01-01

    FE65 and FE65L1 are cytoplasmic adaptor proteins that bind a variety of proteins, including the amyloid precursor protein, and that mediate the assembly of multimolecular complexes. We previously reported that FE65/FE65L1 double knockout (DKO) mice display disorganized laminin in meningeal fibroblasts and a cobblestone lissencephaly-like phenotype in the developing cortex. Here, we examined whether loss of FE65 and FE65L1 causes ocular and muscular deficits, 2 phenotypes that frequently accompany cobblestone lissencephaly. Eyes of FE65/FE65L1 DKO mice develop normally, but lens degeneration becomes apparent in young adult mice. Abnormal lens epithelial cell migration, widespread small vacuole formation, and increased laminin expression underneath lens capsules suggest impaired interaction between epithelial cells and capsular extracellular matrix in DKO lenses. Cortical cataracts develop in FE65L1 knockout (KO) mice aged 16 months or more but are absent in wild-type or FE65 KO mice. FE65 family KO mice show attenuated grip strength, and the nuclei of DKO muscle cells frequently locate in the middle of muscle fibers. These findings reveal that FE65 and FE65L1 are essential for the maintenance of lens transparency, and their loss produce phenotypes in brain, eye, and muscle that are comparable to the clinical features of congenital muscular dystrophies in humans.—Suh, J., Moncaster, J. A., Wang, L., Hafeez, I., Herz, J., Tanzi, R. E., Goldstein, L. E., Guénette, S. Y. FE65 and FE65L1 amyloid precursor protein–binding protein compound null mice display adult-onset cataract and muscle weakness. PMID:25757569

  14. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    PubMed Central

    Li, Guoxi; Zhou, Libin; Zhu, Ying; Wang, Conghui; Sha, Sha; Xian, Xunde; Ji, Yong; Liu, George; Chen, Ling

    2015-01-01

    ABSTRACT The seipin gene (BSCL2) was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2). Neuronal seipin-knockout (seipin-nKO) mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ). The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG) and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT) mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi). In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1) and neurogenic differentiation 1 (NeuroD1) mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705) was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice. PMID

  15. Memory formation and retention are affected in adult miR-132/212 knockout mice.

    PubMed

    Hernandez-Rapp, Julia; Smith, Pascal Y; Filali, Mohammed; Goupil, Claudia; Planel, Emmanuel; Magill, Stephen T; Goodman, Richard H; Hébert, Sébastien S

    2015-01-01

    The miR-132/212 family is thought to play an important role in neural function and plasticity, while its misregulation has been observed in various neurodegenerative disorders. In this study, we analyzed 6-month-old miR-132/212 knockout mice in a battery of cognitive and non-cognitive behavioral tests. No significant changes were observed in reflexes and basic sensorimotor functions as determined by the SHIRPA primary screen. Accordingly, miR-132/212 knockout mice did not differ from wild-type controls in general locomotor activity in an open-field test. Furthermore, no significant changes of anxiety were measured in an elevated plus maze task. However, the mutant mice showed retention phase defects in a novel object recognition test and in the T-water maze. Moreover, the learning and probe phases in the Barnes maze were clearly altered in knockout mice when compared to controls. Finally, changes in BDNF, CREB, and MeCP2 were identified in the miR-132/212-deficient mice, providing a potential mechanism for promoting memory loss. Taken together, these results further strengthen the role of miR-132/212 in memory formation and retention, and shed light on the potential consequences of its deregulation in neurodegenerative diseases.

  16. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation

    PubMed Central

    Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Soto-Rodríguez, Sofía; González-Perez, Oscar

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD. PMID:27579149

  17. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation.

    PubMed

    López-Armas, Gabriela; Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Jave-Suarez, Luis Felipe; Soto-Rodríguez, Sofía; Rusanova, Iryna; Acuña-Castroviejo, Dario; González-Perez, Oscar; González-Castañeda, Rocío Elizabeth

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD.

  18. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation.

    PubMed

    López-Armas, Gabriela; Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Jave-Suarez, Luis Felipe; Soto-Rodríguez, Sofía; Rusanova, Iryna; Acuña-Castroviejo, Dario; González-Perez, Oscar; González-Castañeda, Rocío Elizabeth

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD. PMID:27579149

  19. Microcephalia with mandibular and dental dysplasia in adult Zmpste24-deficient mice

    PubMed Central

    de Carlos, F; Varela, I; Germanà, A; Montalbano, G; Freije, J M P; Vega, J A; López-Otin, C; Cobo, J M

    2008-01-01

    ZMPSTE24 (also called FACE-1) is a zinc-metalloprotease involved in the post-translational processing of prelamin A to mature lamin A, a major component of the nuclear envelope. Mutations in the ZMPSTE24 gene or in that encoding its substrate prelamin A (LMNA) result in a series of human inherited diseases known collectively as laminopathies and showing regional or systemic manifestations (i.e. the Hutchinson–Gilford progeria syndrome). Typically, patients suffering some laminopathies show craniofacial or mandible anomalies, aberrant dentition or facial features characteristic of aged persons. To analyse whether Zmpste24−/– mice reproduce the cranial phenotype observed in humans due to mutations in ZMPSTE24or LMNA, we conducted a craniometric study based on micro-computer tomography (µCT) images. Furthermore, using simple radiology, µCT, µCT-densitometry and scanning electron microscopy, we analysed the mandible and the teeth from Zmpste24−/– mice. Finally, the structure of the lower incisor was investigated using an H&E technique. The results demonstrate that Zmpste24−/– mice are microcephalic and show mandibular and dental dysplasia affecting only the mandible teeth. In all cases, the lower incisor of mice lacking Zmpste24 was smaller than in control animals, showed cylindrical morphology and a transverse fissure at the incisal edge, and the pulpal cavity was severely reduced. Structurally, the dental layers were normally arranged but cellular layers were disorganized. The inferior molars showed a reduced cusp size. Taken together, these data strongly suggest that Zmpste24−/– mice represent a good model to analyse the craniofacial and teeth malformations characteristic of lamin-related pathologies, and might contribute to a better understanding of the molecular events underlying these diseases. PMID:19014358

  20. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    PubMed

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice.

  1. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    PubMed

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice. PMID:24660475

  2. Long-Lived αMUPA Mice Show Reduced Sexual Dimorphism in Lifespan, and in Energy and Circadian Homeostasis-Related Parameters.

    PubMed

    Steckler, Rafi; Shabtay-Yanai, Ateret; Pinsky, Mariel; Rauch, Maayan; Tamir, Snait; Gutman, Roee

    2016-04-01

    Female αMUPA (alpha murine urokinase-like plasminogen activator) transgenic mice show increased lifespan, reduced body weight and food intake, and high-amplitude circadian rhythms with an endogenous period length (tau) of 24h, versus their wild types (WT) showing a 23.7-h tau. Our goal was to characterize αMUPA and WT male mice, and their in-strain sexual dimorphism, and to further understand the mechanisms underlying αMUPA's longevity. Male αMUPA mice showed increased lifespan, reduced body weight and food intake, and aligned endogenous rhythm with a tau of 24.0h versus a tau <24h in WT. However, no differences were found when intake was corrected for metabolic mass in male αMUPA mice. αMUPA's sexual dimorphism was damped or lacking in all studied traits, while WTs were sexually dimorphic, concluding that αMUPA's transgene overrides sex-dependent mechanisms involved in lifespan and in energy and circadian homeostasis. As enhanced resonance between tau and external circadian cycle correlates with increased lifespan and reduced body weight in other species, including humans, αMUPA's 24-h tau could contribute to their longevity. Focusing future research on the mechanistic interconnections between energy homeostasis, circadian homeostasis, sexual dimorphism, and aging, using αMUPA mice, may reveal mechanisms promoting reduced body weight and increased lifespan.

  3. Long-Lived αMUPA Mice Show Reduced Sexual Dimorphism in Lifespan, and in Energy and Circadian Homeostasis-Related Parameters.

    PubMed

    Steckler, Rafi; Shabtay-Yanai, Ateret; Pinsky, Mariel; Rauch, Maayan; Tamir, Snait; Gutman, Roee

    2016-04-01

    Female αMUPA (alpha murine urokinase-like plasminogen activator) transgenic mice show increased lifespan, reduced body weight and food intake, and high-amplitude circadian rhythms with an endogenous period length (tau) of 24h, versus their wild types (WT) showing a 23.7-h tau. Our goal was to characterize αMUPA and WT male mice, and their in-strain sexual dimorphism, and to further understand the mechanisms underlying αMUPA's longevity. Male αMUPA mice showed increased lifespan, reduced body weight and food intake, and aligned endogenous rhythm with a tau of 24.0h versus a tau <24h in WT. However, no differences were found when intake was corrected for metabolic mass in male αMUPA mice. αMUPA's sexual dimorphism was damped or lacking in all studied traits, while WTs were sexually dimorphic, concluding that αMUPA's transgene overrides sex-dependent mechanisms involved in lifespan and in energy and circadian homeostasis. As enhanced resonance between tau and external circadian cycle correlates with increased lifespan and reduced body weight in other species, including humans, αMUPA's 24-h tau could contribute to their longevity. Focusing future research on the mechanistic interconnections between energy homeostasis, circadian homeostasis, sexual dimorphism, and aging, using αMUPA mice, may reveal mechanisms promoting reduced body weight and increased lifespan. PMID:25863036

  4. Conditional Deletion of NF-κB-Inducing Kinase (NIK) in Adult Mice Disrupts Mature B Cell Survival and Activation.

    PubMed

    Brightbill, Hans D; Jackman, Janet K; Suto, Eric; Kennedy, Heather; Jones, Charles; Chalasani, Sreedevi; Lin, Zhonghua; Tam, Lucinda; Roose-Girma, Meron; Balazs, Mercedesz; Austin, Cary D; Lee, Wyne P; Wu, Lawren C

    2015-08-01

    NF-κB-inducing kinase (NIK) is a primary regulator of the noncanonical NF-κB signaling pathway, which plays a vital role downstream of BAFF, CD40L, lymphotoxin, and other inflammatory mediators. Germline deletion or inactivation of NIK in mice results in the defective development of B cells and secondary lymphoid organs, but the role of NIK in adult animals has not been studied. To address this, we generated mice containing a conditional allele of NIK. Deletion of NIK in adult mice results in decreases in B cell populations in lymph nodes and spleen, similar to what is observed upon blockade of BAFF. Consistent with this, B cells from mice in which NIK is acutely deleted fail to respond to BAFF stimulation in vitro and in vivo. In addition, mice with induced NIK deletion exhibit a significant decrease in germinal center B cells and serum IgA, which is indicative of roles for NIK in additional pathways beyond BAFF signaling. Our conditional NIK-knockout mice may be broadly useful for assessing the postdevelopmental and cell-specific roles of NIK and the noncanonical NF-κB pathway in mice.

  5. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    SciTech Connect

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.; Shyamala, G.; Moses, Harold L.; Barcellos-Hoff, Mary Helen

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha} co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.

  6. Protective effects of vitamin E and Cornus mas fruit extract on methotrexate-induced cytotoxicity in sperms of adult mice

    PubMed Central

    Zarei, Leila; Sadrkhanlou, Rajabali; Shahrooz, Rasoul; Malekinejad, Hassan; Eilkhanizadeh, Behroz; Ahmadi, Abbas

    2014-01-01

    This study was aimed to assess the protective effects of Cornus mas fruit extract (CMFE) and vitamin E (Vit E) on sperm quality parameters in the methotrexate (MTX)-treated mice. Forty-eight young adult male mice (8-12 weeks) were randomly divided into six groups including control and test groups. The control group received normal saline orally , and the test groups were treated MTX (20 mg kg-1, ip, once weekly), MTX + CMFE (250 mg kg-1), MTX + CMFE (500 mg kg-1), MTX + CMFE (1000 mg kg-1), and MTX + Vit E (100 IU kg-1, po) for 35 consecutive days. On day 35, after euthanasia the epididymal sperms were isolated. Then the total mean sperm count, sperm viability and motility were determined. The total antioxidant capacity (TAOC) of all experimental groups were also evaluated. The MTX-treated animals showed a significant changes in all parameters of sperm quality assessment compared to the control group. Both Vit E and CMFE were able to protect from MTX-induced effects on sperm maturity and DNA damage. Co-administration of MTX and CMFE and/or Vit E resulted in protection from MTX-reduced TAOC. In conclusion, these data suggested that MTX administration could adversely affect the sperm quality. Moreover, the protective effect of Vit E and CMFE on MTX-induced sperm toxicity was also documented. PMID:25568688

  7. Identification of gene function and functional pathways by systemic plasmid-based ribozyme targeting in adult mice

    PubMed Central

    Kashani-Sabet, Mohammed; Liu, Yong; Fong, Sylvia; Desprez, Pierre-Yves; Liu, Shuqing; Tu, Guanghuan; Nosrati, Mehdi; Handumrongkul, Chakkrapong; Liggitt, Denny; Thor, Ann D.; Debs, Robert J.

    2002-01-01

    To date, functional genomic studies have been confined to either cell-based assays or germline mutations, using transgenic or knockout animals. However, these approaches are often unable either to recapitulate complex biologic phenotypes, such as tumor metastasis, or to identify the specific genes and functional pathways that produce serious diseases in adult animals. Although the transcription factor NF-κB transactivates many metastasis-related genes in cells, the precise genes and functional-pathways through which NF-κB regulates metastasis in tumor-bearing hosts are poorly understood. Here, we show that the systemic delivery of plasmid-based ribozymes targeting NF-κB in adult, tumor-bearing mice suppressed NF-κB expression in metastatic melanoma cells, as well as in normal cell types, and significantly reduced metastatic spread. Plasmid-based ribozymes suppressed target-gene expression with sequence specificity not achievable by using synthetic oligonucleotide-based approaches. NF-κB seemed to regulate tumor metastasis through invasion-related, rather than angiogenesis-, cell-cycle- or apoptosis-related pathways in tumor-bearing mice. Furthermore, ribozymes targeting either of the NF-κB-regulated genes, integrin β3 or PECAM-1 (a ligand-receptor pair linked to cell adhesion), reduced tumor metastasis at a level comparable to NF-κB. These studies demonstrate the utility of gene targeting by means of systemic, plasmid-based ribozymes to dissect out the functional genomics of complex biologic phenotypes, including tumor metastasis. PMID:11891271

  8. Generation of cloned mice from adult neurons by direct nuclear transfer.

    PubMed

    Mizutani, Eiji; Oikawa, Mami; Kassai, Hidetoshi; Inoue, Kimiko; Shiura, Hirosuke; Hirasawa, Ryutaro; Kamimura, Satoshi; Matoba, Shogo; Ogonuki, Narumi; Nagatomo, Hiroaki; Abe, Kuniya; Wakayama, Teruhiko; Aiba, Atsu; Ogura, Atsuo

    2015-03-01

    Whereas cloning mammals by direct somatic cell nuclear transfer has been successful using a wide range of donor cell types, neurons from adult brain remain "unclonable" for unknown reasons. Here, using a combination of two epigenetic approaches, we examined whether neurons from adult mice could be cloned. First, we used a specific antibody to discover cell types with reduced amounts of a repressive histone mark-dimethylated histone H3 lysine 9 (H3K9me2)-and identified CA1 pyramidal cells in the hippocampus and Purkinje cells in the cerebellum as candidates. Second, reconstructed embryos were treated with trichostatin A (TSA), a potent histone deacetylase inhibitor. Using CA1 cells, cloned offspring were obtained at high rates, reaching 10.2% and 4.6% (of embryos transferred) for male and female donors, respectively. Cerebellar Purkinje cell nuclei were too large to maintain their genetic integrity during nuclear transfer, leading to developmental arrest of embryos. However, gene expression analysis using cloned blastocysts corroborated a high rate of genomic reprogrammability of CA1 pyramidal and Purkinje cells. Neurons from the hippocampal dentate gyrus and cerebral cortex, which had higher amounts of H3K9me2, could also be used for producing cloned offspring, but the efficiencies were low. A more thorough analysis revealed that TSA treatment was essential for cloning adult neuronal cells. This study demonstrates, to our knowledge for the first time, that adult neurons can be cloned by nuclear transfer. Furthermore, our data imply that reduced amounts of H3K9me2 and increased histone acetylation appear to act synergistically to improve the development of cloned embryos.

  9. Ultrasonic vocalizations of adult male Foxp2-mutant mice: behavioral contexts of arousal and emotion.

    PubMed

    Gaub, S; Fisher, S E; Ehret, G

    2016-02-01

    Adult mouse ultrasonic vocalizations (USVs) occur in multiple behavioral and stimulus contexts associated with various levels of arousal, emotion and social interaction. Here, in three experiments of increasing stimulus intensity (water; female urine; male interacting with adult female), we tested the hypothesis that USVs of adult males express the strength of arousal and emotion via different USV parameters (18 parameters analyzed). Furthermore, we analyzed two mouse lines with heterozygous Foxp2 mutations (R552H missense, S321X nonsense), known to produce severe speech and language disorders in humans. These experiments allowed us to test whether intact Foxp2 function is necessary for developing full adult USV repertoires, and whether mutations of this gene influence instinctive vocal expressions based on arousal and emotion. The results suggest that USV calling rate characterizes the arousal level, while sound pressure and spectrotemporal call complexity (overtones/harmonics, type of frequency jumps) may provide indices of levels of positive emotion. The presence of Foxp2 mutations did not qualitatively affect the USVs; all USV types that were found in wild-type animals also occurred in heterozygous mutants. However, mice with Foxp2 mutations displayed quantitative differences in USVs as compared to wild-types, and these changes were context dependent. Compared to wild-type animals, heterozygous mutants emitted mainly longer and louder USVs at higher minimum frequencies with a higher occurrence rate of overtones/harmonics and complex frequency jump types. We discuss possible hypotheses about Foxp2 influence on emotional vocal expressions, which can be investigated in future experiments using selective knockdown of Foxp2 in specific brain circuits.

  10. Combination of neonatal PolyI:C and adolescent phencyclidine treatments is required to induce behavioral abnormalities with overexpression of GLAST in adult mice.

    PubMed

    Hida, Hirotake; Mouri, Akihiro; Ando, Yu; Mori, Kentaro; Mamiya, Takayoshi; Iwamoto, Kunihiro; Ozaki, Norio; Yamada, Kiyofumi; Nabeshima, Toshitaka; Noda, Yukihiro

    2014-01-01

    Cumulative incidences of multiple risk factors are related to pathology of psychiatric disorders. The present study was designed to examine combinative effects of a neonatal immune challenge with adolescent abused substance treatment on the psychological behaviors and molecular expressions in the adult. C57BL/6J mice were neonatally treated, with polyriboinosinic-polyribocytidylic acid (PolyI:C: 5mg/kg) during postnatal days (PD) 2-6, then with phencyclidine (PCP: 10mg/kg) during adolescence (PD35-41). Locomotor activity was analyzed to evaluate sensitivity to PCP on PD35 and PD41. Emotional and cognitive tests were carried out on PD42-48. Neonatal PolyI:C treatment markedly enhanced sensitivity to PCP- and methamphetamine-induced hyperactivity in the adolescent. Mice treated with both neonatal PolyI:C and adolescent PCP (PolyI:C/PCP) showed social deficit and object recognition memory impairment. The expression of glutamate/aspartate transporter (GLAST) in the prefrontal cortex (PFC) was significantly increased in the (PolyI:C/PCP)-treated mice. Infusion of glutamate transporter inhibitor (DL-TBOA: 1 nmol/bilaterally) into the PFC reversed the object recognition impairment in the (PolyI:C/PCP)-treated mice. These results indicate that the combined treatment of neonatal PolyI:C with adolescent PCP leads to behavioral abnormalities, which were associated with increase of GLAST expression in the adult PFC.

  11. Restoration of cocaine stimulation and reward by reintroducing wild type dopamine transporter in adult knock-in mice with a cocaine-insensitive dopamine transporter.

    PubMed

    Wu, Haiyin; O'Neill, Brian; Han, Dawn D; Thirtamara-Rajamani, Keerthi; Wang, Yanlin; Gu, Howard H

    2014-11-01

    In previous studies, we generated knock-in mice with a cocaine-insensitive dopamine transporter (DAT-CI mice) and found cocaine does not stimulate locomotion or produce reward in these mice, indicating DAT inhibition is necessary for cocaine stimulation and reward. However, DAT uptake is reduced in DAT-CI mice and thus the lack of cocaine responses could be due to adaptive changes. To test this, we used adeno-associated virus (AAV) to reintroduce the cocaine-sensitive wild type DAT (AAV-DATwt) back into adult DAT-CI mice, which restores cocaine inhibition of DAT in affected brain regions but does not reverse the adaptive changes. In an earlier study we showed that AAV-DATwt injections in regions covering the lateral nucleus accumbens (NAc) and lateral caudate-putamen (CPu) restored cocaine stimulation but not cocaine reward. In the current study, we expanded the AAV-DATwt infected areas to cover the olfactory tubercle (Tu) and the ventral midbrain (vMB) containing the ventral tegmental area (VTA) and substantia nigra (SN) in addition to CPu and NAc with multiple injections. These mice displayed the restoration of both locomotor stimulation and cocaine reward. We further found that AAV-DATwt injection in the vMB alone was sufficient to restore both cocaine stimulation and reward in DAT-CI mice. AAV injected in the VTA and SN resulted in DATwt expression and distribution to the DA terminal regions. In summary, cocaine induced locomotion and reward can be restored in fully developed DAT-CI mice, and cocaine inhibition of DAT expressed in dopaminergic neurons originated from the ventral midbrain mediates cocaine reward and stimulation.

  12. Restoration of Cocaine Stimulation and Reward by Reintroducing Wild Type Dopamine Transporter in Adult Knock-in Mice with a Cocaine-Insensitive Dopamine Transporter

    PubMed Central

    Wu, Haiyin; O’Neill, Brian; Han, Dawn D.; Thirtamara-Rajamani, Keerthi; Wang, Yanlin; Gu, Howard H.

    2014-01-01

    In previous studies, we generated knock-in mice with a cocaine-insensitive dopamine transporter (DAT-CI mice) and found cocaine does not stimulate locomotion or produce reward in these mice, indicating DAT inhibition is necessary for cocaine stimulation and reward. However, DAT uptake is reduced in DAT-CI mice and thus the lack of cocaine responses could be due to adaptive changes. To test this, we used adeno-associated virus (AAV) to reintroduce the cocaine-sensitive wild type DAT (AAV-DATwt) back into adult DAT-CI mice, which restores cocaine inhibition of DAT in affected brain regions but does not reverse the adaptive changes. In an earlier study we showed that AAV-DATwt injections in regions covering the lateral nucleus accumbens (NAc) and lateral caudate-putamen (CPu) restored cocaine stimulation but not cocaine reward. In the current study, we expanded the AAV-DATwt infected areas to cover the olfactory tubercle (Tu) and the ventral midbrain (vMB) containing the ventral tegmental area (VTA) and substantia nigra (SN) in addition to CPu and NAc with multiple injections. These mice displayed the restoration of both locomotor stimulation and cocaine reward. We further found that AAV-DATwt injection in the vMB alone was sufficient to restore both cocaine stimulation and reward in DAT-CI mice. AAV injected in the VTA and SN resulted in DATwt expression and distribution to the DA terminal regions. In summary, cocaine induced locomotion and reward can be restored in fully developed DAT-CI mice, and cocaine inhibition of DAT expressed in dopaminergic neurons originated from the ventral midbrain mediates cocaine reward and stimulation. PMID:24835281

  13. Molecular Mechanisms Mediating a Deficit in Recall of Fear Extinction in Adult Mice Exposed to Cocaine In Utero

    PubMed Central

    Kabir, Zeeba D.; Katzman, Aaron C.; Kosofsky, Barry E.

    2013-01-01

    Prenatal cocaine exposure has been shown to alter cognitive processes of exposed individuals, presumed to be a result of long-lasting molecular alterations in the brain. In adult prenatal cocaine exposed (PCOC) mice we have identified a deficit in recall of fear extinction, a behavior that is dependent on the medial prefrontal cortex (mPFC) and the hippocampus. While we observed no change in the constitutive expression of brain derived neurotrophic factor (BDNF) protein and mRNA in the mPFC and hippocampus of adult PCOC mice, we observed blunted BDNF signaling in the mPFC of adult PCOC mice after fear extinction compared to the control animals. Specifically, during the consolidation phase of the extinction memory, we observed a decrease in BDNF protein and it’s phospho-TrkB receptor expression. Interestingly, at this same time point there was a significant increase in total Bdnf mRNA levels in the mPFC of PCOC mice as compared with controls. In the Bdnf gene, we identified decreased constitutive binding of the transcription factors, MeCP2 and P-CREB at the promoters of Bdnf exons I and IV in the mPFC of PCOC mice, that unlike control mice remained unchanged when measured during the behavior. Finally, bilateral infusion of recombinant BDNF protein into the infralimbic subdivision of the mPFC during the consolidation phase of the extinction memory rescued the behavioral deficit in PCOC mice. In conclusion, these findings extend our knowledge of the neurobiologic impact of prenatal cocaine exposure on the mPFC of mice, which may lead to improved clinical recognition and treatment of exposed individuals. PMID:24358339

  14. Insulin Receptor Substrate 2 (IRS2)-Deficient Mice Show Sensorineural Hearing Loss That Is Delayed by Concomitant Protein Tyrosine Phosphatase 1B (PTP1B) Loss of Function

    PubMed Central

    Murillo-Cuesta, Silvia; Camarero, Guadalupe; González-Rodríguez, Águeda; de la Rosa, Lourdes Rodríguez; Burks, Deborah J; Avendaño, Carlos; Valverde, Ángela M; Varela-Nieto, Isabel

    2012-01-01

    The insulin receptor substrate (IRS) proteins are key mediators of insulin and insulinlike growth factor 1 (IGF-1) signaling. Protein tyrosine phosphatase (PTP)-1B dephosphorylates and inactivates both insulin and IGF-1 receptors. IRS2-deficient mice present altered hepatic insulin signaling and β-cell failure and develop type 2–like diabetes. In addition, IRS2 deficiency leads to developmental defects in the nervous system. IGF1 gene mutations cause syndromic sensorineural hearing loss in humans and mice. However, the involvement of IRS2 and PTP1B, two IGF-1 downstream signaling mediators, in hearing onset and loss has not been studied. Our objective was to study the hearing function and cochlear morphology of Irs2-null mice and the impact of PTP1B deficiency. We have studied the auditory brainstem responses and the cochlear morphology of systemic Irs2−/−Ptpn1+/+, Irs2+/+Ptpn1−/−and Irs2−/−Ptpn1−/− mice at different postnatal ages. The results indicated that Irs2−/−Ptpn1+/+ mice present a profound congenital sensorineural deafness before the onset of diabetes and altered cochlear morphology with hypoinnervation of the cochlear ganglion and aberrant stria vascularis, compared with wild-type mice. Simultaneous PTP1B deficiency in Irs2−/−Ptpn1−/− mice delays the onset of deafness. We show for the first time that IRS2 is essential for hearing and that PTP1B inhibition may be useful for treating deafness associated with hyperglycemia and type 2 diabetes. PMID:22160220

  15. mGluR3 knockout mice show a working memory defect and an enhanced response to MK-801 in the T- and Y-maze cognitive tests.

    PubMed

    Lainiola, Mira; Procaccini, Chiara; Linden, Anni-Maija

    2014-06-01

    Polymorphisms in the metabotropic glutamate receptor 3 (mGluR3) encoding gene GRM3 have been linked to schizophrenia and cognitive performance in humans. Our aim was to analyze the role of mGluR3 in basal working memory and attentional processes, and also when these functions were distracted by the psychotomimetic N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801). mGluR3 knockout (KO) mice were used. Spontaneous alternation in a T-maze test was significantly reduced in mGluR3-KO mice compared to wildtype (WT) mice, particularly after a low dose of MK-801 (0.03 mg/kg, i.p., 30 min). In a Y-maze novelty discrimination test, the locomotor stimulatory effect of MK-801 (0.1mg/kg) was enhanced in mGluR3-KO mice. Interestingly, mGluR3-KO mice showed the significantly reduced alternation in the spontaneous alternation T-maze test and the significantly enhanced sensitivity to MK-801 in the Y-maze test only when forced to enter the right arm first, not when the forced arm was on the left. A side-biased response was also found in a rewarded alternation T-maze test, where mGluR3-KO mice made significantly more incorrect visits to the left arm than the right arm after a 25-s delay. No genotype difference was found in the novelty discrimination in the Y-maze test, rewarded alternation with a 5-s delay, preference for left or right when free to enter either arm or in MK-801-induced circling. Our findings indicate cognitive disturbance and left-right asymmetry in certain behavioral responses of mGluR3-KO mice. This novel observation warrants further elucidation, and should also be considered in other studies of mGluR3 in brain functions.

  16. mGluR3 knockout mice show a working memory defect and an enhanced response to MK-801 in the T- and Y-maze cognitive tests.

    PubMed

    Lainiola, Mira; Procaccini, Chiara; Linden, Anni-Maija

    2014-06-01

    Polymorphisms in the metabotropic glutamate receptor 3 (mGluR3) encoding gene GRM3 have been linked to schizophrenia and cognitive performance in humans. Our aim was to analyze the role of mGluR3 in basal working memory and attentional processes, and also when these functions were distracted by the psychotomimetic N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801). mGluR3 knockout (KO) mice were used. Spontaneous alternation in a T-maze test was significantly reduced in mGluR3-KO mice compared to wildtype (WT) mice, particularly after a low dose of MK-801 (0.03 mg/kg, i.p., 30 min). In a Y-maze novelty discrimination test, the locomotor stimulatory effect of MK-801 (0.1mg/kg) was enhanced in mGluR3-KO mice. Interestingly, mGluR3-KO mice showed the significantly reduced alternation in the spontaneous alternation T-maze test and the significantly enhanced sensitivity to MK-801 in the Y-maze test only when forced to enter the right arm first, not when the forced arm was on the left. A side-biased response was also found in a rewarded alternation T-maze test, where mGluR3-KO mice made significantly more incorrect visits to the left arm than the right arm after a 25-s delay. No genotype difference was found in the novelty discrimination in the Y-maze test, rewarded alternation with a 5-s delay, preference for left or right when free to enter either arm or in MK-801-induced circling. Our findings indicate cognitive disturbance and left-right asymmetry in certain behavioral responses of mGluR3-KO mice. This novel observation warrants further elucidation, and should also be considered in other studies of mGluR3 in brain functions. PMID:24631392

  17. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    PubMed

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  18. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    PubMed

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  19. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice.

    PubMed

    Bonnet, Nicolas; Gineyts, Evelyne; Ammann, Patrick; Conway, Simon J; Garnero, Patrick; Ferrari, Serge

    2013-01-01

    Bone damage removal and callus formation in response to fatigue loading are essential to prevent fractures. Periostin (Postn) is a matricellular protein that mediates adaptive response of cortical bone to loading. Whether and how periostin influences damage and the injury response to fatigue remains unknown. We investigated the skeletal response of Postn(-/-) and Postn(+/+) mice after fatigue stimulus by axial compression of their tibia. In Postn(+/+) mice, cracks number and surface (CsNb, CsS) increased 1h after fatigue, with a decrease in strength compared to non-fatigued tibia. At 15 days, CsNb had started to decline, while CtTV and CtBV increased in fatigued vs non-fatigued tibia, reflecting a woven bone response that was present in 75% of the fatigued bones. Cortical porosity and remodelling also prominently increased in the fatigued tibia of Postn(+/+) mice. At 30 days, paralleling a continuous removal of cortical damage, strength of the fatigued tibia was similar to the non-fatigue tibia. In Postn(-/-) mice, cracks were detectable even in the absence of fatigue, while the amount of collagen crosslinks and tissue hardness was decreased compared to Postn(+/+). Fatigue significantly increased CsNb and CsS in Postn(-/-), but was not associated with changes in CtTV and CtBV, as only 16% of the fatigued bones formed some woven bone. Cortical porosity and remodelling did not increase either after fatigue in Postn(-/-), and the level of damage remained high even after 30 days. As a result, strength remained compromised in Postn(-/-) mice. Contrary to Postn(+/+), which osteocytic lacunae showed a change in the degree of anisotropy (DA) after fatigue, Postn(-/-) showed no DA change. Hence periostin appears to influence bone materials properties, damage accumulation and repair, including local modeling/remodeling processes in response to fatigue. These observations suggest that the level of periostin expression could influence the propensity to fatigue fractures. PMID

  20. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice.

    PubMed

    Rubin, Nicole; Harrison, Michael R; Krainock, Michael; Kim, Richard; Lien, Ching-Ling

    2016-10-01

    Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models.

  1. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice.

    PubMed

    Wright, Margaret C; Reed-Geaghan, Erin G; Bolock, Alexa M; Fujiyama, Tomoyuki; Hoshino, Mikio; Maricich, Stephen M

    2015-02-01

    Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1(+) skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood.

  2. Evaluation of response to restraint stress by salivary corticosterone levels in adult male mice

    PubMed Central

    NOHARA, Masakatsu; TOHEI, Atsushi; SATO, Takumi; AMAO, Hiromi

    2016-01-01

    Saliva as a sampling method is a low invasive technique for the detection of physiologically active substances, as opposed to sampling the plasma or serum. In this study, we obtained glucocorticoids transferred from the blood to the saliva from mice treated with 2.0 mg/kg via an intraperitoneal injection of cortisol. Next, to evaluate the effect of restraint stress using mouse saliva—collected under anesthesia by mixed anesthetic agents—we measured plasma and salivary corticosterone levels at 60 min after restraint stress. Moreover, to evaluate salivary corticosterone response to stress in the same individual mouse, an adequate recovery period (1, 3 and 7 days) after anesthesia was examined. The results demonstrate that exogenous cortisol was detected in the saliva and the plasma, in mice treated with cortisol. Restraint stress significantly increased corticosterone levels in both the plasma and saliva (P<0.001). Monitoring the results of individual mice showed that restraint stress significantly increased salivary corticosterone levels in all three groups (1-, 3- and 7-day recovery). However, the statistical evidence of corticosterone increase is stronger in the 7-day recovery group (P<0.001) than in the others (P<0.05). These results suggest that the corticosterone levels in saliva reflect its levels in the plasma, and salivary corticosterone is a useful, less-invasive biomarker of physical stress in mice. The present study may contribute to concepts of Reduction and Refinement of the three Rs in small animal experiments. PMID:26852731

  3. Neurexin dysfunction in adult neurons results in autistic-like behavior in mice.

    PubMed

    Rabaneda, Luis G; Robles-Lanuza, Estefanía; Nieto-González, José Luis; Scholl, Francisco G

    2014-07-24

    Autism spectrum disorders (ASDs) comprise a group of clinical phenotypes characterized by repetitive behavior and social and communication deficits. Autism is generally viewed as a neurodevelopmental disorder where insults during embryonic or early postnatal periods result in aberrant wiring and function of neuronal circuits. Neurexins are synaptic proteins associated with autism. Here, we generated transgenic βNrx1ΔC mice in which neurexin function is selectively impaired during late postnatal stages. Whole-cell recordings in cortical neurons show an impairment of glutamatergic synaptic transmission in the βNrx1ΔC mice. Importantly, mutant mice exhibit autism-related symptoms, such as increased self-grooming, deficits in social interactions, and altered interaction for nonsocial olfactory cues. The autistic-like phenotype of βNrx1ΔC mice can be reversed after removing the mutant protein in aged animals. The defects resulting from disruption of neurexin function after the completion of embryonic and early postnatal development suggest that functional impairment of mature circuits can trigger autism-related phenotypes.

  4. Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice

    PubMed Central

    Villares, Ricardo; Gutiérrez, Julio; Fütterer, Agnes; Trachana, Varvara; Gutiérrez del Burgo, Fernando; Martínez-A, Carlos

    2015-01-01

    Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia. PMID:25825751

  5. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy

    PubMed Central

    Naviaux, J C; Schuchbauer, M A; Li, K; Wang, L; Risbrough, V B; Powell, S B; Naviaux, R K

    2014-01-01

    Autism spectrum disorders (ASDs) now affect 1–2% of the children born in the United States. Hundreds of genetic, metabolic and environmental factors are known to increase the risk of ASD. Similar factors are known to influence the risk of schizophrenia and bipolar disorder; however, a unifying mechanistic explanation has remained elusive. Here we used the maternal immune activation (MIA) mouse model of neurodevelopmental and neuropsychiatric disorders to study the effects of a single dose of the antipurinergic drug suramin on the behavior and metabolism of adult animals. We found that disturbances in social behavior, novelty preference and metabolism are not permanent but are treatable with antipurinergic therapy (APT) in this model of ASD and schizophrenia. A single dose of suramin (20 mg kg−1 intraperitoneally (i.p.)) given to 6-month-old adults restored normal social behavior, novelty preference and metabolism. Comprehensive metabolomic analysis identified purine metabolism as the key regulatory pathway. Correction of purine metabolism normalized 17 of 18 metabolic pathways that were disturbed in the MIA model. Two days after treatment, the suramin concentration in the plasma and brainstem was 7.64 μM pmol μl−1 (±0.50) and 5.15 pmol mg−1 (±0.49), respectively. These data show good uptake of suramin into the central nervous system at the level of the brainstem. Most of the improvements associated with APT were lost after 5 weeks of drug washout, consistent with the 1-week plasma half-life of suramin in mice. Our results show that purine metabolism is a master regulator of behavior and metabolism in the MIA model, and that single-dose APT with suramin acutely reverses these abnormalities, even in adults. PMID:24937094

  6. Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis.

    PubMed

    Fenrich, Keith K; Weber, Pascal; Rougon, Genevieve; Debarbieux, Franck

    2013-12-21

    Experimental autoimmune encephalomyelitis (EAE) in adult rodents is the standard experimental model for studying autonomic demyelinating diseases such as multiple sclerosis. Here we present a low-cost and reproducible glass window implantation protocol that is suitable for intravital microscopy and studying the dynamics of spinal cord cytoarchitecture with subcellular resolution in live adult mice with EAE. Briefly, we surgically expose the vertebrae T12-L2 and construct a chamber around the exposed vertebrae using a combination of cyanoacrylate and dental cement. A laminectomy is performed from T13 to L1, and a thin layer of transparent silicone elastomer is applied to the dorsal surface of the exposed spinal cord. A modified glass cover slip is implanted over the exposed spinal cord taking care that the glass does not directly contact the spinal cord. To reduce the infiltration of inflammatory cells between the window and spinal cord, anti-inflammatory treatment is administered every 2 days (as recommended by ethics committee) for the first 10 days after implantation. EAE is induced only 2-3 weeks after the cessation of anti-inflammatory treatment. Using this approach we successfully induced EAE in 87% of animals with implanted windows and, using Thy1-CFP-23 mice (blue axons in dorsal spinal cord), quantified axonal loss throughout EAE progression. Taken together, this protocol may be useful for studying the recruitment of various cell populations as well as their interaction dynamics, with subcellular resolution and for extended periods of time. This intravital imaging modality represents a valuable tool for developing therapeutic strategies to treat autoimmune demyelinating diseases such as EAE.

  7. Mice with a fra-1 knock-in into the c-fos locus show impaired spatial but regular contextual learning and normal LTP.

    PubMed

    Gass, Peter; Fleischmann, Alexander; Hvalby, Oivind; Jensen, Vidar; Zacher, Christiane; Strekalova, Tatyana; Kvello, Ane; Wagner, Erwin F; Sprengel, Rolf

    2004-11-01

    The immediate early gene c-fos is part of the AP-1 transcription factor complex, which is involved in molecular mechanisms underlying learning and memory. Mice that lack c-Fos in the brain show impairments in spatial reference and contextual learning, and also exhibit a reduced long-term potentiation of synaptic transmission (LTP) at CA3-to-CA1 synapses. In the present study, we investigated mice in which c-fos was deleted and replaced by fra-1 (c-fos(fra-1) mice) to determine whether other members of the c-fos gene family can substitute for the functions of the c-fos gene. In c-fos(fra-1) mice, both CA3-to-CA1 LTP and contextual learning in a Pavlovian fear conditioning task were similar to wild-type littermates, indicating that Fra-1 expression restored the impairments caused by brain-specific c-Fos depletion. However, c-Fos-mediated learning deficits in a reference memory task of the Morris watermaze were also present in c-fos(fra-1) mice. These findings suggest that different c-Fos target genes are involved in LTP, contextual learning, and spatial reference memory formation.

  8. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice

    PubMed Central

    Darvish-Ghane, Soroush; Yamanaka, Manabu

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  9. Reproductive abnormalities in adult male mice following preimplantation exposures to estradiol or pesticide methoxychlor.

    PubMed

    Amstislavsky, Sergei Ya; Amstislavskaya, Tamara G; Amstislavsky, Vjacheslav S; Tibeikina, Marina A; Osipov, Kiril V; Eroschenko, Victor P

    2006-02-01

    Adult females of ICR strain of mice were bred, separated into different experimental groups, and treated as follows. On Days 2-4 of pregnancy, the mice received daily subcutaneous injections of either 0.05 ml sesame oil (vehicle) or same volume of 5.0mg of purified methoxychlor (MXC) suspended in the vehicle. Another group received a single subcutaneous injection of 1.0 microg of estradiol-17beta (E) on Day 2 of pregnancy only. Male offspring were tested at 3 and 6 months of age. At 3 months, E or MXC did not alter the weights of seminal vesicles, preputial glands, or testes, although after exposure for 30 min to a female in estrus behind a partition, testosterone levels were significantly reduced in treated males in comparison to control males exposed to the same partition test. At 6 months, the preputial glands and testes weight remained unchanged, while the seminal vesicles were significantly heavier in E- and MXC-treated males. Same partition tests again revealed that in E and MXC groups, testosterone levels remained significantly lower in comparison to control males. MXC or E exposures during preimplantation appear to induce long-term effects on the sexual development in 3 and 6 month-old-males by compromising their sexual arousal and altering seminal vesicles weights in the older group.

  10. Retroviral induction of acute lymphoproliferative disease and profound immunosuppression in adult C57BL/6 mice

    PubMed Central

    1985-01-01

    We have shown that a mixture of murine leukemia viruses (MuLV) causes the acute onset of lymphoproliferation and immunosuppression when injected into adult C57BL/6 mice. The ecotropic/MCF (mink cell focus- inducing) mixture of MuLV stimulates polyclonal B lymphocyte proliferation and differentiation to antibody-secreting cells. Serum Ig levels are elevated for all isotypes except IgA. The viral infection leads to a rapid decline in T lymphocyte responses to mitogens and alloantigens, as well as a decrease in helper cell activity. Specific antibody responses to both T-dependent and T-independent antigens are impaired, and the response of B lymphocytes to mitogens is abolished. The profound immunosuppression seems to be due to the MuLV-induced polyclonal activation of lymphocytes. No active suppression of normal lymphocyte responses by cells from virus-infected mice was observed. The disease induced by the LP-BM5 MuLV isolate thus seems a promising model for the study of lymphocyte activation and the mechanisms of retrovirus-induced immunosuppression. PMID:2984305

  11. Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice.

    PubMed Central

    Wong-Riley, M T; Welt, C

    1980-01-01

    The posteromedial barrel subfield of the somatosensory cortex of mice was examined histochemically for cytochrome oxidase activity (cytochrome c oxidase; ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1). In normal mice a high enzymatic activity was found within the barrel hollows, rather than in the sides and septa. Electron microscopic examination indicated that within the hollows reactive mitochondria reside in many dendrites, in some axonal terminals, and in a few neuronal perikarya. After neonatal cauterization of selected row(s) of vibrissae, the corresponding row(s) of barrels appeared as narrowed fused band(s) and their cytochrome oxidase activity was much reduced. Removal of vibrissae in the adult, by either cauterization or repeated plucking, did not cause size changes of cortical barrels. However, there was a significant decrease in the oxidative enzymatic activity within these barrels. Thus, the deprivation of sensory input through damage to, or removal of, the peripheral sensory organ induces an enzymatic response in neurons that are at least two to three synapses away from the periphery. Images PMID:6246540

  12. Renal and hepatotoxic alterations in adult mice on inhalation of specific mixture of organic solvents.

    PubMed

    Ketan, Vaghasia K; Bhavyata, Kalariya; Linzbuoy, George; Hyacinth, Highland N

    2015-12-01

    This study was aimed at investigating alterations in renal and hepatic toxicity induced by exposing to a combination of three solvents, namely, benzene, toluene and xylene in adult mice. The mice were divided into three groups (control, low-dose-treated (450 ppm) and high-dose (675 ppm) groups) using randomization methods. The treated groups were exposed to vapours of a mixture of benzene, toluene and xylene at doses of 450 and 675 ppm, for 6 h day(-1) for a short-term of 7-day exposure period. The study revealed that the solvent exposure resulted in an increase in the weight of liver and kidney as compared to the control. Biochemical analyses indicated a significant decline in the activities of superoxide dismutase and catalase in both the treated groups, with concomitant increase in lipid peroxidation. Liver aminotransferases (alanine aminotransferase and aspartate aminotransferase) were elevated with significant alterations in the levels of protein, creatinine and cholesterol in these tissues upon solvent exposure. Correlated with these changes, serum thyroid hormones T3 and T4 were also significantly altered. This study, therefore, demonstrates that inhalation of vapours from the solvent mixture resulted in significant dose-dependent biochemical and functional changes in the vital tissues (liver and kidney) studied. The study has specific relevance since humans are increasingly being exposed to such solvents due to increased industrial use in such combinations.

  13. Aberrant Neural Stem Cell Proliferation and Increased Adult Neurogenesis in Mice Lacking Chromatin Protein HMGB2

    PubMed Central

    Reddy, Avanish S.; Maletic-Savatic, Mirjana; Aguirre, Adan; Tsirka, Stella E.

    2013-01-01

    Neural stem and progenitor cells (NSCs/NPCs) are distinct groups of cells found in the mammalian central nervous system (CNS). Previously we determined that members of the High Mobility Group (HMG) B family of chromatin structural proteins modulate NSC proliferation and self-renewal. Among them HMGB2 was found to be dynamically expressed in proliferating and differentiating NSCs, suggesting that it may regulate NSC maintenance. We report now that Hmgb2−/− mice exhibit SVZ hyperproliferation, increased numbers of SVZ NSCs, and a trend towards aberrant increases in newly born neurons in the olfactory bulb (OB) granule cell layer. Increases in the levels of the transcription factor p21 and the Neural cell adhesion molecule (NCAM), along with down-regulation of the transcription/pluripotency factor Oct4 in the Hmgb2−/− SVZ point to a possible pathway for this increased proliferation/differentiation. Our findings suggest that HMGB2 functions as a modulator of neurogenesis in young adult mice through regulation of NSC proliferation, and identify a potential target via which CNS repair could be amplified following trauma or disease-based neuronal degeneration. PMID:24391977

  14. Environmental modulations of the number of midbrain dopamine neurons in adult mice.

    PubMed

    Tomas, Doris; Prijanto, Augustinus H; Burrows, Emma L; Hannan, Anthony J; Horne, Malcolm K; Aumann, Tim D

    2015-01-01

    Long-lasting changes in the brain or 'brain plasticity' underlie adaptive behavior and brain repair following disease or injury. Furthermore, interactions with our environment can induce brain plasticity. Increasingly, research is trying to identify which environments stimulate brain plasticity beneficial for treating brain and behavioral disorders. Two environmental manipulations are described which increase or decrease the number of tyrosine hydroxylase immunopositive (TH+, the rate-limiting enzyme in dopamine (DA) synthesis) neurons in the adult mouse midbrain. The first comprises pairing male and female mice together continuously for 1 week, which increases midbrain TH+ neurons by approximately 12% in males, but decreases midbrain TH+ neurons by approximately 12% in females. The second comprises housing mice continuously for 2 weeks in 'enriched environments' (EE) containing running wheels, toys, ropes, nesting material, etc., which increases midbrain TH+ neurons by approximately 14% in males. Additionally, a protocol is described for concurrently infusing drugs directly into the midbrain during these environmental manipulations to help identify mechanisms underlying environmentally-induced brain plasticity. For example, EE-induction of more midbrain TH+ neurons is abolished by concurrent blockade of synaptic input onto midbrain neurons. Together, these data indicate that information about the environment is relayed via synaptic input to midbrain neurons to switch on or off expression of 'DA' genes. Thus, appropriate environmental stimulation, or drug targeting of the underlying mechanisms, might be helpful for treating brain and behavioral disorders associated with imbalances in midbrain DA (e.g. Parkinson's disease, attention deficit and hyperactivity disorder, schizophrenia, and drug addiction).

  15. Cellular origins of cold-induced brown adipocytes in adult mice.

    PubMed

    Lee, Yun-Hee; Petkova, Anelia P; Konkar, Anish A; Granneman, James G

    2015-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα(+) cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreER(T2)) and adiponectin-CreER(T2), respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα(+) cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreER(T2)-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment.

  16. Postanesthetic Effects of Isoflurane on Behavioral Phenotypes of Adult Male C57BL/6J Mice

    PubMed Central

    Asakura, Ayako; Kobayashi, Ayako; Takase, Kenkichi; Goto, Takahisa

    2015-01-01

    Isoflurane was previously the major clinical anesthetic agent but is now mainly used for veterinary anesthesia. Studies have reported widespread sites of action of isoflurane, suggesting a wide array of side effects besides sedation. In the present study, we phenotyped isoflurane-treated mice to investigate the postanesthetic behavioral effects of isoflurane. We applied comprehensive behavioral test batteries comprising sensory test battery, motor test battery, anxiety test battery, depression test battery, sociability test battery, attention test battery, and learning test battery, which were started 7 days after anesthesia with 1.8% isoflurane. In addition to the control group, we included a yoked control group that was exposed to the same stress of handling as the isoflurane-treated animals before being anesthetized. Our comprehensive behavioral test batteries revealed impaired latent inhibition in the isoflurane-treated group, but the concentration of residual isoflurane in the brain was presumably negligible. The yoked control group and isoflurane-treated group exhibited higher anxiety in the elevated plus-maze test and impaired learning function in the cued fear conditioning test. No influences were observed in sensory functions, motor functions, antidepressant behaviors, and social behaviors. A number of papers have reported an effect of isoflurane on animal behaviors, but no systematic investigation has been performed. To the best of our knowledge, this study is the first to systematically investigate the general health, neurological reflexes, sensory functions, motor functions, and higher behavioral functions of mice exposed to isoflurane as adults. Our results suggest that the postanesthetic effect of isoflurane causes attention deficit in mice. Therefore, isoflurane must be used with great care in the clinical setting and veterinary anesthesia. PMID:25806517

  17. An inducible hepatocellular carcinoma model for preclinical evaluation of antiangiogenic therapy in adult mice.

    PubMed

    Runge, Anja; Hu, Junhao; Wieland, Matthias; Bergeest, Jan-Philip; Mogler, Carolin; Neumann, André; Géraud, Cyrill; Arnold, Bernd; Rohr, Karl; Komljenovic, Dorde; Schirmacher, Peter; Goerdt, Sergij; Augustin, Hellmut G

    2014-08-01

    The limited availability of experimental tumor models that faithfully mimic the progression of human tumors and their response to therapy remains a major bottleneck to the clinical translation and application of novel therapeutic principles. To address this challenge in hepatocellular carcinoma (HCC), one of the deadliest and most common cancers in the world, we developed and validated an inducible model of hepatocarcinogenesis in adult mice. Tumorigenesis was triggered by intravenous adenoviral delivery of Cre recombinase in transgenic mice expressing the hepatocyte-specific albumin promoter, a loxP-flanked stop cassette, and the SV40 large T-antigen (iAST). Cre recombinase-mediated excision of the stop cassette led to a transient viral hepatitis and resulted in multinodular tumorigenesis within 5 to 8 weeks. Tumor nodules with histologic characteristics of human HCC established a functional vasculature by cooption, remodeling, and angiogenic expansion of the preexisting sinusoidal liver vasculature with increasing signs of vascular immaturity during tumor progression. Treatment of mice with sorafenib rapidly resulted in the induction of vascular regression, inhibition of tumor growth, and enhanced overall survival. Vascular regression was characterized by loss of endothelial cells leaving behind avascular type IV collagen-positive empty sleeves with remaining pericytes. Sorafenib treatment led to transcriptional changes of Igf1, Id1, and cMet over time, which may reflect the emergence of potential escape mechanisms. Taken together, our results established the iAST model of inducible hepatocarcinogenesis as a robust and versatile preclinical model to study HCC progression and validate novel therapies. PMID:24906623

  18. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits

    PubMed Central

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait. PMID:26941592

  19. REPRODUCTIVE EFFECTS OF THE WATER DISINFECTANT BYPRODUCT BROMOCHLOROACETIC ACID (BCA) IN ADULT AND JUVENILE MALE C57BL/6 MICE

    EPA Science Inventory

    REPRODUCTIVE EFFECTS OF THE WATER DISINFECTANT BYPRODUCT BROMOCHLOROACETIC ACID (BCA) IN ADULT AND JUVENILE MALE C57BL/6 MICE.
    JC Rockett, JC Luft, JB Garges and DJ Dix. Reproductive Toxicology Division, USEPA, RTP, NC, USA.
    Sponsor: G Klinefelter
    The development of wate...

  20. MECHANISTIC DESCRIPTION OF DOSE-DEPENDENT URINARY ELIMINATION OF PBDE-47 IN ADULT MICE USING A PHYSIOLOGICAL BASED PHARMACOKINETIC MODEL

    EPA Science Inventory

    Abstract Polybrominated diphenyl ethers (PBDEs) are used as additive flame-retardants. In North America, scientists have noted continuing increases in human body burdens. Our laboratory has previously described urinary elimination of parent compound in adult mice for at l...

  1. Adult but Not Aged C57BL/6 Male Mice Are Capable of Using Geometry for Orientation

    ERIC Educational Resources Information Center

    Schachner, Melitta; Morellini, Fabio; Fellini, Laetitia

    2006-01-01

    Geometry, e.g., the shape of the environment, can be used by numerous animal species to orientate, but data concerning the mouse are lacking. We addressed the question of whether mice are capable of using geometry for navigating. To test whether aging could affect searching strategies, we compared adult (3- to 5-mo old) and aged (20- to 21-mo old)…

  2. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CDl Mice.

    EPA Science Inventory

    Inorganic arsenic exposure is carcinogenic in humans and rodents. When pregnant mice are exposed to inorganic arsenic in the drinking water their offspring, when adults, develop tumors and proliferative lesions at several sites, such as lung, liver, adrenal, uterus, ovary and ovi...

  3. Effects of neonatal corticosterone and environmental enrichment on retinal ERK1/2 and CREB phosphorylation in adult mice.

    PubMed

    Matteucci, Andrea; Ceci, Chiara; Mallozzi, Cinzia; Macrì, Simone; Malchiodi-Albedi, Fiorella; Laviola, Giovanni

    2014-11-01

    Exposure to Stimulating Environments (SE) during development may improve neuroplasticity in central nervous system, protect against neurotoxic damage, and promote neuronal recovery in adult life. While biochemical mechanisms of SE-promoted neuronal plasticity are well known in the brain, much less is known on the signaling cascade governing plasticity and neuroprotection in the retina. In order to investigate if in the retina signaling molecules involved in neuronal plasticity are affected by SE, neonatal CD-1 mice were exposed to moderate corticosterone levels (NC), supplemented through maternal milk during the first postnatal week, or to environmental enrichment (EE) conditions (physical and social stimuli) from early adolescence. Our results showed that both NC and EE increased the phosphorylation level of Extracellularly Regulated Kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB) in the adult retinal tissue. Furthermore, we observed that activated ERK1/2 was restricted to Müller cells, while pCREB was mostly present in the nuclei of retinal neurons. Neither NC, nor EE modified the expression of GFAP, a marker of Müller cells activation. In conclusion our results indicate that both NC and EE activate ERK1/2 and CREB in the retina and provide a biochemical background for the neuroprotective activity exerted by SE against retinal damage. Furthermore, they support the role of Müller glia as a key cell determinant of retinal neuroplasticity.

  4. Hippocampal neuroligin-2 links early-life stress with impaired social recognition and increased aggression in adult mice.

    PubMed

    Kohl, Christine; Wang, Xiao-Dong; Grosse, Jocelyn; Fournier, Céline; Harbich, Daniela; Westerholz, Sören; Li, Ji-Tao; Bacq, Alexandre; Sippel, Claudia; Hausch, Felix; Sandi, Carmen; Schmidt, Mathias V

    2015-05-01

    Early-life stress is a key risk factor for the development of neuropsychiatric disorders later in life. Neuronal cell adhesion molecules have been strongly implicated in the pathophysiology of psychiatric disorders and in modulating social behaviors associated with these diseases. Neuroligin-2 is a synaptic cell adhesion molecule, located at the postsynaptic membrane of inhibitory GABAergic synapses, and is involved in synaptic stabilization and maturation. Alterations in neuroligin-2 expression have previously been associated with changes in social behavior linked to psychiatric disorders, including schizophrenia and autism. In this study, we show that early-life stress, induced by limited nesting and bedding material, leads to impaired social recognition and increased aggression in adult mice, accompanied by increased expression levels of hippocampal neuroligin-2. Viral overexpression of hippocampal neuroligin-2 in adulthood mimics early-life stress-induced alterations in social behavior and social cognition. Moreover, viral knockdown of neuroligin-2 in the adult hippocampus attenuates the early-life stress-induced behavioral changes. Our results highlight the importance of neuroligin-2 in mediating early-life stress effects on social behavior and social cognition and its promising role as a novel therapeutic target for neuropsychiatric disorders.

  5. Nebulette knockout mice have normal cardiac function, but show Z-line widening and up-regulation of cardiac stress markers

    PubMed Central

    Mastrototaro, Giuseppina; Liang, Xingqun; Li, Xiaodong; Carullo, Pierluigi; Piroddi, Nicoletta; Tesi, Chiara; Gu, Yusu; Dalton, Nancy D.; Peterson, Kirk L.; Poggesi, Corrado; Sheikh, Farah; Chen, Ju; Bang, Marie-Louise

    2015-01-01

    Aims Nebulette is a 109 kDa modular protein localized in the sarcomeric Z-line of the heart. In vitro studies have suggested a role of nebulette in stabilizing the thin filament, and missense mutations in the nebulette gene were recently shown to be causative for dilated cardiomyopathy and endocardial fibroelastosis in human and mice. However, the role of nebulette in vivo has remained elusive. To provide insights into the function of nebulette in vivo, we generated and studied nebulette-deficient (nebl−/−) mice. Methods and results Nebl−/− mice were generated by replacement of exon 1 by Cre under the control of the endogenous nebulette promoter, allowing for lineage analysis using the ROSA26 Cre reporter strain. This revealed specific expression of nebulette in the heart, consistent with in situ hybridization results. Nebl−/− mice exhibited normal cardiac function both under basal conditions and in response to transaortic constriction as assessed by echocardiography and haemodynamic analyses. Furthermore, histological, IF, and western blot analysis showed no cardiac abnormalities in nebl−/− mice up to 8 months of age. In contrast, transmission electron microscopy showed Z-line widening starting from 5 months of age, suggesting that nebulette is important for the integrity of the Z-line. Furthermore, up-regulation of cardiac stress responsive genes suggests the presence of chronic cardiac stress in nebl−/− mice. Conclusion Nebulette is dispensable for normal cardiac function, although Z-line widening and up-regulation of cardiac stress markers were found in nebl−/− heart. These results suggest that the nebulette disease causing mutations have dominant gain-of-function effects. PMID:25987543

  6. Neuropeptide Y Overexpressing Female and Male Mice Show Divergent Metabolic but Not Gut Microbial Responses to Prenatal Metformin Exposure

    PubMed Central

    Salomäki-Myftari, Henriikka; Vähätalo, Laura H.; Ailanen, Liisa; Pietilä, Sami; Laiho, Asta; Hänninen, Arno; Pursiheimo, Juha-Pekka; Munukka, Eveliina; Rintala, Anniina; Savontaus, Eriika; Pesonen, Ullamari; Koulu, Markku

    2016-01-01

    Background Prenatal metformin exposure has been shown to improve the metabolic outcome in the offspring of high fat diet fed dams. However, if this is evident also in a genetic model of obesity and whether gut microbiota has a role, is not known. Methods The metabolic effects of prenatal metformin exposure were investigated in a genetic model of obesity, mice overexpressing neuropeptide Y in the sympathetic nervous system and in brain noradrenergic neurons (OE-NPYDβH). Metformin was given for 18 days to the mated female mice. Body weight, body composition, glucose tolerance and serum parameters of the offspring were investigated on regular diet from weaning and sequentially on western diet (at the age of 5–7 months). Gut microbiota composition was analysed by 16S rRNA sequencing at 10–11 weeks. Results In the male offspring, metformin exposure inhibited weight gain. Moreover, weight of white fat depots and serum insulin and lipids tended to be lower at 7 months. In contrast, in the female offspring, metformin exposure impaired glucose tolerance at 3 months, and subsequently increased body weight gain, fat mass and serum cholesterol. In the gut microbiota, a decline in Erysipelotrichaceae and Odoribacter was detected in the metformin exposed offspring. Furthermore, the abundance of Sutterella tended to be decreased and Parabacteroides increased. Gut microbiota composition of the metformin exposed male offspring correlated to their metabolic phenotype. Conclusion Prenatal metformin exposure caused divergent metabolic phenotypes in the female and male offspring. Nevertheless, gut microbiota of metformin exposed offspring was similarly modified in both genders. PMID:27681875

  7. Tenascin-R restricts posttraumatic remodeling of motoneuron innervation and functional recovery after spinal cord injury in adult mice.

    PubMed

    Apostolova, Ivayla; Irintchev, Andrey; Schachner, Melitta

    2006-07-26

    Tenascin-R (TNR) is an extracellular glycoprotein in the CNS implicated in neural development and plasticity. Its repellent properties for growing axons in a choice situation with a conducive substrate in vitro have indicated that TNR may impede regeneration in the adult mammalian CNS. Here we tested whether constitutive lack of TNR has beneficial impacts on recovery from spinal cord injury in adult mice. Using the Basso, Beattie, Bresnahan (BBB) locomotor rating scale, we found that open-field locomotion in TNR-deficient (TNR-/-) mice recovered better that in wild-type (TNR+/+) littermates after compression of the thoracic spinal cord. We also designed, validated, and applied a motion analysis approach allowing numerical assessment of motor functions. We found, in agreement with the BBB score, that functions requiring low levels of supraspinal control such as plantar stepping improved more in TNR-/- mice. This was not the case for motor tasks demanding precision such as ladder climbing. Morphological analyses revealed no evidence that improved recovery of some functions in the mutant mice were attributable to enhanced tissue sparing or axonal regrowth. Estimates of perisomatic puncta revealed reduced innervation by cholinergic and GABAergic terminals around motoneurons in intact TNR-/- compared with TNR+/+ mice. Relative to nonlesioned animals, spinal cord repair was associated with increase in GABAergic and decrease of glutamatergic puncta in TNR-/- but not in TNR+/+ mice. Our results suggest that TNR restricts functional recovery by limiting posttraumatic remodeling of synapses around motoneuronal cell bodies where TNR is normally expressed in perineuronal nets.

  8. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    PubMed

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number. PMID:26701416

  9. Mice fed on a diet enriched with genetically engineered multivitamin corn show no sub-acute toxic effects and no sub-chronic toxicity.

    PubMed

    Arjó, Gemma; Capell, Teresa; Matias-Guiu, Xavier; Zhu, Changfu; Christou, Paul; Piñol, Carme

    2012-12-01

    Multivitamin corn is a novel genetically engineered variety that simultaneously produces high levels of β-carotene, ascorbate and folate, and therefore has the potential to address simultaneously multiple micronutrient deficiencies caused by the lack of vitamins A, B9 and C in developing country populations. As part of the development process for genetically engineered crops and following European Food Safety Authority (EFSA) recommendations, multivitamin corn must be tested in whole food/feed sub-chronic animal feeding studies to ensure there are no adverse effects, and potential allergens must be identified. We carried out a 28-day toxicity assessment in mice, which showed no short-term sub-acute evidence of diet-related adverse health effects and no difference in clinical markers (food consumption, body weight, organ/tissue weight, haematological and biochemical blood parameters and histopathology) compared to mice fed on a control diet. A subsequent 90-day sub-chronic feeding study again showed no indications of toxicity compared to mice fed on control diets. Our data confirm that diets enriched with multivitamin corn have no adverse effects on mice, do not induce any clinical signs of toxicity and do not contain known allergens.

  10. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice.

    PubMed

    Leite, Nayara Carvalho; de Paula, Flávia; Borck, Patrícia Cristine; Vettorazzi, Jean Franciesco; Branco, Renato Chaves Souto; Lubaczeuski, Camila; Boschero, Antonio Carlos; Zoppi, Claudio Cesar; Carneiro, Everardo Magalhães

    2016-01-01

    Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity.

  11. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice

    PubMed Central

    Leite, Nayara Carvalho; de Paula, Flávia; Borck, Patrícia Cristine; Vettorazzi, Jean Franciesco; Branco, Renato Chaves Souto; Lubaczeuski, Camila; Boschero, Antonio Carlos; Zoppi, Claudio Cesar; Carneiro, Everardo Magalhães

    2016-01-01

    Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity. PMID:27633083

  12. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice.

    PubMed

    Leite, Nayara Carvalho; de Paula, Flávia; Borck, Patrícia Cristine; Vettorazzi, Jean Franciesco; Branco, Renato Chaves Souto; Lubaczeuski, Camila; Boschero, Antonio Carlos; Zoppi, Claudio Cesar; Carneiro, Everardo Magalhães

    2016-01-01

    Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity. PMID:27633083

  13. Mice with mutations of Dock7 have generalized hypopigmentation and white-spotting but show normal neurological function.

    PubMed

    Blasius, Amanda L; Brandl, Katharina; Crozat, Karine; Xia, Yu; Khovananth, Kevin; Krebs, Philippe; Smart, Nora G; Zampolli, Antonella; Ruggeri, Zaverio M; Beutler, Bruce A

    2009-02-24

    The classical recessive coat color mutation misty (m) arose spontaneously on the DBA/J background and causes generalized hypopigmentation and localized white-spotting in mice, with a lack of pigment on the belly, tail tip, and paws. Here we describe moonlight (mnlt), a second hypopigmentation and white-spotting mutation identified on the C57BL/6J background, which yields a phenotypic copy of m/m coat color traits. We demonstrate that the 2 mutations are allelic. m/m and mnlt/mnlt phenotypes both result from mutations that truncate the dedicator of cytokinesis 7 protein (DOCK7), a widely expressed Rho family guanine nucleotide exchange factor. Although Dock7 is transcribed at high levels in the developing brain and has been implicated in both axon development and myelination by in vitro studies, we find no requirement for DOCK7 in neurobehavioral function in vivo. However, DOCK7 has non-redundant role(s) related to the distribution and function of dermal and follicular melanocytes. PMID:19202056

  14. Assessment of fertility and reproductive toxicity in adult female mice after long-term exposure to Pueraria mirifica herb.

    PubMed

    Jaroenporn, Sukanya; Malaivijitnond, Suchinda; Wattanasirmkit, Kingkaew; Watanabe, Gen; Taya, Kazuyoshi; Cherdshewasart, Wichai

    2007-10-01

    The present study investigated the effects of long-term administration of Pueraria mirifica (PM) at non-toxic doses on the ovarian function and fertility of adult female mice based on evaluation of hematological and biochemical parameters. Female mice were divided into 4 groups (36 mice/group). Groups 1-3 were orally treated with a dose of 0 (PM-0), 10 (PM-10) or 100 mg/kg BW/day PM (PM-100), and group 4 was subcutaneously injected with 200 mug/kg BW/day of synthetic estrogen diethylstilbestrol (DES). The treatment schedule was separated into treatment and post-treatment periods. The duration of each period was 8 weeks. The PM-10 mice exhibited regular estrous cycles, while the PM-100 and DES treatments induced prolonged estrous cycles. Although no changes were observed in the uterus and ovary weights of the mice after the PM-100 and DES treatments, hyperplasia of the uterine endothelium and a decrease in the number of growing ovarian follicles were detected. The changes in the ovarian histologies of the PM-100 and DES mice were related to reductions in the levels of LH and FSH, which subsequently caused a decrease in mating efficiency. Once the PM mice were able to copulate, they were capable of successfully becoming pregnant and mothering offspring. No abnormalities were observed in the external morphologies and reproductive organ weights of the 50-day-old offspring. In conclusion, our results suggest that long-term exposure to 100 mg/kg BW of PM has adverse effects on the mating efficiency and reproduction of adult female mice and that administration of 10 mg/kg BW of PM does not induce any changes in the hypothalamic-pituitary-ovarian-uterine axis.

  15. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system

    PubMed Central

    2013-01-01

    Background The clinical course of tick-borne encephalitis (TBE), a disease caused by TBE virus, ranges from asymptomatic or mild influenza-like infection to severe debilitating encephalitis or encephalomyelitis. Despite the medical importance of this disease, some crucial steps in the development of encephalitis remain poorly understood. In particular, the basis of the disease severity is largely unknown. Methods TBE virus growth, neutralizing antibody response, key cytokine and chemokine mRNA production and changes in mRNA levels of cell surface markers of immunocompetent cells in brain were measured in mice with different susceptibilities to TBE virus infection. Results An animal model of TBE based on BALB/c-c-STS/A (CcS/Dem) recombinant congenic mouse strains showing different severities of the infection in relation to the host genetic background was developed. After subcutaneous inoculation of TBE virus, BALB/c mice showed medium susceptibility to the infection, STS mice were resistant, and CcS-11 mice were highly susceptible. The resistant STS mice showed lower and delayed viremia, lower virus production in the brain and low cytokine/chemokine mRNA production, but had a strong neutralizing antibody response. The most sensitive strain (CcS-11) failed in production of neutralizing antibodies, but exhibited strong cytokine/chemokine mRNA production in the brain. After intracerebral inoculation, all mouse strains were sensitive to the infection and had similar virus production in the brain, but STS mice survived significantly longer than CcS-11 mice. These two strains also differed in the expression of key cytokines/chemokines, particularly interferon gamma-induced protein 10 (IP-10/CXCL10) and monocyte chemotactic protein-1 (MCP-1/CCL2) in the brain. Conclusions Our data indicate that the genetic control is an important factor influencing the clinical course of TBE. High neutralizing antibody response might be crucial for preventing host fatality, but high

  16. The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice.

    PubMed

    Llanos, Paola; Contreras-Ferrat, Ariel; Georgiev, Tihomir; Osorio-Fuentealba, Cesar; Espinosa, Alejandra; Hidalgo, Jorge; Hidalgo, Cecilia; Jaimovich, Enrique

    2015-02-15

    Insulin stimulates glucose uptake in adult skeletal muscle by promoting the translocation of GLUT4 glucose transporters to the transverse tubule (T-tubule) membranes, which have particularly high cholesterol levels. We investigated whether T-tubule cholesterol content affects insulin-induced glucose transport. Feeding mice a high-fat diet (HFD) for 8 wk increased by 30% the T-tubule cholesterol content of triad-enriched vesicular fractions from muscle tissue compared with triads from control mice. Additionally, isolated muscle fibers (flexor digitorum brevis) from HFD-fed mice showed a 40% decrease in insulin-stimulated glucose uptake rates compared with fibers from control mice. In HFD-fed mice, four subcutaneous injections of MβCD, an agent reported to extract membrane cholesterol, improved their defective glucose tolerance test and normalized their high fasting glucose levels. The preincubation of isolated muscle fibers with relatively low concentrations of MβCD increased both basal and insulin-induced glucose uptake in fibers from controls or HFD-fed mice and decreased Akt phosphorylation without altering AMPK-mediated signaling. In fibers from HFD-fed mice, MβCD improved insulin sensitivity even after Akt or CaMK II inhibition and increased membrane GLUT4 content. Indinavir, a GLUT4 antagonist, prevented the stimulatory effects of MβCD on glucose uptake. Addition of MβCD elicited ryanodine receptor-mediated calcium signals in isolated fibers, which were essential for glucose uptake. Our findings suggest that T-tubule cholesterol content exerts a critical regulatory role on insulin-stimulated GLUT4 translocation and glucose transport and that partial cholesterol removal from muscle fibers may represent a useful strategy to counteract insulin resistance.

  17. Neonatal infection with neurotropic influenza A virus affects working memory and expression of type III Nrg1 in adult mice.

    PubMed

    Asp, Linnéa; Beraki, Simret; Kristensson, Krister; Ogren, Sven Ove; Karlsson, Håkan

    2009-08-01

    Epidemiological studies suggest that early life infections may contribute to the development of psychiatric disorders characterized by cognitive deficits. Here, we studied the effects of a neonatal influenza A/WSN/33 virus infection on locomotor activity, working memory and emotional behavior in adult mice. In addition to wild type mice, immunodeficient (Tap1(-/-)) mice lacking functional CD8(+) T cells, were included in the study to model the potential influence of a genetic deficit relating to virus clearance. Three to four months after the infection, infected Tap1(-/-) mice, but not wild type mice, exhibited deficits in working memory as well as increased rearing activity and anxiety. In the medial prefrontal cortices of these infected Tap1(-/-) mice reduced levels of type III Nrg1 transcripts were observed supporting a role for neuregulin 1 signaling in neuronal circuits involved in working memory. Virus replication, distribution or clearance did not differ between the two genotypes. The lack of CD8(+) T cells, however, appeared to contribute to a more pronounced glia response in Tap1(-/-) than in wild type mice. Thus, the present study suggest that the risk of developing deficits in cognitive and emotional behavior following a CNS infection during brain development is influenced by genetic variation in genes involved in the immune response.

  18. Few Foxp3⁺ regulatory T cells are sufficient to protect adult mice from lethal autoimmunity.

    PubMed

    Mayer, Christian T; Ghorbani, Peyman; Kühl, Anja A; Stüve, Philipp; Hegemann, Maike; Berod, Luciana; Gershwin, M Eric; Sparwasser, Tim

    2014-10-01

    Foxp3 specifies the Treg cell lineage and is indispensable for immune tolerance. Accordingly, rare Foxp3 mutations cause lethal autoimmunity. The mechanisms precipitating more prevalent human autoimmune diseases are poorly understood, but involve a combination of genetic and environmental factors. Many autoimmune diseases associate with a partial Treg-cell dysfunction, yet mouse models reflecting such complex pathophysiological processes are rare. Around 95% of Foxp3(+) Treg cells can be specifically depleted in bacterial artifical chromosome (BAC)-transgenic Depletion of REGulatory T cells (DEREG) mice through diphtheria toxin (DT) treatment. However, Treg-cell depletion fails to cause autoimmunity in adult DEREG mice for unclear reasons. By crossing Foxp3(GFP) knock-in mice to DEREG mice, we introduced additional genetic susceptibility that does not affect untreated mice. Strikingly, DT treatment of DEREG × Foxp3(GFP) mice rapidly causes autoimmunity characterized by blepharitis, tissue damage, and autoantibody production. This inflammatory disease is associated with augmented T-cell activation, increased Th2 cytokine production and myeloproliferation, and is caused by defective Treg-cell homeostasis, preventing few DT-insensitive Treg cells from repopulating the niche after Treg-cell depletion. Our study provides important insights into self-tolerance. We further highlight DEREG × Foxp3(GFP) mice as a model to investigate the role of environmental factors in precipitating autoimmunity. This may help to better understand and treat human autoimmunity. PMID:25042334

  19. FosB null mutant mice show enhanced methamphetamine neurotoxicity: potential involvement of FosB in intracellular feedback signaling and astroglial function.

    PubMed

    Kuroda, Kumi O; Ornthanalai, Veravej G; Kato, Tadafumi; Murphy, Niall P

    2010-02-01

    Previous studies show that (1) two members of fos family transcription factors, c-Fos and FosB, are induced in frontal brain regions by methamphetamine; (2) null mutation of c-Fos exacerbates methamphetamine-induced neurotoxicity; and (3) null mutation of FosB enhances behavioral responses to cocaine. Here we sought a role of FosB in responses to methamphetamine by studying FosB null mutant (-/-) mice. After a 10 mg/kg methamphetamine injection, FosB(-/-) mice were more prone to self-injury. Concomitantly, the intracellular feedback regulators of Sprouty and Rad-Gem-Kir (RGK) family transcripts had lower expression profiles in the frontoparietal cortex and striatum of the FosB(-/-) mice. Three days after administration of four 10 mg/kg methamphetamine injections, the frontoparietal cortex and striatum of FosB(-/-) mice contained more degenerated neurons as determined by Fluoro-Jade B staining. The abundance of the small neutral amino acids, serine, alanine, and glycine, was lower and/or was poorly induced after methamphetamine administration in the frontoparietal cortex and striatum of FosB(-/-) mice. In addition, methamphetamine-treated FosB(-/-) frontoparietal and piriform cortices showed more extravasation of immunoglobulin, which is indicative of blood-brain barrier dysfunction. Methamphetamine-induced hyperthermia, brain dopamine content, and loss of tyrosine hydroxylase immunoreactivity in the striatum, however, were not different between genotypes. These data indicate that FosB is involved in thermoregulation-independent protective functions against methamphetamine neurotoxicity in postsynaptic neurons. Our findings suggest two possible mechanisms of FosB-mediated neuroprotection: one is induction of negative feedback regulation within postsynaptic neurons through Sprouty and RGK. Another is supporting astroglial function such as maintenance of the blood-brain barrier, and metabolism of serine and glycine, which are important glial modulators of nerve cells

  20. Transgenic mice ectopically expressing HOXA5 in the dorsal spinal cord show structural defects of the cervical spinal cord along with sensory and motor defects of the forelimb.

    PubMed

    Krieger, Karin E; Abbott, Matthew A; Joksimovic, Milan; Lueth, Paul A; Sonea, Ioana M; Jeannotte, Lucie; Tuggle, Christopher K

    2004-06-21

    Mutation of murine Hoxa5 has shown that HOXA5 controls lung, gastrointestinal tract and vertebrae development. Hoxa5 is also expressed in the spinal cord, yet no central nervous system phenotype has been described in Hoxa5 knockouts. To identify the role of Hoxa5 in spinal cord development, we developed transgenic mice that express HOXA5 in the dorsal spinal cord in the brachial region. Using HOXA5-specific antibodies, we show this expression pattern is ectopic as the endogenous protein is expressed only in the ventral spinal cord at this anterio-posterior level. This transgenic line (Hoxa5SV2) also displays forelimb-specific motor and sensory defects. Hoxa5SV2 transgenic mice cannot support their body weight in a forelimb hang, and forelimb strength is decreased. However, Rotarod performance was not impaired in Hoxa5SV2 mice. Hoxa5SV2 mice also show a delayed forelimb response to noxious heat, although hindlimb response time was normal. Administration of an analgesic significantly reduced the hang test defect and decreased the transgene effect on forelimb strength, indicating that pain pathways may be affected. The morphology of transgenic cervical (but not lumbar) spinal cord is highly aberrant. Nissl staining indicates superficial laminae of the dorsal horn are severely disrupted. The distribution of cells and axons immunoreactive for substance P, neurokinin-B, and their primary receptors were aberrant only in transgenic cervical spinal cord. Further, we see increased levels of apoptosis in transgenic spinal cord at embryonic day 13.5. Our evidence suggests apoptosis due to HOXA5 misexpression is a major cause of loss of superficial lamina cells in Hoxa5SV2 mice. PMID:15158076

  1. Localization and osteoblastic differentiation potential of neural crest-derived cells in oral tissues of adult mice.

    PubMed

    Ono, Miki; Suzawa, Tetsuo; Takami, Masamichi; Yamamoto, Gou; Hosono, Tomohiko; Yamada, Atsushi; Suzuki, Dai; Yoshimura, Kentaro; Watahiki, Junichi; Hayashi, Ryuhei; Arata, Satoru; Mishima, Kenji; Nishida, Kohji; Osumi, Noriko; Maki, Koutaro; Kamijo, Ryutaro

    2015-09-01

    In embryos, neural crest cells emerge from the dorsal region of the fusing neural tube and migrate throughout tissues to differentiate into various types of cells including osteoblasts. In adults, subsets of neural crest-derived cells (NCDCs) reside as stem cells and are considered to be useful cell sources for regenerative medicine strategies. Numerous studies have suggested that stem cells with a neural crest origin persist into adulthood, especially those within the mammalian craniofacial compartment. However, their distribution as well as capacity to differentiate into osteoblasts in adults is not fully understood. To analyze the precise distribution and characteristics of NCDCs in adult oral tissues, we utilized an established line of double transgenic (P0-Cre/CAG-CAT-EGFP) mice in which NCDCs express green fluorescent protein (GFP) throughout their life. GFP-positive cells were scattered like islands throughout tissues of the palate, gingiva, tongue, and buccal mucosa in adult mice, with those isolated from the latter shown to form spheres, typical cell clusters composed of stem cells, under low-adherent conditions. Furthermore, GFP-positive cells had markedly increased alkaline phosphatase (a marker enzyme of osteoblast differentiation) activity and mineralization as shown by alizarin red staining, in the presence of bone morphogenetic protein (BMP)-2. These results suggest that NCDCs reside in various adult oral tissues and possess potential to differentiate into osteoblastic cells. NCDCs in adults may be a useful cell source for bone regeneration strategies.

  2. Single and repeated sevoflurane or desflurane exposure does not impair spatial memory performance of young adult mice.

    PubMed

    Kilicaslan, Alper; Belviranli, Muaz; Okudan, Nilsel; Nurullahoglu Atalik, Esra

    2013-12-01

    Volatile anesthetics are known to disturb the spatial memory in aged rodents, but there is insufficient information on their effects on young adult rodents. The aim of this study was to compare the effects of single and repeated exposure to desflurane and sevoflurane on spatial learning and memory functions in young adult mice. Balb/c mice (2 months old) were randomly divided into six equal groups (n = 8). The groups with single inhalation were exposed to 3.3% sevoflurane or 7.8% desflurane or vehicle gas for 4 h, respectively. The groups with repeated inhalation were exposed to 3.3% sevoflurane or 7.8% desflurane or vehicle gas for 2 h a day during 5 consecutive days. Spatial learning and memory were tested in the Morris water maze 24 h after exposure. In the learning phase, the parameters associated with finding the hidden platform and swimming speed, and in the memory phase, time spent in the target quadrant and the adjacent quadrants, were assessed and compared between the groups. In the 4-day learning process, there was no significant difference between the groups in terms of mean latency to platform, mean distance traveled and average speed (P > 0.05). During the memory-test phase, all mice exhibited spatial memory, but there was no significant difference between the groups in terms of time spent in the target quadrant (P > 0.05). Sevoflurane and desflurane anesthesia did not impair acquisition learning and retention memory in young adult mice.

  3. Intake of a milk-based wolfberry formulation enhances the immune response of young-adult and aged mice.

    PubMed

    Vidal, Karine; Benyacoub, Jalil; Sanchez-Garcia, José; Foata, Francis; Segura-Roggero, Iris; Serrant, Patrick; Moser, Mireille; Blum, Stephanie

    2010-02-01

    Aging is associated with alterations of immune responses. Wolfberry, a popular Chinese functional ingredient, is prized for its anti-aging properties; however, little is known about the immunological effect of wolfberry intake. The purpose of this study was to examine the effect of dietary intake of a milk-based formulation of wolfberry, named Lacto-Wolfberry, on in vivo and ex vivo parameters of adaptive immunity in young-adult and aged mice. Over 44 days, young-adult (2 months) and aged (21 months) C57BL/6J mice were fed ad libitum with a controlled diet and received drinking water supplemented or not with 0.5% (wt/vol) Lacto-Wolfberry. All mice were immunized on day 15 and challenged on day 22 with a T cell- dependent antigen, keyhole limpet hemocyanin (KLH). Lacto-Wolfberry supplementation significantly increased in vivo systemic immune markers that are known to decline with aging. Indeed, both antigen-(KLH) specific humoral response and cell-mediated immune responses in young-adult and aged mice were enhanced when compared to their respective controls. No significant effect of Lacto-Wolfberry supplementation was observed on ex vivo spleen cells proliferative response to mitogens and on splenocyte T cell subsets. In conclusion, dietary intake of Lacto-Wolfberry may favorably modulate the poor responsiveness to antigenic challenge observed with aging. PMID:20230278

  4. Impaired long-term memory retention: common denominator for acutely or genetically reduced hippocampal neurogenesis in adult mice.

    PubMed

    Ben Abdallah, Nada M-B; Filipkowski, Robert K; Pruschy, Martin; Jaholkowski, Piotr; Winkler, Juergen; Kaczmarek, Leszek; Lipp, Hans-Peter

    2013-09-01

    In adult rodents, decreasing hippocampal neurogenesis experimentally using different approaches often impairs performance in hippocampus-dependent processes. Nonetheless, functional relevance of adult neurogenesis is far from being unraveled, and deficits so far described in animal models often lack reproducibility. One hypothesis is that such differences might be the consequence of the extent of the methodological specificity used to alter neurogenesis rather than the extent to which adult neurogenesis is altered. To address this, we focused on cranial irradiation, the most widely used technique to impair hippocampal neurogenesis and consequentially induce hippocampus-dependent behavioral deficits. To investigate the specificity of the technique, we thus exposed 4-5 months old female cyclin D2 knockout mice, a model lacking physiological levels of olfactory and hippocampal neurogenesis, to an X-ray dose of 10 Gy, reported to specifically affect transiently amplifying precursors. After a recovery period of 1.5 months, behavioral tests were performed and probed for locomotor activity, habituation, anxiety, and spatial learning and memory. Spatial learning in the Morris water maze was intact in all experimental groups. Although spatial memory retention assessed 24h following acquisition was also intact in all mice, irradiated wild type and cyclin D2 knockout mice displayed memory deficits one week after acquisition. In addition, we observed significant differences in tests addressing anxiety and locomotor activity dependent on the technique used to alter neurogenesis. Whereas irradiated mice were hyperactive regardless of their genotype, cyclin D2 knockout mice were hypoactive in most of the tests and displayed altered habituation. The present study emphasizes that different approaches aimed at decreasing adult hippocampal neurogenesis may result in distinct behavioral impairments related to locomotion and anxiety. In contrast, spatial long-term memory retention is

  5. Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice.

    PubMed

    Porrero, Cesar; Rubio-Garrido, Pablo; Avendaño, Carlos; Clascá, Francisco

    2010-07-23

    Transgenic mouse lines in which a fluorescent protein is constitutively expressed under the Thy1 gene promoter have become important models in cell biology and pathology studies of specific neuronal populations. As a result of positional insertion and/or copy number effects on the transgene, the populations expressing the fluorescent protein (eYFP+) vary markedly among the different mice lines. However, identification of the eYFP+ subpopulations has remained sketchy and fragmentary even for the most widely used lines such as Thy1-eYFP-H mice (Feng, G., Mellor, R.H., Bernstein, M., Keller-Peck, C., Nguyen, Q.T., Wallace, M., Nerbonne, J.M., Lichtman and J.W., Sanes. J.R. 2000. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41-51). Here, we provide a comprehensive mapping of labeled cell types throughout the central nervous system in adult and postnatal (P0-P30) Thy1-eYFP-H mice. Cell type identification was based on somatodendritic morphology, axon trajectories, and, for cortical cells, retrograde labeling with Fast Blue to distinguish between subpopulations with different axonal targets. In the neocortex, eYFP+ cells are layers 5 and 6 pyramidal neurons, whose abundance and sublaminar distribution varies markedly between areas. Labeling is particularly prevalent in the corticospinal cells; as a result, the pyramidal pathway axons are conspicuously labeled down to the spinal cord. Large populations of hippocampal, subicular and amygdaloid projection neurons are eYFP+ as well. Additional eYFP+ cell groups are located in specific brainstem nuclei. Present results provide a comprehensive reference dataset for adult and developmental studies using the Thy1-eYFP-H mice strain, and show that this animal model may be particularly suitable for studies on the cell biology of corticospinal neurons.

  6. CXC receptor knockout mice: characterization of skeletal features and membranous bone healing in the adult mouse.

    PubMed

    Bischoff, David S; Sakamoto, Taylor; Ishida, Kenji; Makhijani, Nalini S; Gruber, Helen E; Yamaguchi, Dean T

    2011-02-01

    The potential role of CXC chemokines bearing the glu-leu-arg (ELR) motif in bone repair was studied using a cranial defect (CD) model in mice lacking the CXC receptor (mCXCR(-/-) knockout mice), which is homologous to knockout of the human CXC receptor 2 (CXCR2) gene. During the inflammatory stage of bone repair, ELR CXC chemokines are released by inflammatory cells and serve as chemotactic and angiogenic factors. mCXCR(-/-) mice were smaller in weight and length from base of tail to nose tip, compared to WT littermates. DEXA analysis indicated that bone mineral density (BMD), bone mineral content (BMC), total area (TA), bone area (BA), and total tissue mass (TTM) were decreased in the mCXCR(-/-) mice at 6, 12, and 18 weeks of age. Trabecular bone characteristics in mCXCR(-/-) (% bone, connectivity, number, and thickness) were reduced, and trabecular spacing was increased as evidenced by μCT. There was no difference in bone formation or resorption indices measured by bone histomorphometry. Trabecular BMD was not altered. Cortical bone volume, BMD, and thickness were reduced; whereas, bone marrow volume was increased in mCXCR(-/-). Decreased polar moment of inertia (J) in the tibias/femurs suggested that the mCXCR(-/-) long bones are weaker. This was confirmed by three-point bending testing of the femurs. CDs created in 6-week-old male mCXCR(-/-) and WT littermates were not completely healed at 12 weeks; WT animals, however, had significantly more bone in-growth than mCXCR(-/-). New bone sites were identified using polarized light and assessed for numbers of osteocyte (OCy) lacunae and blood vessels (BlV) around the original CD. In new bone, the number of BlV in WT was >2× that seen in mCXCR(-/-). Bone histomorphometry parameters in the cranial defect did not show any difference in bone formation or resorption markers. In summary, studies showed that mCXCR(-/-) mice have (1) reduced weight and size; (2) decreased BMD and BMC; (3) decreased amounts of trabecular

  7. Effects of synchronous and asynchronous embryo transfer on postnatal development, adult health, and behavior in mice.

    PubMed

    López-Cardona, Angela P; Fernández-González, Raúl; Pérez-Crespo, Miriam; Alén, Francisco; de Fonseca, Fernando Rodriguez; Orio, Laura; Gutierrez-Adan, Alfonso

    2015-10-01

    Asynchronous embryo transfer (ET) is a common assisted reproduction technique used in several species, but its biological effects on postnatal and early development remain unknown. The aim of this study was to determine whether asynchronous ET produces long-term effects in mice. Postnatal development, animal weight, systolic blood pressure (SBP), relative organ weight (liver, spleen, kidneys, heart, lungs, brain, and testicles), and behavior (assessed in open-field and elevated plus maze tests) were assessed in CD1 mice produced by different ET procedures: 1) the transfer of Day 3.5 (D3.5) blastocysts to the uterus (BL-UT); 2) the transfer of D3.5 blastocysts to the oviduct (BL-OV); or 3) the transfer of D0.5 zygotes to the oviduct (Z-OV). In vivo conceived animals served as controls (CT). The transfer of blastocysts to the uterus or zygotes to the oviduct was defined as synchronous, and transfer of blastocysts to the oviduct was defined as asynchronous. Both synchronous and asynchronous ET resulted in increased weight at birth that normalized thereafter with the exception of asynchronous ET females. In this group, female BL-OV, a clear lower body weight was recorded along postnatal life when compared with controls (P < 0.05). No effects on animal weight were produced during postnatal development in the synchronous ET groups (BL-UT, Z-OV, and CT). Both synchronous and asynchronous ET had impacts on adult (Wk 30) organ weight. SBP was modified in animals derived from blastocyst but not zygote ET. Effects on behavior (anxiety in the plus maze) were only detected in the BL-UT group (P < 0.05). Our findings indicate that zygotes are less sensitive than blastocysts to ET and that both synchronous and asynchronous blastocyst ET may have long-term consequences on health, with possible impacts on weight, arterial pressure, relative organ weight, and behavior.

  8. The Inhibitory Effects of RFamide-Related Peptide 3 on Luteinizing Hormone Release Involves an Estradiol-Dependent Manner in Prepubertal but Not in Adult Female Mice.

    PubMed

    Xiang, Wei; Zhang, Baoyun; Lv, Fenglin; Ma, Yunxia; Chen, Hang; Chen, Long; Yang, Fang; Wang, Pingqing; Chu, Mingxing

    2015-08-01

    The mammalian gonadotropin-inhibitory hormone (GnIH) ortholog, RFamide-related peptide (RFRP), is considered to act on gonadotropin-releasing hormone (GnRH) neurons and the pituitary to inhibit gonadotropin synthesis and release. However, there is little evidence documenting whether RFamide-related peptide 3 (RFRP-3) plays a primary role in inhibition of the hypothalamo-pituitary-gonadal (HPG) axis prior to the onset of puberty. The present study aimed to understand the functional significance of the neuropeptide on pubertal development. The developmental changes in reproductive-related gene expression at the mRNA level were investigated in the hypothalamus of female mice. The results indicated that RFRP-3 may be an endogenous inhibitory factor for the activation of the HPG axis prior to the onset of puberty. In addition, centrally administered RFRP-3 significantly suppressed plasma luteinizing hormone (LH) levels in prepubertal female mice. Surprisingly, centrally administered RFRP-3 had no effects on plasma LH levels in ovariectomized (OVX) prepubescent female mice. In contrast, RFRP-3 also inhibited plasma LH levels in OVX prepubescent female mice that were treated with 17beta-estradiol replacement. Our study also examined the effects of RFRP-3 on plasma LH release in adult female mice that were ovariectomized at dioestrus, with or without estradiol (E2). Our results showed that the inhibitory effects of RFRP-3 were independent of E2 status. Quantitative real-time PCR and immunohistochemistry analyses showed that RFRP-3 inhibited GnRH expression at both the mRNA and protein levels in the hypothalamus. These data demonstrated that RFRP-3 could effectively suppress pituitary LH release, via the inhibition of GnRH transcription and translation in prepubescent female mice, which is associated with estrogen signaling pathway and developmental stages.

  9. Voluntary running in young adult mice reduces anxiety-like behavior and increases the accumulation of bioactive lipids in the cerebral cortex.

    PubMed

    Santos-Soto, Iván J; Chorna, Nataliya; Carballeira, Néstor M; Vélez-Bartolomei, José G; Méndez-Merced, Ana T; Chornyy, Anatoliy P; Peña de Ortiz, Sandra

    2013-01-01

    Combinatorial therapies using voluntary exercise and diet supplementation with polyunsaturated fatty acids have synergistic effects benefiting brain function and behavior. Here, we assessed the effects of voluntary exercise on anxiety-like behavior and on total FA accumulation within three brain regions: cortex, hippocampus, and cerebellum of running versus sedentary young adult male C57/BL6J mice. The running group was subjected to one month of voluntary exercise in their home cages, while the sedentary group was kept in their home cages without access to a running wheel. Elevated plus maze (EPM), several behavioral postures and two risk assessment behaviors (RABs) were then measured in both animal groups followed immediately by blood samplings for assessment of corticosterone levels. Brains were then dissected for non-targeted lipidomic analysis of selected brain regions using gas chromatography coupled to mass spectrometry (GC/MS). Results showed that mice in the running group, when examined in the EPM, displayed significantly lower anxiety-like behavior, higher exploratory and risky behaviors, compared to sedentary mice. Notably, we found no differences in blood corticosterone levels between the two groups, suggesting that the different EPM and RAB behaviors were not related to reduced physiological stress in the running mice. Lipidomics analysis revealed a region-specific cortical decrease of the saturated FA: palmitate (C16:0) and a concomitant increase of polyunsaturated FA, arachidonic acid (AA, omega 6-C20: 4) and docosahexaenoic acid (DHA, omega 3-C22: 6), in running mice compared to sedentary controls. Finally, we found that running mice, as opposed to sedentary animals, showed significantly enhanced cortical expression of phospholipase A2 (PLA2) protein, a signaling molecule required in the production of both AA and DHA. In summary, our data support the anxiolytic effects of exercise and provide insights into the molecular processes modulated by

  10. Younger Adults Show Long-Term Effects of Cognitive Training on Broad Cognitive Abilities over 2 Years

    ERIC Educational Resources Information Center

    Schmiedek, Florian; Lövdén, Martin; Lindenberger, Ulman

    2014-01-01

    In the COGITO study (Schmiedek, Lövdén, & Lindenberger, 2010), 101 younger adults practiced 12 tests of perceptual speed, working memory, and episodic memory for over 100 daily 1-hr sessions. The intervention resulted in positive transfer to broad cognitive abilities, including reasoning and episodic memory. Here, we examine whether these…

  11. Preschoolers with Down Syndrome Do Not yet Show the Learning and Memory Impairments Seen in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Roberts, Lynette V.; Richmond, Jenny L.

    2015-01-01

    Individuals with Down syndrome (DS) exhibit a behavioral phenotype of specific strengths and weaknesses, in addition to a generalized cognitive delay. In particular, adults with DS exhibit specific deficits in learning and memory processes that depend on the hippocampus, and there is some suggestion of impairments on executive function tasks that…

  12. Developmental Exposure to Second-Hand Smoke Increases Adult Atherogenesis and Alters Mitochondrial DNA Copy Number and Deletions in apoE−/− Mice

    PubMed Central

    Fetterman, Jessica L.; Pompilius, Melissa; Westbrook, David G.; Uyeminami, Dale; Brown, Jamelle; Pinkerton, Kent E.; Ballinger, Scott W.

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m3 total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1–19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12–14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis. PMID:23825571

  13. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period.

    PubMed

    Furukawa, Yusuke; Tanemura, Kentaro; Igarashi, Katsuhide; Ideta-Otsuka, Maky; Aisaki, Ken-Ichi; Kitajima, Satoshi; Kitagawa, Masanobu; Kanno, Jun

    2016-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R) mediated signaling (GABA-R signal) during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ) or the non-benzodiazepine drug zolpidem (ZP). We detected learning and memory deficits in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs), which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible learning and memory deficits in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause learning and memory deficits. PMID:27489535

  14. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period

    PubMed Central

    Furukawa, Yusuke; Tanemura, Kentaro; Igarashi, Katsuhide; Ideta-Otsuka, Maky; Aisaki, Ken-Ichi; Kitajima, Satoshi; Kitagawa, Masanobu; Kanno, Jun

    2016-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R) mediated signaling (GABA-R signal) during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ) or the non-benzodiazepine drug zolpidem (ZP). We detected learning and memory deficits in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs), which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible learning and memory deficits in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause learning and memory deficits. PMID:27489535

  15. Caveolin-1-deficient Mice Show Accelerated Mammary Gland Development During Pregnancy, Premature Lactation, and Hyperactivation of the Jak-2/STAT5a Signaling Cascade

    PubMed Central

    Park, David S.; Lee, Hyangkyu; Frank, Philippe G.; Razani, Babak; Nguyen, Andrew V.; Parlow, Albert F.; Russell, Robert G.; Hulit, James; Pestell, Richard G.; Lisanti, Michael P.

    2002-01-01

    It is well established that mammary gland development and lactation are tightly controlled by prolactin signaling. Binding of prolactin to its cognate receptor (Prl-R) leads to activation of the Jak-2 tyrosine kinase and the recruitment/tyrosine phosphorylation of STAT5a. However, the mechanisms for attenuating the Prl-R/Jak-2/STAT5a signaling cascade are just now being elucidated. Here, we present evidence that caveolin-1 functions as a novel suppressor of cytokine signaling in the mammary gland, akin to the SOCS family of proteins. Specifically, we show that caveolin-1 expression blocks prolactin-induced activation of a STAT5a-responsive luciferase reporter in mammary epithelial cells. Furthermore, caveolin-1 expression inhibited prolactin-induced STAT5a tyrosine phosphorylation and DNA binding activity, suggesting that caveolin-1 may negatively regulate the Jak-2 tyrosine kinase. Because the caveolin-scaffolding domain bears a striking resemblance to the SOCS pseudosubstrate domain, we examined whether Jak-2 associates with caveolin-1. In accordance with this homology, we demonstrate that Jak-2 cofractionates and coimmunoprecipitates with caveolin-1. We next tested the in vivo relevance of these findings using female Cav-1 (−/−) null mice. If caveolin-1 normally functions as a suppressor of cytokine signaling in the mammary gland, then Cav-1 null mice should show premature development of the lobuloalveolar compartment because of hyperactivation of the prolactin signaling cascade via disinhibition of Jak-2. In accordance with this prediction, Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorylation of STAT5a (pY694) at its Jak-2 phosphorylation site. In addition, the Ras-p42/44 MAPK cascade is hyper-activated. Because a similar premature lactation phenotype is observed in SOCS1 (−/−) null mice, we conclude that caveolin-1 is a novel suppressor of cytokine signaling. PMID:12388746

  16. The characterization of the first anti-mouse Muc6 antibody shows an increased expression of the mucin in pancreatic tissue of Cftr-knockout mice.

    PubMed

    Gouyer, Valérie; Leir, Shih-Hsing; Tetaert, Daniel; Liu, Yamin; Gottrand, Frédéric; Harris, Ann; Desseyn, Jean-Luc

    2010-05-01

    Gel-forming mucins are large high-molecular weight secreted O-glycoproteins responsible for the gel-properties of the mucus blanket. Five orthologous gel-forming mucins have been cloned in human and mouse. Among them, the mucin MUC6 has been less studied, particularly in rodents and no anti rodent-Muc6 antibody has been reported yet. In order to further study Muc6 in mice, our aims were to obtain a specific Muc6 antibody, to validate it and to test it in Cftr deficient mice. A polyclonal serum named CP4 was isolated from a rabbit immunized by a mouse Muc6 peptide. In Western blot experiments, the antibody detected a high-molecular weight molecule secreted by the gastric tissue. Using immunohistochemistry, we showed that the antibody reacted strongly with deep glands of duodenum and ileum and mucous neck cells of gastric body. CP4 also recognized Muc6 protein secreted at the surface of the stomach and renal collecting tubules. The centroacinar cells of pancreatic tissue also reacted with the antibody. Cftr-/- mice showed a higher expression of Muc6 at both protein and RNA levels compared with their control Cftr+/+ littermates suggesting that as in the human disease, Muc6 may contribute to the formation of materials that block pancreatic acini and ducts in mouse models of cystic fibrosis. The rabbit anti-mouse Muc6 polyclonal antibody seems highly specific to the mouse mucin and will be useful to study pancreatic pathology in cystic fibrosis.

  17. Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation.

    PubMed

    Shin, S Y; Han, S H; Woo, R-S; Jang, S H; Min, S S

    2016-03-01

    Exposure to maternal separation (MS) during early life is an identified risk factor for emotional disorders such as anxiety and depression later in life. This study investigated the effects of neonatal MS on the behavior and long-term potentiation (LTP) as well as basic synaptic transmission at hippocampal CA3-CA1 and mossy fiber (MF)-CA3 synapses in adolescent mice for 19days. When mice were adolescents, we measured depression, learning, memory, anxious and aggressive behavior using the forced swimming test (FST), Y-maze, Morris water maze (MWM), elevated plus maze (EPM), three consecutive days of the open field test, the social interaction test, the tube-dominance test and the resident-intruder test. The results showed that there was no difference in FST, Y-maze, and MWM performance. However, MS mice showed more anxiety-like behavior in the EPM test and aggressive-like behavior in the tube-dominance and resident-intruder tests. In addition, the magnitude of LTP and release probability in the MF-CA3 synapses was reduced in the MS group but not in the CA3-CA1 synapse. Our results indicate that early life stress due to MS may induce anxiety- and aggressive-like behavior during adolescence, and these effects are associated with synaptic plasticity at the hippocampal MF-CA3 synapses.

  18. Viable RNaseH1 knockout mice show RNaseH1 is essential for R loop processing, mitochondrial and liver function

    PubMed Central

    Lima, Walt F.; Murray, Heather M.; Damle, Sagar S.; Hart, Christopher E.; Hung, Gene; De Hoyos, Cheryl Li; Liang, Xue-Hai; Crooke, Stanley T.

    2016-01-01

    Viable constitutive and tamoxifen inducible liver-specific RNase H1 knockout mice that expressed no RNase H1 activity in hepatocytes showed increased R-loop levels and reduced mitochondrial encoded DNA and mRNA levels, suggesting impaired mitochondrial R-loop processing, transcription and mitochondrial DNA replication. These changes resulted in mitochondrial dysfunction with marked changes in mitochondrial fusion, fission, morphology and transcriptional changes reflective of mitochondrial damage and stress. Liver degeneration ensued, as indicated by apoptosis, fibrosis and increased transaminase levels. Antisense oligonucleotides (ASOs) designed to serve as substrates for RNase H1 were inactive in the hepatocytes from the RNase H1 knockout mice and in vivo, demonstrating that RNase H1 is necessary for the activity of DNA-like ASOs. During liver regeneration, a clone of hepatocytes that expressed RNase H1 developed and partially restored mitochondrial and liver function. PMID:27131367

  19. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice)

    PubMed Central

    Todorov, Teodor

    2016-01-01

    The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice.

  20. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice)

    PubMed Central

    Todorov, Teodor

    2016-01-01

    The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice. PMID:27689088

  1. Toll-like receptor 2 mediates ischemia-reperfusion injury of the small intestine in adult mice.

    PubMed

    Watanabe, Toshio; Tanigawa, Tetsuya; Kobata, Atsushi; Takeda, Shogo; Nadatani, Yuji; Otani, Koji; Yamagami, Hirokazu; Shiba, Masatsugu; Tominaga, Kazunari; Fujiwara, Yasuhiro; Arakawa, Tetsuo

    2014-01-01

    Toll-like receptor 2 (TLR2) recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R) injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO), a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and cyclooxygenase-2 (COX-2) in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory mediators

  2. Neonatal pneumococcal colonisation caused by Influenza A infection alters lung function in adult mice

    PubMed Central

    FitzPatrick, Meaghan; Royce, Simon G.; Langenbach, Shenna; McQualter, Jonathan; Reading, Patrick C.; Wijburg, Odilia; Anderson, Gary P.; Stewart, Alastair; Bourke, Jane; Bozinovski, Steven

    2016-01-01

    There is emerging epidemiological data to suggest that upper respiratory tract bacterial colonisation in infancy may increase the risk of developing respiratory dysfunction later in life, and respiratory viruses are known to precipitate persistent colonisation. This study utilized a neonatal mouse model of Streptococcus pneumonia (SP) and influenza A virus (IAV) co-infection, where bronchoalveolar leukocyte infiltration had resolved by adulthood. Only co-infection resulted in persistent nasopharyngeal colonisation over 40 days and a significant increase in airway resistance in response to in vivo methacholine challenge. A significant increase in hysteresivity was also observed in IAV and co-infected mice, consistent with ventilatory heterogeneity and structural changes in the adult lung. Airway hyper-responsiveness was not associated with a detectable increase in goblet cell transdifferentiation, peribronchial smooth muscle bulk or collagen deposition in regions surrounding the airways. Increased reactivity was not observed in precision cut lung slices challenged with methacholine in vitro. Histologically, the airway epithelium appeared normal and expression of epithelial integrity markers (ZO-1, occludin-1 and E-cadherin) were not altered. In summary, neonatal co-infection led to persistent nasopharyngeal colonisation and increased airway responsiveness that was not associated with detectable smooth muscle or mucosal epithelial abnormalities, however increased hysteresivity may reflect ventilation heterogeneity. PMID:26940954

  3. Survival of adult generated hippocampal neurons is altered in circadian arrhythmic mice.

    PubMed

    Rakai, Brooke D; Chrusch, Michael J; Spanswick, Simon C; Dyck, Richard H; Antle, Michael C

    2014-01-01

    The subgranular zone of the hippocampal formation gives rise to new neurons that populate the dentate gyrus throughout life. Cells in the hippocampus exhibit rhythmic clock gene expression and the circadian clock is known to regulate the cycle of cell division in other areas of the body. These facts suggest that the circadian clock may regulate adult neurogenesis in the hippocampus as well. In the present study, neurogenesis in the hippocampal subgranular zone was examined in arrhythmic Bmal1 knockout (-KO) mice and their rhythmic heterozygous and wildtype littermates. Proliferation and survival of newly generated subgranular zone cells were examined using bromodeoxyuridine labelling, while pyknosis (a measure of cell death) and hippocampal volume were examined in cresyl violet stained sections. There was no significant difference in cellular proliferation between any of the groups, yet survival of proliferating cells, 6 weeks after the bromodeoxyuridine injection, was significantly greater in the BMAL1-KO animals. The number of pyknotic cells was significantly decreased in Bmal1-KO animals, yet hippocampal volume remained the same across genotypes. These findings suggest that while a functional circadian clock is not necessary for normal proliferation of neuronal precursor cells, the normal pruning of newly generated neurons in the hippocampus may require a functional circadian clock. PMID:24941219

  4. Nicotine-Cadmium Interaction Alters Exploratory Motor Function and Increased Anxiety in Adult Male Mice

    PubMed Central

    Chris Ajonijebu, Duyilemi; Adeyemi Adeniyi, Philip; Oloruntoba Adekeye, Adeshina; Peter Olatunji, Babawale; Olakunle Ishola, Azeez; Michael Ogundele, Olalekan

    2014-01-01

    In this study we evaluated the time dependence in cadmium-nicotine interaction and its effect on motor function, anxiety linked behavioural changes, serum electrolytes, and weight after acute and chronic treatment in adult male mice. Animals were separated randomly into four groups of n = 6 animals each. Treatment was done with nicotine, cadmium, or nicotine-cadmium for 21 days. A fourth group received normal saline for the same duration (control). Average weight was determined at 7-day interval for the acute (D1-D7) and chronic (D7-D21) treatment phases. Similarly, the behavioural tests for exploratory motor function (open field test) and anxiety were evaluated. Serum electrolytes were measured after the chronic phase. Nicotine, cadmium, and nicotine-cadmium treatments caused no significant change in body weight after the acute phase while cadmium-nicotine and cadmium caused a decline in weight after the chronic phase. This suggests the role of cadmium in the weight loss observed in tobacco smoke users. Both nicotine and cadmium raised serum Ca2+ concentration and had no significant effect on K+ ion when compared with the control. In addition, nicotine-cadmium treatment increased bioaccumulation of Cd2+ in the serum which corresponded to a decrease in body weight, motor function, and an increase in anxiety. PMID:26317007

  5. Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice

    PubMed Central

    2012-01-01

    Background Neuroinflammation involves the activation of glial cells in neurodegenerative diseases such as Alzheimer’s disease (AD). Plasmalogens (Pls) are glycerophospholipids constituting cellular membranes and play significant roles in membrane fluidity and cellular processes such as vesicular fusion and signal transduction. Methods In this study the preventive effects of Pls on systemic lipopolysaccharide (LPS)-induced neuroinflammation were investigated using immunohistochemistry, real-time PCR methods and analysis of brain glycerophospholipid levels in adult mice. Results Intraperitoneal (i.p.) injections of LPS (250 μg/kg) for seven days resulted in increases in the number of Iba-1-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes in the prefrontal cortex (PFC) and hippocampus accompanied by the enhanced expression of IL-1β and TNF-α mRNAs. In addition, β-amyloid (Aβ3–16)-positive neurons appeared in the PFC and hippocampus of LPS-injected animals. The co-administration of Pls (i.p., 20 mg/kg) after daily LPS injections significantly attenuated both the activation of glial cells and the accumulation of Aβ proteins. Finally, the amount of Pls in the PFC and hippocampus decreased following the LPS injections and this reduction was suppressed by co-treatment with Pls. Conclusions These findings suggest that Pls have anti-neuroinflammatory and anti-amyloidogenic effects, thereby indicating the preventive or therapeutic application of Pls against AD. PMID:22889165

  6. Somatostatin receptor 2 knockout/lacZ knockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum.

    PubMed

    Allen, Jeremy P; Hathway, Gareth J; Clarke, Neil J; Jowett, Mike I; Topps, Stephanie; Kendrick, Keith M; Humphrey, Patrick P A; Wilkinson, Lawrence S; Emson, Piers C

    2003-05-01

    The peptide somatostatin can modulate the functional output of the basal ganglia. The exact sites and mechanisms of this action, however, are poorly understood, and the physiological context in which somatostatin acts is unknown. Somatostatin acts as a neuromodulator via a family of five 7-transmembrane G protein-coupled receptors, SSTR1-5, one of which, SSTR2, is known to be functional in the striatum. We have investigated the role of SSTR2 in basal ganglia function using mice in which Sstr2 has been inactivated and replaced by the lacZ reporter gene. Analysis of Sstr2lacZ expression in the brain by beta-galactosidase histochemistry demonstrated a widespread pattern of expression. By comparison to previously published in situ hybridization and immunohistochemical data, Sstr2lacZ expression was shown to accurately recapitulate that of Sstr2 and thus provided a highly sensitive model to investigate cell-type-specific expression of Sstr2. In the striatum, Sstr2 expression was identified in medium spiny projection neurons restricted to the matrix compartment and in cholinergic interneurons. Sstr2 expression was not detected in any other nuclei of the basal ganglia except for a sparse number of nondopaminergic neurons in the substantia nigra. Microdialysis in the striatum showed Sstr2-null mice were selectively refractory to somatostatin-induced dopamine and glutamate release. In behavioural tests, Sstr2-null mice showed normal levels of locomotor activity and normal coordination in undemanding tasks. However, in beam-walking, a test of fine motor control, Sstr2-null mice were severely impaired. Together these data implicate an important neuromodulatory role for SSTR2 in the striatum. PMID:12752788

  7. Two weeks of predatory stress induces anxiety-like behavior with co-morbid depressive-like behavior in adult male mice.

    PubMed

    Burgado, Jillybeth; Harrell, Constance S; Eacret, Darrell; Reddy, Renuka; Barnum, Christopher J; Tansey, Malú G; Miller, Andrew H; Wang, Huichen; Neigh, Gretchen N

    2014-12-15

    Psychological stress can have devastating and lasting effects on a variety of behaviors, especially those associated with mental illnesses such as anxiety and depression. Animal models of chronic stress are frequently used to elucidate the mechanisms underlying the relationship between stress and mental health disorders and to develop improved treatment options. The current study expands upon a novel chronic stress paradigm for mice: predatory stress. The predatory stress model incorporates the natural predator-prey relationship that exists among rats and mice and allows for greater interaction between the animals, in turn increasing the extent of the stressful experience. In this study, we evaluated the behavioral effects of exposure to 15 days of predatory stress on an array of behavioral indices. Up to 2 weeks after the end of stress, adult male mice showed an increase of anxiety-like behaviors as measured by the open field and social interaction tests. Animals also expressed an increase in depressive-like behavior in the sucrose preference test. Notably, performance on the novel object recognition task, a memory test, improved after predatory stress. Taken as a whole, our results indicate that 15 exposures to this innovative predatory stress paradigm are sufficient to elicit robust anxiety-like behaviors with evidence of co-morbid depressive-like behavior, as well as changes in cognitive behavior in male mice.

  8. Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults.

    PubMed

    Chikahisa, Sachiko; Sei, Hiroyoshi; Morishima, Masaki; Sano, Atsuko; Kitaoka, Kazuyoshi; Nakaya, Yutaka; Morita, Yusuke

    2006-05-15

    Music has been suggested to have a beneficial effect on various types of performance in humans. However, the physiological and molecular mechanism of this effect remains unclear. We examined the effect of music exposure during the perinatal period on learning behavior in adult mice, and measured the levels of brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), which play critical roles in synaptic plasticity. In addition, we measured the levels of 3-phosphoinositide-dependent protein kinase-1 (PDK1) and mitogen-activated protein kinase (MAPK), downstream targets of two main pathways in BDNF/TrkB signaling. Music-exposed mice completed a maze learning task with fewer errors than the white noise-exposed mice and had lower levels of BDNF and higher levels of TrkB and PDK1 in the cortex. MAPK levels were unchanged. Furthermore, TrkB and PDK1 protein levels in the cortex showed a significant negative correlation with the number of errors on the maze. These results suggest that perinatal exposure of mice to music has an influence on BDNF/TrkB signaling and its intracellular signaling pathway targets, including PDK1, and thus may induce improved learning and memory functions.

  9. Activation of the central histaminergic system is involved in hypoxia-induced stroke tolerance in adult mice

    PubMed Central

    Fan, Yan-ying; Hu, Wei-wei; Dai, Hai-bin; Zhang, Jian-xiang; Zhang, Lu-yi; He, Ping; Shen, Yao; Ohtsu, Hiroshi; Wei, Er-qing; Chen, Zhong

    2011-01-01

    We hypothesized that activation of the central histaminergic system is required for neuroprotection induced by hypoxic preconditioning. Wild-type (WT) and histidine decarboxylase knockout (HDC-KO) mice were preconditioned by 3 hours of hypoxia (8% O2) and, 48 hours later, subjected to 30 minutes of middle cerebral artery (MCA) occlusion, followed by 24 hours of reperfusion. Hypoxic preconditioning improved neurologic function and decreased infarct volume in WT or HDC-KO mice treated with histamine, but not in HDC-KO or WT mice treated with α-fluoromethylhistidine (α-FMH, an inhibitor of HDC). Laser-Doppler flowmetry analysis showed that hypoxic preconditioning ameliorated cerebral blood flow (CBF) in the periphery of the MCA territory during ischemia in WT mice but not in HDC-KO mice. Histamine decreased in the cortex of WT mice after 2, 3, and 4 hours of hypoxia, and HDC activity increased after 3 hours of hypoxia. Vascular endothelial growth factor (VEGF) mRNA and protein expressions showed a greater increase after hypoxia than those in HDC-KO or α-FMH-treated WT mice. In addition, the VEGF receptor-2 antagonist SU1498 prevented the protective effect of hypoxic preconditioning in infarct volume and reversed increased peripheral CBF in WT mice. Therefore, endogenous histamine is an essential mediator of hypoxic preconditioning. It may function by enhancing hypoxia-induced VEGF expression. PMID:20588322

  10. Activation of the central histaminergic system is involved in hypoxia-induced stroke tolerance in adult mice.

    PubMed

    Fan, Yan-ying; Hu, Wei-wei; Dai, Hai-bin; Zhang, Jian-xiang; Zhang, Lu-yi; He, Ping; Shen, Yao; Ohtsu, Hiroshi; Wei, Er-qing; Chen, Zhong

    2011-01-01

    We hypothesized that activation of the central histaminergic system is required for neuroprotection induced by hypoxic preconditioning. Wild-type (WT) and histidine decarboxylase knockout (HDC-KO) mice were preconditioned by 3 hours of hypoxia (8% O(2)) and, 48 hours later, subjected to 30 minutes of middle cerebral artery (MCA) occlusion, followed by 24 hours of reperfusion. Hypoxic preconditioning improved neurologic function and decreased infarct volume in WT or HDC-KO mice treated with histamine, but not in HDC-KO or WT mice treated with α-fluoromethylhistidine (α-FMH, an inhibitor of HDC). Laser-Doppler flowmetry analysis showed that hypoxic preconditioning ameliorated cerebral blood flow (CBF) in the periphery of the MCA territory during ischemia in WT mice but not in HDC-KO mice. Histamine decreased in the cortex of WT mice after 2, 3, and 4 hours of hypoxia, and HDC activity increased after 3 hours of hypoxia. Vascular endothelial growth factor (VEGF) mRNA and protein expressions showed a greater increase after hypoxia than those in HDC-KO or α-FMH-treated WT mice. In addition, the VEGF receptor-2 antagonist SU1498 prevented the protective effect of hypoxic preconditioning in infarct volume and reversed increased peripheral CBF in WT mice. Therefore, endogenous histamine is an essential mediator of hypoxic preconditioning. It may function by enhancing hypoxia-induced VEGF expression.

  11. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.

    PubMed

    Guo, Zhibao; Wang, Xijuan; Xiao, Jun; Wang, Yihui; Lu, Hong; Teng, Junfang; Wang, Wei

    2013-09-26

    Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice.

  12. Sex-specific effects of bisphenol-A on memory and synaptic structural modification in hippocampus of adult mice.

    PubMed

    Xu, Xiaohong; Liu, Xingyi; Zhang, Qin; Zhang, Guangxia; Lu, Yingjun; Ruan, Qin; Dong, Fangni; Yang, Yanling

    2013-05-01

    Humans are routinely exposed to low levels of bisphenol A (BPA), a synthetic xenoestrogen widely used in the production of polycarbonate plastics. The effects of long-term exposure to BPA on memory and modification of synaptic structure in hippocampus of adult mice were investigated in the present study. The adult mice were exposed to BPA (0.4, 4, and 40 mg/kg/day) or arachis oil for 12 weeks. In open field test, BPA at 0.4, 4, or 40 mg/kg/day increased the frequency of rearing and time in the central area of the males, while BPA at 0.4 mg/kg/day reduced the frequency of rearing in the females. Exposure to BPA (0.4 or 40 mg/kg/day) extended the average escape pathlength to the hidden platform in Morris water maze task and shortened the step-down latency 24 h after footshock of the males, but no changes were found in the females for these measures. Meanwhile, BPA induced a reduced numeric synaptic density and a negative effect on the structural parameters of synaptic interface, including an enlarged synaptic cleft and the reduced length of active zone and PSD thickness, in the hippocampus of the male mice. Western blot analyses further indicated that BPA down-regulated expressions of synaptic proteins (synapsin I and PSD-95) and synaptic NMDA receptor subunit NR1 and AMPA receptor subunit GluR1 in the hippocampus of the males. These results suggest that long-term exposure to low levels of BPA in adulthood sex-specifically impaired spatial and passive avoidance memory of mice. These effects may be associated with the higher susceptibility of the hippocampal synaptic plasticity processes, such as remodeling of spinal synapses and the expressions of synaptic proteins (e.g. synapsin I and PSD-95) and NMDA and AMPA receptors, to BPA in the adult male mice.

  13. Sex-specific effects of bisphenol-A on memory and synaptic structural modification in hippocampus of adult mice.

    PubMed

    Xu, Xiaohong; Liu, Xingyi; Zhang, Qin; Zhang, Guangxia; Lu, Yingjun; Ruan, Qin; Dong, Fangni; Yang, Yanling

    2013-05-01

    Humans are routinely exposed to low levels of bisphenol A (BPA), a synthetic xenoestrogen widely used in the production of polycarbonate plastics. The effects of long-term exposure to BPA on memory and modification of synaptic structure in hippocampus of adult mice were investigated in the present study. The adult mice were exposed to BPA (0.4, 4, and 40 mg/kg/day) or arachis oil for 12 weeks. In open field test, BPA at 0.4, 4, or 40 mg/kg/day increased the frequency of rearing and time in the central area of the males, while BPA at 0.4 mg/kg/day reduced the frequency of rearing in the females. Exposure to BPA (0.4 or 40 mg/kg/day) extended the average escape pathlength to the hidden platform in Morris water maze task and shortened the step-down latency 24 h after footshock of the males, but no changes were found in the females for these measures. Meanwhile, BPA induced a reduced numeric synaptic density and a negative effect on the structural parameters of synaptic interface, including an enlarged synaptic cleft and the reduced length of active zone and PSD thickness, in the hippocampus of the male mice. Western blot analyses further indicated that BPA down-regulated expressions of synaptic proteins (synapsin I and PSD-95) and synaptic NMDA receptor subunit NR1 and AMPA receptor subunit GluR1 in the hippocampus of the males. These results suggest that long-term exposure to low levels of BPA in adulthood sex-specifically impaired spatial and passive avoidance memory of mice. These effects may be associated with the higher susceptibility of the hippocampal synaptic plasticity processes, such as remodeling of spinal synapses and the expressions of synaptic proteins (e.g. synapsin I and PSD-95) and NMDA and AMPA receptors, to BPA in the adult male mice. PMID:23523742

  14. Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice

    PubMed Central

    Soumiya, Hitomi; Godai, Ayumi; Araiso, Hiromi; Mori, Shingo; Furukawa, Shoei; Fukumitsu, Hidefumi

    2016-01-01

    Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD). While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neuronal circuits related to the emotional regulation of social interactions. In neonatal rodents, whiskers are the most important tactile apparatus, so bilateral whisker trimming is used as a model of early tactile deprivation. To address the influence of tactile deprivation on adult behavior, we performed bilateral whisker trimming in mice for 10 days after birth (BWT10 mice) and examined social behaviors, tactile discrimination, and c-Fos expression, a marker of neural activation, in adults after full whisker regrowth. Adult BWT10 mice exhibited significantly shorter crossable distances in the gap-crossing test than age-matched controls, indicating persistent deficits in whisker-dependent tactile perception. In contrast to controls, BWT10 mice exhibited no preference for the social compartment containing a conspecific in the three-chamber test. Furthermore, the development of amygdala circuitry was severely affected in BWT10 mice. Based on the c-Fos expression pattern, hyperactivity was found in BWT10 amygdala circuits for processing fear/anxiety-related responses to height stress but not in circuits for processing reward stimuli during whisker-dependent cued learning. These results demonstrate that neonatal whisker trimming and concomitant whisker-dependent tactile discrimination impairment severely disturbs the development of amygdala-dependent emotional regulation. PMID:27362655

  15. Adolescent social isolation enhances the plasmalemmal density of NMDA NR1 subunits in dendritic spines of principal neurons in the basolateral amygdala of adult mice.

    PubMed

    Gan, J O; Bowline, E; Lourenco, F S; Pickel, V M

    2014-01-31

    Social isolation during the vulnerable period of adolescence produces emotional dysregulation manifested by abnormalities in adult behaviors that require emotional processing. The affected brain regions may include the basolateral amygdala (BLA), where plasticity of glutamatergic synapses in principal neurons plays a role in conditioned emotional responses. This plasticity is dependent on NMDA receptor trafficking denoted by intracellular mobilization of the obligatory NR1 NMDA subunit. We tested the hypothesis that the psychosocial stress of adolescent social isolation (ASI) produces a lasting change in NMDA receptor distribution in principal neurons in the BLA of adults that express maladaptive emotional responses to sensory cues. For this, we used behavioral testing and dual electron microscopic immunolabeling of NR1 and calcium calmodulin-dependent protein kinase II (CaMKII), a protein predominantly expressed in principal neurons of the BLA in adult C57Bl/6 mice housed in isolation or in social groups from post-weaning day 22 until adulthood (∼3 months of age). The isolates showed persistent deficits in sensorimotor gating evidenced by altered prepulse inhibition (PPI) of acoustic startle and hyperlocomotor activity in a novel environment. Immunogold-silver labeling for NR1 alone or together with CaMKII was seen in many somatodendritic profiles in the BLA of all mice irrespective of rearing conditions. However, isolates compared with group-reared mice had a significantly lower cytoplasmic (4.72 ± 0.517 vs 6.31 ± 0.517) and higher plasmalemmal (0.397 ± 0.0779 vs 0.216 ± 0.026) density of NR1 immunogold particles in CaMKII-containing dendritic spines. There was no rearing-dependent difference in the size or number of these spines or those of other dendritic profiles within the neuropil, which also failed to show an impact of ASI on NR1 immunogold labeling. These results provide the first evidence that ASI enhances the surface trafficking of NMDA receptors

  16. Adolescent social isolation enhances the plasmalemmal density of NMDA NR1 subunits in dendritic spines of principal neurons in the basolateral amygdala of adult mice

    PubMed Central

    Gan, Jerylin O.; Bowline, Everett; Lourenco, Frederico S.; Pickel, Virginia M.

    2014-01-01

    Social isolation during the vulnerable period of adolescence produces emotional dysregulation manifested by abnormalities in adult behaviors that require emotional processing. The affected brain regions may include the basolateral amygdala (BLA), where plasticity of glutamatergic synapses in principal neurons plays a role in conditioned emotional responses. This plasticity is dependent on NMDA receptor trafficking denoted by intracellular mobilization of the obligatory NR1 NMDA subunit. We tested the hypothesis that the psychosocial stress of adolescent social isolation (ASI) produces a lasting change in NMDA receptor distribution in principal neurons in the BLA of adults that express maladaptive emotional responses to sensory cues. For this, we used behavioral testing and dual electron microscopic immunolabeling of NR1 and CaMKII, a protein predominantly expressed in principal neurons of the BLA in adult C57Bl/6 mice housed in isolation or in social groups from post-weaning day 22 until adulthood (~3 months of age). The isolates showed persistent deficits in sensorimotor gating evidenced by altered prepulse inhibition (PPI) of acoustic startle and hyperlocomotor activity in a novel environment. Immunogold-silver labeling for NR1 alone or together with CaMKII was seen in many somatodendritic profiles in the BLA of all mice irrespective of rearing conditions. However, isolates compared with group-reared mice had a significantly lower cytoplasmic (4.72±0.517 vs 6.31 ± 0.517) and higher plasmalemmal (0.397±0.0779 vs 0.216±0.026) density of NR1 immunogold particles in CaMKII-containing dendritic spines. There were no rearing-dependent difference is the size or number of these spines or those of other dendritic profiles within the neuropil, which also failed to show an impact of ASI on NR1 immunogold labeling. These results provide the first evidence that ASI enhances the surface trafficking of NMDA receptors in dendritic spines of principal neurons in the BLA of

  17. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    PubMed

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  18. Embryonic and adult stem cells promote raphespinal axon outgrowth and improve functional outcome following spinal hemisection in mice.

    PubMed

    Boido, Marina; Rupa, Rosita; Garbossa, Diego; Fontanella, Marco; Ducati, Alessandro; Vercelli, Alessandro

    2009-09-01

    Spinal cord injury (SCI) often results in permanent neurological deficits below the injury site. Serotonergic raphespinal projections promote functional recovery after SCI, but spontaneous regeneration of most severed axons is limited by the glial cyst and scar that form at the lesion site. Stem cell (SC) transplantation offers a promising approach for inducing regeneration through the damaged area. Here we compare the effects of transplantation of embryonic neural precursors (NPs) or adult mesenchymal SCs, both of which are potential candidates for SC therapy. The spinal cord was hemisected at the L2 neuromer in adult mice. Two weeks post-injury, we transplanted neural precursors or mesenchymal SCs into the cord, caudal to the hemisection. Injured mice without a graft served as controls. Mice were tested for functional recovery on a battery of motor tasks, then killed and analysed for survival of grafted cells, for effects of engraftment on the local cellular environment and for the sprouting of serotonergic axons. Both types of SCs survived and were integrated into the host tissue, but only the NPs expressed neuronal markers. All transplanted animals displayed an increased number of serotonin-positive fibres caudal to the hemisection, compared with untreated mice. And both cell types led to improved motor performance. These results point to a therapeutic potential for such cell grafting.

  19. Environmental enrichment and social interaction improve cognitive function and decrease reactive oxidative species in normal adult mice.

    PubMed

    Doulames, Vanessa; Lee, Sangmook; Shea, Thomas B

    2014-05-01

    Environmental stimulation and increased social interactions stimulate cognitive performance, while decrease in these parameters can exacerbate cognitive decline as a function of illness, injury, or age. We examined the impact of environmental stimulation and social interactions on cognitive performance in healthy adult C57B1/6J mice. Mice were housed for 1 month individually or in groups of three (to prevent or allow social interaction) in either a standard environment (SE) or an enlarged cage containing nesting material and items classically utilized to stimulate exploration and activity ("enriched environment"; EE). Cognitive performance was tested by Y maze navigation and Novel Object Recognition (NOR; which compares the relative amount of time mice spent investigating a novel vs. a familiar object). Mice maintained for 1 month under isolated conditions in the SE statistically declined in performance versus baseline in the Y maze (p < 0.02; ANOVA). Performance under all other conditions did not change from baseline. Maintenance in groups in the SE statistically improved NOR (p < 0.01), whereas maintenance in isolation in the SE did not alter performance from baseline. Maintenance in the EE statistically improved performance in NOR for mice housed in groups and individually (p < 0.01). Maintenance under isolated conditions slightly increased reactive oxygen/nitrogen species (ROS/RNS) in brain. Environmental enrichment did not influence ROS/RNS. These findings indicate that environmental and social enrichment can positively influence cognitive performance in healthy adult mice, and support the notion that proactive approaches may delay age-related cognitive decline.

  20. Characterization of chronic constriction of the saphenous nerve, a model of neuropathic pain in mice showing rapid molecular and electrophysiological changes.

    PubMed

    Walczak, Jean-Sébastien; Pichette, Vincent; Leblond, François; Desbiens, Karine; Beaulieu, Pierre

    2006-05-15

    Neuropathic pain is one of the most inextricable problems encountered in clinics, because few facts are known about its etiology. Nerve injury often leads to allodynia and hyperalgesia, which are symptoms of neuropathic pain. The aim of this study was to understand some molecular and electrophysiological mechanisms of neuropathic pain after chronic constriction of the saphenous nerve (CCS) in mice. After surgery, CCS mice displayed significant allodynia and hyperalgesia, which were sensitive to acute systemic injection of morphine (4 mg/kg), gabapentin (50 mg/kg), amitriptyline (10 mg/kg), and the cannabinoid agonist WIN 55,212-2 (5 mg/kg). These behavioral changes were accompanied after surgery by an increase of c-Fos expression and by an overexpression of mu-opioid and cannabinoid CB1 and CB2 receptors in the spinal cord and the dorsal hind paw skin. In combination with the skin-nerve preparation, this model showed a decrease in functional receptive fields downstream to the injury and the apparition of A-fiber ectopic discharges. In conclusion, CCS injury induced behavioral, molecular, and electrophysiological rearrangements that might help us in better understanding the peripheral mechanisms of neuropathic pain. This model takes advantage of the possible use in the future of genetically modified mice and of an exclusively sensory nerve for a comprehensive study of peripheral mechanisms of neuropathic pain.

  1. Postnatal Proteasome Inhibition Induces Neurodegeneration and Cognitive Deficiencies in Adult Mice: A New Model of Neurodevelopment Syndrome

    PubMed Central

    Romero-Granados, Rocío; Fontán-Lozano, Ángela; Aguilar-Montilla, Francisco Javier; Carrión, Ángel Manuel

    2011-01-01

    Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation. PMID:22174927

  2. Developmental dioxin exposure of either parent is associated with an increased risk of preterm birth in adult mice.

    PubMed

    Ding, Tianbing; McConaha, Melinda; Boyd, Kelli L; Osteen, Kevin G; Bruner-Tran, Kaylon L

    2011-04-01

    We have previously described diminished uterine progesterone response and increased uterine sensitivity to inflammation in adult female mice with a history of developmental exposure to TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin). Since parturition in mammals is an inflammatory process mediated in part by a decline in progesterone action, toxicant-mediated disruption of progesterone receptor (PR) expression at the maternal-fetal interface would likely impact the timing of birth. Therefore, in the current study, we examined pregnancy outcomes in adult female mice with a similar in utero exposure to TCDD. We also examined the impact of in utero TCDD exposure of male mice on pregnancy outcomes in unexposed females since the placenta, a largely paternally derived organ, plays a major role in the timing of normal parturition via inflammatory signaling. Our studies indicate that developmental exposure of either parent to TCDD is associated with preterm birth in a subsequent adult pregnancy due to altered PR expression and placental inflammation.

  3. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice

    PubMed Central

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species. PMID:25915857

  4. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    PubMed

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  5. Brain-Derived Neurotrophic Factor Signaling Does Not Stimulate Subventricular Zone Neurogenesis in Adult Mice and Rats

    PubMed Central

    Galvão, Rui P.; Garcia-Verdugo, José Manuel; Alvarez-Buylla, Arturo

    2009-01-01

    In rodents, the adult subventricular zone (SVZ) generates neuroblasts which migrate to the olfactory bulb (OB) and differentiate into interneurons. Recent work suggests that the neurotrophin Brain-Derived Neurotrophic Factor (BDNF) can enhance adult SVZ neurogenesis, but the mechanism by which it acts is unknown. Here, we analyzed the role of BDNF and its receptor TrkB in adult SVZ neurogenesis. We found that TrkB is the most prominent neurotrophin receptor in the mouse SVZ, but only the truncated, kinase-negative isoform (TrkB-TR) was detected. TrkB-TR is expressed in SVZ astrocytes and ependymal cells, but not in neuroblasts. TrkB mutants have reduced SVZ proliferation and survival and fewer new OB neurons. To test if this effect is cell-autonomous, we grafted SVZ cells from TrkB knockout mice (TrkB-KO) into the SVZ of wild-type mice (WT). Grafted progenitors generated neuroblasts that migrated to the OB in the absence of TrkB. The survival and differentiation of granular interneurons and Calbindin+ periglomerular interneurons seemed unaffected by the loss of TrkB, while dopaminergic periglomerular neurons were reduced. Intra-ventricular infusion of BDNF yielded different results depending on the animal species, having no effect on neuron production from mouse SVZ, while decreasing it in rats. Interestingly, mice and rats also differ in their expression of the neurotrophin receptor, p75. Our results indicate that TrkB is not essential for adult SVZ neurogenesis and do not support the current view that delivering BDNF to the SVZ can enhance adult neurogenesis. PMID:19074010

  6. Effect of Infection Duration on Habitat Selection and Morphology of Adult Echinostoma caproni (Digenea: Echinostomatidae) in ICR Mice.

    PubMed

    Platt, Thoma