Science.gov

Sample records for adult mouse brains

  1. Electrophysiological Properties of Subventricular Zone Cells in Adult Mouse Brain

    PubMed Central

    Lai, Bin; Mao, Xiao Ou; Xie, Lin; Chang, Su-Youne; Xiong, Zhi-Gang; Jin, Kunlin; Greenberg, David A.

    2010-01-01

    The subventricular zone (SVZ) is a principal site of adult neurogenesis and appears to participate in the brain’s response to injury. Thus, measures that enhance SVZ neurogenesis may have a role in treatment of neurological disease. To better characterize SVZ cells and identify potential targets for therapeutic intervention, we studied electrophysiological properties of SVZ cells in adult mouse brain slices using patch-clamp techniques. Electrophysiology was correlated with immunohistochemical phenotype by injecting cells with lucifer yellow and by studying transgenic mice carrying green fluorescent protein under control of the doublecortin (DCX) or glial fibrillary acidic protein (GFAP) promoter. We identified five types of cells in the adult mouse SVZ: type 1 cells, with 4-aminopyridine (4-AP)/tetraethylammonium (TEA)-sensitive and CdCl2-sensitive inward currents; type 2 cells, with Ca2+-sensitive K+ and both 4-AP/TEA-sensitive and -insensitive currents; type 3 cells, with 4-AP/TEA-sensitive and -insensitive and small Na+ currents; type 4 cells, with slowly activating, large linear outward current and sustained outward current without fast-inactivating component; and type 5 cells, with a large outward rectifying current with a fast inactivating component. Type 2 and 3 cells expressed DCX, types 4 and 5 cells expressed GFAP, and type 1 cells expressed neither. We propose that SVZ neurogenesis involves a progression of electrophysiological cell phenotypes from types 4 and 5 cells (astrocytes) to type 1 cells (neuronal progenitors) to types 2 and 3 cells (nascent neurons), and that drugs acting on. ion channels expressed during neurogenesis might promote therapeutic neurogenesis in the injured brain. PMID:20434436

  2. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain

    PubMed Central

    Boulanger, Jenna J.; Messier, Claude

    2017-01-01

    Key Points Oligodendrocyte precursor cells express doublecortin, a microtubule-associated protein.Oligodendrocyte precursor cells express doublecortin, but at a lower level of expression than in neuronal precursor.Doublecortin is not associated with a potential immature neuronal phenotype in Oligodendrocyte precursor cells. Oligodendrocyte precursor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. Considering these roles in the adult brain, OPCs are likely mobile cells that can migrate on some distances before they differentiate into myelinating oligodendrocytes. A number of studies have noted that OPCs express doublecortin (DCX), a microtubule-associated protein expressed in neural precursor cells and in migrating immature neurons. Here we describe the distribution of DCX in OPCs. We found that almost all OPCs express DCX, but the level of expression appears to be much lower than what is found in neural precursor. We found that DCX is downregulated when OPCs start expressing mature oligodendrocyte markers and is absent in myelinating oligodendrocytes. DCX does not appear to signal an immature neuronal phenotype in OPCs in the adult mouse brain. Rather, it could be involved either in cell migration, or as a marker of an immature oligodendroglial cell phenotype.

  3. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    PubMed

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  4. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    PubMed

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  5. Receptor protein tyrosine phosphatase σ binds to neurons in the adult mouse brain

    PubMed Central

    Yi, Jae-Hyuk; Katagiri, Yasuhiro; Yu, Panpan; Lourie, Jacob; Bangayan, Nathanael J.; Symes, Aviva J.; Geller, Herbert M.

    2014-01-01

    The role of type IIA receptor protein tyrosine phosphatases (RPTPs), which includes LAR, RPTPσ and RPTPδ, in the nervous system is becoming increasingly recognized. Evidence supports a significant role for these RPTPs during the development of the nervous system as well as after injury, and mutations in RPTPs are associated with human disease. However, a major open question is the nature of the ligands that interact with type IIA RPTPs in the adult brain. Candidates include several different proteins as well as the glycosaminoglycan chains of proteoglycans. In order to investigate this problem, we used a receptor affinity probe assay with RPTPσ-AP fusion proteins on sections of adult mouse brain and to cultured neurons. Our results demonstrate that the major binding sites for RPTPσ in adult mouse brain are on neurons and are not proteoglycan GAG chains, as RPTPσ binding overlaps with the neuronal marker NeuN and was not significantly altered by treatments which eliminate chondroitin sulfate, heparan sulfate, or both. We also demonstrate no overlap of binding of RPTPσ with perineuronal nets, and a unique modulation of RPTPσ binding to brain by divalent cations. Our data therefore point to neuronal proteins, rather than CSPGs, as being the ligands for RPTPσ in the adult, uninjured brain. PMID:24530640

  6. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  7. Differential regulation of laminin b1 transgene expression in the neonatal and adult mouse brain.

    PubMed

    Sharif, K A; Baker, H; Gudas, L J

    2004-01-01

    Laminins are the major glycoproteins present in basement membrane, a type of extracellular matrix. We showed that the LAMB1 gene, which encodes the laminin beta1 subunit, is transcriptionally activated by retinoic acid in embryonic stem cells. However, little information is available concerning LAMB1 developmental regulation and spatial expression in the adult mouse brain. In this study we used transgenic mice expressing different lengths of LAMB1 promoter driving beta-galactosidase to investigate developmental and adult transcriptional regulation in the regions of the brain in which the laminin beta1 protein is expressed. CNS expression was not observed in transgenic mice carrying a 1.4LAMB1betagal construct. Mice carrying a 2.5LAMB1betagal construct expressed the LAMB1 transgene, as assayed by X-gal staining, only in the molecular layer of the neonatal cerebellum. In contrast, a 3.9LAMB1betagal transgene showed broad regional expression in the adult mouse brain, including the hippocampus, entorhinal cortex, colliculi, striatum, and substantia nigra. Similar expression patterns were observed for the endogenous laminin beta1 protein and for the 3.9LAMB1betagal transgene, analyzed with an antibody against the beta-galactosidase protein. The 3.9LAMB1betagal transgene expression in the hippocampal tri-synaptic circuit suggests a role for the LAMB1 gene in learning and memory.

  8. Localization and regulation of PML bodies in the adult mouse brain.

    PubMed

    Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M

    2016-06-01

    PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.

  9. Expression of cyclin E in postmitotic neurons during development and in the adult mouse brain.

    PubMed

    Ikeda, Yayoi; Matsunaga, Yuko; Takiguchi, Masahito; Ikeda, Masa-Aki

    2011-01-01

    Cyclin E, a member of the G1 cyclins, is essential for the G1/S transition of the cell cycle in cultured cells, but its roles in vivo are not fully defined. The present study characterized the spatiotemporal expression profile of cyclin E in two representative brain regions in the mouse, the cerebral and cerebellar cortices. Western blotting showed that the levels of cyclin E increased towards adulthood. In situ hybridization and immunohistochemistry showed the distributions of cyclin E mRNA and protein were comparable in the cerebral cortex and the cerebellum. Immunohistochemistry for the proliferating cell marker, proliferating cell nuclear antigen (PCNA) revealed that cyclin E was expressed by both proliferating and non-proliferating cells in the cerebral cortex at embryonic day 12.5 (E12.5) and in the cerebellum at postnatal day 1 (P1). Subcellular localization in neurons was examined using immunofluorescence and western blotting. Cyclin E expression was nuclear in proliferating neuronal precursor cells but cytoplasmic in postmitotic neurons during embryonic development. Nuclear cyclin E expression in neurons remained faint in newborns, increased during postnatal development and was markedly decreased in adults. In various adult brain regions, cyclin E staining was more intense in the cytoplasm than in the nucleus in most neurons. These data suggest a role for cyclin E in the development and function of the mammalian central nervous system and that its subcellular localization in neurons is important. Our report presents the first detailed analysis of cyclin E expression in postmitotic neurons during development and in the adult mouse brain.

  10. Differential Distribution of Major Brain Gangliosides in the Adult Mouse Central Nervous System

    PubMed Central

    Vajn, Katarina; Viljetić, Barbara; Degmečić, Ivan Večeslav; Schnaar, Ronald L.; Heffer, Marija

    2013-01-01

    Gangliosides - sialic acid-bearing glycolipids - are major cell surface determinants on neurons and axons. The same four closely related structures, GM1, GD1a, GD1b and GT1b, comprise the majority of total brain gangliosides in mammals and birds. Gangliosides regulate the activities of proteins in the membranes in which they reside, and also act as cell-cell recognition receptors. Understanding the functions of major brain gangliosides requires knowledge of their tissue distribution, which has been accomplished in the past using biochemical and immunohistochemical methods. Armed with new knowledge about the stability and accessibility of gangliosides in tissues and new IgG-class specific monoclonal antibodies, we investigated the detailed tissue distribution of gangliosides in the adult mouse brain. Gangliosides GD1b and GT1b are widely expressed in gray and white matter. In contrast, GM1 is predominately found in white matter and GD1a is specifically expressed in certain brain nuclei/tracts. These findings are considered in relationship to the hypothesis that gangliosides GD1a and GT1b act as receptors for an important axon-myelin recognition protein, myelin-associated glycoprotein (MAG). Mediating axon-myelin interactions is but one potential function of the major brain gangliosides, and more detailed knowledge of their distribution may help direct future functional studies. PMID:24098718

  11. Distinct expression of Cbln family mRNAs in developing and adult mouse brains.

    PubMed

    Miura, Eriko; Iijima, Takatoshi; Yuzaki, Michisuke; Watanabe, Masahiko

    2006-08-01

    Cbln1 belongs to the C1q and tumour necrosis factor superfamily, and plays crucial roles as a cerebellar granule cell-derived transneuronal regulator for synapse integrity and plasticity in Purkinje cells. Although Cbln2-Cbln4 are also expressed in the brain and could form heteromeric complexes with Cbln1, their precise expressions remain unclear. Here, we investigated gene expression of the Cbln family in developing and adult C57BL mouse brains by reverse transcriptase-polymerase chain reaction (RT-PCR), Northern blot, and high-resolution in situ hybridization (ISH) analyses. In the adult brain, spatial patterns of mRNA expression were highly differential depending on Cbln subtypes. Notably, particularly high levels of Cbln mRNAs were expressed in some nuclei and neurons, whereas their postsynaptic targets often lacked or were low for any Cbln mRNAs, as seen for cerebellar granule cells/Purkinje cells, entorhinal cortex/hippocampus, intralaminar group of thalamic nuclei/caudate-putamen, and dorsal nucleus of the lateral lemniscus/central nucleus of the inferior colliculus. In the developing brain, Cbln1, 2, and 4 mRNAs appeared as early as embryonic day 10-13, and exhibited transient up-regulation during the late embryonic and neonatal periods. For example, Cbln2 mRNA was expressed in the cortical plate of the developing neocortex, displaying a high rostromedial to low caudolateral gradient. In contrast, Cbln3 mRNA was selective to cerebellar granule cells throughout development, and its onset was as late as postnatal day 7-10. These results will provide a molecular-anatomical basis for future studies that characterize roles played by the Cbln family.

  12. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  13. Activity-dependent Notch signalling in the hypothalamic-neurohypophysial system of adult mouse brains.

    PubMed

    Mannari, T; Miyata, S

    2014-08-01

    Notch signalling has a key role in cell fate specification in developing brains; however, recent studies have shown that Notch signalling also participates in the regulation of synaptic plasticity in adult brains. In the present study, we examined the expression of Notch3 and Delta-like ligand 4 (DLL4) in the hypothalamic-neurohypophysial system (HNS) of the adult mouse. The expression of DLL4 was higher in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) compared to adjacent hypothalamic regions. Double-labelling immunohistochemistry using vesicular GABA transporter and glutamate transporter revealed that DLL4 was localised at a subpopulation of excitatory and inhibitory axonal boutons against somatodendrites of arginine vasopressin (AVP)- and oxytocin (OXT)-containing magnocellular neurones. In the neurohypophysis (NH), the expression of DLL4 was seen at OXT- but not AVP-containing axonal terminals. The expression of Notch3 was seen at somatodendrites of AVP- and OXT-containing magnocellular neurones in the SON and PVN and at pituicytes in the NH. Chronic physiological stimulation by salt loading, which remarkably enhances the release of AVP and OXT, decreased the number of DLL4-immunoreactive axonal boutons in the SON and PVN. Moreover, chronic and acute osmotic stimulation promoted proteolytic cleavage of Notch3 to yield the intracellular fragments of Notch3 in the HNS. Thus, the present study demonstrates activity-dependent reduction of DLL4 expression and proteolytic cleavage of Notch3 in the HNS, suggesting that Notch signalling possibly participates in synaptic interaction in the hypothalamic nuclei and neuroglial interaction in the NH.

  14. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    SciTech Connect

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  15. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain

    PubMed Central

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain. PMID:23440889

  16. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  17. Neural stem cell transplantation in mouse brain.

    PubMed

    Lee, Jean-Pyo; McKercher, Scott; Muller, Franz-Josef; Snyder, Evan Y

    2008-01-01

    Neural stem cells (NSCs) are the most primordial, least committed cells of the nervous system, and transplantation of these multipotent cells holds the promise of regenerative therapy for many central nervous system (CNS) diseases. This unit describes methods for NSC transplantation into neonatal mouse pups, embryonic mouse brain, and adult mouse brain. A description of options for detection of labeled donor cells in engrafted mouse brain is provided along with an example protocol for detecting lacZ-expressing cells in situ. Also included is a protocol for preparing NSCs for transplantation.

  18. Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain

    PubMed Central

    Ye, Xin; Smallwood, Philip; Nathans, Jeremy

    2011-01-01

    The Norrie disease gene (Ndp) codes for a secreted protein, Norrin, that activates canonical Wnt signaling by binding to its receptor, Frizzled-4. This signaling system is required for normal vascular development in the retina and for vascular survival in the cochlea. In mammals, the pattern of Ndp expression beyond the retina is poorly defined due to the low abundance of Norrin mRNA and protein. Here we characterize Ndp expression during mouse development by studying a knock-in mouse that carries the coding sequence of human placental alkaline phosphatase (AP) inserted at the Ndp locus (NdpAP). In the CNS, NdpAP expression is apparent by E10.5 and is dynamic and complex. The anatomically delimited regions of NdpAP expression observed prenatally in the CNS are replaced postnatally by widespread expression in astrocytes in the forebrain and midbrain, Bergman glia in the cerebellum, and Müller glia in the retina. In the developing and adult cochlea, NdpAP expression is closely associated with two densely vascularized regions, the stria vascularis and a capillary plexus between the organ of Corti and the spiral ganglion. These observations suggest the possibility that Norrin may have developmental and/or homeostatic functions beyond the retina and cochlea. PMID:21055480

  19. A new method for visualization of endothelial cells and extravascular leakage in adult mouse brain using fluorescein isothiocyanate.

    PubMed

    Miyata, Seiji; Morita, Shoko

    2011-10-30

    We described a new method for the visualization of vasculature and endothelial cells and the assessment of extravascular leakage in adult mouse brain by using fluorescein isothiocyanate (FITC), or a reactive fluorescent dye. FITC is the fluorescein derivative that reacts covalently with amine groups at alkaline pH. In this method, strong fluorescence of FITC was seen at vasculature throughout the brain and spinal cord, when mice received intracardiac perfusion with FITC-containing saline at pH 7.0 followed by paraformaldehyde (PFA) fixative at pH 8.0. The fluorescence of FITC was faint when animals were fixed with PFA fixative at pH 7.0 after the perfusion of FITC-containing saline at pH 7.0. The fluorescence of FITC was not detected when mice was fixed with PFA fixative before the perfusion of FITC-containing saline. Double labeling immunohistochemistry using an endothelial cell marker CD31 or a pericyte marker desmin revealed that FITC was accumulated at nuclei of endothelial cells but not at those of pericytes. Extravascular leakage of FITC was prominent in the area postrema or a brain region of the circumventricular organs that lacks the blood-brain barrier. Moreover, strong extravascular leakage of FITC was detected at damaged sites of the cerebral cortex with cryoinjury. Thus, FITC method is useful technique for examining the architecture of brain vasculature and endothelial cells and the assessment of extravascular leakage in adult rodents. Moreover, FITC binds covalently to cellular components, so that makes it possible to perform double labeling immunohistochemistry and long-term storage of the preparation.

  20. Distribution of doublecortin expressing cells near the lateral ventricles in the adult mouse brain.

    PubMed

    Yang, Helen K C; Sundholm-Peters, Nikki L; Goings, Gwendolyn E; Walker, Avery S; Hyland, Kenneth; Szele, Francis G

    2004-05-01

    Doublecortin (Dcx) is a microtubule-associated protein expressed by migrating neuroblasts in the embryo and in the adult subventricular zone (SVZ). The adult SVZ contains neuroblasts that migrate in the rostral migratory stream (RMS) to the olfactory bulbs. We have examined the distribution and phenotype of Dcx-positive cells in the adult mouse SVZ and surrounding regions. Chains of Dcx-positive cells in the SVZ were distributed in a tight dorsal population contiguous with the RMS, with a separate ventral population comprised of discontinuous chains. Unexpectedly, Dcx-positive cells were also found outside of the SVZ: dorsally in the corpus callosum, and ventrally in the nucleus accumbens, ventromedial striatum, ventrolateral septum, and bed nucleus of the stria terminalis. Dcx-positive cells outside the SVZ had the morphology of migrating cells, occurred as individual cells or in chain-like clusters, and were more numerous anteriorly. Of the Dcx-positive cells found outside of the SVZ, 47% expressed the immature neuronal protein class III beta-tubulin, 8% expressed NeuN, a marker of mature neurons. Dcx-positive cells did not express molecules found in astrocytes, oligodendrocytes, or microglia. Structural and immunoelectron microscopy revealed that cells with the ultrastructural features of neuroblasts in the SVZ were Dcx+, and that clusters of neuroblasts emanated ventrally from the SVZ into the parenchyma. Our results suggest that the distribution of cells comprising the walls of the lateral ventricle are more heterogeneous than was thought previously, that SVZ cells may migrate dorsally and ventrally away from the SVZ, and that some emigrated cells express a neuronal phenotype.

  1. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons.

    PubMed

    Lizen, Benoit; Hutlet, Bertrand; Bissen, Diane; Sauvegarde, Deborah; Hermant, Maryse; Ahn, Marie-Thérèse; Gofflot, Françoise

    2017-04-01

    Hoxa5 is a member of the Hox gene family, which plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. Hoxa5 expression in the adult mouse brain has been reported, suggesting that this gene may be functionally required in the brain after birth. To provide further insight into the Hoxa5 expression pattern and potential functions in the brain, we have characterized its neuroanatomical profile from embryonic stages to adulthood. While most Hox mapping studies have been based solely on transcript analysis, we extended our analysis to HOXA5 protein localization in adulthood using specific antibodies. Our results show that Hoxa5 expression appears in the most caudal part of the hindbrain at fetal stages, where it is maintained until adulthood. In the medulla oblongata and pons, we detected Hoxa5 expression in many precerebellar neurons and in several nuclei implicated in the control of autonomic functions. In these territories, the HOXA5 protein is present solely in neurons, specifically in γ-aminobutyric acid (GABA)ergic, glutamatergic, and catecholaminergic neurons. Finally, we also detected Hoxa5 transcripts, but not the HOXA5 protein, in the thalamus and the cortex, from postnatal stages to adult stages, and in the cerebellum at adulthood. We provide evidence that some larger variants of Hoxa5 transcripts are present in these territories. Our mapping analysis allowed us to build hypotheses regarding HOXA5 functions in the nervous system after birth, such as a potential role in the establishment and refinement/plasticity of precerebellar circuits during postnatal and adult life. J. Comp. Neurol. 525:1155-1175, 2017. © 2016 Wiley Periodicals, Inc.

  2. Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

    PubMed

    Paradells, Sara; Rocamonde, Brenda; Llinares, Cristina; Herranz-Pérez, Vicente; Jimenez, Misericordia; Garcia-Verdugo, Jose Manuel; Zipancic, Ivan; Soria, Jose Miguel; Garcia-Esparza, Ma Angeles

    2015-07-01

    Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5-bromo-2-deoxyuridine-positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose-dependent manner.

  3. Cyclohexane produces behavioral deficits associated with astrogliosis and microglial reactivity in the adult hippocampus mouse brain.

    PubMed

    Campos-Ordonez, Tania; Zarate-Lopez, David; Galvez-Contreras, Alma Y; Moy-Lopez, Norma; Guzman-Muniz, Jorge; Gonzalez-Perez, Oscar

    2015-05-01

    Cyclohexane is a volatile substance that has been utilized as a safe substitute of several organic solvents in diverse industrial processes, such as adhesives, paints, paint thinners, fingernail polish, lacquers, and rubber industry. A number of these commercial products are ordinarily used as inhaled drugs. However, it is not well known whether cyclohexane has noxious effects in the central nervous system. The aim of this study was to analyze the effects of cyclohexane inhalation on motor behavior, spatial memory, and reactive gliosis in the hippocampus of adult mice. We used a model that mimics recreational drug use in male Balb/C mice (P60), divided into two groups: controls and the cyclohexane group (exposed to 9,000 ppm of cyclohexane for 30 days). Both groups were then evaluated with a functional observational battery (FOB) and the Morris water maze (MWM). Furthermore, the relative expression of AP endonuclease 1 (APE1), and the number of astrocytes (GFAP+ cells) and microglia (Iba1+ cells) were quantified in the hippocampal CA1 and CA3 areas. Our findings indicated that cyclohexane produced severe functional deficits during a recreational exposure as assessed by the FOB. The MWM did not show statistically significant changes in the acquisition and retention of spatial memory. Remarkably, a significant increase in the number of astrocytes and microglia cells, as well as in the cytoplasmic processes of these cells were observed in the hippocampal CA1 and CA3 areas of cyclohexane-exposed mice. This cellular response was associated with an increase in the expression of APE1 in the same brain regions. In summary, cyclohexane exposure produces functional deficits that are associated with an important increase in the APE1 expression as well as the number of astrocytes and microglia cells and their cytoplasmic complexity in the CA1 and CA3 regions of the adult hippocampus.

  4. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  5. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain.

    PubMed

    Hemmer, Kathrin; Zhang, Mingyue; van Wüllen, Thea; Sakalem, Marna; Tapia, Natalia; Baumuratov, Aidos; Kaltschmidt, Christian; Kaltschmidt, Barbara; Schöler, Hans R; Zhang, Weiqi; Schwamborn, Jens C

    2014-09-09

    Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]). iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC) technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications.

  6. Expression of alpha subunit of alpha glucosidase II in adult mouse brain regions and selective organs

    PubMed Central

    Anji, Antje; Miller, Hayley; Raman, Chandrasekar; Phillips, Mathew; Ciment, Gary; Kumari, Meena

    2014-01-01

    Alpha glucosidase II (GII), a resident of endoplasmic reticulum (ER) and an important enzyme in folding of nascent glycoproteins, is heterodimeric consisting of alpha (GIIα) and beta (GIIβ) subunits. The catalytic GIIα subunit with the help of mannose 6-phosphate receptor homology (MRH) domain of GIIβ sequentially hydrolyzes two α-1-3-linked glucose residues in the 2nd step of N-linked oligosaccharide-mediated protein folding. The soluble GIIα subunit is retained in the ER through its interaction with the HDEL-containing GIIβ subunit. N-glycosylation and correct protein folding is crucial for protein stability, trafficking, and cell surface expression of several proteins in the brain. Alterations in N-glycosylation lead to abnormalities in neuronal migration and mental retardation, various neurodegenerative diseases, and invasion of malignant gliomas. Inhibitors of GII are used to inhibit cell proliferation and migration in a variety of different pathologies such as viral infection, cancer and diabetes. In spite of the widespread usage of GIIα inhibitory drugs and the role of GIIα in brain function little is known about its expression in brain and other tissues. Here, we report generation of a highly specific chicken antibody to GIIα subunit and its characterization by Western blotting and immunoprecipitation using cerebral cortical extracts. Using this antibody we show that the GIIα protein is highly expressed in testis, kidney, and lung, with the least amount in heart. GIIα polypeptide levels in whole brain were comparable to spleen. However, higher expression of GIIα protein was detected in cerebral cortex reflecting its continuous requirement in correct folding of cell surface proteins. PMID:25131991

  7. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain.

    PubMed

    Morita, Shoko; Furube, Eriko; Mannari, Tetsuya; Okuda, Hiroaki; Tatsumi, Kouko; Wanaka, Akio; Miyata, Seiji

    2016-02-01

    Fenestrated capillaries of the sensory circumventricular organs (CVOs), including the organum vasculosum of the lamina terminalis, the subfornical organ and the area postrema, lack completeness of the blood-brain barrier (BBB) to sense a variety of blood-derived molecules and to convey the information into other brain regions. We examine the vascular permeability of blood-derived molecules and the expression of tight-junction proteins in sensory CVOs. The present tracer assays revealed that blood-derived dextran 10 k (Dex10k) having a molecular weight (MW) of 10,000 remained in the perivascular space between the inner and outer basement membranes, but fluorescein isothiocyanate (FITC; MW: 389) and Dex3k (MW: 3000) diffused into the parenchyma. The vascular permeability of FITC was higher at central subdivisions than at distal subdivisions. Neither FITC nor Dex3k diffused beyond the dense network of glial fibrillar acidic protein (GFAP)-positive astrocytes/tanycytes. The expression of tight-junction proteins such as occludin, claudin-5 and zonula occludens-1 (ZO-1) was undetectable at the central subdivisions of the sensory CVOs but some was expressed at the distal subdivisions. Electron microscopic observation showed that capillaries were surrounded with numerous layers of astrocyte processes and dendrites. The expression of occludin and ZO-1 was also observed as puncta on GFAP-positive astrocytes/tanycytes of the sensory CVOs. Our study thus demonstrates the heterogeneity of vascular permeability and expression of tight-junction proteins and indicates that the outer basement membrane and dense astrocyte/tanycyte connection are possible alternative mechanisms for a diffusion barrier of blood-derived molecules, instead of the BBB.

  8. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

    PubMed

    Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko

    2015-02-09

    The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue.

  9. Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain.

    PubMed

    Golmohammadi, Mohammad G; Blackmore, Daniel G; Large, Beatrice; Azari, Hassan; Esfandiary, Ebrahim; Paxinos, George; Franklin, Keith B J; Reynolds, Brent A; Rietze, Rodney L

    2008-04-01

    The neurosphere assay can detect and expand neural stem cells (NSCs) and progenitor cells, but it cannot discriminate between these two populations. Given two assays have purported to overcome this shortfall, we performed a comparative analysis of the distribution and frequency of NSCs and progenitor cells detected in 400 mum coronal segments along the ventricular neuraxis of the adult mouse brain using the neurosphere assay, the neural colony forming cell assay (N-CFCA), and label-retaining cell (LRC) approach. We observed a large variation in the number of progenitor/stem cells detected in serial sections along the neuraxis, with the number of neurosphere-forming cells detected in individual 400 mum sections varying from a minimum of eight to a maximum of 891 depending upon the rostral-caudal coordinate assayed. Moreover, the greatest variability occurred in the rostral portion of the lateral ventricles, thereby explaining the large variation in neurosphere frequency previously reported. Whereas the overall number of neurospheres (3730 +/- 276) or colonies (4275 +/- 124) we detected along the neuraxis did not differ significantly, LRC numbers were significantly reduced (1186 +/- 188, 7 month chase) in comparison to both total colonies and neurospheres. Moreover, approximately two orders of magnitude fewer NSC-derived colonies (50 +/- 10) were detected using the N-CFCA as compared to LRCs. Given only 5% of the LRCs are cycling (BrdU+/Ki-67+) or competent to divide (BrdU+/Mcm-2+), and proliferate upon transfer to culture, it is unclear whether this technique selectively detects endogenous NSCs. Overall, caution should be taken with the interpretation and employment of all these techniques.

  10. Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain.

    PubMed

    Morita, Shoko; Furube, Eriko; Mannari, Tetsuya; Okuda, Hiroaki; Tatsumi, Kouko; Wanaka, Akio; Miyata, Seiji

    2015-03-01

    The sensory circumventricular organs (CVOs), which comprise the organum vasculosum of the lamina terminalis (OVLT), the subfornical organ (SFO) and the area postrema (AP), lack a typical blood-brain barrier (BBB) and monitor directly blood-derived information to regulate body fluid homeostasis, inflammation, feeding and vomiting. Until now, almost nothing has been documented about vascular features of the sensory CVOs except fenestration of vascular endothelial cells. We therefore examine whether continuous angiogenesis occurs in the sensory CVOs of adult mouse. The angiogenesis-inducing factor vascular endothelial growth factor-A (VEGF-A) and the VEGF-A-regulating transcription factor hypoxia-inducible factor-1α were highly expressed in neurons of the OVLT and SFO and in both neurons and astrocytes of the AP. Expression of the pericyte-regulating factor platelet-derived growth factor B was high in astrocytes of the sensory CVOs. Immunohistochemistry of bromodeoxyuridine and Ki-67, a nuclear protein that is associated with cellular proliferation, revealed active proliferation of endothelial cells. Moreover, immunohistochemistry of caspase-3 and the basement membrane marker laminin showed the presence of apoptosis and sprouting of endothelial cells, respectively. Treatment with the VEGF receptor-associated tyrosine kinase inhibitor AZD2171 significantly reduced proliferation and filopodia sprouting of endothelial cells, as well as the area and diameter of microvessels. The mitotic inhibitor cytosine-b-D-arabinofuranoside reduced proliferation of endothelial cells and the vascular permeability of blood-derived low-molecular-weight molecules without changing vascular area and microvessel diameter. Thus, our data indicate that continuous angiogenesis is dependent on VEGF signaling and responsible for the dynamic plasticity of vascular structure and permeability.

  11. Early Social Enrichment Rescues Adult Behavioral and Brain Abnormalities in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-01-01

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases. PMID:25348604

  12. The Mouse Murr1 Gene Is Imprinted in the Adult Brain, Presumably Due to Transcriptional Interference by the Antisense-Oriented U2af1-rs1 Gene

    PubMed Central

    Wang, Youdong; Joh, Keiichiro; Masuko, Sadahiko; Yatsuki, Hitomi; Soejima, Hidenobu; Nabetani, Akira; Beechey, Colin V.; Okinami, Satoshi; Mukai, Tsunehiro

    2004-01-01

    The mouse Murr1 gene contains an imprinted gene, U2af1-rs1, in its first intron. U2af1-rs1 shows paternal allele-specific expression and is transcribed in the direction opposite to that of the Murr1 gene. In contrast to a previous report of biallelic expression of Murr1 in neonatal mice, we have found that the maternal allele is expressed predominantly in the adult brain and also preferentially in other adult tissues. This maternal-predominant expression is not observed in embryonic and neonatal brains. In situ hybridization experiments that used the adult brain indicated that Murr1 gene was maternally expressed in neuronal cells in all regions of the brain. We analyzed the developmental change in the expression levels of both Murr1 and U2af1-rs1 in the brain and liver, and we propose that the maternal-predominant expression of Murr1 results from transcriptional interference of the gene by U2af1-rs1 through the Murr1 promoter region. PMID:14673161

  13. Long term running biphasically improves methylglyoxal-related metabolism, redox homeostasis and neurotrophic support within adult mouse brain cortex.

    PubMed

    Falone, Stefano; D'Alessandro, Antonella; Mirabilio, Alessandro; Petruccelli, Giacomo; Cacchio, Marisa; Di Ilio, Carmine; Di Loreto, Silvia; Amicarelli, Fernanda

    2012-01-01

    Oxidative stress and neurotrophic support decline seem to be crucially involved in brain aging. Emerging evidences indicate the pro-oxidant methylglyoxal (MG) as a key player in the age-related dicarbonyl stress and molecular damage within the central nervous system. Although exercise promotes the overproduction of reactive oxygen species, habitual exercise may retard cellular aging and reduce the age-dependent cognitive decline through hormetic adaptations, yet molecular mechanisms underlying beneficial effects of exercise are still largely unclear. In particular, whereas adaptive responses induced by exercise initiated in youth have been broadly investigated, the effects of chronic and moderate exercise begun in adult age on biochemical hallmarks of very early senescence in mammal brains have not been extensively studied. This research investigated whether a long-term, forced and moderate running initiated in adult age may affect the interplay between the redox-related profile and the oxidative-/MG-dependent molecular damage patterns in CD1 female mice cortices; as well, we investigated possible exercise-induced effects on the activity of the brain derived neurotrophic factor (BDNF)-dependent pathway. Our findings suggested that after a transient imbalance in almost all parameters investigated, the lately-initiated exercise regimen strongly reduced molecular damage profiles in brains of adult mice, by enhancing activities of the main ROS- and MG-targeting scavenging systems, as well as by preserving the BDNF-dependent signaling through the transition from adult to middle age.

  14. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur

    PubMed Central

    Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne

    2015-01-01

    Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months’ supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze.jlr Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. PMID:26063461

  15. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease.

    PubMed

    Kamphuis, Willem; Mamber, Carlyn; Moeton, Martina; Kooijman, Lieneke; Sluijs, Jacqueline A; Jansen, Anne H P; Verveer, Monique; de Groot, Lody R; Smith, Vanessa D; Rangarajan, Sindhoo; Rodríguez, José J; Orre, Marie; Hol, Elly M

    2012-01-01

    Glial fibrillary acidic protein (GFAP) is the main astrocytic intermediate filament (IF). GFAP splice isoforms show differential expression patterns in the human brain. GFAPδ is preferentially expressed by neurogenic astrocytes in the subventricular zone (SVZ), whereas GFAP(+1) is found in a subset of astrocytes throughout the brain. In addition, the expression of these isoforms in human brain material of epilepsy, Alzheimer and glioma patients has been reported. Here, for the first time, we present a comprehensive study of GFAP isoform expression in both wild-type and Alzheimer Disease (AD) mouse models. In cortex, cerebellum, and striatum of wild-type mice, transcripts for Gfap-α, Gfap-β, Gfap-γ, Gfap-δ, Gfap-κ, and a newly identified isoform Gfap-ζ, were detected. Their relative expression levels were similar in all regions studied. GFAPα showed a widespread expression whilst GFAPδ distribution was prominent in the SVZ, rostral migratory stream (RMS), neurogenic astrocytes of the subgranular zone (SGZ), and subpial astrocytes. In contrast to the human SVZ, we could not establish an unambiguous GFAPδ localization in proliferating cells of the mouse SVZ. In APPswePS1dE9 and 3xTgAD mice, plaque-associated reactive astrocytes had increased transcript levels of all detectable GFAP isoforms and low levels of a new GFAP isoform, Gfap-ΔEx7. Reactive astrocytes in AD mice showed enhanced GFAPα and GFAPδ immunolabeling, less frequently increased vimentin and nestin, but no GFAPκ or GFAP(+1) staining. In conclusion, GFAPδ protein is present in SVZ, RMS, and neurogenic astrocytes of the SGZ, but also outside neurogenic niches. Furthermore, differential GFAP isoform expression is not linked with aging or reactive gliosis. This evidence points to the conclusion that differential regulation of GFAP isoforms is not involved in the reorganization of the IF network in reactive gliosis or in neurogenesis in the mouse brain.

  16. Intrahippocampal injection of Aβ1-42 inhibits neurogenesis and down-regulates IFN-γ and NF-κB expression in hippocampus of adult mouse brain.

    PubMed

    Zheng, Meige; Liu, Jing; Ruan, Zhigang; Tian, Sumin; Ma, Yuxin; Zhu, Jiayong; Li, Guoying

    2013-03-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by accumulation of amyloid plaques and neurofibrillary tangles. Amyloid-β (Aβ) is widely recognized as a key factor in the pathogenesis of AD. Aβ1-42 a major component of amyloid plaques, has shown synaptotoxicity associated with impaired long-term potentiation and cognitive deficits. Alteration of neurogenesis in AD patients has been reported, while little is known about how Aβ1-42 affects hippocampal neurogenesis in the adult brain. In this study, we injected human Aβ1-42 peptide into hippocampal CA1 area of adult mouse brain bilaterally and evaluated histological change and neurogenesis in the hippocampus. Hematoxylin and eosin (HE) stain showed that Aβ1-42-injection resulted in an extensive neurodegeneration in the Aβ-accumulated area and CA3 in hippocampus. Immunostaining showed that intrahippocampal Aβ1-42-injection dramatically decreased the number of bromodeoxyuridine (BrdU)-positive cells in the dentate gyrus (DG) compared to the vehicle injection. Moreover, a significant decrease in the number of BrdU/double-cortin double-positive cells in Aβ1-42-injected hippocampus was observed, suggesting that Aβ1-42-injection inhibited progenitor cell proliferation and neurogenesis in subgranular zone of the DG in the adult brain. We also found that the Aβ1-42-mediated decline of neurogenesis was associated with decreased protein levels of cytokines interferon-γ (IFN-γ) and transcription factor nuclear factor-kappa B (NF-κB) in the hippocampus. These results suggest that Aβ1-42 inhibits hippocampal neurogenesis in the adult brain possibly through down-regulation of INF-γ and NF-κB signaling pathway. This study provides a new insight into Aβ1-42-mediated decrease in hippocampal neurogenesis in the adult central nervous system.

  17. Mouse embryonic stem cell-derived cells reveal niches that support neuronal differentiation in the adult rat brain.

    PubMed

    Maya-Espinosa, Guadalupe; Collazo-Navarrete, Omar; Millán-Aldaco, Diana; Palomero-Rivero, Marcela; Guerrero-Flores, Gilda; Drucker-Colín, René; Covarrubias, Luis; Guerra-Crespo, Magdalena

    2015-02-01

    A neurogenic niche can be identified by the proliferation and differentiation of its naturally residing neural stem cells. However, it remains unclear whether "silent" neurogenic niches or regions suitable for neural differentiation, other than the areas of active neurogenesis, exist in the adult brain. Embryoid body (EB) cells derived from embryonic stem cells (ESCs) are endowed with a high potential to respond to specification and neuralization signals of the embryo. Hence, to identify microenvironments in the postnatal and adult rat brain with the capacity to support neuronal differentiation, we transplanted dissociated EB cells to conventional neurogenic and non-neurogenic regions. Our results show a neuronal differentiation pattern of EB cells that was dependent on the host region. Efficient neuronal differentiation of EB cells occurred within an adjacent region to the rostral migratory stream. EB cell differentiation was initially patchy and progressed toward an even distribution along the graft by 15-21 days post-transplantation, giving rise mostly to GABAergic neurons. EB cells in the striatum displayed a lower level of neuronal differentiation and derived into a significant number of astrocytes. Remarkably, when EB cells were transplanted to the striatum of adult rats after a local ischemic stroke, increased number of neuroblasts and neurons were observed. Unexpectedly, we determined that the adult substantia nigra pars compacta, considered a non-neurogenic area, harbors a robust neurogenic environment. Therefore, neurally uncommitted cells derived from ESCs can detect regions that support neuronal differentiation within the adult brain, a fundamental step for the development of stem cell-based replacement therapies.

  18. Treatment of adult MPSI mouse brains with IDUA-expressing mesenchymal stem cells decreases GAG deposition and improves exploratory behavior

    PubMed Central

    2012-01-01

    Background Mucopolysaccharidosis type I (MPSI) is caused by a deficiency in alpha-L iduronidase (IDUA), which leads to lysosomal accumulation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate. While the currently available therapies have good systemic effects, they only minimally affect the neurodegenerative process. Based on the neuroprotective and tissue regenerative properties of mesenchymal stem cells (MSCs), we hypothesized that the administration of MSCs transduced with a murine leukemia virus (MLV) vector expressing IDUA to IDUA KO mouse brains could reduce GAG deposition in the brain and, as a result, improve neurofunctionality, as measured by exploratory activity. Methods MSCs infected with an MLV vector encoding IDUA were injected into the left ventricle of the brain of 12- or 25-month-old IDUA KO mice. The behavior of the treated mice in the elevated plus maze and open field tests was observed for 1 to 2 months. Following these observations, the brains were removed for biochemical and histological analyses. Results After 1 or 2 months of observation, the presence of the transgene in the brain tissue of almost all of the treated mice was confirmed using PCR, and a significant reduction in GAG deposition was observed. This reduction was directly reflected in an improvement in exploratory activity in the open field and the elevated plus maze tests. Despite these behavioral improvements and the reduction in GAG deposition, IDUA activity was undetectable in these samples. Overall, these results indicate that while the initial level of IDUA was not sustainable for a month, it was enough to reduce and maintain low GAG deposition and improve the exploratory activity for months. Conclusions These data show that gene therapy, via the direct injection of IDUA-expressing MSCs into the brain, is an effective way to treat neurodegeneration in MPSI mice. PMID:22520214

  19. Expression of fragile X mental retardation protein in neurons and glia of the developing and adult mouse brain.

    PubMed

    Gholizadeh, Shervin; Halder, Sebok Kumar; Hampson, David R

    2015-01-30

    Fragile X syndrome is the most common inherited form of mental retardation and autism. It is caused by a reduction or elimination of the expression of fragile X mental retardation protein (FMRP). Because fragile X syndrome is a neurodevelopmental disorder, it is important to fully document the cell type expression in the developing CNS to provide a better understanding of the molecular function of FMRP, and the pathogenesis of the syndrome. We investigated FMRP expression in the brain using double-labeling immunocytochemistry and cell type markers for neurons (NeuN), astrocytes (S100β), microglia (Iba-1), and oligodendrocyte precursor cells (NG2). The hippocampus, striatum, cingulate cortex, retrosplenial cortex, corpus callosum and cerebellum were assessed in wild-type C57/BL6 mice at postnatal days 0, 10, 20, and adult. Our results demonstrate that FMRP is ubiquitously expressed in neurons at all times and brain regions studied, except for corpus callosum where FMRP was predominantly present in astrocytes at all ages. FMRP expression in Iba-1 and NG2-positive cells was detected at postnatal day 0 and 10 and gradually decreased to very low or undetectable levels in postnatal day 20 and adult mice. Our results reveal that in addition to continuous and extensive expression in neurons in the immature and mature brain, FMRP is also present in astrocytes, oligodendrocyte precursor cells, and microglia during the early and mid-postnatal developmental stages of brain maturation. Prominent expression of FMRP in glia during these crucial stages of brain development suggests an important contribution to normal brain function, and in its absence, to the fragile X phenotype.

  20. CONVECTION-ENHANCED DELIVERY AND SYSTEMIC MANNITOL INCREASE GENE PRODUCT DISTRIBUTION OF AAV VECTORS 5, 8, AND 9 AND INCREASE GENE PRODUCT IN THE ADULT MOUSE BRAIN

    PubMed Central

    Carty, Nikisha; Lee, Daniel; Dickey, Chad; Ceballos-Diaz, Carolina; Jansen-West, Karen; Golde, Todd E.; Gordon, Marcia N.; Morgan, Dave; Nash, Kevin

    2010-01-01

    The use of recombinant adeno-associated viral (rAAV) vectors as a means of gene delivery to the central nervous system has emerged as a potentially viable method for the treatment of several types of degenerative brain diseases. However, a limitation of typical intracranial injections into the adult brain parenchyma is the relatively restricted distribution of the delivered gene to large brain regions such as the cortex, presumably due to confined dispersion of the injected particles. Optimizing the administration techniques to maximize gene distribution and gene expression is an important step in developing gene therapy studies. Here, we have found additive increases in distribution when 3 methods to increase brain distribution of rAAV were combined. The convection enhanced delivery (CED) method with the step-design cannula was used to deliver rAAV vector serotypes 5, 8 and 9 encoding GFP into the hippocampus of the mouse brain. While the CED method improved distribution of all 3 serotypes, the combination of rAAV9 and CED was particularly effective. Systemic mannitol administration, which reduces intracranial pressure, also further expanded distribution of GFP expression, in particular, increased expression on the contralateral hippocampi. These data suggest that combining advanced injection techniques with newer rAAV serotypes greatly improves viral vector distribution, which could have significant benefits for implementation of gene therapy strategies. PMID:20951738

  1. Alteration of SLP2-like immunolabeling in mitochondria signifies early cellular damage in developing and adult mouse brain.

    PubMed

    Morozov, Yury M; Sun, Yu-Yo; Kuan, Chia-Yi; Rakic, Pasko

    2016-01-01

    Mitochondria play a critical role in various pathways of regulated cell death. Here we propose a novel method for detection of initial derangement of mitochondria in degenerating and dying neuronal cells. The method is based on our recent finding that antibodies directed against the cannabinoid type 1 receptor (CB1) also bind the mitochondrial stomatin-like protein 2 (SLP2) that belongs to an inner mitochondrial membrane protein complex. It is well established that SLP2 regulates mitochondrial biogenesis and respiratory functions. We now show that anti-CB1 antibodies recognize conformational epitopes but not the linear amino acid sequence of SLP2. In addition we found that anti-CB1 serum mostly labels swollen mitochondria with early or advanced stages of pathology in mouse brain while other proteins of the complex may mask epitopes of SLP2 in the normal mitochondria. Although neurons and endothelial cells in healthy brains contain occasional immunopositive mitochondria detectable with anti-CB1 serum, their numbers increase significantly after hypoxic insults in parallel with signs of cellular damage. Moreover, use of electron microscopy suggests relocation of SLP2 from its normal functional position in the inner mitochondrial membrane into the mitochondrial matrix in pathological cells. Thus, SLP2-like immunolabeling serves as an in situ histochemical target detecting early derangement of mitochondria. Anti-CB1 serum is crucial for this purpose because available anti-SLP2 antibodies do not provide selective labeling of mitochondria in the fixed tissue. This new method of detecting mitochondrial dysfunction can benefit the in vitro research of human diseases and developmental disorders by enabling analysis in live animal models.

  2. NTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brain.

    PubMed

    Gampe, Kristine; Stefani, Jennifer; Hammer, Klaus; Brendel, Peter; Pötzsch, Alexandra; Enikolopov, Grigori; Enjyoji, Keiichi; Acker-Palmer, Amparo; Robson, Simon C; Zimmermann, Herbert

    2015-01-01

    Nerve cells are continuously generated from stem cells in the adult mammalian subventricular zone (SVZ) and hippocampal dentate gyrus. We have previously noted that stem/progenitor cells in the SVZ and the subgranular layer (SGL) of the dentate gyrus express high levels of plasma membrane-bound nucleoside triphosphate diphosphohydrolase 2 (NTPDase2), an ectoenzyme that hydrolyzes extracellular nucleoside diphosphates and triphosphates. We inferred that deletion of NTPDase2 would increase local extracellular nucleoside triphosphate concentrations perturbing purinergic signaling and boosting progenitor cell proliferation and neurogenesis. Using newly generated mice globally null for Entpd2, we demonstrate that NTPDase2 is the major ectonucleotidase in these progenitor cell-rich areas. Using BrdU-labeling protocols, we have measured stem cell proliferation and determined long-term survival of cell progeny under basal conditions. Brains of Entpd2 null mice revealed increased progenitor cell proliferation in both the SVZ and the SGL. However, this occurred without noteworthy alterations in long-term progeny survival. The hippocampal stem cell pool and the pool of the intermediate progenitor type-2 cells clearly expanded. However, substantive proportions of these proliferating cells were lost during expansion at around type-3 stage. Cell loss was paralleled by decreases in cAMP response element-binding protein phosphorylation in the doublecortin-positive progenitor cell population and by an increase in labeling for activated caspase-3 levels. We propose that NTPDase2 has functionality in scavenging mitogenic extracellular nucleoside triphosphates in neurogenic niches of the adult brain, thereby acting as a homeostatic regulator of nucleotide-mediated neural progenitor cell proliferation and expansion.

  3. ADAPTATION OF GROUP B COXSACKIE VIRUS TO ADULT MOUSE PANCREAS

    PubMed Central

    Dalldorf, Gilbert; Gifford, Rebecca

    1952-01-01

    An alteration of tissue tropism of a Coxsackie virus has been observed following different methods of propagation of the virus in animals. Tropism for the adult mouse pancreas, as described by Pappenheimer, appeared to be irrevocably lost following prolonged brain-to-brain transfer. It was present in the same strain on reisolation from human feces, was intensified following pancreas transfers, and suppressed by brain transfers. Pancreatotropism may be correlated with the titer of virus in the pancreas. PMID:13000059

  4. Postnatal day 7 ethanol treatment causes persistent reductions in adult mouse brain volume and cortical neurons with sex specific effects on neurogenesis.

    PubMed

    Coleman, Leon G; Oguz, Ipek; Lee, Joohwi; Styner, Martin; Crews, Fulton T

    2012-09-01

    Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure (Ikonomidou et al., 2000). To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5 g/kg, s.c., 2 h apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV + IR) interneurons (18-33%) and reduced Cux1+IR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology.

  5. Genetic Labeling Reveals Novel Cellular Targets of Schizophrenia Susceptibility Gene: Distribution of GABA and Non-GABA ErbB4-Positive Cells in Adult Mouse Brain

    PubMed Central

    Bean, Jonathan C.; Lin, Thiri W.; Sathyamurthy, Anupama; Liu, Fang; Yin, Dong-Min; Xiong, Wen-Cheng

    2014-01-01

    Neuregulin 1 (NRG1) and its receptor ErbB4 are schizophrenia risk genes. NRG1-ErbB4 signaling plays a critical role in neural development and regulates neurotransmission and synaptic plasticity. Nevertheless, its cellular targets remain controversial. ErbB4 was thought to express in excitatory neurons, although recent studies disputed this view. Using mice that express a fluorescent protein under the promoter of the ErbB4 gene, we determined in what cells ErbB4 is expressed and their identity. ErbB4 was widely expressed in the mouse brain, being highest in amygdala and cortex. Almost all ErbB4-positive cells were GABAergic in cortex, hippocampus, basal ganglia, and most of amygdala in neonatal and adult mice, suggesting GABAergic transmission as a major target of NRG1-ErbB4 signaling in these regions. Non-GABAergic, ErbB4-positive cells were present in thalamus, hypothalamus, midbrain, and hindbrain. In particular, ErbB4 is expressed in serotoninergic neurons of raphe nuclei but not in norepinephrinergic neurons of the locus ceruleus. In hypothalamus, ErbB4 is present in neurons that express oxytocin. Finally, ErbB4 is expressed in a group of cells in the subcortical areas that are positive for S100 calcium binding protein β. These results identify novel cellular targets of NRG1-ErbB4 signaling. PMID:25274830

  6. Expression of α-subunit of α-glucosidase II in adult mouse brain regions and selected organs.

    PubMed

    Anji, Antje; Miller, Hayley; Raman, Chandrasekar; Phillips, Mathew; Ciment, Gary; Kumari, Meena

    2015-01-01

    α-Glucosidase II (GII), a resident of endoplasmic reticulum (ER) and an important enzyme in the folding of nascent glycoproteins, is heterodimeric, consisting of α (GIIα) and β (GIIβ) subunits. The catalytic GIIα subunit, with the help of mannose 6-phosphate receptor homology domain of GIIβ, sequentially hydrolyzes two α1-3-linked glucose residues in the second step of N-linked oligosaccharide-mediated protein folding. The soluble GIIα subunit is retained in the ER through its interaction with the HDEL-containing GIIβ subunit. N-glycosylation and correct protein folding are crucial for protein stability and trafficking and cell surface expression of several proteins in the brain. Alterations in N-glycosylation lead to abnormalities in neuronal migration and mental retardation, various neurodegenerative diseases, and invasion of malignant gliomas. Inhibitors of GII are used to inhibit cell proliferation and migration in a variety of different pathologies, such as viral infection, cancer, and diabetes. Despite the widespread use of GIIα inhibitory drugs and the role of GIIα in brain function, little is known about its expression in brain and other tissues. Here, we report generation of a highly specific chicken antibody to the GIIα subunit and its characterization by Western blotting and immunoprecipitation using cerebral cortical extracts. By using this antibody, we showed that the GIIα protein is highly expressed in testis, kidney, and lung, with the lowest amount in heart. GIIα polypeptide levels in whole brain were comparable to those in spleen. However, a higher expression of GIIα protein was detected in the cerebral cortex, reflecting its continuous requirement in correct folding of cell surface proteins.

  7. Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization.

    PubMed

    Bernstein, Hans-Gert; Bannier, Jana; Meyer-Lotz, Gabriela; Steiner, Johann; Keilhoff, Gerburg; Dobrowolny, Henrik; Walter, Martin; Bogerts, Bernhard

    2014-11-01

    Glutamine synthetase catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a pivotal role in glutamate and glutamine homoeostasis. Despite a plethora of studies on this enzyme, knowledge about the regional and cellular distribution of this enzyme in human brain is still fragmentary. Therefore, we mapped fourteen post-mortem brains of psychically healthy individuals for the distribution of the glutamine synthetase immunoreactive protein. It was found that glutamine synthetase immunoreactivity is expressed in multiple gray and white matter astrocytes, but also in oligodendrocytes, ependymal cells and certain neurons. Since a possible extra-astrocytic expression of glutamine synthetase is highly controversial, we paid special attention to its appearance in oligodendrocytes and neurons. By double immunolabeling of mouse brain slices and cultured mouse brain cells for glutamine synthetase and cell-type-specific markers we provide evidence that besides astrocytes subpopulations of oligodendrocytes, microglial cells and neurons express glutamine synthetase. Moreover, we show that glutamine synthetase-immunopositive neurons are not randomly distributed throughout human and mouse brain, but represent a subpopulation of nitrergic (i.e. neuronal nitric oxide synthase expressing) neurons. Possible functional implications of an extra-astrocytic localization of glutamine synthetase are discussed.

  8. In vivo high-resolution diffusion tensor imaging of the mouse brain

    PubMed Central

    Wu, Dan; Xu, Jiadi; McMahon, Michael T.; van Zijl, Peter C.M.; Mori, Susumu; Northington, Frances, J.; Zhang, Jiangyang

    2013-01-01

    Diffusion tensor imaging (DTI) of the laboratory mouse brain provides important macroscopic information for anatomical characterization of mouse models in basic research. Currently, in vivo DTI of the mouse brain is often limited by the available resolution. In this study, we demonstrate in vivo high-resolution DTI of the mouse brain using a cryogenic probe and a modified diffusion-weighted gradient and spin echo (GRASE) imaging sequence at 11.7 Tesla. Three-dimensional (3D) DTI of the entire mouse brain at 0.125 mm isotropic resolution could be obtained in approximately two hours. The high spatial resolution, which was previously only available with ex vivo imaging, enabled non-invasive examination of small structures in the adult and neonatal mouse brains. Based on data acquired from eight adult mice, a group-averaged DTI atlas of the in vivo adult mouse brain with 60 structure segmentations was developed. Comparisons between in vivo and ex vivo mouse brain DTI data showed significant differences in brain morphology and tissue contrasts, which indicate the importance of the in vivo DTI based mouse brain atlas. PMID:23769916

  9. Spontaneous kisspeptin neuron firing in the adult mouse reveals marked sex and brain region differences but no support for a direct role in negative feedback.

    PubMed

    de Croft, Simon; Piet, Richard; Mayer, Christian; Mai, Oliver; Boehm, Ulrich; Herbison, Allan E

    2012-11-01

    Kisspeptin-Gpr54 signaling is critical for the GnRH neuronal network controlling fertility. The present study reports on a kisspeptin (Kiss)-green fluorescent protein (GFP) mouse model enabling brain slice electrophysiological recordings to be made from Kiss neurons in the arcuate nucleus (ARN) and rostral periventricular region of the third ventricle (RP3V). Using dual immunofluorescence, approximately 90% of GFP cells in the RP3V of females, and ARN in both sexes, are shown to be authentic Kiss-synthesizing neurons in adult mice. Cell-attached recordings of ARN Kiss-GFP cells revealed a marked sex difference in their mean firing rates; 90% of Kiss-GFP cells in males exhibited slow irregular firing (0.17 ± 0.04 Hz) whereas neurons from diestrous (0.01 ± 0.01 Hz) and ovariectomized (0 Hz) mice were mostly or completely silent. In contrast, RP3V Kiss-GFP cells were all spontaneously active, exhibiting tonic, irregular, and bursting firing patterns. Mean firing rates were significantly (P < 0.05) higher in diestrus (2.1 ± 0.3 Hz) compared with ovariectomized (1.0 ± 0.2 Hz) mice without any changes in firing pattern. Recordings from RP3V Kiss-GFP neurons at the time of the proestrous GnRH surge revealed a significant decline in firing rate after the surge. Together, these observations demonstrate unexpected sex differences in the electrical activity of ARN Kiss neurons and markedly different patterns of firing by Kiss neurons in the ARN and RP3V. Although data supported a positive influence of gonadal steroids on RP3V Kiss neuron firing, no direct evidence was found to support the previously postulated role of ARN Kiss neurons in the estrogen-negative feedback mechanism.

  10. Mouse brain imaging using photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Xia, Jun; Wang, Lihong V.

    2014-03-01

    Photoacoustic computed tomography (PACT) provides structural and functional information when used in small animal brain imaging. Acoustic distortion caused by bone structures largely limits the deep brain image quality. In our work, we present ex vivo PACT images of freshly excised mouse brain, intending that can serve as a gold standard for future PACT in vivo studies on small animal brain imaging. Our results show that structures such as the striatum, hippocampus, ventricles, and cerebellum can be clearly di erentiated. An artery feature called the Circle of Willis, located at the bottom of the brain, can also be seen. These results indicate that if acoustic distortion can be accurately accounted for, PACT should be able to image the entire mouse brain with rich structural information.

  11. Toxicokinetics and toxicodynamics of paraquat accumulation in mouse brain

    PubMed Central

    Prasad, Kavita; Tarasewicz, Elizabeth; Mathew, Jason; Ohman Strickland, Pamela A.; Buckley, Brian; Richardson, Jason R.; Richfield, Eric K.

    2014-01-01

    Paraquat (PQ) is a potential human neurotoxicant and is used in models of oxidative stress. We determined the toxicokinetics (TK) and toxicodynamics (TD) of PQ in adult mouse brain following repeated or prolonged PQ exposure. PQ accumulated in different brain regions and reached a plateau after ~18 i.p. (10 mg/kg) doses and resulted in modest morbidity and mortality unpredictably associated with dose interval and number. PQ had divergent effects on horizontal locomotor behavior depending on the number of doses. PQ decreased striatal dopamine levels after the 18th to 36th i.p. dose (10 mg/kg) and reduced the striatal level of tyrosine hydroxylase. Drinking water exposure to PQ (0.03– 0.05 mg/ml) did not result in any mortality and resulted in concentration and time dependent levels in the brain. The brain half-life of PQ varied with mouse strain. PQ accumulates and may saturate a site in mouse brain resulting in complex PQ level and duration-related consequences. These findings should alter our risk assessment of this compound and demonstrate a useful, but complex dynamic model for understanding the consequences of PQ in the brain. PMID:19084006

  12. Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of beta-glucuronidase.

    PubMed

    Taylor, R M; Wolfe, J H

    1997-07-01

    A deficiency of beta-glucuronidase (GUSB) causes the multisystem progressive degenerative syndrome, mucopolysaccharidosis (MPS) type VII (Sly disease), which includes mental retardation. Animal homologues of MPS VII (ref. 3, 4) are models for testing somatic gene transfer approaches to treat the central nervous system in this and other lysosomal storage disorders. Previous attempts to correct murine MPS VII by gene therapy have successfully treated lesions in some organs but not in the brain. Other experimental modalities have forestalled some disease progression in the brain, but only if done at birth, before the onset of severe lesions, when the animals are phenotypically normal. We tested whether therapeutic amounts of GUSB could be delivered to the diseased adult brain by transplanting cells engineered to super-secrete the normal enzyme for export to surrounding neural tissues. Lysosomal distention was cleared from neurons and glial cells in the vicinity of the grafts, showing that the secreted enzyme could reach the diseased cells and reverse lesions in the severely diseased brain. The ability to correct established lesions will be important for the treatment of many lysosomal storage diseases affecting the brain, because most patients are not diagnosed until lesions are advanced enough to affect phenotype or developmental milestones in early childhood, and some forms of the diseases do not become apparent until later in life.

  13. Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain.

    PubMed

    Pineda, Jose R; Daynac, Mathieu; Chicheportiche, Alexandra; Cebrian-Silla, Arantxa; Sii Felice, Karine; Garcia-Verdugo, Jose Manuel; Boussin, François D; Mouthon, Marc-André

    2013-04-01

    Neurogenesis decreases during aging and following cranial radiotherapy, causing a progressive cognitive decline that is currently untreatable. However, functional neural stem cells remained present in the subventricular zone of high dose-irradiated and aged mouse brains. We therefore investigated whether alterations in the neurogenic niches are perhaps responsible for the neurogenesis decline. This hypothesis was supported by the absence of proliferation of neural stem cells that were engrafted into the vascular niches of irradiated host brains. Moreover, we observed a marked increase in TGF-β1 production by endothelial cells in the stem cell niche in both middle-aged and irradiated mice. In co-cultures, irradiated brain endothelial cells induced the apoptosis of neural stem/progenitor cells via TGF-β/Smad3 signalling. Strikingly, the blockade of TGF-β signalling in vivo using a neutralizing antibody or the selective inhibitor SB-505124 significantly improved neurogenesis in aged and irradiated mice, prevented apoptosis and increased the proliferation of neural stem/progenitor cells. These findings suggest that anti-TGF-β-based therapy may be used for future interventions to prevent neurogenic collapse following radiotherapy or during aging.

  14. Developmental time course and effects of immunostressors that alter hormone-responsive behavior on microglia in the peripubertal and adult female mouse brain

    PubMed Central

    Blaustein, Jeffrey D.

    2017-01-01

    In female mice, the experience of being shipped from the breeder facility or a single injection of the bacterial endotoxin, lipopolysaccharide (LPS), during pubertal development alters the behavioral response to estradiol in adulthood as demonstrated by perturbations of estradiol’s effects on sexual behavior, cognitive function, as well as its anxiolytic and anti-depressive properties. Microglia, the primary type of immunocompetent cell within the brain, contribute to brain development and respond to stressors with marked and long-lasting morphological and functional changes. Here, we describe the morphology of microglia and their response to shipping and LPS in peripubertal and adult female mice. Peripubertal mice have more microglia with long, thick processes in the hippocampus, amygdala and hypothalamus as compared with adult mice in the absence of an immune challenge. An immune challenge also increases immunoreactivity (IR) of ionized calcium binding adaptor molecule 1 (Iba1), which is constitutively expressed in microglia. In the hippocampus, the age of animal was without effect on the increase in Iba1- IR following shipping from the breeder facility or LPS exposure. In the amygdala, we observed more Iba1-IR following shipping or LPS treatment in peripubertal mice, compared to adult mice. In the hypothalamus, there was a disassociation of the effects of shipping and LPS treatment as LPS treatment, but not shipping, induced an increase in Iba1-IR. Taken together these data indicate that microglial morphologies differ between pubertal and adult mice; moreover, the microglial response to complex stressors is greater in pubertal mice as compared to adult mice. PMID:28158270

  15. Aquaporin7 expression during perinatal development of mouse brain.

    PubMed

    Shin, Incheol; Kim, Hyun J; Lee, Jae E; Gye, Myung C

    2006-12-01

    Emerging evidence suggests that brain aquaporins (AQPs) play important roles in the dynamic regulation of brain water homeostasis and the production of cerebrospinal fluid (CSF) under normal, as well as pathological, conditions. To date, the spatiotemporal expression patterns of AQP1, 4, and 9 have been elucidated in brain tissues. However, the expression of AQP7, an aquaglyceroporin associated with brain development, has not been shown. In the present study, we examined expression of AQP7 during perinatal and adult brain development in the mouse. Throughout brain development, the immunoreactivity of AQP7 was largely found in the choroid plexus (CP). AQP7 immunoreactivity in ependyma (Ep), pia, and blood vessels (BV) was increased during perinatal to postnatal development. Cells in the different layers of cerebral cortex became a little positive for AQP7 immunoreactivity during postnatal development. Optimized semi-quantitative RT-PCR and Western blot analysis revealed that AQP7 mRNA and protein levels increased during perinatal development of brain. To our knowledge, this is the first report on the pattern of AQP7 expression in brain tissues. These results suggest that AQP7 is an important structural element in the choroid plexus and is possibly involved in the production of CSF during brain development in mice.

  16. Mapping of neurotrophins and their receptors in the adult mouse brain and their role in the pathogenesis of a transgenic murine model of bovine spongiform encephalopathy.

    PubMed

    Marco-Salazar, P; Márquez, M; Fondevila, D; Rabanal, R M; Torres, J M; Pumarola, M; Vidal, E

    2014-05-01

    Neurotrophins are a family of growth factors that act on neuronal cells. The neurotrophins include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-3, -4 and -5. The action of neurotrophins depends on two transmembrane-receptor signalling systems: (1) the tropomyosin-related kinase (Trk) family of tyrosine kinase receptors (Trk A, Trk B and Trk C) and (2) the p75 neurotrophin receptor (p75(NTR)). The interaction between neurotrophic factors and their receptors may be involved in the mechanisms that regulate the differential susceptibility of neuronal populations in neurodegenerative diseases. The aim of the present study was to evaluate the role of neurotrophins in the pathogenesis of bovine spongiform encephalopathy (BSE) using a transgenic mouse overexpressing bovine prnp (BoTg 110). Histochemistry for Lycopersicum esculentum agglutinin, haematoxylin and eosin staining and immunohistochemistry for the abnormal isoform of the prion protein (PrP(d)), glial fibrillary acidic protein (GFAP), NGF, BDNF, NT-3 and the receptors Trk A, Trk B, Trk C and p75(NTR) was performed. The lesions and the immunolabelling patterns were assessed semiquantitatively in different areas of the brain. No significant differences in the immunolabelling of neurotrophins and their receptors were observed between BSE-inoculated and control animals, except for p75(NTR), which showed increased expression correlating with the distribution of lesions, PrP(d) deposition and gliosis in the BSE-inoculated mice.

  17. Functional connectivity hubs of the mouse brain.

    PubMed

    Liska, Adam; Galbusera, Alberto; Schwarz, Adam J; Gozzi, Alessandro

    2015-07-15

    Recent advances in functional connectivity methods have made it possible to identify brain hubs - a set of highly connected regions serving as integrators of distributed neuronal activity. The integrative role of hub nodes makes these areas points of high vulnerability to dysfunction in brain disorders, and abnormal hub connectivity profiles have been described for several neuropsychiatric disorders. The identification of analogous functional connectivity hubs in preclinical species like the mouse may provide critical insight into the elusive biological underpinnings of these connectional alterations. To spatially locate functional connectivity hubs in the mouse brain, here we applied a fully-weighted network analysis to map whole-brain intrinsic functional connectivity (i.e., the functional connectome) at a high-resolution voxel-scale. Analysis of a large resting-state functional magnetic resonance imaging (rsfMRI) dataset revealed the presence of six distinct functional modules related to known large-scale functional partitions of the brain, including a default-mode network (DMN). Consistent with human studies, highly-connected functional hubs were identified in several sub-regions of the DMN, including the anterior and posterior cingulate and prefrontal cortices, in the thalamus, and in small foci within well-known integrative cortical structures such as the insular and temporal association cortices. According to their integrative role, the identified hubs exhibited mutual preferential interconnections. These findings highlight the presence of evolutionarily-conserved, mutually-interconnected functional hubs in the mouse brain, and may guide future investigations of the biological foundations of aberrant rsfMRI hub connectivity associated with brain pathological states.

  18. Transgenerational disruption of functional 5-HT1AR-induced connectivity in the adult mouse brain by traumatic stress in early life.

    PubMed

    Razoux, F; Russig, H; Mueggler, T; Baltes, C; Dikaiou, K; Rudin, M; Mansuy, I M

    2017-04-01

    Traumatic stress in early life is a strong risk factor for psychiatric disorders that can affect individuals across several generations. Although the underlying mechanisms have been proposed to implicate serotonergic transmission in the brain, the neural circuits involved remain poorly delineated. Using pharmacological functional magnetic resonance imaging in mice, we demonstrate that traumatic stress in postnatal life alters 5-HT1A receptor-evoked local and global functions in both, the exposed animals and their progeny when adult. Disrupted functional connectivity is consistent across generations and match limbic circuits implicated in mood disorders, but also networks not previously linked to traumatic stress. These findings underscore the neurobiology and functional mapping of transgenerational effects of early life experiences.

  19. Identification of a set of genes showing regionally enriched expression in the mouse brain

    PubMed Central

    D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM

    2008-01-01

    Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066

  20. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

    PubMed Central

    Tyler, Christina R.; Hafez, Alexander K.; Solomon, Elizabeth R.; Allan, Andrea M.

    2015-01-01

    Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity alters the epigenome, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and expression of associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region- specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development induces alterations in the adult brain via histone modifications and chromatin modifiers a sex- and

  1. Left Brain/Right Brain Learning for Adult Education.

    ERIC Educational Resources Information Center

    Garvin, Barbara

    1986-01-01

    Contrasts and compares the theory and practice of adult education as it relates to the issue of right brain/left brain learning. The author stresses the need for a whole-brain approach to teaching and suggests that adult educators, given their philosophical directions, are the perfect potential users of this integrated system. (Editor/CT)

  2. Correlated 5-Hydroxymethylcytosine (5hmC) and Gene Expression Profiles Underpin Gene and Organ-Specific Epigenetic Regulation in Adult Mouse Brain and Liver

    PubMed Central

    Lin, I-Hsuan; Chen, Yi-Fan; Hsu, Ming-Ta

    2017-01-01

    Background DNA methylation is an epigenetic mechanism essential for gene regulation and vital for mammalian development. 5-hydroxymethylcytosine (5hmC) is the first oxidative product of the TET-mediated 5-methylcytosine (5mC) demethylation pathway. Aside from being a key intermediate in cytosine demethylation, 5hmC may have potential regulatory functions with emerging importance in mammalian biology. Methods Here, we investigate the global 5hmC enrichment in five brain structures, including cerebellum, cerebral cortex, hippocampus, hypothalamus and thalamus, as well as liver tissues from female and male adult mice by using chemical capture-based technique coupled with next-generation sequencing. At the same time, we carried out total RNA sequencing (RNA-seq) to analyze the transcriptomes of brain regions and liver tissues. Results Our results reveal preferential 5hmC enrichment in the gene bodies of expressed genes, and 5hmC levels of many protein-coding genes are positively correlated with RNA expression intensity. However, more than 75% of genes with low or no 5hmC enrichment are genes encode for mitochondrial proteins and ribosomal proteins despite being actively transcribed, implying different transcriptional regulation mechanisms of these housekeeping genes. Brain regions developed from the same embryonic structures have more similar 5hmC profiles. Also, the genic 5hmC enrichment pattern is highly tissue-specific, and 5hmC marks genes involving in tissue-specific biological processes. Sex chromosomes are mostly depleted of 5hmC, and the X inactive specific transcript (Xist) gene located on the X chromosome is the only gene to show sex-specific 5hmC enrichment. Conclusions This is the first report of the whole-genome 5hmC methylome of five major brain structures and liver tissues in mice of both sexes. This study offers a comprehensive resource for future work of mammalian cytosine methylation dynamics. Our findings offer additional evidence that suggests 5hm

  3. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... Search Search En Español Category Cancer A-Z Brain and Spinal Cord Tumors in Adults If you have a brain or spinal cord tumor or are close to ... cope. Here you can find out all about brain and spinal cord tumors in adults, including risk ...

  4. Mapping of Cbln1-like immunoreactivity in adult and developing mouse brain and its localization to the endolysosomal compartment of neurons.

    PubMed

    Wei, Peng; Smeyne, Richard J; Bao, Dashi; Parris, Jennifer; Morgan, James I

    2007-11-01

    Cbln1 is a secreted glycoprotein essential for synapse structure and function in cerebellum that is also expressed in extracerebellar structures where its function is unknown. Furthermore, Cbln1 assembles into homomeric complexes and heteromeric complexes with three family members (Cbln2-Cbln4), thereby influencing each other's degradation and secretion. Therefore, to understand its function, it is essential to establish the location of Cbln1 relative to other family members. The localization of Cbln1 in brain was determined using immunohistochemistry and cbln1-lacZ transgenic mice. Cbln1-like immunoreactivity (CLI) was always punctate and localized to the cytoplasm of neurons. The punctate CLI colocalized with cathepsin D, a lysosomal marker, but not with markers of endoplasmic reticulum or Golgi, indicating that Cbln1 is present in neuronal endosomes/lysosomes. This may represent the cellular mechanism underlying the regulated degradation of Cbln1 observed in vivo. Outside the cerebellum, CLI mapped to multiple brain regions that were frequently synaptically interconnected, warranting their analysis in cbln1-null mice. Furthermore, whereas CLI increased dramatically in the cerebellum of cbln3-null mice it was unchanged in extracerebellar neurons. This opens the possibility that other family members that are coexpressed in these areas control Cbln1 levels, potentially by modulating processing in the endolysosomal pathway. During development of cbln1-lacZ mice, beta-galactosidase staining was first observed in proliferating granule cell precursors prior to synaptogenesis and thereafter in maturing and adult granule cells. As cbln3 is only expressed in post-mitotic, post-migratory granule cells, Cbln1 homomeric complexes in precursors and Cbln1-Cbln3 heteromeric complexes in mature granule cells may have distinct functions and turnover.

  5. Protein Expression Dynamics During Postnatal Mouse Brain Development

    PubMed Central

    Laeremans, Annelies; Van de Plas, Babs; Clerens, Stefan; Van den Bergh, Gert; Arckens, Lutgarde; Hu, Tjing-Tjing

    2013-01-01

    We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation. PMID:25157209

  6. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  7. Primary brain tumours in adults.

    PubMed

    Ricard, Damien; Idbaih, Ahmed; Ducray, François; Lahutte, Marion; Hoang-Xuan, Khê; Delattre, Jean-Yves

    2012-05-26

    Important advances have been made in the understanding and management of adult gliomas and primary CNS lymphomas--the two most common primary brain tumours. Progress in imaging has led to a better analysis of the nature and grade of these tumours. Findings from large phase 3 studies have yielded some standard treatments for gliomas, and have confirmed the prognostic value of specific molecular alterations. High-throughput methods that enable genome-wide analysis of tumours have improved the knowledge of tumour biology, which should lead to a better classification of gliomas and pave the way for so-called targeted therapy trials. Primary CNS lymphomas are a group of rare non-Hodgkin lymphomas. High-dose methotrexate-based regimens increase survival, but the standards of care and the place of whole-brain radiotherapy remain unclear, and are likely to depend on the age of the patient. The focus now is on the development of new polychemotherapy regimens to reduce or defer whole-brain radiotherapy and its delayed complications.

  8. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain

    PubMed Central

    Mullier, Amandine; Bouret, Sébastien G.; Prevot, Vincent; Dehouck, Bénédicte

    2010-01-01

    The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we report on our use of immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1 and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties. PMID:20127760

  9. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain.

    PubMed

    Mullier, Amandine; Bouret, Sebastien G; Prevot, Vincent; Dehouck, Bénédicte

    2010-04-01

    The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes, which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we utilize immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1, and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties.

  10. Aquaporin-4 expression contributes to decreases in brain water content during mouse postnatal development.

    PubMed

    Li, Xiumiao; Gao, Junying; Ding, Jiong; Hu, Gang; Xiao, Ming

    2013-05-01

    The water channel protein aquaporin-4 (AQP4) is implicated to facilitate water efflux from the brain parenchyma into the blood and CSF, playing a critical role in maintaining brain water homeostasis. Nevertheless, its contribution to decreases in brain water content during postnatal development remains unknown. A quantitative Western blot analysis was performed to investigate developmental expression of AQP4 in the whole mouse brain and showed that AQP4 expression level in 1 week-old brain was only 21.3% of that in the adult brain, but significantly increased to 67.4% of the adult level by 2 weeks after birth. Statistical analysis demonstrated that increased AQP4 expression partially relates to decreased brain water content in postnatal mice (r(2)=0.92 and P=0.002). Moreover, AQP4 null mice had greater brain water content than littermate controls from 2 weeks up to adult age. Consistently, mature pattern of AQP4 localization at the brain-blood and brain-CSF interfaces were completed at approximately at 2 weeks after birth. In addition, AQP4 expression in the brain stem and hypothalamus was earlier than that in the cerebral cortex and cerebellum, suggesting a brain regional variation in developmental expression of AQP4. These results characterize the developmental feature of AQP4 expression in the postnatal brain and provide direct evidence for a role of AQP4 in postnatal brain water uptake.

  11. Toxic effect of lithium in mouse brain

    SciTech Connect

    Dixit, P.K.; Smithberg, M.

    1988-01-01

    The effect of lithium ion on glucose oxidation in the cerebrum and cerebellum of mice was measured in vitro by the conversion of isotopic glucose into /sup 14/CO/sub 2//mg wet weight. Glucose utilization is unaffected by lowest lithium dosage but is inhibited by high lithium concentrations (197-295 mM). Chronic administration of lithium to adult mice decreased the DNA content of the cerebrum and cerebellum at concentrations of 80 and 108 mM. The DNA content of selected postnatal stages of cerebrum and cerebellum was measured starting on Day 1 or 2. This served as another parameter to evaluate glucose oxidation studies at these ages. On the basis of wet weight, both brain parts of neonates of ages 1 and 10 days were approximately one-half that of the adult counterparts. On the basis of DNA content, the cerebrum enhanced its glucose utilization twofold from Day 1 to Day 10 and tripled its utilization from Day 10 to Day 20. The glucose utilization by cerebrum at Day 20 is similar to adult values. In contrast, glucose oxidation in the cerebellum remained relatively constant throughout the postnatal growth. The relative susceptibility of the two brain parts is discussed.

  12. Leptin targets in the mouse brain.

    PubMed

    Scott, Michael M; Lachey, Jennifer L; Sternson, Scott M; Lee, Charlotte E; Elias, Carol F; Friedman, Jeffrey M; Elmquist, Joel K

    2009-06-10

    The central actions of leptin are essential for homeostatic control of adipose tissue mass, glucose metabolism, and many autonomic and neuroendocrine systems. In the brain, leptin acts on numerous different cell types via the long-form leptin receptor (LepRb) to elicit its effects. The precise identification of leptin's cellular targets is fundamental to understanding the mechanism of its pleiotropic central actions. We have systematically characterized LepRb distribution in the mouse brain using in situ hybridization in wildtype mice as well as by EYFP immunoreactivity in a novel LepRb-IRES-Cre EYFP reporter mouse line showing high levels of LepRb mRNA/EYFP coexpression. We found substantial LepRb mRNA and EYFP expression in hypothalamic and extrahypothalamic sites described before, including the dorsomedial nucleus of the hypothalamus, ventral premammillary nucleus, ventral tegmental area, parabrachial nucleus, and the dorsal vagal complex. Expression in insular cortex, lateral septal nucleus, medial preoptic area, rostral linear nucleus, and in the Edinger-Westphal nucleus was also observed and had been previously unreported. The LepRb-IRES-Cre reporter line was used to chemically characterize a population of leptin receptor-expressing neurons in the midbrain. Tyrosine hydroxylase and Cre reporter were found to be coexpressed in the ventral tegmental area and in other midbrain dopaminergic neurons. Lastly, the LepRb-IRES-Cre reporter line was used to map the extent of peripheral leptin sensing by central nervous system (CNS) LepRb neurons. Thus, we provide data supporting the use of the LepRb-IRES-Cre line for the assessment of the anatomic and functional characteristics of neurons expressing leptin receptor.

  13. Wireless intra-brain communication for image transmission through mouse brain.

    PubMed

    Sasagawa, Kiyotaka; Matsuda, Takashi; Davis, Peter; Zhang, Bing; Li, Keren; Kobayashi, Takuma; Noda, Toshihiko; Tokuda, Takashi; Ohta, Jun

    2011-01-01

    We demonstrate wireless image data transmission through a mouse brain. The transmission characteristics of mouse brain is measured. By inserting electrodes into the brain, the transmission efficiency is drastically increased. An AM signal modulated with the image data from an implantable image sensor was launched into the brain and the received signal was demodulated. The data was successfully transmitted through the brain and the image was reproduced.

  14. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes.

    PubMed

    Staahl, Brett T; Benekareddy, Madhurima; Coulon-Bainier, Claire; Banfal, Ashwin A; Floor, Stephen N; Sabo, Jennifer K; Urnes, Cole; Munares, Gabriela Acevedo; Ghosh, Anirvan; Doudna, Jennifer A

    2017-02-13

    We demonstrate editing of post-mitotic neurons in the adult mouse brain following injection of Cas9 ribonucleoprotein (RNP) complexes in the hippocampus, striatum and cortex. Engineered variants of Cas9 with multiple SV40 nuclear localization sequences enabled a tenfold increase in the efficiency of neuronal editing in vivo. These advances indicate the potential of genome editing in the brain to correct or inactivate the underlying genetic causes of neurological diseases.

  15. The EF-hand Ca(2+)-binding protein super-family: a genome-wide analysis of gene expression patterns in the adult mouse brain.

    PubMed

    Girard, F; Venail, J; Schwaller, B; Celio, M R

    2015-05-21

    In mice, 249 putative members of the superfamily of EF-hand domain Ca(2+)-binding proteins, manifesting great diversity in structure, cellular localization and functions have been identified. Three members in particular, namely, calbindin-D28K, calretinin and parvalbumin, are widely used as markers for specific neuronal subpopulations in different regions of the brain. The aim of the present study was to compile a comprehensive atlas of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. This was achieved by a meticulous examination of the in-situ hybridization images in the Allen Brain Atlas database. Topographically, our analysis focused on the olfactory bulb, cerebral cortex (barrel cortex in the primary somatosensory area), basal ganglia, hippocampus, amygdala, thalamus, hypothalamus, cerebellum, midbrain, pons and medulla, and on clearly identifiable sub-structures within each of these areas. The expression profiles of four family-members, namely hippocalcin-like 4, neurocalcin-δ, plastin 3 and tescalcin, that have not been hitherto reported, at either the mRNA (in-situ-hybridization) or the protein (immunohistochemical) levels, are now presented for the first time. The fruit of our analysis is a document in which the gene-expression profiles of all members of the EF-hand family genes are compared, and in which future possible neuronal markers for specific cells/brain areas are identified. The assembled information could afford functional clues to investigators, conducive to further experimental pursuit.

  16. mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain.

    PubMed

    John, Sebastian; Mishra, Rashmi

    2016-01-01

    Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however, no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution and predict functions of galectins in brain and also compare the degree of conservation vs. divergence between mouse and human species. The latter objective was required to determine the relevance and appropriateness of studying galectins in mouse brain which may ultimately enable us to extrapolate the findings to human brain physiology and pathologies. Results: In order to fill this crucial gap in our understanding of brain galectins, we analyzed the in situ hybridization and microarray data of adult mouse and human brain respectively, from the Allen Brain Atlas, to resolve each galectin-subtype's spatial distribution across brain distinct cytoarchitecture. Next, transcription factors (TFs) that may regulate galectins were identified using TRANSFAC software and the list obtained was further curated to sort TFs on their confirmed transcript expression in the adult brain. Galectin-TF cluster analysis, gene-ontology annotations and co-expression networks were then extrapolated to predict distinct functional relevance of each galectin in the neuronal processes. Data shows that galectins have highly heterogeneous expression within and across brain sub-structures and are predicted to be the crucial targets of brain enriched TFs. Lgals9 had maximal spatial distribution across mouse brain with inferred predominant roles in neurogenesis while LGALS1 was ubiquitously expressed in human. Limbic region associated with learning, memory and emotions and substantia nigra associated with motor movements showed strikingly high expression of LGALS1 and LGALS8 in human vs. mouse brain. The overall expression profile of galectin-8 was most preserved across both these

  17. mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain

    PubMed Central

    John, Sebastian; Mishra, Rashmi

    2016-01-01

    Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however, no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution and predict functions of galectins in brain and also compare the degree of conservation vs. divergence between mouse and human species. The latter objective was required to determine the relevance and appropriateness of studying galectins in mouse brain which may ultimately enable us to extrapolate the findings to human brain physiology and pathologies. Results: In order to fill this crucial gap in our understanding of brain galectins, we analyzed the in situ hybridization and microarray data of adult mouse and human brain respectively, from the Allen Brain Atlas, to resolve each galectin-subtype’s spatial distribution across brain distinct cytoarchitecture. Next, transcription factors (TFs) that may regulate galectins were identified using TRANSFAC software and the list obtained was further curated to sort TFs on their confirmed transcript expression in the adult brain. Galectin-TF cluster analysis, gene-ontology annotations and co-expression networks were then extrapolated to predict distinct functional relevance of each galectin in the neuronal processes. Data shows that galectins have highly heterogeneous expression within and across brain sub-structures and are predicted to be the crucial targets of brain enriched TFs. Lgals9 had maximal spatial distribution across mouse brain with inferred predominant roles in neurogenesis while LGALS1 was ubiquitously expressed in human. Limbic region associated with learning, memory and emotions and substantia nigra associated with motor movements showed strikingly high expression of LGALS1 and LGALS8 in human vs. mouse brain. The overall expression profile of galectin-8 was most preserved across both these

  18. Distribution of Cytoglobin in the Mouse Brain

    PubMed Central

    Reuss, Stefan; Wystub, Sylvia; Disque-Kaiser, Ursula; Hankeln, Thomas; Burmester, Thorsten

    2016-01-01

    Cytoglobin (Cygb) is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex (CCo), in the olfactory bulb (in particular periglomerular cells), in the hippocampal formation (strongly stained pyramidal cells with long processes), basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum (VP)), and in the amygdala (neurons with unlabeled processes) were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei), epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus (SC). The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive (Cygb-IR) fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide (NO)-synthase in neurons, which supports a

  19. Standardized bioenergetic profiling of adult mouse cardiomyocytes.

    PubMed

    Readnower, Ryan D; Brainard, Robert E; Hill, Bradford G; Jones, Steven P

    2012-12-18

    Mitochondria are at the crux of life and death and as such have become ideal targets of intervention in cardiovascular disease. Generally, current methods to measure mitochondrial dysfunction rely on working with the isolated organelle and fail to incorporate mitochondrial function in a cellular context. Extracellular flux methodology has been particularly advantageous in this respect; however, certain primary cell types, such as adult cardiac myocytes, have been difficult to standardize with this technology. Here, we describe methods for using extracellular flux (XF) analysis to measure mitochondrial bioenergetics in isolated, intact, adult mouse cardiomyocytes (ACMs). Following isolation, ACMs were seeded overnight onto laminin-coated (20 μg/ml) microplates, which resulted in high attachment efficiency. After establishing seeding density, we found that a commonly used assay medium (containing a supraphysiological concentration of pyruvate at 1 mmol/l) produced a maximal bioenergetic response. After performing a pyruvate dose-response, we determined that pyruvate titrated to 0.1 mmol/l was optimal for examining alternative substrate oxidation. Methods for measuring fatty acid oxidation were established. These methods lay the framework using XF analysis to profile metabolism of ACMs and will likely augment our ability to understand mitochondrial dysfunction in heart failure and acute myocardial ischemia. This platform could easily be extended to models of diabetes or other metabolic defects.

  20. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain.

  1. Expression Profiling of the Solute Carrier Gene Family in the Mouse BrainS⃞

    PubMed Central

    Dahlin, Amber; Royall, Josh; Hohmann, John G.; Wang, Joanne

    2009-01-01

    The solute carrier (Slc) superfamily is a major group of membrane transport proteins present in mammalian cells. Although Slc transporters play essential and diverse roles in the central nervous system, the localization and function of the vast majority of Slc genes in the mammalian brain are largely unknown. Using high-throughput in situ hybridization data generated by the Allen Brain Atlas, we systematically and quantitatively analyzed the spatial and cellular distribution of 307 Slc genes, which represent nearly 90% of presently known mouse Slc genes, in the adult C57BL/6J mouse brain. Our analysis showed that 252 (82%) of the 307 Slc genes are present in the brain, and a large proportion of these genes were detected at low to moderate expression levels. Evaluation of 20 anatomical brain subdivisions demonstrated a comparable level of Slc gene complexity but significant difference in transcript enrichment. The distribution of the expressed Slc genes was diverse, ranging from near-ubiquitous to highly localized. Functional annotation in 20 brain regions, including the blood-brain and blood-cerebral spinal fluid (CSF) barriers, suggests major roles of Slc transporters in supporting brain energy utilization, neurotransmission, nutrient supply, and CSF production. Furthermore, hierarchical cluster analysis revealed intricate Slc expression patterns associated with neuroanatomical organization. Our studies also revealed Slc genes present within defined brain microstructures and described the putative cell types expressing individual Slc genes. These results provide a useful resource for investigators to explore the roles of Slc genes in neurophysiological and pathological processes. PMID:19179540

  2. Neural repair in the adult brain

    PubMed Central

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury to the adult brain often results in substantial loss of neural tissue and subsequent permanent functional impairment. Over the last two decades, a number of approaches have been developed to harness the regenerative potential of neural stem cells and the existing fate plasticity of neural cells in the nervous system to prevent tissue loss or to enhance structural and functional regeneration upon injury. Here, we review recent advances of stem cell-associated neural repair in the adult brain, discuss current challenges and limitations, and suggest potential directions to foster the translation of experimental stem cell therapies into the clinic. PMID:26918167

  3. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    PubMed

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases.

  4. Computational neuroanatomy: mapping cell-type densities in the mouse brain, simulations from the Allen Brain Atlas

    NASA Astrophysics Data System (ADS)

    Grange, Pascal

    2015-09-01

    The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.

  5. Acupuncture stimulation induces neurogenesis in adult brain.

    PubMed

    Nam, Min-Ho; Ahn, Kwang Seok; Choi, Seung-Hoon

    2013-01-01

    The discovery of adult neurogenesis was a turning point in the field of neuroscience. Adult neurogenesis offers an enormous possibility to open a new therapeutic paradigm of neurodegenerative diseases and stroke. Recently, several studies suggested that acupuncture may enhance adult neurogenesis. Acupuncture has long been an important treatment for brain diseases in the East Asia. The scientific mechanisms of acupuncture treatment for the diseases, such as Alzheimer's disease, Parkinson's disease, and stroke, have not been clarified yet; however, the neurogenic effect of acupuncture can be a possible reason. Here, we have reviewed the studies on the effect of stimulation at various acupoints for neurogenesis, such as ST36 and GV20. The suggested mechanisms are also discussed including upregulation of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, basic fibroblast growth factor and neuropeptide Y, and activation of the function of primo vascular system.

  6. Aquaporin-11 (AQP11) Expression in the Mouse Brain

    PubMed Central

    Koike, Shin; Tanaka, Yasuko; Matsuzaki, Toshiyuki; Morishita, Yoshiyuki; Ishibashi, Kenichi

    2016-01-01

    Aquaporin-11 (AQP11) is an intracellular aquaporin expressed in various tissues, including brain tissues in mammals. While AQP11-deficient mice have developed fatal polycystic kidneys at one month old, the role of AQP11 in the brain was not well appreciated. In this study, we examined the AQP11 expression in the mouse brain and the brain phenotype of AQP11-deficient mice. AQP11 messenger ribonucleic acid (mRNA) and protein were expressed in the brain, but much less than in the thymus and kidney. Immunostaining showed that AQP11 was localized at the epithelium of the choroid plexus and at the endothelium of the brain capillary, suggesting that AQP11 may be involved in water transport at the choroid plexus and blood-brain barrier (BBB) in the brain. The expression of AQP4, another brain AQP expressed at the BBB, was decreased by half in AQP11-deficient mice, thereby suggesting the presence of the interaction between AQP11 and AQP4. The brain of AQP11-deficient mice, however, did not show any morphological abnormalities and the function of the BBB was intact. Our findings provide a novel insight into a water transport mechanism mediated by AQPs in the brain, which may lead to a new therapy for brain edema. PMID:27258268

  7. Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains

    PubMed Central

    Schwarz, Martin K.; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  8. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex

    PubMed Central

    Ruiz-Perera, L.; Muniz, M.; Vierci, G.; Bornia, N.; Baroncelli, L.; Sale, A.; Rossi, F.M.

    2015-01-01

    The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain. PMID:26205348

  9. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine

    SciTech Connect

    Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon; Jung, Kwang Hwa; Kim, Jeong Kyu; Bae, Hyun Jin; Xie Hongjian; Ryu, Jae Chun; Ahn, Young Min; Min, Jin-Hye; Park, Won Sang; Lee, Jung Young; Rhee, Gyu Seek; Nam, Suk Woo

    2009-05-15

    The amphetamine derivative ({+-})-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significant gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.

  10. A versatile new technique to clear mouse and human brain

    NASA Astrophysics Data System (ADS)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-07-01

    Large volumes imaging with microscopic resolution is limited by light scattering. In the last few years based on refractive index matching, different clearing approaches have been developed. Organic solvents and water-based optical clearing agents have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging a whole transgenic mouse brain with the light sheet microscope. Moreover we apply this technique also on blocks of dysplastic human brain tissue transformed with CLARITY and labeled with different antibody. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  11. Biotransformation of the insecticide parathion by mouse brain.

    PubMed

    Soranno, T M; Sultatos, L G

    1992-01-01

    The acute toxicity of organothiophosphate insecticides like parathion results from their metabolic activation by cytochromes P450. The present study is directed towards the characterization of cytochrome-P450-dependent metabolism of parathion by various mouse brain regions. Intraperitoneal administration of [35S]parathion to mice led to covalently bound [35S]sulfur in various tissues, indicating their capacity to oxidatively desulfurate this insecticide. Liver contained the greatest amount of covalently bound sulfur, and brain the least. Among individual brain regions the olfactory bulb and hypothalamus possessed the highest levels of sulfur binding when expressed on a per milligram tissue basis. However, when expressed on a per brain region basis, sulfur binding was greatest within the cortex as a result of the large mass of this region, compared to the hypothalamus and olfactory bulb. Incubation of the 78,000 x g fraction of mouse brain with parathion resulted in formation of p-nitrophenol, although paraoxon could not be detected. However, given the current understanding of parathion metabolism by cytochromes P450, and given that paraoxon can rapidly disappear through phosphorylation of serine hydroxyl groups, it is reasonable to assume that at least some paraoxon was formed. Production of p-nitrophenol required NADPH and was inhibited by carbon monoxide. In vitro incubations of parathion with the 78,000 x g fraction of mouse brain indicated that the hypothalamus and olfactory bulb had the greatest capacity to produce p-nitrophenol. These results demonstrate that various mouse brain regions possess different capacities to metabolize parathion.

  12. Morphological maturation of the mouse brain: An in vivo MRI and histology investigation.

    PubMed

    Hammelrath, Luam; Škokić, Siniša; Khmelinskii, Artem; Hess, Andreas; van der Knaap, Noortje; Staring, Marius; Lelieveldt, Boudewijn P F; Wiedermann, Dirk; Hoehn, Mathias

    2016-01-15

    With the wide access to studies of selected gene expressions in transgenic animals, mice have become the dominant species as cerebral disease models. Many of these studies are performed on animals of not more than eight weeks, declared as adult animals. Based on the earlier reports that full brain maturation requires at least three months in rats, there is a clear need to discern the corresponding minimal animal age to provide an "adult brain" in mice in order to avoid modulation of disease progression/therapy studies by ongoing developmental changes. For this purpose, we have studied anatomical brain alterations of mice during their first six months of age. Using T2-weighted and diffusion-weighted MRI, structural and volume changes of the brain were identified and compared with histological analysis of myelination. Mouse brain volume was found to be almost stable already at three weeks, but cortex thickness kept decreasing continuously with maximal changes during the first three months. Myelination is still increasing between three and six months, although most dramatic changes are over by three months. While our results emphasize that mice should be at least three months old when adult animals are needed for brain studies, preferred choice of one particular metric for future investigation goals will result in somewhat varying age windows of stabilization.

  13. Multi-Coil Shimming of the Mouse Brain

    PubMed Central

    Juchem, Christoph; Brown, Peter B.; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    MR imaging and spectroscopy allow the non-invasive measurement of brain function and physiology, but excellent magnetic field homogeneity is required for meaningful results. The homogenization of the magnetic field distribution in the mouse brain (i.e. shimming) is a difficult task due to complex susceptibility-induced field distortions combined with the small size of the object. To date, the achievement of satisfactory whole brain shimming in the mouse remains a major challenge. The magnetic fields generated by a set of 48 circular coils (diameter 13 mm) that were arranged in a cylinder-shaped pattern of 32 mm diameter and driven with individual dynamic current ranges of ±1 A are shown to be capable of substantially reducing the field distortions encountered in the mouse brain at 9.4 Tesla. Static multi-coil shim fields allowed the reduction of the standard deviation of Larmor frequencies by 31% compared to second order spherical harmonics shimming and a 66% narrowing was achieved with the slice-specific application of the multi-coil shimming with a dynamic approach. For gradient echo imaging, multi-coil shimming minimized shim-related signal voids in the brain periphery and allowed overall signal gains of up to 51% compared to spherical harmonics shimming. PMID:21442653

  14. Metabolism of choline in brain of the aged CBF-1 mouse

    SciTech Connect

    Saito, M.; Kindel, G.; Karczmar, A.G.; Rosenberg, A.

    1986-01-01

    In order to quantify the changes that occur in the cholinergic central nervous system with aging, we have compared acetylcholine (Ach) formation in brain cortex slice preparations from 2-year-old aged CBF-1 mouse brains and compared the findings with those in 2-4-month-old young adult mouse brain slices. Incorporation of exogenous radioactively labelled choline (31 nM (/sup 3/H) choline) into acetyl choline in incubated brain slices was linear with time for 90 min. Percentage of total choline label distributed into Ach remained constant from 5 min after starting the incubation to 90 min. In contrast, distribution of label into intracellular free choline (Ch) and phosphorylcholine (Pch) changed continuously over this period suggesting that the Ch pool for Ach synthesis in brain cortex is different from that for Pch synthesis. Incorporation of radioactivity into Ach was not influenced by administration of 10 microM eserine, showing that the increment of radioactivity in Ach reflects rate of Ach formation, independently from degradation by acetylcholine esterases. Under our experimental conditions, slices from cortices of aged 24-month-old mouse brain showed a significantly greater (27%) incorporation of radioactivity into intracellular Ach than those from young, 2-4-month-old, brain cortices. Inhibitors of Ach release, 1 mM ATP or GABA, had no effect. Since concentration of radioactive precursor in the incubation medium was very low (31 nM), the Ch pool for Ach synthesis in slices was labelled without measurably changing the size of the endogenous pool. These data suggest a compensatory acceleration of Ach synthesis or else a smaller precursor pool specific for Ach synthesis into which labelled Ch migrated in aged brain.

  15. Cre Fused with RVG Peptide Mediates Targeted Genome Editing in Mouse Brain Cells In Vivo

    PubMed Central

    Zou, Zhiyuan; Sun, Zhaolin; Li, Pan; Feng, Tao; Wu, Sen

    2016-01-01

    Cell penetrating peptides (CPPs) are short peptides that can pass through cell membranes. CPPs can facilitate the cellular entry of proteins, macromolecules, nanoparticles and drugs. RVG peptide (RVG hereinafter) is a 29-amino-acid CPP derived from a rabies virus glycoprotein that can cross the blood-brain barrier (BBB) and enter brain cells. However, whether RVG can be used for genome editing in the brain has not been reported. In this work, we combined RVG with Cre recombinase for bacterial expression. The purified RVG-Cre protein cut plasmids in vitro and traversed cell membranes in cultured Neuro2a cells. By tail vein-injecting RVG-Cre into Cre reporter mouse lines mTmG and Rosa26lacZ, we demonstrated that RVG-Cre could target brain cells and achieve targeted somatic genome editing in adult mice. This direct delivery of the gene-editing enzyme protein into mouse brains with RVG is much safer than plasmid- or viral-based methods, holding promise for further applications in the treatment of various brain diseases. PMID:27983648

  16. Postnatal developmental expression of regulator of G protein signaling 14 (RGS14) in the mouse brain.

    PubMed

    Evans, Paul R; Lee, Sarah E; Smith, Yoland; Hepler, John R

    2014-01-01

    Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates G protein and mitogen-activated protein kinase (MAPK) signaling pathways. In the adult mouse brain, RGS14 mRNA and protein are found almost exclusively in hippocampal CA2 neurons. We have shown that RGS14 is a natural suppressor of CA2 synaptic plasticity and hippocampal-dependent learning and memory. However, the protein distribution and spatiotemporal expression patterns of RGS14 in mouse brain during postnatal development are unknown. Here, using a newly characterized monoclonal anti-RGS14 antibody, we demonstrate that RGS14 protein immunoreactivity is undetectable at birth (P0), with very low mRNA expression in the brain. However, RGS14 protein and mRNA are upregulated during early postnatal development, with protein first detected at P7, and both increasing over time until reaching highest sustained levels throughout adulthood. Our immunoperoxidase data demonstrate that RGS14 protein is expressed in regions outside of hippocampal CA2 during development including the primary olfactory areas, the anterior olfactory nucleus and piriform cortex, and the olfactory associated orbital and entorhinal cortices. RGS14 is also transiently expressed in neocortical layers II/III and V during postnatal development. Finally, we show that RGS14 protein is first detected in the hippocampus at P7, with strongest immunoreactivity in CA2 and fasciola cinerea and sporadic immunoreactivity in CA1; labeling intensity in hippocampus increases until adulthood. These results show that RGS14 mRNA and protein are upregulated throughout postnatal mouse development, and RGS14 protein exhibits a dynamic localization pattern that is enriched in hippocampus and primary olfactory cortex in the adult mouse brain.

  17. Mouse brain responses to charged particle radiation

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Mao, Xiao-Wen; Obenaus, Andre; Pecaut, Michael; Vlkolinsky, Roman; Song, Sheng-Kwei; Spigelman, Igor; Stampanoni, Marco

    CHANGES IN DISEASE LATENCY AND HOMEOSTASIS: 1) APP23 transgenic mice exhibit many of the pathological features of Alzheimer's Disease, and the disease progression is continuous over several months. Electrophysiological measurements have shown that disease-related decreases in synaptic efficacy occur earlier in irradiated APP23 animals. 2) Using vascular polymer cast technology combined with micro-tomographic imaging, microvasculature changes following irradiation have been detected and are consistent with loss of vessels and an increased spacing between them. The time course of vessel changes to control and irradiated animals is being constructed. 3) In order to assess the ability of the brain to respond to external environmental shocks and restore orderly normal function (homeostasis), we apply a controlled septic shock by treating animals with lipopolysaccharide (LPS). We find that in irradiated animals, the patterns of electrophysiological changes associated with reactions to lipopolysaccharide (LPS) are complex and unlike those of either LPS or irradiation alone. They further suggest that the brain continues to remodel for up to 6 months following radiation. This is consistent with the idea that irradiation may potentiate the risks from late secondary insults.

  18. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    PubMed Central

    Yao, Junjie; Xia, Jun; Maslov, Konstantin I.; Nasiriavanaki, Mohammadreza; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2012-01-01

    We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively decoupled by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area had a clear vascular pattern and spread wider than the somatosensory region. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism. PMID:22940116

  19. Accurate resistivity mouse brain mapping using microelectrode arrays.

    PubMed

    Béduer, Amélie; Joris, Pierre; Mosser, Sébastien; Delattre, Vincent; Fraering, Patrick C; Renaud, Philippe

    2014-10-15

    Electrical impedance spectroscopy measurements were performed in post-mortem mice brains using a flexible probe with an embedded micrometric electrode array. Combined with a peak resistance frequency method this allowed obtaining intrinsic resistivity values of brain tissues and structures with submillimetric resolution. Reproducible resistivity measurements are reported, which allows the resistivity in the cortex, ventricle, fiber tracts, thalamus and basal ganglia to be differentiated. Measurements of brain slices revealed resistivity profiles correlated with the local density of cell bodies hence allowing to discriminate between the different cortical layers. Finally, impedance measurements were performed on a model of cauterized mouse brain evidencing the possibility to measure the spatial extent and the degree of the tissue denaturation due to the cauterization.

  20. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  1. PACAP Interactions in the Mouse Brain: Implications for Behavioral and Other Disorders

    SciTech Connect

    Acquaah-Mensah, George; Taylor, Ronald C.; Bhave, Sanjiv V.

    2012-01-10

    As an activator of adenylate cyclase, the neuropeptide Pituitary Adenylate Cyclase Activating Peptide (PACAP) impacts levels of cyclic AMP, a key second messenger available in brain cells. PACAP is involved in certain adult behaviors. To elucidate PACAP interactions, a compendium of microarrays representing mRNA expression in the adult mouse whole brain was pooled from the Phenogen database for analysis. A regulatory network was computed based on mutual information between gene pairs using gene expression data across the compendium. Clusters among genes directly linked to PACAP, and probable interactions between corresponding proteins were computed. Database 'experts' affirmed some of the inferred relationships. The findings suggest ADCY7 is probably the adenylate cyclase isoform most relevant to PACAP's action. They also support intervening roles for kinases including GSK3B, PI 3-kinase, SGK3 and AMPK. Other high-confidence interactions are hypothesized for future testing. This new information has implications for certain behavioral and other disorders.

  2. Neural localization of addicsin in mouse brain.

    PubMed

    Akiduki, Saori; Ochiishi, Tomoyo; Ikemoto, Mitsushi J

    2007-10-22

    Addicsin is a member of the prenylated Rab acceptor (PRA) 1 domain family and a murine homolog of the rat glutamate-transporter-associated protein 3-18 (GTRAP3-18). This protein is considered to function as a modulator of the neural glutamate transporter excitatory amino acid carrier 1 (EAAC1). However, its molecular functions remain largely unknown. Here, we examined the regional and cellular localization of addicsin in the central nervous system (CNS) by using a newly generated antibody specific for the protein. Distribution analysis by Western blot and immunohistochemistry demonstrated that the protein was widely distributed in various regions of the mature CNS, including the olfactory bulbs, cerebral cortex, amygdala, hippocampus CA1-3 fields, dentate gyrus, and cerebellum. Double immunofluorescence analysis revealed that addicsin was expressed in the somata of principal neurons in the CNS such as the pyramidal cells and gamma-aminobutyric acid (GABA)-ergic interneurons scattered in the hippocampal formation. Furthermore, the protein showed pre-synaptic localization in the stratum lucidum of the CA3 field of the hippocampal formation. Subcellular localization analysis of highly purified synaptic fractions prepared from mouse forebrain supported the cytoplasmic and pre-synaptic distribution of addicsin. These results suggest that addicsin has neural expression and may play crucial roles in the basic physiological functions of the mature CNS.

  3. Efficacy of cabazitaxel in mouse models of pediatric brain tumors

    PubMed Central

    Girard, Emily; Ditzler, Sally; Lee, Donghoon; Richards, Andrew; Yagle, Kevin; Park, Joshua; Eslamy, Hedieh; Bobilev, Dmitri; Vrignaud, Patricia; Olson, James

    2015-01-01

    Background There is an unmet need in the treatment of pediatric brain tumors for chemotherapy that is efficacious, avoids damage to the developing brain, and crosses the blood-brain barrier. These experiments evaluated the efficacy of cabazitaxel in mouse models of pediatric brain tumors. Methods The antitumor activity of cabazitaxel and docetaxel were compared in flank and orthotopic xenograft models of patient-derived atypical teratoid rhabdoid tumor (ATRT), medulloblastoma, and central nervous system primitive neuroectodermal tumor (CNS-PNET). Efficacy of cabazitaxel and docetaxel were also assessed in the Smo/Smo spontaneous mouse medulloblastoma tumor model. Results This study observed significant tumor growth inhibition in pediatric patient-derived flank xenograft tumor models of ATRT, medulloblastoma, and CNS-PNET after treatment with either cabazitaxel or docetaxel. Cabazitaxel, but not docetaxel, treatment resulted in sustained tumor growth inhibition in the ATRT and medulloblastoma flank xenograft models. Patient-derived orthotopic xenograft models of ATRT, medulloblastoma, and CNS-PNET showed significantly improved survival with treatment of cabazitaxel. Conclusion These data support further testing of cabazitaxel as a therapy for treating human pediatric brain tumors. PMID:25140037

  4. A Comprehensive Atlas of the Adult Mouse Penis.

    PubMed

    Phillips, Tiffany R; Wright, David K; Gradie, Paul E; Johnston, Leigh A; Pask, Andrew J

    2015-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures.

  5. Dynamic reorganization of intrinsic functional networks in the mouse brain.

    PubMed

    Grandjean, Joanes; Preti, Maria Giulia; Bolton, Thomas A W; Buerge, Michaela; Seifritz, Erich; Pryce, Christopher R; Van De Ville, Dimitri; Rudin, Markus

    2017-03-14

    Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) allows for the integrative study of neuronal processes at a macroscopic level. The majority of studies to date have assumed stationary interactions between brain regions, without considering the dynamic aspects of network organization. Only recently has the latter received increased attention, predominantly in human studies. Applying dynamic FC (dFC) analysis to mice is attractive given the relative simplicity of the mouse brain and the possibility to explore mechanisms underlying network dynamics using pharmacological, environmental or genetic interventions. Therefore, we have evaluated the feasibility and research potential of mouse dFC using the interventions of social stress or anesthesia duration as two case-study examples. By combining a sliding-window correlation approach with dictionary learning, several dynamic functional states (dFS) with a complex organization were identified, exhibiting highly dynamic inter- and intra-modular interactions. Each dFS displayed a high degree of reproducibility upon changes in analytical parameters and across datasets. They fluctuated at different degrees as a function of anesthetic depth, and were sensitive indicators of pathology as shown for the chronic psychosocial stress mouse model of depression. Dynamic functional states are proposed to make a major contribution to information integration and processing in the healthy and diseased brain.

  6. Estrogen effects on the expression of Brx in the brain and pituitary of the mouse.

    PubMed

    Eddington, David O; Baldwin, Emily L; Segars, James H; Wu, T J

    2006-04-28

    A member of the Dbl family of oncoproteins was discovered in breast cancer tissue extracts. This novel protein, designated Brx, contains an estrogen-receptor binding motif and is highly expressed in hormone-responsive breast tissue. Due to its ability to augment ligand-dependent activation of estrogen receptors, we analyzed the expression of Brx in the adult mouse brain and pituitary. Results indicated that Brx was expressed in specific regions of the brain and pituitary. Furthermore, the results indicate that differences exist in both brain and pituitary tissue of male and female mice with greater expression in the female. However, estrogen did not influence Brx expression in ovariectomized mice. The anatomical studies support a role for Brx in its association with the estrogen receptor and that Brx may be involved in neuronal and pituitary function in a sexually dimorphic manner.

  7. Dynamics of the mouse brain cortical synaptic proteome during postnatal brain development

    PubMed Central

    Gonzalez-Lozano, Miguel A.; Klemmer, Patricia; Gebuis, Titia; Hassan, Chopie; van Nierop, Pim; van Kesteren, Ronald E.; Smit, August B.; Li, Ka Wan

    2016-01-01

    Development of the brain involves the formation and maturation of numerous synapses. This process requires prominent changes of the synaptic proteome and potentially involves thousands of different proteins at every synapse. To date the proteome analysis of synapse development has been studied sparsely. Here, we analyzed the cortical synaptic membrane proteome of juvenile postnatal days 9 (P9), P15, P21, P27, adolescent (P35) and different adult ages P70, P140 and P280 of C57Bl6/J mice. Using a quantitative proteomics workflow we quantified 1560 proteins of which 696 showed statistically significant differences over time. Synaptic proteins generally showed increased levels during maturation, whereas proteins involved in protein synthesis generally decreased in abundance. In several cases, proteins from a single functional molecular entity, e.g., subunits of the NMDA receptor, showed differences in their temporal regulation, which may reflect specific synaptic development features of connectivity, strength and plasticity. SNARE proteins, Snap 29/47 and Stx 7/8/12, showed higher expression in immature animals. Finally, we evaluated the function of Cxadr that showed high expression levels at P9 and a fast decline in expression during neuronal development. Knock down of the expression of Cxadr in cultured primary mouse neurons revealed a significant decrease in synapse density. PMID:27748445

  8. Genetic mouse models of brain ageing and Alzheimer's disease.

    PubMed

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed.

  9. A symmetrical Waxholm canonical mouse brain for NeuroMaps

    PubMed Central

    Bowden, Douglas M.; Johnson, G. Allan; Zaborsky, Laszlo; Green, William D.K.; Moore, Eider; Badea, Alexandra; Dubach, Mark F.; Bookstein, Fred L.

    2011-01-01

    NeuroMaps (2009) is a web-based application that enables investigators to map data from macaque studies to a canonical atlas of the macaque brain. It includes an image processor enabling one to create figures suitable for publication. Eventually it will enable investigators studying several species to analyze overlap between their data and multimodality data mapped by others. The purpose of this project was to incorporate the Waxholm canonical mouse brain (Hawrylycz, 2009) into NeuroMaps. An enhanced gradient echo (T2*) magnetic resonance image (MRI) of the Waxholm brain (Johnson et al., 2010) was warped to bring the irregular biological midplane of the MRI into line with the mathematically flat midsagittal plane of Waxholm space. The left hemisphere was deleted and the right reflected to produce a symmetrical 3D MRI. The symmetrical T2* image was imported into NeuroMaps. The map executing the warp was applied to four other voxellated volumes based on the same specimen and maintained at the Center for In-Vitro Microscopy (CIVM): a T2-weighted MRI, a T1 weighted MRI, a segmented image and an image reconstructed from Nissl-stained histological sections. Symmetric versions of those images were submitted to the CIVM repository where they are available to other laboratories. Utility of the symmetric atlas was demonstrated by mapping and comparing a cortical areas illustrated in three conventional mouse brain atlases. The symmetric Waxholm mouse brain atlas is now accessible in NeuroMaps. Investigators can map image data to standard templates over the Web and process them for publication, presentation and archival purposes: http://braininfo.rprc.washington.edu/MapViewData.aspx. PMID:21163300

  10. Developmental Expression of Orphan G Protein-Coupled Receptor 50 in the Mouse Brain

    PubMed Central

    2012-01-01

    Mental disorders have a complex etiology resulting from interactions between multiple genetic risk factors and stressful life events. Orphan G protein-coupled receptor 50 (GPR50) has been identified as a genetic risk factor for bipolar disorder and major depression in women, and there is additional genetic and functional evidence linking GPR50 to neurite outgrowth, lipid metabolism, and adaptive thermogenesis and torpor. However, in the absence of a ligand, a specific function has not been identified. Adult GPR50 expression has previously been reported in brain regions controlling the HPA axis, but its developmental expression is unknown. In this study, we performed extensive expression analysis of GPR50 and three protein interactors using rt-PCR and immunohistochemistry in the developing and adult mouse brain. Gpr50 is expressed at embryonic day 13 (E13), peaks at E18, and is predominantly expressed by neurons. Additionally we identified novel regions of Gpr50 expression, including brain stem nuclei involved in neurotransmitter signaling: the locus coeruleus, substantia nigra, and raphe nuclei, as well as nuclei involved in metabolic homeostasis. Gpr50 colocalizes with yeast-two-hybrid interactors Nogo-A, Abca2, and Cdh8 in the hypothalamus, amygdala, cortex, and selected brain stem nuclei at E18 and in the adult. With this study, we identify a link between GPR50 and neurotransmitter signaling and strengthen a likely role in stress response and energy homeostasis. PMID:22860215

  11. Recent Progress in Magnetic Resonance Imaging of the Embryonic and Neonatal Mouse Brain

    PubMed Central

    Wu, Dan; Zhang, Jiangyang

    2016-01-01

    The laboratory mouse has been widely used as a model system to investigate the genetic control mechanisms of mammalian brain development. Magnetic resonance imaging (MRI) is an important tool to characterize changes in brain anatomy in mutant mouse strains and injury progression in mouse models of fetal and neonatal brain injury. Progress in the last decade has enabled us to acquire MRI data with increasing anatomical details from the embryonic and neonatal mouse brain. High-resolution ex vivo MRI, especially with advanced diffusion MRI methods, can visualize complex microstructural organizations in the developing mouse brain. In vivo MRI of the embryonic mouse brain, which is critical for tracking anatomical changes longitudinally, has become available. Applications of these techniques may lead to further insights into the complex and dynamic processes of brain development. PMID:26973471

  12. Omics analysis of mouse brain models of human diseases.

    PubMed

    Paban, Véronique; Loriod, Béatrice; Villard, Claude; Buee, Luc; Blum, David; Pietropaolo, Susanna; Cho, Yoon H; Gory-Faure, Sylvie; Mansour, Elodie; Gharbi, Ali; Alescio-Lautier, Béatrice

    2017-02-05

    The identification of common gene/protein profiles related to brain alterations, if they exist, may indicate the convergence of the pathogenic mechanisms driving brain disorders. Six genetically engineered mouse lines modelling neurodegenerative diseases and neuropsychiatric disorders were considered. Omics approaches, including transcriptomic and proteomic methods, were used. The gene/protein lists were used for inter-disease comparisons and further functional and network investigations. When the inter-disease comparison was performed using the gene symbol identifiers, the number of genes/proteins involved in multiple diseases decreased rapidly. Thus, no genes/proteins were shared by all 6 mouse models. Only one gene/protein (Gfap) was shared among 4 disorders, providing strong evidence that a common molecular signature does not exist among brain diseases. The inter-disease comparison of functional processes showed the involvement of a few major biological processes indicating that brain diseases of diverse aetiologies might utilize common biological pathways in the nervous system, without necessarily involving similar molecules.

  13. Guidelines for Better Communication with Brain Impaired Adults

    MedlinePlus

    ... are here Home Guidelines for Better Communication with Brain Impaired Adults Printer-friendly version Communicating with a loved one with a brain disorder can indeed be challenging. Finding the right ...

  14. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    PubMed Central

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  15. Methylation of DNA in mouse early embryos, teratocarcinoma cells and adult tissues of mouse and rabbit.

    PubMed Central

    Singer, J; Roberts-Ems, J; Luthardt, F W; Riggs, A D

    1979-01-01

    The distribution and amount of 5-methylcytosine (5-MeCyt) in DNA was measured for early embryos of mouse strain CF1 (2 to 4 cell stage to blastocyst) and mouse teratocarcinoma cells. In each case, the pattern of methylation was examined by use of the restriction enzymes Hha I and HPA II HPA II, which cut DNA at the sites 5'GCGC and 5'CCGG respectively, when the cytosines at these sites are not methylated. Mouse embryo DNA was found to have the same level of methylation as adult mouse tissues, and no changes in methylation were seen during differentiation of the teratocarcinoma cells. The ratio of 5-MeCyt/Cyt in DNA was measured by high performance liquid chromatography for the differentiating teratocarcinoma cells and for several adult mouse and rabbit tissues. The variation between tissues or between teratocarcinoma cells at different stages of differentiation was less than 10 percent. These results are discussed in view of proposals that 5-MeCyt plays a role in differentiation. Images PMID:523320

  16. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    PubMed

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1

  17. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system

    PubMed Central

    Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A.; Gyllborg, Daniel; Muñoz Manchado, Ana; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M.; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D.; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-01-01

    Oligodendrocytes have been considered as a functionally homogenous population in the central nervous system (CNS). We performed single-cell RNA-Seq on 5072 cells of the oligodendrocyte lineage from ten regions of the mouse juvenile/adult CNS. Twelve populations were identified, representing a continuum from Pdgfra+ oligodendrocyte precursors (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly-formed oligodendrocytes were found to be resident in the adult CNS and responsive to complex motor learning. A second Pdgfra+ population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS. PMID:27284195

  18. The SH2 domain-containing 5-phosphatase SHIP2 is expressed in the germinal layers of embryo and adult mouse brain: increased expression in N-CAM-deficient mice.

    PubMed

    Muraille, E; Dassesse, D; Vanderwinden, J M; Cremer, H; Rogister, B; Erneux, C; Schiffmann, S N

    2001-01-01

    The germinative ventricular zone of embryonic brain contains neural lineage progenitor cells that give rise to neurons, astrocytes and oligodendrocytes. The ability to generate neurons persists at adulthood in restricted brain areas. During development, many growth factors exert their effects by interacting with tyrosine kinase receptors and activate the phosphatidylinositol 3-kinase and the Ras/MAP kinase pathways. By its ability to modulate these pathways, the recently identified Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 2, SHIP2, has the potential to regulate neuronal development. Using in situ hybridization technique with multiple synthetic oligonucleotides, we demonstrated that SHIP2 mRNA was highly expressed in the ventricular zone at early embryonic stages and subventricular zones at latter stages of brain and spinal cord and in the sympathetic chain. No significant expression was seen in differentiated fields. This restricted expression was maintained from embryonic day 11.5 to birth. In the periphery, large expression was detected in muscle and kidney and moderate expression in thyroid, pituitary gland, digestive system and bone. In the adult brain, SHIP2 was mainly restricted in structures containing neural stem cells such as the anterior subventricular zone, the rostral migratory stream and the olfactory tubercle. SHIP2 was also detected in the choroid plexuses and the granular layer of the cerebellum. The specificity of SHIP2 expression in neural stem cells was further demonstrated by (i) the dramatic increase in SHIP2 mRNA signal in neural cell adhesion molecule (N-CAM)-deficient mice, which present an accumulation of progenitor cells in the anterior subventricular zone and the rostral migratory stream, (ii) the abundant expression of 160-kDa SHIP2 by western blotting in proliferating neurospheres in culture and its downregulation in non-proliferating differentiated neurospheres. In conclusion, the close correlation between

  19. The magnetism responsive gene Ntan1 in mouse brain.

    PubMed

    Goto, Yasuaki; Taniura, Hideo; Yamada, Kiyofumi; Hirai, Takao; Sanada, Noriko; Nakamichi, Noritaka; Yoneda, Yukio

    2006-09-01

    We have previously identified Ntan1 as a magnetism response gene by differential display screening in cultured rat hippocampal neurons. Ntan1 mRNA was ubiquitously expressed in all the mouse tissues examined but relatively abundant in brain, retina and testis. Ntan1 mRNA expression was detectable in the embryonic 12-day mouse brain and gradually increased with ageing. In situ hybridization analysis showed high localization of Ntan1 mRNA in pyramidal cell layer of CA region and granular cell layer of dentate gyrus in the hippocampus, and Purkinje and granular cell layers in the cerebellum, respectively. Ntan1 mRNA expression was significantly increased about two-fold 12 h after brief exposure for 15 min to magnetism at 100 mT with a gradual decrease thereafter in cultured mouse hippocampal neurons. When embryonic 12-day-old or newborn mice were successively exposed to magnetic fields at 100 mT for 2 h, four times per day until the postnatal seventh day, Ntan1 mRNA was significantly increased about 1.5-2-fold in the hippocampus in vivo. The mice exposed to magnetic fields under the same condition showed significantly decreased locomotor activity. These results suggest that magnetic exposure affects higher order neural functions through modulation of genes expression.

  20. Adult human brain cell culture for neuroscience research.

    PubMed

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders.

  1. Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy.

    PubMed

    Pohling, Christoph; Buckup, Tiago; Pagenstecher, Axel; Motzkus, Marcus

    2011-08-01

    The fast and reliable characterization of pathological tissue is a debated topic in the application of vibrational spectroscopy in medicine. In the present work we apply multiplex coherent anti-Stokes Raman scattering (MCARS) to the investigation of fresh mouse brain tissue. The combination of imaginary part extraction followed by principal component analysis led to color contrast between grey and white matter as well as layers of granule and Purkinje cells. Additional quantitative information was obtained by using a decomposition algorithm. The results perfectly agree with HE stained references slides prepared separately making multiplex CARS an ideal approach for chemoselective imaging.

  2. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation

    PubMed Central

    Korogod, Natalya; Petersen, Carl CH; Knott, Graham W

    2015-01-01

    Analysis of brain ultrastructure using electron microscopy typically relies on chemical fixation. However, this is known to cause significant tissue distortion including a reduction in the extracellular space. Cryo fixation is thought to give a truer representation of biological structures, and here we use rapid, high-pressure freezing on adult mouse neocortex to quantify the extent to which these two fixation methods differ in terms of their preservation of the different cellular compartments, and the arrangement of membranes at the synapse and around blood vessels. As well as preserving a physiological extracellular space, cryo fixation reveals larger numbers of docked synaptic vesicles, a smaller glial volume, and a less intimate glial coverage of synapses and blood vessels compared to chemical fixation. The ultrastructure of mouse neocortex therefore differs significantly comparing cryo and chemical fixation conditions. DOI: http://dx.doi.org/10.7554/eLife.05793.001 PMID:26259873

  3. The fetal brain transcriptome and neonatal behavioral phenotype in the Ts1Cje mouse model of Down syndrome.

    PubMed

    Guedj, Faycal; Pennings, Jeroen L A; Ferres, Millie A; Graham, Leah C; Wick, Heather C; Miczek, Klaus A; Slonim, Donna K; Bianchi, Diana W

    2015-09-01

    Human fetuses with Down syndrome demonstrate abnormal brain growth and reduced neurogenesis. Despite the prenatal onset of the phenotype, most therapeutic trials have been conducted in adults. Here, we present evidence for fetal brain molecular and neonatal behavioral alterations in the Ts1Cje mouse model of Down syndrome. Embryonic day 15.5 brain hemisphere RNA from Ts1Cje embryos (n = 5) and wild type littermates (n = 5) was processed and hybridized to mouse gene 1.0 ST arrays. Bioinformatic analyses were implemented to identify differential gene and pathway regulation during Ts1Cje fetal brain development. In separate experiments, the Fox scale, ultrasonic vocalization and homing tests were used to investigate behavioral deficits in Ts1Cje pups (n = 29) versus WT littermates (n = 64) at postnatal days 3-21. Ts1Cje fetal brains displayed more differentially regulated genes (n = 71) than adult (n = 31) when compared to their age-matched euploid brains. Ts1Cje embryonic brains showed up-regulation of cell cycle markers and down-regulation of the solute-carrier amino acid transporters. Several cellular processes were dysregulated at both stages, including apoptosis, inflammation, Jak/Stat signaling, G-protein signaling, and oxidoreductase activity. In addition, early behavioral deficits in surface righting, cliff aversion, negative geotaxis, forelimb grasp, ultrasonic vocalization, and the homing tests were observed. The Ts1Cje mouse model exhibits abnormal gene expression during fetal brain development, and significant neonatal behavioral deficits in the pre-weaning period. In combination with human studies, this suggests that the Down syndrome phenotype manifests prenatally and provides a rationale for prenatal therapy to improve perinatal brain development and postnatal neurocognition.

  4. The Fetal Brain Transcriptome and Neonatal Behavioral Phenotype in the Ts1Cje Mouse Model of Down syndrome

    PubMed Central

    Guedj, Faycal; Pennings, Jeroen L. A.; Ferres, Millie A.; Graham, Leah C.; Wick, Heather C.; Miczek, Klaus A.; Slonim, Donna K.; Bianchi, Diana W.

    2016-01-01

    Human fetuses with Down syndrome demonstrate abnormal brain growth and reduced neurogenesis. Despite the prenatal onset of the phenotype, most therapeutic trials have been conducted in adults. Here, we present evidence for fetal brain molecular and neonatal behavioral alterations in the Ts1Cje mouse model of Down syndrome. Embryonic day 15.5 brain hemisphere RNA from Ts1Cje embryos (n = 5) and wild type littermates (n = 5) was processed and hybridized to mouse gene 1.0 ST arrays. Bioinformatic analyses were implemented to identify differential gene and pathway regulation during Ts1Cje fetal brain development. In separate experiments, the Fox scale, ultrasonic vocalization and homing tests were used to investigate behavioral deficits in Ts1Cje pups (n = 29) versus WT littermates (n = 64) at postnatal days 3–21. Ts1Cje fetal brains displayed more differentially regulated genes (n = 71) than adult (n = 31) when compared to their age-matched euploid brains. Ts1Cje embryonic brains showed up-regulation of cell cycle markers and down-regulation of the solute-carrier amino acid transporters. Several cellular processes were dysregulated at both stages, including apoptosis, inflammation, Jak/Stat signaling, G-protein signaling, and oxidoreductase activity. In addition, early behavioral deficits in surface righting, cliff aversion, negative geotaxis, forelimb grasp, ultrasonic vocalization, and the homing tests were observed. The Ts1Cje mouse model exhibits abnormal gene expression during fetal brain development, and significant neonatal behavioral deficits in the pre-weaning period. In combination with human studies, this suggests that the Down syndrome phenotype manifests prenatally and provides a rationale for prenatal therapy to improve perinatal brain development and post-natal neurocognition. PMID:25975229

  5. Temporal and spatial mouse brain expression of cereblon, an ionic channel regulator involved in human intelligence.

    PubMed

    Higgins, Joseph J; Tal, Adit L; Sun, Xiaowei; Hauck, Stefanie C R; Hao, Jin; Kosofosky, Barry E; Rajadhyaksha, Anjali M

    2010-03-01

    A mild form of autosomal recessive, nonsyndromal intellectual disability (ARNSID) in humans is caused by a homozygous nonsense mutation in the cereblon gene (mutCRBN). Rodent crbn protein binds to the intracellular C-terminus of the large conductance Ca(2+)-activated K(+)channel (BK(Ca)). An mRNA variant (human SITE 2 INSERT or mouse strex) of the BK(Ca) gene (KCNMA1) that is normally expressed during embryonic development is aberrantly expressed in mutCRBN human lymphoblastoid cell lines (LCLs) as compared to wild-type (wt) LCLs. The present study analyzes the temporal and spatial distribution of crbn and kcnma1 mRNAs in the mouse brain by the quantitative real-time reverse transcriptase-polymerase chain reaction (qPCR). The spatial expression pattern of endogenous and exogenous crbn proteins is characterized by immunostaining. The results show that neocortical (CTX) crbn and kcnma1 mRNA expression increases from embryonic stages to adulthood. The strex mRNA variant is >3.5-fold higher in embryos and decreases rapidly postnatally. Mouse crbn mRNA is abundant in the cerebellum (CRBM), with less expression in the CTX, hippocampus (HC), and striatum (Str) in adult mice. The intracytoplasmic distribution of endogenous crbn protein in the mouse CRBM, CTX, HC, and Str is similar to the immunostaining pattern described previously for the BK(Ca) channel. Exogenous hemagglutinin (HA) epitope-tagged human wt- and mutCRBN proteins using cDNA transfection in HEK293T cell lines showed the same intracellular expression distribution as endogenous mouse crbn protein. The results suggest that mutCRBN may cause ARNSID by disrupting the developmental regulation of BK(Ca) in brain regions that are critical for memory and learning.

  6. Comprehensive Analysis of Neonatal versus Adult Unilateral Decortication in a Mouse Model Using Behavioral, Neuroanatomical, and DNA Microarray Approaches

    PubMed Central

    Yoshikawa, Akira; Nakamachi, Tomoya; Shibato, Junko; Rakwal, Randeep; Shioda, Seiji

    2014-01-01

    Previously, studying the development, especially of corticospinal neurons, it was concluded that the main compensatory mechanism after unilateral brain injury in rat at the neonatal stage was due in part to non-lesioned ipsilateral corticospinal neurons that escaped selection by axonal elimination or neuronal apoptosis. However, previous results suggesting compensatory mechanism in neonate brain were not correlated with high functional recovery. Therefore, what is the difference among neonate and adult in the context of functional recovery and potential mechanism(s) therein? Here, we utilized a brain unilateral decortication mouse model and compared motor functional recovery mechanism post-neonatal brain hemisuction (NBH) with adult brain hemisuction (ABH). Three analyses were performed: (1) Quantitative behavioral analysis of forelimb movements using ladder walking test; (2) neuroanatomical retrograde tracing analysis of unlesioned side corticospinal neurons; and (3) differential global gene expressions profiling in unlesioned-side neocortex (rostral from bregma) in NBH and ABH on a 8 × 60 K mouse whole genome Agilent DNA chip. Behavioral data confirmed higher recovery ability in NBH over ABH is related to non-lesional frontal neocortex including rostral caudal forelimb area. A first inventory of differentially expressed genes genome-wide in the NBH and ABH mouse model is provided as a resource for the scientific community. PMID:25490135

  7. Low-Molecular-Mass Metal Complexes in the Mouse Brain

    PubMed Central

    McCormick, Sean P.; Chakrabarti, Mrinmoy; Cockrell, Allison L.; Park, Jinkyu; Lindahl, Lora S.; Lindahl, Paul A.

    2013-01-01

    The presence of labile low-molecular-mass (LMM, defined as < 10 kDa) metal complexes in cells and super-cellular structures such as the brain has been inferred from chelation studies, but direct evidence is lacking. To evaluate the presence of LMM metal complexes in the brain, supernatant fractions of fresh mouse brain homogenates were passed through a 10 kDa cutoff membrane and subjected to size-exclusion liquid chromatography under anaerobic refrigerated conditions. Fractions were monitored for Mn, Fe, Co, Cu, Zn, Mo, S and P using an on-line ICP-MS. At least 30 different LMM metal complexes were detected along with numerous P- and S- containing species. Reproducibility was assessed by performing the experiment 13 times, using different buffers, and by examining whether complexes changed with time. Eleven Co, 2 Cu, 5 Mn, 4 Mo, 3 Fe and 2 Zn complexes with molecular masses < 4 kDa were detected. One LMM Mo complex comigrated with the molybdopterin cofactor. Most Cu and Zn complexes appeared to be protein-bound with masses ranging from 4 – 20 kDa. Co was the only metal for which the “free” or aqueous complex was reproducibly observed. Aqueous Co may be sufficiently stable in this environment due to its relatively slow water-exchange kinetics. Attempts were made to assign some of these complexes, but further efforts will be required to identify them unambiguously and to determine their functions. This is among the first studies to detect low-molecular-mass transition metal complexes in the mouse brain using LC-ICP-MS. PMID:23443205

  8. Interleukin-1 receptors in mouse brain: Characterization and neuronal localization

    SciTech Connect

    Takao, T.; Tracey, D.E.; Mitchell, W.M.; De Souza, E.B. )

    1990-12-01

    The cytokine interleukin-1 (IL-1) has a variety of effects in brain, including induction of fever, alteration of slow wave sleep, and alteration of neuroendocrine activity. To examine the potential sites of action of IL-1 in brain, we used iodine-125-labeled recombinant human interleukin-1 (( 125I)IL-1) to identify and characterize IL-1 receptors in crude membrane preparations of mouse (C57BL/6) hippocampus and to study the distribution of IL-1-binding sites in brain using autoradiography. In preliminary homogenate binding and autoradiographic studies, (125I)IL-1 alpha showed significantly higher specific binding than (125I)IL-1 beta. Thus, (125I)IL-1 alpha was used in all subsequent assays. The binding of (125I)IL-1 alpha was linear over a broad range of membrane protein concentrations, saturable, reversible, and of high affinity, with an equilibrium dissociation constant value of 114 +/- 35 pM and a maximum number of binding sites of 2.5 +/- 0.4 fmol/mg protein. In competition studies, recombinant human IL-1 alpha, recombinant human IL-1 beta, and a weak IL-1 beta analog. IL-1 beta +, inhibited (125I)IL-1 alpha binding to mouse hippocampus in parallel with their relative bioactivities in the T-cell comitogenesis assay, with inhibitory binding affinity constants of 55 +/- 18, 76 +/- 20, and 2940 +/- 742 pM, respectively; rat/human CRF and human tumor necrosis factor showed no effect on (125I)IL-1 alpha binding. Autoradiographic localization studies revealed very low densities of (125I)IL-1 alpha-binding sites throughout the brain, with highest densities present in the molecular and granular layers of the dentate gyrus of the hippocampus and in the choroid plexus. Quinolinic acid lesion studies demonstrated that the (125I)IL-1 alpha-binding sites in the hippocampus were localized to intrinsic neurons.

  9. Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function.

    PubMed

    Braun, S M G; Jessberger, S

    2014-02-01

    Neural stem/progenitor cells (NSPCs) in the mammalian brain retain the ability to generate new neurones throughout life in discrete brain regions, through a process called adult neurogenesis. Adult neurogenesis, a dramatic form of adult brain circuitry plasticity, has been implicated in physiological brain function and appears to be of pivotal importance for certain forms of learning and memory. In addition, failing or altered neurogenesis has been associated with a variety of brain diseases such as major depression, epilepsy and age-related cognitive decline. Here we review recent advances in our understanding of the basic biology underlying the neurogenic process in the adult brain, focusing on mechanisms that regulate quiescence, proliferation and differentiation of NSPCs. In addition, we discuss how neurogenesis influences normal brain function, and in particular its role in memory formation, as well as its contribution to neuropsychiatric diseases. Finally, we evaluate the potential of targeting endogenous NSPCs for brain repair.

  10. Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model.

    PubMed

    Guidi, Sandra; Stagni, Fiorenza; Bianchi, Patrizia; Ciani, Elisabetta; Giacomini, Andrea; De Franceschi, Marianna; Moldrich, Randal; Kurniawan, Nyoman; Mardon, Karine; Giuliani, Alessandro; Calzà, Laura; Bartesaghi, Renata

    2014-02-01

    Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored

  11. Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

    PubMed Central

    2011-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5) mouse brain. Results We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. Conclusions We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development. PMID:21466694

  12. Isolation and Culture of Adult Zebrafish Brain-derived Neurospheres

    PubMed Central

    Lopez-Ramirez, Miguel A.; Calvo, Charles-Félix; Ristori, Emma; Thomas, Jean-Léon; Nicoli, Stefania

    2016-01-01

    The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish. PMID:26967835

  13. Stem Cell-Mediated Regeneration of the Adult Brain

    PubMed Central

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury of the adult mammalian brain is often associated with persistent functional deficits as its potential for regeneration and capacity to rebuild lost neural structures is limited. However, the discovery that neural stem cells (NSCs) persist throughout life in discrete regions of the brain, novel approaches to induce the formation of neuronal and glial cells, and recently developed strategies to generate tissue for exogenous cell replacement strategies opened novel perspectives how to regenerate the adult brain. Here, we will review recently developed approaches for brain repair and discuss future perspectives that may eventually allow for developing novel treatment strategies in acute and chronic brain injury. PMID:27781019

  14. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  15. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    SciTech Connect

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  16. Effects of heavy ion to the primary culture of mouse brain cells

    NASA Technical Reports Server (NTRS)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.

  17. A model for genomic imprinting in the social brain: adults.

    PubMed

    Ubeda, Francisco; Gardner, Andy

    2011-02-01

    Genomic imprinting refers to genes that are silenced when inherited via sperm or via egg. The silencing of genes conditional upon their parental origin requires an evolutionary explanation. The most widely accepted theory for the evolution of genomic imprinting-the kinship theory-argues that conflict between maternally inherited and paternally inherited genes over phenotypes with asymmetric effects on matrilineal and patrilineal kin results in self-imposed silencing of one of the copies. This theory has been applied to imprinting of genes expressed in the placenta, and infant brain determining the allocation of parental resources being the source of conflict parental promiscuity. However, there is growing evidence that imprinted genes are expressed in the postinfant brain where parental promiscuity per se is no longer a source of conflict. Here, we advance the kinship theory by developing an evolutionary model of genomic imprinting in adults, driven by intragenomic conflict over allocation to parental versus communal care. We consider the role of sex differences in dispersal and variance in reproductive success as sources of conflict. We predict that, in hominids and birds, parental care will be expressed by maternally inherited genes. In nonhominid mammals, we predict more diversity, with some mammals showing the same pattern and other showing the reverse. We use the model to interpret experimental data on imprinted genes in the house mouse: specifically, paternally expressed Peg1 and Peg3 genes, underlying maternal care, and maternally expressed Gnas and paternally expressed Gnasxl genes, underlying communal care. We also use the model to relate ancestral demography to contemporary imprinting disorders of adults, in humans and other taxa.

  18. Effects of cannabinoids on the activities of mouse brain lipases.

    PubMed

    Hunter, S A; Burstein, S; Renzulli, L

    1986-09-01

    Cannabinoids were found to augment phospholipase activities and modify lipid levels of mouse brain synaptosomes, myelin and mitochondria. Delta-1-tetra-hydrocannabinol (delta 1-THC) and several of its metabolites induced a dose-dependent (0.32-16 microM) stimulation of phospholipase A2 (PLA2) activity resulting in the increased release of free arachidonic acid from exogenous [1-14C]phosphatidylcholine (PC). The potencies of the cannabinoids in modulating PLA2 activity were approximately of the order: 7-OH-delta 1-THC greater than delta 1-THC greater than 7-oxo-delta 1-THC greater than delta 1-THC-7-oic acid = 6 alpha OH-delta 1-THC much greater than 6 beta-OH-delta 1-THC. The hydrolysis of phosphatidylinositol (PI) by synaptosomal phospholipase C (PLC) was enhanced significantly by delta 1-THC and promoted diacylglyceride levels by greater than 100 percent compared to control values. In contrast, arachidonate was the major product resulting from phospholipase activities of a 20,000 g pellet. Synaptosomal diacylglyceride lipase activity was inhibited by delta 1-THC. [1-14C]Arachidonic acid was readily incorporated into subcellular membrane phospholipids and after exposure to cannabinoids led to diminished phosphoglyceride levels and concomitant increases in released neutral lipid products. These data suggest that cannabinoids control phospholipid turnover and metabolism in mouse brain preparations by the activation of phospholipases and, through this mechanism, may exert some of their effects.

  19. Comparative mouse brain tractography of diffusion magnetic resonance imaging.

    PubMed

    Moldrich, Randal X; Pannek, Kerstin; Hoch, Renee; Rubenstein, John L; Kurniawan, Nyoman D; Richards, Linda J

    2010-07-01

    Diffusion magnetic resonance imaging (dMRI) tractography can be employed to simultaneously analyze three-dimensional white matter tracts in the brain. Numerous methods have been proposed to model diffusion-weighted magnetic resonance data for tractography, and we have explored the functionality of some of these for studying white and grey matter pathways in ex vivo mouse brain. Using various deterministic and probabilistic algorithms across a range of regions of interest we found that probabilistic tractography provides a more robust means of visualizing both white and grey matter pathways than deterministic tractography. Importantly, we demonstrate the sensitivity of probabilistic tractography profiles to streamline number, step size, curvature, fiber orientation distribution threshold, and wholebrain versus region of interest seeding. Using anatomically well-defined corticothalamic pathways, we show how projection maps can permit the topographical assessment of probabilistic tractography. Finally, we show how different tractography approaches can impact on dMRI assessment of tract changes in a mouse deficient for the frontal cortex morphogen, fibroblast growth factor 17. In conclusion, probabilistic tractography can elucidate the phenotypes of mice with neurodegenerative or neurodevelopmental disorders in a quantitative manner.

  20. Contribution of mast cells to injury mechanisms in a mouse model of pediatric traumatic brain injury.

    PubMed

    Moretti, Raffaella; Chhor, Vibol; Bettati, Donatella; Banino, Elena; De Lucia, Silvana; Le Charpentier, Tifenn; Lebon, Sophie; Schwendimann, Leslie; Pansiot, Julien; Rasika, Sowmyalakshmi; Degos, Vincent; Titomanlio, Luigi; Gressens, Pierre; Fleiss, Bobbi

    2016-12-01

    The cognitive and behavioral deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than injuries to the adult brain. Understanding this developmental sensitivity is critical because children under 4 years of age of sustain TBI more frequently than any other age group. One of the first events after TBI is the infiltration and degranulation of mast cells (MCs) in the brain, releasing a range of immunomodulatory substances; inhibition of these cells is neuroprotective in other types of neonatal brain injury. This study investigates for the first time the role of MCs in mediating injury in a P7 mouse model of pediatric contusion-induced TBI. We show that various neural cell types express histamine receptors and that histamine exacerbates excitotoxic cell death in primary cultured neurons. Cromoglycate, an inhibitor of MC degranulation, altered the inflammatory phenotype of microglia activated by TBI, reversing several changes but accentuating others, when administered before TBI. However, without regard to the time of cromoglycate administration, inhibiting MC degranulation did not affect cell loss, as evaluated by ventricular dilatation or cleaved caspase-3 labeling, or the density of activated microglia, neurons, or myelin. In double-heterozygous cKit mutant mice lacking MCs, this overall lack of effect was confirmed. These results suggest that the role of MCs in this model of pediatric TBI is restricted to subtle effects and that they are unlikely to be viable neurotherapeutic targets. © 2016 Wiley Periodicals, Inc.

  1. Rescue of Adult Hippocampal Neurogenesis in a Mouse Model of HIV Neurologic Disease

    PubMed Central

    Lee, Myoung-Hwa; Wang, Tongguang; Jang, Mi-Hyeon; Steiner, Joseph; Haughey, Norman; Ming, Guo-li; Song, Hongjun; Nath, Avindra; Venkatesan, Arun

    2011-01-01

    The prevalence of central nervous system (CNS) neurologic dysfunction associated with human immunodeficiency virus (HIV) infection continues to increase, despite the use of antiretroviral therapy. Previous work has focused on the deleterious effects of HIV on mature neurons and on development of neuroprotective strategies, which have consistently failed to show a meaningful clinical benefit. It is now well established that new neurons are continuously generated in discrete regions in the adult mammalian brain, and accumulating evidence supports important roles for these neurons in specific cognitive functions. In a transgenic mouse model of HIV neurologic disease with glial expression of the HIV envelope protein gp120, we demonstrate a significant reduction in proliferation of hippocampal neural progenitors in the dentate gyrus of adult animals, resulting in a dramatic decrease in the number of newborn neurons in the adult brain. We identify amplifying neural progenitor cells (ANPs) as the first class of progenitors affected by gp120, and we also demonstrate that newly generated neurons exhibit aberrant dendritic development. Furthermore, voluntary exercise and treatment with a selective serotonin reuptake inhibitor increase the ANP population and rescue the observed deficits in gp120 transgenic mice. Thus, during HIV infection, the envelope protein gp120 may potently inhibit adult hippocampal neurogenesis, and neurorestorative approaches may be effective in ameliorating these effects. Our study has significant implications for the development of novel therapeutic approaches for HIV-infected individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired. PMID:21146610

  2. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain

    PubMed Central

    Kimura, Eiki; Tohyama, Chiharu

    2017-01-01

    Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain. PMID:28223923

  3. The proteome of mouse brain microvessel membranes and basal lamina

    PubMed Central

    Chun, Hyun Bae; Scott, Michael; Niessen, Sherry; Hoover, Heather; Baird, Andrew; Yates, John; Torbett, Bruce E; Eliceiri, Brian P

    2011-01-01

    The blood–brain barrier (BBB) is a multicellular vascular structure separating blood from the brain parenchyma that is composed of endothelial cells with tight intercellular junctions, surrounded by a basal lamina, astrocytes, and pericytes. Previous studies have generated detailed databases of the microvessel transcriptome; however, less information is available on the BBB at the protein level. In this study, we specifically focused on characterization of the membrane fraction of cells within the BBB to generate a more complete understanding of membrane transporters, tight junction proteins, and associated extracellular matrix proteins that are functional hallmarks of the BBB. We used Multidimensional Protein Identification Technology to identify a total of 1,143 proteins in mouse brain microvessels, of which 53% were determined to be membrane associated. Analyses of specific classes of BBB-associated proteins in the context of recent transcriptome reports provide a unique database to assess the relative contribution of genes at the level of both RNA and protein in the maintenance of normal BBB integrity. PMID:21792245

  4. In Vitro Spermatogenesis in Explanted Adult Mouse Testis Tissues.

    PubMed

    Sato, Takuya; Katagiri, Kumiko; Kojima, Kazuaki; Komeya, Mitsuru; Yao, Masahiro; Ogawa, Takehiko

    2015-01-01

    Research on in vitro spermatogenesis is important for elucidating the spermatogenic mechanism. We previously developed an organ culture method which can support spermatogenesis from spermatogonial stem cells up to sperm formation using immature mouse testis tissues. In this study, we examined whether it is also applicable to mature testis tissues of adult mice. We used two lines of transgenic mice, Acrosin-GFP and Gsg2-GFP, which carry the marker GFP gene specific for meiotic and haploid cells, respectively. Testis tissue fragments of adult GFP mice, aged from 4 to 29 weeks old, which express GFP at full extension, were cultured in medium supplemented with 10% KSR or AlbuMAX. GFP expression decreased rapidly and became the lowest at 7 to 14 days of culture, but then slightly increased during the following culture period. This increase reflected de novo spermatogenesis, confirmed by BrdU labeling in spermatocytes and spermatids. We also used vitamin A-deficient mice, whose testes contain only spermatogonia. The testes of those mice at 13-21 weeks old, showing no GFP expression at explantation, gained GFP expression during culturing, and spermatogenesis was confirmed histologically. In addition, the adult testis tissues of Sl/Sld mutant mice, which lack spermatogenesis due to Kit ligand mutation, were cultured with recombinant Kit ligand to induce spermatogenesis up to haploid formation. Although the efficiency of spermatogenesis was lower than that of pup, present results showed that the organ culture method is effective for the culturing of mature adult mouse testis tissue, demonstrated by the induction of spermatogenesis from spermatogonia to haploid cells.

  5. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain.

    PubMed

    Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang

    2014-05-15

    Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology.

  6. Role of microglia in a mouse model of paediatric traumatic brain injury.

    PubMed

    Chhor, Vibol; Moretti, Raffaella; Le Charpentier, Tifenn; Sigaut, Stephanie; Lebon, Sophie; Schwendimann, Leslie; Oré, Marie-Virginie; Zuiani, Chiara; Milan, Valentina; Josserand, Julien; Vontell, Regina; Pansiot, Julien; Degos, Vincent; Ikonomidou, Chrysanthy; Titomanlio, Luigi; Hagberg, Henrik; Gressens, Pierre; Fleiss, Bobbi

    2016-11-04

    The cognitive and behavioural deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than TBI in the mature brain. Understanding this developmental sensitivity is critical as children under four years of age sustain TBI more frequently than any other age group. Microglia (MG), resident immune cells of the brain that mediate neuroinflammation, are activated following TBI in the immature brain. However, the type and temporal profile of this activation and the consequences of altering it are still largely unknown. In a mouse model of closed head weight drop paediatric brain trauma, we characterized i) the temporal course of total cortical neuroinflammation and the phenotype of ex vivo isolated CD11B-positive microglia/macrophage (MG/MΦ) using a battery of 32 markers, and ii) neuropathological outcome 1 and 5days post-injury. We also assessed the effects of targeting MG/MΦ activation directly, using minocycline a prototypical microglial activation antagonist, on these processes and outcome. TBI induced a moderate increase in both pro- and anti-inflammatory cytokines/chemokines in the ipsilateral hemisphere. Isolated cortical MG/MΦ expressed increased levels of markers of endogenous reparatory/regenerative and immunomodulatory phenotypes compared with shams. Blocking MG/MΦ activation with minocycline at the time of injury and 1 and 2days post-injury had only transient protective effects, reducing ventricular dilatation and cell death 1day post-injury but having no effect on injury severity at 5days. This study demonstrates that, unlike in adults, the role of MG/MΦ in injury mechanisms following TBI in the immature brain may not be negative. An improved understanding of MG/MΦ function in paediatric TBI could support translational efforts to design therapeutic interventions.

  7. Analysis of bioactive oxysterols in newborn mouse brain by LC/MS[S

    PubMed Central

    Meljon, Anna; Theofilopoulos, Spyridon; Shackleton, Cedric H. L.; Watson, Gordon L.; Javitt, Norman B.; Knölker, Hans-Joachim; Saini, Ratni; Arenas, Ernest; Wang, Yuqin; Griffiths, William J.

    2012-01-01

    Unesterified cholesterol is a major component of plasma membranes. In the brain of the adult, it is mostly found in myelin sheaths, where it plays a major architectural role. In the newborn mouse, little myelination of neurons has occurred, and much of this sterol comprises a metabolically active pool. In the current study, we have accessed this metabolically active pool and, using LC/MS, have identified cholesterol precursors and metabolites. Although desmosterol and 24S-hydroxycholesterol represent the major precursor and metabolite, respectively, other steroids, including the oxysterols 22-oxocholesterol, 22R-hydroxycholesterol, 20R,22R-dihydroxycholesterol, and the C21-neurosteroid progesterone, were identified. 24S,25-epoxycholesterol formed in parallel to cholesterol was also found to be a major sterol in newborn brain. Like 24S- and 22R-hydroxycholesterols, and also desmosterol, 24S,25-epoxycholesterol is a ligand to the liver X receptors, which are expressed in brain. The desmosterol metabolites (24Z),26-, (24E),26-, and 7α-hydroxydesmosterol were identified in brain for the first time PMID:22891291

  8. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease.

    PubMed

    Sacksteder, Colette A; Qian, Wei-Jun; Knyushko, Tatyana V; Wang, Haixing; Chin, Mark H; Lacan, Goran; Melega, William P; Camp, David G; Smith, Richard D; Smith, Desmond J; Squier, Thomas C; Bigelow, Diana J

    2006-07-04

    Increased abundance of nitrotyrosine modifications of proteins have been documented in multiple pathologies in a variety of tissue types and play a role in the redox regulation of normal metabolism. To identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic data set identifying 7792 proteins from a whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in the identification of 31 unique nitrotyrosine sites within 29 different proteins. More than half of the nitrated proteins that have been identified are involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces an increased level of nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high-resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, a characteristic consistent with peroxynitrite-induced tyrosine modification. In addition, most sequences contain cysteines or methionines proximal to nitrotyrosines, contrary to suggestions that these amino acid side chains prevent tyrosine nitration. More striking is the presence of a positively charged moiety near the sites of nitration, which is not observed for non-nitrated tyrosines. Together, these observations suggest a predictive tool of functionally important sites of nitration and that cellular nitrating conditions play a role in neurodegenerative changes in the brain.

  9. Mechanisms of neuronal migration in the adult brain.

    PubMed

    Kaneko, Naoko; Sawada, Masato; Sawamoto, Kazunobu

    2017-03-02

    Adult neurogenesis was first observed nearly 60 years ago, and it has since grown into an important neurochemistry research field. Much recent research has focused on the treatment of brain diseases through neuronal regeneration with endogenously generated neurons. In the adult brain, immature neurons called neuroblasts are continuously generated in the ventricular-subventricular zone (V-SVZ). These neuroblasts migrate rapidly through the rostral migratory stream to the olfactory bulb, where they mature and are integrated into the neuronal circuitry. After brain insult, some of the neuroblasts in the V-SVZ migrate toward the lesion to repopulate the injured tissue. This notable migratory capacity of V-SVZ-derived neuroblasts is important for efficiently regenerating neurons in remote areas of the brain. As these neurons migrate for long distances through adult brain tissue, they are supported by various guidance cues and structures that act as scaffolds. Some of these mechanisms are unique to neuroblast migration in the adult brain, and are not involved in migration in the developing brain. Here, we review the latest findings on the mechanisms of neuroblast migration in the adult brain under physiological and pathological conditions, and discuss various issues that still need to be resolved. This article is protected by copyright. All rights reserved.

  10. Doublecortin (DCX) is not Essential for Survival and Differentiation of Newborn Neurons in the Adult Mouse Dentate Gyrus

    PubMed Central

    Dhaliwal, Jagroop; Xi, Yanwei; Bruel-Jungerman, Elodie; Germain, Johanne; Francis, Fiona; Lagace, Diane C.

    2016-01-01

    In the adult brain, expression of the microtubule-associated protein Doublecortin (DCX) is associated with neural progenitor cells (NPCs) that give rise to new neurons in the dentate gyrus. Many studies quantify the number of DCX-expressing cells as a proxy for the level of adult neurogenesis, yet no study has determined the effect of removing DCX from adult hippocampal NPCs. Here, we use a retroviral and inducible mouse transgenic approach to either knockdown or knockout DCX from adult NPCs in the dentate gyrus and examine how this affects cell survival and neuronal maturation. Our results demonstrate that shRNA-mediated knockdown of DCX or Cre-mediated recombination in floxed DCX mice does not alter hippocampal neurogenesis and does not change the neuronal fate of the NPCs. Together these findings show that the survival and maturation of adult-generated hippocampal neurons does not require DCX. PMID:26793044

  11. Growth Arrest Specific 1 (GAS1) Is Abundantly Expressed in the Adult Mouse Central Nervous System

    PubMed Central

    Zarco, Natanael; Bautista, Elizabeth; Cuéllar, Manola; Vergara, Paula; Flores-Rodriguez, Paola; Aguilar-Roblero, Raúl

    2013-01-01

    Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS. PMID:23813868

  12. Human tau expression reduces adult neurogenesis in a mouse model of tauopathy.

    PubMed

    Komuro, Yutaro; Xu, Guixiang; Bhaskar, Kiran; Lamb, Bruce T

    2015-06-01

    Accumulation of hyperphosphorylated and aggregated microtubule-associated protein tau (MAPT) is a central feature of a class of neurodegenerative diseases termed tauopathies. Notably, there is increasing evidence that tauopathies, including Alzheimer's disease, are also characterized by a reduction in neurogenesis, the birth of adult neurons. However, the exact relationship between hyperphosphorylation and aggregation of MAPT and neurogenic deficits remains unclear, including whether this is an early- or late-stage disease marker. In the present study, we used the genomic-based hTau mouse model of tauopathy to examine the temporal and spatial regulation of adult neurogenesis during the course of the disease. Surprisingly, hTau mice exhibited reductions in adult neurogenesis in 2 different brain regions by as early as 2 months of age, before the development of robust MAPT pathology in this model. This reduction was found to be due to reduced proliferation and not because of enhanced apoptosis in the hippocampus. At these same time points, hTau mice also exhibited altered MAPT phosphorylation with neurogenic precursors. To examine whether the effects of MAPT on neurogenesis were cell autonomous, neurospheres prepared from hTau animals were examined in vitro, revealing a growth deficit when compared with non-transgenic neurosphere cultures. Taken together, these studies provide evidence that altered adult neurogenesis is a robust and early marker of altered, cell-autonomous function of MAPT in the hTau mouse mode of tauopathy and that altered adult neurogenesis should be examined as a potential marker and therapeutic target for human tauopathies.

  13. Lifespan and reproduction in brain-specific miR-29-knockdown mouse.

    PubMed

    Takeda, Toru; Tanabe, Hiroyuki

    2016-03-18

    The microRNA miR-29 is widely distributed and highly expressed in adult mouse brain during the mouse's lifetime. We recently created conditional mutant mice whose miR-29 was brain-specifically knocked down through overexpression of an antisense RNA transgene against miR-29. To explore a role for brain miR-29 in maximizing organismal fitness, we assessed somatic growth, reproduction, and lifespan in the miR-29-knockdown (KD) mice and their wild-type (WT) littermates. The KD mice were developmentally indistinguishable from WT mice with respect to gross morphology and physical activity. Fertility testing revealed that KD males were subfertile, whereas KD females were hyperfertile, only in terms of reproductive success, when compared to their gender-matched WT correspondents. Another phenotypic difference between KD and WT animals appeared in their lifespan data; KD males displayed an overall increasing tendency in post-reproductive survival relative to WT males. In contrast, KD females were prone to shorter lifespans than WT females. These results clarify that brain-targeted miR-29 knockdown affects both lifespan and reproduction in a gender-dependent manner, and moreover that the reciprocal responsiveness to the miR-29 knockdown between these two phenotypes in both genders closely follow life-course models based on the classical trade-off prediction wherein elaborate early-life energetic investment in reproduction entails accelerated late-life declines in survival, and vice versa. Thus, this study identified miR-29 as the first mammalian miRNA that is directly implicated in the lifetime trade-off between the two major fitness components, lifespan and reproduction.

  14. MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil

    NASA Astrophysics Data System (ADS)

    Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin

    2015-07-01

    Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.

  15. Brain Penetration and Efficacy of Different Mebendazole Polymorphs in a Mouse Brain Tumor Model

    PubMed Central

    Wanjiku, Teresia; Rudek, Michelle A; Joshi, Avadhut; Gallia, Gary L.; Riggins, Gregory J.

    2015-01-01

    Purpose Mebendazole (MBZ), first used as an antiparasitic drug, shows preclinical efficacy in models of glioblastoma and medulloblastoma. Three different MBZ polymorphs (A, B and C) exist and a detailed assessment of the brain penetration, pharmacokinetics and anti-tumor properties of each individual MBZ polymorph is necessary to improve mebendazole-based brain cancer therapy. Experimental Design and Results In this study, various marketed and custom-formulated MBZ tablets were analyzed for their polymorph content by IR spectroscopy and subsequently tested in orthotopic GL261 mouse glioma model for efficacy and tolerability. The pharmacokinetics and brain concentration of MBZ polymorphs and two main metabolites were analyzed by LC-MS. We found that polymorph B and C both increased survival in a GL261 glioma model, as B exhibited greater toxicity. Polymorph A showed no benefit. Both, polymorph B and C, reached concentrations in the brain that exceeded the IC50 in GL261 cells 29-fold. In addition, polymorph C demonstrated an AUC0-24h brain-to-plasma (B/P) ratio of 0.82, whereas B showed higher plasma AUC and lower B/P ratio. In contrast, polymorph A presented markedly lower levels in the plasma and brain. Furthermore, the combination with elacridar was able to significantly improve the efficacy of polymorph C in GL261 glioma and D425 medulloblastoma models in mice. Conclusion Among MBZ polymorphs, C reaches therapeutically effective concentrations in the brain tissue and tumor with less side effects and is the better choice for brain cancer therapy. Its efficacy can be further enhanced by combination with elacridar. PMID:25862759

  16. Analysis of proteome dynamics in the mouse brain

    PubMed Central

    Price, John C.; Guan, Shenheng; Burlingame, Alma; Prusiner, Stanley B.; Ghaemmaghami, Sina

    2010-01-01

    Advances in systems biology have allowed for global analyses of mRNA and protein expression, but large-scale studies of protein dynamics and turnover have not been conducted in vivo. Protein turnover is an important metabolic and regulatory mechanism in establishing proteome homeostasis, impacting many physiological and pathological processes. Here, we have used organism-wide isotopic labeling to measure the turnover rates of ~2,500 proteins in multiple mouse tissues, spanning four orders of magnitude. Through comparison of the brain with the liver and blood, we show that within the respective tissues, proteins performing similar functions often have similar turnover rates. Proteins in the brain have significantly slower turnover (average lifetime of 9.0 d) compared with those of the liver (3.0 d) and blood (3.5 d). Within some organelles (such as mitochondria), proteins have a narrow range of lifetimes, suggesting a synchronized turnover mechanism. Protein subunits within complexes of variable composition have a wide range of lifetimes, whereas those within well-defined complexes turn over in a coordinated manner. Together, the data represent the most comprehensive in vivo analysis of mammalian proteome turnover to date. The developed methodology can be adapted to assess in vivo proteome homeostasis in any model organism that will tolerate a labeled diet and may be particularly useful in the analysis of neurodegenerative diseases in vivo. PMID:20699386

  17. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    SciTech Connect

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  18. Apoptotic effects of the 'designer drug' methylenedioxypyrovalerone (MDPV) on the neonatal mouse brain.

    PubMed

    Adám, Agota; Gerecsei, László István; Lepesi, Nikolett; Csillag, András

    2014-09-01

    The designer drug of cathinone family, methylenedioxypyrovalerone (MDPV), is a cheap and frequently used psychoactive drug of abuse. However, its mechanism of action, particularly its potential detrimental effect on the developing brain, is largely unknown, despite the fact that pregnant females may occur among the users. The objective of our study was to identify the brain areas sensitive for a possible apoptotic effect of the widely abused MDPV on the developing brain. To this end, we used a mouse model which can be compared with the human fetus of third trimester, considering the developmental stage of the brain. Litters of 7-day-old C57BL/6J mice were treated either with i.p. injection of 10mg/kg b.wt.of MDPV or vehicle (saline), and sacrificed after 24h. Similar dose of MDPV enhanced locomotor activity of pups. The brains were processed for anti-caspase 3 (Casp3) immunohistochemistry and the apoptotic cells were identified and counted. We found prominent increase in the number of apoptotic cells in the piriform cortex, retrosplenial area, hippocampus CA1 and nucleus accumbens, whereas the overall density of cells did not change significantly in these regions. The neurons of the nucleus accumbens appeared to be especially sensitive to MDPV: Casp3-immunoreactive cells marked out the core and shell regions of the accumbens. Highest percentage of apoptotic cells as compared to total cell density was also found in the nucleus accumbens. However, we did not observe the same effect on the brain of adult mice. Thus, MDPV did not seem to increase apoptosis in the mature nervous system. The results are in agreement with the assumption that cathinones (in particular MDPV) may adversely affect neural integrity in the developing CNS.

  19. Chronic maternal morphine alters calbindin D-28k expression pattern in postnatal mouse brain.

    PubMed

    Mithbaokar, Pratibha; Fiorito, Filomena; Della Morte, Rossella; Maharajan, Veeramani; Costagliola, Anna

    2016-01-01

    The distribution pattern of calbindin (CB)-D28k-expressing neurons results to be altered in several brain regions of chronic morphine exposed adult mice. In this study, the influence of chronic maternal exposure to morphine on the distribution pattern of CB-D28k-expressing neurons in the brain of mouse offspring was investigated. Females of CD-1 mice were daily administered with saline or morphine for 7 days before mating, during the whole gestation period, and until 21 day post-partum. Their offspring were sacrificed on postnatal day 18, and the brains were examined by histology using cresyl violet and by immunohistochemistry using a rabbit polyclonal anti-CB-D28k antibody. Histology revealed no significant differences in the distribution pattern and the number of neurons between the offspring forebrain of the control group of mice and the two groups of mice treated with different doses of morphine. However, immunohistochemical analysis revealed that the number of CB-D28k-immunoreactive neurons remarkably decreased in the cingulate cortex, in the layers II-IV of the parietal cortex and in all regions of the hippocampus, while it increased in the layers V-VI of the parietal cortex and in the subicular region of the offspring brain of morphine treated mice. Overall, our findings demonstrate that maternal exposure to morphine alters the pattern of CB-D28k-expressing neuron pattern in specific regions of murine developing brain, in a layer- and dose-dependent way, thus suggesting that these alterations might represent a mechanism by which morphine modifies the functional aspects of developing brain.

  20. Effects of colistin on amino acid neurotransmitters and blood-brain barrier in the mouse brain.

    PubMed

    Wang, Jian; Yi, Meishuang; Chen, Xueping; Muhammad, Ishfaq; Liu, Fangping; Li, Rui; Li, Jian; Li, Jichang

    2016-01-01

    Neurotoxicity is one of the major potential side effects of colistin therapy. However, the mechanistic aspects of colistin-induced neurotoxicity remain largely unknown. The objective of this study was to examine the effects of colistin on the blood-brain barrier (BBB) and amino acid neurotransmitters in the cerebral cortex of mouse. Mice were divided into four groups (n=5) and were administrated intravenously with 15mg/kg/day of colistin sulfate for 1, 3 and 7days successively while the control group was administrated intravenously with saline solution. The permeability and ultrastructure of the BBB were detected using the Evans blue (EB) dye and transmission electron microscopy (TEM), and the expression of Claudin-5 were determined by real-time PCR examination and western blotting. The brain uptake of colistin was measured by high-performance liquid chromatography (HPLC). The effects of colistin on amino acid neurotransmitters and their receptors were also examined by HPLC and real-time PCR. The results of EB extravasation, TEM and expression of Claudin-5 showed that colistin treatment did not affect the BBB integrity. In addition, multiple doses of colistin could induce accumulation of this compound in the brain parenchyma although there was poor brain uptake of colistin. Moreover, colistin exposure significantly increased the contents of glutamate (Glu) and gamma aminobutyric acid (GABA), and enhanced the mRNA expression levels of gamma aminobutyric acid type A receptor (GABAAR), gamma aminobutyric acid type B receptor (GABABR), N-methyl-d-aspartate 1 receptor (NR1), N-methyl-d-aspartate 2A receptor (NR2A) and N-methyl-d-aspartate 2B receptor (NR2B) in the cerebral cortex. Our data demonstrate that colistin is able to accumulate in the mouse brain and elevate the levels of amino acid neurotransmitters. These findings may be associated with colistin-induced neurotoxicity.

  1. Memory and Brain Volume in Adults Prenatally Exposed to Alcohol

    ERIC Educational Resources Information Center

    Coles, Claire D.; Goldstein, Felicia C.; Lynch, Mary Ellen; Chen, Xiangchuan; Kable, Julie A.; Johnson, Katrina C.; Hu, Xiaoping

    2011-01-01

    The impact of prenatal alcohol exposure on memory and brain development was investigated in 92 African-American, young adults who were first identified in the prenatal period. Three groups (Control, n = 26; Alcohol-related Neurodevelopmental Disorder, n = 36; and Dysmorphic, n = 30) were imaged using structural MRI with brain volume calculated for…

  2. Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis

    PubMed Central

    Yao, Yuemang; Chinnici, Cinzia; Tang, Hanguan; Trojanowski, John Q; Lee, Virginia MY; Praticò, Domenico

    2004-01-01

    Background An increasing body of evidence implicates both brain inflammation and oxidative stress in the pathogenesis of Alzheimer's disease (AD). The relevance of their interaction in vivo, however, is unknown. Previously, we have shown that separate pharmacological targeting of these two components results in amelioration of the amyloidogenic phenotype of a transgenic mouse model of AD-like brain amyloidosis (Tg2576). Methods In the present study, we investigated the therapeutic effects of a combination of an anti-inflammatory agent, indomethacin, and a natural anti-oxidant, vitamin E, in the Tg2576 mice. For this reason, animals were treated continuously from 8 (prior to Aβ deposition) through 15 (when Aβ deposits are abundant) months of age. Results At the end of the study, these therapeutic interventions suppressed brain inflammatory and oxidative stress responses in the mice. This effect was accompanied by significant reductions of soluble and insoluble Aβ1-40 and Aβ1-42 in neocortex and hippocampus, wherein the burden of Aβ deposits also was significantly decreased. Conclusions The results of the present study support the concept that brain oxidative stress and inflammation coexist in this animal model of AD-like brain amyloidosis, but they represent two distinct therapeutic targets in the disease pathogenesis. We propose that a combination of anti-inflammatory and anti-oxidant drugs may be a useful strategy for treating AD. PMID:15500684

  3. Childhood Onset Schizophrenia: Cortical Brain Abnormalities as Young Adults

    ERIC Educational Resources Information Center

    Greenstein, Deanna; Lerch, Jason; Shaw, Philip; Clasen, Liv; Giedd, Jay; Gochman, Peter; Rapoport, Judith; Gogtay, Nitin

    2006-01-01

    Background: Childhood onset schizophrenia (COS) is a rare but severe form of the adult onset disorder. While structural brain imaging studies show robust, widespread, and progressive gray matter loss in COS during adolescence, there have been no longitudinal studies of sufficient duration to examine comparability with the more common adult onset…

  4. Brain and Plasma Molecular Characterization of the Pathogenic TBI-AD Interrelationship in Mouse Models

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0253 TITLE: Brain and Plasma Molecular Characterization of the Pathogenic TBI-AD Interrelationship in Mouse Models ... brain and plasma responses in mouse models of TBI, AD and other neurodegenerative conditions (Abdullah et al., 2014; Abdullah et al., 2013; Crawford...identify age/time-dependent expression of brain proteins and lipids in mouse models of AD (PSAPP and hTau) and of mTBI (single and repetitive mTBI in hTau

  5. Isolation of multipotent neural stem/progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse

    PubMed Central

    Guo, Weixiang; Patzlaff, Natalie E.; Jobe, Emily M.; Zhao, Xinyu

    2013-01-01

    In adult mammals, the subventricular zone of the lateral ventricles (SVZ) and the subgranular zone of the dentate gyrus (DG) demonstrate ongoing neurogenesis, and multipotent neural stem/progenitor cells (NSCs) in these two regions exhibit different intrinsic properties. However, investigation of the mechanisms underlying such differences has been limited by a lack of efficient methods for isolating NSCs, particularly from the adult DG. Here we describe a protocol that enables us to isolate self-renewing and multipotent NSCs from the SVZ and the DG of the same adult mouse. The protocol involves the microdissection of the SVZ and DG from one adult mouse brain, isolation of NSCs from specific regions, and cultivation of NSCs in vitro. The entire procedure takes 2 to 3 hours. Since only one mouse is needed for each cell isolation procedure, this protocol will be particularly useful for studies with limited availability of mice, such as mice that contain multiple genetic modifications. PMID:23080272

  6. Contributions of Mouse and Human Hematopoietic Cells to Remodeling of the Adult Auditory Nerve After Neuron Loss

    PubMed Central

    Lang, Hainan; Nishimoto, Eishi; Xing, Yazhi; Brown, LaShardai N; Noble, Kenyaria V; Barth, Jeremy L; LaRue, Amanda C; Ando, Kiyoshi; Schulte, Bradley A

    2016-01-01

    The peripheral auditory nerve (AN) carries sound information from sensory hair cells to the brain. The present study investigated the contribution of mouse and human hematopoietic stem cells (HSCs) to cellular diversity in the AN following the destruction of neuron cell bodies, also known as spiral ganglion neurons (SGNs). Exposure of the adult mouse cochlea to ouabain selectively killed type I SGNs and disrupted the blood-labyrinth barrier. This procedure also resulted in the upregulation of genes associated with hematopoietic cell homing and differentiation, and provided an environment conducive to the tissue engraftment of circulating stem/progenitor cells into the AN. Experiments were performed using both a mouse-mouse bone marrow transplantation model and a severely immune-incompetent mouse model transplanted with human CD34+ cord blood cells. Quantitative immunohistochemical analysis of recipient mice demonstrated that ouabain injury promoted an increase in the number of both HSC-derived macrophages and HSC-derived nonmacrophages in the AN. Although rare, a few HSC-derived cells in the injured AN exhibited glial-like qualities. These results suggest that human hematopoietic cells participate in remodeling of the AN after neuron cell body loss and that hematopoietic cells can be an important resource for promoting AN repair/regeneration in the adult inner ear. PMID:27600399

  7. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  8. Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain

    PubMed Central

    Sun, Gerald J.; Zhou, Yi; Stadel, Ryan P.; Moss, Jonathan; Yong, Jing Hui A.; Ito, Shiori; Kawasaki, Nicholas K.; Phan, Alexander T.; Oh, Justin H.; Modak, Nikhil; Reed, Randall R.; Toni, Nicolas; Song, Hongjun; Ming, Guo-li

    2015-01-01

    In a classic model of mammalian brain formation, precursors of principal glutamatergic neurons migrate radially along radial glia fibers whereas GABAergic interneuron precursors migrate tangentially. These migration modes have significant implications for brain function. Here we used clonal lineage tracing of active radial glia-like neural stem cells in the adult mouse dentate gyrus and made the surprising discovery that proliferating neuronal precursors of glutamatergic granule neurons exhibit significant tangential migration along blood vessels, followed by limited radial migration. Genetic birthdating and morphological and molecular analyses pinpointed the neuroblast stage as the main developmental window when tangential migration occurs. We also developed a partial “whole-mount” dentate gyrus preparation and observed a dense plexus of capillaries, with which only neuroblasts, among the entire population of progenitors, are directly associated. Together, these results provide insight into neuronal migration in the adult mammalian nervous system. PMID:26170290

  9. Temporal profiles of synaptic plasticity-related signals in adult mouse hippocampus with methotrexate treatment.

    PubMed

    Yang, Miyoung; Kim, Juhwan; Kim, Sung-Ho; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-07-25

    Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced hippocampal dysfunction are poorly understood. To evaluate temporal changes in synaptic plasticity-related signals, the expression and activity of N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, extracellular signal-regulated kinase 1/2, cAMP responsive element-binding protein, glutamate receptor 1, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor were examined in the hippocampi of adult C57BL/6 mice after methotrexate (40 mg/kg) intraperitoneal injection. Western blot analysis showed biphasic changes in synaptic plasticity-related signals in adult hippocampi following methotrexate treatment. N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, and glutamate receptor 1 were acutely activated during the early phase (1 day post-injection), while extracellular signal-regulated kinase 1/2 and cAMP responsive element-binding protein activation showed biphasic increases during the early (1 day post-injection) and late phases (7-14 days post-injection). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression increased significantly during the late phase (7-14 days post-injection). Therefore, methotrexate treatment affects synaptic plasticity-related signals in the adult mouse hippocampus, suggesting that changes in synaptic plasticity-related signals may be associated with neuronal survival and plasticity-related cellular remodeling.

  10. New Nerve Cells for the Adult Brain.

    ERIC Educational Resources Information Center

    Kempermann, Gerd; Gage, Fred H.

    1999-01-01

    Contrary to dogma, the human brain does produce new nerve cells in adulthood. The mature human brain spawns neurons routinely in the hippocampus, an area important to memory and learning. This research can make it possible to ease any number of disorders involving neurological damage and death. (CCM)

  11. A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain.

    PubMed

    Thompson, Carol L; Ng, Lydia; Menon, Vilas; Martinez, Salvador; Lee, Chang-Kyu; Glattfelder, Katie; Sunkin, Susan M; Henry, Alex; Lau, Christopher; Dang, Chinh; Garcia-Lopez, Raquel; Martinez-Ferre, Almudena; Pombero, Ana; Rubenstein, John L R; Wakeman, Wayne B; Hohmann, John; Dee, Nick; Sodt, Andrew J; Young, Rob; Smith, Kimberly; Nguyen, Thuc-Nghi; Kidney, Jolene; Kuan, Leonard; Jeromin, Andreas; Kaykas, Ajamete; Miller, Jeremy; Page, Damon; Orta, Geri; Bernard, Amy; Riley, Zackery; Smith, Simon; Wohnoutka, Paul; Hawrylycz, Michael J; Puelles, Luis; Jones, Allan R

    2014-07-16

    To provide a temporal framework for the genoarchitecture of brain development, we generated in situ hybridization data for embryonic and postnatal mouse brain at seven developmental stages for ∼2,100 genes, which were processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, seven reference atlases, an ontogenetic ontology, and tools to explore coexpression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (http://developingmouse.brain-map.org).

  12. Sulfurtransferases and cyanide detoxification in mouse liver, kidney, and brain.

    PubMed

    Wróbel, M; Jurkowska, H; Sliwa, L; Srebro, Z

    2004-01-01

    The activity of rhodanese, 3-mercaptopyruvate sulfurtransferase (MPST) and cystathionase in mouse liver, kidney, and four brain regions: tele-, meso-, di- and rhombencephalon was studied 30 min and 2 h following a sublethal dose of cyanide (4 mg/ kg body weight) intraperitoneal injection. Simultaneously, sulfane sulfur levels and total sulfur content, a direct or indirect source of sulfur for CN(-) conversion to SCN(-), were also investigated in these tissues. In the liver this dose of cyanide seemed to impair the process of cyanide detoxification by MPST, as well as rhodanese inhibition. The effects of cyanide administration to mice proved to be totally different in the liver and kidney. In the kidney, a significant increase in the rhodanese activity was observed as early as 30 min following cyanide intoxication, and an elevated cystathionase activity after 2 h was detected. This suggests the involvement of cystathionase in cyanide detoxification in the kidney. The activity of MPST remained at the same level as in the control group. In the rhombencephalon, similarly as in the kidney, L-cysteine desulfuration pathways, which generate sulfane sulfur and sulfurtransferases that transfer sulfane sulfur atoms to CN(-), seemed to play an important role as a defense system against cyanide. The stable level of sulfane sulfur and total sulfur content was accompanied in the rhombencephalon by an increased activity of MPST, cystathionase and rhodanese. In other brain regions the role of these three sulfurtransferases was not so clear and it seemed that in the telencephalon, where the total sulfur content, but not the sulfane sulfur level, was significantly increased, some sulfur-containing compounds, such as GSH and/or cysteine, appeared in response to cyanide.

  13. Whole Mouse Brain Image Reconstruction from Serial Coronal Sections Using FIJI (ImageJ).

    PubMed

    Paletzki, Ronald; Gerfen, Charles R

    2015-10-01

    Whole-brain reconstruction of the mouse enables comprehensive analysis of the distribution of neurochemical markers, the distribution of anterogradely labeled axonal projections or retrogradely labeled neurons projecting to a specific brain site, or the distribution of neurons displaying activity-related markers in behavioral paradigms. This unit describes a method to produce whole-brain reconstruction image sets from coronal brain sections with up to four fluorescent markers using the freely available image-processing program FIJI (ImageJ).

  14. Isolation and Functional Assessment of Mitochondria from Small Amounts of Mouse Brain Tissue

    PubMed Central

    Chinopoulos, Christos; Zhang, Steven F.; Thomas, Bobby; Ten, Vadim; Starkov, Anatoly A.

    2013-01-01

    Recent discoveries have brought mitochondria functions in focus of the neuroscience research community and greatly stimulated the demand for approaches to study mitochondria dysfunction in neurodegenerative diseases. Many mouse disease models have been generated, but studying mitochondria isolated from individual mouse brain regions is a challenge because of small amount of the available brain tissue. Conventional techniques for isolation and purification of mitochondria from mouse brain subregions, such as ventral midbrain, hippocampus, or striatum, require pooling brain tissue from six to nine animals for a single mitochondrial preparation. Working with pooled tissue significantly decreases the quality of data because of the time required to dissect several brains. It also greatly increases the labor intensity and the cost of experiments as several animals are required per single data point. We describe a method for isolation of brain mitochondria from mouse striata or other 7–12 mg brain samples. The method utilizes a refrigerated table-top microtube centrifuge, and produces research grade quality mitochondria in amounts sufficient for performing multiple enzymatic and functional assays, thereby eliminating the necessity for pooling mouse brain tissue. We also include a method of measuring ADP-ATP exchange rate as a function of mitochondrial membrane potential (ΔΨm) in small amounts of isolated mitochondria, adapted to a plate reader format. PMID:21913109

  15. Isolation and functional assessment of mitochondria from small amounts of mouse brain tissue.

    PubMed

    Chinopoulos, Christos; Zhang, Steven F; Thomas, Bobby; Ten, Vadim; Starkov, Anatoly A

    2011-01-01

    Recent discoveries have brought mitochondria functions in focus of the neuroscience research community and greatly stimulated the demand for approaches to study mitochondria dysfunction in neurodegenerative diseases. Many mouse disease models have been generated, but studying mitochondria isolated from individual mouse brain regions is a challenge because of small amount of the available brain tissue. Conventional techniques for isolation and purification of mitochondria from mouse brain subregions, such as ventral midbrain, hippocampus, or striatum, require pooling brain tissue from six to nine animals for a single mitochondrial preparation. Working with pooled tissue significantly decreases the quality of data because of the time required to dissect several brains. It also greatly increases the labor intensity and the cost of experiments as several animals are required per single data point. We describe a method for isolation of brain mitochondria from mouse striata or other 7-12 mg brain samples. The method utilizes a refrigerated table-top microtube centrifuge, and produces research grade quality mitochondria in amounts sufficient for performing multiple enzymatic and functional assays, thereby eliminating the necessity for pooling mouse brain tissue. We also include a method of measuring ADP-ATP exchange rate as a function of mitochondrial membrane potential (ΔΨm) in small amounts of isolated mitochondria, adapted to a plate reader format.

  16. Quantification of light attenuation in optically cleared mouse brains

    PubMed Central

    d’Esposito, Angela; Nikitichev, Daniil; Desjardins, Adrien; Walker-Samuel, Simon; Lythgoe, Mark F.

    2015-01-01

    Optical clearing, in combination with recently developed optical imaging techniques, enables visualization and acquisition of high resolution, three-dimensional images of biological structures deep within tissue. Many different approaches can be used to reduce light absorption and scattering within the tissue, but there is a paucity of research on the quantification of clearing efficacy. With the use of a custom-made spectroscopy system, we developed a way to quantify the quality of clearing in biological tissue, and applied it to the mouse brain. Three clearing techniques were compared: BABB (Murray’s clear), pBABB (a modification of BABB which includes the use of hydrogen peroxide) and passive CLARITY. Despite being limited to autofluorescence studies, we found that pBABB produced the highest degree of optical clearing. Furthermore, the approach allows regional measurement of light attenuation to be performed, and. our results show that light is most attenuated in regions with high lipid content. This work provides a way to choose between the multiple clearing protocols available, and it could prove useful for evaluating images that are acquired with cleared tissues. PMID:26277988

  17. Effects of environmental tobacco smoke on adult rat brain biochemistry.

    PubMed

    Fuller, Brian F; Gold, Mark S; Wang, Kevin K W; Ottens, Andrew K

    2010-05-01

    Environmental tobacco smoke (ETS) has been linked to deleterious health effects, particularly pulmonary and cardiac disease; yet, the general public considers ETS benign to brain function in adults. In contrast, epidemiological data have suggested that ETS impacts the brain and potentially modulates neurodegenerative disease. The present study begins to examine yet unknown biochemical effects of ETS on the adult mammalian brain. In the developed animal model, adult male rats were exposed to ETS 3 h a day for 3 weeks. Biochemical data showed altered glial fibrillary acid protein levels as a main treatment effect of ETS, suggestive of reactive astrogliosis. Yet, markers of oxidative and cell stress were unaffected by ETS exposure in the brain regions examined. Increased proteolytic degradation of alphaII-spectrin by caspase-3 and the dephosphorylation of serine(116) on PEA-15 indicated greater apoptotic cell death modulated by the extrinsic pathway in the brains of ETS-exposed animals. Further, beta-synuclein was upregulated by ETS, a neuroprotective protein previously reported to exhibit anti-apoptotic and anti-fibrillogenic properties. These findings demonstrate that ETS exposure alters the neuroproteome of the adult rat brain, and suggest modulation of inflammatory and cell death processes.

  18. Scavenging of H2O2 by mouse brain mitochondria

    PubMed Central

    Starkov, Anatoly A.; Andreyev, Alexander Yu; Zhang, Steven F.; Starkova, Natalia N.; Korneeva, Maria; Syromyatnikov, Mikhail; Popov, Vasily N.

    2015-01-01

    Mitochondrial reactive oxygen species (ROS) metabolism is unique in that mitochondria both generate and scavenge ROS. Recent estimates of ROS scavenging capacity of brain mitochondria are surprisingly high, ca. 9-12 nmol H2O2/min/mg, which is ~100 times higher than the rate of ROS generation. This raises a question whether brain mitochondria are a source or a sink of ROS. We studied the interaction between ROS generation and scavenging in mouse brain mitochondria by measuring the rate of removal of H2O2 added at a concentration of 0.4 μM, which is close to the reported physiological H2O2 concentrations in tissues, under conditions of low and high levels of mitochondrial H2O2 generation. With NAD-linked substrates, the rate of H2O2 generation by mitochondria was ~50–70 pmol/min/mg. The H2O2 scavenging dynamics was best approximated by the first order reaction equation. H2O2 scavenging was not affected by the uncoupling of mitochondria, phosphorylation of added ADP, or the genetic ablation of glutathione peroxidase 1, but decreased in the absence of respiratory substrates, in the presence of thioredoxin reductase inhibitor auranofin, or in partially disrupted mitochondria. With succinate, the rate of H2O2 generation was ~2,200–2,900 pmol/min/mg; the scavenging of added H2O2 was masked by a significant accumulation of generated H2O2 in the assay medium. The obtained data were fitted into a simple model that reasonably well described the interaction between H2O2 scavenging and production. It showed that mitochondria are neither a sink nor a source of H2O2, but can function as both at the same time, efficiently stabilizing exogenous H2O2 concentration at a level directly proportional to the ratio of the H2O2 generation rate to the rate constant of the first order scavenging reaction. PMID:25248416

  19. Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging

    PubMed Central

    Ragan, Timothy; Kadiri, Lolahon R.; Venkataraju, Kannan Umadevi; Bahlmann, Karsten; Sutin, Jason; Taranda, Julian; Arganda-Carreras, Ignacio; Kim, Yongsoo; Seung, H. Sebastian

    2011-01-01

    Here we describe an automated method, which we call serial two-photon (STP) tomography, that achieves high-throughput fluorescence imaging of mouse brains by integrating two-photon microscopy and tissue sectioning. STP tomography generates high-resolution datasets that are free of distortions and can be readily warped in 3D, for example, for comparing multiple anatomical tracings. This method opens the door to routine systematic studies of neuroanatomy in mouse models of human brain disorders. PMID:22245809

  20. Abca7 deletion does not affect adult neurogenesis in the mouse.

    PubMed

    Li, Hongyun; Karl, Tim; Garner, Brett

    2016-01-20

    ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) have identified ABCA7 single nucleotide polymorphisms (SNPs) that increase Alzheimer's disease (AD) risk, however, the mechanisms by which ABCA7 may control AD risk remain to be fully elucidated. Based on previous research suggesting that certain ABC transporters may play a role in the regulation of neurogenesis, we conducted a study of cell proliferation and neurogenic potential using cellular bromodeoxyuridine (BrdU) incorporation and doublecortin (DCX) immunostaining in adult Abca7 deficient mice and wild-type-like (WT) littermates. In the present study counting of BrdU-positive and DCX-positive cells in an established adult neurogenesis site in the dentate gyrus (DG) indicated there were no significant differences when WT and Abca7 deficient mice were compared. We also measured the area occupied by immunohistochemical staining for BrdU and DCX in the DG and the subventricular zone (SVZ) of the same mice and this confirmed that ABCA7 does not play a significant role in the regulation of cell proliferation or neurogenesis in the adult mouse.

  1. The effects of vitamin D on brain development and adult brain function.

    PubMed

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine.

  2. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  3. Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain.

    PubMed

    Bailus, Barbara J; Pyles, Benjamin; McAlister, Michelle M; O'Geen, Henriette; Lockwood, Sarah H; Adams, Alexa N; Nguyen, Jennifer Trang T; Yu, Abigail; Berman, Robert F; Segal, David J

    2016-03-01

    Angelman syndrome (AS) is a neurological genetic disorder caused by loss of expression of the maternal copy of UBE3A in the brain. Due to brain-specific genetic imprinting at this locus, the paternal UBE3A is silenced by a long antisense transcript. Inhibition of the antisense transcript could lead to unsilencing of paternal UBE3A, thus providing a therapeutic approach for AS. However, widespread delivery of gene regulators to the brain remains challenging. Here, we report an engineered zinc finger-based artificial transcription factor (ATF) that, when injected i.p. or s.c., crossed the blood-brain barrier and increased Ube3a expression in the brain of an adult mouse model of AS. The factor displayed widespread distribution throughout the brain. Immunohistochemistry of both the hippocampus and cerebellum revealed an increase in Ube3a upon treatment. An ATF containing an alternative DNA-binding domain did not activate Ube3a. We believe this to be the first report of an injectable engineered zinc finger protein that can cause widespread activation of an endogenous gene in the brain. These observations have important implications for the study and treatment of AS and other neurological disorders.

  4. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  5. Characterization of the Mouse Brain Proteome Using Global Proteomic Analysis Complemented with Cysteinyl-Peptide Enrichment

    PubMed Central

    Wang, Haixing; Qian, Wei-Jun; Chin, Mark H.; Petyuk, Vladislav A.; Barry, Richard C.; Liu, Tao; Gritsenko, Marina A.; Mottaz, Heather M.; Moore, Ronald J.; Camp, David G.; Khan, Arshad H.; Smith, Desmond J.; Smith, Richard D.

    2007-01-01

    Given the growing interest in applying genomic and proteomic approaches for studying the mammalian brain using mouse models, we hereby present a global proteomic approach for analyzing brain tissue and for the first time a comprehensive characterization of the whole mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 non-redundant proteins (∼34% of the predicted mouse proteome). 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models. The proteomic approach presented here may have broad applications for rapid proteomic analyses of various mouse models of human brain diseases. PMID:16457602

  6. The 5-Hydroxymethylcytosine (5hmC) Reader UHRF2 Is Required for Normal Levels of 5hmC in Mouse Adult Brain and Spatial Learning and Memory.

    PubMed

    Chen, Ruoyu; Zhang, Qiao; Duan, Xiaoya; York, Philippe; Chen, Guo-Dong; Yin, Pengcheng; Zhu, Haijun; Xu, Meichen; Chen, Peilin; Wu, Qihan; Li, Dali; Samarut, Jacques; Xu, Guoliang; Zhang, Pumin; Cao, Xiaohua; Li, Jiwen; Wong, Jiemin

    2017-03-17

    UHRF2 has been implicated as a novel regulator for both DNA methylation (5mC) and hydroxymethylation (5hmC), but its physiological function and role in DNA methylation/hydroxymethylation are unknown. Here we show that in mice, UHRF2 is more abundantly expressed in the brain and a few other tissues. Uhrf2 knock-out mice are viable and fertile and exhibit no gross defect. Although there is no significant change of DNA methylation, the Uhrf2 null mice exhibit a reduction of 5hmC in the brain, including the cortex and hippocampus. Furthermore, the Uhrf2 null mice exhibit a partial impairment in spatial memory acquisition and retention. Consistent with the phenotype, gene expression profiling uncovers a role for UHRF2 in regulating neuron-related gene expression. Finally, we provide evidence that UHRF2 binds 5hmC in cells but does not appear to affect the TET1 enzymatic activity. Together, our study supports UHRF2 as a bona fide 5hmC reader and further demonstrates a role for 5hmC in neuronal function.

  7. Proteomic analysis of the mouse brain following protein enrichment by preparative electrophoresis.

    PubMed

    Xixi, Elena; Dimitraki, Ploumisti; Vougas, Kostantinos; Kossida, Sofia; Lubec, Gert; Fountoulakis, Michael

    2006-04-01

    Proteomics is a powerful technology to study the identity and levels of brain proteins. Changes of protein levels as well as modifications that occur in neurological disorders may be informative for the pathogenesis of these disorders and could result in the identification of potential drug targets and disease markers. To increase the capability of characterizing complex protein profiles, protein mixtures should be separated into simpler fractions, thus increasing the likelihood of detecting low-abundance proteins. Considering that low-abundance proteins are thought to be involved in important biological processes, identification of those low-copy-number gene products appears to be a scientific challenge. In the present study, proteomic analysis of adult mouse brain tissue was performed following enrichment by preparative electrophoresis. This was performed using the PrepCell apparatus in the presence of 0.1% lithium dodecyl sulfate. Samples were electrophoresed in a cylindrical polyacrylamide gel and the proteins of the fractions collected were first analyzed by 1-D and then by 2-DE. Protein identification was performed by MALDI-TOF-MS. The present analysis resulted in the identification of 360 different gene products. Among those were transport proteins, transcription activators, signal transduction molecules as well as proteins with a number of other functions. Preparative electrophoresis is an efficient method for the enrichment of proteins of low molecular mass and may be useful in the investigation of disorders of the central nervous system.

  8. Glycogen distribution in the microwave‐fixed mouse brain reveals heterogeneous astrocytic patterns

    PubMed Central

    Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C.

    2016-01-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well‐defined glycogen immunoreactive signals compared with the conventional periodic acid‐Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3‐CA1 and striatum had a ‘patchy’ appearance with glycogen‐rich and glycogen‐poor astrocytes appearing in alternation. The glycogen patches were more evident with large‐molecule glycogen in young adult mice but they were hardly observable in aged mice (1–2 years old). Our results reveal brain region‐dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532–1545 PMID:27353480

  9. Brain abscess caused by Citrobacter koseri infection in an adult.

    PubMed

    Liu, Heng-Wei; Chang, Chih-Ju; Hsieh, Cheng-Ta

    2015-04-01

    Citrobacter koseri is a gram-negative bacillus that causes mostly meningitis and brain abscesses in neonates and infants. However, brain abscess caused by Citrobacter koseri infection in an adult is extremely rare, and only 2 cases have been described. Here, we reported a 73-year-old male presenting with a 3-week headache. A history of diabetes mellitus was noted. The images revealed a brain abscess in the left frontal lobe and pus culture confirmed the growth of Citrobacter koseri. The clinical symptoms improved completely postoperatively.

  10. Inflammation is detrimental for neurogenesis in adult brain

    NASA Astrophysics Data System (ADS)

    Ekdahl, Christine T.; Claasen, Jan-Hendrik; Bonde, Sara; Kokaia, Zaal; Lindvall, Olle

    2003-11-01

    New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.

  11. FACS purification of immunolabeled cell types from adult rat brain.

    PubMed

    Guez-Barber, Danielle; Fanous, Sanya; Harvey, Brandon K; Zhang, Yongqing; Lehrmann, Elin; Becker, Kevin G; Picciotto, Marina R; Hope, Bruce T

    2012-01-15

    Molecular analysis of brain tissue is greatly complicated by having many different classes of neurons and glia interspersed throughout the brain. Fluorescence-activated cell sorting (FACS) has been used to purify selected cell types from brain tissue. However, its use has been limited to brain tissue from embryos or transgenic mice with promoter-driven reporter genes. To overcome these limitations, we developed a FACS procedure for dissociating intact cell bodies from adult wild-type rat brains and sorting them using commercially available antibodies against intracellular and extracellular proteins. As an example, we isolated neurons using a NeuN antibody and confirmed their identity using microarray and real time PCR of mRNA from the sorted cells. Our FACS procedure allows rapid, high-throughput, quantitative assays of molecular alterations in identified cell types with widespread applications in neuroscience.

  12. Bilateral Brain Regions Associated with Naming in Older Adults

    ERIC Educational Resources Information Center

    Obler, Loraine K.; Rykhlevskaia, Elena; Schnyer, David; Clark-Cotton, Manuella R.; Spiro, Avron, III; Hyun, JungMoon; Kim, Dae-Shik; Goral, Mira; Albert, Martin L.

    2010-01-01

    To determine structural brain correlates of naming abilities in older adults, we tested 24 individuals aged 56-79 on two confrontation-naming tests (the Boston Naming Test (BNT) and the Action Naming Test (ANT)), then collected from these individuals structural Magnetic-Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) data. Overall,…

  13. Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.

    PubMed

    Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde

    2016-09-01

    Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level.

  14. Oestradiol and Diet Modulate Energy Homeostasis and Hypothalamic Neurogenesis in the Adult Female Mouse

    PubMed Central

    Bless, E. P.; Reddy, T.; Acharya, K. D.; Beltz, B. S.; Tetel, M. J.

    2014-01-01

    Leptin and oestradiol have overlapping functions in energy homeostasis and fertility, and receptors for these hormones are localised in the same hypothalamic regions. Although, historically, it was assumed that mammalian adult neurogenesis was confined to the olfactory bulbs and the hippocampus, recent research has found new neurones in the male rodent hypothalamus. Furthermore, some of these new neurones are leptin-sensitive and affected by diet. In the present study, we tested the hypothesis that diet and hormonal status modulate hypothalamic neurogenesis in the adult female mouse. Adult mice were ovariectomised and implanted with capsules containing oestradiol (E2) or oil. Within each group, mice were fed a high-fat diet (HFD) or maintained on standard chow (STND). All animals were administered i.c.v. 5-bromo-2′-deoxyuridine (BrdU) for 9 days and sacrificed 34 days later after an injection of leptin to induce phosphorylation of signal transducer of activation and transcription 3 (pSTAT3). Brain tissue was immunohistochemically labelled for BrdU (newly born cells), Hu (neuronal marker) and pSTAT3 (leptin sensitive). Although mice on a HFD became obese, oestradiol protected against obesity. There was a strong interaction between diet and hormone on new cells (BrdU+) in the arcuate, ventromedial hypothalamus and dorsomedial hypothalamus. HFD increased the number of new cells, whereas E2 inhibited this effect. Conversely, E2 increased the number of new cells in mice on a STND diet in all hypothalamic regions studied. Although the total number of new leptin-sensitive neurones (BrdU-Hu-pSTAT3) found in the hypothalamus was low, HFD increased these new cells in the arcuate, whereas E2 attenuated this induction. These results suggest that adult neurogenesis in the hypothalamic neurogenic niche is modulated by diet and hormonal status and is related to energy homeostasis in female mice. PMID:25182179

  15. Generation and Disease Model Relevance of a Manganese Enhanced Magnetic Resonance Imaging-Based NOD/scid-IL-2Rγcnull Mouse Brain Atlas

    PubMed Central

    Sajja, Balasrinivasa R.; Bade, Aditya N.; Zhou, Biyun; Uberti, Mariano G.; Gorantla, Santhi; Gendelman, Howard E.; Boska, Michael D.; Liu, Yutong

    2016-01-01

    Strain specific mouse brain magnetic resonance imaging (MRI) atlases provide coordinate space linked anatomical registration. This allows longitudinal quantitative analyses of neuroanatomical volumes and imaging metrics for assessing the role played by aging and disease to the central nervous system. As NOD/scid-IL-2Rγcnull (NSG) mice allow human cell transplantation to study human disease, these animals are used to assess brain morphology. Manganese enhanced MRI (MEMRI) improves contrasts amongst brain components and as such can greatly help identifying a broad number of structures on MRI. To this end, NSG adult mouse brains were imaged in vivo on a 7.0 Tesla MR scanner at an isotropic resolution of 100 µm. A population averaged brain of 19 mice was generated using an iterative alignment algorithm. MEMRI provided sufficient contrast permitting 41 brain structures to be manually labeled. Volumes of 7 humanized mice brain structures were measured by atlas-based segmentation and compared against non-humanized controls. The humanized NSG mice brain volumes were smaller than controls (p<0.001). Many brain structures of humanized mice were significantly smaller than controls. We posit that the irradiation and cell grafting involved in the creation of humanized mice were responsible for the morphological differences. Six NSG mice without MnCl2 administration were scanned with high resolution T2-weighted MRI and segmented to test broad utility of the atlas. PMID:26556033

  16. Pedophilic brain potential responses to adult erotic stimuli.

    PubMed

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults.

  17. Experience-dependent neural plasticity in the adult damaged brain

    PubMed Central

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper extremity (hand and arm) impairments. A prolonged and widespread process of repair and reorganization of surviving neural circuits is instigated by injury to the adult brain. When experience impacts these same neural circuits, it interacts with degenerative and regenerative cascades to shape neural reorganization and functional outcome. This is evident in the cortical plasticity resulting from compensatory reliance on the “good” forelimb in rats with unilateral sensorimotor cortical infarcts. Behavioral interventions (e.g., rehabilitative training) can drive functionally beneficial neural reorganization in the injured hemisphere. However, experience can have both behaviorally beneficial and detrimental effects. The interactions between experience-dependent and injury-induced neural plasticity are complex, time-dependent, and varied with age and other factors. A better understanding of these interactions is needed to understand how to optimize brain remodeling and functional outcome. Learning outcomes Readers will be able to describe (a) experience effects that are maladaptive for behavioral outcome after brain damage, (b) manipulations of experience that drive functionally beneficial neural plasticity, and (c) reasons why rehabilitative training effects can be expected to vary with age, training duration and timing. PMID:21620413

  18. Active and passive MDMA ('ecstasy') intake induces differential transcriptional changes in the mouse brain.

    PubMed

    Fernàndez-Castillo, N; Orejarena, M J; Ribasés, M; Blanco, E; Casas, M; Robledo, P; Maldonado, R; Cormand, B

    2012-02-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is a recreational drug widely used by adolescents and young adults. Although its rewarding effects are well established, there is controversy on its addictive potential. We aimed to compare the consequences of active and passive MDMA administration on gene expression in the mouse brain since all previous studies were based on passive MDMA administration. We used a yoked-control operant intravenous self-administration paradigm combined with microarray technology. Transcriptomic profiles of ventral striatum, frontal cortex, dorsal raphe nucleus and hippocampus were analysed in mice divided in contingent MDMA, yoked MDMA and yoked saline groups, and several changes were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The comparison of contingent MDMA and yoked MDMA vs. yoked saline mice allowed the identification of differential expression in several genes, most of them with immunological and inflammatory functions, but others being involved in neuroadaptation. In the comparison of contingent MDMA vs. yoked MDMA administration, hippocampus and the dorsal raphe nucleus showed statistically significant changes. The altered expression of several genes involved in neuroadaptative changes and synapse function, which may be related to learning self-administration behaviour, could be validated in these two brain structures. In conclusion, our study shows a strong effect of MDMA administration on the expression of immunological and inflammatory genes in all the four brain regions studied. In addition, experiments on MDMA self-administration suggest that the dorsal raphe nucleus and hippocampus may be involved in active MDMA-seeking behaviour, and show specific alterations on gene expression that support the addictive potential of this drug.

  19. Expression patterns of Slit and Robo family members in adult mouse spinal cord and peripheral nervous system.

    PubMed

    Carr, Lauren; Parkinson, David B; Dun, Xin-Peng

    2017-01-01

    The secreted glycoproteins, Slit1-3, are classic axon guidance molecules that act as repulsive cues through their well characterised receptors Robo1-2 to allow precise axon pathfinding and neuronal migration. The expression patterns of Slit1-3 and Robo1-2 have been most characterized in the rodent developing nervous system and the adult brain, but little is known about their expression patterns in the adult rodent peripheral nervous system. Here, we report a detailed expression analysis of Slit1-3 and Robo1-2 in the adult mouse sciatic nerve as well as their expression in the nerve cell bodies within the ventral spinal cord (motor neurons) and dorsal root ganglion (sensory neurons). Our results show that, in the adult mouse peripheral nervous system, Slit1-3 and Robo1-2 are expressed in the cell bodies and axons of both motor and sensory neurons. While Slit1 and Robo2 are only expressed in peripheral axons and their cell bodies, Slit2, Slit3 and Robo1 are also expressed in satellite cells of the dorsal root ganglion, Schwann cells and fibroblasts of peripheral nerves. In addition to these expression patterns, we also demonstrate the expression of Robo1 in blood vessels of the peripheral nerves. Our work gives important new data on the expression patterns of Slit and Robo family members within the peripheral nervous system that may relate both to nerve homeostasis and the reaction of the peripheral nerves to injury.

  20. Binge consumption of ethanol during pregnancy leads to significant developmental delay of mouse embryonic brain

    NASA Astrophysics Data System (ADS)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2014-03-01

    Consumption of alcohol during pregnancy can be severely detrimental to the development of the brain in fetuses. This study explores the usage of optical coherence tomography (OCT) to the study the effects of maternal consumption of ethanol on brain development in mouse fetuses. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde. A swept-source OCT (SSOCT) system was used to acquire 3D images of the brain of ethanol-exposed and control fetuses. The volume of right and left brain ventricles were measured and used to compare between ethanol-exposed and control fetuses. A total of 5 fetuses were used for each of the two groups. The average volumes of the right and left ventricles were measured to be 0.35 and 0.15 mm3 for ethanol-exposed and control fetuses, respectively. The results demonstrated that there is an alcohol-induced developmental delay in mouse fetal brains.

  1. Effect of Harderian adenectomy on the statistical analyses of mouse brain imaging using positron emission tomography

    PubMed Central

    Kim, Minsoo; Woo, Sang-Keun; Yu, Jung Woo; Lee, Yong Jin; Kim, Kyeong Min; Kang, Joo Hyun; Eom, Kidong

    2014-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[18F] fluoro-D-glucose (FDG) as a radioactive tracer is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. The gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to determine if a simple surgical procedure to remove the Harderian gland prior to PET imaging of mouse brains could reduce or eliminate FDG uptake. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland distorts frontal brain region images. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region beginning on postoperative Day 10. Harderian adenectomy did not cause any post-operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mouse brains. PMID:23820224

  2. Relationships between gene expression and brain wiring in the adult rodent brain.

    PubMed

    French, Leon; Pavlidis, Paul

    2011-01-06

    We studied the global relationship between gene expression and neuroanatomical connectivity in the adult rodent brain. We utilized a large data set of the rat brain "connectome" from the Brain Architecture Management System (942 brain regions and over 5000 connections) and used statistical approaches to relate the data to the gene expression signatures of 17,530 genes in 142 anatomical regions from the Allen Brain Atlas. Our analysis shows that adult gene expression signatures have a statistically significant relationship to connectivity. In particular, brain regions that have similar expression profiles tend to have similar connectivity profiles, and this effect is not entirely attributable to spatial correlations. In addition, brain regions which are connected have more similar expression patterns. Using a simple optimization approach, we identified a set of genes most correlated with neuroanatomical connectivity, and find that this set is enriched for genes involved in neuronal development and axon guidance. A number of the genes have been implicated in neurodevelopmental disorders such as autistic spectrum disorder. Our results have the potential to shed light on the role of gene expression patterns in influencing neuronal activity and connectivity, with potential applications to our understanding of brain disorders. Supplementary data are available at http://www.chibi.ubc.ca/ABAMS.

  3. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging

    PubMed Central

    Bell, Robert D.; Winkler, Ethan A.; Sagare, Abhay P.; Singh, Itender; LaRue, Barb; Deane, Rashid; Zlokovic, Berislav V.

    2010-01-01

    SUMMARY Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow and cerebral blood flow responses to brain activation which ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericytes loss results in a progressive age-dependent vascular-mediated neurodegeneration. PMID:21040844

  4. Micron-scale Resolution Optical Tomography of Entire Mouse Brains with Confocal Light Sheet Microscopy

    PubMed Central

    Silvestri, Ludovico; Bria, Alessandro; Costantini, Irene; Sacconi, Leonardo; Peng, Hanchuan; Iannello, Giulio; Pavone, Francesco Saverio

    2013-01-01

    Understanding the architecture of mammalian brain at single-cell resolution is one of the key issues of neuroscience. However, mapping neuronal soma and projections throughout the whole brain is still challenging for imaging and data management technologies. Indeed, macroscopic volumes need to be reconstructed with high resolution and contrast in a reasonable time, producing datasets in the TeraByte range. We recently demonstrated an optical method (confocal light sheet microscopy, CLSM) capable of obtaining micron-scale reconstruction of entire mouse brains labeled with enhanced green fluorescent protein (EGFP). Combining light sheet illumination and confocal detection, CLSM allows deep imaging inside macroscopic cleared specimens with high contrast and speed. Here we describe the complete experimental pipeline to obtain comprehensive and human-readable images of entire mouse brains labeled with fluorescent proteins. The clearing and the mounting procedures are described, together with the steps to perform an optical tomography on its whole volume by acquiring many parallel adjacent stacks. We showed the usage of open-source custom-made software tools enabling stitching of the multiple stacks and multi-resolution data navigation. Finally, we illustrated some example of brain maps: the cerebellum from an L7-GFP transgenic mouse, in which all Purkinje cells are selectively labeled, and the whole brain from a thy1-GFP-M mouse, characterized by a random sparse neuronal labeling. PMID:24145191

  5. Nicotinamide Protects against Ethanol-Induced Apoptotic Neurodegeneration in the Developing Mouse Brain

    PubMed Central

    Ieraci, Alessandro; Herrera, Daniel G

    2006-01-01

    Background Exposure to alcohol during brain development may cause a neurological syndrome called fetal alcohol syndrome (FAS). Ethanol induces apoptotic neuronal death at specific developmental stages, particularly during the brain-growth spurt, which occurs from the beginning of third trimester of gestation and continues for several years after birth in humans, whilst occuring in the first two postnatal weeks in mice. Administration of a single dose of ethanol in 7-d postnatal (P7) mice triggers activation of caspase-3 and widespread apoptotic neuronal death in the forebrain, providing a possible explanation for the microencephaly observed in human FAS. The present study was aimed at determining whether nicotinamide may prevent ethanol-induced neurodegeneration. Methods and Findings P7 mice were treated with a single dose of ethanol (5g/kg), and nicotinamide was administered from 0 h to 8 h after ethanol exposure. The effects of nicotinamide on ethanol-induced activation of caspase-3 and release of cytochrome-c from the mitochondria were analyzed by Western blot ( n = 4–7/group). Density of Fluoro-Jade B–positive cells and NeuN-positive cells was determined in the cingulated cortex, CA1 region of the hippocampus, and lateral dorsal nucleus of the thalamus ( n = 5–6/group). Open field, plus maze, and fear conditioning tests were used to study the behavior in adult mice ( n = 31–34/group). Nicotinamide reduced the activation of caspase-3 (85.14 ± 4.1%) and the release of cytochrome-c (80.78 ± 4.39%) in postnatal mouse forebrain, too. Nicotinamide prevented also the ethanol-induced increase of apoptosis. We demonstrated that ethanol-exposed mice showed impaired performance in the fear conditioning test and increased activity in the open field and in the plus maze. Administration of nicotinamide prevented all these behavioral abnormalities in ethanol-exposed mice. Conclusions Our findings indicate that nicotinamide can prevent some of the deleterious effects

  6. Life Satisfaction in Adult Survivors of Childhood Brain Tumors

    PubMed Central

    Crom, Deborah B.; Li, Zhenghong; Brinkman, Tara M.; Hudson, Melissa M.; Armstrong, Gregory T.; Neglia, Joseph; Ness, Kirsten K.

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, life-long deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors’ physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggests some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population–based matched controls. Chi-square tests, t-tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors’ general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population. PMID:25027187

  7. Life satisfaction in adult survivors of childhood brain tumors.

    PubMed

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population.

  8. In vivo three-photon microscopy of subcortical structures within an intact mouse brain

    NASA Astrophysics Data System (ADS)

    Horton, Nicholas G.; Wang, Ke; Kobat, Demirhan; Clark, Catharine G.; Wise, Frank W.; Schaffer, Chris B.; Xu, Chris

    2013-03-01

    Two-photon fluorescence microscopy enables scientists in various fields including neuroscience, embryology and oncology to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue.

  9. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T

    NASA Astrophysics Data System (ADS)

    Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.

    2017-02-01

    The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.

  10. Decreased segregation of brain systems across the healthy adult lifespan

    PubMed Central

    Chan, Micaela Y.; Park, Denise C.; Savalia, Neil K.; Petersen, Steven E.; Wig, Gagan S.

    2014-01-01

    Healthy aging has been associated with decreased specialization in brain function. This characterization has focused largely on describing age-accompanied differences in specialization at the level of neurons and brain areas. We expand this work to describe systems-level differences in specialization in a healthy adult lifespan sample (n = 210; 20–89 y). A graph-theoretic framework is used to guide analysis of functional MRI resting-state data and describe systems-level differences in connectivity of individual brain networks. Young adults’ brain systems exhibit a balance of within- and between-system correlations that is characteristic of segregated and specialized organization. Increasing age is accompanied by decreasing segregation of brain systems. Compared with systems involved in the processing of sensory input and motor output, systems mediating “associative” operations exhibit a distinct pattern of reductions in segregation across the adult lifespan. Of particular importance, the magnitude of association system segregation is predictive of long-term memory function, independent of an individual’s age. PMID:25368199

  11. Prenatal ethanol exposure increases brain cholesterol content in adult rats.

    PubMed

    Barceló-Coblijn, Gwendolyn; Wold, Loren E; Ren, Jun; Murphy, Eric J

    2013-11-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content are known to occur in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43 %, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total polyunsaturated fatty acids (PUFA), in the n-3/n-6 ratio, and in the 22:6n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of postnatal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats.

  12. Characterization of subtle brain abnormalities in a mouse model of Hedgehog pathway antagonist-induced cleft lip and palate.

    PubMed

    Lipinski, Robert J; Holloway, Hunter T; O'Leary-Moore, Shonagh K; Ament, Jacob J; Pecevich, Stephen J; Cofer, Gary P; Budin, Francois; Everson, Joshua L; Johnson, G Allan; Sulik, Kathleen K

    2014-01-01

    Subtle behavioral and cognitive deficits have been documented in patient cohorts with orofacial clefts (OFCs). Recent neuroimaging studies argue that these traits are associated with structural brain abnormalities but have been limited to adolescent and adult populations where brain plasticity during infancy and childhood may be a confounding factor. Here, we employed high resolution magnetic resonance microscopy to examine primary brain morphology in a mouse model of OFCs. Transient in utero exposure to the Hedgehog (Hh) signaling pathway antagonist cyclopamine resulted in a spectrum of facial dysmorphology, including unilateral and bilateral cleft lip and palate, cleft of the secondary palate only, and a non-cleft phenotype marked by midfacial hypoplasia. Relative to controls, cyclopamine-exposed fetuses exhibited volumetric differences in several brain regions, including hypoplasia of the pituitary gland and olfactory bulbs, hyperplasia of the forebrain septal region, and expansion of the third ventricle. However, in affected fetuses the corpus callosum was intact and normal division of the forebrain was observed. This argues that temporally-specific Hh signaling perturbation can result in typical appearing OFCs in the absence of holoprosencephaly--a condition classically associated with Hh pathway inhibition and frequently co-occurring with OFCs. Supporting the premise that some forms of OFCs co-occur with subtle brain malformations, these results provide a possible ontological basis for traits identified in clinical populations. They also argue in favor of future investigations into genetic and/or environmental modulation of the Hh pathway in the etiopathogenesis of orofacial clefting.

  13. Characterization of Subtle Brain Abnormalities in a Mouse Model of Hedgehog Pathway Antagonist-Induced Cleft Lip and Palate

    PubMed Central

    Lipinski, Robert J.; Holloway, Hunter T.; O'Leary-Moore, Shonagh K.; Ament, Jacob J.; Pecevich, Stephen J.; Cofer, Gary P.; Budin, Francois; Everson, Joshua L.; Johnson, G. Allan; Sulik, Kathleen K.

    2014-01-01

    Subtle behavioral and cognitive deficits have been documented in patient cohorts with orofacial clefts (OFCs). Recent neuroimaging studies argue that these traits are associated with structural brain abnormalities but have been limited to adolescent and adult populations where brain plasticity during infancy and childhood may be a confounding factor. Here, we employed high resolution magnetic resonance microscopy to examine primary brain morphology in a mouse model of OFCs. Transient in utero exposure to the Hedgehog (Hh) signaling pathway antagonist cyclopamine resulted in a spectrum of facial dysmorphology, including unilateral and bilateral cleft lip and palate, cleft of the secondary palate only, and a non-cleft phenotype marked by midfacial hypoplasia. Relative to controls, cyclopamine-exposed fetuses exhibited volumetric differences in several brain regions, including hypoplasia of the pituitary gland and olfactory bulbs, hyperplasia of the forebrain septal region, and expansion of the third ventricle. However, in affected fetuses the corpus callosum was intact and normal division of the forebrain was observed. This argues that temporally-specific Hh signaling perturbation can result in typical appearing OFCs in the absence of holoprosencephaly—a condition classically associated with Hh pathway inhibition and frequently co-occurring with OFCs. Supporting the premise that some forms of OFCs co-occur with subtle brain malformations, these results provide a possible ontological basis for traits identified in clinical populations. They also argue in favor of future investigations into genetic and/or environmental modulation of the Hh pathway in the etiopathogenesis of orofacial clefting. PMID:25047453

  14. Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and CNS Homeostasis

    PubMed Central

    Tran, Khiem A.; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F.; Göthert, Joachim R.; Malik, Asrar B.; Valyi-Nagy, Tibor; Zhao, You-Yang

    2015-01-01

    Background The blood-brain barrier (BBB) formed by brain endothelial cells (ECs) interconnected by tight junctions (TJs) is essential for the homeostasis of the central nervous system (CNS). Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Methods and Results Using a mouse model with tamoxifen-inducible EC-restricted disruption of ctnnb1 (iCKO), here we show that endothelial β-catenin signaling is essential for maintaining BBB integrity and CNS homeostasis in adult. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and CNS inflammation, and all died postictal. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of specific TJ proteins Claudin-1 and -3 in adult brain ECs. The clinical relevance of the data is indicated by the observation of decreased expression of Claudin-1 and nuclear β-catenin in brain ECs of hemorrhagic lesions of hemorrhagic stroke patients. Conclusion These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity and CNS inflammation. PMID:26538583

  15. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury.

    PubMed

    Childs, Charmaine; Lunn, Kueh Wern

    2013-04-22

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted.

  16. Effects of Systemic Metabolic Fuels on Glucose and Lactate Levels in the Brain Extracellular Compartment of the Mouse

    PubMed Central

    Béland-Millar, Alexandria; Larcher, Jeremy; Courtemanche, Justine; Yuan, Tina; Messier, Claude

    2017-01-01

    Classic neuroenergetic research has emphasized the role of glucose, its transport and its metabolism in sustaining normal neural function leading to the textbook statement that it is the necessary and sole metabolic fuel of the mammalian brain. New evidence, including the Astrocyte-to-Neuron Lactate Shuttle hypothesis, suggests that the brain can use other metabolic substrates. To further study that possibility, we examined the effect of intraperitoneally administered metabolic fuels (glucose, fructose, lactate, pyruvate, ß-hydroxybutyrate, and galactose), and insulin, on blood, and extracellular brain levels of glucose and lactate in the adult male CD1 mouse. Primary motor cortex extracellular levels of glucose and lactate were monitored in freely moving mice with the use of electrochemical electrodes. Blood concentration of these same metabolites were obtained by tail vein sampling and measured with glucose and lactate meters. Blood and extracellular fluctuations of glucose and lactate were monitored for a 2-h period. We found that the systemic injections of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate increased blood lactate levels. Apart for a small transitory rise in brain extracellular lactate levels, the main effect of the systemic injection of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate was an increase in brain extracellular glucose levels. Systemic galactose injections produced a small rise in blood glucose and lactate but almost no change in brain extracellular lactate and glucose. Systemic insulin injections led to a decrease in blood glucose and a small rise in blood lactate; however brain extracellular glucose and lactate monotonically decreased at the same rate. Our results support the concept that the brain is able to use alternative fuels and the current experiments suggest some of the mechanisms involved. PMID:28154523

  17. Effects of Systemic Metabolic Fuels on Glucose and Lactate Levels in the Brain Extracellular Compartment of the Mouse.

    PubMed

    Béland-Millar, Alexandria; Larcher, Jeremy; Courtemanche, Justine; Yuan, Tina; Messier, Claude

    2017-01-01

    Classic neuroenergetic research has emphasized the role of glucose, its transport and its metabolism in sustaining normal neural function leading to the textbook statement that it is the necessary and sole metabolic fuel of the mammalian brain. New evidence, including the Astrocyte-to-Neuron Lactate Shuttle hypothesis, suggests that the brain can use other metabolic substrates. To further study that possibility, we examined the effect of intraperitoneally administered metabolic fuels (glucose, fructose, lactate, pyruvate, ß-hydroxybutyrate, and galactose), and insulin, on blood, and extracellular brain levels of glucose and lactate in the adult male CD1 mouse. Primary motor cortex extracellular levels of glucose and lactate were monitored in freely moving mice with the use of electrochemical electrodes. Blood concentration of these same metabolites were obtained by tail vein sampling and measured with glucose and lactate meters. Blood and extracellular fluctuations of glucose and lactate were monitored for a 2-h period. We found that the systemic injections of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate increased blood lactate levels. Apart for a small transitory rise in brain extracellular lactate levels, the main effect of the systemic injection of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate was an increase in brain extracellular glucose levels. Systemic galactose injections produced a small rise in blood glucose and lactate but almost no change in brain extracellular lactate and glucose. Systemic insulin injections led to a decrease in blood glucose and a small rise in blood lactate; however brain extracellular glucose and lactate monotonically decreased at the same rate. Our results support the concept that the brain is able to use alternative fuels and the current experiments suggest some of the mechanisms involved.

  18. Non-specific Immunostaining by a Rabbit Antibody against Gustducin α Subunit in Mouse Brain

    PubMed Central

    Redding, Kevin; Chen, Bei; Cohen, Akiva S.; Cohen, Noam A.

    2014-01-01

    Gustducin is a guanosine nucleotide-binding protein functionally coupled with taste receptors and thus originally identified in taste cells of the tongue. Recently, bitter taste receptors and gustducin have been detected in the airways, digestive tracts and brain. The existing studies showing taste receptors and gustducin in the brain were carried out exclusively on frozen sections. In order to avoid the technical shortcomings associated with frozen sectioning, we performed immunofluorescence staining using vibratome-cut sections from mouse brains. Using a rabbit gustducin antibody, we could not detect neurons or astrocytes as reported previously. Rather, we found dense fibers in the nucleus accumbens and periventricular areas. We assumed these staining patterns to be specific after confirmation with conventional negative control staining. For the verification of this finding, we stained gustducin knockout mouse brain and tongue sections with the same rabbit gustducin antibody. Whereas negative staining was confirmed in the tongue, intensive fibers were constantly stained in the brain. Moreover, immunostaining with a goat gustducin antibody could not demonstrate the fibers in the brain tissue. The present study implies a cross immunoreaction that occurs with the rabbit gustducin antibody in mouse brain samples, suggesting that the conventional negative controls may not be sufficient when an immunostaining pattern is to be verified. PMID:25411190

  19. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    SciTech Connect

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Wong, C. Shun; Nieman, Brian J.

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  20. Electrophysiological Recording in the Brain of Intact Adult Zebrafish

    PubMed Central

    Johnston, Lindsey; Ball, Rebecca E.; Acuff, Seth; Gaudet, John; Sornborger, Andrew; Lauderdale, James D.

    2013-01-01

    Previously, electrophysiological studies in adult zebrafish have been limited to slice preparations or to eye cup preparations and electrorentinogram recordings. This paper describes how an adult zebrafish can be immobilized, intubated, and used for in vivo electrophysiological experiments, allowing recording of neural activity. Immobilization of the adult requires a mechanism to deliver dissolved oxygen to the gills in lieu of buccal and opercular movement. With our technique, animals are immobilized and perfused with habitat water to fulfill this requirement. A craniotomy is performed under tricaine methanesulfonate (MS-222; tricaine) anesthesia to provide access to the brain. The primary electrode is then positioned within the craniotomy window to record extracellular brain activity. Through the use of a multitube perfusion system, a variety of pharmacological compounds can be administered to the adult fish and any alterations in the neural activity can be observed. The methodology not only allows for observations to be made regarding changes in neurological activity, but it also allows for comparisons to be made between larval and adult zebrafish. This gives researchers the ability to identify the alterations in neurological activity due to the introduction of various compounds at different life stages. PMID:24300281

  1. Ontogenetic Change in the Regional Distribution of Dehydroepiandrosterone-Synthesizing Enzyme and the Glucocorticoid Receptor in the Brain of the Spiny Mouse (Acomys cahirinus).

    PubMed

    Quinn, Tracey A; Ratnayake, Udani; Dickinson, Hayley; Castillo-Melendez, Margie; Walker, David W

    2016-01-01

    The androgen dehydroepiandrosterone (DHEA) has trophic and anti-glucocorticoid actions on brain growth. The adrenal gland of the spiny mouse (Acomys cahirinus) synthesizes DHEA. The aim of this study was to determine whether the brain of this precocial species is also able to produce DHEA de novo during fetal, neonatal and adult life. The expression of P450c17 and cytochrome b5 (Cytb5), the enzyme and accessory protein responsible for the synthesis of DHEA, was determined in fetal, neonatal and adult brains by immunocytochemistry, and P450c17 bioactivity was determined by the conversion of pregnenolone to DHEA. Homogenates of fetal brain produced significantly more DHEA after 48 h in culture (22.46 ± 2.0 ng/mg tissue) than adult brain homogenates (5.04 ± 2.0 ng/mg tissue; p < 0.0001). P450c17 and Cytb5 were co-expressed in fetal neurons but predominantly in oligodendrocytes and white matter tracts in the adult brain. Because DHEA modulates glucocorticoids actions, the expression of the glucocorticoid receptor (GR) was also determined. In the brainstem, medulla, midbrain, and cerebellum, the predominant GR localization changed from neurons in the fetal brain to oligodendrocytes and white matter tracts in the adult brain. The change of expression of P450c17, Cytb5 and GR proteins with cell type, brain region and developmental age indicates that DHEA is an endogenous neurosteroid in this species that may have important trophic and stress-modifying actions during both prenatal and postnatal life.

  2. Mapping social behavior-induced brain activation at cellular resolution in the mouse.

    PubMed

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J; Rockland, Kathleen S; Seung, H Sebastian; Osten, Pavel

    2015-01-13

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here, we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate-early-gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP+ neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse.

  3. A meal preparation treatment protocol for adults with brain injury.

    PubMed

    Neistadt, M E

    1994-05-01

    Adults with acquired brain injury often demonstrate dysfunction in meal preparation due to deficits in component cognitive-perceptual skills. Although occupational therapy for these clients routinely includes meal preparation training, there are no protocols in the occupational therapy literature to help structure that activity to address clients' cognitive-perceptual deficits. This paper describes a meal preparation treatment protocol based on cognitive-perceptual information processing theory that has been pilot tested in a treatment outcome study with adult men with traumatic or anoxic acquired brain injury. In that study, the group of 23 subjects treated with this meal preparation protocol showed significant improvement in their meal preparation skill, as measured by the Rabideau Kitchen Evaluation-Revised (RKE-R), a test of meal preparation skill, and in their cognitive-perceptual skill, as measured by the WAIS-R Block Design Test. The treatment protocol includes descriptions of the structure, grading, and cuing methods for light meal preparation activities.

  4. Comprehensive cellular‐resolution atlas of the adult human brain

    PubMed Central

    Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce

    2016-01-01

    ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  5. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.

    PubMed

    Nash, Kevin R; Gordon, Marcia N

    2016-01-01

    Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.

  6. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  7. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer’s disease

    PubMed Central

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    Abstract. The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer’s disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional–vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD. PMID:26818714

  8. Transcription levels of sirtuin family in neural stem cells and brain tissues of adult mice.

    PubMed

    Wang, H F; Li, Q; Feng, R L; Wen, T Q

    2012-09-10

    Neural stem cells (NSCs) has been used as a well-known model to investigate apoptosis, differentiation, maintenance of stem cells status, and therapy of neurological disease. The C17.2 NSCs line was produced after v-myc transformation of neural progenitor from mouse cerebellar cortex. Sirtuin family plays important roles involved in neuronal differentiation, genomic stability, lifespan, cell survival. However, little is known about gene expression variation of sirtuin family in C17.2 NSCs, primary NSCs, and different brain tissues in adult mice. Here, we confirmed that the mRNA expression levels of sirt2, 3, 4, 5, and 7 in E14.5 NSCs were significantly higher than in C17.2 NSCs, whereas that sirt 6 displayed an opposing mode. Moreover, a higher mRNA level of sirtuin family was observed in the adult mouse brain compared to C17.2 NSCs. In addition, histone deacetylase (HDAC) inhibitors nicotinamide and Trichostatin A (TSA) were used to explore differential changes at the transcriptional level of sirtuins. Results indicated that the expression of sirt1, sirt5 and sirt6 was significant downregulated by nicotinamide treatment. Whereas, a significant downregulation in sirt1 and sirt3 and a significant upregulation in sirt2, sirt4, sirt6, and sirt7 were observed in the treatment of TSA. Thus our studies indicate different sirtuin mRNA expression profiles between C17.2 NSCs, E14.5 NSCs and brain tissues, suggesting the transcriptional regulation of sirtuin family could be mediated by different histone acetylation.

  9. Spatiotemporal Expression and Molecular Characterization of miR-344b and miR-344c in the Developing Mouse Brain

    PubMed Central

    Leong, Jia-Wen; Abdullah, Syahril; Cheah, Pike-See

    2016-01-01

    MicroRNAs (miRNAs) are small noncoding RNA known to regulate brain development. The expression of two novel miRNAs, namely, miR-344b and miR-344c, was characterized during mouse brain developmental stages in this study. In situ hybridization analysis showed that miR-344b and miR-344c were expressed in the germinal layer during embryonic brain developmental stages. In contrast, miR-344b was not detectable in the adult brain while miR-344c was expressed exclusively in the adult olfactory bulb and cerebellar granular layer. Stem-loop RT-qPCR analysis of whole brain RNAs showed that expression of the miR-344b and miR-344c was increased as brain developed throughout the embryonic stage and maintained at adulthood. Further investigation showed that these miRNAs were expressed in adult organs, where miR-344b and miR-344c were highly expressed in pancreas and brain, respectively. Bioinformatics analysis suggested miR-344b and miR-344c targeted Olig2 and Otx2 mRNAs, respectively. However, luciferase experiments demonstrated that these miRNAs did not target Olig2 and Otx2 mRNAs. Further investigation on the locality of miR-344b and miR-344c showed that both miRNAs were localized in nuclei of immature neurons. In conclusion, miR-344b and miR-344c were expressed spatiotemporally during mouse brain developmental stages. PMID:27034842

  10. Expression of fatty acid binding proteins is altered in aged mouse brain.

    PubMed

    Pu, L; Igbavboa, U; Wood, W G; Roths, J B; Kier, A B; Spener, F; Schroeder, F

    1999-08-01

    Brain membrane lipid fatty acid composition and consequently membrane fluidity change with increasing age. Intracellular fatty acid binding proteins (FABPs) such as heart H-FABP and the brain specific B-FABP, detected by immunoblotting of brain tissue, are thought to be involved in fatty acid uptake, metabolism, and differentiation in brain. Yet, almost nothing is known regarding the effect of age on the expression of the cytosolic fatty acid binding proteins (FABPs) or their content in brain subfractions. Electrophoresis and quantitative immunoblotting were used to examine the content of these FABPs in synaptosomes in brains from 4, 15, and 25 month old C57BL/6NNia male mice. Brain H-FABP and B-FABP were differentially expressed in mouse brain subcellular fractions. Brain H-FABP was highly concentrated in synaptosomal cytosol. The level of brain H-FABP in synaptosomes, synaptosomal cytosol, and intrasynaptosomal membranes was decreased 33, 35, and 43%, respectively, in 25 month old mice. B-FABP was detected in lower quantity than H-FABP. More important, B-FABP decreased in synaptosomes, synaptic plasma membranes, and synaptosomal cytosol from brains of 25 month old mice. In contrast to H-FABP, B-FABP was not detectable in the intrasynaptosomal membranes in any of the three age groups of mice. In conclusion, expression of both H-FABP and B-FABP was markedly reduced in aged mouse brain. Age differences in brain H-FABP and B-FABP levels in synaptosomal plasma membranes and synaptosomal cytosol may be important factors modulating neuronal differentiation and function.

  11. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  12. Brain network activity in monolingual and bilingual older adults.

    PubMed

    Grady, Cheryl L; Luk, Gigi; Craik, Fergus I M; Bialystok, Ellen

    2015-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life.

  13. Brain Network Activity in Monolingual and Bilingual Older Adults

    PubMed Central

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  14. Time Spent Caregiving and Help Received by Spouses and Adult Children of Brain-Impaired Adults.

    ERIC Educational Resources Information Center

    Enright, Robert B., Jr.

    1991-01-01

    Surveyed 233 family caregivers for brain-impaired adults. Spousal caregivers (both husbands and wives) devoted much time to caregiving. Most caregivers received little assistance from other family members and friends, but husbands received more than others. Employed spouses received more paid help than unemployed spouses; employment did not affect…

  15. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model.

    PubMed

    Hübner, Neele S; Mechling, Anna E; Lee, Hsu-Lei; Reisert, Marco; Bienert, Thomas; Hennig, Jürgen; von Elverfeldt, Dominik; Harsan, Laura-Adela

    2017-02-01

    Connectomics of brain disorders seeks to reveal how altered brain function emerges from the architecture of cerebral networks; however the causal impact of targeted cellular damage on the whole brain functional and structural connectivity remains unknown. In the central nervous system, demyelination is typically the consequence of an insult targeted at the oligodendrocytes, the cells forming and maintaining the myelin. This triggered perturbation generates cascades of pathological events that most likely alter the brain connectome. Here we induced oligodendrocyte death and subsequent demyelinating pathology via cuprizone treatment in mice and combining mouse brain resting state functional Magnetic Resonance Imaging and diffusion tractography we established functional and structural pathology-to-network signatures. We demonstrated that demyelinated brain fundamentally reorganizes its intrinsic functional connectivity paralleled by widespread damage of the structural scaffolding. We evidenced default mode-like network as core target of demyelination-induced connectivity modulations and hippocampus as the area with strongest connectional perturbations.

  16. Physiological and drug-induced changes in the glycogen content of mouse brain

    PubMed Central

    Hutchins, D. A.; Rogers, K. J.

    1970-01-01

    1. The effect of the method of killing on the concentration of glycogen in mouse brain was determined. The cerebral glycogen content of mice killed by immersion in liquid nitrogen did not differe significantly from that of animals decapitated and the heads immediately frozen. A delay before freezing led to the rapid loss of brain glycogen, with a 17% fall at 10 s and an 82% loss after 5 min. 2. Hyperglycaemia, induced by the administration of D-glucose, resulted in an 8·3% loss of brain glycogen after 120 min. Insulin hypoglycaemia produced a 10·7% fall in glycogen at 60 min followed by an 11·2% increase at 120 min. 3. Exposure to either high (32° C) or low (10° C) ambient temperatures caused a depletion of brain glycogen. 4. A circadian rhythm of brain glycogen concentration was found, with a nadir which was coincident with the peak of locomotor activity and body temperature. 5. Drugs from several pharmacological classes were studied for their in vivo effect on the concentration of glycogen in mouse brain. 6. Brain glycogen was increased by all the depressant drugs tested, and by some drugs which had little effect on behaviour (diphenhydramine, phenytoin and propranolol), or which caused excitation (caffeine and nialamide). 7. Glycogen was depleted only by amphetamine-like compounds or by bemegride-induced convulsions. 8. The results are discussed with particular reference to the possible relation between catecholamines and glycogen metabolism in the brain. PMID:5420149

  17. Epigenetic choreographers of neurogenesis in the adult mammalian brain

    PubMed Central

    Ma, Dengke K; Marchetto, Maria Carolina; Guo, Junjie U; Ming, Guo-li; Gage, Fred H; Song, Hongjun

    2012-01-01

    Epigenetic mechanisms regulate cell differentiation during embryonic development and also serve as important interfaces between genes and the environment in adulthood. Neurogenesis in adults, which generates functional neural cell types from adult neural stem cells, is dynamically regulated by both intrinsic state-specific cell differentiation cues and extrinsic neural niche signals. Epigenetic regulation by DNA and histone modifiers, non-coding RNAs and other self-sustained mechanisms can lead to relatively long-lasting biological effects and maintain functional neurogenesis throughout life in discrete regions of the mammalian brain. Here, we review recent evidence that epigenetic mechanisms carry out diverse roles in regulating specific aspects of adult neurogenesis and highlight the implications of such epigenetic regulation for neural plasticity and disorders. PMID:20975758

  18. Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors.

    PubMed

    Belgard, T Grant; Montiel, Juan F; Wang, Wei Zhi; García-Moreno, Fernando; Margulies, Elliott H; Ponting, Chris P; Molnár, Zoltán

    2013-08-06

    The thorniest problem in comparative neurobiology is the identification of the particular brain region of birds and reptiles that corresponds to the mammalian neocortex [Butler AB, Reiner A, Karten HJ (2011) Ann N Y Acad Sci 1225:14-27; Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Proc Natl Acad Sci USA 107(28):12676-12681]. We explored which genes are actively transcribed in the regions of controversial ancestry in a representative bird (chicken) and mammal (mouse) at adult stages. We conducted four analyses comparing the expression patterns of their 5,130 most highly expressed one-to-one orthologous genes that considered global patterns of expression specificity, strong gene markers, and coexpression networks. Our study demonstrates transcriptomic divergence, plausible convergence, and, in two exceptional cases, conservation between specialized avian and mammalian telencephalic regions. This large-scale study potentially resolves the complex relationship between developmental homology and functional characteristics on the molecular level and settles long-standing evolutionary debates.

  19. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse

    SciTech Connect

    Lin Zhoumeng; Fisher, Jeffrey W.; Ross, Matthew K.; Filipov, Nikolay M.

    2011-02-15

    Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR and DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.

  20. Localized diffusion magnetic resonance micro-imaging of the live mouse brain.

    PubMed

    Wu, Dan; Reisinger, Dominik; Xu, Jiadi; Fatemi, S Ali; van Zijl, Peter C M; Mori, Susumu; Zhang, Jiangyang

    2014-05-01

    High-resolution diffusion MRI (dMRI) is useful for resolving complex microstructures in the mouse brain, but technically challenging for in vivo studies due to the long scan time. In this study, selective excitation and a three-dimensional fast imaging sequence were used to achieve in vivo high-resolution dMRI of the mouse brain at 11.7Tesla. By reducing the field of view using spatially selective radio frequency pulses, we were able to focus on targeted brain structures and acquire high angular resolution diffusion imaging (HARDI) data at an isotropic resolution of 0.1mm and 30 diffusion encoding directions in approximately 1h. We investigated the complex tissue microstructures of the mouse hippocampus, cerebellum, and several cortical areas using this localized dMRI approach, and compared the results with histological sections stained with several axonal and dendritic markers. In the mouse visual cortex, the results showed predominately radially arranged structures in an outer layer and tangentially arranged structures in an inner layer, similar to observations from postmortem human brain specimens.

  1. Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain

    NASA Astrophysics Data System (ADS)

    Nouls, John C.; Izenson, Michael G.; Greeley, Harold P.; Johnson, G. Allan

    2008-04-01

    We present the design process of a superconducting volume coil for magnetic resonance microscopy of the mouse brain at 9.4 T. The yttrium barium copper oxide coil has been designed through an iterative process of three-dimensional finite-element simulations and validation against room temperature copper coils. Compared to previous designs, the Helmholtz pair provides substantially higher B1 homogeneity over an extended volume of interest sufficiently large to image biologically relevant specimens. A custom-built cryogenic cooling system maintains the superconducting probe at 60 ± 0.1 K. Specimen loading and probe retuning can be carried out interactively with the coil at operating temperature, enabling much higher through-put. The operation of the probe is a routine, consistent procedure. Signal-to-noise ratio in a mouse brain increased by a factor ranging from 1.1 to 2.9 as compared to a room-temperature solenoid coil optimized for mouse brain microscopy. We demonstrate images encoded at 10 × 10 × 20 μm for an entire mouse brain specimen with signal-to-noise ratio of 18 and a total acquisition time of 16.5 h, revealing neuroanatomy unseen at lower resolution. Phantom measurements show an effective spatial resolution better than 20 μm.

  2. Distribution of microsomal prostaglandin E synthase-1 in the mouse brain.

    PubMed

    Eskilsson, Anna; Tachikawa, Masanori; Hosoya, Ken-Ichi; Blomqvist, Anders

    2014-10-01

    Previous studies in rats have demonstrated that microsomal prostaglandin E synthase-1 (mPGES-1) is induced in brain vascular cells that also express inducible cyclooxygenase-2, suggesting that such cells are the source of the increased PGE2 levels that are seen in the brain following peripheral immune stimulation, and that are associated with sickness responses such as fever, anorexia, and stress hormone release. However, while most of what is known about the functional role of mPGES-1 for these centrally evoked symptoms is based on studies on genetically modified mice, the cellular localization of mPGES-1 in the mouse brain has not been thoroughly determined. Here, using a newly developed antibody that specifically recognizes mouse mPGES-1 and dual-labeling for cell-specific markers, we report that mPGES-1 is constitutively expressed in the mouse brain, being present not only in brain endothelial cells, but also in several other cell types and structures, such as capillary-associated pericytes, astroglial cells, leptomeninges, and the choroid plexus. Regional differences were seen with particularly prominent labeling in autonomic relay structures such as the area postrema, the subfornical organ, the paraventricular hypothalamic nucleus, the arcuate nucleus, and the preoptic area. Following immune stimulation, mPGES-1 in brain endothelial cells, but not in other mPGES-1-positive cells, was coexpressed with cyclooxygenase-2, whereas there was no coexpression between mPGES-1 and cyclooxygenase-1. These data imply a widespread synthesis of PGE2 or other mPGES-1-dependent products in the mouse brain that may be related to inflammation-induced sickness symptom as well as other functions, such as blood flow regulation.

  3. Ultrasound fails to induce proliferation of human brain and mouse endothelial cell lines

    NASA Astrophysics Data System (ADS)

    Rodemer, Claus; Jenne, Jürgen; Fatar, Marc; Hennerici, Michael G.; Meairs, Stephen

    2012-11-01

    Both in vitro and in vivo studies suggest that ultrasound (US) is capable of inducing angiogenesis. There is no information, however, on whether ultrasound can induce proliferation of brain endothelial cells. We therefore explored the angiogenic potential of ultrasound on a novel immortalised human brain endothelial cell line (hCMEC/D3) and on mouse brain microvascular endothelial cells (bEND3). Ultrasound failed to enhance cell proliferation in both cell lines at all acoustic pressures studied. Endothelial cell damage occurred at 0.24 MPa with significantly slower proliferation. Cells growing in Opticell{trade mark, serif} dishes did not show damage or reduced proliferation at these pressures.

  4. ALTERATION IN MICROSOMAL PROTEIN SYNTHESIS DURING EARLY DEVELOPMENT OF MOUSE BRAIN*

    PubMed Central

    Johnson, Terry C.; Belytschko, Gail

    1969-01-01

    The loss of protein synthesis during early mouse-brain development was shown to be the result, at least in part, of the inability of microsomes obtained from more mature neural tissue to participate in rapid polypeptide synthesis. The loss of brain microsomal activity was observed shortly after birth and continued until the animals were approximately ten days old. Despite the difference in synthetic activity, sucrose gradient profiles of microsomes and polyribosomes from young and more mature brain tissue were quite similar. The loss in protein synthesis was shown to be independent of available mRNA and not attributable to aminoacyl-RNA synthetases and tRNA binding activity. PMID:5257009

  5. Effect of soman on the cholinergic system in mouse brain

    SciTech Connect

    Tripathi, H.L.; Szakal, A.R.; Little, D.M.; Dewey, W.L.

    1986-03-05

    The effects of soman on levels of acetylcholine (ACh) and choline (Ch) and turnover rate of ACh have been studied in whole brain and brain regions (cerebellum, medulla-pons, midbrain, corpus striatum, hippocampus and cortex) of mice. Animals were injected with saline or a dose of soman up to 80..mu..g/kg, i.v. and were sacrificed by focussed microwave irradiation of the head. The tracer, /sup 3/H-Ch was injected (i.v.) 2 min prior to sacrifice and turnover rate of ACh was quantitated by using HPLC with electrochemical detection. A behaviorally effective dose of 80 ..mu..g/kg soman increased the levels of ACh significantly in whole brain (57.5%), corpus striatum (42.8%), hippocampus (24.1%) and cortex (43.1%). The levels of Ch were also increased in cerebellum (80.1%), midbrain (75.7%), corpus striatum (86.0%) and cortex (52.5%). The turnover rate of ACh was decreased in whole brain (53.8%), cerebellum (80.4%), medulla-pons (66.8%), midbrain (57.0%), corpus striatum (62.1%) and cortex (52.6%). The duration of these effects lasted more than 1 hr and the results indicate that the decrease in ACh turnover is not due necessarily to an increase in brain levels of ACh and/or Ch.

  6. High-Throughput Analysis of Dynamic Gene Expression Associated with Sleep Deprivation and Recovery Sleep in the Mouse Brain

    DTIC Science & Technology

    2006-12-01

    Gene Expression Associated with Sleep Deprivation and Recovery Sleep in the Mouse Brain PRINCIPAL INVESTIGATOR: Ed Lein, Ph.D...CONTRACTING ORGANIZATION: Allen Institute for Brain Science Seattle, WA 98103 REPORT DATE...Recovery Sleep in the Mouse Brain 5b. GRANT NUMBER W81XWH-06-1-0131 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Ed Lein, Ph.D

  7. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    SciTech Connect

    Johnston, M.E.; Geiger, J.D. )

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.

  8. Haemopexin affects iron distribution and ferritin expression in mouse brain

    PubMed Central

    Morello, Noemi; Tonoli, Elisabetta; Logrand, Federica; Fiorito, Veronica; Fagoonee, Sharmila; Turco, Emilia; Silengo, Lorenzo; Vercelli, Alessandro; Altruda, Fiorella; Tolosano, Emanuela

    2009-01-01

    Haemopexin (Hx) is an acute phase plasma glycoprotein, mainly produced by the liver and released into plasma where it binds heme with high affinity and delivers it to the liver. This system provides protection against free heme-mediated oxidative stress, limits access by pathogens to heme and contributes to iron homeostasis by recycling heme iron. Hx protein has been found in the sciatic nerve, skeletal muscle, retina, brain and cerebrospinal fluid (CSF). Recently, a comparative proteomic analysis has shown an increase of Hx in CSF from patients with Alzheimer’s disease, thus suggesting its involvement in heme detoxification in brain. Here, we report that Hx is synthesised in brain by the ventricular ependymal cells. To verify whether Hx is involved in heme scavenging in brain, and consequently, in the control of iron level, iron deposits and ferritin expression were analysed in cerebral regions known for iron accumulation. We show a twofold increase in the number of iron-loaded oligodendrocytes in the basal ganglia and thalamus of Hx-null mice compared to wild-type controls. Interestingly, there was no increase in H- and L-ferritin expression in these regions. This condition is common to several human neurological disorders such as Alzheimer’s disease and Parkinson’s disease in which iron loading is not associated with an adequate increase in ferritin expression. However, a strong reduction in the number of ferritin-positive cells was observed in the cerebral cortex of Hx-null animals. Consistent with increased iron deposits and inadequate ferritin expression, malondialdehyde level and Cu–Zn superoxide dismutase-1 expression were higher in the brain of Hx-null mice than in that of wild-type controls. These data demonstrate that Hx plays an important role in controlling iron distribution within brain, thus suggesting its involvement in iron-related neurodegenerative diseases. PMID:19120692

  9. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear.

    PubMed

    Oesterle, Elizabeth C; Campbell, Sean; Taylor, Ruth R; Forge, Andrew; Hume, Clifford R

    2008-03-01

    Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear.

  10. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    NASA Astrophysics Data System (ADS)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  11. Functional connectivity in the mouse brain imaged by B-mode photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xing, Wenxin; Xia, Jun; Wang, Lihong V.

    2014-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were acquired noninvasively in B-scan mode with a fast frame rate, a large field of view, and a high spatial resolution. At a location relative to the bregma 0, correlations were investigated inter-hemispherically between bilaterally homologous regions, as well as intra-hemispherically within the same functional regions. The functional connectivity in different functional regions was studied. The locations of these regions agreed well with the Paxinos mouse brain atlas. The functional connectivity map obtained in this study can then be used in the investigation of brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy. Our experiments show that photoacoustic microscopy is capable to detect connectivities between different functional regions in B-scan mode, promising a powerful functional imaging modality for future brain research.

  12. High-Resolution and Quantitative X-Ray Phase-Contrast Tomography for Mouse Brain Research.

    PubMed

    Xi, Yan; Lin, Xiaojie; Yuan, Falei; Yang, Guo-Yuan; Zhao, Jun

    2015-01-01

    Imaging techniques for visualizing cerebral vasculature and distinguishing functional areas are essential and critical to the study of various brain diseases. In this paper, with the X-ray phase-contrast imaging technique, we proposed an experiment scheme for the ex vivo mouse brain study, achieving both high spatial resolution and improved soft-tissue contrast. This scheme includes two steps: sample preparation and volume reconstruction. In the first step, we use heparinized saline to displace the blood inside cerebral vessels and then replace it with air making air-filled mouse brain. After sample preparation, X-ray phase-contrast tomography is performed to collect the data for volume reconstruction. Here, we adopt a phase-retrieval combined filtered backprojection method to reconstruct its three-dimensional structure and redesigned the reconstruction kernel. To evaluate its performance, we carried out experiments at Shanghai Synchrotron Radiation Facility. The results show that the air-tissue structured cerebral vasculatures are highly visible with propagation-based phase-contrast imaging and can be clearly resolved in reconstructed cross-images. Besides, functional areas, such as the corpus callosum, corpus striatum, and nuclei, are also clearly resolved. The proposed method is comparable with hematoxylin and eosin staining method but represents the studied mouse brain in three dimensions, offering a potential powerful tool for the research of brain disorders.

  13. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  14. Intracerebroventricular Viral Injection of the Neonatal Mouse Brain for Persistent and Widespread Neuronal Transduction

    PubMed Central

    Levites, Yona; Golde, Todd E.; Jankowsky, Joanna L.

    2014-01-01

    With the pace of scientific advancement accelerating rapidly, new methods are needed for experimental neuroscience to quickly and easily manipulate gene expression in the mouse brain. Here we describe a technique first introduced by Passini and Wolfe for direct intracranial delivery of virally-encoded transgenes into the neonatal mouse brain. In its most basic form, the procedure requires only an ice bucket and a microliter syringe. However, the protocol can also be adapted for use with stereotaxic frames to improve consistency for researchers new to the technique. The method relies on the ability of adeno-associated virus (AAV) to move freely from the cerebral ventricles into the brain parenchyma while the ependymal lining is still immature during the first 12-24 hr after birth. Intraventricular injection of AAV at this age results in widespread transduction of neurons throughout the brain. Expression begins within days of injection and persists for the lifetime of the animal. Viral titer can be adjusted to control the density of transduced neurons, while co-expression of a fluorescent protein provides a vital label of transduced cells. With the rising availability of viral core facilities to provide both off-the-shelf, pre-packaged reagents and custom viral preparation, this approach offers a timely method for manipulating gene expression in the mouse brain that is fast, easy, and far less expensive than traditional germline engineering. PMID:25286085

  15. Indian-ink perfusion based method for reconstructing continuous vascular networks in whole mouse brain.

    PubMed

    Xue, Songchao; Gong, Hui; Jiang, Tao; Luo, Weihua; Meng, Yuanzheng; Liu, Qian; Chen, Shangbin; Li, Anan

    2014-01-01

    The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm(3) for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously.

  16. Morphological asymmetries of mouse brain assessed by geometric morphometric analysis of MRI data.

    PubMed

    Barbeito-Andrés, Jimena; Bernal, Valeria; Gonzalez, Paula N

    2016-09-01

    Mammalian brain has repeated structures at both sides of the median plane, although some asymmetries have been described even under normal conditions. Characterizing normal patterns of asymmetry in mouse brain is important to recognize features that depart from expected ranges in the most widely used mammalian model. Analyses on brain morphology based on magnetic resonance image (MRI) have largely focused on volumes while less is known about shape asymmetry. We introduce a flexible protocol based on geometric morphometrics to assess patterns of asymmetry in shape and size of mouse brain from microMRI scans. After systematic digitization of landmarks and semilandmarks, we combine multivariate methods for statistical analyses with visualization tools to display the results. No preliminary treatment of the images (e.g. space normalization) is needed to collect data on MRI slices and visual representations improve the interpretation of the results. Results indicated that the protocol is highly repeatable. Asymmetry was more evident for shape than for size. Particularly, fluctuating asymmetry accounted for more variation than directional asymmetry in all brain regions. Since this approach can detect subtle shape variation between sides, it is a promising methodology to explore morphological changes in the brain of model organisms and can be applied in future studies addressing the effect of genetic and environmental factors on brain morphology.

  17. Integrative analysis of the connectivity and gene expression atlases in the mouse brain.

    PubMed

    Ji, Shuiwang; Fakhry, Ahmed; Deng, Houtao

    2014-01-01

    Brain function is the result of interneuron signal transmission controlled by the fundamental biochemistry of each neuron. The biochemical content of a neuron is in turn determined by spatiotemporal gene expression and regulation encoded into the genomic regulatory networks. It is thus of particular interest to elucidate the relationship between gene expression patterns and connectivity in the brain. However, systematic studies of this relationship in a single mammalian brain are lacking to date. Here, we investigate this relationship in the mouse brain using the Allen Brain Atlas data. We employ computational models for predicting brain connectivity from gene expression data. In addition to giving competitive predictive performance, these models can rank the genes according to their predictive power. We show that gene expression is predictive of connectivity in the mouse brain when the connectivity signals are discretized. When the expression patterns of 4084 genes are used, we obtain a predictive accuracy of 93%. Our results also show that a small number of genes can almost give the full predictive power of using thousands of genes. We can achieve a prediction accuracy of 91% by using only 25 genes. Gene ontology analysis of the highly ranked genes shows that they are enriched for connectivity related processes.

  18. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation

    PubMed Central

    MacManus, David B.; Pierrat, Baptiste; Murphy, Jeremiah G.; Gilchrist, Michael D.

    2016-01-01

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties, which may be attributed to the diversity of cells and anisotropy of neuronal fibers within individual brain regions. The regional dynamic mechanical properties of P56 mouse brain tissue in vitro and in situ at velocities of 0.71–4.28 mm/s, up to a deformation of 70 μm are presented and discussed in the context of traumatic brain injury. The experimental data obtained from micro-indentation measurements were fit to three hyperelastic material models using the inverse Finite Element method. The cerebral cortex elicited a stiffer response than the cerebellum, thalamus, and medulla oblongata regions for all velocities. The thalamus was found to be the least sensitive to changes in velocity, and the medulla oblongata was most compliant. The results show that different regions of the mouse brain possess significantly different mechanical properties, and a significant difference also exists between the in vitro and in situ brain. PMID:26898475

  19. Preservation of mitochondrial functional integrity in mitochondria isolated from small cryopreserved mouse brain areas.

    PubMed

    Valenti, Daniela; de Bari, Lidia; De Filippis, Bianca; Ricceri, Laura; Vacca, Rosa Anna

    2014-01-01

    Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses.

  20. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation

    NASA Astrophysics Data System (ADS)

    MacManus, David B.; Pierrat, Baptiste; Murphy, Jeremiah G.; Gilchrist, Michael D.

    2016-02-01

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties, which may be attributed to the diversity of cells and anisotropy of neuronal fibers within individual brain regions. The regional dynamic mechanical properties of P56 mouse brain tissue in vitro and in situ at velocities of 0.71–4.28 mm/s, up to a deformation of 70 μm are presented and discussed in the context of traumatic brain injury. The experimental data obtained from micro-indentation measurements were fit to three hyperelastic material models using the inverse Finite Element method. The cerebral cortex elicited a stiffer response than the cerebellum, thalamus, and medulla oblongata regions for all velocities. The thalamus was found to be the least sensitive to changes in velocity, and the medulla oblongata was most compliant. The results show that different regions of the mouse brain possess significantly different mechanical properties, and a significant difference also exists between the in vitro and in situ brain.

  1. Indian-Ink Perfusion Based Method for Reconstructing Continuous Vascular Networks in Whole Mouse Brain

    PubMed Central

    Xue, Songchao; Gong, Hui; Jiang, Tao; Luo, Weihua; Meng, Yuanzheng; Liu, Qian; Chen, Shangbin; Li, Anan

    2014-01-01

    The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously. PMID:24498247

  2. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation.

  3. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    SciTech Connect

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  4. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  5. Automatic macroscopic density artefact removal in a Nissl-stained microscopic atlas of whole mouse brain.

    PubMed

    Ding, W; Li, A; Wu, J; Yang, Z; Meng, Y; Wang, S; Gong, H

    2013-08-01

    Acquiring a whole mouse brain at the micrometer scale is a complex, continuous and time-consuming process. Because of defects caused by sample preparation and microscopy, the acquired image data sets suffer from various macroscopic density artefacts that worsen the image quality. We have to develop the available preprocessing methods to improve image quality by removing the artefacts that effect cell segmentation, vascular tracing and visualization. In this study, a set of automatic artefact removal methods is proposed for images obtained by tissue staining and optical microscopy. These methods significantly improve the complicated images that contain various structures, including cells and blood vessels. The whole mouse brain data set with Nissl staining was tested, and the intensity of the processed images was uniformly distributed throughout different brain areas. Furthermore, the processed image data set with its uniform brightness and high quality is now a fundamental atlas for image analysis, including cell segmentation, vascular tracing and visualization.

  6. Towards ultrahigh resting-state functional connectivity in the mouse brain using photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza

    2016-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.

  7. Transcriptomic profile of host response in mouse brain after exposure to plant toxin abrin.

    PubMed

    Bhaskar, A S Bala; Gupta, Nimesh; Rao, P V Lakshmana

    2012-09-04

    Abrin toxin is a plant glycoprotein, which is similar in structure and properties to ricin and is obtained from the seeds of Abrus precatorius (jequirity bean). Abrin is highly toxic, with an estimated human fatal dose of 0.1-1 μg/kg, and has caused death after accidental and intentional poisoning. Abrin is a potent biological toxin warfare agent. There are no chemical antidotes available against the toxin. Neurological symptoms like delirium, hallucinations, reduced consciousness and generalized seizures were reported in human poisoning cases. Death of a patient with symptoms of acute demyelinating encephalopathy with gastrointestinal bleeding due to ingestion of abrin seeds was reported in India. The aim of this study was to examine both dose and time-dependent transcriptional responses induced by abrin in the adult mouse brain. Mice (n=6) were exposed to 1 and 2 LD50 (2.83 and 5.66 μg/kg respectively) dose of abrin by intraperitoneal route and observed over 3 days. A subset of animals (n=3) were sacrificed at 1 and 2 day intervals for microarray and histopathology analysis. None of the 2 LD50 exposed animals survived till 3 days. The histopathological analysis showed the severe damage in brain and the infiltration of inflammatory cells in a dose and time dependent manner. The abrin exposure resulted in the induction of rapid immune and inflammatory response in brain. Clinical biochemistry parameters like lactate dehydrogenase, aspartate aminotransferase, urea and creatinine showed significant increase at 2-day 2 LD50 exposure. The whole genome microarray data revealed the significant regulation of various pathways like MAPK pathway, cytokine-cytokine receptor interaction, calcium signaling pathway, Jak-STAT signaling pathway and natural killer cell mediated toxicity. The comparison of differential gene expression at both the doses showed dose dependent effects of abrin toxicity. The real-time qRT-PCR analysis of selected genes supported the microarray data

  8. Determination of kainate receptor subunit ratios in mouse brain using novel chimeric protein standards.

    PubMed

    Watanabe-Iida, Izumi; Konno, Kohtarou; Akashi, Kaori; Abe, Manabu; Natsume, Rie; Watanabe, Masahiko; Sakimura, Kenji

    2016-01-01

    Kainate-type glutamate receptors (KARs) are tetrameric channels assembled from GluK1-5. GluK1-3 are low-affinity subunits that form homomeric and heteromeric KARs, while GluK4 and GluK5 are high-affinity subunits that require co-assembly with GluK1-3 for functional expression. Although the subunit composition is thought to be highly heterogeneous in the brain, the distribution of KAR subunits at the protein level and their relative abundance in given regions of the brain remain largely unknown. In the present study, we titrated C-terminal antibodies to each KAR subunit using chimeric GluA2-GluK fusion proteins, and measured their relative abundance in the P2 and post-synaptic density (PSD) fractions of the adult mouse hippocampus and cerebellum. Analytical western blots showed that GluK2 and GluK3 were the major KAR subunits, with additional expression of GluK5 in the hippocampus and cerebellum. In both regions, GluK4 was very low and GluK1 was below the detection threshold. The relative amount of low-affinity subunits (GluK2 plus GluK3) was several times higher than that of high-affinity subunits (GluK4 plus GluK5) in both regions. Of note, the highest ratio of high-affinity subunits to low-affinity subunits was found in the hippocampal PSD fraction (0.32), suggesting that heteromeric receptors consisting of high- and low-affinity subunits highly accumulate at hippocampal synapses. In comparison, this ratio was decreased to 0.15 in the cerebellar PSD fraction, suggesting that KARs consisting of low-affinity subunits are more prevalent in the cerebellum. Therefore, low-affinity KAR subunits are predominant in the brain, with distinct subunit combinations between the hippocampus and cerebellum. Kainate receptors, an unconventional member of the iGluR receptor family, have a tetrameric structure assembled from low-affinity (GluK1-3) and high-affinity (GluK4 and GluK5) subunits. We used a simple but novel procedure to measure the relative abundance of both low- and

  9. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    PubMed Central

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-01-01

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings. PMID:26229677

  10. Neuroimaging in adult penetrating brain injury: a guide for radiographers.

    PubMed

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-06-01

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  11. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    SciTech Connect

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  12. Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain.

    PubMed

    Ren, Z H; Deng, H D; Deng, Y T; Deng, J L; Zuo, Z C; Yu, S M; Shen, L H; Cui, H M; Xu, Z W; Hu, Y C

    2016-09-01

    The aim of this study was to find effects of Fusarium toxins on brain injury in mice. We evaluated the individual and combined effect of the Fusarium toxins zearalenone and deoxynivalenol on the mouse brain. We examined brain weight, protein, antioxidant indicators, and apoptosis. After 3 and 5days of treatment, increased levels of nitric oxide, total nitric oxide synthase, hydroxyl radical scavenging, and malondialdehyde were observed in the treatment groups. This was accompanied by reduced levels of brain protein, superoxide dismutase (apart from the low-dose zearalenone groups), glutathione, glutathione peroxidase activity, and percentage of apoptotic cells. By day 12, most of these indicators had returned to control group levels. The effects of zearalenone and deoxynivalenol were dose-dependent, and were synergistic in combination. Our results suggest that brain function is affected by zearalenone and deoxynivalenol.

  13. Practical Application of Microelectroporation into Developing Mouse Brain

    NASA Astrophysics Data System (ADS)

    Shimogori, Tomomi; Ogawa, Masaharu

    One key approach toward understanding the genetic mechanisms underlying embryonic development involves the overexpression or misexpression of target genes in specific regions and at specific time points. The mouse gene-knockout system has been used extensively for loss-of-function studies due to the availability of a large number of mutant lines and the technical advantages of this system. In contrast, gain-of-function analyses have been performed through the production of knock-in and transgenic animals and with the use of various viruses (Cornetta 2006; Jakobsson et al., 2003; Hashimoto and Mikoshiba, 2004). However, it is not always possible to express or suppress genes in a spatially and temporally restricted manner, and the generation of genetically modified mice and recombinant viruses is time consuming and labor intensive. With the aim of solving these problems, many attempts have been made to apply the electroporation technique in research on developmental biology. Due to the accessibility of the avian embryo, it has been used as a classic model system for the study of developmental events in vertebrates. A novel technique for successful gene delivery into chick embryos has been established; this technique is known as in ovo electroporation and appears to be an excellent method, permitting quick and direct examination of the function of the delivered genes (Muramatsu et al., 1997; Itasaki et al., 1999; Momose et al., 1999; Nakamura et al., 2000; Yasuda et al., 2000). It seems that this technique can be adapted to the mouse embryo and would permit more rapid functional analysis of genes than is achieved by the generation of knockout or transgenic mouse lines. However, the inaccessibility of embryos in the mammalian uterus renders in utero manipulations targeting precise regions difficult or impossible at most stages of development. Efforts have been undertaken by various researchers to establish an in utero electroporation system, and there have been several

  14. The Phospholipase D2 Knock Out Mouse Has Ectopic Purkinje Cells and Suffers from Early Adult-Onset Anosmia

    PubMed Central

    Zhang, Qifeng; Smethurst, Elizabeth; Segonds-Pichon, Anne; Schrewe, Heinrich; Wakelam, Michael J. O.

    2016-01-01

    Phospholipase D2 (PLD2) is an enzyme that produces phosphatidic acid (PA), a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO) mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA) regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction. PMID:27658289

  15. Transport of thyroxine across the blood-brain barrier is directed primarily from brain to blood in the mouse

    SciTech Connect

    Banks, W.A.; Kastin, A.J.; Michals, E.A.

    1985-12-23

    The role of the blood-brain barrier (BBB) in the transport of thyroxine was examined in mice. Radioiodinated (hot thyroxine (hT/sub 4/) administered icv had a half-time disappearance from the brain of 30 min. This increased to 60 min (p < 0.001) when administered with 211 pmole/mouse of unlabeled (cold) thyroxine (cT/sub 4/). The Km for this inhibition of hT/sub 4/ transport out of the brain by cT/sub 4/ was 9.66 pmole/brain. Unlabeled 3,3',5 triiodothyronine (cT/sub 3/) was unable to inhibit transport of hT/sub 4/ out of the brain, although both cT/sub 3/ (p < 0.05) and cT/sub 4/ (p < 0.05) did inhibit transport of radioiodinated 3,3',5 triiodothyronine (hT/sub 3/) to a small degree. Entry of hT/sub 4/ into the brain after peripheral administration was negligible and was not affected by either cT/sub 4/ nor cT/sub 3/. By contrast, the entry of hT/sub 3/ into the brain after peripheral administration was inhibited by cT/sub 3/ (p < 0.001) and was increased by cT/sub 4/ (p < 0.01). The levels of the unlabeled thyroid hormones administered centrally in these studies did not affect bulk flow, as assessed by labeled red blood cells (/sup 99m/Tc-RBC), or the carrier mediated transport of iodide out of the brain. Likewise, the vascular space of the brain and body, as assessed by /sup 99m/Tc-RBC, was unchanged by the levels of peripherally administered unlabeled thyroid hormones. Therefore, the results of these studies are not due to generalized effects of thyroid hormones on BBB transport. The results indicate that in the mouse the major carrier-mediated system for thyroxine in the BBB transports thyroxine out of the brain, while the major system for triiodothyronine transports hormone into the brain. 14 references, 3 figures, 2 tables.

  16. MRI as a tool to study brain structure from mouse models for mental retardation

    NASA Astrophysics Data System (ADS)

    Verhoye, Marleen; Sijbers, Jan; Kooy, R. F.; Reyniers, E.; Fransen, E.; Oostra, B. A.; Willems, Peter; Van der Linden, Anne-Marie

    1998-07-01

    Nowadays, transgenic mice are a common tool to study brain abnormalities in neurological disorders. These studies usually rely on neuropathological examinations, which have a number of drawbacks, including the risk of artefacts introduced by fixation and dehydration procedures. Here we present 3D Fast Spin Echo Magnetic Resonance Imaging (MRI) in combination with 2D and 3D segmentation techniques as a powerful tool to study brain anatomy. We set up MRI of the brain in mouse models for the fragile X syndrome (FMR1 knockout) and Corpus callosum hypoplasia, mental Retardation, Adducted thumbs, Spastic paraplegia and Hydrocephalus (CRASH) syndrome (L1CAM knockout). Our major goal was to determine qualitative and quantitative differences in specific brain structures. MRI of the brain of fragile X and CRASH patients has revealed alterations in the size of specific brain structures, including the cerebellar vermis and the ventricular system. In the present MRI study of the brain from fragile X knockout mice, we have measured the size of the brain, cerebellum and 4th ventricle, which were reported as abnormal in human fragile X patients, but found no evidence for altered brain regions in the mouse model. In CRASH syndrome, the most specific brain abnormalities are vermis hypoplasia and abnormalities of the ventricular system with some degree of hydrocephalus. With the MRI study of L1CAM knockout mice we found vermis hypoplasia, abnormalities of the ventricular system including dilatation of the lateral and the 4th ventricles. These subtle abnormalities were not detected upon standard neuropathological examination. Here we proved that this sensitive MRI technique allows to measure small differences which can not always be detected by means of pathology.

  17. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    SciTech Connect

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  18. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  19. Experimental induction of corpora amylacea in adult rat brain.

    PubMed

    Schipper, H M

    1998-10-01

    Corpora amylacea (CA) are glycoproteinaceous inclusions that accumulate in astroglia and other brain cells as a function of advancing age and, to an even greater extent, in several human neurodegenerative conditions. The mechanisms responsible for their biogenesis and their subcellular origin(s) remain unclear. We previously demonstrated that the sulfhydryl agent, cysteamine (CSH), promotes the accumulation of CA-like inclusions in cultured rat astroglia. In the present study, we show that subcutaneous administration of CSH to adult rats (150 mg/kg for 6 weeks followed by a 5-week drug-washout period) elicits the accumulation of CA in many cortical and subcortical brain regions. As in the aging human brain and in CSH-treated rat astrocyte cultures, the inclusions are periodic acid-Schiff -positive and are consistently immunostained with antibodies directed against mitochondrial epitopes and ubiquitin. Our findings support our contention that mitochondria are important structural precursors of CA, and that CSH accelerates aging-like processes in rat astroglia both in vitro and in the intact brain.

  20. Testosterone affects language areas of the adult human brain.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc.

  1. Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain

    PubMed Central

    Shi, Meiqing; Li, Shu Shun; Zheng, Chunfu; Jones, Gareth J.; Kim, Kwang Sik; Zhou, Hong; Kubes, Paul; Mody, Christopher H.

    2010-01-01

    Infectious meningitis and encephalitis is caused by invasion of circulating pathogens into the brain. It is unknown how the circulating pathogens dynamically interact with brain endothelium under shear stress, leading to invasion into the brain. Here, using intravital microscopy, we have shown that Cryptococcus neoformans, a yeast pathogen that causes meningoencephalitis, stops suddenly in mouse brain capillaries of a similar or smaller diameter than the organism, in the same manner and with the same kinetics as polystyrene microspheres, without rolling and tethering to the endothelial surface. Trapping of the yeast pathogen in the mouse brain was not affected by viability or known virulence factors. After stopping in the brain, C. neoformans was seen to cross the capillary wall in real time. In contrast to trapping, viability, but not replication, was essential for the organism to cross the brain microvasculature. Using a knockout strain of C. neoformans, we demonstrated that transmigration into the mouse brain is urease dependent. To determine whether this could be amenable to therapy, we used the urease inhibitor flurofamide. Flurofamide ameliorated infection of the mouse brain by reducing transmigration into the brain. Together, these results suggest that C. neoformans is mechanically trapped in the brain capillary, which may not be amenable to pharmacotherapy, but actively transmigrates to the brain parenchyma with contributions from urease, suggesting that a therapeutic strategy aimed at inhibiting this enzyme could help prevent meningitis and encephalitis caused by C. neoformans infection. PMID:20424328

  2. In-depth mapping of the mouse brain N-glycoproteome reveals widespread N-glycosylation of diverse brain proteins

    PubMed Central

    Fang, Pan; Wang, Xin-jian; Xue, Yu; Liu, Ming-qi; Zeng, Wen-feng; Zhang, Yang; Zhang, Lei; Gao, Xing; Yan, Guo-quan; Yao, Jun; Shen, Hua-li; Yang, Peng-yuan

    2016-01-01

    N-glycosylation is one of the most prominent and abundant posttranslational modifications of proteins. It is estimated that over 50% of mammalian proteins undergo glycosylation. However, the analysis of N-glycoproteins has been limited by the available analytical technology. In this study, we comprehensively mapped the N-glycosylation sites in the mouse brain proteome by combining complementary methods, which included seven protease treatments, four enrichment techniques and two fractionation strategies. Altogether, 13492 N-glycopeptides containing 8386 N-glycosylation sites on 3982 proteins were identified. After evaluating the performance of the above methods, we proposed a simple and efficient workflow for large-scale N-glycosylation site mapping. The optimized workflow yielded 80% of the initially identified N-glycosylation sites with considerably less effort. Analysis of the identified N-glycoproteins revealed that many of the mouse brain proteins are N-glycosylated, including those proteins in critical pathways for nervous system development and neurological disease. Additionally, several important biomarkers of various diseases were found to be N-glycosylated. These data confirm that N-glycosylation is important in both physiological and pathological processes in the brain, and provide useful details about numerous N-glycosylation sites in brain proteins. PMID:27259237

  3. Roles for oestrogen receptor β in adult brain function.

    PubMed

    Handa, R J; Ogawa, S; Wang, J M; Herbison, A E

    2012-01-01

    Oestradiol exerts a profound influence upon multiple brain circuits. For the most part, these effects are mediated by oestrogen receptor (ER)α. We review here the roles of ERβ, the other ER isoform, in mediating rodent oestradiol-regulated anxiety, aggressive and sexual behaviours, the control of gonadotrophin secretion, and adult neurogenesis. Evidence exists for: (i) ERβ located in the paraventricular nucleus underpinning the suppressive influence of oestradiol on the stress axis and anxiety-like behaviour; (ii) ERβ expressed in gonadotrophin-releasing hormone neurones contributing to oestrogen negative-feedback control of gonadotrophin secretion; (iii) ERβ controlling the offset of lordosis behaviour; (iv) ERβ suppressing aggressive behaviour in males; (v) ERβ modulating responses to social stimuli; and (vi) ERβ in controlling adult neurogenesis. This review highlights two major themes; first, ERβ and ERα are usually tightly inter-related in the oestradiol-dependent control of a particular brain function. For example, even though oestradiol feedback to control reproduction occurs principally through ERα-dependent mechanisms, modulatory roles for ERβ also exist. Second, the roles of ERα and ERβ within a particular neural network may be synergistic or antagonistic. Examples of the latter include the role of ERα to enhance, and ERβ to suppress, anxiety-like and aggressive behaviours. Splice variants such as ERβ2, acting as dominant negative receptors, are of further particular interest because their expression levels may reflect preceeding oestradiol exposure of relevance to oestradiol replacement therapy. Together, this review highlights the predominant modulatory, but nonetheless important, roles of ERβ in mediating the many effects of oestradiol upon adult brain function.

  4. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain

    PubMed Central

    Tsukano, Hiroaki; Horie, Masao; Hishida, Ryuichi; Takahashi, Kuniyuki; Takebayashi, Hirohide; Shibuki, Katsuei

    2016-01-01

    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory cortex have been annotated and consolidated in recent brain atlases, the multiple auditory cortical regions have not yet been presented from a coronal view. In the current study, we obtained regional coordinates of the six auditory cortical regions of the C57BL/6 mouse brain and illustrated these regions on template coronal brain slices. These results should reinforce the existing mouse brain atlases and support future studies in the auditory cortex. PMID:26924462

  5. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq.

    PubMed

    Zeisel, Amit; Muñoz-Manchado, Ana B; Codeluppi, Simone; Lönnerberg, Peter; La Manno, Gioele; Juréus, Anna; Marques, Sueli; Munguba, Hermany; He, Liqun; Betsholtz, Christer; Rolny, Charlotte; Castelo-Branco, Gonçalo; Hjerling-Leffler, Jens; Linnarsson, Sten

    2015-03-06

    The mammalian cerebral cortex supports cognitive functions such as sensorimotor integration, memory, and social behaviors. Normal brain function relies on a diverse set of differentiated cell types, including neurons, glia, and vasculature. Here, we have used large-scale single-cell RNA sequencing (RNA-seq) to classify cells in the mouse somatosensory cortex and hippocampal CA1 region. We found 47 molecularly distinct subclasses, comprising all known major cell types in the cortex. We identified numerous marker genes, which allowed alignment with known cell types, morphology, and location. We found a layer I interneuron expressing Pax6 and a distinct postmitotic oligodendrocyte subclass marked by Itpr2. Across the diversity of cortical cell types, transcription factors formed a complex, layered regulatory code, suggesting a mechanism for the maintenance of adult cell type identity.

  6. A pharmacological evidence of positive association between mouse intermale aggression and brain serotonin metabolism.

    PubMed

    Kulikov, A V; Osipova, D V; Naumenko, V S; Terenina, E; Mormède, P; Popova, N K

    2012-07-15

    The neurotransmitter serotonin (5-HT) is involved in the regulation of mouse intermale aggression. Previously, it was shown that intensity of mouse intermale aggression was positively associated with activity of the key enzyme of 5-HT synthesis - tryptophan hydroxylase 2 (TPH2) in mouse brain. The aim of the present study was to investigate the effect of pharmacological activation or inhibition of 5-HT synthesis in the brain on intermale aggression in two mouse strains differing in the TPH2 activity: C57BL/6J (B6, high TPH2 activity, high aggressiveness) and CC57BR/Mv (BR, low TPH2 activity, low aggressiveness). Administration of 5-HT precursor L-tryptophan (300 mg/kg, i.p.) to BR mice significantly increased the 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels in the midbrain as well as the number of attacks and their duration in the resident-intruder test. And vice versa, administration of TPH2 inhibitor p-chlorophenylalanine (pCPA) (300 mg/kg, i.p., for 3 consecutive days) to B6 mice dramatically reduced the 5-HT and 5-HIAA contents in brain structures and attenuated the frequency and the duration of aggressive attacks. At the same time, L-tryptophan or pCPA did not influence the percentage of aggressive mice and the attack latency reflecting the threshold of aggressive reaction. This result indicated that the intensity of intermale aggression, but not the threshold of aggressive reaction is positively dependent on 5-HT metabolism in mouse brain.

  7. NMDA receptors mediate heat shock protein induction in the mouse brain following administration of the ibotenic acid analogue AMAA.

    PubMed

    Planas, A M; Ferrer, I; Rodríguez-Farré, E

    1995-11-27

    Expression of inducible heat shock protein-70 (HSP-70) and hsp-70 mRNA were studied in the adult mouse brain following systemic administration of the ibotenic acid analogue (+/-)-2-amino-3-hydroxy-5-methyl-4-isoxazoleacetic acid (AMAA), which is a potent N-methyl-D-aspartate (NMDA) agonist. At the dose of 20 mg/kg, AMAA produced excitatory behaviours in adult mice but overt convulsions were not seen. This treatment did not result in any detectable morphological brain damage at 4 days following administration. At 2.5 h and 5 h following treatment induction of hsp-70 mRNA expression was found in the pyramidal cell layers of CA1 and, to a lesser extent, CA3 fields of hippocampal Ammon's horn, amygdala, olfactory lobes, tenia tecta, hypothalamic nuclei and a superficial layer of cingulate, frontal and retrosplenial cortices. The presence of HSP-70 was detected by immunochemistry at 24 h following drug administration in those regions previously showing hsp-70 mRNA induction. AMAA-induced hsp-70 mRNA expression was prevented by pre-treatment with the non-competitive NMDA antagonist MK-801. These results suggest that NMDA receptors are involved in the stress response induced by AMAA.

  8. Soy Glyceollins Regulate Transcript Abundance in the Female Mouse Brain

    PubMed Central

    Bamji, Sanaya F.; Page, Robert B.; Patel, Dharti; Sanders, Alexia; Alvarez, Alejandro R.; Gambrell, Caitlin; Naik, Kuntesh; Raghavan, Ashwin M.; Burow, Matthew E.; Boue, Stephen M.; Klinge, Carolyn M.; Ivanova, Margarita; Corbitt, Cynthia

    2015-01-01

    Glyceollins (Gly), produced by soy plants in response to stress, have anti-estrogenic activity in breast and ovarian cancer cell lines in vitro and in vivo. In addition to known anti-estrogenic effects, Gly exhibits mechanisms of action not involving estrogen receptor (ER) signaling. To date, effects of Gly on gene expression in the brain are unknown. For this study, we implanted 17-β estradiol (E2) or placebo slow-release pellets into ovariectomized CFW mice followed by 11 days of exposure to Gly or vehicle i.p. injections. We then performed a microarray on total RNA extracted from whole brain hemispheres and identified differentially expressed genes (DEGs) by a 2 × 2 factorial ANOVA with an FDR = 0.20. In total, we identified 33 DEGs with a significant E2 main effect, 5 DEGs with a significant Gly main effect, 74 DEGs with significant Gly and E2 main effects (but no significant interaction term), and 167 DEGs with significant interaction terms. Clustering across all DEGs revealed that transcript abundances were similar between the E2+Gly and E2-only treatments. However, gene expression after Gly-only treatment was distinct from both of these treatments and was generally characterized by higher transcript abundance. Collectively, our results suggest that whether Gly acts in the brain through ER-dependent or ER-independent mechanisms depends on the target gene. PMID:25953511

  9. A Novel Mouse Model of Penetrating Brain Injury

    PubMed Central

    Cernak, Ibolja; Wing, Ian D.; Davidsson, Johan; Plantman, Stefan

    2014-01-01

    Penetrating traumatic brain injury (pTBI) has been difficult to model in small laboratory animals, such as rats or mice. Previously, we have established a non-fatal, rat model for pTBI using a modified air-rifle that accelerates a pellet, which hits a small probe that then penetrates the experimental animal’s brain. Knockout and transgenic strains of mice offer attractive tools to study biological reactions induced by TBI. Hence, in the present study, we adapted and modified our model to be used with mice. The technical characterization of the impact device included depth and speed of impact, as well as dimensions of the temporary cavity formed in a brain surrogate material after impact. Biologically, we have focused on three distinct levels of severity (mild, moderate, and severe), and characterized the acute phase response to injury in terms of tissue destruction, neural degeneration, and gliosis. Functional outcome was assessed by measuring bodyweight and motor performance on rotarod. The results showed that this model is capable of reproducing major morphological and neurological changes of pTBI; as such, we recommend its utilization in research studies aiming to unravel the biological events underlying injury and regeneration after pTBI. PMID:25374559

  10. Neuroimaging Biomarkers Predict Brain Structural Connectivity Change in a Mouse Model of Vascular Cognitive Impairment

    PubMed Central

    Boehm-Sturm, Philipp; Füchtemeier, Martina; Foddis, Marco; Mueller, Susanne; Trueman, Rebecca C.; Zille, Marietta; Rinnenthal, Jan Leo; Kypraios, Theodore; Shaw, Laurence; Dirnagl, Ulrich

    2017-01-01

    Background and Purpose— Chronic hypoperfusion in the mouse brain has been suggested to mimic aspects of vascular cognitive impairment, such as white matter damage. Although this model has attracted attention, our group has struggled to generate a reliable cognitive and pathological phenotype. This study aimed to identify neuroimaging biomarkers of brain pathology in aged, more severely hypoperfused mice. Methods— We used magnetic resonance imaging to characterize brain degeneration in mice hypoperfused by refining the surgical procedure to use the smallest reported diameter microcoils (160 μm). Results— Acute cerebral blood flow decreases were observed in the hypoperfused group that recovered over 1 month and coincided with arterial remodeling. Increasing hypoperfusion resulted in a reduction in spatial learning abilities in the water maze that has not been previously reported. We were unable to observe severe white matter damage with histology, but a novel approach to analyze diffusion tensor imaging data, graph theory, revealed substantial reorganization of the hypoperfused brain network. A logistic regression model from the data revealed that 3 network parameters were particularly efficient at predicting group membership (global and local efficiency and degrees), and clustering coefficient was correlated with performance in the water maze. Conclusions— Overall, these findings suggest that, despite the autoregulatory abilities of the mouse brain to compensate for a sudden decrease in blood flow, there is evidence of change in the brain networks that can be used as neuroimaging biomarkers to predict outcome. PMID:28070001

  11. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain.

    PubMed

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-20

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development.

  12. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    SciTech Connect

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  13. Expression patterns of Slit and Robo family members in adult mouse spinal cord and peripheral nervous system

    PubMed Central

    Carr, Lauren; Parkinson, David B.; Dun, Xin-peng

    2017-01-01

    The secreted glycoproteins, Slit1-3, are classic axon guidance molecules that act as repulsive cues through their well characterised receptors Robo1-2 to allow precise axon pathfinding and neuronal migration. The expression patterns of Slit1-3 and Robo1-2 have been most characterized in the rodent developing nervous system and the adult brain, but little is known about their expression patterns in the adult rodent peripheral nervous system. Here, we report a detailed expression analysis of Slit1-3 and Robo1-2 in the adult mouse sciatic nerve as well as their expression in the nerve cell bodies within the ventral spinal cord (motor neurons) and dorsal root ganglion (sensory neurons). Our results show that, in the adult mouse peripheral nervous system, Slit1-3 and Robo1-2 are expressed in the cell bodies and axons of both motor and sensory neurons. While Slit1 and Robo2 are only expressed in peripheral axons and their cell bodies, Slit2, Slit3 and Robo1 are also expressed in satellite cells of the dorsal root ganglion, Schwann cells and fibroblasts of peripheral nerves. In addition to these expression patterns, we also demonstrate the expression of Robo1 in blood vessels of the peripheral nerves. Our work gives important new data on the expression patterns of Slit and Robo family members within the peripheral nervous system that may relate both to nerve homeostasis and the reaction of the peripheral nerves to injury. PMID:28234971

  14. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    NASA Astrophysics Data System (ADS)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  15. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    PubMed Central

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-01-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges. PMID:27534708

  16. Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain.

    PubMed

    Takikita, Shoichi; Takano, Tomoyuki; Narita, Tsutomu; Maruo, Yoshihiro

    2015-09-01

    Hypomyelination in developing brain is often accompanied by congenital metabolic disorders. Menkes kinky hair disease is an X-linked neurodegenerative disease of impaired copper transport, resulting from a mutation of the Menkes disease gene, a transmembrane copper-transporting p-type ATPase gene (ATP7A). In a macular mutant mouse model, the murine ortholog of Menkes gene (mottled gene) is mutated, and widespread neurodegeneration and subsequent death are observed. Although some biochemical analysis of myelin protein in macular mouse has been reported, detailed histological study of myelination in this mouse model is currently lacking. Since myelin abnormality is one of the neuropathologic findings of human Menkes disease, in this study early myelination in macular mouse brain was evaluated by immunohistochemistry. Two-week-old macular mice and normal littermates were perfused with 4% paraformaldehyde. Immunohistochemical staining of paraffin embedded and vibratome sections was performed using antibodies against either CNPase, cleaved caspase-3 or O4 (marker of immature oligodendrocytes). This staining showed that cerebral myelination in macular mouse was generally hypoplastic and that hypomyelination was remarkable in internal capsule, corpus callosum, and cingulate cortex. In addition, an increased number of cleaved caspase-3 positive cells were observed in corpus callosum and internal capsule. Copper deficiency induced by low copper diet has been reported to induce oligodendrocyte dysfunction and leads to hypomyelination in this mouse model. Taken together, hypomyelination observed in this study in a mouse model of Menkes disease is assumed to be induced by increased apoptosis of immature oligodendrocytes in developing cerebrum, through deficient intracellular copper metabolism.

  17. Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain

    PubMed Central

    Takikita, Shoichi; Takano, Tomoyuki; Narita, Tsutomu; Maruo, Yoshihiro

    2015-01-01

    Hypomyelination in developing brain is often accompanied by congenital metabolic disorders. Menkes kinky hair disease is an X-linked neurodegenerative disease of impaired copper transport, resulting from a mutation of the Menkes disease gene, a transmembrane copper-transporting p-type ATPase gene (ATP7A). In a macular mutant mouse model, the murine ortholog of Menkes gene (mottled gene) is mutated, and widespread neurodegeneration and subsequent death are observed. Although some biochemical analysis of myelin protein in macular mouse has been reported, detailed histological study of myelination in this mouse model is currently lacking. Since myelin abnormality is one of the neuropathologic findings of human Menkes disease, in this study early myelination in macular mouse brain was evaluated by immunohistochemistry. Two-week-old macular mice and normal littermates were perfused with 4% paraformaldehyde. Immunohistochemical staining of paraffin embedded and vibratome sections was performed using antibodies against either CNPase, cleaved caspase-3 or O4 (marker of immature oligodendrocytes). This staining showed that cerebral myelination in macular mouse was generally hypoplastic and that hypomyelination was remarkable in internal capsule, corpus callosum, and cingulate cortex. In addition, an increased number of cleaved caspase-3 positive cells were observed in corpus callosum and internal capsule. Copper deficiency induced by low copper diet has been reported to induce oligodendrocyte dysfunction and leads to hypomyelination in this mouse model. Taken together, hypomyelination observed in this study in a mouse model of Menkes disease is assumed to be induced by increased apoptosis of immature oligodendrocytes in developing cerebrum, through deficient intracellular copper metabolism. PMID:26937406

  18. Atlas-based automatic mouse brain image segmentation revisited: model complexity vs. image registration.

    PubMed

    Bai, Jordan; Trinh, Thi Lan Huong; Chuang, Kai-Hsiang; Qiu, Anqi

    2012-07-01

    Although many atlas-based segmentation methods have been developed and validated for the human brain, limited work has been done for the mouse brain. This paper investigated roles of image registration and segmentation model complexity in the mouse brain segmentation. We employed four segmentation models [single atlas, multiatlas, simultaneous truth and performance level estimation (STAPLE) and Markov random field (MRF) via four different image registration algorithms (affine, B-spline free-form deformation (FFD), Demons and large deformation diffeomorphic metric mapping (LDDMM)] for delineating 19 structures from in vivo magnetic resonance microscopy images. We validated their accuracies against manual segmentation. Our results revealed that LDDMM outperformed Demons, FFD and affine in any of the segmentation models. Under the same registration, increasing segmentation model complexity from single atlas to multiatlas, STAPLE or MRF significantly improved the segmentation accuracy. Interestingly, the multiatlas-based segmentation using nonlinear registrations (FFD, Demons and LDDMM) had similar performance to their STAPLE counterparts, while they both outperformed their MRF counterparts. Furthermore, when the single-atlas affine segmentation was used as reference, the improvement due to nonlinear registrations (FFD, Demons and LDDMM) in the single-atlas segmentation model was greater than that due to increasing model complexity (multiatlas, STAPLE and MRF affine segmentation). Hence, we concluded that image registration plays a more crucial role in the atlas-based automatic mouse brain segmentation as compared to model complexity. Multiple atlases with LDDMM can best improve the segmentation accuracy in the mouse brain among all segmentation models tested in this study.

  19. Hour-Long Nap May Boost Brain Function in Older Adults

    MedlinePlus

    ... fullstory_162923.html Hour-Long Nap May Boost Brain Function in Older Adults Linked to improved memory and ... during the day had any effects on their brain function. Nearly 60 percent of the people regularly napped ...

  20. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    NASA Astrophysics Data System (ADS)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  1. Adjustment function among antioxidant substances in acatalasemic mouse brain and its enhancement by low-dose X-ray irradiation.

    PubMed

    Yamaoka, Kiyonori; Nomura, Takaharu; Wang, Da-Hong; Mori, Shuji; Taguchi, Takehito; Ishikawa, Tetsuya; Hanamoto, Katsumi; Kira, Shohei

    2002-01-01

    The catalase activities in blood and organs of the acatalasemic (C3H/AnLCsbCsb) mouse of the C3H strain are lower than those of the normal (C3H/AnLCsaCsa) mouse. We conducted a study to examine changes in the activities of antioxidant enzymes, such as catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPX), the total gluathione content, and the lipid peroxide level in the brain, which is more sensitive to oxidative stress than other organs, at 3, 6, or 24 hr following X-ray irradiation at doses of 0.25, 0.5, or 5.0 Gy to the acatalasemic and the normal mice. No significant change in the lipid peroxide level in the acatalasemic mouse brain was seen under non-irradiation conditions. However, the acatalasemic mouse brain was more damaged than the normal mouse brain by excessive oxygen stress, such as a high-dose (5.0 Gy) X-ray. On the other hand, we found that, unlike 5.0 Gy X-ray, a relatively low-dose (0.5 Gy) irradiation specifically increased the activities of both catalase and GPX in the acatalasemic mouse brain making the activities closer to those in the normal mouse brain. These findings may indicate that the free radical reaction induced by the lack of catalase is more properly neutralized by low dose irradiation.

  2. Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    PubMed Central

    Zhang, Xiaowei; Bearer, Elaine L.; Boulat, Benoit; Hall, F. Scott; Uhl, George R.; Jacobs, Russell E.

    2010-01-01

    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn2+ into the prefrontal cortex indicated that DAT KO mice have a truncated Mn2+ distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn2+ transport into more posterior midbrain nuclei and contralateral mesolimbic structures at

  3. Spatial-Temporal Expression of Non-classical MHC Class I Molecules in the C57 Mouse Brain.

    PubMed

    Liu, Jiane; Shen, Yuqing; Li, Mingli; Lv, Dan; Zhang, Aifeng; Peng, Yaqin; Miao, Fengqin; Zhang, Jianqiong

    2015-07-01

    Recent studies clearly demonstrate major histocompatibility complex (MHC) class I expression in the brain plays an important functional role in neural development and plasticity. A previous study from our laboratory demonstrated the temporal and spatial expression patterns of classical MHC class I molecules in the brain of C57 mice. Studies regarding non-classical MHC class I molecules remain limited. Here we examine the expression of non-classical MHC class I molecules in mouse central nervous system (CNS) during embryonic and postnatal developmental stages using in situ hybridization and immunofluorescence. We find non-classical MHC class I molecules, M3/T22/Q1, are expressed in the cerebral cortex, neuroepithelium of the lateral ventricle, neuroepithelium of aquaeductus and developing cerebellum during embryonic developmental stages. During the postnatal period from P0 to adult, non-classical MHC class I mRNAs are detected in olfactory bulb, hippocampus, cerebellum and some nerve nuclei. Overall, the expression patterns of non-classical MHC class I molecules are similar to those of classical MHC class I molecules in the developing mouse brain. In addition, non-classical MHC class I molecules are present in the H2-K(b) and H2-D(b) double knock-out mice where their expression levels are greatly increased within the same locations as compared to wild type mice. The elucidation and discovery of the expression profile of MHC class I molecules during development is important for supporting an enhanced understanding of their physiological and potential pathological roles within the CNS.

  4. Targeted viral delivery of Cre recombinase induces conditional gene deletion in cardiovascular circuits of the mouse brain.

    PubMed

    Sinnayah, Puspha; Lindley, Timothy E; Staber, Patrick D; Davidson, Beverly L; Cassell, Martin D; Davisson, Robin L

    2004-06-17

    The Cre/loxP system has shown promise for investigating genes involved in nervous system function and pathology, although its application for studying central neural regulation of cardiovascular function and disease has not been explored. Here, we report for the first time that recombination of loxP-flanked genes can be achieved in discrete cardiovascular regulatory nuclei of adult mouse brain using targeted delivery of adenovirus (Ad) or feline immunodeficiency virus (FIV) bearing Cre recombinase (Ad-Cre, FIV-Cre). Single stereotaxic microinjections of Ad-Cre or FIV-Cre into specific nuclei along the subfornical organ-hypothalamic-hypophysial and brain stem-parabrachial axes resulted in robust and highly localized gene deletion as early as 7 days and for as long as 3 wk in a reporter mouse model in which Cre recombinase activates beta-galactosidase expression. An even greater selectivity in Cre-mediated gene deletion could be achieved in unique subpopulations of cells, such as vasopressin-synthesizing magnocellular neurons, by delivering Ad-Cre via retrograde transport. Moreover, Ad-Cre and FIV-Cre induced gene recombination in differential cell populations within these cardiovascular nuclei. FIV-Cre infection resulted in LacZ activation selectively in neurons, whereas both neuronal and glial cell types underwent gene recombination upon infection with Ad-Cre. These results establish the feasibility of using a combination of viral and Cre/loxP technologies to target specific cardiovascular nuclei in the brain for conditional gene modification and suggest the potential of this approach for determining the functional role of genes within these sites.

  5. Analysis of gene expression in mouse brain regions after exposure to 1.9 GHz radiofrequency fields

    PubMed Central

    McNamee, James P.; Bellier, Pascale V.; Konkle, Anne T. M.; Thomas, Reuben; Wasoontarajaroen, Siriwat; Lemay, Eric; Gajda, Greg B.

    2016-01-01

    Abstract Purpose: To assess 1.9 GHz radiofrequency (RF) field exposure on gene expression within a variety of discrete mouse brain regions using whole genome microarray analysis. Materials and methods: Adult male C57BL/6 mice were exposed to 1.9 GHz pulse-modulated or continuous-wave RF fields for 4 h/day for 5 consecutive days at whole body average (WBA) specific absorption rates of 0 (sham), ∼0.2 W/kg and ∼1.4 W/kg. Total RNA was isolated from the auditory cortex, amygdala, caudate, cerebellum, hippocampus, hypothalamus, and medial prefrontal cortex and differential gene expression was assessed using Illumina MouseWG-6 (v2) BeadChip arrays. Validation of potentially responding genes was conducted by RT-PCR. Results: When analysis of gene expression was conducted within individual brain regions when controlling the false discovery rate (FDR), no differentially expressed genes were identified relative to the sham control. However, it must be noted that most fold changes among groups were observed to be less than 1.5-fold and this study had limited ability to detect such small changes. While some genes were differentially expressed without correction for multiple-comparisons testing, no consistent pattern of response was observed among different RF-exposure levels or among different RF-modulations. Conclusions: The current study provides the most comprehensive analysis of potential gene expression changes in the rodent brain in response to RF field exposure conducted to date. Within the exposure conditions and limitations of this study, no convincing evidence of consistent changes in gene expression was found in response to 1.9 GHz RF field exposure. PMID:27028625

  6. GC-MS metabolomic analysis reveals significant alterations in cerebellar metabolic physiology in a mouse model of adult onset hypothyroidism.

    PubMed

    Constantinou, Caterina; Chrysanthopoulos, Panagiotis K; Margarity, Marigoula; Klapa, Maria I

    2011-02-04

    Although adult-onset hypothyroidism (AOH) has been connected to neural activity alterations, including movement, behavioral, and mental dysfunctions, the underlying changes in brain metabolic physiology have not been investigated in a systemic and systematic way. The current knowledge remains fragmented, referring to different experimental setups and recovered from various brain regions. In this study, we developed and applied a gas chromatography-mass spectrometry (GC-MS) metabolomics protocol to obtain a holistic view of the cerebellar metabolic physiology in a Balb/cJ mouse model of prolonged adult-onset hypothyroidism induced by a 64-day treatment with 1% potassium perchlorate in the drinking water of the animals. The high-throughput analysis enabled the correlation between multiple parallel-occurring metabolic phenomena; some have been previously related to AOH, while others implicated new pathways, designating new directions for further research. Specifically, an overall decline in the metabolic activity of the hypothyroid compared to the euthyroid cerebellum was observed, characteristically manifested in energy metabolism, glutamate/glutamine metabolism, osmolytic/antioxidant capacity, and protein/lipid synthesis. These alterations provide strong evidence that the mammalian cerebellum is metabolically responsive to AOH. In light of the cerebellum core functions and its increasingly recognized role in neurocognition, these findings further support the known phenotypic manifestations of AOH into movement and cognitive dysfunctions.

  7. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain.

    PubMed

    Feliciano, David M; Bordey, Angélique; Bonfanti, Luca

    2015-09-18

    Two decades after the discovery that neural stem cells (NSCs) populate some regions of the mammalian central nervous system (CNS), deep knowledge has been accumulated on their capacity to generate new neurons in the adult brain. This constitutive adult neurogenesis occurs throughout life primarily within remnants of the embryonic germinal layers known as "neurogenic sites." Nevertheless, some processes of neurogliogenesis also occur in the CNS parenchyma commonly considered as "nonneurogenic." This "noncanonical" cell genesis has been the object of many claims, some of which turned out to be not true. Indeed, it is often an "incomplete" process as to its final outcome, heterogeneous by several measures, including regional location, progenitor identity, and fate of the progeny. These aspects also strictly depend on the animal species, suggesting that persistent neurogenic processes have uniquely adapted to the brain anatomy of different mammals. Whereas some examples of noncanonical neurogenesis are strictly parenchymal, others also show stem cell niche-like features and a strong link with the ventricular cavities. This work will review results obtained in a research field that expanded from classic neurogenesis studies involving a variety of areas of the CNS outside of the subventricular zone (SVZ) and subgranular zone (SGZ). It will be highlighted how knowledge concerning noncanonical neurogenic areas is still incomplete owing to its regional and species-specific heterogeneity, and to objective difficulties still hampering its full identification and characterization.

  8. Isolation and Flow Cytometric Analysis of Immune Cells from the Ischemic Mouse Brain

    PubMed Central

    Boltze, Johannes; Wagner, Daniel-Christoph; Weise, Gesa

    2016-01-01

    Ischemic stroke initiates a robust inflammatory response that starts in the intravascular compartment and involves rapid activation of brain resident cells. A key mechanism of this inflammatory response is the migration of circulating immune cells to the ischemic brain facilitated by chemokine release and increased endothelial adhesion molecule expression. Brain-invading leukocytes are well-known contributing to early-stage secondary ischemic injury, but their significance for the termination of inflammation and later brain repair has only recently been noticed. Here, a simple protocol for the efficient isolation of immune cells from the ischemic mouse brain is provided. After transcardial perfusion, brain hemispheres are dissected and mechanically dissociated. Enzymatic digestion with Liberase is followed by density gradient (such as Percoll) centrifugation to remove myelin and cell debris. One major advantage of this protocol is the single-layer density gradient procedure which does not require time-consuming preparation of gradients and can be reliably performed. The approach yields highly reproducible cell counts per brain hemisphere and allows for measuring several flow cytometry panels in one biological replicate. Phenotypic characterization and quantification of brain-invading leukocytes after experimental stroke may contribute to a better understanding of their multifaceted roles in ischemic injury and repair. PMID:26967380

  9. Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping

    PubMed Central

    Wei, Hongjiang; Xie, Luke; Dibb, Russell; Li, Wei; Decker, Kyle; Zhang, Yuyao; Johnson, G. Allan; Liu, Chunlei

    2016-01-01

    The proper microstructural arrangement of complex neural structures is essential for establishing the functional circuitry of the brain. We present an MRI method to resolve tissue microstructure and infer brain cytoarchitecture by mapping the magnetic susceptibility in the brain at high resolution. This is possible because of the heterogeneous magnetic susceptibility created by varying concentrations of lipids, proteins and irons from the cell membrane to cytoplasm. We demonstrate magnetic susceptibility maps at a nominal resolution of 10-µm isotropic, approaching the average cell size of a mouse brain. The maps reveal many detailed structures including the retina cell layers, olfactory sensory neurons, barrel cortex, cortical layers, axonal fibers in white and gray matter. Olfactory glomerulus density is calculated and structural connectivity is traced in the optic nerve, striatal neurons, and brainstem nerves. The method is robust and can be readily applied on MRI scanners at or above 7 T. PMID:27181764

  10. Brain penetrating IgG-erythropoietin fusion protein is neuroprotective following intravenous treatment in Parkinson's disease in the mouse.

    PubMed

    Zhou, Qing-Hui; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Boado, Ruben J; Pardridge, William M

    2011-03-25

    Parkinson's disease (PD) is caused by oxidative stress, and erythropoietin (EPO) reduces oxidative stress in the brain. However, EPO cannot be developed as a treatment for PD, because EPO does not cross the blood-brain barrier (BBB). A brain penetrating form of human EPO has been developed wherein EPO is fused to a chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR), which is designated as the cTfRMAb-EPO fusion protein. The TfRMAb acts as a molecular Trojan horse to transport the fused EPO into brain via transport on the BBB TfR. Experimental PD was induced in adult mice by the intra-striatal injection of 6-hydroxydopamine, and PD mice were treated with 1mg/kg of the cTfRMAb-EPO fusion protein intravenously (IV) every other day starting 1 h after toxin injection. Following 3weeks of treatment mice were euthanized for measurement of striatal tyrosine hydroxylase (TH) enzyme activity. Mice treated with the cTfRMAb-EPO fusion protein showed a 306% increase in striatal TH enzyme activity, which correlated with improvement in three assays of neurobehavior. The blood hematocrit increased 10% at 2weeks, with no further changes at 3weeks of treatment. A sandwich ELISA showed the immune reaction against the cTfRMAb-EPO fusion protein was variable and low titer. In conclusion, the present study demonstrates that a brain penetrating form of EPO is neuroprotective in PD following IV administration with minimal effects on erythropoiesis.

  11. A comprehensive transcriptomic analysis of infant and adult mouse ovary.

    PubMed

    Pan, Linlin; Gong, Wei; Zhou, Yuanyuan; Li, Xiaonuan; Yu, Jun; Hu, Songnian

    2014-10-01

    Ovary development is a complex process involving numerous genes. A well-developed ovary is essential for females to keep fertility and reproduce offspring. In order to gain a better insight into the molecular mechanisms related to the process of mammalian ovary development, we performed a comparative transcriptomic analysis on ovaries isolated from infant and adult mice by using next-generation sequencing technology (SOLiD). We identified 15,454 and 16,646 transcriptionally active genes at the infant and adult stage, respectively. Among these genes, we also identified 7021 differentially expressed genes. Our analysis suggests that, in general, the adult ovary has a higher level of transcriptomic activity. However, it appears that genes related to primordial follicle development, such as those encoding Figla and Nobox, are more active in the infant ovary, whereas expression of genes vital for follicle development, such as Gdf9, Bmp4 and Bmp15, is upregulated in the adult. These data suggest a dynamic shift in gene expression during ovary development and it is apparent that these changes function to facilitate follicle maturation, when additional functional gene studies are considered. Furthermore, our investigation has also revealed several important functional pathways, such as apoptosis, MAPK and steroid biosynthesis, that appear to be much more active in the adult ovary compared to those of the infant. These findings will provide a solid foundation for future studies on ovary development in mice and other mammals and help to expand our understanding of the complex molecular and cellular events that occur during postnatal ovary development.

  12. Selenotranscriptomic Analyses Identify Signature Selenoproteins in Brain Regions in a Mouse Model of Parkinson's Disease.

    PubMed

    Zhang, Xiong; Ye, Yang-Lie; Zhu, Hui; Sun, Sheng-Nan; Zheng, Jing; Fan, Hui-Hui; Wu, Hong-Mei; Chen, Song-Fang; Cheng, Wen-Hsing; Zhu, Jian-Hong

    Genes of selenoproteome have been increasingly implicated in various aspects of neurobiology and neurological disorders, but remain largely elusive in Parkinson's disease (PD). In this study, we investigated the selenotranscriptome (24 selenoproteins in total) in five brain regions (cerebellum, substantia nigra, cortex, pons and hippocampus) by real time qPCR in a two-phase manner using a mouse model of chronic PD. A wide range of changes in selenotranscriptome was observed in a manner depending on selenoproteins and brain regions. While Selv mRNA was not detectable and Dio1& 3 mRNA levels were not affected, 1, 11 and 9 selenoproteins displayed patterns of increase only, decrease only, and mixed response, respectively, in these brain regions of PD mice. In particular, the mRNA expression of Gpx1-4 showed only a decreased trend in the PD mouse brains. In substantia nigra, levels of 17 selenoprotein mRNAs were significantly decreased whereas no selenoprotein was up-regulated in the PD mice. In contrast, the majority of selenotranscriptome did not change and a few selenoprotein mRNAs that respond displayed a mixed pattern of up- and down-regulation in cerebellum, cortex, hippocampus, and/or pons of the PD mice. Gpx4, Sep15, Selm, Sepw1, and Sepp1 mRNAs were most abundant across all these five brain regions. Our results showed differential responses of selenoproteins in various brain regions of the PD mouse model, providing critical selenotranscriptomic profiling for future functional investigation of individual selenoprotein in PD etiology.

  13. Ascl3 marks adult progenitor cells of the mouse salivary gland

    PubMed Central

    Rugel-Stahl, Anastasia; Elliot, Marilyn; Ovitt, Catherine E.

    2012-01-01

    The Ascl3 transcription factor marks a subset of salivary gland duct cells present in the three major salivary glands of the mouse. In vivo, these cells generate both duct and secretory acinar cell descendants. Here, we have analyzed whether Ascl3-expressing cells retain this multipotent lineage potential in adult glands. Cells isolated from mouse salivary glands were cultured in vitro as non-adherent spheres. Lineage tracing of the Ascl3-expressing cells within the spheres demonstrates that Ascl3+ cells isolated from adult glands remain multipotent, generating both duct and acinar cell types in vitro. Furthermore, we demonstrate that the progenitor cells characterized by Keratin 5 expression are an independent population from Ascl3+ progenitor cells. We conclude that the Ascl3+ cells are intermediate lineage-restricted progenitor cells of the adult salivary glands. PMID:22370009

  14. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone.

    PubMed

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis.

  15. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone

    PubMed Central

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  16. Sensitivity to theta-burst timing permits LTP in dorsal striatal adult brain slice

    PubMed Central

    Hawes, Sarah L.; Gillani, Fawad; Evans, Rebekah C.; Benkert, Elizabeth A.

    2013-01-01

    Long-term potentiation (LTP) of excitatory afferents to the dorsal striatum likely occurs with learning to encode new skills and habits, yet corticostriatal LTP is challenging to evoke reliably in brain slice under physiological conditions. Here we test the hypothesis that stimulating striatal afferents with theta-burst timing, similar to recently reported in vivo temporal patterns corresponding to learning, evokes LTP. Recording from adult mouse brain slice extracellularly in 1 mM Mg2+, we find LTP in dorsomedial and dorsolateral striatum is preferentially evoked by certain theta-burst patterns. In particular, we demonstrate that greater LTP is produced using moderate intraburst and high theta-range frequencies, and that pauses separating bursts of stimuli are critical for LTP induction. By altering temporal pattern alone, we illustrate the importance of burst-patterning for LTP induction and demonstrate that corticostriatal long-term depression is evoked in the same preparation. In accord with prior studies, LTP is greatest in dorsomedial striatum and relies on N-methyl-d-aspartate receptors. We also demonstrate a requirement for both Gq- and Gs/olf-coupled pathways, as well as several kinases associated with memory storage: PKC, PKA, and ERK. Our data build on previous reports of activity-directed plasticity by identifying effective values for distinct temporal parameters in variants of theta-burst LTP induction paradigms. We conclude that those variants which best match reports of striatal activity during learning behavior are most successful in evoking dorsal striatal LTP in adult brain slice without altering artificial cerebrospinal fluid. Future application of this approach will enable diverse investigations of plasticity serving striatal-based learning. PMID:23926032

  17. Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse.

    PubMed

    Meng, Xing-Li; Shen, Jin-Song; Ohashi, Toya; Maeda, Hiroshi; Kim, Seung Up; Eto, Yoshikatsu

    2003-10-15

    In the present study, we investigated the feasibility of using human neural stem cells (NSCs) in the treatment of diffuse central nervous system (CNS) alterations in a murine model of mucopolysaccharidosis VII (MPS VII), a lysosomal storage disease caused by a genetic defect in the beta-glucuronidase gene. An immortalized NSC line derived from human fetal telencephalon was genetically engineered to overexpress beta-glucuronidase and transplanted into the cerebral ventricles of neonatal MPS VII mouse. Transplanted human NSCs were found to integrate and migrate in the host brain and to produce large amount of beta-glucuronidase. Brain contents of the substrates of beta-glucuronidase were reduced to nearly normal levels, and widespread clearing of lysosomal storage was observed in the MPS VII mouse brain at 25 days posttransplantation. The number of engrafted cells decreased markedly after the transplantation, and it appears that the major cause of the cell death was not the immune response of the host but apoptotic cell death of grafted human NSCs. Results showed that human NSCs would serve as a useful gene transfer vehicle for the treatment of diffuse CNS lesions in human lysosomal storage diseases and are potentially applicable in the treatment of patients suffering from neurological disorders.

  18. Mouse strain-dependent effect of amantadine on motility and brain biogenic amines.

    PubMed

    Messiha, F S

    1989-01-01

    The effect of amantadine hydrochloride, injected i.p. in 6 increments of 100 mg/kg each over 30 hr, on mouse motility and whole brain content of selected biogenic amines and major metabolites was studied in 4 strains of mice. These were the albino Sprague-Dawley ICR and BALB/C, the black C57BL/6 and the brown CDF-I mouse strains. Amantadine treatment produced a biphasic effect on mouse motility. The initial dose of amantadine depressed locomotor activity in all mouse strains studied with the BALB/C mice being the most sensitive. Subsequent amantadine treatments produced enhancement of motility from corresponding control in all mouse strains with the BALB/C mice being the least sensitive. The locomotor activity was decreased from corresponding controls in all strains studied, except for the ICR mice, during an overnight drug-free period following the fourth amantadine treatment. Readministration of amantadine, after a drug-free overnight period, increased motility from respective saline control in all strains with exception of the BALB/C mice where suppression of motility occurred. Treatment with amantadine did not alter whole brain dopamine levels but decreased the amounts of 3,4-dihydroxyphenylacetic acid in the BALB/C mice compared to saline control. Conversely, brain normetanephrine concentration was increased from saline control by amantadine in the BALB/C mice. The results suggest a strain-dependent effect of amantadine on motility and indicate a differential response to the acute and multiple dose regimens used. The BALB/C mouse was the most sensitive strain and could serve as the strain of choice for evaluating the side effects of amantadine. The biochemical results of brain biogenic amines of BALB/C mouse strain suggest a probable decrease of catecholamine turnover rate and/or metabolism by monoamine oxidase and a resulting increase in O-methylation of norepinephrine which may account for a behavioral depression caused by amantadine in the BALB/C mice.

  19. Effect of nitroimidazoles on glucose utilization and lactate accumulation in mouse brain

    SciTech Connect

    Chao, C.F.; Subjeck, J.R.; Brody, H.; Shen, J.; Johnson, R.J.R.

    1984-01-01

    The radiation sensitizers misonidazole (MISO) and desmethylmisonidazole (DMM) can produce central and peripheral neuropathy in patients and laboratory animals. Nitroimidazoles can also interfere with glycolysis in vitro under aerobic and anaerobic conditions. In the present work, the authors studied the effect of MISO or DMM on lactate production and glucose utilization in mouse brain. It is observed that these compounds result in a 25% inhibition of lactate production in brain slices relative to the control at a 10 mM level. Additionally, MISO (1.0 mg/g/day) or DMM (1.4 mg/g/day) were administered daily (oral) for 1, 4, 7, or 14 days to examine the effect of these two drugs on the regional glucose utilization in C3Hf mouse brain. Five microcuries of 2-deoxy(/sup 14/C)glucose was given following the last drug dose and autoradiographs of serial brain sections were made and analyzed by a densitometer. Following a single dose of either MISO or DMM, no significant differences in glucose uptake were observed when compared with controls. However, following 4, 7, and 14 doses the rate of glucose utilization was significantly reduced in the intoxicated animals. Larger reductions were measured in specific regions including the posterior colliculus, cochlear nuclei, vestibular nuclei, and pons with increasing effects observed at later stages. These results share a degree of correspondence with the regional brain pathology produced by these nitroimidazoles.

  20. Gene expression based mouse brain parcellation using Markov random field regularized non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Haynor, David R.; Thompson, Carol L.; Lein, Ed; Hawrylycz, Michael

    2009-02-01

    Understanding the geography of genetic expression in the mouse brain has opened previously unexplored avenues in neuroinformatics. The Allen Brain Atlas (www.brain-map.org) (ABA) provides genome-wide colorimetric in situ hybridization (ISH) gene expression images at high spatial resolution, all mapped to a common three-dimensional 200μm3 spatial framework defined by the Allen Reference Atlas (ARA) and is a unique data set for studying expression based structural and functional organization of the brain. The goal of this study was to facilitate an unbiased data-driven structural partitioning of the major structures in the mouse brain. We have developed an algorithm that uses nonnegative matrix factorization (NMF) to perform parts based analysis of ISH gene expression images. The standard NMF approach and its variants are limited in their ability to flexibly integrate prior knowledge, in the context of spatial data. In this paper, we introduce spatial connectivity as an additional regularization in NMF decomposition via the use of Markov Random Fields (mNMF). The mNMF algorithm alternates neighborhood updates with iterations of the standard NMF algorithm to exploit spatial correlations in the data. We present the algorithm and show the sub-divisions of hippocampus and somatosensory-cortex obtained via this approach. The results are compared with established neuroanatomic knowledge. We also highlight novel gene expression based sub divisions of the hippocampus identified by using the mNMF algorithm.

  1. Monitoring the Response of Hyperbilirubinemia in the Mouse Brain by In Vivo Bioluminescence Imaging.

    PubMed

    Manni, Isabella; Di Rocco, Giuliana; Fusco, Salvatore; Leone, Lucia; Barbati, Saviana Antonella; Carapella, Carmine Maria; Grassi, Claudio; Piaggio, Giulia; Toietta, Gabriele

    2016-12-28

    Increased levels of unconjugated bilirubin are neurotoxic, but the mechanism leading to neurological damage has not been completely elucidated. Innovative strategies of investigation are needed to more precisely define this pathological process. By longitudinal in vivo bioluminescence imaging, we noninvasively visualized the brain response to hyperbilirubinemia in the MITO-Luc mouse, in which light emission is restricted to the regions of active cell proliferation. We assessed that acute hyperbilirubinemia promotes bioluminescence in the brain region, indicating an increment in the cell proliferation rate. Immunohistochemical detection in brain sections of cells positive for both luciferase and the microglial marker allograft inflammatory factor 1 suggests proliferation of microglial cells. In addition, we demonstrated that brain induction of bioluminescence was altered by pharmacological displacement of bilirubin from its albumin binding sites and by modulation of the blood-brain barrier permeability, all pivotal factors in the development of bilirubin-induced neurologic dysfunction. We also determined that treatment with minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, or administration of bevacizumab, an anti-vascular endothelial growth factor antibody, blunts bilirubin-induced bioluminescence. Overall the study supports the use of the MITO-Luc mouse as a valuable tool for the rapid response monitoring of drugs aiming at preventing acute bilirubin-induced neurological dysfunction.

  2. Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Q.; Culver, Joseph P.; Wang, Lihong V.

    2014-03-01

    Resting-state functional connectivity (RSFC) imaging is an emerging neuroimaging approach that aims to identify spontaneous cerebral hemodynamic fluctuations and their associated functional connections. Clinical studies have demonstrated that RSFC is altered in brain disorders such as stroke, Alzheimer's, autism, and epilepsy. However, conventional neuroimaging modalities cannot easily be applied to mice, the most widely used model species for human brain disease studies. For instance, functional magnetic resonance imaging (fMRI) of mice requires a very high magnetic field to obtain a sufficient signal-to-noise ratio and spatial resolution. Functional connectivity mapping with optical intrinsic signal imaging (fcOIS) is an alternative method. Due to the diffusion of light in tissue, the spatial resolution of fcOIS is limited, and experiments have been performed using an exposed skull preparation. In this study, we show for the first time, the use of photoacoustic computed tomography (PACT) to noninvasively image resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight regions, as well as several subregions. These findings agreed well with the Paxinos mouse brain atlas. This study showed that PACT is a promising, non-invasive modality for small-animal functional brain imaging.

  3. Monitoring the Response of Hyperbilirubinemia in the Mouse Brain by In Vivo Bioluminescence Imaging

    PubMed Central

    Manni, Isabella; Di Rocco, Giuliana; Fusco, Salvatore; Leone, Lucia; Barbati, Saviana Antonella; Carapella, Carmine Maria; Grassi, Claudio; Piaggio, Giulia; Toietta, Gabriele

    2016-01-01

    Increased levels of unconjugated bilirubin are neurotoxic, but the mechanism leading to neurological damage has not been completely elucidated. Innovative strategies of investigation are needed to more precisely define this pathological process. By longitudinal in vivo bioluminescence imaging, we noninvasively visualized the brain response to hyperbilirubinemia in the MITO-Luc mouse, in which light emission is restricted to the regions of active cell proliferation. We assessed that acute hyperbilirubinemia promotes bioluminescence in the brain region, indicating an increment in the cell proliferation rate. Immunohistochemical detection in brain sections of cells positive for both luciferase and the microglial marker allograft inflammatory factor 1 suggests proliferation of microglial cells. In addition, we demonstrated that brain induction of bioluminescence was altered by pharmacological displacement of bilirubin from its albumin binding sites and by modulation of the blood–brain barrier permeability, all pivotal factors in the development of bilirubin-induced neurologic dysfunction. We also determined that treatment with minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, or administration of bevacizumab, an anti-vascular endothelial growth factor antibody, blunts bilirubin-induced bioluminescence. Overall the study supports the use of the MITO-Luc mouse as a valuable tool for the rapid response monitoring of drugs aiming at preventing acute bilirubin-induced neurological dysfunction. PMID:28036021

  4. High-speed Label-free Functional Photoacoustic Microscopy of Mouse Brain in Action

    PubMed Central

    Yao, Junjie; Wang, Lidai; Yang, Joon-Mo; Maslov, Konstantin I.; Wong, Terence T. W.; Li, Lei; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2015-01-01

    We present fast functional photoacoustic microscopy (PAM), which is capable of three-dimensional high-resolution high-speed imaging of the mouse brain, complementary to other imaging modalities. A single-wavelength pulse-width-based method was implemented to image blood oxygenation with capillary-level resolution and a one-dimensional imaging rate of 100 kHz. We applied PAM to image the vascular morphology, blood oxygenation, blood flow, and oxygen metabolism in the brain in both resting and stimulated states. PMID:25822799

  5. Altered regional connectivity reflecting effects of different anaesthesia protocols in the mouse brain.

    PubMed

    Wu, Tong; Grandjean, Joanes; Bosshard, Simone C; Rudin, Markus; Reutens, David; Jiang, Tianzi

    2017-04-01

    Studies in mice using resting-state functional magnetic resonance imaging (rs-fMRI) have provided opportunities to investigate the effects of pharmacological manipulations on brain function and map the phenotypes of mouse models of human brain disorders. Mouse rs-fMRI is typically performed under anaesthesia, which induces both regional suppression of brain activity and disruption of large-scale neural networks. Previous comparative studies using rodents investigating various drug effects on long-distance functional connectivity (FC) have reported agent-specific FC patterns, however, effects of regional suppression are sparsely explored. Here we examined changes in regional connectivity under six different anaesthesia conditions using mouse rs-fMRI with the goal of refining the framework of understanding the brain activation under anaesthesia at a local level. Regional homogeneity (ReHo) was used to map local synchronization in the brain, followed by analysis of several brain areas based on ReHo maps. The results revealed high local coherence in most brain areas. The primary somatosensory cortex and caudate-putamen showed agent-specific properties. Lower local coherence in the cingulate cortex was observed under medetomidine, particularly when compared to the combination of medetomidine and isoflurane. The thalamus was associated with retained local coherence across anaesthetic levels and multiple nuclei. These results show that anaesthesia induced by the investigated anaesthetics through different molecular targets promote agent-specific regional connectivity. In addition, ReHo is a data-driven method with minimum user interaction, easy to use and fast to compute. Given that examination of the brain at a local level is widely applied in human rs-fMRI studies, our results show its sensitivity to extract information on varied neuronal activity under six different regimens relevant to mouse functional imaging. These results, therefore, will inform future rs

  6. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain

    PubMed Central

    Bocarsly, Miriam E.; Jiang, Wan-chen; Wang, Chen; Dudman, Joshua T.; Ji, Na; Aponte, Yeka

    2015-01-01

    The ability to image neurons anywhere in the mammalian brain is a major goal of optical microscopy. Here we describe a minimally invasive microendoscopy system for studying the morphology and function of neurons at depth. Utilizing a guide cannula with an ultrathin wall, we demonstrated in vivo two-photon fluorescence imaging of deeply buried nuclei such as the striatum (2.5 mm depth), substantia nigra (4.4 mm depth) and lateral hypothalamus (5.0 mm depth) in mouse brain. We reported, for the first time, the observation of neuronal activity with subcellular resolution in the lateral hypothalamus and substantia nigra of head-fixed awake mice. PMID:26601017

  7. Dichloroacetonitrile induces oxidative stress and developmental apoptotic imbalance in mouse fetal brain.

    PubMed

    Esmat, Ahmed; Ghoneim, Asser I; El-Demerdash, Ebtehal; Khalifa, Amani E; Abdel-Naim, Ashraf B

    2012-01-01

    Dichloroacetonitrile (DCAN) is one of the disinfection by-products of chlorination of drinking water. Limited mechanistic studies exist on the developmental toxicity of haloacetonitriles (HANs). The present study was designed to investigate the potential adverse effects of maternal exposure to DCAN on mouse fetal brain. Based on initial dose-response experiment, DCAN (14 mg/kg/day) was administered orally to pregnant mice at gestation day (GD) 6, till GD 15. Maternal exposure to DCAN resulted in redox imbalance in fetal cortex and cerebellum, characterized by significant decrease in reduced glutathione (GSH), and elevation of malondialdehyde (MDA) level and superoxide dismutase (SOD) activity. Further, DCAN induced apoptosis indicated by significant enhancement of DNA fragmentation and active caspase-3 level in fetal cortex and cerebellum. Neuronal degeneration was indicated by positive cupric silver staining. In conclusion, maternal exposure to DCAN adversely affects mouse fetal brain as evidenced by induction of oxidative stress, apoptotic imbalance and neurodegeneration.

  8. Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain.

    PubMed

    Wälchli, Thomas; Mateos, José María; Weinman, Oliver; Babic, Daniela; Regli, Luca; Hoerstrup, Simon P; Gerhardt, Holger; Schwab, Martin E; Vogel, Johannes

    2015-01-01

    During development and in various diseases of the CNS, new blood vessel formation starts with endothelial tip cell selection and vascular sprout migration, followed by the establishment of functional, perfused blood vessels. Here we describe a method that allows the assessment of these distinct angiogenic steps together with antibody-based protein detection in the postnatal mouse brain. Intravascular and perivascular markers such as Evans blue (EB), isolectin B4 (IB4) or laminin (LN) are used alongside simultaneous immunofluorescence on the same sections. By using confocal laser-scanning microscopy and stereological methods for analysis, detailed quantification of the 3D postnatal brain vasculature for perfused and nonperfused vessels (e.g., vascular volume fraction, vessel length and number, number of branch points and perfusion status of the newly formed vessels) and characterization of sprouting activity (e.g., endothelial tip cell density, filopodia number) can be obtained. The entire protocol, from mouse perfusion to vessel analysis, takes ∼10 d.

  9. Circadian oscillators in the mouse brain: molecular clock components in the neocortex and cerebellar cortex.

    PubMed

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-09-01

    The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master-slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum, as revealed by immunohistochemistry. These findings give reason to further pursue the physiological significance of circadian oscillators in the mouse neocortex and cerebellum.

  10. Genetic influences on exercise-induced adult hippocampal neurogenesis across 12 divergent mouse strains

    PubMed Central

    Clark, Peter J.; Kohman, Rachel A.; Miller, Daniel S.; Bhattacharya, Tushar K.; Brzezinska, Weronika J.; Rhodes, Justin S.

    2011-01-01

    New neurons are continuously born in the hippocampus of several mammalian species throughout adulthood. Adult neurogenesis represents a natural model for understanding how to grow and incorporate new nerve cells into pre-existing circuits in the brain. Finding molecules or biological pathways that increase neurogenesis has broad potential for regenerative medicine. One strategy is to identify mouse strains that display large versus small increases in neurogenesis in response to wheel running so the strains can be contrasted to find common genes or biological pathways associated with enhanced neuron formation. Therefore, mice from 12 different isogenic strains were housed with or without running wheels for 43 days to measure the genetic regulation of exercise-induced neurogenesis. The first 10 days mice received daily injections of BrdU to label dividing cells. Neurogenesis was measured as the total number of BrdU cells co-expressing NeuN mature neuronal marker in the hippocampal granule cell layer by immunohistochemistry. Exercise increased neurogenesis in all strains, but the magnitude significantly depended on genotype. Strain means for distance run on wheels, but not distance traveled in cages without wheels, were significantly correlated with strain mean level of neurogenesis. Further, certain strains displayed greater neurogenesis than others for a fixed level of running. Strain means for neurogenesis under sedentary conditions were not correlated with neurogenesis under runner conditions suggesting that different genes influence baseline versus exercise-induced neurogenesis. Genetic contributions to exercise-induced hippocampal neurogenesis suggest that it may be possible to identify genes and pathways associated with enhanced neuroplastic responses to exercise. PMID:21223504

  11. Effect of microgravity on gene expression in mouse brain

    PubMed Central

    Iacobas, Dumitru A.; Iacobas, Sanda; Nicchia, Grazia Paola; Desaphy, Jean Francois; Camerino, Diana Conte; Svelto, Maria; Spray, David C.

    2009-01-01

    Changes in gravitational force such as that experienced by astronauts during space flight induce a redistribution of fluids from the caudad to the cephalad portion of the body together with an elimination of normal head-to-foot hydrostatic pressure gradients. To assess brain gene profile changes associated with microgravity and fluid shift, a large-scale analysis of mRNA expression levels was performed in the brains of 2-week control and hindlimb-unloaded (HU) mice using cDNA microarrays. Although to different extents, all functional categories displayed significantly regulated genes indicating that considerable transcriptomic alterations are induced by HU. Interestingly, the TIC class (transport of small molecules and ions into the cells) had the highest percentage of up-regulated genes, while the most down-regulated genes were those of the JAE class (cell junction, adhesion, extracellular matrix). TIC genes comprised 16% of those whose expression was altered, including sodium channel, nonvoltage-gated 1 beta (Scnn1b), glutamate receptor (Grin1), voltage-dependent anion channel 1 (Vdac1), calcium channel beta 3 subunit (Cacnb3) and others. The analysis performed by Gene-MAPP revealed several altered protein classes and functional pathways such as blood coagulation and immune response, learning and memory, ion channels and cell junction. In particular, data indicate that HU causes an alteration in hemostasis which resolves in a shift toward a more hyper-coagulative state with an increased risk of venous thrombosis. Furthermore, HU treatment seems to impact on key steps of synaptic plasticity and learning processes. PMID:18704384

  12. Effect of microgravity on gene expression in mouse brain.

    PubMed

    Frigeri, Antonio; Iacobas, Dumitru A; Iacobas, Sanda; Nicchia, Grazia Paola; Desaphy, Jean Francois; Camerino, Diana Conte; Svelto, Maria; Spray, David C

    2008-11-01

    Changes in gravitational force such as that experienced by astronauts during space flight induce a redistribution of fluids from the caudad to the cephalad portion of the body together with an elimination of normal head-to-foot hydrostatic pressure gradients. To assess brain gene profile changes associated with microgravity and fluid shift, a large-scale analysis of mRNA expression levels was performed in the brains of 2-week control and hindlimb-unloaded (HU) mice using cDNA microarrays. Although to different extents, all functional categories displayed significantly regulated genes indicating that considerable transcriptomic alterations are induced by HU. Interestingly, the TIC class (transport of small molecules and ions into the cells) had the highest percentage of up-regulated genes, while the most down-regulated genes were those of the JAE class (cell junction, adhesion, extracellular matrix). TIC genes comprised 16% of those whose expression was altered, including sodium channel, nonvoltage-gated 1 beta (Scnn1b), glutamate receptor (Grin1), voltage-dependent anion channel 1 (Vdac1), calcium channel beta 3 subunit (Cacnb3) and others. The analysis performed by GeneMAPP revealed several altered protein classes and functional pathways such as blood coagulation and immune response, learning and memory, ion channels and cell junction. In particular, data indicate that HU causes an alteration in hemostasis which resolves in a shift toward a more hyper-coagulative state with an increased risk of venous thrombosis. Furthermore, HU treatment seems to impact on key steps of synaptic plasticity and learning processes.

  13. A mouse model of human repetitive mild traumatic brain injury

    PubMed Central

    Kane, Michael J.; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 minutes. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel. PMID:21930157

  14. A mouse model of human repetitive mild traumatic brain injury.

    PubMed

    Kane, Michael J; Angoa-Pérez, Mariana; Briggs, Denise I; Viano, David C; Kreipke, Christian W; Kuhn, Donald M

    2012-01-15

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 min. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel.

  15. Quantitative mouse brain phenotyping based on single and multispectral MR protocols.

    PubMed

    Badea, Alexandra; Gewalt, Sally; Avants, Brian B; Cook, James J; Johnson, G Allan

    2012-11-15

    Sophisticated image analysis methods have been developed for the human brain, but such tools still need to be adapted and optimized for quantitative small animal imaging. We propose a framework for quantitative anatomical phenotyping in mouse models of neurological and psychiatric conditions. The framework encompasses an atlas space, image acquisition protocols, and software tools to register images into this space. We show that a suite of segmentation tools (Avants, Epstein et al., 2008) designed for human neuroimaging can be incorporated into a pipeline for segmenting mouse brain images acquired with multispectral magnetic resonance imaging (MR) protocols. We present a flexible approach for segmenting such hyperimages, optimizing registration, and identifying optimal combinations of image channels for particular structures. Brain imaging with T1, T2* and T2 contrasts yielded accuracy in the range of 83% for hippocampus and caudate putamen (Hc and CPu), but only 54% in white matter tracts, and 44% for the ventricles. The addition of diffusion tensor parameter images improved accuracy for large gray matter structures (by >5%), white matter (10%), and ventricles (15%). The use of Markov random field segmentation further improved overall accuracy in the C57BL/6 strain by 6%; so Dice coefficients for Hc and CPu reached 93%, for white matter 79%, for ventricles 68%, and for substantia nigra 80%. We demonstrate the segmentation pipeline for the widely used C57BL/6 strain, and two test strains (BXD29, APP/TTA). This approach appears promising for characterizing temporal changes in mouse models of human neurological and psychiatric conditions, and may provide anatomical constraints for other preclinical imaging, e.g. fMRI and molecular imaging. This is the first demonstration that multiple MR imaging modalities combined with multivariate segmentation methods lead to significant improvements in anatomical segmentation in the mouse brain.

  16. Quantitative mouse brain phenotyping based on single and multispectral MR protocols

    PubMed Central

    Badea, Alexandra; Gewalt, Sally; Avants, Brian B.; Cook, James J.; Johnson, G. Allan

    2013-01-01

    Sophisticated image analysis methods have been developed for the human brain, but such tools still need to be adapted and optimized for quantitative small animal imaging. We propose a framework for quantitative anatomical phenotyping in mouse models of neurological and psychiatric conditions. The framework encompasses an atlas space, image acquisition protocols, and software tools to register images into this space. We show that a suite of segmentation tools (Avants, Epstein et al., 2008) designed for human neuroimaging can be incorporated into a pipeline for segmenting mouse brain images acquired with multispectral magnetic resonance imaging (MR) protocols. We present a flexible approach for segmenting such hyperimages, optimizing registration, and identifying optimal combinations of image channels for particular structures. Brain imaging with T1, T2* and T2 contrasts yielded accuracy in the range of 83% for hippocampus and caudate putamen (Hc and CPu), but only 54% in white matter tracts, and 44% for the ventricles. The addition of diffusion tensor parameter images improved accuracy for large gray matter structures (by >5%), white matter (10%), and ventricles (15%). The use of Markov random field segmentation further improved overall accuracy in the C57BL/6 strain by 6%; so Dice coefficients for Hc and CPu reached 93%, for white matter 79%, for ventricles 68%, and for substantia nigra 80%. We demonstrate the segmentation pipeline for the widely used C57BL/6 strain, and two test strains (BXD29, APP/TTA). This approach appears promising for characterizing temporal changes in mouse models of human neurological and psychiatric conditions, and may provide anatomical constraints for other preclinical imaging, e.g. fMRI and molecular imaging. This is the first demonstration that multiple MR imaging modalities combined with multivariate segmentation methods lead to significant improvements in anatomical segmentation in the mouse brain. PMID:22836174

  17. Mouse matriptase-2: identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues.

    PubMed Central

    Hooper, John D; Campagnolo, Luisa; Goodarzi, Goodarz; Truong, Tony N; Stuhlmann, Heidi; Quigley, James P

    2003-01-01

    We report the identification and characterization of mouse matriptase-2 (m-matriptase-2), an 811-amino-acid protein composed of an N-terminal cytoplasmic domain, a membrane-spanning domain, two CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains, three LDLR (low-density-lipoprotein receptor class A) domains and a C-terminal serine-protease domain. All m-matriptase-2 protein domain boundaries corresponded with intron/exon junctions of the encoding gene, which spans approx. 29 kb and comprises 18 exons. Matriptase-2 is highly conserved in human, mouse and rat, with the rat matriptase-2 gene ( r-maltriptase-2 ) predicted to encode transmembrane and soluble isoforms. Western-blot analysis indicated that m-matriptase-2 migrates close to its theoretical molecular mass of 91 kDa, and immunofluorescence analysis was consistent with the proposed surface membrane localization of this protein. Reverse-transcription PCR and in-situ -hybridization analysis indicated that m-matriptase-2 expression overlaps with the distribution of mouse hepsin (m-hepsin, a cell-surface serine protease identified in hepatoma cells) in adult tissues and during embryonic development. In adult tissues both are expressed at highest levels in liver, kidney and uterus. During embryogenesis m-matriptase-2 expression peaked between days 12.5 and 15.5. m-hepsin expression was biphasic, with peaks at day 7.5 to 8.5 and again between days 12.5 and 15.5. In situ hybridization of embryonic tissues indicated abundant expression of both m-matriptase-2 and m-hepsin in the developing liver and at lower levels in developing pharyngo-tympanic tubes. While m-hepsin was detected in the residual embryonic yolk sac and with lower intensity in lung, heart, gastrointestinal tract, developing kidney tubules and epithelium of the oral cavity, m-matriptase-2 was absent in these tissues, but strongly expressed within the nasal cavity by olfactory epithelial

  18. Doublecortin expression in the normal and epileptic adult human brain.

    PubMed

    Liu, Y W J; Curtis, M A; Gibbons, H M; Mee, E W; Bergin, P S; Teoh, H H; Connor, B; Dragunow, M; Faull, R L M

    2008-12-01

    Mesial temporal lobe epilepsy (MTLE) is a neurological disorder associated with spontaneous recurrent complex partial seizures and hippocampal sclerosis. Although increased hippocampal neurogenesis has been reported in animal models of MTLE, increased neurogenesis has not been reported in the hippocampus of adult human MTLE cases. Here we showed that cells expressing doublecortin (Dcx), a microtubule-associated protein expressed in migrating neuroblasts, were present in the hippocampus and temporal cortex of the normal and MTLE adult human brain. In particular, increased numbers of Dcx-positive cells were observed in the epileptic compared with the normal temporal cortex. Importantly, 56% of Dcx-expressing cells in the epileptic temporal cortex coexpressed both the proliferative cell marker, proliferating cell nuclear antigen and early neuronal marker, TuJ1, suggesting that they may be newly generated neurons. A subpopulation of Dcx-positive cells in the epileptic temporal cortex also coexpressed the mature neuronal marker, NeuN, suggesting that epilepsy may promote the generation of new neurons in the temporal cortex. This study has identified, for the first time, a novel population of Dcx-positive cells in the adult human temporal cortex that can be upregulated by epilepsy and thus, raises the possibility that these cells may have functional significance in the pathophysiology of epilepsy.

  19. Neurometabolic Roles of ApoE and Ldl-R in Mouse Brain

    PubMed Central

    Lee, Jieun; Choi, Joseph; Wong, G. William; Wolfgang, Michael J.

    2015-01-01

    Polymorphisms in ApoE are highly correlated with the progression of neurodegenerative disease, in particular Alzheimer’s disease. Little is known, however, about the role of ApoE or cholesterol metabolism on brain neurochemistry in general. To better understand the role of lipoprotein and cholesterol metabolism in the brain, we profiled 6-week and 12-week old Apoe KO and Ldlr KO mouse models via unbiased metabolomics to determine which metabolites were affected at an early age to identify those that may play a role in triggering pathology later in life. Steady-state metabolomics revealed only subtle differences among Apoe KO, Ldlr KO and WT mouse brains. Ldlr KO mice exhibited alterations in metabolites involved in neurotransmitter, amino acid and cholesterol metabolism. In contrast, Apoe KO mice only showed subtle changes in amino acid and neurotransmitter metabolism. These subtle changes in a broad range of metabolites indicate that ApoE and Ldl-R alone may not play a significant role in these mouse models at an early age, but instead require the cumulative effect from different pathways that lead to dysfunction at a much later stage of life. PMID:26686234

  20. Automated Ischemic Lesion Segmentation in MRI Mouse Brain Data after Transient Middle Cerebral Artery Occlusion

    PubMed Central

    Mulder, Inge A.; Khmelinskii, Artem; Dzyubachyk, Oleh; de Jong, Sebastiaan; Rieff, Nathalie; Wermer, Marieke J. H.; Hoehn, Mathias; Lelieveldt, Boudewijn P. F.; van den Maagdenberg, Arn M. J. M.

    2017-01-01

    Magnetic resonance imaging (MRI) has become increasingly important in ischemic stroke experiments in mice, especially because it enables longitudinal studies. Still, quantitative analysis of MRI data remains challenging mainly because segmentation of mouse brain lesions in MRI data heavily relies on time-consuming manual tracing and thresholding techniques. Therefore, in the present study, a fully automated approach was developed to analyze longitudinal MRI data for quantification of ischemic lesion volume progression in the mouse brain. We present a level-set-based lesion segmentation algorithm that is built using a minimal set of assumptions and requires only one MRI sequence (T2) as input. To validate our algorithm we used a heterogeneous data set consisting of 121 mouse brain scans of various age groups and time points after infarct induction and obtained using different MRI hardware and acquisition parameters. We evaluated the volumetric accuracy and regional overlap of ischemic lesions segmented by our automated method against the ground truth obtained in a semi-automated fashion that includes a highly time-consuming manual correction step. Our method shows good agreement with human observations and is accurate on heterogeneous data, whilst requiring much shorter average execution time. The algorithm developed here was compiled into a toolbox and made publically available, as well as all the data sets. PMID:28197090

  1. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells.

    PubMed

    Brown, Rachel C; Morris, Andrew P; O'Neil, Roger G

    2007-01-26

    Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions.

  2. Elevation of GM2 ganglioside during ethanol-induced apoptotic neurodegeneration in the developing mouse brain.

    PubMed

    Saito, Mitsuo; Chakraborty, Goutam; Shah, Relish; Mao, Rui-Fen; Kumar, Asok; Yang, Dun-Sheng; Dobrenis, Kostantin; Saito, Mariko

    2012-05-01

    GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration.

  3. Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse.

    PubMed

    Hawes, Jazmin E; Tesic, Dijana; Whitehouse, Andrew J; Zosky, Graeme R; Smith, Jeremy T; Wyrwoll, Caitlin S

    2015-06-01

    Prenatal exposure to vitamin D is thought to be critical for optimal fetal neurodevelopment, yet vitamin D deficiency is apparent in a growing proportion of pregnant women. The aim of this study was to determine whether a mouse model of vitamin D-deficiency alters fetal neurodevelopment. Female BALB/c mice were placed on either a vitamin D control (2,195 IU/kg) or deficient (0 IU/kg) diet for 5 weeks prior to and during pregnancy. Fetal brains were collected at embryonic day (E) 14.5 or E17.5 for morphological and gene expression analysis. Vitamin D deficiency during pregnancy reduced fetal crown-rump length and head size. Moreover, lateral ventricle volume was reduced in vitamin D-deficient foetuses. Expression of neurotrophin genes brain-derived neurotrophic factor (Bdnf) and transforming growth factor-β1 (Tgf-β1) was altered, with Bdnf reduced at E14.5 and increased at E17.5 following vitamin D deficiency. Brain expression of forkhead box protein P2 (Foxp2), a gene known to be important in human speech and language, was also altered. Importantly, Foxp2 immunoreactive cells in the developing cortex were reduced in vitamin D-deficient female foetuses. At E17.5, brain tyrosine hydroxylase (TH) gene expression was reduced in females, as was TH protein localization (to identify dopamine neurons) in the substantia nigra of vitamin D-deficient female foetuses. Overall, we show that prenatal vitamin D-deficiency leads to alterations in fetal mouse brain morphology and genes related to neuronal survival, speech and language development, and dopamine synthesis. Vitamin D appears to play an important role in mouse neurodevelopment.

  4. PRIORITIZING THE DEVELOPMENT OF MOUSE MODELS FOR CHILDHOOD BRAIN DISORDERS

    PubMed Central

    Ogden, Kevin K.; Ozkan, Emin D.; Rumbaugh, Gavin

    2015-01-01

    Mutations in hundreds of genes contribute to cognitive and behavioral dysfunction associated with developmental brain disorders (DBDs). Due to the sheer number of risk factors available for study combined with the cost of developing new animal models, it remains an open question how genes should be prioritized for in-depth neurobiological investigations. Recent reviews have argued that priority should be given to frequently mutated genes commonly found in sporadic DBD patients. Intrigued by this idea, we explored to what extent “high priority” risk factors have been studied in animals in an effort to assess their potential for generating valuable preclinical models capable of advancing the neurobiological understanding of DBDs. We found that in-depth whole animal studies are lacking for many high priority genes, with relatively few neurobiological studies performed in construct valid animal models aimed at understanding the pathological substrates associated with disease phenotypes. However, some high priority risk factors have been extensively studied in animal models and they have generated novel insights into DBD patho-neurobiology while also advancing early pre-clinical therapeutic treatment strategies. We suggest that prioritizing model development toward genes frequently mutated in non-specific DBD populations will accelerate the understanding of DBD patho-neurobiology and drive novel therapeutic strategies. PMID:26231830

  5. CircRNA accumulation in the aging mouse brain

    PubMed Central

    Gruner, Hannah; Cortés-López, Mariela; Cooper, Daphne A.; Bauer, Matthew; Miura, Pedro

    2016-01-01

    Circular RNAs (circRNAs) are a newly appreciated class of RNAs expressed across diverse phyla. These enigmatic transcripts are most commonly generated by back-splicing events from exons of protein-coding genes. This results in highly stable RNAs due to the lack of free 5′ and 3′ ends. CircRNAs are enriched in neural tissues, suggesting that they might have neural functions. Here, we sought to determine whether circRNA accumulation occurs during aging in mice. Total RNA-seq profiling of young (1 month old) and aged (22 month old) cortex, hippocampus and heart samples was performed. This led to the confident detection of 6,791 distinct circRNAs across these samples, including 675 novel circRNAs. Analysis uncovered a strong bias for circRNA upregulation during aging in neural tissues. These age-accumulation trends were verified for individual circRNAs by RT-qPCR and Northern analysis. In contrast, comparison of aged versus young hearts failed to reveal a global trend for circRNA upregulation. Age-accumulation of circRNAs in brain tissues was found to be largely independent from linear RNA expression of host genes. These findings suggest that circRNAs might play biological roles relevant to the aging nervous system. PMID:27958329

  6. Cerebral endothelial expression of Robo1 affects brain infiltration of polymorphonuclear neutrophils during mouse stroke recovery.

    PubMed

    Gangaraju, Sandhya; Sultan, Khadeejah; Whitehead, Shawn N; Nilchi, Ladan; Slinn, Jacqueline; Li, Xuesheng; Hou, Sheng T

    2013-06-01

    Increased brain infiltration of polymorphonuclear neutrophils (PMNs) occurs early after stroke and is important in eliciting brain inflammatory response during stroke recovery. In order to understand the molecular mechanism of PMN entry, we investigated the expression and requirement for Slit1, a chemorepulsive guidance cue, and its cognate receptor, Robo1, in a long-term recovery mouse model of cerebral ischemia. The expression levels of Robo1 were significantly decreased bilaterally at 24h following reperfusion. Robo1 expression levels remained suppressed in the ipsilateral cortex until 28d post MCAO-reperfusion, while the levels of Robo1 in the contralateral cortex recovered to the level of sham-operated mouse by 7d reperfusion. Circulating PMNs express high levels of Slit1, but not Robo1. Influx of PMNs into the ischemic core area occurred early (24h) after cerebral ischemia, when endothelial Robo1 expression was significantly reduced in the ischemic brain, indicating that Robo1 may form a repulsive barrier to PMN entry into the brain parenchyma. Indeed, blocking Slit1 on PMNs in a transwell migration assay in combination with an antibody blocking of Robo1 on human umbilical vein endothelial cells (HUVEC) significantly increased PMN transmigration during oxygen glucose deprivation, an in vitro model of ischemia. Collectively, in the normal brain, the presence of Slit1 on PMNs, and Robo1 on cerebral endothelial cells, generated a repulsive force to prevent the infiltration of PMNs into the brain. During stroke recovery, a transient reduction in Robo1 expression on the cerebral endothelial cells allowed the uncontrolled infiltration of Slit1-expressing PMNs into the brain causing inflammatory reactions.

  7. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification.

    PubMed

    Zerbi, Valerio; Grandjean, Joanes; Rudin, Markus; Wenderoth, Nicole

    2015-12-01

    The use of resting state fMRI (rs-fMRI) in translational research is a powerful tool to assess brain connectivity and investigate neuropathology in mouse models. However, despite encouraging initial results, the characterization of consistent and robust resting state networks in mice remains a methodological challenge. One key reason is that the quality of the measured MR signal is degraded by the presence of structural noise from non-neural sources. Notably, in the current pipeline of the Human Connectome Project, a novel approach has been introduced to clean rs-fMRI data, which involves automatic artifact component classification and data cleaning (FIX). FIX does not require any external recordings of physiology or the segmentation of CSF and white matter. In this study, we evaluated the performance of FIX for analyzing mouse rs-fMRI data. Our results showed that FIX can be easily applied to mouse datasets and detects true signals with 100% accuracy and true noise components with very high accuracy (>98%), thus reducing both within- and between-subject variability of rs-fMRI connectivity measurements. Using this improved pre-processing pipeline, maps of 23 resting state circuits in mice were identified including two networks that displayed default mode network-like topography. Hierarchical clustering grouped these neural networks into meaningful larger functional circuits. These mouse resting state networks, which are publicly available, might serve as a reference for future work using mouse models of neurological disorders.

  8. Brain self-protection: the role of endogenous neural progenitor cells in adult brain after cerebral cortical ischemia.

    PubMed

    Li, Bin; Piao, Chun-Shu; Liu, Xiao-Yun; Guo, Wen-Ping; Xue, Yue-Qiang; Duan, Wei-Ming; Gonzalez-Toledo, Maria E; Zhao, Li-Ru

    2010-04-23

    Convincing evidence has shown that brain ischemia causes the proliferation of neural stem cells/neural progenitor cells (NSCs/NPCs) in both the subventricular zone (SVZ) and the subgranular zone (SGZ) of adult brain. The role of brain ischemia-induced NSC/NPC proliferation, however, has remained unclear. Here we have determined whether brain ischemia-induced amplification of the NSCs/NPCs in adult brain is required for brain self-protection. The approach of intracerebroventricular (ICV) infusion of cytosine arabinoside (Ara-C), an inhibitor for cell proliferation, for the first 7days after brain ischemia was used to block ischemia-induced NSC/NPC proliferation. We observed that ICV infusion of Ara-C caused a complete blockade of NSC/NPC proliferation in the SVZ and a dramatic reduction of NSC/NPC proliferation in the SGZ. Additionally, as a result of the inhibition of ischemia-induced NSC/NPC pool amplification, the number of neurons in the hippocampal CA1 and CA3 was significantly reduced, the infarction size was significantly enlarged, and neurological deficits were significantly worsened after focal brain ischemia. We also found that an NSC/NPC-conditioned medium showed neuroprotective effects in vitro and that adult NSC/NPC-released brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) are required for NSC/NPC-conditioned medium-induced neuroprotection. These data suggest that NSC/NPC-generated trophic factors are neuroprotective and that brain ischemia-triggered NSC/NPC proliferation is crucial for brain protection. This study provides insights into the contribution of endogenous NSCs/NPCs to brain self-protection in adult brain after ischemia injury.

  9. Short-term regulation of muscarinic acetylcholine receptors: An assessment utilizing mouse brain and mouse neuroblastoma cells

    SciTech Connect

    Cioffi, C.L.

    1988-01-01

    The effects of muscarinic agonists and diisopropylfluorophosphate (DFP) on muscarinic receptor density and muscarinic receptor-mediated responses was assessed in mouse brain and mouse neuroblastoma cells (clone N1E-115). Utilizing the antagonist ({sup 3}H)quinuclidinyl benzilate (({sup 3}H)QNB), there was no difference in the maximal binding capacity (B{sub max}) or equilibrium dissociation constant (K{sub d}) between untreated and 24 hour DFP-treated mice. However, one administration of DFP produced a 24% and 33% decrease in B{sub max} measured by ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) after 18 and 24 hours which was rapidly reversible within 36 hours after DFP treatment. The loss of ({sup 3}H)NMS binding sites following acute DFP treatment was not accompanied by a change in a particular muscarinic receptor binding conformation. Furthermore, the magnitude of muscarinic receptor-mediated phosphoinositide hydrolysis was unchanged following short-term DFP treatment.

  10. Prion protein accumulation in lipid rafts of mouse aging brain.

    PubMed

    Agostini, Federica; Dotti, Carlos G; Pérez-Cañamás, Azucena; Ledesma, Maria Dolores; Benetti, Federico; Legname, Giuseppe

    2013-01-01

    The cellular form of the prion protein (PrP(C)) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C). In old mice, this change favors PrP(C) accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C) translocation into detergent-resistant membranes (DRMs), we looked at PrP(C) compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C) in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  11. Prion Protein Accumulation in Lipid Rafts of Mouse Aging Brain

    PubMed Central

    Agostini, Federica; Dotti, Carlos G.; Pérez-Cañamás, Azucena; Ledesma, Maria Dolores; Benetti, Federico; Legname, Giuseppe

    2013-01-01

    The cellular form of the prion protein (PrPC) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrPC. In old mice, this change favors PrPC accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrPC translocation into detergent-resistant membranes (DRMs), we looked at PrPC compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrPC in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases. PMID:24040215

  12. Monoclonal antibody-glial-derived neurotrophic factor fusion protein penetrates the blood-brain barrier in the mouse.

    PubMed

    Zhou, Qing-Hui; Boado, Ruben J; Lu, Jeff Zhiqiang; Hui, Eric Ka-Wai; Pardridge, William M

    2010-04-01

    Glial-derived neurotrophic factor (GDNF) is a potent neuroprotective agent for multiple brain disorders, including Parkinson's disease. However, GDNF drug development is difficult because GDNF does not cross the blood-brain barrier (BBB). To enable future drug development of GDNF in mouse models, the neurotrophin was re-engineered as an IgG fusion protein to enable penetration through the BBB after intravenous administration. The 134-amino acid GDNF was fused to the heavy chain of a chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR) designated the cTfRMAb. This antibody undergoes receptor-mediated transport across the BBB and acts as a molecular Trojan horse to ferry the GDNF into mouse brain. The cTfRMAb-GDNF fusion protein was expressed by stably transfected Chinese hamster ovary cells, affinity-purified, and the biochemical identity was confirmed by mouse IgG and GDNF Western blotting. The cTfRMAb-GDNF fusion protein was bifunctional and bound with high affinity to both the GDNF receptor alpha1, ED(50) = 1.7 +/- 0.2 nM, and the mouse TfR, ED(50) = 3.2 +/- 0.3 nM. The cTfRMAb-GDNF fusion protein was rapidly taken up by brain, and the brain uptake was 3.1 +/- 0.2% injected dose/g brain at 60 min after intravenous injection of a 1-mg/kg dose of the fusion protein. Brain capillary depletion analysis showed the majority of the fusion protein was transcytosed across the BBB with penetration into brain parenchyma. The brain uptake results indicate it is possible to achieve therapeutic elevations of GDNF in mouse brain with intravenous administration of the cTfRMAb-GDNF fusion protein.

  13. Regional heterogeneity of cellular prion protein isoforms in the mouse brain.

    PubMed

    Beringue, Vincent; Mallinson, Gary; Kaisar, Maria; Tayebi, Mourad; Sattar, Zahid; Jackson, Graham; Anstee, David; Collinge, John; Hawke, Simon

    2003-09-01

    Prion diseases are a group of invariably fatal neurodegenerative disorders that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, and bovine spongiform encephalopathy in cattle. The infectious agent or prion is largely composed of an abnormal isoform (PrPSc) of a host encoded normal cellular protein (PrPc). The conversion of PrPc to PrPSc is a dynamic process and, for reasons that are not clear, the distribution of spongiform change and PrPSc deposition varies among prion strains. An obvious explanation for this would be that the transformation efficiency in any given brain region depends on favourable interactions between conformations of PrPc and the prion strain being propagated within it. However, identification of specific PrPc conformations has until now been hampered by a lack of suitable panels of antibodies that discriminate PrPc subspecies under native conditions. In this study, we show that monoclonal antibodies raised against recombinant human prion protein folded into alpha or beta conformations exhibit striking heterogeneity in their specificity for truncations and glycoforms of mouse brain PrPc. We then show that some of these PrPc isoforms are expressed differentially in certain mouse brain regions. This suggests that variation in the expression of PrPc conformations in different brain regions may dictate the pattern of PrPSc deposition and vacuolation, characteristic for different prion strains.

  14. High resolution functional photoacoustic computed tomography of the mouse brain during electrical stimulation

    NASA Astrophysics Data System (ADS)

    Avanaki, Mohammad R. N.; Xia, Jun; Wang, Lihong V.

    2013-03-01

    Photoacoustic computed tomography (PACT) is an emerging imaging technique which is based on the acoustic detection of optical absorption from tissue chromophores, such as oxy-hemoglobin and deoxy-hemoglobin. An important application of PACT is functional brain imaging of small animals. The conversion of light to acoustic waves allows PACT to provide high resolution images of cortical vasculatures through the intact scalp. Here, PACT was utilized to study the activated areas of the mouse brain during forepaw and hindpaw stimulations. Temporal PACT images were acquired enabling computation of hemodynamic changes during stimulation. The stimulations were performed by trains of pulses at different stimulation currents (between 0.1 to 2 mA) and pulse repetition rates (between 0.05 Hz to 0.01Hz). The response at somatosensory cortex-forelimb, and somatosensory cortex-hindlimb, were investigated. The Paxinos mouse brain atlas was used to confirm the activated regions. The study shows that PACT is a promising new technology that can be used to study brain functionality with high spatial resolution.

  15. Expression of the ankyrin repeat domain 6 gene (Ankrd6) during mouse brain development.

    PubMed

    Tissir, F; Bar, I; Goffinet, A M; Lambert De Rouvroit, C

    2002-08-01

    The structure and developmental expression pattern of the ankyrin repeat domain 6 (Ankrd6) gene, initially named Diversin, were studied in the mouse. Ankrd6 is transcribed as a 5.8-kb mRNA composed of 15 exons that encodes a 712 amino acid protein with 6 ankyrin repeats. Ankrd6 is expressed prominently in the developing brain from E12 to maturity, suggesting a role during brain development. In embryos, expression is maximal in ventricular zones of neuronal proliferation and intermediate zones of neuronal migration and extends to postmigratory neuronal fields during the postnatal period. In the mature brain, the Ankrd6-related signal is highest in cortical layer II, granule cells of the dentate gyrus, olfactory granules and a subset of Purkinje cells in the vestibulocerebellum. Ankrd6 is related to the Drosophila gene Diego, which interacts with Flamingo in the regulation of planar cell polarity (Feiguin et al., 2001). However, the canvas of Ankrd6 expression does not match closely that of the three mouse Flamingo homologs, Celsr1-3 (Tissir et al., 2002). These data suggest that Ankrd6 may be involved in brain development in interaction with Celsr/Flamingo but also other signaling pathways.

  16. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  17. Building a 5-HT3A Receptor Expression Map in the Mouse Brain

    PubMed Central

    Koyama, Yoshihisa; Kondo, Makoto; Shimada, Shoichi

    2017-01-01

    Of the many serotonin receptors, the type 3 receptors (5-HT3R) are the only ionotropic ones, playing a key role in fast synaptic transmission and cognitive and emotional brain function through controlled neuronal excitation. To better understand the various functions of 5-HT3Rs, it is very important to know their expression pattern in the central nervous system (CNS). To date, many distributional studies have shown localized 5-HT3R expression in the brain and spinal cord. However, an accurate pattern of 5-HT3R expression in the CNS remains to be elucidated. To investigate the distribution of 5-HT3R in the mouse brain in detail, we performed immunofluorescent staining using 5-HT3AR-GFP transgenic mice. We found strong 5-HT3AR expression in the olfactory bulb, cerebral cortex, hippocampus, and amygdala; and partial expression in the pons, medulla, and spinal cord. Meanwhile, the thalamus, hypothalamus, and midbrain exhibited a few 5-HT3AR-expressing cells, and no expression was detected in the cerebellum. Further, double-immunostaining using neural markers confirmed that 5-HT3AR is expressed in GABAergic interneurons containing somatostatin or calretinin. In the present study, we built a 5-HT3AR expression map in the mouse brain. Our findings make significant contributions in elucidating the novel functions of 5-HT3R in the CNS. PMID:28276429

  18. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    PubMed

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  19. Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain

    PubMed Central

    Knaus, Hans‐Günther; Schwarzer, Christoph

    2015-01-01

    ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  20. CILIA FORMATION IN THE ADULT CAT BRAIN AFTER PARGYLINE TREATMENT

    PubMed Central

    Milhaud, Monique; Pappas, George D.

    1968-01-01

    The brains of four adult cats treated with pargyline (a nonhydrazide monoaminoxidase inhibitor) were examined at both the light and electron microscopic levels. Formation of typical mature cilia with the 9 + 2 pattern was observed in neural cells in the following areas: habenula nuclei, interpeduncular nuclei, hippocampus, mammillary bodies, thalamus, and caudate nucleus. The most marked ciliation occurs in the habenula nuclei. In general, glial cells greatly predominate in the formation of cilia. It is not clear whether ciliation in the central nervous system is the direct result of pargyline or if it occurs indirectly as a result of inhibition of monoaminoxidase. These findings are compared with the serotonin effect on ciliation in the embryogenesis of lower forms. It is suggested that pharmacological stimulation of centriolar reproduction without subsequent mitosis may lead to ciliary formation. PMID:11905194

  1. Selective expression of hyaluronan and receptor for hyaluronan mediated motility (Rhamm) in the adult mouse subventricular zone and rostral migratory stream and in ischemic cortex.

    PubMed

    Lindwall, Charlotta; Olsson, Martina; Osman, Ahmed M; Kuhn, H Georg; Curtis, Maurice A

    2013-03-29

    Hyaluronan is a large glycosaminoglycan, which is abundant in the extracellular matrix of the developing rodent brain. In the adult brain however, levels of hyaluronan are significantly reduced. In this study, we used neurocan-GFP as a histochemical probe to analyze the distribution of hyaluronan in the adult mouse subventricular zone (SVZ), as well as in the rostral migratory stream (RMS). Interestingly, we observed that hyaluronan is generally downregulated in the adult brain, but notably remains at high levels in the SVZ and RMS; areas in which neural stem/progenitor cells (NSPCs) persist, proliferate and migrate throughout life. In addition, we found that the receptor for hyaluronan-mediated motility (Rhamm) was expressed in migrating neuroblasts in these areas, indicating that Rhamm could be involved in regulating hyaluronan-mediated cell migration. Hyaluronan levels are balanced by synthesis through hyaluronan synthases (Has) and degradation by hyaluronidases (Hyal). We found that Has1 and Has2, as well as Hyal1 and Hyal2 were expressed in GFAP positive cells in the adult rodent SVZ and RMS, indicating that astrocytes could be regulating hyaluronan-mediated functions in these areas. We also demonstrate that hyaluronan levels are substantially increased at six weeks following a photothrombotic stroke lesion to the adult mouse cortex. Furthermore, GFAP positive cells in the peri-infarct area express Rhamm. Thus, hyaluronan may be involved in regulating cell migration in the normal SVZ and RMS and could also be responsible for priming the peri-infarct area following an ischemic lesion for cell migration.

  2. Histamine Induces Alzheimer's Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures

    PubMed Central

    Sedeyn, Jonathan C.; Wu, Hao; Hobbs, Reilly D.; Levin, Eli C.; Nagele, Robert G.; Venkataraman, Venkat

    2015-01-01

    Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses—a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin—were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD. PMID:26697497

  3. Isolation and cultivation of stem cells from adult mouse testes.

    PubMed

    Guan, Kaomei; Wolf, Frieder; Becker, Alexander; Engel, Wolfgang; Nayernia, Karim; Hasenfuss, Gerd

    2009-01-01

    The successful isolation and cultivation of spermatogonial stem cells (SSCs) as well as induction of SSCs into pluripotent stem cells will allow us to study their biological characteristics and their applications in therapeutic approaches. Here we provide step-by-step procedures on the basis of previous work in our laboratory for: the isolation of testicular cells from adolescent mice by a modified enzymatic procedure; the enrichment of undifferentiated spermatogonia by laminin selection or genetic selection using Stra8-EGFP (enhanced green fluorescent protein) transgenic mice; the cultivation and conversion of undifferentiated spermatogonia into embryonic stem-like cells, so-called multipotent adult germline stem cells (maGSCs); and characterization of these cells. Normally, it will take about 16 weeks to obtain stable maGSC lines starting from the isolation of testicular cells.

  4. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics

    PubMed Central

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-01-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  5. Immunocytochemical characterization of hippocamposeptal projecting GABAergic nonprincipal neurons in the mouse brain: a retrograde labeling study.

    PubMed

    Jinno, Shozo; Kosaka, Toshio

    2002-08-02

    The neurochemical contents of hippocamposeptal projecting nonprincipal neurons were examined in the mouse brain by using retrograde labeling techniques. We used the immunofluorescent multiple labeling method with a confocal laser-scanning microscope. First of all, the hippocamposeptal projecting nonprincipal neurons were glutamic acid decarboxylase 67-immunoreactive (IR), i.e., these hippocamposeptal projecting nonprincipal neurons were immunocytochemically GABAergic in the mouse brain. Next, most (93.0%) of the hippocamposeptal projecting GABAergic neurons were somatostatin-like immunoreactive (SS-LIR). The SS-LIR hippocamposeptal projecting neurons were frequently found in the stratum oriens of the CA1 and CA3 regions, and were also occasionally found in the stratum radiatum, stratum lucidum, and stratum pyramidale of the CA3 region. They were also frequently found in the dentate hilus. On the other hand, at least 40.6% of SS-LIR neurons in the hippocampus projected to the medial septum. Next, 38.0% of hippocamposeptal projecting GABAergic neurons were calbindin D28K (CB)-IR. Although the distribution of the CB-IR hippocamposeptal projecting neurons was generally similar to that of the SS-LIR projecting neurons in Ammon's horn, they were never seen in the dentate hilus. At least 22.1% of CB-IR GABAergic neurons in the hippocampus projected to the medial septum. Furthermore, 5.8% of hippocamposeptal projecting GABAergic neurons were parvalbumin-IR, which were most always found in Ammon's horn. Finally, no hippocamposeptal projecting GABAergic neurons were neuronal nitric oxide synthase-IR nor calretinin-IR. These results indicate that the SS-LIR neurons play a crucial role in the hippocamposeptal projection of the mouse brain, and they are also assumed to be involved in the theta oscillation of the mouse hippocampus.

  6. Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Stein, Erich W.; Maslov, Konstantin; Wang, Lihong V.

    2008-02-01

    Photoacoustic imaging techniques possess high optical contrast with ultrasonic resolution while exceeding imaging depths of pure optical techniques, affording high resolution images deep within scattering biological tissues. In this work, we employ reflection-mode photoacoustic microscopy to non-invasively monitor hemodynamic contrasts and map brain activity. Changes in vascular dynamics of the mouse somatosensory cortex were evoked through electrical stimulation of the hindpaw, resulting in increased photoacoustic intensities spatially correlated with contra-lateral vasculature. Results demonstrate the ability to map brain activation with vascular resolution in three-dimensions, as well as monitor single-vessel hemodynamics with millisecond temporal resolution. Furthermore, these results implicate the feasibility of photoacoustic microscopy to probe intra-cortical single-vessel hemodynamics and pave the way for more extensive functional brain imaging studies.

  7. In vivo microscopy of the mouse brain using multiphoton laser scanning techniques

    NASA Astrophysics Data System (ADS)

    Yoder, Elizabeth J.

    2002-06-01

    The use of multiphoton microscopy for imaging mouse brain in vivo offers several advantages and poses several challenges. This tutorial begins by briefly comparing multiphoton microscopy with other imaging modalities used to visualize the brain and its activity. Next, an overview of the techniques for introducing fluorescence into whole animals to generate contrast for in vivo microscopy using two-photon excitation is presented. Two different schemes of surgically preparing mice for brain imaging with multiphoton microscopy are reviewed. Then, several issues and problems with in vivo microscopy - including motion artifact, respiratory and cardiac rhythms, maintenance of animal health, anesthesia, and the use of fiducial markers - are discussed. Finally, examples of how these techniques have been applied to visualize the cerebral vasculature and its response to hypercapnic stimulation are provided.

  8. Barbiturate competition for TRH receptors in mouse brain: neuromodulation of anesthesia.

    PubMed

    Hirsch, M D

    1983-01-01

    In vitro thyrotropin releasing hormone (TRH) radioligand binding assays were performed using purified presynaptic and postsynaptic membranes derived from various regions of mouse brain. These studies revealed the pattern of central distribution of specific TRH binding sites. The highest concentrations of both types of membrane receptors were localized in the limbic forebrain. The brain stem contained a high density of only presynaptic receptors, and the cerebral cortex contained a moderate-high level of only postsynaptic receptors. Barbiturate analogues effectively competed for all forebrain and brain stem, but not cortical, TRH receptors, thus implicating these specific receptors in the neuromodulation of barbiturate anesthesia. The results of in vivo radioligand binding assays for [3H] TRH disposition after central infusions concomitant with barbiturate vs. saline challenges further support this viewpoint.

  9. A genome-scale map of expression for a mouse brain section obtained using voxelation

    PubMed Central

    Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.; Qian, Wei-Jun; Petyuk, Vladislav A.; Boline, Jyl; Levy, Shawn; Toga, Arthur W.; Smith, Richard D.; Leahy, Richard M.; Smith, Desmond J.

    2011-01-01

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed two-dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation, and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genes with unexpected patterns were identified, and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community. PMID:17504947

  10. A genome-scale map of expression for a mouse brain section obtained using voxelation

    SciTech Connect

    Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.; Qian, Weijun; Petyuk, Vladislav A.; Boline, Jyl; Levy, Shawn; Toga, Arthur W.; Smith, Richard D.; Leahy, Richard M.; Smith, Desmond J.

    2007-08-20

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed 2- dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genes with unexpected patterns were identified and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community.

  11. Widespread correction of lysosomal storage following intrahepatic injection of a recombinant adeno-associated virus in the adult MPS VII mouse.

    PubMed

    Sferra, Thomas J; Backstrom, Kristin; Wang, Chuansong; Rennard, Rachel; Miller, Matt; Hu, Yan

    2004-09-01

    Mucopolysaccharidosis type VII is a lysosomal storage disease caused by deficiency of the acid hydrolase beta-glucuronidase. MPS VII mice develop progressive lysosomal accumulation of glycosaminoglycans within multiple organs, including the brain. Using this animal model, we investigated whether gene transfer mediated by a recombinant adeno-associated virus (rAAV) type 2 vector is capable of reversing the progression of storage in adult mice. We engineered an rAAV2 vector to carry the murine beta-glucuronidase cDNA under the transcriptional direction of the human elongation factor-1alpha promoter. Intrahepatic administration of this vector in adult MPS VII mice resulted in stable hepatic beta-glucuronidase expression (473 +/- 254% of that found in wild-type mouse liver) for at least 1 year postinjection. There was widespread distribution of vector genomes and beta-glucuronidase within extrahepatic organs. The level of enzyme activity was sufficient to reduce lysosomal storage within the liver, spleen, kidney, heart, lung, and brain. Within selected regions of the brain, neuronal, glial, and perivascular cells had histopathologic evidence of reduced storage. Also, brain alpha-galactosidase and beta-hexosaminidase enzyme levels, secondarily elevated by the storage abnormality, were normalized. These data demonstrate that peripheral administration of an rAAV2 vector in adult MPS VII mice can lead to transgene expression levels sufficient for improvements in both the peripheral and the central manifestations of this disease.

  12. Metabolic conversion of 12-O-tetradecanoylphorbol-13-acetate in adult and newborn mouse skin and mouse liver microsomes.

    PubMed

    Berry, D L; Bracken, W M; Fischer, S M; Viaje, A; Slaga, T J

    1978-08-01

    Tritiated 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied to adult mouse skin; at specified time intervals the mice were killed, and the labeled phorbol was extracted and subjected to separation and quantitation by high-pressure liquid chromatography. After 24 hr, TPA comprised greater than 96% of the recovered label from the skin, and its apparent half-life was 17.8 hr. Pretreatment of adult skin with TPA for 4 weeks before treatment with labeled TPA resulted in an increase in the clearance rate of TPA from the skin. Skin from newborn mice was capable of converting TPA into monoesters and phorbol, but the clearance rate in the adult was about 12 times more rapid than it was in the newborn. Epidermal homogenates converted TPA into 12-O-tetradecanoylphorbol, phorbol-13-acetate, and phorbol. Hepatic homogenates were able to convert TPA to monoesters and phorbol at rates 14 to 15 times faster than were epidermal homogenates. Attempts to isolate any previously undescribed metabolites of TPA by use of liver homogenates were unsuccessful, and mixed-function oxidation did not contribute to the metabolism of TPA. From inhibitor studies it was judged that esterases were implicated in the conversion of TPA to monoesters and phorbol. The results support the hypothesis that the tumor-promoting activity of TPA is directly related to its concentration in a specific tissue and that conversion of TPA to an active metabolite probably does not occur.

  13. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies

    PubMed Central

    Oliva, Carolina A.; Vargas, Jessica Y.; Inestrosa, Nibaldo C.

    2013-01-01

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts. PMID:24348327

  14. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies.

    PubMed

    Oliva, Carolina A; Vargas, Jessica Y; Inestrosa, Nibaldo C

    2013-12-03

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer's disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts.

  15. Tunicamycin-induced unfolded protein response in the developing mouse brain

    SciTech Connect

    Wang, Haiping; Wang, Xin; Ke, Zun-Ji; Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A.; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  16. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers.

    PubMed

    Guerrero-Bosagna, Carlos; Covert, Trevor R; Haque, Md M; Settles, Matthew; Nilsson, Eric E; Anway, Matthew D; Skinner, Michael K

    2012-12-01

    The endocrine disruptor vinclozolin has previously been shown to promote epigenetic transgenerational inheritance of adult onset disease in the rat. The current study was designed to investigate the transgenerational actions of vinclozolin on the mouse. Transient exposure of the F0 generation gestating female during gonadal sex determination promoted transgenerational adult onset disease in F3 generation male and female mice, including spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities and polycystic ovarian disease. Pathology analysis demonstrated 75% of the vinclozolin lineage animals developed disease with 34% having two or more different disease states. Interestingly, the vinclozolin induced transgenerational disease was observed in the outbred CD-1 strain, but not the inbred 129 mouse strain. Analysis of the F3 generation sperm epigenome identified differential DNA methylation regions that can potentially be utilized as epigenetic biomarkers for transgenerational exposure and disease.

  17. Correlation between subacute sensorimotor deficits and brain edema in two mouse models of intracerebral hemorrhage

    PubMed Central

    Krafft, Paul R.; McBride, Devin W.; Lekic, Tim; Rolland, William B.; Mansell, Charles E.; Ma, Qingyi; Tang, Jiping; Zhang, John H.

    2014-01-01

    Formation of brain edema after intracerebral hemorrhage (ICH) is highly associated with its poor outcome, thus it is clinically important to understand the effect brain edema has on outcome. However, the relationship between cerebral edema and behavioral deficits has not been thoroughly examined in the preclinical setting. Hence, this study aimed to evaluate the ability of common sensorimotor tests to predict the extent of brain edema in two mouse models of ICH. One hundred male CD-1 mice were subjected to sham surgery or ICH induction via intrastriatal injection of either autologous blood (30 μL) or bacterial collagenase (0.0375 U or 0.075 U). At 24 and 72 hours after surgery, animals underwent a battery of behavioral tests, including the modified Garcia neuroscore (Neuroscore), corner turn test (CTT), forelimb placing test (FPT), wire hang task (WHT) and beam walking (BW). Brain edema was evaluated via the wet weight/dry weight method. Intrastriatal injection of autologous blood or bacterial collagenase resulted in a significant increase in brain water content and associated sensorimotor deficits (p<0.05). A significant correlation between brain edema and sensorimotor deficits was observed for all behavioral tests except for WHT and BW. Based on these findings, we recommend implementing the Neuroscore, CTT and/or FPT in preclinical studies of unilateral ICH in mice. PMID:24518201

  18. Involvement of ceramide in ethanol-induced apoptotic neurodegeneration in the neonatal mouse brain.

    PubMed

    Saito, Mariko; Chakraborty, Goutam; Hegde, Medha; Ohsie, Jason; Paik, Sun-Mee; Vadasz, Csaba; Saito, Mitsuo

    2010-10-01

    Acute administration of ethanol to 7-day-old mice is known to cause robust apoptotic neurodegeneration in the brain. Our previous studies have shown that such ethanol-induced neurodegeneration is accompanied by increases in lipids, including ceramide, triglyceride (TG), cholesterol ester (ChE), and N-acylphosphatidylethanolamine (NAPE) in the brain. In this study, the effects of ethanol on lipid profiles as well as caspase 3 activation were examined in the cortex, hippocampus, cerebellum, and inferior colliculus of the postnatal day 7 mouse brain. We found that the cortex, hippocampus, and inferior colliculus, which showed substantial caspase 3 activation by ethanol, manifested significant elevations in ceramide, TG, and NAPE. In contrast, the cerebellum, with the least caspase 3 activation, failed to show significant changes in ceramide and TG, and exhibits much smaller increases in NAPE than other brain regions. Ethanol-induced increases in ChE were observed in all brain regions tested. Inhibitors of serine palmitoyltransferase effectively blocked ethanol-induced caspase 3 activation as well as elevations in ceramide, ChE, and NAPE. Immunohistochemical studies indicated that the expression of serine palmitoyltransferase was mainly localized in neurons and was enhanced in activated caspase 3-positive neurons generated by ethanol. These results indicate that de novo ceramide synthesis has a vital role in ethanol-induced apoptotic neurodegeneration in the developing brain.

  19. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain.

    PubMed

    Hubbard, Jacqueline A; Hsu, Mike S; Seldin, Marcus M; Binder, Devin K

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits.

  20. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    PubMed

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  1. Histone modifications change with age, dietary restriction and rapamycin treatment in mouse brain

    PubMed Central

    Gong, Huan; Qian, Hong; Ertl, Robin; Astle, Clinton M.; Wang, Gang G.; Harrison, David E.; Xu, Xiangru

    2015-01-01

    The risk of developing neurodegenerative disorders such as Alzheimer's disease (AD) increases dramatically with age. Understanding the underlying mechanisms of brain aging is crucial for developing preventative and/or therapeutic approaches for age-associated neurological diseases. Recently, it has been suggested that epigenetic factors, such as histone modifications, maybe be involved in brain aging and age-related neurodegenerations. In this study, we investigated 14 histone modifications in brains of a cohort of young (3 months), old (22 months), and old age-matched dietary restricted (DR) and rapamycin treated BALB/c mice. Results showed that 7 out of all measured histone markers were changed drastically with age. Intriguingly, histone methylations in brain tissues, including H3K27me3, H3R2me2, H3K79me3 and H4K20me2 tend to disappear with age but can be partially restored by both DR and rapamycin treatment. However, both DR and rapamycin treatment also have a significant impact on several other histone modifications such as H3K27ac, H4K16ac, H4R3me2, and H3K56ac, which do not change as animal ages. This study provides the first evidence that a broad spectrum of histone modifications may be involved in brain aging. Besides, this study suggests that both DR and rapamycin may slow aging process in mouse brain via these underlying epigenetic mechanisms. PMID:26021816

  2. Endomorphins and morphine limit anoxia-reoxygenation-induced brain mitochondrial dysfunction in the mouse.

    PubMed

    Feng, Yun; Lu, Yingwei; Lin, Xin; Gao, Yanfeng; Zhao, Qianyu; Li, Wei; Wang, Rui

    2008-03-26

    The protection of brain mitochondria from oxidative stress is an important therapeutic strategy against ischemia-reperfusion injury and neurodegenerative disorders. Isolated brain mitochondria subjected to a 5 min period of anoxia followed by 5 min reoxygenation mirrored the effect of oxidative stress in the brain. The present study attempts to evaluate the protective effects of endomorphin 1 (EM1), endomorphin 2 (EM2), and morphine (Mor) in an in vitro mouse brain mitochondria anoxia-reoxygenation model. Endomorphins (EM1/2) and Mor were added to mitochondria prior to anoxia or reoxygenation. EM1/2 and Mor markedly improved mitochondrial respiratory activity with a decrease in state 4 and increases in state 3, respiratory control ratio (RCR) and the oxidative phosphorylation efficiency (ADP/O ratio), suggesting that they may play a protective role in mitochondria. These drugs inhibited alterations in mitochondrial membrane fluidity, lipoperoxidation, and cardiolipin (CL) release, which indicates protection of the mitochondrial membranes from oxidative damage. The protective effects of these drugs were concentration-dependent. Furthermore, these drugs blocked the enhanced release of cytochrome c (Cyt c), and consequently inhibited the cell apoptosis induced by the release of Cyt c. Our results suggest that EM1/2 and Mor effectively protect brain mitochondria against oxidative stresses induced by in vitro anoxia-reoxygenation and may play an important role in the prevention of deleterious effects during brain ischemia-reperfusion and neurodegenerative diseases.

  3. 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution.

    PubMed

    Wu, Jingpeng; He, Yong; Yang, Zhongqin; Guo, Congdi; Luo, Qingming; Zhou, Wei; Chen, Shangbin; Li, Anan; Xiong, Benyi; Jiang, Tao; Gong, Hui

    2014-02-15

    Systematic cellular and vascular configurations are essential for understanding fundamental brain anatomy and metabolism. We demonstrated a 3D brainwide cellular and vascular (called 3D BrainCV) visualization and quantitative protocol for a whole mouse brain. We developed a modified Nissl staining method that quickly labeled the cells and blood vessels simultaneously in an entire mouse brain. Terabytes 3D datasets of the whole mouse brains, with unprecedented details of both individual cells and blood vessels, including capillaries, were simultaneously imaged at 1-μm voxel resolution using micro-optical sectioning tomography (MOST). For quantitative analysis, we proposed an automatic image-processing pipeline to perform brainwide vectorization and analysis of cells and blood vessels. Six representative brain regions from the cortex to the deep, including FrA, M1, PMBSF, V1, striatum, and amygdala, and six parameters, including cell number density, vascular length density, fractional vascular volume, distance from the cells to the nearest microvessel, microvascular length density, and fractional microvascular volume, had been quantitatively analyzed. The results showed that the proximity of cells to blood vessels was linearly correlated with vascular length density, rather than the cell number density. The 3D BrainCV made overall snapshots of the detailed picture of the whole brain architecture, which could be beneficial for the state comparison of the developing and diseased brain.

  4. Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia.

    PubMed

    Winter, Christine; Djodari-Irani, Anais; Sohr, Reinhard; Morgenstern, Rudolf; Feldon, Joram; Juckel, Georg; Meyer, Urs

    2009-05-01

    Maternal infection during pregnancy enhances the offspring's risk for severe neuropsychiatric disorders in later life, including schizophrenia. Recent attempts to model this association in animals provided further experimental evidence for a causal relationship between in-utero immune challenge and the postnatal emergence of a wide spectrum of behavioural, pharmacological and neuroanatomical dysfunctions implicated in schizophrenia. However, it still remains unknown whether the prenatal infection-induced changes in brain and behavioural functions may be associated with multiple changes at the neurochemical level. Here, we tested this hypothesis in a recently established mouse model of viral-like infection. Pregnant dams on gestation day 9 were exposed to viral mimetic polyriboinosinic-polyribocytidilic acid (PolyI:C, 5 mg/kg i.v.) or vehicle treatment, and basal neurotransmitter levels were then compared in the adult brains of animals born to PolyI:C- or vehicle-treated mothers by high-performance liquid chromatography on post-mortem tissue. We found that prenatal immune activation significantly increased the levels of dopamine and its major metabolites in the lateral globus pallidus and prefrontal cortex, whilst at the same time it decreased serotonin and its metabolite in the hippocampus, nucleus accumbens and lateral globus pallidus. In addition, a specific reduction of the inhibitory amino acid taurine in the hippocampus was noted in prenatally PolyI:C-exposed offspring relative to controls, whereas central glutamate and gamma-aminobutyric acid (GABA) content was largely unaffected by prenatal immune activation. Our results thus confirm that maternal immunological stimulation during early/middle pregnancy is sufficient to induce long-term changes in multiple neurotransmitter levels in the brains of adult offspring. This further supports the possibility that infection-mediated interference with early fetal brain development may predispose the developing organism

  5. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes

    PubMed Central

    Nickerson, John M.; Goodman, Penny; Chrenek, Micah A.; Johnson, Christiana J.; Berglin, Lennart; Redmond, T. Michael.; Boatright, Jeffrey H.

    2013-01-01

    Subretinal injection offers one of the best ways to deliver many classes of drugs, reagents, cells and treatments to the photoreceptor, Müller, and retinal pigment epithelium (RPE) cells of the retina. Agents delivered to this space are placed within microns of the intended target cell, accumulating to high concentrations because there is no dilution due to transport processes or diffusion. Dilution in the interphotoreceptor space (IPS) is minimal because the IPS volume is only 10-20 microliters in the human eye and less than 1 microliter in the mouse eye. For gene delivery purposes, we wished to transfect the cells adjacent to the IPS in adult mouse eyes. Others transfect these cells in neonatal rats to study the development of the retina. In both neonates and adults, electroporation is found to be effective Here we describe the optimization of electroporation conditions for RPE cells in the adult mouse eye with naked plasmids. However, both techniques, subretinal injection and electroporation, present some technical challenges that require skill on the part of the surgeon to prevent untoward damage to the eye. Here we describe methods that we have used for the past ten years (1). PMID:22688698

  6. Proteomic analysis of the mouse brain after repetitive exposure to hypoxia.

    PubMed

    Cui, Can; Zhou, Tao; Li, Jingyi; Wang, Hong; Li, Xiaorong; Xiong, Jie; Xu, Pingxiang; Xue, Ming

    2015-07-05

    Hypoxic preconditioning (HPC) is known to have a protective effect against hypoxic damage; however, the precise mechanisms involved remain unknown. In this study, an acute and repetitive hypoxia mouse model, two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/TOF-MS), and Western blot experiments were used to identify the differential expression of key proteins in the mouse brain during HPC. Approximately 2100 2D-DIGE spots were observed following gel imaging and spot detection. Significant differences (p < 0.05) in the expression of 66 proteins were observed between the 3× HPC treatment group and the control group, 45 proteins were observed between the 6× HPC treatment group and the control group, and 70 proteins were observed between the 3× HPC treatment group and the 6× HPC group. Consistent results among Western blot, 2D-DIGE and MS methods were observed for the proteins, ATP synthase subunit alpha, malate dehydrogenase, guanine nucleotide-binding protein subunit beta-1 and proteasome subunit alpha type-2. The proteins associated with ATP synthesis and the citric acid cycle were down-regulated, while those linked to glycolysis and oxygen-binding were up-regulated. This proteomic analysis of the mouse brain after HPC furthers understanding of the molecular pathways involved in the protective effect of HPC and these findings provide new insight into the mechanisms of hypoxia and HPC.

  7. Involvement of Fas and FasL in Ectromelia virus-induced apoptosis in mouse brain.

    PubMed

    Krzyzowska, Małgorzata; Cymerys, Joanna; Winnicka, Anna; Niemiałtowski, Marek

    2006-02-01

    In this study we showed that the virulent Moscow strain of Ectromelia virus (ECTV-MOS) infection leads to induction of apoptosis in the BALB/c mouse central nervous system. ECTV-MOS-infected cells and inflammation sites were found in brain parenchyma between 5 and 15 days after footpad infection with ECTV-MOS. Infected cells consisted of microglia and monocytes, astrocytes and oligodendrocytes and these type of cells underwent apoptosis within 5-15 days post infection (d.p.i.). The highest number of apoptotic cells was found at 5 and 10 d.p.i. and represented mainly microglia (61.4% and 38.6% of apoptotic cells, respectively) and astrocytes (21% and 8.9%, respectively). The number of apoptotic oligodendrocytes was 5.4% and 4.5%, respectively. Fluorometric assays demonstrated involvement of caspase-1, -3 and -8 but not caspase-9 in apoptosis in ECTV-MOS-infected mouse brains. Expression of Fas/FasL was significantly increased on ECTV-MOS-infected cells between 5 and 15 d.p.i., whereas Fas was up-regulated also on the surrounding, non-infected cells. Taking together we may conclude that ECTV-MOS infection of microglia and astrocytes leads to local inflammation resulting in Fas/FasL up-regulation and apoptosis, which limits mouse central nervous system infection with ECTV-MOS.

  8. Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

    PubMed Central

    Chung, Ji Ryang; Sung, Chul; Mayerich, David; Kwon, Jaerock; Miller, Daniel E.; Huffman, Todd; Keyser, John; Abbott, Louise C.; Choe, Yoonsuck

    2011-01-01

    Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions. PMID:22275895

  9. MRI-detectable changes in mouse brain structure induced by voluntary exercise.

    PubMed

    Cahill, Lindsay S; Steadman, Patrick E; Jones, Carly E; Laliberté, Christine L; Dazai, Jun; Lerch, Jason P; Stefanovic, Bojana; Sled, John G

    2015-06-01

    Physical exercise, besides improving cognitive and mental health, is known to cause structural changes in the brain. Understanding the structural changes that occur with exercise as well as the neuroanatomical correlates of a predisposition for exercise is important for understanding human health. This study used high-resolution 3D MR imaging, in combination with deformation-based morphometry, to investigate the macroscopic changes in brain structure that occur in healthy adult mice following four weeks of voluntary exercise. We found that exercise induced changes in multiple brain structures that are involved in motor function and learning and memory including the hippocampus, dentate gyrus, stratum granulosum of the dentate gyrus, cingulate cortex, olivary complex, inferior cerebellar peduncle and regions of the cerebellum. In addition, a number of brain structures, including the hippocampus, striatum and pons, when measured on MRI prior to the start of exercise were highly predictive of subsequent exercise activity. Exercise tended to normalize these pre-existing differences between mice.

  10. The feto-placental unit, and potential roles of dehydroepiandrosterone (DHEA) in prenatal and postnatal brain development: A re-examination using the spiny mouse.

    PubMed

    Quinn, Tracey A; Ratnayake, Udani; Dickinson, Hayley; Castillo-Melendez, Margie; Walker, David W

    2016-06-01

    Synthesis of dehydroepiandrosterone (DHEA) by the fetal adrenal gland is important for placental oestrogen production, and may also be important for modulating the effects of glucocorticoids on the developing brain. We have preciously shown that the enzymes and accessory proteins needed for DHEA synthesis-cytochrome P450 enzyme 17α-hydroxylase/17,20 lyase (P450c17), cytochrome-b5 (Cytb5), 3β-hydroxysteroid dehydrogenase (3βHSD)-are expressed in the adrenal gland from 30 days gestation, and DHEA, cortisol and aldosterone are present in fetal plasma from this time. Explant culture of fetal adrenal tissue showed that the spiny mouse adrenal gland, can synthesize and secrete DHEA from at least 0.75 of gestation, and suggest that DHEA may have an important role(s) in placental biosynthesis of oestrogens and in modulating the actions of glucocorticoids in the developing brain in this species. Post-natally, increased immuno-expression of P450c17 and Cytb5 expression in the zona reticularis of the adrenal gland and a significant increase in the synthesis and secretion of DHEA in plasma from 8 to 20 days of age in the spiny mouse, are representative of a period of high adrenal androgen production consistent with the human phenomenon of adrenarche. The studies summarised in this review also show that DHEA is produced de novo in the developing brain of the spiny mouse. These results showed that the spiny mouse brain can indeed produce DHEA from pregnenolone in a time-dependant manner, and coupled with the identification of P450c17 and Cytb5 protein in several regions of the brain, support the idea that DHEA is an endogenous neuro-active steroid in this species. Together, the studies outlined in this review indicate that the androgen DHEA is an important hormone of adrenal and Central Nervous System (CNS) origin in the fetal and postnatal spiny mouse. Disturbance of the development of these fetal tissues, and/or of the relationship between the fetal adrenal gland and

  11. Decreased anxiety- and depression-like behaviors and hyperactivity in a type 3 deiodinase-deficient mouse showing brain thyrotoxicosis and peripheral hypothyroidism.

    PubMed

    Stohn, J Patrizia; Martinez, M Elena; Hernandez, Arturo

    2016-12-01

    Hypo- and hyperthyroid states, as well as functional abnormalities in the hypothalamic-pituitary-thyroid axis have been associated with psychiatric conditions like anxiety and depression. However, the nature of this relationship is poorly understood since it is difficult to ascertain the thyroid status of the brain in humans. Data from animal models indicate that the brain exhibits efficient homeostatic mechanisms that maintain local levels of the active thyroid hormone, triiodothyronine (T3) within a narrow range. To better understand the consequences of peripheral and central thyroid status for mood-related behaviors, we used a mouse model of type 3 deiodinase (DIO3) deficiency (Dio3 -/- mouse). This enzyme inactivates thyroid hormone and is highly expressed in the adult central nervous system. Adult Dio3 -/- mice exhibit elevated levels of T3-dependent gene expression in the brain, despite peripheral hypothyroidism as indicated by low circulating levels of thyroxine and T3. Dio3 -/- mice of both sexes exhibit hyperactivity and significantly decreased anxiety-like behavior, as measured by longer time spent in the open arms of the elevated plus maze and in the light area of the light/dark box. During the tail suspension, they stayed immobile for a significantly shorter time than their wild-type littermates, suggesting decreased depression-like behavior. These results indicate that increased thyroid hormone in the brain, not necessarily in peripheral tissues, correlates with hyperactivity and with decreases in anxiety and depression-like behaviors. Our results also underscore the importance of DIO3 as a determinant of behavior by locally regulating the brain levels of thyroid hormone.

  12. In Vivo Fiber-Optic Raman Mapping Of Metastases In Mouse Brains

    NASA Astrophysics Data System (ADS)

    Stelling, A.; Kirsch, M.; Steiner, G.; Krafft, C.; Schackert, G.; Salzer, R.

    2010-08-01

    Vibrational spectroscopy, in particular Raman spectroscopy, has potential applications in the field of in vivo diagnostics. Raman and FT-IR spectroscopy analyze the complete biochemical information at any given pixel within the visual field. Here we demonstrate the feasibility of performing Raman spectroscopic measurements on living mice brains using a fiber-optic probe with a nominal spatial resolution of 60 μm. The objectives of this study were to 1) evaluate preclinical models, namely murine brain slices containing experimental tumors, 2) optimize the preparation of pristine brain tissue to obtain reference information, to 3) optimize the conditions for introducing a fiber-optic probe to acquire Raman maps in vivo, and 4) to transfer results obtained from human brain tumors to an animal model. Disseminated brain metastases of malignant melanomas were induced by injecting tumor cells into the carotid artery of mice. The procedure mimicked hematogenous tumor spread in one brain hemisphere while the other hemisphere remained tumor free. Three series of sections were prepared consecutively from whole mouse brains: pristine, 2-mm thick sections for Raman mapping and dried, thin sections for FT-IR imaging, hematoxylin and eosin-stained thin sections for histopathological assessment. Raman maps were collected serially using a spectrometer coupled to a fiber-optic probe. FT-IR images were recorded using a spectrometer with a multi-channel detector. The FT-IR images and the Raman maps were evaluated by multivariate data analysis. The results obtained from the thin section studies were employed to guide measurements of murine brains in vivo. Raman maps with an acquisition time of over an hour could be performed on the living animals. No damage to the tissue was observed.

  13. Cellular distribution of the fragile X mental retardation protein in the mouse brain.

    PubMed

    Zorio, Diego A R; Jackson, Christine M; Liu, Yong; Rubel, Edwin W; Wang, Yuan

    2017-03-01

    The fragile X mental retardation protein (FMRP) plays an important role in normal brain development. Absence of FMRP results in abnormal neuronal morphologies in a selected manner throughout the brain, leading to intellectual deficits and sensory dysfunction in the fragile X syndrome (FXS). Despite FMRP importance for proper brain function, its overall expression pattern in the mammalian brain at the resolution of individual neuronal cell groups is not known. In this study we used FMR1 knockout and isogenic wildtype mice to systematically map the distribution of FMRP expression in the entire mouse brain. Using immunocytochemistry and cellular quantification analyses, we identified a large number of prominent cell groups expressing high levels of FMRP at the subcortical levels, in particular sensory and motor neurons in the brainstem and thalamus. In contrast, many cell groups in the midbrain and hypothalamus exhibit low FMRP levels. More important, we describe differential patterns of FMRP distribution in both cortical and subcortical brain regions. Almost all major brain areas contain high and low levels of FMRP cell groups adjacent to each other or between layers of the same cortical areas. These differential patterns indicate that FMRP expression appears to be specific to individual neuronal cell groups instead of being associated with all neurons in distinct brain regions, as previously considered. Taken together, these findings support the notion of FMRP differential neuronal regulation and strongly implicate the contribution of fundamental sensory and motor processing at subcortical levels to FXS pathology. J. Comp. Neurol. 525:818-849, 2017. © 2016 Wiley Periodicals, Inc.

  14. Gene repressive mechanisms in the mouse brain involved in memory formation.

    PubMed

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-04-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200].

  15. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain.

    PubMed

    Gong, Yu; Chai, Yi; Ding, Jian-Hua; Sun, Xiu-Lan; Hu, Gang

    2011-01-13

    Increasing evidence implicates mitochondrial failure as a crucial factor in the pathogenesis of mental disorders, such as depression. The aim of the present study was to investigate the effects of exposure to chronic mild stress (CMS), a paradigm developed in the late 1980s as an animal model of depression, on the mitochondrial function and mitochondrial ultrastructure in the mouse brain. The results showed that the CMS regime induced depressive-like symptoms in mice characterized by reduced sucrose preference and body weight. Moreover, CMS exposure was associated with a significant increase in immobility time in the tail suspension test. Exposure to the CMS paradigm inhibited mitochondrial respiration rates and dissipated mitochondrial membrane potential in hippocampus, cortex and hypothalamus of mice. In addition, we found a damaged mitochondrial ultrastructure in brains of mice exposed to CMS. These findings provide evidence for brain mitochondrial dysfunction and ultrastructural damage in a mouse model of depression. Moreover, these findings suggest that mitochondrial malfunction-induced oxidative injury could play a role in stress-related disorders such as depression.

  16. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    SciTech Connect

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  17. Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression.

    PubMed

    Pirozzi, Christopher J; Carpenter, Austin B; Waitkus, Matthew S; Wang, Catherine Y; Zhu, Huishan; Hansen, Landon J; Chen, Lee H; Greer, Paula K; Feng, Jie; Wang, Yu; Bock, Cheryl B; Fan, Ping; Spasojevic, Ivan; McLendon, Roger E; Bigner, Darell D; He, Yiping; Yan, Hai

    2017-02-01

    IDH1 mutations occur in the majority of low-grade gliomas and lead to the production of the oncometabolite, D-2-hydroxyglutarate (D-2HG). To understand the effects of tumor-associated mutant IDH1 (IDH1-R132H) on both the neural stem cell (NSC) population and brain tumorigenesis, genetically faithful cell lines and mouse model systems were generated. Here, it is reported that mouse NSCs expressing Idh1-R132H displayed reduced proliferation due to p53-mediated cell cycle arrest as well as a decreased ability to undergo neuronal differentiation. In vivo, Idh1-R132H expression reduced proliferation of cells within the germinal zone of the subventricular zone (SVZ). The NSCs within this area were dispersed and disorganized in mutant animals, suggesting that Idh1-R132H perturbed the NSCs and the microenvironment from which gliomas arise. Additionally, tumor-bearing animals expressing mutant Idh1 displayed a prolonged survival and also overexpressed Olig2, features consistent with IDH1-mutated human gliomas. These data indicate that mutant Idh1 disrupts the NSC microenvironment and the candidate cell of origin for glioma; thus, altering the progression of tumorigenesis. Additionally, this study provides a mutant Idh1 brain tumor model that genetically recapitulates human disease, laying the foundation for future investigations on mutant IDH1-mediated brain tumorigenesis and targeted therapy.

  18. Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain.

    PubMed

    Stump, Gila; Durrer, André; Klein, Anne-Laurence; Lütolf, Simone; Suter, Ueli; Taylor, Verdon

    2002-06-01

    Notch signaling plays a pivotal role in the regulation of vertebrate neurogenesis. However, in vitro experiments suggest that Notch1 may also be involved in the regulation of later stages of brain development. We have addressed putative roles in the central nervous system by examining the expression of Notch signaling cascade components in the postnatal mouse brain. In situ mRNA hybridization revealed that Notch1 is associated with cells in the subventricular zone, the dentate gyrus and the rostromigratory stream, all regions of continued neurogenesis in the postnatal brain. In addition, Notch1 is expressed at low levels throughout the cortex and olfactory bulb and shows striking expression in the cerebellar Purkinje cell layer. The Notch ligands, including Delta-like1 and 3 and Jagged1 and Jagged2, show distinct expression patterns in the developing and adult brain overlapping that of Notch1. In addition, the downstream targets of the Notch signaling cascade Hes1, Hes3, Hes5 and the intrinsic Notch regulatory proteins Numb and Numblike also show active signaling in distinct brain regions. Hes5 coincides with the majority of Notch1 expression and can be detected in the cerebral cortex, cerebellum and putative germinal zones. Hes3, on the other hand, shows a restricted expression in cerebellar Purkinje cells. The distribution of Notch1 and its putative ligands suggest distinct roles in specific subsets of cells in the postnatal brain including putative stem cells and differentiated neurons.

  19. Whole-brain ex-vivo quantitative MRI of the cuprizone mouse model

    PubMed Central

    Hurley, Samuel A.; Vernon, Anthony C.; Torres, Joel; Dell’Acqua, Flavio; Williams, Steve C.R.; Cash, Diana

    2016-01-01

    Myelin is a critical component of the nervous system and a major contributor to contrast in Magnetic Resonance (MR) images. However, the precise contribution of myelination to multiple MR modalities is still under debate. The cuprizone mouse is a well-established model of demyelination that has been used in several MR studies, but these have often imaged only a single slice and analysed a small region of interest in the corpus callosum. We imaged and analyzed the whole brain of the cuprizone mouse ex-vivo using high-resolution quantitative MR methods (multi-component relaxometry, Diffusion Tensor Imaging (DTI) and morphometry) and found changes in multiple regions, including the corpus callosum, cerebellum, thalamus and hippocampus. The presence of inflammation, confirmed with histology, presents difficulties in isolating the sensitivity and specificity of these MR methods to demyelination using this model. PMID:27833805

  20. [Effect of freezing on immunogenicity of the rabies vaccine produced in suckling mouse brain].

    PubMed

    Albas, A; Nogueira, R M; Fontolan, O L; Albas Kd; Bremer Neto, H

    2001-01-01

    The immune humoral response induced by the rabies vaccine produced in suckling mouse brain was studied in 23 dogs. The mouse neutralization test (MNT) was used to evaluate the level of rabies antibodies. Ten dogs received vaccine stored at 2 to 8 degrees C, showing the following results: 30 days after vaccination, six samples (60%) responded to the MNT; 180 days after vaccination, 4 samples (40%); and 360 days after vaccination, only one sample (10%). The remaining 13 dogs received previously frozen vaccine and 30 days after vaccination, only two samples (l5.4%) responded to the MNT. No titers were detected 180 and 360 days after vaccination. Statistical analysis of each variable used Tuckey analysis of variance, which showed statistically significant differences between the two groups.

  1. Lipopolysaccharide-induced inflammation aggravates irradiation-induced injury to the young mouse brain.

    PubMed

    Roughton, Karolina; Andreasson, Ulf; Blomgren, Klas; Kalm, Marie

    2013-01-01

    Radiotherapy is an effective treatment strategy in the treatment of brain tumors, but it is also a major cause of long-term complications, especially in survivors of pediatric brain tumors. Cognitive decline caused by cranial radiotherapy is thought, at least partly, to depend on injury to stem and progenitor cells in the dentate gyrus of the hippocampus. This study investigated the effects of lipopolysaccharide (LPS)-induced inflammation at the time of irradiation (IR) in the growing mouse brain. A single injection of LPS (0.3 mg/kg) was administered 24 h prior to cranial IR of 14-day-old male mice. LPS pretreatment increased the levels of the chemokine CCL2 and the cytokine IL-1β in the brain by 440 and 560%, respectively, compared to IR alone. IR disrupted hippocampal neurogenesis and the growth of the dentate gyrus, and the mice pretreated with LPS displayed an even more pronounced lack of growth than the vehicle-treated group 2 months after IR. The density of microglia was not affected, but LPS-pretreated mice displayed 48% fewer bromodeoxyuridine-positive cells and 43% fewer doublecortin-positive cells in the granule cell layer 2 months after IR compared with the vehicle-treated group. In conclusion, an ongoing inflammation in the brain at the time of IR further enhanced the IR-induced loss of neurogenesis, and may aggravate future cognitive deficits in patients treated with cranial radiotherapy.

  2. Involvement of Stat3 in mouse brain development and sexual dimorphism: a proteomics approach.

    PubMed

    Di Domenico, Fabio; Casalena, Gabriella; Sultana, Rukhsana; Cai, Jian; Pierce, William M; Perluigi, Marzia; Cini, Chiara; Baracca, Alessandra; Solaini, Giancarlo; Lenaz, Giorgio; Jia, Jia; Dziennis, Suzan; Murphy, Stephanie J; Alkayed, Nabil J; Butterfield, D Allan

    2010-11-29

    Although the role of STAT3 in cell physiology and tissue development has been largely investigated, its involvement in the development and maintenance of nervous tissue and in the mechanisms of neuroprotection is not yet known. The potentially wide range of STAT3 activities raises the question of tissue- and gender-specificity as putative mechanisms of regulation. To explore the function of STAT3 in the brain and the hypothesis of a gender-linked modulation of STAT3, we analyzed a neuron-specific STAT3 knockout mouse model investigating the influence of STAT3 activity in brain protein expression pattern in both males and females in the absence of neurological insult. We performed a proteomic study aimed to reveal the molecular pathways directly or indirectly controlled by STAT3 underscoring its role in brain development and maintenance. We identified several proteins, belonging to different neuronal pathways such as energy metabolism or synaptic transmission, controlled by STAT3 that confirm its crucial role in brain development and maintenance. Moreover, we investigated the different processes that could contribute to the sexual dimorphic behavior observed in the incidence of neurological and mental disease. Interestingly both STAT3 KO and gender factors influence the expression of several mitochondrial proteins conferring to mitochondrial activity high importance in the regulation of brain physiology and conceivable relevance as therapeutic target.

  3. A-kinase anchoring protein 150 in the mouse brain is concentrated in areas involved in learning and memory.

    PubMed

    Ostroveanu, Anghelus; Van der Zee, Eddy A; Dolga, Amalia M; Luiten, Paul G M; Eisel, Ulrich L M; Nijholt, Ingrid M

    2007-05-11

    A-kinase anchoring proteins (AKAPs) form large macromolecular signaling complexes that specifically target cAMP-dependent protein kinase (PKA) to unique subcellular compartments and thus, provide high specificity to PKA signaling. For example, the AKAP79/150 family tethers PKA, PKC and PP2B to neuronal membranes and postsynaptic densities and plays an important role in synaptic function. Several studies suggested that AKAP79/150 anchored PKA contributes to mechanisms associated with synaptic plasticity and memory processes, but the precise role of AKAPs in these processes is still unknown. In this study we established the mouse brain distribution of AKAP150 using two well-characterized AKAP150 antibodies. Using Western blotting and immunohistochemistry we showed that AKAP150 is widely distributed throughout the mouse brain. The highest AKAP150 expression levels were observed in striatum, cerebral cortex and several other forebrain regions (e.g. olfactory tubercle), relatively high expression was found in hippocampus and olfactory bulb and low/no expression in cerebellum, hypothalamus, thalamus and brain stem. Although there were some minor differences in mouse AKAP150 brain distribution compared to the distribution in rat brain, our data suggested that rodents have a characteristic AKAP150 brain distribution pattern. In general we observed that AKAP150 is strongly expressed in mouse brain regions involved in learning and memory. These data support its suggested role in synaptic plasticity and memory processes.

  4. Proteomic and transcriptomic study of brain microvessels in neonatal and adult mice

    PubMed Central

    Porte, Baptiste; Chatelain, Clémence; Hardouin, Julie; Derambure, Céline; Zerdoumi, Yasmine; Hauchecorne, Michèle; Dupré, Nicolas; Bekri, Soumeya; Gonzalez, Bruno; Marret, Stéphane; Cosette, Pascal

    2017-01-01

    Infants born before 29 weeks gestation incur a major risk of preterm encephalopathy and subependymal/intracerebral/intraventricular haemorrhage. In mice, an ontogenic window of haemorrhage risk was recorded up to 5 days after birth in serpine1 knock-out animals. Using proteome and transcriptome approaches in mouse forebrain microvessels, we previously described the remodelling of extracellular matrix and integrins likely strengthening the vascular wall between postnatal day 5 (P5) and P10. Haemorrhage is the ultimate outcome of vessel damage (i.e., during ischaemia), although discreet vessel insults may be involved in the aetiology of preterm encephalopathy. In this study, we examined proteins identified by mass spectrometry and segregating in gene ontology pathways in forebrain microvessels in P5, P10, and adult wild type mice. In parallel, comparative transcript levels were obtained using RNA hybridization microarrays and enriched biological pathways were extracted from genes exhibiting at least a two-fold change in expression. Five major biological functions were observed in those genes detected both as proteins and mRNA expression undergoing at least a two-fold change in expression in one or more age comparisons: energy metabolism, protein metabolism, antioxidant function, ion exchanges, and transport. Adult microvessels exhibited the highest protein and mRNA expression levels for a majority of genes. Energy metabolism–enriched gene ontology pathways pointed to the preferential occurrence of glycolysis in P5 microvessels cells versus P10 and adult preparations enriched in aerobic oxidative enzymes. Age-dependent levels of RNA coding transport proteins at the plasma membrane and mitochondria strengthened our findings based on protein data. The data suggest that immature microvessels have fewer energy supply alternatives to glycolysis than mature structures. In the context of high energy demand, this constraint might account for vascular damage and maintenance

  5. Dietary whey protein stimulates mitochondrial activity and decreases oxidative stress in mouse female brain.

    PubMed

    Shertzer, Howard G; Krishan, Mansi; Genter, Mary Beth

    2013-08-26

    In humans and experimental animals, protein-enriched diets are beneficial for weight management, muscle development, managing early stage insulin resistance and overall health. Previous studies have shown that in mice consuming a high fat diet, whey protein isolate (WPI) reduced hepatosteatosis and insulin resistance due in part to an increase in basal metabolic rate. In the current study, we examined the ability of WPI to increase energy metabolism in mouse brain. Female C57BL/6J mice were fed a normal AIN-93M diet for 12 weeks, with (WPI group) or without (Control group) 100g WPI/L drinking water. In WPI mice compared to controls, the oxidative stress biomarkers malondialdehyde and 4-hydroxyalkenals were 40% lower in brain homogenates, and the production of hydrogen peroxide and superoxide were 25-35% less in brain mitochondria. Brain mitochondria from WPI mice remained coupled, and exhibited higher rates of respiration with proportionately greater levels of cytochromes a+a3 and c+c1. These results suggested that WPI treatment increased the number or improved the function of brain mitochondria. qRT-PCR revealed that the gene encoding a master regulator of mitochondrial activity and biogenesis, Pgc-1alpha (peroxisome proliferator-activated receptor-gamma coactivator-1alpha) was elevated 2.2-fold, as were the PGC-1alpha downstream genes, Tfam (mitochondrial transcription factor A), Gabpa/Nrf-2a (GA-binding protein alpha/nuclear respiratory factor-2a), and Cox-6a1 (cytochrome oxidase-6a1). Each of these genes had twice the levels of transcript in brain tissue from WPI mice, relative to controls. There was no change in the expression of the housekeeping gene B2mg (beta-2 microglobulin). We conclude that dietary whey protein decreases oxidative stress and increases mitochondrial activity in mouse brain. Dietary supplementation with WPI may be a useful clinical intervention to treat conditions associated with oxidative stress or diminished mitochondrial activity in the

  6. Apoptosis and gene expression in the developing mouse brain of fusarenon-X-treated pregnant mice.

    PubMed

    Sutjarit, Samak; Nakayama, Shota M M; Ikenaka, Yoshinori; Ishizuka, Mayumi; Banlunara, Wijit; Rerkamnuaychoke, Worawut; Kumagai, Susumu; Poapolathep, Amnart

    2014-08-17

    Fusarenon-X (FX), a type B trichothecene mycotoxin, is mainly produced by Fusarium crookwellense, which occurs naturally in agricultural commodities, such as wheat and barley. FX has been shown to exert a variety of toxic effects on multiple targets in vitro. However, the embryonic toxicity of FX in vivo remains unclear. In the present study, we investigated FX-induced apoptosis and the relationship between the genetic regulatory mechanisms and FX-induced apoptosis in the developing mouse brain of FX-treated pregnant mice. Pregnant mice were orally administered FX (3.5 mg/kg b.w.) and were assessed at 0, 12, 24 and 48 h after treatment (HAT). Apoptosis in the fetal brain was determined using hematoxylin and eosin staining, the TUNEL method, immunohistochemistry for PCNA and electron microscopy. Gene expressions were evaluated using microarray and real time-reverse transcription polymerase chain reaction (qRT-PCR). Histopathological changes showed that the number of apoptotic cells in the telencephalon of the mouse fetus peaked at 12 HAT and decreased at 24 and 48 HAT. FX induced the up-regulation of Bax, Trp53 and Casp9 and down-regulated Bcl2 but the expression levels of Fas and Casp8 mRNA remained unchanged. These data suggested that FX induces apoptosis in the developing mouse brain in FX-treated dams. Moreover, the genetic regulatory mechanisms of FX-induced apoptosis are regulated by Bax, Bcl2, Trp53 and Casp9 or can be defined via an intrinsic apoptotic pathway.

  7. Biased Agonism of Three Different Cannabinoid Receptor Agonists in Mouse Brain Cortex

    PubMed Central

    Diez-Alarcia, Rebeca; Ibarra-Lecue, Inés; Lopez-Cardona, Ángela P.; Meana, Javier; Gutierrez-Adán, Alfonso; Callado, Luis F.; Agirregoitia, Ekaitz; Urigüen, Leyre

    2016-01-01

    Cannabinoid receptors are able to couple to different families of G proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, Δ9-THC, WIN55212-2, and ACEA in mouse brain cortex. Stimulation of the [35S]GTPγS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13), in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 μM) was determined by scintillation proximity assay (SPA) technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs. PMID:27867358

  8. A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain

    PubMed Central

    McKee, Adrienne E; Minet, Emmanuel; Stern, Charlene; Riahi, Shervin; Stiles, Charles D; Silver, Pamela A

    2005-01-01

    Background In eukaryotic cells, RNA-binding proteins (RBPs) contribute to gene expression by regulating the form, abundance, and stability of both coding and non-coding RNA. In the vertebrate brain, RBPs account for many distinctive features of RNA processing such as activity-dependent transcript localization and localized protein synthesis. Several RBPs with activities that are important for the proper function of adult brain have been identified, but how many RBPs exist and where these genes are expressed in the developing brain is uncharacterized. Results Here we describe a comprehensive catalogue of the unique RBPs encoded in the mouse genome and provide an online database of RBP expression in developing brain. We identified 380 putative RBPs in the mouse genome. Using in situ hybridization, we visualized the expression of 323 of these RBP genes in the brains of developing mice at embryonic day 13.5, when critical fate choice decisions are made and at P0, when major structural components of the adult brain are apparent. We demonstrate i) that 16 of the 323 RBPs examined show neural-specific expression at the stages we examined, and ii) that a far larger subset (221) shows regionally restricted expression in the brain. Of the regionally restricted RBPs, we describe one group that is preferentially expressed in the E13.5 ventricular areas and a second group that shows spatially restricted expression in post-mitotic regions of the embryonic brain. Additionally, we find a subset of RBPs that share the same complex pattern of expression, in proliferating regions of the embryonic and postnatal NS and peripheral tissues. Conclusion Our data show that, in contrast to their proposed ubiquitous involvement in gene regulation, most RBPs are not uniformly expressed. Here we demonstrate the region-specific expression of RBPs in proliferating vs. post-mitotic brain regions as well as cell-type-specific RBP expression. We identify uncharacterized RBPs that exhibit neural

  9. Behavioral and neurobiological effects of deep brain stimulation in a mouse model of high anxiety- and depression-like behavior.

    PubMed

    Schmuckermair, Claudia; Gaburro, Stefano; Sah, Anupam; Landgraf, Rainer; Sartori, Simone B; Singewald, Nicolas

    2013-06-01

    Increasing evidence suggests that high-frequency deep brain stimulation of the nucleus accumbens (NAcb-DBS) may represent a novel therapeutic strategy for individuals suffering from treatment-resistant depression, although the underlying mechanisms of action remain largely unknown. In this study, using a unique mouse model of enhanced depression- and anxiety-like behavior (HAB), we investigated behavioral and neurobiological effects of NAcb-DBS. HAB mice either underwent chronic treatment with one of three different selective serotonin reuptake inhibitors (SSRIs) or received NAcb-DBS for 1 h per day for 7 consecutive days. Animals were tested in established paradigms revealing depression- and anxiety-related behaviors. The enhanced depression-like behavior of HAB mice was not influenced by chronic SSRI treatment. In contrast, repeated, but not single, NAcb-DBS induced robust antidepressant and anxiolytic responses in HAB animals, while these behaviors remained unaffected in normal depression/anxiety animals (NAB), suggesting a preferential effect of NAcb-DBS on pathophysiologically deranged systems. NAcb-DBS caused a modulation of challenge-induced activity in various stress- and depression-related brain regions, including an increase in c-Fos expression in the dentate gyrus of the hippocampus and enhanced hippocampal neurogenesis in HABs. Taken together, these findings show that the normalization of the pathophysiologically enhanced, SSRI-insensitive depression-like behavior by repeated NAcb-DBS was associated with the reversal of reported aberrant brain activity and impaired adult neurogenesis in HAB mice, indicating that NAcb-DBS affects neuronal activity as well as plasticity in a defined, mood-associated network. Thus, HAB mice may represent a clinically relevant model for elucidating the neurobiological correlates of NAcb-DBS.

  10. P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone.

    PubMed

    Messemer, Nanette; Kunert, Christin; Grohmann, Marcus; Sobottka, Helga; Nieber, Karen; Zimmermann, Herbert; Franke, Heike; Nörenberg, Wolfgang; Straub, Isabelle; Schaefer, Michael; Riedel, Thomas; Illes, Peter; Rubini, Patrizia

    2013-10-01

    Neurogenesis requires the balance between the proliferation of newly formed progenitor cells and subsequent death of surplus cells. RT-PCR and immunocytochemistry demonstrated the presence of P2X7 receptor mRNA and immunoreactivity in cultured neural progenitor cells (NPCs) prepared from the adult mouse subventricular zone (SVZ). Whole-cell patch-clamp recordings showed a marked potentiation of the inward current responses both to ATP and the prototypic P2X7 receptor agonist dibenzoyl-ATP (Bz-ATP) at low Ca(2+) and zero Mg(2+) concentrations in the bath medium. The Bz-ATP-induced currents reversed their polarity near 0 mV; in NPCs prepared from P2X7(-/-) mice, Bz-ATP failed to elicit membrane currents. The general P2X/P2Y receptor antagonist PPADS and the P2X7 selective antagonists Brilliant Blue G and A-438079 strongly depressed the effect of Bz-ATP. Long-lasting application of Bz-ATP induced an initial current, which slowly increased to a steady-state response. In combination with the determination of YO-PRO uptake, these experiments suggest the dilation of a receptor-channel and/or the recruitment of a dye-uptake pathway. Ca(2+)-imaging by means of Fura-2 revealed that in a Mg(2+)-deficient bath medium Bz-ATP causes [Ca(2+)](i) transients fully depending on the presence of external Ca(2+). The MTT test indicated a concentration-dependent decrease in cell viability by Bz-ATP treatment. Correspondingly, Bz-ATP led to an increase in active caspase 3 immunoreactivity, indicating a P2X7-controlled apoptosis. In acute SVZ brain slices of transgenic Tg(nestin/EGFP) mice, patch-clamp recordings identified P2X7 receptors at NPCs with pharmacological properties identical to those of their cultured counterparts. We suggest that the apoptotic/necrotic P2X7 receptors at NPCs may be of particular relevance during pathological conditions which lead to increased ATP release and thus could counterbalance the ensuing excessive cell proliferation.

  11. Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth.

    PubMed

    Pedroni, Silvia M A; Gonzalez, Juan M; Wade, Jean; Jansen, Maurits A; Serio, Andrea; Marshall, Ian; Lennen, Ross J; Girardi, Guillermina

    2014-01-01

    Premature babies are particularly vulnerable to brain injury. In this study we focus on cortical brain damage associated with long-term cognitive, behavioral, attentional or socialization deficits in children born preterm. Using a mouse model of preterm birth (PTB), we demonstrated that complement component C5a contributes to fetal cortical brain injury. Disruption of cortical dendritic and axonal cytoarchitecture was observed in PTB-mice. Fetuses deficient in C5aR (-/-) did not show cortical brain damage. Treatment with antibody anti-C5, that prevents generation of C5a, also prevented cortical fetal brain injury in PTB-mice. C5a also showed a detrimental effect on fetal cortical neuron development and survival in vitro. Increased glutamate release was observed in cortical neurons in culture exposed to C5a. Blockade of C5aR prevented glutamate increase and restored neurons dendritic and axonal growth and survival. Similarly, increased glutamate levels - measured by (1)HMRS - were observed in vivo in PTB-fetuses compared to age-matched controls. The blockade of glutamate receptors prevented C5a-induced abnormal growth and increased cell death in isolated fetal cortical neurons. Simvastatin and pravastatin prevented cortical fetal brain developmental and metabolic abnormalities -in vivo and in vitro. Neuroprotective effects of statins were mediated by Akt/PKB signaling pathways. This study shows that complement activation plays a crucial role in cortical fetal brain injury in PTL and suggests that complement inhibitors and statins might be good therapeutic options to improve neonatal outcomes in preterm birth.

  12. UPTAKE OF [3H]-COLCHICINE INTO BRAIN AND LIVER OF MOUSE, RAT, AND CHICK

    SciTech Connect

    Bennett, Edward L.; Alberti, Marie Hebert; Flood, James F.

    1980-07-01

    The uptake of [ring A-4-{sup 3}H] colchicine and [ring C-methoxy-{sup 3}H]colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of [ring C-methoxy-{sup 3}H] and [ring A-{sup 3}H]colchicine was also studied in rats. the general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkoloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments [7], support the hypotheses that structural alteration in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation.

  13. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

    PubMed Central

    2012-01-01

    Introduction Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. Methods Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. Results Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. Conclusions Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes. PMID:23036239

  14. Brain distribution and bioavailability of elacridar after different routes of administration in the mouse.

    PubMed

    Sane, Ramola; Agarwal, Sagar; Elmquist, William F

    2012-08-01

    The objective of this study was to determine the bioavailability and disposition of elacridar (GF120918; N-(4-(2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl)phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide) in plasma and brain after various routes of administration in the mouse. Elacridar is a potent inhibitor of P-glycoprotein and breast cancer resistance protein and has been used to examine the influence of these efflux transporters on drug distribution to brain. Friend leukemia virus strain B mice were administered 100 mg/kg elacridar either orally or intraperitoneally. The absolute bioavailability of elacridar after oral or intraperitoneal dosing was determined with respect to an intravenous dose of 2.5 mg/kg. At these doses, the absolute bioavailability was 0.22 for oral administration and 0.01 for intraperitoneal administration. The terminal half-life of elacridar was approximately 4 h after intraperitoneal and intravenous administration and nearly 20 h after oral dosing. The brain-to-plasma partition coefficient (Kp,brain) of elacridar increased as plasma exposure increased, suggesting saturation of the efflux transporters at the blood-brain barrier. The Kp,brain after intravenous, intraperitoneal, and oral dosing was 0.82, 0.43, and 4.31, respectively. The low aqueous solubility and high lipophilicity of elacridar result in poor oral absorption, most likely dissolution-rate-limited. These results illustrate the importance of the route of administration and the resultant plasma exposure in achieving effective plasma and brain concentrations of elacridar and can be used as a guide for future studies involving elacridar administration and in developing formulation strategies to overcome the poor absorption.

  15. ERK inhibition with PD184161 mitigates brain damage in a mouse model of stroke.

    PubMed

    Gladbach, Amadeus; van Eersel, Janet; Bi, Mian; Ke, Yazi D; Ittner, Lars M

    2014-05-01

    Ischemic stroke is a leading cause of death. It has previously been shown that blocking activation of extracellular signal-regulated kinase (ERK) with the MEK inhibitor U0126 mitigates brain damage in rodent models of ischemic stroke. Here we show that the newer MEK inhibitor PD184161 reduces cell death and altered gene expression in cultured neurons and mice undergoing excitotoxicity, and has similar protective effects in a mouse model of stroke. This further supports ERK inhibition as a potential treatment for stroke.

  16. Topography of arterial circle of the brain in Egyptian spiny mouse (Acomys cahirinus, Desmarest).

    PubMed

    Szczurkowski, A; Kuchinka, J; Nowak, E; Kuder, T

    2007-04-01

    Using stained acryl latex-injected techniques, the arterial circle of the brain in Acomys cahirinus Desmarest was studied. Results revealed an important individual variability of investigated structure. Three morphological variants were found: (1) the lack of typical arterial circle--opened in front and the back side, (2) partial opened at the back side, (3) completely closed arterial circle. This finding is opposed to many species of mammals, including rodents, and especially laboratory mouse. In our point of view, it seems to be a specific character.

  17. Reduction of Photo Bleaching and Long Term Archiving of Chemically Cleared GFP-Expressing Mouse Brains

    PubMed Central

    Becker, Klaus; Hahn, Christian Markus; Saghafi, Saiedeh; Jährling, Nina; Wanis, Martina; Dodt, Hans-Ulrich

    2014-01-01

    Tissue clearing allows microscopy of large specimens as whole mouse brains or embryos. However, lipophilic tissue clearing agents as dibenzyl ether limit storage time of GFP-expressing samples to several days and do not prevent them from photobleaching during microscopy. To preserve GFP fluorescence, we developed a transparent solid resin formulation, which maintains the specimens' transparency and provides a constant signal to noise ratio even after hours of continuous laser irradiation. If required, high-power illumination or long exposure times can be applied with virtually no loss in signal quality and samples can be archived for years. PMID:25463047

  18. In-vivo Fluorescent X-ray CT Imaging of Mouse Brain

    SciTech Connect

    Takeda, T.; Wu, J.; Lwin, Thet-Thet; Huo, Q.; Minami, M.; Sunaguchi, N.; Murakami, T.; Mouri, S.; Nasukawa, S.; Yuasa, T.; Akatsuka, T.; Hyodo, K.; Hontani, H.

    2007-01-19

    Using a non-radioactive iodine-127 labeled cerebral perfusion agent (I-127 IMP), fluorescent X-ray computed tomography (FXCT) clearly revealed the cross-sectional distribution of I-127 IMP in normal mouse brain in-vivo. Cerebral perfusion of cortex and basal ganglion was depicted with 1 mm in-plane spatial resolution and 0.1 mm slice thickness. Degree of cerebral perfusion in basal ganglion was about 2-fold higher than that in cortical regions. This result suggests that in-vivo cerebral perfusion imaging is realized quantitatively by FXCT at high volumetric resolution.

  19. In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy

    PubMed Central

    Xie, Ran; Dong, Lu; Du, Yifei; Zhu, Yuntao; Hua, Rui; Zhang, Chen; Chen, Xing

    2016-01-01

    Mammalian brains are highly enriched with sialoglycans, which have been implicated in brain development and disease progression. However, in vivo labeling and visualization of sialoglycans in the mouse brain remain a challenge because of the blood−brain barrier. Here we introduce a liposome-assisted bioorthogonal reporter (LABOR) strategy for shuttling 9-azido sialic acid (9AzSia), a sialic acid reporter, into the brain to metabolically label sialoglycoconjugates, including sialylated glycoproteins and glycolipids. Subsequent bioorthogonal conjugation of the incorporated 9AzSia with fluorescent probes via click chemistry enabled fluorescence imaging of brain sialoglycans in living animals and in brain sections. Newly synthesized sialoglycans were found to widely distribute on neuronal cell surfaces, in particular at synaptic sites. Furthermore, large-scale proteomic profiling identified 140 brain sialylated glycoproteins, including a wealth of synapse-associated proteins. Finally, by performing a pulse−chase experiment, we showed that dynamic sialylation is spatially regulated, and that turnover of sialoglycans in the hippocampus is significantly slower than that in other brain regions. The LABOR strategy provides a means to directly visualize and monitor the sialoglycan biosynthesis in the mouse brain and will facilitate elucidating the functional role of brain sialylation. PMID:27125855

  20. In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy.

    PubMed

    Xie, Ran; Dong, Lu; Du, Yifei; Zhu, Yuntao; Hua, Rui; Zhang, Chen; Chen, Xing

    2016-05-10

    Mammalian brains are highly enriched with sialoglycans, which have been implicated in brain development and disease progression. However, in vivo labeling and visualization of sialoglycans in the mouse brain remain a challenge because of the blood-brain barrier. Here we introduce a liposome-assisted bioorthogonal reporter (LABOR) strategy for shuttling 9-azido sialic acid (9AzSia), a sialic acid reporter, into the brain to metabolically label sialoglycoconjugates, including sialylated glycoproteins and glycolipids. Subsequent bioorthogonal conjugation of the incorporated 9AzSia with fluorescent probes via click chemistry enabled fluorescence imaging of brain sialoglycans in living animals and in brain sections. Newly synthesized sialoglycans were found to widely distribute on neuronal cell surfaces, in particular at synaptic sites. Furthermore, large-scale proteomic profiling identified 140 brain sialylated glycoproteins, including a wealth of synapse-associated proteins. Finally, by performing a pulse-chase experiment, we showed that dynamic sialylation is spatially regulated, and that turnover of sialoglycans in the hippocampus is significantly slower than that in other brain regions. The LABOR strategy provides a means to directly visualize and monitor the sialoglycan biosynthesis in the mouse brain and will facilitate elucidating the functional role of brain sialylation.

  1. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus.

    PubMed

    van Praag, H; Kempermann, G; Gage, F H

    1999-03-01

    Exposure to an enriched environment increases neurogenesis in the dentate gyrus of adult rodents. Environmental enrichment, however, typically consists of many components, such as expanded learning opportunities, increased social interaction, more physical activity and larger housing. We attempted to separate components by assigning adult mice to various conditions: water-maze learning (learner), swim-time-yoked control (swimmer), voluntary wheel running (runner), and enriched (enriched) and standard housing (control) groups. Neither maze training nor yoked swimming had any effect on bromodeoxyuridine (BrdU)-positive cell number. However, running doubled the number of surviving newborn cells, in amounts similar to enrichment conditions. Our findings demonstrate that voluntary exercise is sufficient for enhanced neurogenesis in the adult mouse dentate gyrus.

  2. A case of adult cannibalism in the gray mouse lemur, Microcebus murinus.

    PubMed

    Hämäläinen, Anni

    2012-09-01

    Cannibalism, defined as the eating of conspecific flesh, has been observed in a number of primate species, although it is still a relatively rare phenomenon. In cases where primates were seen feeding on an individual of the same species, the victims have exclusively been infants or juveniles. Here, I report an event of a free-living, adult male gray mouse lemur, Microcebus murinus, cannibalizing an adult conspecific female that died of an unknown cause. This observation has implications for the basic ecology of the species and highlights the potential for great flexibility in diet and behavior by a primate. This is, to my knowledge, the first communication of cannibalistic behavior in this species, as well as the first reported case of a nonhuman primate cannibalizing an adult conspecific.

  3. Investigation of genes important in neurodevelopment disorders in adult human brain.

    PubMed

    Maussion, Gilles; Diallo, Alpha B; Gigek, Carolina O; Chen, Elizabeth S; Crapper, Liam; Théroux, Jean-Francois; Chen, Gary G; Vasuta, Cristina; Ernst, Carl

    2015-10-01

    Several neurodevelopmental disorders (NDDs) are caused by mutations in genes expressed in fetal brain, but little is known about these same genes in adult human brain. Here, we test the hypothesis that genes associated with NDDs continue to have a role in adult human brain to explore the idea that NDD symptoms may be partially a result of their adult function rather than just their neurodevelopmental function. To demonstrate adult brain function, we performed expression analyses and ChIPseq in human neural stem cell(NSC) lines at different developmental stages and adult human brain, targeting two genes associated with NDDs, SATB2 and EHMT1, and the WNT signaling gene TCF7L2, which has not been associated with NDDs. Analysis of DNA interaction sites in neural stem cells reveals high (40-50 %) overlap between proliferating and differentiating cells for each gene in temporal space. Studies in adult brain demonstrate that consensus sites are similar to NSCs but occur at different genomic locations. We also performed expression analyses using BrainSpan data for NDD-associated genes SATB2, EHMT1, FMR1, MECP2, MBD5, CTNND2, RAI1, CHD8, GRIN2A, GRIN2B, TCF4, SCN2A, and DYRK1A and find high expression of these genes in adult brain, at least comparable to developing human brain, confirming that genes associated with NDDs likely have a role in adult tissue. Adult function of genes associated with NDDs might be important in clinical disease presentation and may be suitable targets for therapeutic intervention.

  4. Effect of amantadine on motility of reserpinized mice as a function of brain biogenic amines and mouse strains.

    PubMed

    Messiha, F S

    1989-01-01

    The effect of amantadine, reserpine or both on locomotor activity and whole brain content of selected biogenic amines and major metabolites was studied as a function of mouse strain. Successive administration of small dose regimens of reserpine, 0.2 mg/kg IP, did not alter motility from corresponding saline control. Administration of amantadine, 100 mg/kg, IP, prior to each of the reserpine treatments produced either stimulation of motor activity in the albino ICR and black C57BL/6 mice or caused inhibition from reserpine in the albino BALB/C and the brown CDF-1 mouse strains. This suggests a genotype strain sensitivity to the amantadine and reserpine interaction on the motor behavior of the mouse. The amantadine treatment did not alter brain dopamine concentration but increased its immediate acid metabolite, 3,4-dihydroxyphenylacetic acid, in the C57BL/6 mice as contrasted with reduction of the same in the BALB/C mouse strain. Both BALB/C and C57BL/6 mice showed changes in brain normetanephrine levels as a consequence of the pharmacologic intervention used which suggest catecholaminergic sensitivity. The only changes produced by the agents studied in brain serotonin or 5-hydroxyindoleacetic acid levels were confined to the BALB/C mouse strain. No changes occurred in brain levels of the compounds measured from corresponding controls in the CDF-1 mice. The results indicate differential sensitivity of the serotonergic and dopaminergic systems to drug-drug interaction studied which appears to be strain dependent.

  5. Histology and Ultrastructure of Transitional Changes in Skin Morphology in the Juvenile and Adult Four-Striped Mouse (Rhabdomys pumilio)

    PubMed Central

    Stewart, Eranée; Ajao, Moyosore Salihu

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin. PMID:24288469

  6. Histology and ultrastructure of transitional changes in skin morphology in the juvenile and adult four-striped mouse (Rhabdomys pumilio).

    PubMed

    Stewart, Eranée; Ajao, Moyosore Salihu; Ihunwo, Amadi Ogonda

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin.

  7. Edaravone enhances brain-derived neurotrophic factor production in the ischemic mouse brain.

    PubMed

    Okuyama, Satoshi; Morita, Mayu; Sawamoto, Atsushi; Terugo, Tsukasa; Nakajima, Mitsunari; Furukawa, Yoshiko

    2015-04-02

    Edaravone, a clinical drug used to treat strokes, protects against neuronal cell death and memory loss in the ischemic brains of animal models through its antioxidant activity. In the present study, we subcutaneously administrated edaravone to mice (3 mg/kg/day) for three days immediately after bilateral common carotid artery occlusion, and revealed through an immunohistochemical analysis that edaravone (1) accelerated increases in the production of brain-derived neurotrophic factor (BDNF) in the hippocampus; (2) increased the number of doublecortin-positive neuronal precursor cells in the dentate gyrus subgranular zone; and (3) suppressed the ischemia-induced inactivation of calcium-calmodulin-dependent protein kinase II in the hippocampus. We also revealed through a Western blotting analysis that edaravone (4) induced the phosphorylation of cAMP response element-binding (CREB), a transcription factor that regulates BDNF gene expression; and (5) induced the phosphorylation of extracellular signal-regulated kinases 1/2, an upstream signal factor of CREB. These results suggest that the neuroprotective effects of edaravone following brain ischemia were mediated not only by the elimination of oxidative stress, but also by the induction of BDNF production.

  8. Transcriptomic analysis of the developing and adult mouse cochlear sensory epithelia.

    PubMed

    Smeti, Ibtihel; Assou, Said; Savary, Etienne; Masmoudi, Saber; Zine, Azel

    2012-01-01

    The adult mammalian cochlea lacks regenerative ability and the irreversible degeneration of cochlear sensory hair cells leads to permanent hearing loss. Previous data show that early postnatal cochlea harbors stem/progenitor-like cells and shows a limited regenerative/repair capacity. These properties are progressively lost later during the postnatal development. Little is known about the genes and pathways that are potentially involved in this difference of the regenerative/repair potentialities between early postnatal and adult mammalian cochlear sensory epithelia (CSE). The goal of our study is to investigate the transcriptomic profiles of these two stages. We used Mouse Genome 430 2.0 microarray to perform an extensive analysis of the genes expressed in mouse postnatal day-3 (P3) and adult CSE. Statistical analysis of microarray data was performed using SAM (Significance Analysis of Microarrays) software. We identified 5644 statistically significant differentially expressed transcripts with a fold change (FC) >2 and a False Discovery Rate (FDR) ≤0.05. The P3 CSE signature included 3,102 transcripts, among which were known genes in the cochlea, but also new transcripts such as, Hmga2 (high mobility group AT-hook 2) and Nrarp (Notch-regulated ankyrin repeat protein). The adult CSE overexpressed 2,542 transcripts including new transcripts, such as Prl (Prolactin) and Ar (Androgen receptor), that previously were not known to be expressed in the adult cochlea. Our comparative study revealed important genes and pathways differentially expressed between the developing and adult CSE. The identification of new candidate genes would be useful as potential markers of the maintenance or the loss of stem cells and regenerative/repair ability during mammalian cochlear development.

  9. Treating the Developing versus Developed Brain: Translating Preclinical Mouse and Human Studies

    PubMed Central

    Casey, BJ; Glatt, Charles E.; Lee, Francis S.

    2015-01-01

    Summary Behaviors and underlying brain circuits show characteristic changes across the life-span that produce sensitive windows of vulnerability and resilience to psychopathology. Understanding the developmental course of these changes may inform which treatments are best at what ages. Focusing on behavioral domains and neurobiological substrates conserved from mouse to human supports reciprocal hypothesis generation and testing that leverages the strengths of each system in understanding their development. Introducing human genetic variants into mice can further define effects of individual variation on normative development, how they contribute to risk and resilience for mental illness, and inform personalized treatment opportunities. This article emphasizes the period of adolescence, when there is a peak in the emergence of mental illness, in particular, anxiety disorders. We present cross-species studies relating fear learning to anxiety across development, and discuss how clinical treatments can be optimized for individuals and targeted to the biological states of the developing brain. PMID:26087163

  10. c-fos mRNA in mouse brain after MPTP treatment.

    PubMed

    Duchemin, A M; Gudehithlu, K P; Neff, N H; Hadjiconstantinou, M

    1992-04-01

    The neurotoxin, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induces a transient increase of mRNA for the immediate-early gene c-fos in the mouse brain. The c-fos mRNA level is MPTP dose-dependent and is evident in all brain regions tested including striatum, hypothalamus, cortex, hippocampus, cerebellum and midbrain. There are regional differences in the time-course for the rise of c-fos mRNA. Pretreatment with deprenyl, a selective monoamine oxidase B inhibitor, pargyline, a nonselective monoamine oxidase inhibitor, or mazindol, a dopamine uptake transport inhibitor, does not prevent the c-fos mRNA increase, suggesting that the elevation is due to the action of MPTP and not its neurotoxic metabolite MPP+.

  11. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  12. Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation

    PubMed Central

    Jäkel, Sarah; Dimou, Leda

    2017-01-01

    Glial cells, consisting of microglia, astrocytes, and oligodendrocyte lineage cells as their major components, constitute a large fraction of the mammalian brain. Originally considered as purely non-functional glue for neurons, decades of research have highlighted the importance as well as further functions of glial cells. Although many aspects of these cells are well characterized nowadays, the functions of the different glial populations in the brain under both physiological and pathological conditions remain, at least to a certain extent, unresolved. To tackle these important questions, a broad range of depletion approaches have been developed in which microglia, astrocytes, or oligodendrocyte lineage cells (i.e., NG2-glia and oligodendrocytes) are specifically ablated from the adult brain network with a subsequent analysis of the consequences. As the different glial populations are very heterogeneous, it is imperative to specifically ablate single cell populations instead of inducing cell death in all glial cells in general. Thanks to modern genetic manipulation methods, the approaches can now directly be targeted to the cell type of interest making the ablation more specific compared to general cell ablation approaches that have been used earlier on. In this review, we will give a detailed summary on different glial ablation studies, focusing on the adult mouse central nervous system and the functional readouts. We will also provide an outlook on how these approaches could be further exploited in the future. PMID:28243193

  13. Sertoli Cells Maintain Leydig Cell Number and Peritubular Myoid Cell Activity in the Adult Mouse Testis

    PubMed Central

    Monteiro, Ana; Milne, Laura; Cruickshanks, Lyndsey; Jeffrey, Nathan; Guillou, Florian; Freeman, Tom C.; Mitchell, Rod T.; Smith, Lee B.

    2014-01-01

    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health. PMID:25144714

  14. d-Amino Acid Levels in Perfused Mouse Brain Tissue and Blood: A Comparative Study.

    PubMed

    Weatherly, Choyce A; Du, Siqi; Parpia, Curran; Santos, Polan T; Hartman, Adam L; Armstrong, Daniel W

    2017-02-16

    The l-enantiomer is the predominant type of amino acid in all living systems. However, d-amino acids, once thought to be "unnatural", have been found to be indigenous even in mammalian systems and increasingly appear to be functioning in essential biological and neurological roles. Both d- and l-amino acid levels in the hippocampus, cortex, and blood samples from NIH Swiss mice are reported. Perfused