Science.gov

Sample records for adult mouse fdb

  1. Ethernet ring protection with managed FDB using APS payload

    NASA Astrophysics Data System (ADS)

    Im, Jinsung; Ryoo, Jeong-dong; Joo, Bheom Soon; Rhee, J.-K. Kevin

    2007-11-01

    Ethernet ring protection (ERP) is a new technology based on OAM (operations, administration, and maintenance) being standardized by the ITU-T G.8032 working group. In this paper, we present the recent development of Ethernet ring protection which is called FDB (filtering database) flush scheme and propose a new Ethernet ring protection technique introducing a managed FDB using APS to deliver information how to fix FDB selectively. We discuss the current development of the ERP technology at ITU-T and performance comparisons between different proposals.

  2. Regulation of the nuclear export of the transcription factor NFATc1 by protein kinases after slow fibre type electrical stimulation of adult mouse skeletal muscle fibres.

    PubMed

    Shen, Tiansheng; Cseresnyés, Zoltán; Liu, Yewei; Randall, William R; Schneider, Martin F

    2007-03-01

    The transcription factor nuclear factor of activated T cells (NFAT)c1 has been shown to be involved in turning on slow skeletal muscle fibre gene expression. Previous studies from our laboratory have characterized the stimulation pattern-dependent nuclear import and resting shuttling of NFATc1-green fluorescent protein (GFP) in flexor digitorum brevis (FDB) muscle fibres from adult mouse. In this study, we use viral expression of the transcription factor NFATc1-GFP fusion protein to investigate the mechanisms underlying the nuclear export of the NFATc1-GFP that accumulated in the nuclei of cultured dissociated adult mouse FDB muscle fibres during slow-twitch fibre type electrical stimulation. In these studies, we found that inhibition of either glycogen synthase kinase 3beta (GSK3beta) or casein kinase 1 or 2 (CK1/2) markedly slowed the decay of nuclear NFATc1-GFP after cessation of muscle fibre electrical stimulation, whereas inhibition of casein kinase 1delta, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase and protein kinase A had little effect. Simultaneous inhibition of GSK3beta and CK1/2 completely blocked the nuclear export of NFATc1-GFP after muscle activity. We also developed a simplified model of NFATc1 phosphorylation/dephosphorylation and nuclear fluxes, and used this model to simulate the observed time courses of nuclear NFATc1-GFP with and without NFATc1 kinase inhibition. Our results suggest that GSK3beta and CK1/2 are the major protein kinases that contribute to the removal of NFATc1 that accumulates in muscle fibre nuclei during muscle activity, and that GSK3beta and CK1/2 are responsible for phosphorylating NFATc1 in muscle nuclei in a complementary or synergistic fashion.

  3. Standardized bioenergetic profiling of adult mouse cardiomyocytes.

    PubMed

    Readnower, Ryan D; Brainard, Robert E; Hill, Bradford G; Jones, Steven P

    2012-12-18

    Mitochondria are at the crux of life and death and as such have become ideal targets of intervention in cardiovascular disease. Generally, current methods to measure mitochondrial dysfunction rely on working with the isolated organelle and fail to incorporate mitochondrial function in a cellular context. Extracellular flux methodology has been particularly advantageous in this respect; however, certain primary cell types, such as adult cardiac myocytes, have been difficult to standardize with this technology. Here, we describe methods for using extracellular flux (XF) analysis to measure mitochondrial bioenergetics in isolated, intact, adult mouse cardiomyocytes (ACMs). Following isolation, ACMs were seeded overnight onto laminin-coated (20 μg/ml) microplates, which resulted in high attachment efficiency. After establishing seeding density, we found that a commonly used assay medium (containing a supraphysiological concentration of pyruvate at 1 mmol/l) produced a maximal bioenergetic response. After performing a pyruvate dose-response, we determined that pyruvate titrated to 0.1 mmol/l was optimal for examining alternative substrate oxidation. Methods for measuring fatty acid oxidation were established. These methods lay the framework using XF analysis to profile metabolism of ACMs and will likely augment our ability to understand mitochondrial dysfunction in heart failure and acute myocardial ischemia. This platform could easily be extended to models of diabetes or other metabolic defects.

  4. The Fdb3 transcription factor of the Fusarium Detoxification of Benzoxazolinone gene cluster is required for MBOA but not BOA degradation in Fusarium pseudograminearum.

    PubMed

    Kettle, Andrew J; Carere, Jason; Batley, Jacqueline; Manners, John M; Kazan, Kemal; Gardiner, Donald M

    2016-03-01

    A number of cereals produce the benzoxazolinone class of phytoalexins. Fusarium species pathogenic towards these hosts can typically degrade these compounds via an aminophenol intermediate, and the ability to do so is encoded by a group of genes found in the Fusarium Detoxification of Benzoxazolinone (FDB) cluster. A zinc finger transcription factor encoded by one of the FDB cluster genes (FDB3) has been proposed to regulate the expression of other genes in the cluster and hence is potentially involved in benzoxazolinone degradation. Herein we show that Fdb3 is essential for the ability of Fusarium pseudograminearum to efficiently detoxify the predominant wheat benzoxazolinone, 6-methoxy-benzoxazolin-2-one (MBOA), but not benzoxazoline-2-one (BOA). Furthermore, additional genes thought to be part of the FDB gene cluster, based upon transcriptional response to benzoxazolinones, are regulated by Fdb3. However, deletion mutants for these latter genes remain capable of benzoxazolinone degradation, suggesting that they are not essential for this process.

  5. SorghumFDB: sorghum functional genomics database with multidimensional network analysis

    PubMed Central

    Tian, Tian; You, Qi; Zhang, Liwei; Yi, Xin; Yan, Hengyu; Xu, Wenying; Su, Zhen

    2016-01-01

    Sorghum (Sorghum bicolor [L.] Moench) has excellent agronomic traits and biological properties, such as heat and drought-tolerance. It is a C4 grass and potential bioenergy-producing plant, which makes it an important crop worldwide. With the sorghum genome sequence released, it is essential to establish a sorghum functional genomics data mining platform. We collected genomic data and some functional annotations to construct a sorghum functional genomics database (SorghumFDB). SorghumFDB integrated knowledge of sorghum gene family classifications (transcription regulators/factors, carbohydrate-active enzymes, protein kinases, ubiquitins, cytochrome P450, monolignol biosynthesis related enzymes, R-genes and organelle-genes), detailed gene annotations, miRNA and target gene information, orthologous pairs in the model plants Arabidopsis, rice and maize, gene loci conversions and a genome browser. We further constructed a dynamic network of multidimensional biological relationships, comprised of the co-expression data, protein–protein interactions and miRNA-target pairs. We took effective measures to combine the network, gene set enrichment and motif analyses to determine the key regulators that participate in related metabolic pathways, such as the lignin pathway, which is a major biological process in bioenergy-producing plants. Database URL: http://structuralbiology.cau.edu.cn/sorghum/index.html. PMID:27352859

  6. A Comprehensive Atlas of the Adult Mouse Penis.

    PubMed

    Phillips, Tiffany R; Wright, David K; Gradie, Paul E; Johnston, Leigh A; Pask, Andrew J

    2015-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures.

  7. Methylation of DNA in mouse early embryos, teratocarcinoma cells and adult tissues of mouse and rabbit.

    PubMed Central

    Singer, J; Roberts-Ems, J; Luthardt, F W; Riggs, A D

    1979-01-01

    The distribution and amount of 5-methylcytosine (5-MeCyt) in DNA was measured for early embryos of mouse strain CF1 (2 to 4 cell stage to blastocyst) and mouse teratocarcinoma cells. In each case, the pattern of methylation was examined by use of the restriction enzymes Hha I and HPA II HPA II, which cut DNA at the sites 5'GCGC and 5'CCGG respectively, when the cytosines at these sites are not methylated. Mouse embryo DNA was found to have the same level of methylation as adult mouse tissues, and no changes in methylation were seen during differentiation of the teratocarcinoma cells. The ratio of 5-MeCyt/Cyt in DNA was measured by high performance liquid chromatography for the differentiating teratocarcinoma cells and for several adult mouse and rabbit tissues. The variation between tissues or between teratocarcinoma cells at different stages of differentiation was less than 10 percent. These results are discussed in view of proposals that 5-MeCyt plays a role in differentiation. Images PMID:523320

  8. ADAPTATION OF GROUP B COXSACKIE VIRUS TO ADULT MOUSE PANCREAS

    PubMed Central

    Dalldorf, Gilbert; Gifford, Rebecca

    1952-01-01

    An alteration of tissue tropism of a Coxsackie virus has been observed following different methods of propagation of the virus in animals. Tropism for the adult mouse pancreas, as described by Pappenheimer, appeared to be irrevocably lost following prolonged brain-to-brain transfer. It was present in the same strain on reisolation from human feces, was intensified following pancreas transfers, and suppressed by brain transfers. Pancreatotropism may be correlated with the titer of virus in the pancreas. PMID:13000059

  9. In Vitro Spermatogenesis in Explanted Adult Mouse Testis Tissues.

    PubMed

    Sato, Takuya; Katagiri, Kumiko; Kojima, Kazuaki; Komeya, Mitsuru; Yao, Masahiro; Ogawa, Takehiko

    2015-01-01

    Research on in vitro spermatogenesis is important for elucidating the spermatogenic mechanism. We previously developed an organ culture method which can support spermatogenesis from spermatogonial stem cells up to sperm formation using immature mouse testis tissues. In this study, we examined whether it is also applicable to mature testis tissues of adult mice. We used two lines of transgenic mice, Acrosin-GFP and Gsg2-GFP, which carry the marker GFP gene specific for meiotic and haploid cells, respectively. Testis tissue fragments of adult GFP mice, aged from 4 to 29 weeks old, which express GFP at full extension, were cultured in medium supplemented with 10% KSR or AlbuMAX. GFP expression decreased rapidly and became the lowest at 7 to 14 days of culture, but then slightly increased during the following culture period. This increase reflected de novo spermatogenesis, confirmed by BrdU labeling in spermatocytes and spermatids. We also used vitamin A-deficient mice, whose testes contain only spermatogonia. The testes of those mice at 13-21 weeks old, showing no GFP expression at explantation, gained GFP expression during culturing, and spermatogenesis was confirmed histologically. In addition, the adult testis tissues of Sl/Sld mutant mice, which lack spermatogenesis due to Kit ligand mutation, were cultured with recombinant Kit ligand to induce spermatogenesis up to haploid formation. Although the efficiency of spermatogenesis was lower than that of pup, present results showed that the organ culture method is effective for the culturing of mature adult mouse testis tissue, demonstrated by the induction of spermatogenesis from spermatogonia to haploid cells.

  10. Electrophysiological Properties of Subventricular Zone Cells in Adult Mouse Brain

    PubMed Central

    Lai, Bin; Mao, Xiao Ou; Xie, Lin; Chang, Su-Youne; Xiong, Zhi-Gang; Jin, Kunlin; Greenberg, David A.

    2010-01-01

    The subventricular zone (SVZ) is a principal site of adult neurogenesis and appears to participate in the brain’s response to injury. Thus, measures that enhance SVZ neurogenesis may have a role in treatment of neurological disease. To better characterize SVZ cells and identify potential targets for therapeutic intervention, we studied electrophysiological properties of SVZ cells in adult mouse brain slices using patch-clamp techniques. Electrophysiology was correlated with immunohistochemical phenotype by injecting cells with lucifer yellow and by studying transgenic mice carrying green fluorescent protein under control of the doublecortin (DCX) or glial fibrillary acidic protein (GFAP) promoter. We identified five types of cells in the adult mouse SVZ: type 1 cells, with 4-aminopyridine (4-AP)/tetraethylammonium (TEA)-sensitive and CdCl2-sensitive inward currents; type 2 cells, with Ca2+-sensitive K+ and both 4-AP/TEA-sensitive and -insensitive currents; type 3 cells, with 4-AP/TEA-sensitive and -insensitive and small Na+ currents; type 4 cells, with slowly activating, large linear outward current and sustained outward current without fast-inactivating component; and type 5 cells, with a large outward rectifying current with a fast inactivating component. Type 2 and 3 cells expressed DCX, types 4 and 5 cells expressed GFAP, and type 1 cells expressed neither. We propose that SVZ neurogenesis involves a progression of electrophysiological cell phenotypes from types 4 and 5 cells (astrocytes) to type 1 cells (neuronal progenitors) to types 2 and 3 cells (nascent neurons), and that drugs acting on. ion channels expressed during neurogenesis might promote therapeutic neurogenesis in the injured brain. PMID:20434436

  11. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    SciTech Connect

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  12. CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics.

    PubMed

    Zhang, Zhengdong; Shen, Tie; Rui, Bin; Zhou, Wenwei; Zhou, Xiangfei; Shang, Chuanyu; Xin, Chenwei; Liu, Xiaoguang; Li, Gang; Jiang, Jiansi; Li, Chao; Li, Ruiyuan; Han, Mengshu; You, Shanping; Yu, Guojun; Yi, Yin; Wen, Han; Liu, Zhijie; Xie, Xiaoyao

    2015-01-01

    The Central Carbon Metabolic Flux Database (CeCaFDB, available at http://www.cecafdb.org) is a manually curated, multipurpose and open-access database for the documentation, visualization and comparative analysis of the quantitative flux results of central carbon metabolism among microbes and animal cells. It encompasses records for more than 500 flux distributions among 36 organisms and includes information regarding the genotype, culture medium, growth conditions and other specific information gathered from hundreds of journal articles. In addition to its comprehensive literature-derived data, the CeCaFDB supports a common text search function among the data and interactive visualization of the curated flux distributions with compartmentation information based on the Cytoscape Web API, which facilitates data interpretation. The CeCaFDB offers four modules to calculate a similarity score or to perform an alignment between the flux distributions. One of the modules was built using an inter programming algorithm for flux distribution alignment that was specifically designed for this study. Based on these modules, the CeCaFDB also supports an extensive flux distribution comparison function among the curated data. The CeCaFDB is strenuously designed to address the broad demands of biochemists, metabolic engineers, systems biologists and members of the -omics community.

  13. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain

    PubMed Central

    Boulanger, Jenna J.; Messier, Claude

    2017-01-01

    Key Points Oligodendrocyte precursor cells express doublecortin, a microtubule-associated protein.Oligodendrocyte precursor cells express doublecortin, but at a lower level of expression than in neuronal precursor.Doublecortin is not associated with a potential immature neuronal phenotype in Oligodendrocyte precursor cells. Oligodendrocyte precursor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. Considering these roles in the adult brain, OPCs are likely mobile cells that can migrate on some distances before they differentiate into myelinating oligodendrocytes. A number of studies have noted that OPCs express doublecortin (DCX), a microtubule-associated protein expressed in neural precursor cells and in migrating immature neurons. Here we describe the distribution of DCX in OPCs. We found that almost all OPCs express DCX, but the level of expression appears to be much lower than what is found in neural precursor. We found that DCX is downregulated when OPCs start expressing mature oligodendrocyte markers and is absent in myelinating oligodendrocytes. DCX does not appear to signal an immature neuronal phenotype in OPCs in the adult mouse brain. Rather, it could be involved either in cell migration, or as a marker of an immature oligodendroglial cell phenotype.

  14. Properties of single FDB fibers following a collagenase digestion for studying contractility, fatigue, and pCa-sarcomere shortening relationship.

    PubMed

    Selvin, David; Hesse, Erik; Renaud, Jean-Marc

    2015-03-15

    The objective of this study was to optimize the approach to obtain viable single flexor digitorum brevis (FDB) fibers following a collagenase digestion. A first aim was to determine the culture medium conditions for the collagenase digestion. The MEM yielded better fibers in terms of morphology and contractility than the DMEM. The addition of FBS to culture media was crucial to prevent fiber supercontraction. The addition of FBS to the physiological solution used during an experiment was also beneficial, especially during fatigue. Optimum FBS concentration in MEM was 10% (vol/vol), and for the physiological solution, it ranged between 0.2 and 1.0%. A second aim was to document the stability of single FDB fibers. If tested the day of the preparation, most fibers (∼80%) had stable contractions for up to 3 h, normal stimulus duration strength to elicit contractions, and normal and stable resting membrane potential during prolonged microelectrode penetration. A third aim was to document their fatigue kinetics. Major differences in fatigue resistance were observed between fibers as expected from the FDB fiber-type composition. All sarcoplasmic [Ca(2+)] and sarcomere length parameters returned to their prefatigue levels after a short recovery. The pCa-sarcomere shortening relationship of unfatigued fibers is very similar to the pCa-force curve reported in other studies. The pCa-sarcomere shortening from fatigue data is complicated by large decreases in sarcomere length between contractions. It is concluded that isolation of single fibers by a collagenase digestion is a viable preparation to study contractility and fatigue kinetics.

  15. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    PubMed

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  16. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear.

    PubMed

    Oesterle, Elizabeth C; Campbell, Sean; Taylor, Ruth R; Forge, Andrew; Hume, Clifford R

    2008-03-01

    Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear.

  17. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    SciTech Connect

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  18. A comprehensive transcriptomic analysis of infant and adult mouse ovary.

    PubMed

    Pan, Linlin; Gong, Wei; Zhou, Yuanyuan; Li, Xiaonuan; Yu, Jun; Hu, Songnian

    2014-10-01

    Ovary development is a complex process involving numerous genes. A well-developed ovary is essential for females to keep fertility and reproduce offspring. In order to gain a better insight into the molecular mechanisms related to the process of mammalian ovary development, we performed a comparative transcriptomic analysis on ovaries isolated from infant and adult mice by using next-generation sequencing technology (SOLiD). We identified 15,454 and 16,646 transcriptionally active genes at the infant and adult stage, respectively. Among these genes, we also identified 7021 differentially expressed genes. Our analysis suggests that, in general, the adult ovary has a higher level of transcriptomic activity. However, it appears that genes related to primordial follicle development, such as those encoding Figla and Nobox, are more active in the infant ovary, whereas expression of genes vital for follicle development, such as Gdf9, Bmp4 and Bmp15, is upregulated in the adult. These data suggest a dynamic shift in gene expression during ovary development and it is apparent that these changes function to facilitate follicle maturation, when additional functional gene studies are considered. Furthermore, our investigation has also revealed several important functional pathways, such as apoptosis, MAPK and steroid biosynthesis, that appear to be much more active in the adult ovary compared to those of the infant. These findings will provide a solid foundation for future studies on ovary development in mice and other mammals and help to expand our understanding of the complex molecular and cellular events that occur during postnatal ovary development.

  19. Ascl3 marks adult progenitor cells of the mouse salivary gland

    PubMed Central

    Rugel-Stahl, Anastasia; Elliot, Marilyn; Ovitt, Catherine E.

    2012-01-01

    The Ascl3 transcription factor marks a subset of salivary gland duct cells present in the three major salivary glands of the mouse. In vivo, these cells generate both duct and secretory acinar cell descendants. Here, we have analyzed whether Ascl3-expressing cells retain this multipotent lineage potential in adult glands. Cells isolated from mouse salivary glands were cultured in vitro as non-adherent spheres. Lineage tracing of the Ascl3-expressing cells within the spheres demonstrates that Ascl3+ cells isolated from adult glands remain multipotent, generating both duct and acinar cell types in vitro. Furthermore, we demonstrate that the progenitor cells characterized by Keratin 5 expression are an independent population from Ascl3+ progenitor cells. We conclude that the Ascl3+ cells are intermediate lineage-restricted progenitor cells of the adult salivary glands. PMID:22370009

  20. Mouse matriptase-2: identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues.

    PubMed Central

    Hooper, John D; Campagnolo, Luisa; Goodarzi, Goodarz; Truong, Tony N; Stuhlmann, Heidi; Quigley, James P

    2003-01-01

    We report the identification and characterization of mouse matriptase-2 (m-matriptase-2), an 811-amino-acid protein composed of an N-terminal cytoplasmic domain, a membrane-spanning domain, two CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains, three LDLR (low-density-lipoprotein receptor class A) domains and a C-terminal serine-protease domain. All m-matriptase-2 protein domain boundaries corresponded with intron/exon junctions of the encoding gene, which spans approx. 29 kb and comprises 18 exons. Matriptase-2 is highly conserved in human, mouse and rat, with the rat matriptase-2 gene ( r-maltriptase-2 ) predicted to encode transmembrane and soluble isoforms. Western-blot analysis indicated that m-matriptase-2 migrates close to its theoretical molecular mass of 91 kDa, and immunofluorescence analysis was consistent with the proposed surface membrane localization of this protein. Reverse-transcription PCR and in-situ -hybridization analysis indicated that m-matriptase-2 expression overlaps with the distribution of mouse hepsin (m-hepsin, a cell-surface serine protease identified in hepatoma cells) in adult tissues and during embryonic development. In adult tissues both are expressed at highest levels in liver, kidney and uterus. During embryogenesis m-matriptase-2 expression peaked between days 12.5 and 15.5. m-hepsin expression was biphasic, with peaks at day 7.5 to 8.5 and again between days 12.5 and 15.5. In situ hybridization of embryonic tissues indicated abundant expression of both m-matriptase-2 and m-hepsin in the developing liver and at lower levels in developing pharyngo-tympanic tubes. While m-hepsin was detected in the residual embryonic yolk sac and with lower intensity in lung, heart, gastrointestinal tract, developing kidney tubules and epithelium of the oral cavity, m-matriptase-2 was absent in these tissues, but strongly expressed within the nasal cavity by olfactory epithelial

  1. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex

    PubMed Central

    Ruiz-Perera, L.; Muniz, M.; Vierci, G.; Bornia, N.; Baroncelli, L.; Sale, A.; Rossi, F.M.

    2015-01-01

    The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain. PMID:26205348

  2. Isolation and cultivation of stem cells from adult mouse testes.

    PubMed

    Guan, Kaomei; Wolf, Frieder; Becker, Alexander; Engel, Wolfgang; Nayernia, Karim; Hasenfuss, Gerd

    2009-01-01

    The successful isolation and cultivation of spermatogonial stem cells (SSCs) as well as induction of SSCs into pluripotent stem cells will allow us to study their biological characteristics and their applications in therapeutic approaches. Here we provide step-by-step procedures on the basis of previous work in our laboratory for: the isolation of testicular cells from adolescent mice by a modified enzymatic procedure; the enrichment of undifferentiated spermatogonia by laminin selection or genetic selection using Stra8-EGFP (enhanced green fluorescent protein) transgenic mice; the cultivation and conversion of undifferentiated spermatogonia into embryonic stem-like cells, so-called multipotent adult germline stem cells (maGSCs); and characterization of these cells. Normally, it will take about 16 weeks to obtain stable maGSC lines starting from the isolation of testicular cells.

  3. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics

    PubMed Central

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-01-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  4. Metabolic conversion of 12-O-tetradecanoylphorbol-13-acetate in adult and newborn mouse skin and mouse liver microsomes.

    PubMed

    Berry, D L; Bracken, W M; Fischer, S M; Viaje, A; Slaga, T J

    1978-08-01

    Tritiated 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied to adult mouse skin; at specified time intervals the mice were killed, and the labeled phorbol was extracted and subjected to separation and quantitation by high-pressure liquid chromatography. After 24 hr, TPA comprised greater than 96% of the recovered label from the skin, and its apparent half-life was 17.8 hr. Pretreatment of adult skin with TPA for 4 weeks before treatment with labeled TPA resulted in an increase in the clearance rate of TPA from the skin. Skin from newborn mice was capable of converting TPA into monoesters and phorbol, but the clearance rate in the adult was about 12 times more rapid than it was in the newborn. Epidermal homogenates converted TPA into 12-O-tetradecanoylphorbol, phorbol-13-acetate, and phorbol. Hepatic homogenates were able to convert TPA to monoesters and phorbol at rates 14 to 15 times faster than were epidermal homogenates. Attempts to isolate any previously undescribed metabolites of TPA by use of liver homogenates were unsuccessful, and mixed-function oxidation did not contribute to the metabolism of TPA. From inhibitor studies it was judged that esterases were implicated in the conversion of TPA to monoesters and phorbol. The results support the hypothesis that the tumor-promoting activity of TPA is directly related to its concentration in a specific tissue and that conversion of TPA to an active metabolite probably does not occur.

  5. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers.

    PubMed

    Guerrero-Bosagna, Carlos; Covert, Trevor R; Haque, Md M; Settles, Matthew; Nilsson, Eric E; Anway, Matthew D; Skinner, Michael K

    2012-12-01

    The endocrine disruptor vinclozolin has previously been shown to promote epigenetic transgenerational inheritance of adult onset disease in the rat. The current study was designed to investigate the transgenerational actions of vinclozolin on the mouse. Transient exposure of the F0 generation gestating female during gonadal sex determination promoted transgenerational adult onset disease in F3 generation male and female mice, including spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities and polycystic ovarian disease. Pathology analysis demonstrated 75% of the vinclozolin lineage animals developed disease with 34% having two or more different disease states. Interestingly, the vinclozolin induced transgenerational disease was observed in the outbred CD-1 strain, but not the inbred 129 mouse strain. Analysis of the F3 generation sperm epigenome identified differential DNA methylation regions that can potentially be utilized as epigenetic biomarkers for transgenerational exposure and disease.

  6. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes

    PubMed Central

    Nickerson, John M.; Goodman, Penny; Chrenek, Micah A.; Johnson, Christiana J.; Berglin, Lennart; Redmond, T. Michael.; Boatright, Jeffrey H.

    2013-01-01

    Subretinal injection offers one of the best ways to deliver many classes of drugs, reagents, cells and treatments to the photoreceptor, Müller, and retinal pigment epithelium (RPE) cells of the retina. Agents delivered to this space are placed within microns of the intended target cell, accumulating to high concentrations because there is no dilution due to transport processes or diffusion. Dilution in the interphotoreceptor space (IPS) is minimal because the IPS volume is only 10-20 microliters in the human eye and less than 1 microliter in the mouse eye. For gene delivery purposes, we wished to transfect the cells adjacent to the IPS in adult mouse eyes. Others transfect these cells in neonatal rats to study the development of the retina. In both neonates and adults, electroporation is found to be effective Here we describe the optimization of electroporation conditions for RPE cells in the adult mouse eye with naked plasmids. However, both techniques, subretinal injection and electroporation, present some technical challenges that require skill on the part of the surgeon to prevent untoward damage to the eye. Here we describe methods that we have used for the past ten years (1). PMID:22688698

  7. Receptor protein tyrosine phosphatase σ binds to neurons in the adult mouse brain

    PubMed Central

    Yi, Jae-Hyuk; Katagiri, Yasuhiro; Yu, Panpan; Lourie, Jacob; Bangayan, Nathanael J.; Symes, Aviva J.; Geller, Herbert M.

    2014-01-01

    The role of type IIA receptor protein tyrosine phosphatases (RPTPs), which includes LAR, RPTPσ and RPTPδ, in the nervous system is becoming increasingly recognized. Evidence supports a significant role for these RPTPs during the development of the nervous system as well as after injury, and mutations in RPTPs are associated with human disease. However, a major open question is the nature of the ligands that interact with type IIA RPTPs in the adult brain. Candidates include several different proteins as well as the glycosaminoglycan chains of proteoglycans. In order to investigate this problem, we used a receptor affinity probe assay with RPTPσ-AP fusion proteins on sections of adult mouse brain and to cultured neurons. Our results demonstrate that the major binding sites for RPTPσ in adult mouse brain are on neurons and are not proteoglycan GAG chains, as RPTPσ binding overlaps with the neuronal marker NeuN and was not significantly altered by treatments which eliminate chondroitin sulfate, heparan sulfate, or both. We also demonstrate no overlap of binding of RPTPσ with perineuronal nets, and a unique modulation of RPTPσ binding to brain by divalent cations. Our data therefore point to neuronal proteins, rather than CSPGs, as being the ligands for RPTPσ in the adult, uninjured brain. PMID:24530640

  8. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus.

    PubMed

    van Praag, H; Kempermann, G; Gage, F H

    1999-03-01

    Exposure to an enriched environment increases neurogenesis in the dentate gyrus of adult rodents. Environmental enrichment, however, typically consists of many components, such as expanded learning opportunities, increased social interaction, more physical activity and larger housing. We attempted to separate components by assigning adult mice to various conditions: water-maze learning (learner), swim-time-yoked control (swimmer), voluntary wheel running (runner), and enriched (enriched) and standard housing (control) groups. Neither maze training nor yoked swimming had any effect on bromodeoxyuridine (BrdU)-positive cell number. However, running doubled the number of surviving newborn cells, in amounts similar to enrichment conditions. Our findings demonstrate that voluntary exercise is sufficient for enhanced neurogenesis in the adult mouse dentate gyrus.

  9. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system

    PubMed Central

    Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A.; Gyllborg, Daniel; Muñoz Manchado, Ana; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M.; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D.; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-01-01

    Oligodendrocytes have been considered as a functionally homogenous population in the central nervous system (CNS). We performed single-cell RNA-Seq on 5072 cells of the oligodendrocyte lineage from ten regions of the mouse juvenile/adult CNS. Twelve populations were identified, representing a continuum from Pdgfra+ oligodendrocyte precursors (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly-formed oligodendrocytes were found to be resident in the adult CNS and responsive to complex motor learning. A second Pdgfra+ population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS. PMID:27284195

  10. A case of adult cannibalism in the gray mouse lemur, Microcebus murinus.

    PubMed

    Hämäläinen, Anni

    2012-09-01

    Cannibalism, defined as the eating of conspecific flesh, has been observed in a number of primate species, although it is still a relatively rare phenomenon. In cases where primates were seen feeding on an individual of the same species, the victims have exclusively been infants or juveniles. Here, I report an event of a free-living, adult male gray mouse lemur, Microcebus murinus, cannibalizing an adult conspecific female that died of an unknown cause. This observation has implications for the basic ecology of the species and highlights the potential for great flexibility in diet and behavior by a primate. This is, to my knowledge, the first communication of cannibalistic behavior in this species, as well as the first reported case of a nonhuman primate cannibalizing an adult conspecific.

  11. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  12. Histology and Ultrastructure of Transitional Changes in Skin Morphology in the Juvenile and Adult Four-Striped Mouse (Rhabdomys pumilio)

    PubMed Central

    Stewart, Eranée; Ajao, Moyosore Salihu

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin. PMID:24288469

  13. Histology and ultrastructure of transitional changes in skin morphology in the juvenile and adult four-striped mouse (Rhabdomys pumilio).

    PubMed

    Stewart, Eranée; Ajao, Moyosore Salihu; Ihunwo, Amadi Ogonda

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin.

  14. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    PubMed

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  15. Transcriptomic analysis of the developing and adult mouse cochlear sensory epithelia.

    PubMed

    Smeti, Ibtihel; Assou, Said; Savary, Etienne; Masmoudi, Saber; Zine, Azel

    2012-01-01

    The adult mammalian cochlea lacks regenerative ability and the irreversible degeneration of cochlear sensory hair cells leads to permanent hearing loss. Previous data show that early postnatal cochlea harbors stem/progenitor-like cells and shows a limited regenerative/repair capacity. These properties are progressively lost later during the postnatal development. Little is known about the genes and pathways that are potentially involved in this difference of the regenerative/repair potentialities between early postnatal and adult mammalian cochlear sensory epithelia (CSE). The goal of our study is to investigate the transcriptomic profiles of these two stages. We used Mouse Genome 430 2.0 microarray to perform an extensive analysis of the genes expressed in mouse postnatal day-3 (P3) and adult CSE. Statistical analysis of microarray data was performed using SAM (Significance Analysis of Microarrays) software. We identified 5644 statistically significant differentially expressed transcripts with a fold change (FC) >2 and a False Discovery Rate (FDR) ≤0.05. The P3 CSE signature included 3,102 transcripts, among which were known genes in the cochlea, but also new transcripts such as, Hmga2 (high mobility group AT-hook 2) and Nrarp (Notch-regulated ankyrin repeat protein). The adult CSE overexpressed 2,542 transcripts including new transcripts, such as Prl (Prolactin) and Ar (Androgen receptor), that previously were not known to be expressed in the adult cochlea. Our comparative study revealed important genes and pathways differentially expressed between the developing and adult CSE. The identification of new candidate genes would be useful as potential markers of the maintenance or the loss of stem cells and regenerative/repair ability during mammalian cochlear development.

  16. Sertoli Cells Maintain Leydig Cell Number and Peritubular Myoid Cell Activity in the Adult Mouse Testis

    PubMed Central

    Monteiro, Ana; Milne, Laura; Cruickshanks, Lyndsey; Jeffrey, Nathan; Guillou, Florian; Freeman, Tom C.; Mitchell, Rod T.; Smith, Lee B.

    2014-01-01

    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health. PMID:25144714

  17. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation

    PubMed Central

    Korogod, Natalya; Petersen, Carl CH; Knott, Graham W

    2015-01-01

    Analysis of brain ultrastructure using electron microscopy typically relies on chemical fixation. However, this is known to cause significant tissue distortion including a reduction in the extracellular space. Cryo fixation is thought to give a truer representation of biological structures, and here we use rapid, high-pressure freezing on adult mouse neocortex to quantify the extent to which these two fixation methods differ in terms of their preservation of the different cellular compartments, and the arrangement of membranes at the synapse and around blood vessels. As well as preserving a physiological extracellular space, cryo fixation reveals larger numbers of docked synaptic vesicles, a smaller glial volume, and a less intimate glial coverage of synapses and blood vessels compared to chemical fixation. The ultrastructure of mouse neocortex therefore differs significantly comparing cryo and chemical fixation conditions. DOI: http://dx.doi.org/10.7554/eLife.05793.001 PMID:26259873

  18. Differential regulation of laminin b1 transgene expression in the neonatal and adult mouse brain.

    PubMed

    Sharif, K A; Baker, H; Gudas, L J

    2004-01-01

    Laminins are the major glycoproteins present in basement membrane, a type of extracellular matrix. We showed that the LAMB1 gene, which encodes the laminin beta1 subunit, is transcriptionally activated by retinoic acid in embryonic stem cells. However, little information is available concerning LAMB1 developmental regulation and spatial expression in the adult mouse brain. In this study we used transgenic mice expressing different lengths of LAMB1 promoter driving beta-galactosidase to investigate developmental and adult transcriptional regulation in the regions of the brain in which the laminin beta1 protein is expressed. CNS expression was not observed in transgenic mice carrying a 1.4LAMB1betagal construct. Mice carrying a 2.5LAMB1betagal construct expressed the LAMB1 transgene, as assayed by X-gal staining, only in the molecular layer of the neonatal cerebellum. In contrast, a 3.9LAMB1betagal transgene showed broad regional expression in the adult mouse brain, including the hippocampus, entorhinal cortex, colliculi, striatum, and substantia nigra. Similar expression patterns were observed for the endogenous laminin beta1 protein and for the 3.9LAMB1betagal transgene, analyzed with an antibody against the beta-galactosidase protein. The 3.9LAMB1betagal transgene expression in the hippocampal tri-synaptic circuit suggests a role for the LAMB1 gene in learning and memory.

  19. A novel mouse model that recapitulates adult-onset glycogenosis type 4

    PubMed Central

    Orhan Akman, H.; Emmanuele, Valentina; Kurt, Yasemin Gülcan; Kurt, Bülent; Sheiko, Tatiana; DiMauro, Salvatore; Craigen, William J.

    2015-01-01

    Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by deficiency of the glycogen-branching enzyme (GBE). The diagnostic hallmark of the disease is the accumulation of a poorly branched form of glycogen known as polyglucosan (PG). The disease is clinically heterogeneous, with variable tissue involvement and age at onset. Complete loss of enzyme activity is lethal in utero or in infancy and affects primarily the muscle and the liver. However, residual enzyme activity as low as 5–20% leads to juvenile or adult onset of a disorder that primarily affects the central and peripheral nervous system and muscles and in the latter is termed adult polyglucosan body disease (APBD). Here, we describe a mouse model of GSD IV that reflects this spectrum of disease. Homologous recombination was used to knock in the most common GBE1 mutation p.Y329S c.986A > C found in APBD patients of Ashkenazi Jewish decent. Mice homozygous for this allele (Gbe1ys/ys) exhibit a phenotype similar to APBD, with widespread accumulation of PG. Adult mice exhibit progressive neuromuscular dysfunction and die prematurely. While the onset of symptoms is limited to adult mice, PG accumulates in tissues of newborn mice but is initially absent from the cerebral cortex and heart muscle. Thus, PG is well tolerated in most tissues, but the eventual accumulation in neurons and their axons causes neuropathy that leads to hind limb spasticity and premature death. This mouse model mimics the pathology and pathophysiologic features of human adult-onset branching enzyme deficiency. PMID:26385640

  20. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    PubMed

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-05-15

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.

  1. Human tau expression reduces adult neurogenesis in a mouse model of tauopathy.

    PubMed

    Komuro, Yutaro; Xu, Guixiang; Bhaskar, Kiran; Lamb, Bruce T

    2015-06-01

    Accumulation of hyperphosphorylated and aggregated microtubule-associated protein tau (MAPT) is a central feature of a class of neurodegenerative diseases termed tauopathies. Notably, there is increasing evidence that tauopathies, including Alzheimer's disease, are also characterized by a reduction in neurogenesis, the birth of adult neurons. However, the exact relationship between hyperphosphorylation and aggregation of MAPT and neurogenic deficits remains unclear, including whether this is an early- or late-stage disease marker. In the present study, we used the genomic-based hTau mouse model of tauopathy to examine the temporal and spatial regulation of adult neurogenesis during the course of the disease. Surprisingly, hTau mice exhibited reductions in adult neurogenesis in 2 different brain regions by as early as 2 months of age, before the development of robust MAPT pathology in this model. This reduction was found to be due to reduced proliferation and not because of enhanced apoptosis in the hippocampus. At these same time points, hTau mice also exhibited altered MAPT phosphorylation with neurogenic precursors. To examine whether the effects of MAPT on neurogenesis were cell autonomous, neurospheres prepared from hTau animals were examined in vitro, revealing a growth deficit when compared with non-transgenic neurosphere cultures. Taken together, these studies provide evidence that altered adult neurogenesis is a robust and early marker of altered, cell-autonomous function of MAPT in the hTau mouse mode of tauopathy and that altered adult neurogenesis should be examined as a potential marker and therapeutic target for human tauopathies.

  2. A detailed characterization of the adult mouse model of glycogen storage disease Ia.

    PubMed

    Salganik, Susan V; Weinstein, David A; Shupe, Thomas D; Salganik, Max; Pintilie, Dana G; Petersen, Bryon E

    2009-09-01

    Glycogen storage disease type Ia (GSDIa) is caused by a genetic defect in the hepatic enzyme glucose-6-phosphatase (G6Pase-alpha), which manifests as life-threatening hypoglycemia with related metabolic complications. A G6Pase-alpha knockout (KO) mouse model was generated to study potential therapies for correcting this disorder. Since then, gene therapy studies have produced promising results, showing long-term improvement in liver histology and glycogen metabolism. Under existing protocols, however, untreated KO pups seldom survived weaning. Here, we present a thorough characterization of the G6Pase-alpha KO mouse, as well as the husbandry protocol for rearing this strain to adulthood. These mice were raised with only palliative care, and characterized from birth through 6 months of age. Once KO mice have survived the very frail weaning period, their size, agility, serum lipids and glycemic control improve dramatically, reaching levels approaching their wild-type littermates. In addition, our data reveal that adult mice lacking G6Pase-alpha are able to mate and produce viable offspring. However, liver histology and glycogen accumulation do not improve with age. Overall, the reliable production of mature KO mice could provide a critical tool for advancing the GSDIa field, as the availability of a robust enzyme-deficient adult offers a new spectrum of treatment avenues that would not be tolerated by the frail pups. Most importantly, our detailed characterization of the adult KO mouse provides a crucial baseline for accurately gauging the efficacy of experimental therapies in this important model.

  3. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    SciTech Connect

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  4. Establishment of Leptin-Responsive Cell Lines from Adult Mouse Hypothalamus

    PubMed Central

    Iwakura, Hiroshi; Dote, Katsuko; Bando, Mika; Koyama, Hiroyuki; Hosoda, Kiminori; Kangawa, Kenji; Nakao, Kazuwa

    2016-01-01

    Leptin resistance is considered to be the primary cause of obesity. However, the cause of leptin resistance remains incompletely understood, and there is currently no cure for the leptin-resistant state. In order to identify novel drug-target molecules that could overcome leptin resistance, it would be useful to develop in vitro assay systems for evaluating leptin resistance. In this study, we established immortalized adult mouse hypothalamus—derived cell lines, termed adult mouse hypothalamus (AMH) cells, by developing transgenic mice in which SV40 Tag was overexpressed in chromogranin A—positive cells in a tamoxifen-dependent manner. In order to obtain leptin-responsive clones, we selected clones based on the phosphorylation levels of STAT3 induced by leptin. The selected clones were fairly responsive to leptin in terms of STAT3, ERK, and Akt phosphorylation and induction of c-Fos mRNA induction. Pretreatment with leptin, insulin, and palmitate attenuated the c-Fos mRNA response to leptin, suggesting that certain aspects of leptin resistance might be reconstituted in this cellular model. These cell lines are useful tools for understanding the molecular nature of the signal disturbance in the leptin-resistant state and for identifying potential target molecules for drugs that relieve leptin resistance, although they have drawbacks including de-differentiated nature and lack of long-time stability. PMID:26849804

  5. Nestin Expression in the Adult Mouse Retina with Pharmaceutically Induced Retinal Degeneration

    PubMed Central

    2017-01-01

    The present study investigated the temporal pattern and cellular localization of nestin in the adult mouse retina with pharmaceutically induced retinal degeneration using N-methyl-N-nitrosourea (MNU). After a single intraperitoneal injection of MNU in 8-week-old C57BL/6 mice, the animals were sacrificed at 1, 3, 5, 7, and 21 days (n = 6, in each stage). The eyes were examined by means of immunohistochemical tests using nestin, ionized calcium-binding adaptor molecule (Iba-1), CD11b, F4/80, and glial fibrillary acidic protein (GFAP). Western blot analysis and manual cell counting were performed for quantification. Nestin expression was increased after MNU administration. Nestin+/Iba-1+ cells were migrated into outer nuclear layer (ONL) and peaked at day 3 post injection (PI). Nestin+/CD11b+ cells were also mainly identified in ONL at day 3 PI and peaked at day 5. Nestin+/F4/80+ cells were shown in the subretinal space and peaked at day 3 PI. Nestin+/GFAP+ cells were distinctly increased at day 1 PI and peaked at day 5 PI. The up-regulation of nestin expression after MNU administration in adult mouse retinal microglia, and monocyte/macrophage suggests that when retinal degeneration progresses, these cells may revert to a more developmentally immature state. Müller cells also showed reactive gliosis and differentiational changes. PMID:28049248

  6. Establishment of Leptin-Responsive Cell Lines from Adult Mouse Hypothalamus.

    PubMed

    Iwakura, Hiroshi; Dote, Katsuko; Bando, Mika; Koyama, Hiroyuki; Hosoda, Kiminori; Kangawa, Kenji; Nakao, Kazuwa

    2016-01-01

    Leptin resistance is considered to be the primary cause of obesity. However, the cause of leptin resistance remains incompletely understood, and there is currently no cure for the leptin-resistant state. In order to identify novel drug-target molecules that could overcome leptin resistance, it would be useful to develop in vitro assay systems for evaluating leptin resistance. In this study, we established immortalized adult mouse hypothalamus-derived cell lines, termed adult mouse hypothalamus (AMH) cells, by developing transgenic mice in which SV40 Tag was overexpressed in chromogranin A-positive cells in a tamoxifen-dependent manner. In order to obtain leptin-responsive clones, we selected clones based on the phosphorylation levels of STAT3 induced by leptin. The selected clones were fairly responsive to leptin in terms of STAT3, ERK, and Akt phosphorylation and induction of c-Fos mRNA induction. Pretreatment with leptin, insulin, and palmitate attenuated the c-Fos mRNA response to leptin, suggesting that certain aspects of leptin resistance might be reconstituted in this cellular model. These cell lines are useful tools for understanding the molecular nature of the signal disturbance in the leptin-resistant state and for identifying potential target molecules for drugs that relieve leptin resistance, although they have drawbacks including de-differentiated nature and lack of long-time stability.

  7. Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres.

    PubMed

    Barile, Lucio; Gherghiceanu, Mihaela; Popescu, Laurentiu M; Moccetti, Tiziano; Vassalli, Giuseppe

    2012-01-01

    The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres) that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34⁺ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an "off-the-shelf" product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

  8. Rescue of Adult Hippocampal Neurogenesis in a Mouse Model of HIV Neurologic Disease

    PubMed Central

    Lee, Myoung-Hwa; Wang, Tongguang; Jang, Mi-Hyeon; Steiner, Joseph; Haughey, Norman; Ming, Guo-li; Song, Hongjun; Nath, Avindra; Venkatesan, Arun

    2011-01-01

    The prevalence of central nervous system (CNS) neurologic dysfunction associated with human immunodeficiency virus (HIV) infection continues to increase, despite the use of antiretroviral therapy. Previous work has focused on the deleterious effects of HIV on mature neurons and on development of neuroprotective strategies, which have consistently failed to show a meaningful clinical benefit. It is now well established that new neurons are continuously generated in discrete regions in the adult mammalian brain, and accumulating evidence supports important roles for these neurons in specific cognitive functions. In a transgenic mouse model of HIV neurologic disease with glial expression of the HIV envelope protein gp120, we demonstrate a significant reduction in proliferation of hippocampal neural progenitors in the dentate gyrus of adult animals, resulting in a dramatic decrease in the number of newborn neurons in the adult brain. We identify amplifying neural progenitor cells (ANPs) as the first class of progenitors affected by gp120, and we also demonstrate that newly generated neurons exhibit aberrant dendritic development. Furthermore, voluntary exercise and treatment with a selective serotonin reuptake inhibitor increase the ANP population and rescue the observed deficits in gp120 transgenic mice. Thus, during HIV infection, the envelope protein gp120 may potently inhibit adult hippocampal neurogenesis, and neurorestorative approaches may be effective in ameliorating these effects. Our study has significant implications for the development of novel therapeutic approaches for HIV-infected individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired. PMID:21146610

  9. Selective Neuromuscular Denervation in Taiwanese Severe SMA Mouse Can Be Reversed by Morpholino Antisense Oligonucleotides

    PubMed Central

    Lin, Te-Lin; Chen, Tai-Heng; Hsu, Ya-Yun; Cheng, Yu-Hua; Juang, Bi-Tzen; Jong, Yuh-Jyh

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease caused by deficiency of the survival of motor neuron (SMN) protein, which leads to synaptic defects and spinal motor neuron death. Neuromuscular junction (NMJ) abnormalities have been found to be involved in SMA pathogenesis in the SMNΔ7 SMA mouse model. However, whether similar NMJ pathological findings present in another commonly used mouse model, the Taiwanese SMA mouse, has not been fully investigated. To examine the NMJs of the Taiwanese severe SMA mouse model (Smn-/-; SMN2tg/0), which is characterized by severe phenotype and death before postnatal day (P) 9, we investigated 25 axial and appendicular muscles from P1 to P9. We labelled the muscles with anti-neurofilament and anti-synaptophysin antibodies for nerve terminals and α-bungarotoxin for acetylcholine receptors (AChRs). We found that severe NMJ denervation (<50% fully innervated endplates) selectively occurred in the flexor digitorum brevis 2 and 3 (FDB-2/3) muscles from P5, and an increased percentage of fully denervated endplates correlated with SMA progression. Furthermore, synaptophysin signals were absent at the endplate compared to control littermate mice, suggesting that vesicle transport might only be affected at the end stage. Subsequently, we treated the Taiwanese severe SMA mice with morpholino (MO) antisense oligonucleotides (80 μg/g) via subcutaneous injection at P0. We found that MO significantly reversed the NMJ denervation in FDB-2/3 muscles and extended the survival of Taiwanese severe SMA mice. We conclude that early NMJ denervation in the FDB-2/3 muscles of Taiwanese severe SMA mice can be reversed by MO treatment. The FDB-2/3 muscles of Taiwanese severe SMA mice provide a very sensitive platform for assessing the effectiveness of drug treatments in SMA preclinical studies. PMID:27124114

  10. Selective Neuromuscular Denervation in Taiwanese Severe SMA Mouse Can Be Reversed by Morpholino Antisense Oligonucleotides.

    PubMed

    Lin, Te-Lin; Chen, Tai-Heng; Hsu, Ya-Yun; Cheng, Yu-Hua; Juang, Bi-Tzen; Jong, Yuh-Jyh

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease caused by deficiency of the survival of motor neuron (SMN) protein, which leads to synaptic defects and spinal motor neuron death. Neuromuscular junction (NMJ) abnormalities have been found to be involved in SMA pathogenesis in the SMNΔ7 SMA mouse model. However, whether similar NMJ pathological findings present in another commonly used mouse model, the Taiwanese SMA mouse, has not been fully investigated. To examine the NMJs of the Taiwanese severe SMA mouse model (Smn-/-; SMN2tg/0), which is characterized by severe phenotype and death before postnatal day (P) 9, we investigated 25 axial and appendicular muscles from P1 to P9. We labelled the muscles with anti-neurofilament and anti-synaptophysin antibodies for nerve terminals and α-bungarotoxin for acetylcholine receptors (AChRs). We found that severe NMJ denervation (<50% fully innervated endplates) selectively occurred in the flexor digitorum brevis 2 and 3 (FDB-2/3) muscles from P5, and an increased percentage of fully denervated endplates correlated with SMA progression. Furthermore, synaptophysin signals were absent at the endplate compared to control littermate mice, suggesting that vesicle transport might only be affected at the end stage. Subsequently, we treated the Taiwanese severe SMA mice with morpholino (MO) antisense oligonucleotides (80 μg/g) via subcutaneous injection at P0. We found that MO significantly reversed the NMJ denervation in FDB-2/3 muscles and extended the survival of Taiwanese severe SMA mice. We conclude that early NMJ denervation in the FDB-2/3 muscles of Taiwanese severe SMA mice can be reversed by MO treatment. The FDB-2/3 muscles of Taiwanese severe SMA mice provide a very sensitive platform for assessing the effectiveness of drug treatments in SMA preclinical studies.

  11. Voluntary physical exercise promotes ocular dominance plasticity in adult mouse primary visual cortex.

    PubMed

    Kalogeraki, Evgenia; Greifzu, Franziska; Haack, Franziska; Löwel, Siegrid

    2014-11-12

    Ocular dominance (OD) plasticity in the mouse primary visual cortex (V1) declines during aging and is absent beyond postnatal day (P) 110 when mice are raised in standard cages (SCs; Lehmann and Löwel, 2008). In contrast, raising mice in an enriched environment (EE) preserved a juvenile-like OD plasticity into late adulthood (Greifzu et al., 2014). EE raising provides the mice with more social interactions, voluntary physical exercise, and cognitive stimulation compared with SC, raising the question whether all components are needed or whether one of them is already sufficient to prolong plasticity. To test whether voluntary physical exercise alone already prolongs the sensitive phase for OD plasticity, we raised mice from 7 d before birth to adulthood in slightly larger than normal SCs with or without a running wheel (RW). When the mice were older than P135, we visualized V1 activity before and after monocular deprivation (MD) using intrinsic signal optical imaging. Adult RW-raised mice continued to show an OD shift toward the open eye after 7 d of MD, while age-matched SC mice without a RW did not show OD plasticity. Notably, running just during the 7 d MD period restored OD plasticity in adult SC-raised mice. In addition, the OD shift of the RW mice was mediated by a decrease of deprived-eye responses in V1, a signature of "juvenile-like" plasticity. We conclude that voluntary physical exercise alone is sufficient to promote plasticity in adult mouse V1.

  12. Expression of cyclin E in postmitotic neurons during development and in the adult mouse brain.

    PubMed

    Ikeda, Yayoi; Matsunaga, Yuko; Takiguchi, Masahito; Ikeda, Masa-Aki

    2011-01-01

    Cyclin E, a member of the G1 cyclins, is essential for the G1/S transition of the cell cycle in cultured cells, but its roles in vivo are not fully defined. The present study characterized the spatiotemporal expression profile of cyclin E in two representative brain regions in the mouse, the cerebral and cerebellar cortices. Western blotting showed that the levels of cyclin E increased towards adulthood. In situ hybridization and immunohistochemistry showed the distributions of cyclin E mRNA and protein were comparable in the cerebral cortex and the cerebellum. Immunohistochemistry for the proliferating cell marker, proliferating cell nuclear antigen (PCNA) revealed that cyclin E was expressed by both proliferating and non-proliferating cells in the cerebral cortex at embryonic day 12.5 (E12.5) and in the cerebellum at postnatal day 1 (P1). Subcellular localization in neurons was examined using immunofluorescence and western blotting. Cyclin E expression was nuclear in proliferating neuronal precursor cells but cytoplasmic in postmitotic neurons during embryonic development. Nuclear cyclin E expression in neurons remained faint in newborns, increased during postnatal development and was markedly decreased in adults. In various adult brain regions, cyclin E staining was more intense in the cytoplasm than in the nucleus in most neurons. These data suggest a role for cyclin E in the development and function of the mammalian central nervous system and that its subcellular localization in neurons is important. Our report presents the first detailed analysis of cyclin E expression in postmitotic neurons during development and in the adult mouse brain.

  13. Phenotypical and ultrastructural features of Oct4-positive cells in the adult mouse lung

    PubMed Central

    Galiger, Celimene; Kostin, Sawa; Golec, Anita; Ahlbrecht, Katrin; Becker, Sven; Gherghiceanu, Mihaela; Popescu, Laurentiu M; Morty, Rory E; Seeger, Werner; Voswinckel, Robert

    2014-01-01

    Octamer binding trascription factor 4 (Oct4) is a transcription factor of POU family specifically expressed in embryonic stem cells (ESCs). A role for maintaining pluripotency and self-renewal of ESCs is assigned to Oct4 as a pluripotency marker. Oct4 can also be detected in adult stem cells such as bone marrow-derived mesenchymal stem cells. Several studies suggest a role for Oct4 in sustaining self-renewal capacity of adult stem cells. However, Oct4 gene ablation in adult stem cells revealed no abnormalities in tissue turnover or regenerative capacity. In the present study we have conspicuously found pulmonary Oct4-positive cells closely resembling the morphology of telocytes (TCs). These cells were found in the perivascular and peribronchial areas and their presence and location were confirmed by electron microscopy. Moreover, we have used Oct4-GFP transgenic mice which revealed a similar localization of the Oct4-GFP signal. We also found that Oct4 co-localized with several described TC markers such as vimentin, Sca-1, platelet-derived growth factor receptor-beta C-kit and VEGF. By flow cytometry analyses carried out with Oct4-GFP reporter mice, we described a population of EpCAMneg/CD45neg/Oct4-GFPpos that in culture displayed TC features. These results were supported by qRT-PCR with mRNA isolated from lungs by using laser capture microdissection. In addition, Oct4-positive cells were found to express Nanog and Klf4 mRNA. It is concluded for the first time that TCs in adult lung mouse tissue comprise Oct4-positive cells, which express pluripotency-related genes and represent therefore a population of adult stem cells which might contribute to lung regeneration. PMID:24889158

  14. Growth Arrest Specific 1 (GAS1) Is Abundantly Expressed in the Adult Mouse Central Nervous System

    PubMed Central

    Zarco, Natanael; Bautista, Elizabeth; Cuéllar, Manola; Vergara, Paula; Flores-Rodriguez, Paola; Aguilar-Roblero, Raúl

    2013-01-01

    Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS. PMID:23813868

  15. Abca7 deletion does not affect adult neurogenesis in the mouse.

    PubMed

    Li, Hongyun; Karl, Tim; Garner, Brett

    2016-01-20

    ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) have identified ABCA7 single nucleotide polymorphisms (SNPs) that increase Alzheimer's disease (AD) risk, however, the mechanisms by which ABCA7 may control AD risk remain to be fully elucidated. Based on previous research suggesting that certain ABC transporters may play a role in the regulation of neurogenesis, we conducted a study of cell proliferation and neurogenic potential using cellular bromodeoxyuridine (BrdU) incorporation and doublecortin (DCX) immunostaining in adult Abca7 deficient mice and wild-type-like (WT) littermates. In the present study counting of BrdU-positive and DCX-positive cells in an established adult neurogenesis site in the dentate gyrus (DG) indicated there were no significant differences when WT and Abca7 deficient mice were compared. We also measured the area occupied by immunohistochemical staining for BrdU and DCX in the DG and the subventricular zone (SVZ) of the same mice and this confirmed that ABCA7 does not play a significant role in the regulation of cell proliferation or neurogenesis in the adult mouse.

  16. Localization and regulation of PML bodies in the adult mouse brain.

    PubMed

    Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M

    2016-06-01

    PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.

  17. Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain

    PubMed Central

    Ye, Xin; Smallwood, Philip; Nathans, Jeremy

    2011-01-01

    The Norrie disease gene (Ndp) codes for a secreted protein, Norrin, that activates canonical Wnt signaling by binding to its receptor, Frizzled-4. This signaling system is required for normal vascular development in the retina and for vascular survival in the cochlea. In mammals, the pattern of Ndp expression beyond the retina is poorly defined due to the low abundance of Norrin mRNA and protein. Here we characterize Ndp expression during mouse development by studying a knock-in mouse that carries the coding sequence of human placental alkaline phosphatase (AP) inserted at the Ndp locus (NdpAP). In the CNS, NdpAP expression is apparent by E10.5 and is dynamic and complex. The anatomically delimited regions of NdpAP expression observed prenatally in the CNS are replaced postnatally by widespread expression in astrocytes in the forebrain and midbrain, Bergman glia in the cerebellum, and Müller glia in the retina. In the developing and adult cochlea, NdpAP expression is closely associated with two densely vascularized regions, the stria vascularis and a capillary plexus between the organ of Corti and the spiral ganglion. These observations suggest the possibility that Norrin may have developmental and/or homeostatic functions beyond the retina and cochlea. PMID:21055480

  18. New Role of Adult Lung c-kit+ Cells in a Mouse Model of Airway Hyperresponsiveness

    PubMed Central

    Cappetta, Donato; Urbanek, Konrad; Esposito, Grazia; Matteis, Maria; Sgambato, Manuela; Tartaglione, Gioia; Rossi, Francesco

    2016-01-01

    Structural changes contribute to airway hyperresponsiveness and airflow obstruction in asthma. Emerging evidence points to the involvement of c-kit+ cells in lung homeostasis, although their potential role in asthma is unknown. Our aim was to isolate c-kit+ cells from normal mouse lungs and to test whether these cells can interfere with hallmarks of asthma in an animal model. Adult mouse GFP-tagged c-kit+ cells, intratracheally delivered in the ovalbumin-induced airway hyperresponsiveness, positively affected airway remodeling and improved airway function. In bronchoalveolar lavage fluid of cell-treated animals, a reduction in the number of inflammatory cells and in IL-4, IL-5, and IL-13 release, along with an increase of IL-10, was observed. In MSC-treated mice, the macrophage polarization to M2-like subset may explain, at least in part, the increment in the level of anti-inflammatory cytokine IL-10. After in vitro stimulation of c-kit+ cells with proinflammatory cytokines, the indoleamine 2,3-dioxygenase and TGFβ were upregulated. These data, together with the increased apoptosis of inflammatory cells in vivo, indicate that c-kit+ cells downregulate immune response in asthma by influencing local environment, possibly by cell-to-cell contact combined to paracrine action. In conclusion, intratracheally administered c-kit+ cells reduce inflammation, positively modulate airway remodeling, and improve function. These data document previously unrecognized properties of c-kit+ cells, able to impede pathophysiological features of experimental airway hyperresponsiveness. PMID:28090152

  19. Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone

    PubMed Central

    Sotthibundhu, Areechun; Ekthuwapranee, Kasima; Govitrapong, Piyarat

    2016-01-01

    Melatonin, secreted mainly by the pineal gland, plays roles in various physiological functions including protecting cell death. We showed in previous study that the proliferation and differentiation of precursor cells from the adult mouse subventricular zone (SVZ) can be modulated by melatonin via the MT1 melatonin receptor. Since melatonin and epidermal growth factor receptor (EGFR) share some signaling pathway components, we investigated whether melatonin can promote the proliferation of precursor cells from the adult mouse SVZ via the extracellular signal-regulated protein kinase /mitogen-activated protein kinase (ERK/MAPK) pathways in comparison with epidermal growth factor (EGF). Melatonin-induced ERK/MAPK pathways compared with EGF were measured by using in vitro and vivo models. We used neurosphere proliferation assay, immunocytochemistry, and immuno-blotting to analyze significant differences between melatonin and growth factor treatment. We also used specific antagonist and inhibitors to confirm the exactly signaling pathway including luzindole and U0126. We found that significant increase in proliferation was observed when two growth factors (EGF+bFGF) and melatonin were used simultaneously compared with EGF + bFGF or compared with melatonin alone. In addition, the present result suggested the synergistic effect occurred of melatonin and growth factors on the activating the ERK/MAPK pathway. This study exhibited that melatonin could act as a trophic factor, increasing proliferation in precursor cells mediated through the melatonin receptor coupled to ERK/MAPK signaling pathways. Understanding the mechanism by which melatonin regulates precursor cells may conduct to the development of novel strategies for neurodegenerative disease therapy. PMID:28275319

  20. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion

    PubMed Central

    Miller, Michelle Erin; Rosten, Patty; Lemieux, Madeleine E.; Lai, Courteney; Humphries, R. Keith

    2016-01-01

    Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1’s importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1’s functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs) and implicate reactive oxygen species (ROS) as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA)26Sortm1(Cre/ERT)Nat/J or B6.Cg-Tg(Mx1-Cre)1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1’s role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation. PMID:26986211

  1. Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina.

    PubMed

    Eberle, Dominic; Santos-Ferreira, Tiago; Grahl, Sandra; Ader, Marius

    2014-02-22

    Vision impairment and blindness due to the loss of the light-sensing cells of the retina, i.e. photoreceptors, represents the main reason for disability in industrialized countries. Replacement of degenerated photoreceptors by cell transplantation represents a possible treatment option in future clinical applications. Indeed, recent preclinical studies demonstrated that immature photoreceptors, isolated from the neonatal mouse retina at postnatal day 4, have the potential to integrate into the adult mouse retina following subretinal transplantation. Donor cells generated a mature photoreceptor morphology including inner and outer segments, a round cell body located at the outer nuclear layer, and synaptic terminals in close proximity to endogenous bipolar cells. Indeed, recent reports demonstrated that donor photoreceptors functionally integrate into the neural circuitry of host mice. For a future clinical application of such cell replacement approach, purified suspensions of the cells of choice have to be generated and placed at the correct position for proper integration into the eye. For the enrichment of photoreceptor precursors, sorting should be based on specific cell surface antigens to avoid genetic reporter modification of donor cells. Here we show magnetic-associated cell sorting (MACS) - enrichment of transplantable rod photoreceptor precursors isolated from the neonatal retina of photoreceptor-specific reporter mice based on the cell surface marker CD73. Incubation with anti-CD73 antibodies followed by micro-bead conjugated secondary antibodies allowed the enrichment of rod photoreceptor precursors by MACS to approximately 90%. In comparison to flow cytometry, MACS has the advantage that it can be easier applied to GMP standards and that high amounts of cells can be sorted in relative short time periods. Injection of enriched cell suspensions into the subretinal space of adult wild-type mice resulted in a 3-fold higher integration rate compared to

  2. Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.

    PubMed

    Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde

    2016-09-01

    Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level.

  3. Functional adult acetylcholine receptor develops independently of motor innervation in Sol 8 mouse muscle cell line.

    PubMed Central

    Pinset, C; Mulle, C; Benoit, P; Changeux, J P; Chelly, J; Gros, F; Montarras, D

    1991-01-01

    We have defined culture conditions, using a feeder layer of cells from the embryonic mesenchymal cell line, 10T1/2 and a serum-free medium, which allow cells from the mouse myogenic cell line Sol 8 to form contracting myotubes for two weeks. Under these culture conditions, Sol 8 myotubes undergo a maturation process characterized by a sequential expression of two phenotypes. An early phenotype is typified by the expression of the nicotinic acetylcholine receptor (AChR) gamma-subunit transcripts and the presence of low conductance ACh-activated channels, typical of embryonic AChR. A late phenotype is characterized by the expression of AChR epsilon-subunit transcripts, the decreased accumulation of gamma-subunit transcripts and the appearance of high conductance ACh-activated channels, typical of adult AChR. These results indicate that the expression of functional adult type AChR does not require the presence of the motor nerve and therefore represents an intrinsic feature of the Sol 8 muscle cells. Chronic exposure of the cells to the voltage-sensitive Na+ channel blocking agent tetrodotoxin does not affect the appearance of the AChR epsilon-subunit transcripts but prevents the reduction of the steady-state level of the AChR gamma-subunit transcripts and yields a reduced proportion of the adult type channels. Thus, activity seems to facilitate the switch from the embryonic to the adult phenotype of the AChR protein. The Sol 8 cell system might be useful to analyse further the genetic and epigenetic regulation of muscle fibre maturation in mammals. Images PMID:1868829

  4. Oestradiol and Diet Modulate Energy Homeostasis and Hypothalamic Neurogenesis in the Adult Female Mouse

    PubMed Central

    Bless, E. P.; Reddy, T.; Acharya, K. D.; Beltz, B. S.; Tetel, M. J.

    2014-01-01

    Leptin and oestradiol have overlapping functions in energy homeostasis and fertility, and receptors for these hormones are localised in the same hypothalamic regions. Although, historically, it was assumed that mammalian adult neurogenesis was confined to the olfactory bulbs and the hippocampus, recent research has found new neurones in the male rodent hypothalamus. Furthermore, some of these new neurones are leptin-sensitive and affected by diet. In the present study, we tested the hypothesis that diet and hormonal status modulate hypothalamic neurogenesis in the adult female mouse. Adult mice were ovariectomised and implanted with capsules containing oestradiol (E2) or oil. Within each group, mice were fed a high-fat diet (HFD) or maintained on standard chow (STND). All animals were administered i.c.v. 5-bromo-2′-deoxyuridine (BrdU) for 9 days and sacrificed 34 days later after an injection of leptin to induce phosphorylation of signal transducer of activation and transcription 3 (pSTAT3). Brain tissue was immunohistochemically labelled for BrdU (newly born cells), Hu (neuronal marker) and pSTAT3 (leptin sensitive). Although mice on a HFD became obese, oestradiol protected against obesity. There was a strong interaction between diet and hormone on new cells (BrdU+) in the arcuate, ventromedial hypothalamus and dorsomedial hypothalamus. HFD increased the number of new cells, whereas E2 inhibited this effect. Conversely, E2 increased the number of new cells in mice on a STND diet in all hypothalamic regions studied. Although the total number of new leptin-sensitive neurones (BrdU-Hu-pSTAT3) found in the hypothalamus was low, HFD increased these new cells in the arcuate, whereas E2 attenuated this induction. These results suggest that adult neurogenesis in the hypothalamic neurogenic niche is modulated by diet and hormonal status and is related to energy homeostasis in female mice. PMID:25182179

  5. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    SciTech Connect

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  6. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    PubMed

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  7. Research Resource: Comprehensive Expression Atlas of the Fibroblast Growth Factor System in Adult Mouse

    PubMed Central

    Fon Tacer, Klementina; Bookout, Angie L.; Ding, Xunshan; Kurosu, Hiroshi; John, George B.; Wang, Lei; Goetz, Regina; Mohammadi, Moosa; Kuro-o, Makoto; Mangelsdorf, David J.; Kliewer, Steven A.

    2010-01-01

    Although members of the fibroblast growth factor (FGF) family and their receptors have well-established roles in embryogenesis, their contributions to adult physiology remain relatively unexplored. Here, we use real-time quantitative PCR to determine the mRNA expression patterns of all 22 FGFs, the seven principal FGF receptors (FGFRs), and the three members of the Klotho family of coreceptors in 39 different mouse tissues. Unsupervised hierarchical cluster analysis of the mRNA expression data reveals that most FGFs and FGFRs fall into two groups the expression of which is enriched in either the central nervous system or reproductive and gastrointestinal tissues. Interestingly, the FGFs that can act as endocrine hormones, including FGF15/19, FGF21, and FGF23, cluster in a third group that does not include any FGFRs, underscoring their roles in signaling between tissues. We further show that the most recently identified Klotho family member, Lactase-like, is highly and selectively expressed in brown adipose tissue and eye and can function as an additional coreceptor for FGF19. This FGF atlas provides an important resource for guiding future studies to elucidate the physiological functions of FGFs in adult animals. PMID:20667984

  8. Distribution of doublecortin expressing cells near the lateral ventricles in the adult mouse brain.

    PubMed

    Yang, Helen K C; Sundholm-Peters, Nikki L; Goings, Gwendolyn E; Walker, Avery S; Hyland, Kenneth; Szele, Francis G

    2004-05-01

    Doublecortin (Dcx) is a microtubule-associated protein expressed by migrating neuroblasts in the embryo and in the adult subventricular zone (SVZ). The adult SVZ contains neuroblasts that migrate in the rostral migratory stream (RMS) to the olfactory bulbs. We have examined the distribution and phenotype of Dcx-positive cells in the adult mouse SVZ and surrounding regions. Chains of Dcx-positive cells in the SVZ were distributed in a tight dorsal population contiguous with the RMS, with a separate ventral population comprised of discontinuous chains. Unexpectedly, Dcx-positive cells were also found outside of the SVZ: dorsally in the corpus callosum, and ventrally in the nucleus accumbens, ventromedial striatum, ventrolateral septum, and bed nucleus of the stria terminalis. Dcx-positive cells outside the SVZ had the morphology of migrating cells, occurred as individual cells or in chain-like clusters, and were more numerous anteriorly. Of the Dcx-positive cells found outside of the SVZ, 47% expressed the immature neuronal protein class III beta-tubulin, 8% expressed NeuN, a marker of mature neurons. Dcx-positive cells did not express molecules found in astrocytes, oligodendrocytes, or microglia. Structural and immunoelectron microscopy revealed that cells with the ultrastructural features of neuroblasts in the SVZ were Dcx+, and that clusters of neuroblasts emanated ventrally from the SVZ into the parenchyma. Our results suggest that the distribution of cells comprising the walls of the lateral ventricle are more heterogeneous than was thought previously, that SVZ cells may migrate dorsally and ventrally away from the SVZ, and that some emigrated cells express a neuronal phenotype.

  9. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  10. Stroke Increases Neural Stem Cells and Angiogenesis in the Neurogenic Niche of the Adult Mouse

    PubMed Central

    Zhang, Rui Lan; Chopp, Michael; Roberts, Cynthia; Liu, Xianshuang; Wei, Min; Nejad-Davarani, Siamak P.; Wang, Xinli; Zhang, Zheng Gang

    2014-01-01

    The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ) neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP) positive neural stem cells that are in contact with the cerebrospinal fluid (CSF) via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction. PMID:25437857

  11. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells.

    PubMed

    Li, Tianqing; Lewallen, Michelle; Chen, Shuyi; Yu, Wei; Zhang, Nian; Xie, Ting

    2013-06-01

    Various stem cell types have been tested for their potential application in treating photoreceptor degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Only embryonic stem cells (ESCs) have so far been shown to generate functional photoreceptor cells restoring light response of photoreceptor-deficient mice, but there is still some concern of tumor formation. In this study, we have successfully cultured Nestin(+)Sox2(+)Pax6(+) multipotent retinal stem cells (RSCs) from the adult mouse retina, which are capable of producing functional photoreceptor cells that restore the light response of photoreceptor-deficient rd1 mutant mice following transplantation. After they have been expanded for over 35 passages in the presence of FGF and EGF, the cultured RSCs still maintain stable proliferation and differentiation potential. Under proper differentiation conditions, they can differentiate into all the major retinal cell types found in the adult retina. More importantly, they can efficiently differentiate into photoreceptor cells under optimized differentiation conditions. Following transplantation into the subretinal space of slowly degenerating rd7 mutant eyes, RSC-derived photoreceptor cells integrate into the retina, morphologically resembling endogenous photoreceptors and forming synapases with resident retinal neurons. When transplanted into eyes of photoreceptor-deficient rd1 mutant mice, a RP model, RSC-derived photoreceptors can partially restore light response, indicating that those RSC-derived photoreceptors are functional. Finally, there is no evidence for tumor formation in the photoreceptor-transplanted eyes. Therefore, this study has demonstrated that RSCs isolated from the adult retina have the potential of producing functional photoreceptor cells that can potentially restore lost vision caused by loss of photoreceptor cells in RP and AMD.

  12. Temporal profiles of synaptic plasticity-related signals in adult mouse hippocampus with methotrexate treatment.

    PubMed

    Yang, Miyoung; Kim, Juhwan; Kim, Sung-Ho; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-07-25

    Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced hippocampal dysfunction are poorly understood. To evaluate temporal changes in synaptic plasticity-related signals, the expression and activity of N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, extracellular signal-regulated kinase 1/2, cAMP responsive element-binding protein, glutamate receptor 1, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor were examined in the hippocampi of adult C57BL/6 mice after methotrexate (40 mg/kg) intraperitoneal injection. Western blot analysis showed biphasic changes in synaptic plasticity-related signals in adult hippocampi following methotrexate treatment. N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, and glutamate receptor 1 were acutely activated during the early phase (1 day post-injection), while extracellular signal-regulated kinase 1/2 and cAMP responsive element-binding protein activation showed biphasic increases during the early (1 day post-injection) and late phases (7-14 days post-injection). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression increased significantly during the late phase (7-14 days post-injection). Therefore, methotrexate treatment affects synaptic plasticity-related signals in the adult mouse hippocampus, suggesting that changes in synaptic plasticity-related signals may be associated with neuronal survival and plasticity-related cellular remodeling.

  13. Contributions of Mouse and Human Hematopoietic Cells to Remodeling of the Adult Auditory Nerve After Neuron Loss

    PubMed Central

    Lang, Hainan; Nishimoto, Eishi; Xing, Yazhi; Brown, LaShardai N; Noble, Kenyaria V; Barth, Jeremy L; LaRue, Amanda C; Ando, Kiyoshi; Schulte, Bradley A

    2016-01-01

    The peripheral auditory nerve (AN) carries sound information from sensory hair cells to the brain. The present study investigated the contribution of mouse and human hematopoietic stem cells (HSCs) to cellular diversity in the AN following the destruction of neuron cell bodies, also known as spiral ganglion neurons (SGNs). Exposure of the adult mouse cochlea to ouabain selectively killed type I SGNs and disrupted the blood-labyrinth barrier. This procedure also resulted in the upregulation of genes associated with hematopoietic cell homing and differentiation, and provided an environment conducive to the tissue engraftment of circulating stem/progenitor cells into the AN. Experiments were performed using both a mouse-mouse bone marrow transplantation model and a severely immune-incompetent mouse model transplanted with human CD34+ cord blood cells. Quantitative immunohistochemical analysis of recipient mice demonstrated that ouabain injury promoted an increase in the number of both HSC-derived macrophages and HSC-derived nonmacrophages in the AN. Although rare, a few HSC-derived cells in the injured AN exhibited glial-like qualities. These results suggest that human hematopoietic cells participate in remodeling of the AN after neuron cell body loss and that hematopoietic cells can be an important resource for promoting AN repair/regeneration in the adult inner ear. PMID:27600399

  14. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord

    PubMed Central

    Beaudet, Marie-Josée; Yang, Qiurui; Cadau, Sébastien; Blais, Mathieu; Bellenfant, Sabrina; Gros-Louis, François; Berthod, François

    2015-01-01

    Extraction of mouse spinal motor neurons from transgenic mouse embryos recapitulating some aspects of neurodegenerative diseases like amyotrophic lateral sclerosis has met with limited success. Furthermore, extraction and long-term culture of adult mouse spinal motor neurons and glia remain also challenging. We present here a protocol designed to extract and purify high yields of motor neurons and glia from individual spinal cords collected on embryos and adult (5-month-old) normal or transgenic mice. This method is based on mild digestion of tissue followed by gradient density separation allowing to obtain two millions motor neurons over 92% pure from one E14.5 single embryo and more than 30,000 from an adult mouse. These cells can be cultured more than 14 days in vitro at a density of 100,000 cells/cm2 to maintain optimal viability. Functional astrocytes and microglia and small gamma motor neurons can be purified at the same time. This protocol will be a powerful and reliable method to obtain motor neurons and glia to better understand mechanisms underlying spinal cord diseases. PMID:26577180

  15. Doublecortin (DCX) is not Essential for Survival and Differentiation of Newborn Neurons in the Adult Mouse Dentate Gyrus

    PubMed Central

    Dhaliwal, Jagroop; Xi, Yanwei; Bruel-Jungerman, Elodie; Germain, Johanne; Francis, Fiona; Lagace, Diane C.

    2016-01-01

    In the adult brain, expression of the microtubule-associated protein Doublecortin (DCX) is associated with neural progenitor cells (NPCs) that give rise to new neurons in the dentate gyrus. Many studies quantify the number of DCX-expressing cells as a proxy for the level of adult neurogenesis, yet no study has determined the effect of removing DCX from adult hippocampal NPCs. Here, we use a retroviral and inducible mouse transgenic approach to either knockdown or knockout DCX from adult NPCs in the dentate gyrus and examine how this affects cell survival and neuronal maturation. Our results demonstrate that shRNA-mediated knockdown of DCX or Cre-mediated recombination in floxed DCX mice does not alter hippocampal neurogenesis and does not change the neuronal fate of the NPCs. Together these findings show that the survival and maturation of adult-generated hippocampal neurons does not require DCX. PMID:26793044

  16. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    PubMed

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  17. Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine.

    PubMed

    Schreiber, Rainer; Faria, Diana; Skryabin, Boris V; Wanitchakool, Podchanart; Rock, Jason R; Kunzelmann, Karl

    2015-06-01

    Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca(2+) and opening of apical Cl(-) channels. In infants and young animals, but not in adults, Ca(2+)-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) channels, analysis of the role of Ca(2+)-dependent Cl(-) channels became possible through identification of the anoctamin (TMEM16) family of proteins. We demonstrate expression of several anoctamin paralogues in mouse small and large intestines. Using intestinal-specific mouse knockout models for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a conventional knockout model for anoctamin 6 (Ano6), we demonstrate the role of anoctamins for Ca(2+)-dependent Cl(-) secretion induced by the muscarinic agonist carbachol (CCH). Ano1 is preferentially expressed in the ileum and large intestine, where it supports Ca(2+)-activated Cl(-) secretion. In contrast, Ano10 is essential for Ca(2+)-dependent Cl(-) secretion in jejunum, where expression of Ano1 was not detected. Although broadly expressed, Ano6 has no role in intestinal cholinergic Cl(-) secretion. Ano1 is located in a basolateral compartment/membrane rather than in the apical membrane, where it supports CCH-induced Ca(2+) increase, while the essential and possibly only apical Cl(-) channel is CFTR. These results define a new role of Ano1 for intestinal Ca(2+)-dependent Cl(-) secretion and demonstrate for the first time a contribution of Ano10 to intestinal transport.

  18. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease

    PubMed Central

    Ambade, Aditya; Satishchandran, Abhishek; Gyongyosi, Benedek; Lowe, Patrick; Szabo, Gyongyi

    2016-01-01

    AIM: To establish a mouse model of alcohol-driven hepatocellular carcinoma (HCC) that develops in livers with alcoholic liver disease (ALD). METHODS: Adult C57BL/6 male mice received multiple doses of chemical carcinogen diethyl nitrosamine (DEN) followed by 7 wk of 4% Lieber-DeCarli diet. Serum alanine aminotransferase (ALT), alpha fetoprotein (AFP) and liver Cyp2e1 were assessed. Expression of F4/80, CD68 for macrophages and Ly6G, MPO, E-selectin for neutrophils was measured. Macrophage polarization was determined by IL-1β/iNOS (M1) and Arg-1/IL-10/CD163/CD206 (M2) expression. Liver steatosis and fibrosis were measured by oil-red-O and Sirius red staining respectively. HCC development was monitored by magnetic resonance imaging, confirmed by histology. Cellular proliferation was assessed by proliferating cell nuclear antigen (PCNA). RESULTS: Alcohol-DEN mice showed higher ALTs than pair fed-DEN mice throughout the alcohol feeding without weight gain. Alcohol feeding resulted in increased ALT, liver steatosis and inflammation compared to pair-fed controls. Alcohol-DEN mice had reduced steatosis and increased fibrosis indicating advanced liver disease. Molecular characterization showed highest levels of both neutrophil and macrophage markers in alcohol-DEN livers. Importantly, M2 macrophages were predominantly higher in alcohol-DEN livers. Magnetic resonance imaging revealed increased numbers of intrahepatic cysts and liver histology confirmed the presence of early HCC in alcohol-DEN mice compared to all other groups. This correlated with increased serum alpha-fetoprotein, a marker of HCC, in alcohol-DEN mice. PCNA immunostaining revealed significantly increased hepatocyte proliferation in livers from alcohol-DEN compared to pair fed-DEN or alcohol-fed mice. CONCLUSION: We describe a new 12-wk HCC model in adult mice that develops in livers with alcoholic hepatitis and defines ALD as co-factor in HCC. PMID:27122661

  19. Activity-dependent Notch signalling in the hypothalamic-neurohypophysial system of adult mouse brains.

    PubMed

    Mannari, T; Miyata, S

    2014-08-01

    Notch signalling has a key role in cell fate specification in developing brains; however, recent studies have shown that Notch signalling also participates in the regulation of synaptic plasticity in adult brains. In the present study, we examined the expression of Notch3 and Delta-like ligand 4 (DLL4) in the hypothalamic-neurohypophysial system (HNS) of the adult mouse. The expression of DLL4 was higher in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) compared to adjacent hypothalamic regions. Double-labelling immunohistochemistry using vesicular GABA transporter and glutamate transporter revealed that DLL4 was localised at a subpopulation of excitatory and inhibitory axonal boutons against somatodendrites of arginine vasopressin (AVP)- and oxytocin (OXT)-containing magnocellular neurones. In the neurohypophysis (NH), the expression of DLL4 was seen at OXT- but not AVP-containing axonal terminals. The expression of Notch3 was seen at somatodendrites of AVP- and OXT-containing magnocellular neurones in the SON and PVN and at pituicytes in the NH. Chronic physiological stimulation by salt loading, which remarkably enhances the release of AVP and OXT, decreased the number of DLL4-immunoreactive axonal boutons in the SON and PVN. Moreover, chronic and acute osmotic stimulation promoted proteolytic cleavage of Notch3 to yield the intracellular fragments of Notch3 in the HNS. Thus, the present study demonstrates activity-dependent reduction of DLL4 expression and proteolytic cleavage of Notch3 in the HNS, suggesting that Notch signalling possibly participates in synaptic interaction in the hypothalamic nuclei and neuroglial interaction in the NH.

  20. Distinct expression of Cbln family mRNAs in developing and adult mouse brains.

    PubMed

    Miura, Eriko; Iijima, Takatoshi; Yuzaki, Michisuke; Watanabe, Masahiko

    2006-08-01

    Cbln1 belongs to the C1q and tumour necrosis factor superfamily, and plays crucial roles as a cerebellar granule cell-derived transneuronal regulator for synapse integrity and plasticity in Purkinje cells. Although Cbln2-Cbln4 are also expressed in the brain and could form heteromeric complexes with Cbln1, their precise expressions remain unclear. Here, we investigated gene expression of the Cbln family in developing and adult C57BL mouse brains by reverse transcriptase-polymerase chain reaction (RT-PCR), Northern blot, and high-resolution in situ hybridization (ISH) analyses. In the adult brain, spatial patterns of mRNA expression were highly differential depending on Cbln subtypes. Notably, particularly high levels of Cbln mRNAs were expressed in some nuclei and neurons, whereas their postsynaptic targets often lacked or were low for any Cbln mRNAs, as seen for cerebellar granule cells/Purkinje cells, entorhinal cortex/hippocampus, intralaminar group of thalamic nuclei/caudate-putamen, and dorsal nucleus of the lateral lemniscus/central nucleus of the inferior colliculus. In the developing brain, Cbln1, 2, and 4 mRNAs appeared as early as embryonic day 10-13, and exhibited transient up-regulation during the late embryonic and neonatal periods. For example, Cbln2 mRNA was expressed in the cortical plate of the developing neocortex, displaying a high rostromedial to low caudolateral gradient. In contrast, Cbln3 mRNA was selective to cerebellar granule cells throughout development, and its onset was as late as postnatal day 7-10. These results will provide a molecular-anatomical basis for future studies that characterize roles played by the Cbln family.

  1. Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex

    PubMed Central

    Gray, Lucas T; Yao, Zizhen; Nguyen, Thuc Nghi; Kim, Tae Kyung; Zeng, Hongkui; Tasic, Bosiljka

    2017-01-01

    Mammalian cortex is a laminar structure, with each layer composed of a characteristic set of cell types with different morphological, electrophysiological, and connectional properties. Here, we define chromatin accessibility landscapes of major, layer-specific excitatory classes of neurons, and compare them to each other and to inhibitory cortical neurons using the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). We identify a large number of layer-specific accessible sites, and significant association with genes that are expressed in specific cortical layers. Integration of these data with layer-specific transcriptomic profiles and transcription factor binding motifs enabled us to construct a regulatory network revealing potential key layer-specific regulators, including Cux1/2, Foxp2, Nfia, Pou3f2, and Rorb. This dataset is a valuable resource for identifying candidate layer-specific cis-regulatory elements in adult mouse cortex. DOI: http://dx.doi.org/10.7554/eLife.21883.001 PMID:28112643

  2. Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

    PubMed

    Paradells, Sara; Rocamonde, Brenda; Llinares, Cristina; Herranz-Pérez, Vicente; Jimenez, Misericordia; Garcia-Verdugo, Jose Manuel; Zipancic, Ivan; Soria, Jose Miguel; Garcia-Esparza, Ma Angeles

    2015-07-01

    Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5-bromo-2-deoxyuridine-positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose-dependent manner.

  3. Properties of doublecortin expressing neurons in the adult mouse dentate gyrus.

    PubMed

    Spampanato, Jay; Sullivan, Robert K; Turpin, Fabrice R; Bartlett, Perry F; Sah, Pankaj

    2012-01-01

    The dentate gyrus is a neurogenic zone where neurons continue to be born throughout life, mature and integrate into the local circuitry. In adults, this generation of new neurons is thought to contribute to learning and memory formation. As newborn neurons mature, they undergo a developmental sequence in which different stages of development are marked by expression of different proteins. Doublecortin (DCX) is an early marker that is expressed in immature granule cells that are beginning migration and dendritic growth but is turned off before neurons reach maturity. In the present study, we use a mouse strain in which enhanced green fluorescent protein (EGFP) is expressed under the control of the DCX promoter. We show that these neurons have high input resistances and some cells can discharge trains of action potentials. In mature granule cells, action potentials are followed by a slow afterhyperpolarization that is absent in EGFP-positive neurons. EGFP-positive neurons had a lower spine density than mature neurons and stimulation of either the medial or lateral perforant pathway activated dual component glutamatergic synapses that had both AMPA and NMDA receptors. NMDA receptors present at these synapses had slow kinetics and were blocked by ifenprodil, indicative of high GluN2B subunit content. These results show that EGFP-positive neurons in the DCX-EGFP mice are functionally immature both in their firing properties and excitatory synapses.

  4. Differential Distribution of Major Brain Gangliosides in the Adult Mouse Central Nervous System

    PubMed Central

    Vajn, Katarina; Viljetić, Barbara; Degmečić, Ivan Večeslav; Schnaar, Ronald L.; Heffer, Marija

    2013-01-01

    Gangliosides - sialic acid-bearing glycolipids - are major cell surface determinants on neurons and axons. The same four closely related structures, GM1, GD1a, GD1b and GT1b, comprise the majority of total brain gangliosides in mammals and birds. Gangliosides regulate the activities of proteins in the membranes in which they reside, and also act as cell-cell recognition receptors. Understanding the functions of major brain gangliosides requires knowledge of their tissue distribution, which has been accomplished in the past using biochemical and immunohistochemical methods. Armed with new knowledge about the stability and accessibility of gangliosides in tissues and new IgG-class specific monoclonal antibodies, we investigated the detailed tissue distribution of gangliosides in the adult mouse brain. Gangliosides GD1b and GT1b are widely expressed in gray and white matter. In contrast, GM1 is predominately found in white matter and GD1a is specifically expressed in certain brain nuclei/tracts. These findings are considered in relationship to the hypothesis that gangliosides GD1a and GT1b act as receptors for an important axon-myelin recognition protein, myelin-associated glycoprotein (MAG). Mediating axon-myelin interactions is but one potential function of the major brain gangliosides, and more detailed knowledge of their distribution may help direct future functional studies. PMID:24098718

  5. Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors.

    PubMed

    Belgard, T Grant; Montiel, Juan F; Wang, Wei Zhi; García-Moreno, Fernando; Margulies, Elliott H; Ponting, Chris P; Molnár, Zoltán

    2013-08-06

    The thorniest problem in comparative neurobiology is the identification of the particular brain region of birds and reptiles that corresponds to the mammalian neocortex [Butler AB, Reiner A, Karten HJ (2011) Ann N Y Acad Sci 1225:14-27; Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Proc Natl Acad Sci USA 107(28):12676-12681]. We explored which genes are actively transcribed in the regions of controversial ancestry in a representative bird (chicken) and mammal (mouse) at adult stages. We conducted four analyses comparing the expression patterns of their 5,130 most highly expressed one-to-one orthologous genes that considered global patterns of expression specificity, strong gene markers, and coexpression networks. Our study demonstrates transcriptomic divergence, plausible convergence, and, in two exceptional cases, conservation between specialized avian and mammalian telencephalic regions. This large-scale study potentially resolves the complex relationship between developmental homology and functional characteristics on the molecular level and settles long-standing evolutionary debates.

  6. MicroRNA Clusters in the Adult Mouse Heart: Age-Associated Changes.

    PubMed

    Zhang, Xiaomin; Azhar, Gohar; Williams, Emmanuel D; Rogers, Steven C; Wei, Jeanne Y

    2015-01-01

    The microRNAs and microRNA clusters have been implicated in normal cardiac development and also disease, including cardiac hypertrophy, cardiomyopathy, heart failure, and arrhythmias. Since a microRNA cluster has from two to dozens of microRNAs, the expression of a microRNA cluster could have a substantial impact on its target genes. In the present study, the configuration and distribution of microRNA clusters in the mouse genome were examined at various inter-microRNA distances. Three important microRNA clusters that are significantly impacted during adult cardiac aging, the miR-17-92, miR-106a-363, and miR-106b-25, were also examined in terms of their genomic location, RNA transcript character, sequence homology, and their relationship with the corresponding microRNA families. Multiple microRNAs derived from the three clusters potentially target various protein components of the cdc42-SRF signaling pathway, which regulates cytoskeleton dynamics associated with cardiac structure and function. The data indicate that aging impacted the expression of both guide and passenger strands of the microRNA clusters; nutrient stress also affected the expression of the three microRNA clusters. The miR-17-92, miR-106a-363, and miR-106b-25 clusters are likely to impact the Cdc42-SRF signaling pathway and thereby affect cardiac morphology and function during pathological conditions and the aging process.

  7. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina

    PubMed Central

    Hickmott, Jack W; Chen, Chih-yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  8. Expression patterns of Slit and Robo family members in adult mouse spinal cord and peripheral nervous system.

    PubMed

    Carr, Lauren; Parkinson, David B; Dun, Xin-Peng

    2017-01-01

    The secreted glycoproteins, Slit1-3, are classic axon guidance molecules that act as repulsive cues through their well characterised receptors Robo1-2 to allow precise axon pathfinding and neuronal migration. The expression patterns of Slit1-3 and Robo1-2 have been most characterized in the rodent developing nervous system and the adult brain, but little is known about their expression patterns in the adult rodent peripheral nervous system. Here, we report a detailed expression analysis of Slit1-3 and Robo1-2 in the adult mouse sciatic nerve as well as their expression in the nerve cell bodies within the ventral spinal cord (motor neurons) and dorsal root ganglion (sensory neurons). Our results show that, in the adult mouse peripheral nervous system, Slit1-3 and Robo1-2 are expressed in the cell bodies and axons of both motor and sensory neurons. While Slit1 and Robo2 are only expressed in peripheral axons and their cell bodies, Slit2, Slit3 and Robo1 are also expressed in satellite cells of the dorsal root ganglion, Schwann cells and fibroblasts of peripheral nerves. In addition to these expression patterns, we also demonstrate the expression of Robo1 in blood vessels of the peripheral nerves. Our work gives important new data on the expression patterns of Slit and Robo family members within the peripheral nervous system that may relate both to nerve homeostasis and the reaction of the peripheral nerves to injury.

  9. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    PubMed Central

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036

  10. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.

    PubMed

    Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y

    2016-03-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure.

  11. Genetic influences on exercise-induced adult hippocampal neurogenesis across 12 divergent mouse strains

    PubMed Central

    Clark, Peter J.; Kohman, Rachel A.; Miller, Daniel S.; Bhattacharya, Tushar K.; Brzezinska, Weronika J.; Rhodes, Justin S.

    2011-01-01

    New neurons are continuously born in the hippocampus of several mammalian species throughout adulthood. Adult neurogenesis represents a natural model for understanding how to grow and incorporate new nerve cells into pre-existing circuits in the brain. Finding molecules or biological pathways that increase neurogenesis has broad potential for regenerative medicine. One strategy is to identify mouse strains that display large versus small increases in neurogenesis in response to wheel running so the strains can be contrasted to find common genes or biological pathways associated with enhanced neuron formation. Therefore, mice from 12 different isogenic strains were housed with or without running wheels for 43 days to measure the genetic regulation of exercise-induced neurogenesis. The first 10 days mice received daily injections of BrdU to label dividing cells. Neurogenesis was measured as the total number of BrdU cells co-expressing NeuN mature neuronal marker in the hippocampal granule cell layer by immunohistochemistry. Exercise increased neurogenesis in all strains, but the magnitude significantly depended on genotype. Strain means for distance run on wheels, but not distance traveled in cages without wheels, were significantly correlated with strain mean level of neurogenesis. Further, certain strains displayed greater neurogenesis than others for a fixed level of running. Strain means for neurogenesis under sedentary conditions were not correlated with neurogenesis under runner conditions suggesting that different genes influence baseline versus exercise-induced neurogenesis. Genetic contributions to exercise-induced hippocampal neurogenesis suggest that it may be possible to identify genes and pathways associated with enhanced neuroplastic responses to exercise. PMID:21223504

  12. Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures

    PubMed Central

    Gelain, Fabrizio; Bottai, Daniele; Vescovi, Angleo; Zhang, Shuguang

    2006-01-01

    Biomedical researchers have become increasingly aware of the limitations of conventional 2-dimensional tissue cell culture systems, including coated Petri dishes, multi-well plates and slides, to fully address many critical issues in cell biology, cancer biology and neurobiology, such as the 3-D microenvironment, 3-D gradient diffusion, 3-D cell migration and 3-D cell-cell contact interactions. In order to fully understand how cells behave in the 3-D body, it is important to develop a well-controlled 3-D cell culture system where every single ingredient is known. Here we report the development of a 3-D cell culture system using a designer peptide nanofiber scaffold with mouse adult neural stem cells. We attached several functional motifs, including cell adhesion, differentiation and bone marrow homing motifs, to a self-assembling peptide RADA16 (Ac-RADARADARADARADA-COHN2). These functionalized peptides undergo self-assembly into a nanofiber structure similar to Matrigel. During cell culture, the cells were fully embedded in the 3-D environment of the scaffold. Two of the peptide scaffolds containing bone marrow homing motifs significantly enhanced the neural cell survival without extra soluble growth and neurotrophic factors to the routine cell culture media. In these designer scaffolds, the cell populations with β-Tubulin+, GFAP+ and Nestin+ markers are similar to those found in cell populations cultured on Matrigel. The gene expression profiling array experiments showed selective gene expression, possibly involved in neural stem cell adhesion and differentiation. Because the synthetic peptides are intrinsically pure and a number of desired function cellular motifs are easy to incorporate, these designer peptide nanofiber scaffolds provide a promising controlled 3-D culture system for diverse tissue cells, and are useful as well for general molecular and cell biology. PMID:17205123

  13. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  14. Comprehensive Analysis of Neonatal versus Adult Unilateral Decortication in a Mouse Model Using Behavioral, Neuroanatomical, and DNA Microarray Approaches

    PubMed Central

    Yoshikawa, Akira; Nakamachi, Tomoya; Shibato, Junko; Rakwal, Randeep; Shioda, Seiji

    2014-01-01

    Previously, studying the development, especially of corticospinal neurons, it was concluded that the main compensatory mechanism after unilateral brain injury in rat at the neonatal stage was due in part to non-lesioned ipsilateral corticospinal neurons that escaped selection by axonal elimination or neuronal apoptosis. However, previous results suggesting compensatory mechanism in neonate brain were not correlated with high functional recovery. Therefore, what is the difference among neonate and adult in the context of functional recovery and potential mechanism(s) therein? Here, we utilized a brain unilateral decortication mouse model and compared motor functional recovery mechanism post-neonatal brain hemisuction (NBH) with adult brain hemisuction (ABH). Three analyses were performed: (1) Quantitative behavioral analysis of forelimb movements using ladder walking test; (2) neuroanatomical retrograde tracing analysis of unlesioned side corticospinal neurons; and (3) differential global gene expressions profiling in unlesioned-side neocortex (rostral from bregma) in NBH and ABH on a 8 × 60 K mouse whole genome Agilent DNA chip. Behavioral data confirmed higher recovery ability in NBH over ABH is related to non-lesional frontal neocortex including rostral caudal forelimb area. A first inventory of differentially expressed genes genome-wide in the NBH and ABH mouse model is provided as a resource for the scientific community. PMID:25490135

  15. Accumulated quiescent neural stem cells in adult hippocampus of the mouse model for the MECP2 duplication syndrome

    PubMed Central

    Chen, Zhifang; Li, Xiao; Zhou, Jingjing; Yuan, Bo; Yu, Bin; Tong, Dali; Cheng, Cheng; Shao, Yinqi; Xia, Shengnan; Zhang, Ran; Lyu, Jingwen; Yu, Xiuya; Dong, Chen; Zhou, Wen-Hao; Qiu, Zilong

    2017-01-01

    Duplications of Methyl CpG binding protein 2 (MECP2) -containing segments lead to the MECP2 duplication syndrome, in which severe autistic symptoms were identified. Whether adult neurogenesis may play a role in pathogenesis of autism and the role of MECP2 on state determination of adult neural stem cells (NSCs) remain largely unclear. Using a MECP2 transgenic (TG) mouse model for the MECP2 duplication syndrome, we found that adult hippocampal quiescent NSCs were significantly accumulated in TG mice comparing to wild type (WT) mice, the neural progenitor cells (NPCs) were reduced and the neuroblasts were increased in adult hippocampi of MECP2 TG mice. Interestingly, we found that parvalbumin (PV) positive interneurons were significantly decreased in MECP2 TG mice, which were critical for determining fates of adult hippocampal NSCs between the quiescence and activation. In summary, we found that MeCP2 plays a critical role in regulating fate determination of adult NSCs. These evidences further suggest that abnormal development of NSCs may play a role in the pathogenesis of the MECP2 duplication syndrome. PMID:28139724

  16. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine.

    PubMed

    Al Alam, Denise; Danopoulos, Soula; Schall, Kathy; Sala, Frederic G; Almohazey, Dana; Fernandez, G Esteban; Georgia, Senta; Frey, Mark R; Ford, Henri R; Grikscheit, Tracy; Bellusci, Saverio

    2015-04-15

    Intestinal epithelial cell renewal relies on the right balance of epithelial cell migration, proliferation, differentiation, and apoptosis. Intestinal epithelial cells consist of absorptive and secretory lineage. The latter is comprised of goblet, Paneth, and enteroendocrine cells. Fibroblast growth factor 10 (FGF10) plays a central role in epithelial cell proliferation, survival, and differentiation in several organs. The expression pattern of FGF10 and its receptors in both human and mouse intestine and their role in small intestine have yet to be investigated. First, we analyzed the expression of FGF10, FGFR1, and FGFR2, in the human ileum and throughout the adult mouse small intestine. We found that FGF10, FGFR1b, and FGFR2b are expressed in the human ileum as well as in the mouse small intestine. We then used transgenic mouse models to overexpress Fgf10 and a soluble form of Fgfr2b, to study the impact of gain or loss of Fgf signaling in the adult small intestine. We demonstrated that overexpression of Fgf10 in vivo and in vitro induces goblet cell differentiation while decreasing Paneth cells. Moreover, FGF10 decreases stem cell markers such as Lgr5, Lrig1, Hopx, Ascl2, and Sox9. FGF10 inhibited Hes1 expression in vitro, suggesting that FGF10 induces goblet cell differentiation likely through the inhibition of Notch signaling. Interestingly, Fgf10 overexpression for 3 days in vivo and in vitro increased the number of Mmp7/Muc2 double-positive cells, suggesting that goblet cells replace Paneth cells. Further studies are needed to determine the mechanism by which Fgf10 alters cell differentiation in the small intestine.

  17. Isolation of multipotent neural stem/progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse

    PubMed Central

    Guo, Weixiang; Patzlaff, Natalie E.; Jobe, Emily M.; Zhao, Xinyu

    2013-01-01

    In adult mammals, the subventricular zone of the lateral ventricles (SVZ) and the subgranular zone of the dentate gyrus (DG) demonstrate ongoing neurogenesis, and multipotent neural stem/progenitor cells (NSCs) in these two regions exhibit different intrinsic properties. However, investigation of the mechanisms underlying such differences has been limited by a lack of efficient methods for isolating NSCs, particularly from the adult DG. Here we describe a protocol that enables us to isolate self-renewing and multipotent NSCs from the SVZ and the DG of the same adult mouse. The protocol involves the microdissection of the SVZ and DG from one adult mouse brain, isolation of NSCs from specific regions, and cultivation of NSCs in vitro. The entire procedure takes 2 to 3 hours. Since only one mouse is needed for each cell isolation procedure, this protocol will be particularly useful for studies with limited availability of mice, such as mice that contain multiple genetic modifications. PMID:23080272

  18. P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone.

    PubMed

    Messemer, Nanette; Kunert, Christin; Grohmann, Marcus; Sobottka, Helga; Nieber, Karen; Zimmermann, Herbert; Franke, Heike; Nörenberg, Wolfgang; Straub, Isabelle; Schaefer, Michael; Riedel, Thomas; Illes, Peter; Rubini, Patrizia

    2013-10-01

    Neurogenesis requires the balance between the proliferation of newly formed progenitor cells and subsequent death of surplus cells. RT-PCR and immunocytochemistry demonstrated the presence of P2X7 receptor mRNA and immunoreactivity in cultured neural progenitor cells (NPCs) prepared from the adult mouse subventricular zone (SVZ). Whole-cell patch-clamp recordings showed a marked potentiation of the inward current responses both to ATP and the prototypic P2X7 receptor agonist dibenzoyl-ATP (Bz-ATP) at low Ca(2+) and zero Mg(2+) concentrations in the bath medium. The Bz-ATP-induced currents reversed their polarity near 0 mV; in NPCs prepared from P2X7(-/-) mice, Bz-ATP failed to elicit membrane currents. The general P2X/P2Y receptor antagonist PPADS and the P2X7 selective antagonists Brilliant Blue G and A-438079 strongly depressed the effect of Bz-ATP. Long-lasting application of Bz-ATP induced an initial current, which slowly increased to a steady-state response. In combination with the determination of YO-PRO uptake, these experiments suggest the dilation of a receptor-channel and/or the recruitment of a dye-uptake pathway. Ca(2+)-imaging by means of Fura-2 revealed that in a Mg(2+)-deficient bath medium Bz-ATP causes [Ca(2+)](i) transients fully depending on the presence of external Ca(2+). The MTT test indicated a concentration-dependent decrease in cell viability by Bz-ATP treatment. Correspondingly, Bz-ATP led to an increase in active caspase 3 immunoreactivity, indicating a P2X7-controlled apoptosis. In acute SVZ brain slices of transgenic Tg(nestin/EGFP) mice, patch-clamp recordings identified P2X7 receptors at NPCs with pharmacological properties identical to those of their cultured counterparts. We suggest that the apoptotic/necrotic P2X7 receptors at NPCs may be of particular relevance during pathological conditions which lead to increased ATP release and thus could counterbalance the ensuing excessive cell proliferation.

  19. Comparative ultrastructural features of excitatory synapses in the visual and frontal cortices of the adult mouse and monkey.

    PubMed

    Hsu, Alexander; Luebke, Jennifer I; Medalla, Maria

    2017-03-03

    The excitatory glutamatergic synapse is the principal site of communication between cortical pyramidal neurons and their targets, a key locus of action of many drugs, and highly vulnerable to dysfunction and loss in neurodegenerative disease. A detailed knowledge of the structure of these synapses in distinct cortical areas and across species is a prerequisite for understanding the anatomical underpinnings of cortical specialization and, potentially, selective vulnerability in neurological disorders. We used serial electron microscopy to assess the ultrastructural features of excitatory (asymmetric) synapses in the layers 2-3 (L2-3) neuropil of visual (V1) and frontal (FC) cortices of the adult mouse and compared findings to those in the rhesus monkey (V1 and lateral prefrontal cortex [LPFC]). Analyses of multiple ultrastructural variables revealed four organizational features. First, the density of asymmetric synapses does not differ between frontal and visual cortices in either species, but is significantly higher in mouse than in monkey. Second, the structural properties of asymmetric synapses in mouse V1 and FC are nearly identical, by stark contrast to the significant differences seen between monkey V1 and LPFC. Third, while the structural features of postsynaptic entities in mouse and monkey V1 do not differ, the size of presynaptic boutons are significantly larger in monkey V1. Fourth, both presynaptic and postsynaptic entities are significantly smaller in the mouse FC than in the monkey LPFC. The diversity of synaptic ultrastructural features demonstrated here have broad implications for the nature and efficacy of glutamatergic signaling in distinct cortical areas within and across species.

  20. Deficits in adult neurogenesis, contextual fear conditioning, and spatial learning in a Gfap mutant mouse model of Alexander disease.

    PubMed

    Hagemann, Tracy L; Paylor, Richard; Messing, Albee

    2013-11-20

    Glial fibrillary acidic protein (GFAP) is the major intermediate filament of mature astrocytes in the mammalian CNS. Dominant gain of function mutations in GFAP lead to the fatal neurodegenerative disorder, Alexander disease (AxD), which is characterized by cytoplasmic protein aggregates known as Rosenthal fibers along with variable degrees of leukodystrophy and intellectual disability. The mechanisms by which mutant GFAP leads to these pleiotropic effects are unknown. In addition to astrocytes, GFAP is also expressed in other cell types, particularly neural stem cells that form the reservoir supporting adult neurogenesis in the hippocampal dentate gyrus and subventricular zone of the lateral ventricles. Here, we show that mouse models of AxD exhibit significant pathology in GFAP-positive radial glia-like cells in the dentate gyrus, and suffer from deficits in adult neurogenesis. In addition, they display impairments in contextual learning and spatial memory. This is the first demonstration of cognitive phenotypes in a model of primary astrocyte disease.

  1. Expression patterns of Slit and Robo family members in adult mouse spinal cord and peripheral nervous system

    PubMed Central

    Carr, Lauren; Parkinson, David B.; Dun, Xin-peng

    2017-01-01

    The secreted glycoproteins, Slit1-3, are classic axon guidance molecules that act as repulsive cues through their well characterised receptors Robo1-2 to allow precise axon pathfinding and neuronal migration. The expression patterns of Slit1-3 and Robo1-2 have been most characterized in the rodent developing nervous system and the adult brain, but little is known about their expression patterns in the adult rodent peripheral nervous system. Here, we report a detailed expression analysis of Slit1-3 and Robo1-2 in the adult mouse sciatic nerve as well as their expression in the nerve cell bodies within the ventral spinal cord (motor neurons) and dorsal root ganglion (sensory neurons). Our results show that, in the adult mouse peripheral nervous system, Slit1-3 and Robo1-2 are expressed in the cell bodies and axons of both motor and sensory neurons. While Slit1 and Robo2 are only expressed in peripheral axons and their cell bodies, Slit2, Slit3 and Robo1 are also expressed in satellite cells of the dorsal root ganglion, Schwann cells and fibroblasts of peripheral nerves. In addition to these expression patterns, we also demonstrate the expression of Robo1 in blood vessels of the peripheral nerves. Our work gives important new data on the expression patterns of Slit and Robo family members within the peripheral nervous system that may relate both to nerve homeostasis and the reaction of the peripheral nerves to injury. PMID:28234971

  2. Modifications of hippocampal circuits and early disruption of adult neurogenesis in the tg2576 mouse model of Alzheimer's disease.

    PubMed

    Krezymon, Alice; Richetin, Kevin; Halley, Hélène; Roybon, Laurent; Lassalle, Jean-Michel; Francès, Bernard; Verret, Laure; Rampon, Claire

    2013-01-01

    At advanced stages of Alzheimer's disease, cognitive dysfunction is accompanied by severe alterations of hippocampal circuits that may largely underlie memory impairments. However, it is likely that anatomical remodeling in the hippocampus may start long before any cognitive alteration is detected. Using the well-described Tg2576 mouse model of Alzheimer's disease that develops progressive age-dependent amyloidosis and cognitive deficits, we examined whether specific stages of the disease were associated with the expression of anatomical markers of hippocampal dysfunction. We found that these mice develop a complex pattern of changes in their dentate gyrus with aging. Those include aberrant expression of neuropeptide Y and reduced levels of calbindin, reflecting a profound remodeling of inhibitory and excitatory circuits in the dentate gyrus. Preceding these changes, we identified severe alterations of adult hippocampal neurogenesis in Tg2576 mice. We gathered converging data in Tg2576 mice at young age, indicating impaired maturation of new neurons that may compromise their functional integration into hippocampal circuits. Thus, disruption of adult hippocampal neurogenesis occurred before network remodeling in this mouse model and therefore may account as an early event in the etiology of Alzheimer's pathology. Ultimately, both events may constitute key components of hippocampal dysfunction and associated cognitive deficits occurring in Alzheimer's disease.

  3. A rapidly activating sustained K+ current modulates repolarization and excitation-contraction coupling in adult mouse ventricle.

    PubMed Central

    Fiset, C; Clark, R B; Larsen, T S; Giles, W R

    1997-01-01

    1. The K+ currents which control repolarization in adult mouse ventricle, and the effects of changes in action potential duration on excitation-contraction coupling in this tissue, have been studied with electrophysiological methods using single cell preparations and by recording mechanical parameters from an in vitro working heart preparation. 2. Under conditions where Ca(2+)-dependent currents were eliminated by buffering intracellular Ca2+ with EGTA, depolarizing voltage steps elicited two rapidly activating outward K+ currents: (i) a transient outward current, and (ii) a slowly inactivating or 'sustained' delayed rectifier. 3. These two currents were separated pharmacologically by the K+ channel blocker 4-amino-pyridine (4-AP). 4-AP at concentrations between 3 and 200 microM resulted in (i) a marked increase in action potential duration and a large decrease in the sustained K+ current at plateau potentials, as well as (ii) a significant increase in left ventricular systolic pressure in the working heart preparation. 4. The current-voltage (I-V) relation, kinetics, and block by low concentrations of 4-AP strongly suggest that the rapid delayed rectifier in adult mouse ventricles is the same K+ current (Kv1.5) that has been characterized in detail in human and canine atria. 5. These results show that the 4-AP-sensitive rapid delayed rectifier is a very important repolarizing current in mouse ventricle. The enhanced contractility produced by 4-AP (50 microM) in the working heart preparation demonstrates that modulation of the action potential duration, by blocking a K+ current, is a very significant inotropic variable. PMID:9401964

  4. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse

    SciTech Connect

    Lin Zhoumeng; Fisher, Jeffrey W.; Ross, Matthew K.; Filipov, Nikolay M.

    2011-02-15

    Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR and DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.

  5. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain

    PubMed Central

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain. PMID:23440889

  6. An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera

    PubMed Central

    Sawasvirojwong, Sutthipong; Srimanote, Potjanee; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2013-01-01

    Cholera is a diarrheal disease causing significant morbidity and mortality worldwide. This study aimed to establish an adult mouse model of Vibrio cholerae-induced diarrhea and to characterize its pathophysiology. Ligated ileal loops of adult mice were inoculated for 6, 9, 12 and 18 h with a classical O1 hypertoxigenic 569B strain of V. cholerae (107 CFU/loop). Time-course studies demonstrated that the optimal period for inducing diarrhea was 12 h post-inoculation, when peak intestinal fluid accumulation (loop/weight ratio of ∼0.2 g/cm) occurred with the highest diarrhea success rate (90%). In addition, pathogenic numbers of V. cholerae (∼109 CFU/g tissue) were recovered from ileal loops at all time points between 6–18 h post-inoculation with the diarrheagenic amount of cholera toxin being detected in the secreted intestinal fluid at 12 h post-inoculation. Interestingly, repeated intraperitoneal administration of CFTRinh-172 (20 µg every 6 h), an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR), completely abolished the V. cholerae-induced intestinal fluid secretion without affecting V. cholerae growth in vivo. As analyzed by ex vivo measurement of intestinal electrical resistance and in vivo assay of fluorescein thiocyanate (FITC)-dextran trans-intestinal flux, V. cholerae infection had no effect on intestinal paracellular permeability. Measurements of albumin in the diarrheal fluid suggested that vascular leakage did not contribute to the pathogenesis of diarrhea in this model. Furthermore, histological examination of V. cholerae-infected intestinal tissues illustrated edematous submucosa, congestion of small vessels and enhanced mucus secretion from goblet cells. This study established a new adult mouse model of V. cholerae-induced diarrhea, which could be useful for studying the pathogenesis of cholera diarrhea and for evaluating future therapeutics/cholera vaccines. In addition, our study confirmed the major role of CFTR in V

  7. An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera.

    PubMed

    Sawasvirojwong, Sutthipong; Srimanote, Potjanee; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2013-06-01

    Cholera is a diarrheal disease causing significant morbidity and mortality worldwide. This study aimed to establish an adult mouse model of Vibrio cholerae-induced diarrhea and to characterize its pathophysiology. Ligated ileal loops of adult mice were inoculated for 6, 9, 12 and 18 h with a classical O1 hypertoxigenic 569B strain of V. cholerae (10(7) CFU/loop). Time-course studies demonstrated that the optimal period for inducing diarrhea was 12 h post-inoculation, when peak intestinal fluid accumulation (loop/weight ratio of ∼0.2 g/cm) occurred with the highest diarrhea success rate (90%). In addition, pathogenic numbers of V. cholerae (∼10(9) CFU/g tissue) were recovered from ileal loops at all time points between 6-18 h post-inoculation with the diarrheagenic amount of cholera toxin being detected in the secreted intestinal fluid at 12 h post-inoculation. Interestingly, repeated intraperitoneal administration of CFTRinh-172 (20 µg every 6 h), an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR), completely abolished the V. cholerae-induced intestinal fluid secretion without affecting V. cholerae growth in vivo. As analyzed by ex vivo measurement of intestinal electrical resistance and in vivo assay of fluorescein thiocyanate (FITC)-dextran trans-intestinal flux, V. cholerae infection had no effect on intestinal paracellular permeability. Measurements of albumin in the diarrheal fluid suggested that vascular leakage did not contribute to the pathogenesis of diarrhea in this model. Furthermore, histological examination of V. cholerae-infected intestinal tissues illustrated edematous submucosa, congestion of small vessels and enhanced mucus secretion from goblet cells. This study established a new adult mouse model of V. cholerae-induced diarrhea, which could be useful for studying the pathogenesis of cholera diarrhea and for evaluating future therapeutics/cholera vaccines. In addition, our study confirmed the major role of CFTR in V

  8. Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis

    PubMed Central

    Zhang, Hongyu; Siegel, Christopher T.; Shuai, Ling; Lai, Jiejuan; Zeng, Linli; Zhang, Yujun; Lai, Xiangdong; Bie, Ping; Bai, Lianhua

    2016-01-01

    NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2+ cells) that were isolated from healthy adult mouse liver by using a “Percoll-Plate-Wait” procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 106 cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2+ cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2+ cells may be novel adult liver progenitors that participate in liver regeneration. PMID:26905303

  9. Stimulation of adult hippocampal neurogenesis by physical exercise and enriched environment is disturbed in a CADASIL mouse model

    PubMed Central

    Klein, C.; Schreyer, S.; Kohrs, F. E.; Elhamoury, P.; Pfeffer, A.; Munder, T.; Steiner, B.

    2017-01-01

    In the course of CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a dysregulated adult hippocampal neurogenesis has been suggested as a potential mechanism for early cognitive decline. Previous work has shown that mice overexpressing wild type Notch3 and mice overexpressing Notch3 with a CADASIL mutation display impaired cell proliferation and survival of newly born hippocampal neurons prior to vascular abnormalities. Here, we aimed to elucidate how the long-term survival of these newly generated neurons is regulated by Notch3. Knowing that adult neurogenesis can be robustly stimulated by physical exercise and environmental enrichment, we also investigated the influence of such stimuli as potential therapeutic instruments for a dysregulated hippocampal neurogenesis in the CADASIL mouse model. Therefore, young-adult female mice were housed in standard (STD), environmentally enriched (ENR) or running wheel cages (RUN) for either 28 days or 6 months. Mice overexpressing mutated Notch3 and developing CADASIL (TgN3R169C), and mice overexpressing wild type Notch3 (TgN3WT) were used. We found that neurogenic stimulation by RUN and ENR is apparently impaired in both transgenic lines. The finding suggests that a disturbed neurogenic process due to Notch3-dependent micromilieu changes might be one vascular-independent mechanism contributing to cognitive decline observed in CADASIL. PMID:28345617

  10. Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion.

    PubMed

    Launay, Pierre-Serge; Godefroy, David; Khabou, Hanen; Rostene, William; Sahel, Jose-Alain; Baudouin, Christophe; Melik Parsadaniantz, Stéphane; Reaux-Le Goazigo, Annabelle

    2015-10-01

    Tissue clearing and subsequent imaging of intact transparent tissues have provided an innovative way to analyze anatomical pathways in the nervous system. In this study, we combined a recent 3-dimensional imaging of solvent cleared organ (3DISCO) procedure, light-sheet microscopy, fluorescent retrograde tracer, and Imaris software to 3D map corneal sensory neurons within a whole adult mouse trigeminal ganglion (TG). We first established the optimized steps to easily and rapidly clear a fixed TG. We found that the 3DISCO procedure gave excellent results and took less than 3 h to clear the TG. In a second set of experiments, a retrograde tracer (cholera toxin B Alexa 594-conjugated) was applied to de-epithelialized cornea to retrograde-labeled corneal sensory neurons. Two days later, TGs were cleared by the 3DISCO method and serial imaging was performed using light-sheet ultramicroscopic technology. High-resolution images of labeled neurons can be easily and rapidly obtained from a 3D reconstructed whole mouse TG. We then provided a 3D reconstruction of corneal afferent neurons and analyzed their precise localization in the TG. Thus, we showed that neurons supplying corneal sensory innervation exhibit a highly specific limited dorsomedial localization within the TG. We report that our combined method offers the possibility to perform manual (on 20 μm sections) and automated (on 3D reconstructed TG) counting of labeled cells in a cleared mouse TG. To conclude, we illustrate that the combination of the 3DISCO clearing method with light-sheet microscopy, retrograde tracer, and automatic counting represents a rapid and reliable method to analyze a subpopulation of neurons within the peripheral and central nervous system.

  11. "The preadipocyte factor" DLK1 marks adult mouse adipose tissue residing vascular cells that lack in vitro adipogenic differentiation potential.

    PubMed

    Andersen, Ditte Caroline; Jensen, Line; Schrøder, Henrik Daa; Jensen, Charlotte Harken

    2009-09-03

    Delta-like 1 (Dlk1) is expressed in 3T3-L1 preadipocytes and has frequently been referred to as "the" preadipocyte marker, yet the phenotype of DLK1(+) cells in adipose tissue remains undetermined. Herein, we demonstrate that DLK1(+) cells encompass around 1-2% of the adult mouse adipose stromal vascular fraction (SVF). Unexpectedly, the DLK1(+)SVF population was enriched for cells expressing genes generally ascribed to the vascular lineage and did not possess any adipogenic differentiation potential in vitro. Instead, DLK1(+) cells comprised an immediate ability for cobblestone formation, generation of tube-like structures on matrigel, and uptake of Acetylated Low Density-Lipoprotein, all characteristics of endothelial cells. We therefore suggest that DLK1(+)SVF cells are of a vascular origin and not them-selves committed preadipocytes as assumed hitherto.

  12. Different tumours induced by benzo(a)pyrene and its 7,8-dihydrodiol injected into adult mouse salivary gland.

    PubMed Central

    Wigley, C. B.; Amos, J.; Brookes, P.

    1978-01-01

    A comparison has been made between the carcinogenic activities of benzo(a)pyrene and the proposed proximate carcinogen, benzo(a)pyrene 7,8-dihydrodiol, in the adult C57BL mouse submandibular salivary gland. In preliminary studies using a range of doses, the dihydrodiol was slightly less active than the parent hydrocarbon in this system. There was a difference in the type of tumour induced by the 2 compounds. Benzo(a)pyrene induced tumours of the salivary glands at the site of injection, whereas the dihydrodiol induced malignant lymphosarcomas, particularly of the thymus, which were often metastatic to other orgnas. Possible reasons for the different sites of action of the 2 compounds are discussed. PMID:580763

  13. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer's disease.

    PubMed

    Kim, Hye Yun; Kim, Hyunjin V; Yoon, Jin H; Kang, Bo Ram; Cho, Soo Min; Lee, Sejin; Kim, Ji Yoon; Kim, Joo Won; Cho, Yakdol; Woo, Jiwan; Kim, YoungSoo

    2014-12-12

    Alzheimer's disease (AD) is a lethal progressive neurological disorder affecting the memory. Recently, US Food and Drug Administration mitigated the standard for drug approval, allowing symptomatic drugs that only improve cognitive deficits to be allowed to accelerate on to clinical trials. Our study focuses on taurine, an endogenous amino acid found in high concentrations in humans. It has demonstrated neuroprotective properties against many forms of dementia. In this study, we assessed cognitively enhancing property of taurine in transgenic mouse model of AD. We orally administered taurine via drinking water to adult APP/PS1 transgenic mouse model for 6 weeks. Taurine treatment rescued cognitive deficits in APP/PS1 mice up to the age-matching wild-type mice in Y-maze and passive avoidance tests without modifying the behaviours of cognitively normal mice. In the cortex of APP/PS1 mice, taurine slightly decreased insoluble fraction of Aβ. While the exact mechanism of taurine in AD has not yet been ascertained, our results suggest that taurine can aid cognitive impairment and may inhibit Aβ-related damages.

  14. The Phospholipase D2 Knock Out Mouse Has Ectopic Purkinje Cells and Suffers from Early Adult-Onset Anosmia

    PubMed Central

    Zhang, Qifeng; Smethurst, Elizabeth; Segonds-Pichon, Anne; Schrewe, Heinrich; Wakelam, Michael J. O.

    2016-01-01

    Phospholipase D2 (PLD2) is an enzyme that produces phosphatidic acid (PA), a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO) mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA) regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction. PMID:27658289

  15. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer's disease

    PubMed Central

    Kim, Hye Yun; Kim, Hyunjin V.; Yoon, Jin H.; Kang, Bo Ram; Cho, Soo Min; Lee, Sejin; Kim, Ji Yoon; Kim, Joo Won; Cho, Yakdol; Woo, Jiwan; Kim, YoungSoo

    2014-01-01

    Alzheimer's disease (AD) is a lethal progressive neurological disorder affecting the memory. Recently, US Food and Drug Administration mitigated the standard for drug approval, allowing symptomatic drugs that only improve cognitive deficits to be allowed to accelerate on to clinical trials. Our study focuses on taurine, an endogenous amino acid found in high concentrations in humans. It has demonstrated neuroprotective properties against many forms of dementia. In this study, we assessed cognitively enhancing property of taurine in transgenic mouse model of AD. We orally administered taurine via drinking water to adult APP/PS1 transgenic mouse model for 6 weeks. Taurine treatment rescued cognitive deficits in APP/PS1 mice up to the age-matching wild-type mice in Y-maze and passive avoidance tests without modifying the behaviours of cognitively normal mice. In the cortex of APP/PS1 mice, taurine slightly decreased insoluble fraction of Aβ. While the exact mechanism of taurine in AD has not yet been ascertained, our results suggest that taurine can aid cognitive impairment and may inhibit Aβ-related damages. PMID:25502280

  16. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  17. Mouse Models of Human T Lymphotropic Virus Type-1–Associated Adult T-Cell Leukemia/Lymphoma

    PubMed Central

    Zimmerman, B.; Niewiesk, S.; Lairmore, M. D.

    2011-01-01

    Human T-lymphotropic virus type-1 (HTLV-1), the first human retrovirus discovered, is the causative agent of adult T-cell leukemia/lymphoma (ATL) and a number of lymphocyte-mediated inflammatory conditions including HTLV-1–associated myelopathy/tropical spastic paraparesis. Development of animal models to study the pathogenesis of HTLV-1–associated diseases has been problematic. Mechanisms of early infection and cell-to-cell transmission can be studied in rabbits and nonhuman primates, but lesion development and reagents are limited in these species. The mouse provides a cost-effective, highly reproducible model in which to study factors related to lymphoma development and the preclinical efficacy of potential therapies against ATL. The ability to manipulate transgenic mice has provided important insight into viral genes responsible for lymphocyte transformation. Expansion of various strains of immunodeficient mice has accelerated the testing of drugs and targeted therapy against ATL. This review compares various mouse models to illustrate recent advances in the understanding of HTLV-1–associated ATL development and how improvements in these models are critical to the future development of targeted therapies against this aggressive T-cell lymphoma. PMID:20442421

  18. Small Fractions of Muscular Dystrophy Embryonic Stem Cells Yield Severe Cardiac and Skeletal Muscle Defects in Adult Mouse Chimeras.

    PubMed

    Gonzalez, J Patrick; Kyrychenko, Sergii; Kyrychenko, Viktoriia; Schneider, Joel S; Granier, Celine J; Himelman, Eric; Lahey, Kevin C; Zhao, Qingshi; Yehia, Ghassan; Tao, Yuan-Xiang; Bhaumik, Mantu; Shirokova, Natalia; Fraidenraich, Diego

    2017-03-01

    Duchenne muscular dystrophy (DMD) is characterized by the loss of the protein dystrophin, leading to muscle fragility, progressive weakening, and susceptibility to mechanical stress. Although dystrophin-negative mdx mouse models have classically been used to study DMD, phenotypes appear mild compared to patients. As a result, characterization of muscle pathology, especially in the heart, has proven difficult. We report that injection of mdx embryonic stem cells (ESCs) into Wild Type blastocysts produces adult mouse chimeras with severe DMD phenotypes in the heart and skeletal muscle. Inflammation, regeneration and fibrosis are observed at the whole organ level, both in dystrophin-negative and dystrophin-positive portions of the chimeric tissues. Skeletal and cardiac muscle function are also decreased to mdx levels. In contrast to mdx heterozygous carriers, which show no significant phenotypes, these effects are even observed in chimeras with low levels of mdx ESC incorporation (10%-30%). Chimeric mice lack typical compensatory utrophin upregulation, and show pathological remodeling of Connexin-43. In addition, dystrophin-negative and dystrophin-positive isolated cardiomyocytes show augmented calcium response to mechanical stress, similar to mdx cells. These global effects highlight a novel role of mdx ESCs in triggering muscular dystrophy even when only low amounts are present. Stem Cells 2017;35:597-610.

  19. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone.

    PubMed

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis.

  20. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone

    PubMed Central

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  1. Generation of a conditional mouse model to target Acvr1b disruption in adult tissues.

    PubMed

    Ripoche, Doriane; Gout, Johann; Pommier, Roxane M; Jaafar, Rami; Zhang, Chang X; Bartholin, Laurent; Bertolino, Philippe

    2013-02-01

    Alk4 is a type I receptor that belongs to the transforming growth factor-beta (TGF-β) family. It takes part in the signaling of TGF-β ligands such as Activins, Gdfs, and Nodal that had been demonstrated to participate in numerous mechanisms ranging from early embryonic development to adult-tissue homeostasis. Evidences indicate that Alk4 is a key regulator of many embryonic processes, but little is known about its signaling in adult tissues and in pathological conditions where Alk4 mutations had been reported. Conventional deletion of Alk4 gene (Acvr1b) results in early embryonic lethality prior gastrulation, which has precluded study of Alk4 functions in postnatal and adult mice. To circumvent this problem, we have generated a conditional Acvr1b floxed-allele by flanking the fifth and sixth exons of the Acvr1b gene with loxP sites. Cre-mediated deletion of the floxed allele generates a deleted allele, which behaves as an Acvr1b null allele leading to embryonic lethality in homozygous mutant animals. A tamoxifen-inducible approach to target disruption of Acvr1b specifically in adult tissues was used and proved to be efficient for studying Alk4 functions in various organs. We report, therefore, a novel conditional model allowing investigation of biological role played by Alk4 in a variety of tissue-specific contexts.

  2. GC-MS metabolomic analysis reveals significant alterations in cerebellar metabolic physiology in a mouse model of adult onset hypothyroidism.

    PubMed

    Constantinou, Caterina; Chrysanthopoulos, Panagiotis K; Margarity, Marigoula; Klapa, Maria I

    2011-02-04

    Although adult-onset hypothyroidism (AOH) has been connected to neural activity alterations, including movement, behavioral, and mental dysfunctions, the underlying changes in brain metabolic physiology have not been investigated in a systemic and systematic way. The current knowledge remains fragmented, referring to different experimental setups and recovered from various brain regions. In this study, we developed and applied a gas chromatography-mass spectrometry (GC-MS) metabolomics protocol to obtain a holistic view of the cerebellar metabolic physiology in a Balb/cJ mouse model of prolonged adult-onset hypothyroidism induced by a 64-day treatment with 1% potassium perchlorate in the drinking water of the animals. The high-throughput analysis enabled the correlation between multiple parallel-occurring metabolic phenomena; some have been previously related to AOH, while others implicated new pathways, designating new directions for further research. Specifically, an overall decline in the metabolic activity of the hypothyroid compared to the euthyroid cerebellum was observed, characteristically manifested in energy metabolism, glutamate/glutamine metabolism, osmolytic/antioxidant capacity, and protein/lipid synthesis. These alterations provide strong evidence that the mammalian cerebellum is metabolically responsive to AOH. In light of the cerebellum core functions and its increasingly recognized role in neurocognition, these findings further support the known phenotypic manifestations of AOH into movement and cognitive dysfunctions.

  3. Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells

    SciTech Connect

    Wu, Qiuling; Ma, Qi; Shehadeh, Lina A.; Wilson, Amber; Xia, Linghui; Yu, Hong; Webster, Keith A.

    2010-06-11

    Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressed in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.

  4. Microglial cells in organotypic cultures of developing and adult mouse retina and their relationship with cell death.

    PubMed

    Ferrer-Martín, Rosa M; Martín-Oliva, David; Sierra, Ana; Carrasco, Maria-Carmen; Martín-Estebané, María; Calvente, Ruth; Marín-Teva, José L; Navascués, Julio; Cuadros, Miguel A

    2014-04-01

    Organotypic cultures of retinal explants allow the detailed analysis of microglial cells in a cellular microenvironment similar to that in the in situ retina, with the advantage of easy experimental manipulation. However, the in vitro culture causes changes in the retinal cytoarchitecture and induces a microglial response that may influence the results of these manipulations. The purpose of this study was to analyze the influence of the retinal age on changes in retinal cytoarchitecture, cell viability and death, and microglial phenotype and distribution throughout the in vitro culture of developing and adult retina explants. Explants from developing (3 and 10 postnatal days, P3 and P10) and adult (P60) mouse retinas were cultured for up to 10 days in vitro (div). Dead or dying cells were recognized by TUNEL staining, cell viability was determined by flow cytometry, and the numbers and distribution patterns of microglial cells were studied by flow cytometry and immunocytochemistry, respectively. The retinal cytoarchitecture was better preserved at prolonged culture times (10 div) in P10 retina explants than in P3 or adult explants. Particular patterns of cell viability and death were observed at each age: in general, explants from developing retinas showed higher cell viability and lower density of TUNEL-positive profiles versus adult retinas. The proportion of microglial cells relative to the whole population of retinal cells was higher in explants fixed immediately after their dissection (i.e., non-cultured) from adult retinas than in those from developing retinas. This proportion was always higher in non-cultured explants than in explants at 10 div, suggesting the death of some microglial cells during the culture. Activation of microglial cells, as revealed by their phenotypical appearance, was observed in both developing and adult retina explants from the beginning of the culture. Immunofluorescence with the anti-CD68 antibody showed that some activated

  5. Chronic coexistence of two troponin T isoforms in adult transgenic mouse cardiomyocytes decreased contractile kinetics and caused dilatative remodeling.

    PubMed

    Yu, Zhi-Bin; Wei, Hongguang; Jin, J-P

    2012-07-01

    Our previous in vivo and ex vivo studies suggested that coexistence of two or more troponin T (TnT) isoforms in adult cardiac muscle decreased cardiac function and efficiency (Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP, Am J Physiol Cell Physiol 294: C213-C22, 2008; Feng HZ, Jin JP, Am J Physiol Heart Circ Physiol 299: H97-H105, 2010). Here we characterized Ca(2+)-regulated contractility of isolated adult cardiomyocytes from transgenic mice coexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT. Without the influence of extracellular matrix, coexistence of the two TnT isoforms resulted in lower shortening amplitude, slower shortening and relengthening velocities, and longer relengthening time. The level of resting cytosolic Ca(2+) was unchanged, but the peak Ca(2+) transient was lowered and the durations of Ca(2+) rising and decaying were longer in the transgenic mouse cardiomyocytes vs. the wild-type controls. Isoproterenol treatment diminished the differences in shortening amplitude and shortening and relengthening velocities, whereas the prolonged durations of relengthening and Ca(2+) transient in the transgenic cardiomyocytes remained. At rigor state, a result from depletion of Ca(2+), resting sarcomere length of the transgenic cardiomyocytes became shorter than that in wild-type cells. Inhibition of myosin motor diminished this effect of TnT function on cross bridges. The length but not width of transgenic cardiomyocytes was significantly increased compared with the wild-type controls, corresponding to longitudinal addition of sarcomeres and dilatative remodeling at the cellular level. These dominantly negative effects of normal fast TnT demonstrated that chronic coexistence of functionally distinct variants of TnT in adult cardiomyocytes reduces contractile performance with pathological consequences.

  6. Topographic differences in adult neurogenesis in the mouse hippocampus: a stereology-based study using endogenous markers.

    PubMed

    Jinno, Shozo

    2011-05-01

    The hippocampus plays a critical role in various cognitive and affective functions. Increasing evidence shows that these functions are topographically distributed along the dorsoventral (septotemporal) and transverse axes of the hippocampus. For instance, dorsal hippocampus is involved in spatial memory and learning whereas ventral hippocampus is related to emotion. Here, we examined the topographic differences (dorsal vs. ventral; suprapyramidal vs. infrapyramidal) in adult neurogenesis in the mouse hippocampus using endogenous markers. The optical disector was applied to estimate the numerical densities (NDs) of labeled cells in the granule cell layer. The NDs of radial glia-like progenitors labeled by brain lipid binding protein were significantly lower in the infrapyramidal blade of the ventral DG than in other subdivisions. The NDs of doublecortin-expressing cells presumed neural progenitors and immature granule cells were significantly higher in the suprapyramidal blade of the dorsal DG than in the other subdivisions. The NDs of calretinin-expressing cells presumed young granule cells at the postmitotic stage were significantly higher in the suprapyramidal blade than in the infrapyramidal blade in the dorsal DG. No significant regional differences were detected in the NDs of dividing cells identified by proliferating cell nuclear antigen. Taken together, these findings suggest that a larger pool of immature granule cells in dorsal hippocampus might be responsible for spatial learning and memory, whereas a smaller pool of radial glia-like progenitors in ventral hippocampus might be associated with the susceptibility to affective disorders. Cell number estimation using a 300-μm-thick hypothetical slice indicates that regional differences in immature cells might contribute to the formation of topographic gradients in mature granule cells in the adult hippocampus. Our data also emphasizes the importance of considering such differences when evaluating changes in

  7. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons.

    PubMed

    Lizen, Benoit; Hutlet, Bertrand; Bissen, Diane; Sauvegarde, Deborah; Hermant, Maryse; Ahn, Marie-Thérèse; Gofflot, Françoise

    2017-04-01

    Hoxa5 is a member of the Hox gene family, which plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. Hoxa5 expression in the adult mouse brain has been reported, suggesting that this gene may be functionally required in the brain after birth. To provide further insight into the Hoxa5 expression pattern and potential functions in the brain, we have characterized its neuroanatomical profile from embryonic stages to adulthood. While most Hox mapping studies have been based solely on transcript analysis, we extended our analysis to HOXA5 protein localization in adulthood using specific antibodies. Our results show that Hoxa5 expression appears in the most caudal part of the hindbrain at fetal stages, where it is maintained until adulthood. In the medulla oblongata and pons, we detected Hoxa5 expression in many precerebellar neurons and in several nuclei implicated in the control of autonomic functions. In these territories, the HOXA5 protein is present solely in neurons, specifically in γ-aminobutyric acid (GABA)ergic, glutamatergic, and catecholaminergic neurons. Finally, we also detected Hoxa5 transcripts, but not the HOXA5 protein, in the thalamus and the cortex, from postnatal stages to adult stages, and in the cerebellum at adulthood. We provide evidence that some larger variants of Hoxa5 transcripts are present in these territories. Our mapping analysis allowed us to build hypotheses regarding HOXA5 functions in the nervous system after birth, such as a potential role in the establishment and refinement/plasticity of precerebellar circuits during postnatal and adult life. J. Comp. Neurol. 525:1155-1175, 2017. © 2016 Wiley Periodicals, Inc.

  8. Genistein Exposure Inhibits Growth and Alters Steroidogenesis in Adult Mouse Antral Follicles

    PubMed Central

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G.; Flaws, Jodi A.

    2016-01-01

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36 μM) for 18 – 96 hours (h). Every 24 h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36 μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36 μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96 h, and the expression of cell cycle regulators at 18 h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. PMID:26792615

  9. Characterization and isolation of immature neurons of the adult mouse piriform cortex.

    PubMed

    Rubio, A; Belles, M; Belenguer, G; Vidueira, S; Fariñas, I; Nacher, J

    2016-07-01

    Physiological studies indicate that the piriform or primary olfactory cortex of adult mammals exhibits a high degree of synaptic plasticity. Interestingly, a subpopulation of cells in the layer II of the adult piriform cortex expresses neurodevelopmental markers, such as the polysialylated form of neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX). This study analyzes the nature, origin, and potential function of these poorly understood cells in mice. As previously described in rats, most of the PSA-NCAM expressing cells in layer II could be morphologically classified as tangled cells and only a small proportion of larger cells could be considered semilunar-pyramidal transitional neurons. Most were also immunoreactive for DCX, confirming their immature nature. In agreement with this, detection of PSA-NCAM combined with that of different cell lineage-specific antigens revealed that most PSA-NCAM positive cells did not co-express markers of glial cells or mature neurons. Their time of origin was evaluated by birthdating experiments with halogenated nucleosides performed at different developmental stages and in adulthood. We found that virtually all cells in this paleocortical region, including PSA-NCAM-positive cells, are born during fetal development. In addition, proliferation analyses in adult mice revealed that very few cells were cycling in layer II of the piriform cortex and that none of them was PSA-NCAM-positive. Moreover, we have established conditions to isolate and culture these immature neurons in the adult piriform cortex layer II. We find that although they can survive under certain conditions, they do not proliferate in vitro either. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 748-763, 2016.

  10. Early exposure to ethanol differentially affects ethanol preference at adult age in two inbred mouse strains.

    PubMed

    Molet, Jenny; Bouaziz, Elodie; Hamon, Michel; Lanfumey, Laurence

    2012-08-01

    Although the acute effects of ethanol exposure on brain development have been extensively studied, the long term consequences of juvenile ethanol intake on behavior at adult age, regarding especially ethanol consumption, are still poorly known. The aim of this study was to analyze the consequences of ethanol ingestion in juvenile C57BL/6J and DBA/2J mice on ethanol intake and neurobiological regulations at adulthood. Mice were given intragastric ethanol at 4 weeks of age under different protocols and their spontaneous ethanol consumption was assessed in a free choice paradigm at adulthood. Both serotonin 5-HT(1A) and cannabinoid CB1 receptors were investigated using [(35)S]GTP-γ-S binding assay for the juvenile ethanol regimens which modified adult ethanol consumption. In DBA/2J mice, juvenile ethanol ingestion dose-dependently promoted adult spontaneous ethanol consumption. This early ethanol exposure enhanced 5-HT(1A) autoreceptor-mediated [(35)S]GTP-γ-S binding in the dorsal raphe nucleus and reduced CB1 receptor-mediated G protein coupling in both the striatum and the globus pallidus at adult age. In contrast, early ethanol ingestion by C57BL/6J mice transiently lowered spontaneous ethanol consumption and increased G protein coupling of postsynaptic 5-HT(1A) receptors in the hippocampus but had no effect on CB1 receptors at adulthood. These results show that a brief and early exposure to ethanol can induce strain-dependent long-lasting changes in both behavior toward ethanol and key receptors of central 5-HT and CB systems in mice.

  11. MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary.

    PubMed

    Mishima, Takuya; Takizawa, Takami; Luo, Shan-Shun; Ishibashi, Osamu; Kawahigashi, Yutaka; Mizuguchi, Yoshiaki; Ishikawa, Tomoko; Mori, Miki; Kanda, Tomohiro; Goto, Tadashi; Takizawa, Toshihiro

    2008-12-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs that can regulate the expression of complementary mRNA targets. Identifying tissue-specific miRNAs is the first step toward understanding the biological functions of miRNAs, which include the regulation of tissue differentiation and the maintenance of tissue identity. In this study, we performed small RNA library sequencing in adult mouse testis and ovary to reveal their characteristic organ- and gender-specific profiles and to elucidate the characteristics of the miRNAs expressed in the reproductive system. We obtained 10,852 and 11 744 small RNA clones from mouse testis and ovary respectively (greater than 10,000 clones per organ), which included 6630 (159 genes) and 10,192 (154 genes) known miRNAs. A high level of efficiency of miRNA library sequencing was achieved: 61% (6630 miRNA clones/10,852 small RNA clones) and 87% (10,192/11,744) for adult mouse testis and ovary respectively. We obtained characteristic miRNA signatures in testis and ovary; 55 miRNAs were detected highly, exclusively, or predominantly in adult mouse testis and ovary, and discovered two novel miRNAs. Male-biased expression of miRNAs occurred on the X-chromosome. Our data provide important information on sex differences in miRNA expression that should facilitate studies of the reproductive organ-specific roles of miRNAs.

  12. Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex

    PubMed Central

    Galarreta, Mario; Hestrin, Shaul

    2002-01-01

    Networks of γ-aminobutyric acid (GABA)ergic interneurons connected via electrical and chemical synapses are thought to play an important role in detecting and promoting synchronous activity in the cerebral cortex. Although the properties of electrical and chemical synaptic interactions among inhibitory interneurons are critical for their function as a network, they have only been studied systematically in juvenile animals. Here, we have used transgenic mice expressing the enhanced green fluorescent protein in cells containing parvalbumin (PV) to study the synaptic connectivity among fast-spiking (FS) cells in slices from adult animals (2–7 months old). We have recorded from pairs of PV-FS cells and found that the majority of them were electrically coupled (61%, 14 of 23 pairs). In addition, 78% of the pairs were connected via GABAergic chemical synapses, often reciprocally. The average coupling coefficient for step injections was 1.5% (n = 14), a smaller value than that reported in juvenile animals. GABA-mediated inhibitory postsynaptic currents and potentials decayed with exponential time constants of 2.6 and 5.9 ms, respectively, and exhibited paired-pulse depression (50-ms interval). The inhibitory synaptic responses in the adult were faster than those observed in young animals. Our results indicate that PV-FS cells are highly interconnected in the adult cerebral cortex by both electrical and chemical synapses, establishing networks that can have important implications for coordinating activity in cortical circuits. PMID:12213962

  13. Comparative analysis of mesenchymal stem cells from adult mouse adipose, muscle, and fetal muscle.

    PubMed

    Lei, Hulong; Yu, Bing; Huang, Zhiqing; Yang, Xuerong; Liu, Zehui; Mao, Xiangbing; Tian, Gang; He, Jun; Han, Guoquan; Chen, Hong; Mao, Qian; Chen, Daiwen

    2013-02-01

    Recently, increasing evidence supports that adult stem cells are the part of a natural system for tissue growth and repair. This study focused on the differences of mesenchymal stem cells from adult adipose (ADSCs), skeletal muscle (MDSCs) and fetal muscle (FMSCs) in biological characteristics, which is the key to cell therapy success. Stem cell antigen 1 (Sca-1) expression of MDSCs and FMSCs at passage 3 was two times more than that at passage 1 (P < 0.0001). After 28-day myogenic induction, higher expression levels of skeletal muscle-specific genes were observed in MDSCs than FMSCs (P < 0.01), and the lowest expression levels were demonstrated in ADSCs among three cells (P < 0.01). Besides, M-Cad and MyHC expressions in ADSCs were not detected by immunofluorescence or real-time quantitative PCR. Furthermore, after 14 days adipogenic induction, PPARγ2, LPL and aP2 mRNA expressions were higher in ADSCs vs. MDSCs (P < 0.01). Besides, MSCs from adult or fetal muscle expressed higher OCN and OPN than ADSCs after 28 days osteogenic induction (P < 0.01). Taken together, our results suggested that cell source and developmental stage had great impacts on biological properties of mesenchymal stem cells, and proper consideration of all the issues is necessary.

  14. Changes in the neural representation of odorants after olfactory deprivation in the adult mouse olfactory bulb.

    PubMed

    Kass, Marley D; Pottackal, Joseph; Turkel, Daniel J; McGann, John P

    2013-01-01

    Olfactory sensory deprivation during development has been shown to induce significant alterations in the neurophysiology of olfactory receptor neurons (ORNs), the primary sensory inputs to the brain's olfactory bulb. Deprivation has also been shown to alter the neurochemistry of the adult olfactory system, but the physiological consequences of these changes are poorly understood. Here we used in vivo synaptopHluorin (spH) imaging to visualize odorant-evoked neurotransmitter release from ORNs in adult transgenic mice that underwent 4 weeks of unilateral olfactory deprivation. Deprivation reduced odorant-evoked spH signals compared with sham-occluded mice. Unexpectedly, this reduction was equivalent between ORNs on the open and plugged sides. Changes in odorant selectivity of glomerular subpopulations of ORNs were also observed, but only in ORNs on the open side of deprived mice. These results suggest that naris occlusion in adult mice produces substantial changes in primary olfactory processing which may reflect not only the decrease in olfactory stimulation on the occluded side but also the alteration of response properties on the intact side. We also observed a modest effect of true sham occlusions that included noseplug insertion and removal, suggesting that conventional noseplug techniques may have physiological effects independent of deprivation per se and thus require more careful controls than has been previously appreciated.

  15. Characterization of muscle spindle afferents in the adult mouse using an in vitro muscle-nerve preparation.

    PubMed

    Wilkinson, Katherine A; Kloefkorn, Heidi E; Hochman, Shawn

    2012-01-01

    We utilized an in vitro adult mouse extensor digitorum longus (EDL) nerve-attached preparation to characterize the responses of muscle spindle afferents to ramp-and-hold stretch and sinusoidal vibratory stimuli. Responses were measured at both room (24°C) and muscle body temperature (34°C). Muscle spindle afferent static firing frequencies increased linearly in response to increasing stretch lengths to accurately encode the magnitude of muscle stretch (tested at 2.5%, 5% and 7.5% of resting length [Lo]). Peak firing frequency increased with ramp speeds (20% Lo/sec, 40% Lo/sec, and 60% Lo/sec). As a population, muscle spindle afferents could entrain 1:1 to sinusoidal vibrations throughout the frequency (10-100 Hz) and amplitude ranges tested (5-100 µm). Most units preferentially entrained to vibration frequencies close to their baseline steady-state firing frequencies. Cooling the muscle to 24°C decreased baseline firing frequency and units correspondingly entrained to slower frequency vibrations. The ramp component of stretch generated dynamic firing responses. These responses and related measures of dynamic sensitivity were not able to categorize units as primary (group Ia) or secondary (group II) even when tested with more extreme length changes (10% Lo). We conclude that the population of spindle afferents combines to encode stretch in a smoothly graded manner over the physiological range of lengths and speeds tested. Overall, spindle afferent response properties were comparable to those seen in other species, supporting subsequent use of the mouse genetic model system for studies on spindle function and dysfunction in an isolated muscle-nerve preparation.

  16. Odour enrichment increases adult-born dopaminergic neurons in the mouse olfactory bulb.

    PubMed

    Bonzano, Sara; Bovetti, Serena; Fasolo, Aldo; Peretto, Paolo; De Marchis, Silvia

    2014-11-01

    The olfactory bulb (OB) is the first brain region involved in the processing of olfactory information. In adult mice, the OB is highly plastic, undergoing cellular/molecular dynamic changes that are modulated by sensory experience. Odour deprivation induces down-regulation of tyrosine hydroxylase (TH) expression in OB dopaminergic interneurons located in the glomerular layer (GL), resulting in decreased dopamine in the OB. Although the effect of sensory deprivation is well established, little is known about the influence of odour enrichment on dopaminergic cells. Here we report that prolonged odour enrichment on C57BL/6J strain mice selectively increases TH-immunopositive cells in the GL by nearly 20%. Following odour enrichment on TH-green fluorescent protein (GFP) transgenic mice, in which GFP identified both mature TH-positive cells and putative immature dopaminergic cells expressing TH mRNA but not TH protein, we found a similar 20% increase in GFP-expressing cells, with no changes in the ratio between TH-positive and TH-negative cells. These data suggest that enriched conditions induce an expansion in the whole dopaminergic lineage. Accordingly, by using 5-bromo-2-deoxyuridine injections to label adult-generated cells in the GL of TH-GFP mice, we found an increase in the percentage of 5-bromo-2-deoxyuridine-positive dopaminergic cells in enriched compared with control conditions, whereas no differences were found for calretinin- and calbindin-positive subtypes. Strikingly, the fraction of newborn cells among the dopaminergic population doubled in enriched conditions. On the whole, our results demonstrate that odour enrichment drives increased integration of adult-generated dopaminergic cells that could be critical to adapt the OB circuits to the environmental incoming information.

  17. Mouse model of CADASIL reveals novel insights into Notch3 function in adult hippocampal neurogenesis.

    PubMed

    Ehret, Fanny; Vogler, Steffen; Pojar, Sherin; Elliott, David A; Bradke, Frank; Steiner, Barbara; Kempermann, Gerd

    2015-03-01

    Could impaired adult hippocampal neurogenesis be a relevant mechanism underlying CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)? Memory symptoms in CADASIL, the most common hereditary form of vascular dementia, are usually thought to be primarily due to vascular degeneration and white matter lacunes. Since adult hippocampal neurogenesis, a process essential for the integration of new spatial memory occurs in a highly vascularized niche, we considered dysregulation of adult neurogenesis as a potential mechanism for the manifestation of dementia in CADASIL. Analysis in aged mice overexpressing Notch3 with a CADASIL mutation, revealed vascular deficits in arteries of the hippocampal fissure but not in the niche of the dentate gyrus. At 12 months of age, cell proliferation and survival of newborn neurons were reduced not only in CADASIL mice but also in transgenic controls overexpressing wild type Notch3. At 6 months, hippocampal neurogenesis was altered in CADASIL mice independent of overt vascular abnormalities in the fissure. Further, we identified Notch3 expression in hippocampal precursor cells and maturing neurons in vivo as well as in cultured hippocampal precursor cells. Overexpression and knockdown experiments showed that Notch3 signaling negatively regulated precursor cell proliferation. Notch3 overexpression also led to deficits in KCl-induced precursor cell activation. This suggests a cell-autonomous effect of Notch3 signaling in the regulation of precursor proliferation and activation and a loss-of-function effect in CADASIL. Consequently, besides vascular damage, aberrant precursor cell proliferation and differentiation due to Notch3 dysfunction might be an additional independent mechanism for the development of hippocampal dysfunction in CADASIL.

  18. Characterizing Newly Repopulated Microglia in the Adult Mouse: Impacts on Animal Behavior, Cell Morphology, and Neuroinflammation

    PubMed Central

    Elmore, Monica R. P.; Lee, Rafael J.; West, Brian L.; Green, Kim N.

    2015-01-01

    Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the

  19. Reduced Glutamate Release in Adult BTBR Mouse Model of Autism Spectrum Disorder.

    PubMed

    Wei, Hongen; Ma, Yuehong; Ding, Caiyun; Jin, Guorong; Liu, Jianrong; Chang, Qiaoqiao; Hu, Fengyun; Yu, Li

    2016-11-01

    Autism spectrum disorder (ASD) is a developmental disorder characterized by impairments in social and communication abilities, as well as by restricted and repetitive behaviors. The BTBR T (+) Itpr3 (tf) (BTBR) mice have emerged as a well characterized and widely used mouse model of a range of ASD-like phenotype, showing deficiencies in social behaviors and unusual ultrasonic vocalizations as well as increased repetitive self-grooming. However, the inherited neurobiological changes that lead to ASD-like behaviors in these mice are incompletely known and still under active investigation. The aim of this study was to further evaluate the structure and neurotransmitter release of the glutamatergic synapse in BTBR mice. C57BL/6J (B6) mice were used as a control strain because of their high level of sociability. The important results showed that the evoked glutamate release in the cerebral cortex of BTBR mice was significantly lower than in B6 mice. And the level of vesicle docking-related protein Syntaxin-1A was reduced in BTBR mice. However, no significant changes were observed in the number of glutamatergic synapse, level of synaptic proteins, density of dendritic spine and postsynaptic density between BTBR mice and B6 mice. Overall, our results suggest that abnormal vesicular glutamate activity may underlie the ASD relevant pathology in the BTBR mice.

  20. Chronic Social Defeat Stress Modulates Dendritic Spines Structural Plasticity in Adult Mouse Frontal Association Cortex

    PubMed Central

    Shu, Yu

    2017-01-01

    Chronic stress is associated with occurrence of many mental disorders. Previous studies have shown that dendrites and spines of pyramidal neurons of the prefrontal cortex undergo drastic reorganization following chronic stress experience. So the prefrontal cortex is believed to play a key role in response of neural system to chronic stress. However, how stress induces dynamic structural changes in neural circuit of prefrontal cortex remains unknown. In the present study, we examined the effects of chronic social defeat stress on dendritic spine structural plasticity in the mouse frontal association (FrA) cortex in vivo using two-photon microscopy. We found that chronic stress altered spine dynamics in FrA and increased the connectivity in FrA neural circuits. We also found that the changes in spine dynamics in FrA are correlated with the deficit of sucrose preference in defeated mice. Our findings suggest that chronic stress experience leads to adaptive change in neural circuits that may be important for encoding stress experience related memory and anhedonia. PMID:28197343

  1. Competition and Homeostasis of Excitatory and Inhibitory Connectivity in the Adult Mouse Visual Cortex.

    PubMed

    Saiepour, M Hadi; Chakravarthy, Sridhara; Min, Rogier; Levelt, Christiaan N

    2015-10-01

    During cortical development, synaptic competition regulates the formation and adjustment of neuronal connectivity. It is unknown whether synaptic competition remains active in the adult brain and how inhibitory neurons participate in this process. Using morphological and electrophysiological measurements, we show that expressing a dominant-negative form of the TrkB receptor (TrkB.T1) in the majority of pyramidal neurons in the adult visual cortex does not affect excitatory synapse densities. This is in stark contrast to the previously reported loss of excitatory input which occurs if the exact same transgene is expressed in sparse neurons at the same age. This indicates that synaptic competition remains active in adulthood. Additionally, we show that interneurons not expressing the TrkB.T1 transgene may have a competitive advantage and obtain more excitatory synapses when most neighboring pyramidal neurons do express the transgene. Finally, we demonstrate that inhibitory synapses onto pyramidal neurons are reduced when TrkB signaling is interfered with in most pyramidal neurons but not when few pyramidal neurons have this deficit. This adjustment of inhibitory innervation is therefore not a cell-autonomous consequence of decreased TrkB signaling but more likely a homeostatic mechanism compensating for activity changes at the population level.

  2. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis

    PubMed Central

    Ferrón, S. R.; Radford, E. J.; Domingo-Muelas, A.; Kleine, I.; Ramme, A.; Gray, D.; Sandovici, I.; Constancia, M.; Ward, A.; Menheniott, T. R.; Ferguson-Smith, A. C.

    2015-01-01

    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis. PMID:26369386

  3. Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors.

    PubMed

    Lorber, Barbara; Berry, Martin; Logan, Ann

    2005-04-01

    In the present study the effects of lens injury on retinal ganglion cell axon/neurite re-growth were investigated in adult mice. In vivo, lens injury promoted successful regeneration of retinal ganglion cell axons past the optic nerve lesion site, concomitant with the invasion of macrophages into the eye and the presence of activated retinal astrocytes/Muller cells. In vitro, retinal ganglion cells from lens-lesioned mice grew significantly longer neurites than those from intact mice, which correlated with the presence of enhanced numbers of activated retinal astrocytes/Muller cells. Co-culture of retinal ganglion cells from intact mice with macrophage-rich lesioned lens/vitreous body led to increased neurite lengths compared with co-culture with macrophage-free intact lens/vitreous body, pointing to a neurotrophic effect of macrophages. Furthermore, retinal ganglion cells from mice that had no lens injury but had received intravitreal Zymosan injections to stimulate macrophage invasion into the eye grew significantly longer neurites compared with controls, as did retinal ganglion cells from intact mice co-cultured with macrophage-rich vitreous body from Zymosan-treated mice. The intact lens, but not the intact vitreous body, exerted a neurotrophic effect on retinal ganglion cell neurite outgrowth, suggesting that lens-derived neurotrophic factor(s) conspire with those derived from macrophages in lens injury-stimulated axon regeneration. Together, these results show that lens injury promotes retinal ganglion cell axon regeneration/neurite outgrowth in adult mice, an observation with important implications for axon regeneration studies in transgenic mouse models.

  4. A new method for visualization of endothelial cells and extravascular leakage in adult mouse brain using fluorescein isothiocyanate.

    PubMed

    Miyata, Seiji; Morita, Shoko

    2011-10-30

    We described a new method for the visualization of vasculature and endothelial cells and the assessment of extravascular leakage in adult mouse brain by using fluorescein isothiocyanate (FITC), or a reactive fluorescent dye. FITC is the fluorescein derivative that reacts covalently with amine groups at alkaline pH. In this method, strong fluorescence of FITC was seen at vasculature throughout the brain and spinal cord, when mice received intracardiac perfusion with FITC-containing saline at pH 7.0 followed by paraformaldehyde (PFA) fixative at pH 8.0. The fluorescence of FITC was faint when animals were fixed with PFA fixative at pH 7.0 after the perfusion of FITC-containing saline at pH 7.0. The fluorescence of FITC was not detected when mice was fixed with PFA fixative before the perfusion of FITC-containing saline. Double labeling immunohistochemistry using an endothelial cell marker CD31 or a pericyte marker desmin revealed that FITC was accumulated at nuclei of endothelial cells but not at those of pericytes. Extravascular leakage of FITC was prominent in the area postrema or a brain region of the circumventricular organs that lacks the blood-brain barrier. Moreover, strong extravascular leakage of FITC was detected at damaged sites of the cerebral cortex with cryoinjury. Thus, FITC method is useful technique for examining the architecture of brain vasculature and endothelial cells and the assessment of extravascular leakage in adult rodents. Moreover, FITC binds covalently to cellular components, so that makes it possible to perform double labeling immunohistochemistry and long-term storage of the preparation.

  5. Cre recombinase-regulated Endothelin1 transgenic mouse lines: novel tools for analysis of embryonic and adult disorders

    PubMed Central

    Tavares, Andre L.P.; Clouthier, David E.

    2015-01-01

    Endothelin-1 (EDN1) influences both craniofacial and cardiovascular development and a number of adult physiological conditions by binding to one or both of the known endothelin receptors, thus initiating multiple signaling cascades. Animal models containing both conventional and conditional loss of the Edn1 gene have been used to dissect EDN1 function in both embryos and adults. However, while transgenic Edn1 over-expression or targeted genomic insertion of Edn1 has been performed to understand how elevated levels of Edn1 result in or exacerbate disease states, an animal model in which Edn1 over-expression can be achieved in a spatiotemporal-specific manner has not been reported. Here we describe the creation of Edn1 conditional over-expression transgenic mouse lines in which the chicken β-actin promoter and an Edn1 cDNA are separated by a strong stop sequence flanked by loxP sites. In the presence of Cre, the stop cassette is removed, leading to Edn1 expression. Using the Wnt1-Cre strain, in which Cre expression is targeted to the Wnt1-expressing domain of the central nervous system (CNS) from which neural crest cells (NCCs) arise, we show that stable CBA-Edn1 transgenic lines with varying EDN1 protein levels develop defects in NCC-derived tissues of the face, though the severity differs between lines. We also show that Edn1 expression can be achieved in other embryonic tissues utilizing other Cre strains, with this expression also resulting in developmental defects. CBA-Edn1 transgenic mice will be useful in investigating diverse aspects of EDN1-mediated-development and disease, including understanding how NCCs achieve and maintain a positional and functional identity and how aberrant EDN1 levels can lead to multiple physiological changes and diseases. PMID:25725491

  6. Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse

    PubMed Central

    Zampieri, Alexandre; Champagne, Julien; Auzemery, Baptiste; Fuentes, Ivanna; Maurel, Benjamin; Bienvenu, Frédéric

    2015-01-01

    We present here a novel method for the semi-quantitative detection of low abundance proteins in solution that is both fast and simple. It is based on Homogenous Time Resolved Förster Resonance Energy Transfer (HTRF), between a lanthanide labeled donor antibody and a d2 or XL665 labeled acceptor antibody that are both raised against different epitopes of the same target. This novel approach we termed “Tandem-HTRF”, can specifically reveal rare polypeptides from only a few microliters of cellular lysate within one hour in a 384-well plate format. Using this sensitive approach, we observed surprisingly that the core cell cycle regulator Cyclin D1 is sustained in fully developed adult organs and harbors an unexpected expression pattern affected by environmental challenge. Thus our method, Tandem-HTRF offers a promising way to investigate subtle variations in the dynamics of sparse proteins from limited biological material. PMID:26503526

  7. Build a better mouse: directly-observed issues in computer use for adults with SMI.

    PubMed

    Black, Anne C; Serowik, Kristin L; Schensul, Jean J; Bowen, Anne M; Rosen, Marc I

    2013-03-01

    Integrating information technology into healthcare has the potential to bring treatment to hard-to-reach people. Individuals with serious mental illness (SMI), however, may derive limited benefit from these advances in care because of lack of computer ownership and experience. To date, conclusions about the computer skills and attitudes of adults with SMI have been based primarily on self-report. In the current study, 28 psychiatric outpatients with co-occurring cocaine use were interviewed about their computer use and opinions, and 25 were then directly observed using task analysis and think aloud methods as they navigated a multi-component health informational website. Participants reported low rates of computer ownership and use, and negative attitudes towards computers. Self-reported computer skills were higher than demonstrated in the task analysis. However, some participants spontaneously expressed more positive attitudes and greater computer self-efficacy after navigating the website. Implications for increasing access to computer-based health information are discussed.

  8. Multiple Retinal Axons Converge onto Relay Cells in the Adult Mouse Thalamus.

    PubMed

    Hammer, Sarah; Monavarfeshani, Aboozar; Lemon, Tyler; Su, Jianmin; Fox, Michael Andrew

    2015-09-08

    Activity-dependent refinement of neural circuits is a fundamental principle of neural development. This process has been well studied at retinogeniculate synapses-synapses that form between retinal ganglion cells (RGCs) and relay cells within the dorsal lateral geniculate nucleus. Physiological studies suggest that shortly after birth, inputs from ∼20 RGCs converge onto relay cells. Subsequently, all but just one to two of these inputs are eliminated. Despite widespread acceptance, this notion is at odds with ultrastructural studies showing numerous retinal terminals clustering onto relay cell dendrites in the adult. Here, we explored this discrepancy using brainbow AAVs and serial block face scanning electron microscopy (SBFSEM). Results with both approaches demonstrate that terminals from numerous RGCs cluster onto relay cell dendrites, challenging the notion that only one to two RGCs innervate each relay cell. These findings force us to re-evaluate our understanding of subcortical visual circuitry.

  9. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer

    PubMed Central

    Ou, Jingxing; Vijayasarathy, Camasamudram; Ziccardi, Lucia; Chen, Shan; Zeng, Yong; Marangoni, Dario; Pope, Jodie G.; Bush, Ronald A.; Wu, Zhijian; Li, Wei; Sieving, Paul A.

    2015-01-01

    Strategies aimed at invoking synaptic plasticity have therapeutic potential for several neurological conditions. The human retinal synaptic disease X-linked retinoschisis (XLRS) is characterized by impaired visual signal transmission through the retina and progressive visual acuity loss, and mice lacking retinoschisin (RS1) recapitulate human disease. Here, we demonstrate that restoration of RS1 via retina-specific delivery of adeno-associated virus type 8-RS1 (AAV8-RS1) vector rescues molecular pathology at the photoreceptor–depolarizing bipolar cell (photoreceptor-DBC) synapse and restores function in adult Rs1-KO animals. Initial development of the photoreceptor-DBC synapse was normal in the Rs1-KO retina; however, the metabotropic glutamate receptor 6/transient receptor potential melastatin subfamily M member 1–signaling (mGluR6/TRPM1-signaling) cascade was not properly maintained. Specifically, the TRPM1 channel and G proteins Gαo, Gβ5, and RGS11 were progressively lost from postsynaptic DBC dendritic tips, whereas the mGluR6 receptor and RGS7 maintained proper synaptic position. This postsynaptic disruption differed from other murine night-blindness models with an electronegative electroretinogram response, which is also characteristic of murine and human XLRS disease. Upon AAV8-RS1 gene transfer to the retina of adult XLRS mice, TRPM1 and the signaling molecules returned to their proper dendritic tip location, and the DBC resting membrane potential was restored. These findings provide insight into the molecular plasticity of a critical synapse in the visual system and demonstrate potential therapeutic avenues for some diseases involving synaptic pathology. PMID:26098217

  10. Cyclohexane produces behavioral deficits associated with astrogliosis and microglial reactivity in the adult hippocampus mouse brain.

    PubMed

    Campos-Ordonez, Tania; Zarate-Lopez, David; Galvez-Contreras, Alma Y; Moy-Lopez, Norma; Guzman-Muniz, Jorge; Gonzalez-Perez, Oscar

    2015-05-01

    Cyclohexane is a volatile substance that has been utilized as a safe substitute of several organic solvents in diverse industrial processes, such as adhesives, paints, paint thinners, fingernail polish, lacquers, and rubber industry. A number of these commercial products are ordinarily used as inhaled drugs. However, it is not well known whether cyclohexane has noxious effects in the central nervous system. The aim of this study was to analyze the effects of cyclohexane inhalation on motor behavior, spatial memory, and reactive gliosis in the hippocampus of adult mice. We used a model that mimics recreational drug use in male Balb/C mice (P60), divided into two groups: controls and the cyclohexane group (exposed to 9,000 ppm of cyclohexane for 30 days). Both groups were then evaluated with a functional observational battery (FOB) and the Morris water maze (MWM). Furthermore, the relative expression of AP endonuclease 1 (APE1), and the number of astrocytes (GFAP+ cells) and microglia (Iba1+ cells) were quantified in the hippocampal CA1 and CA3 areas. Our findings indicated that cyclohexane produced severe functional deficits during a recreational exposure as assessed by the FOB. The MWM did not show statistically significant changes in the acquisition and retention of spatial memory. Remarkably, a significant increase in the number of astrocytes and microglia cells, as well as in the cytoplasmic processes of these cells were observed in the hippocampal CA1 and CA3 areas of cyclohexane-exposed mice. This cellular response was associated with an increase in the expression of APE1 in the same brain regions. In summary, cyclohexane exposure produces functional deficits that are associated with an important increase in the APE1 expression as well as the number of astrocytes and microglia cells and their cytoplasmic complexity in the CA1 and CA3 regions of the adult hippocampus.

  11. Adenosine 5' triphosphate evoked mobilization of intracellular calcium in central nervous system white matter of adult mouse optic nerve.

    PubMed

    James, G; Butt, A M

    1999-06-11

    Although it has been established that immature glial cells express functional purinergic receptors, the responsiveness of mature glial cells in vivo had not been elucidated. This question was addressed using fura-2 ratiometric measurements of [Ca2+]i in the adult mouse optic nerve, a central nervous system (CNS) white matter tract, taking advantage of the facts that (i), the optic nerve contains glial cells but not neurons and (ii), that fura-2 loads primarily astrocytes in isolated intact optic nerves. We show that adenosine 5' triphosphate (ATP) evoked an increase in [Ca2+]i in a concentration-dependent manner with a half-maximal effect at 3 microm ATP, and with a rank order of agonist potency of ATP > ADP > alpha,beta-methyline-ATP > UDP > adenosine. The results indicate mainly P2Y and P2X components, consistent with the in vitro astroglial purinergic receptor profile. The in vivo response of mature glia to ATP may be important in their response to CNS damage.

  12. Biodegradation of the ZnO:Eu nanoparticles in the tissues of adult mouse after alimentary application.

    PubMed

    Kielbik, Paula; Kaszewski, Jaroslaw; Rosowska, Julita; Wolska, Ewelina; Witkowski, Bartłomiej S; Gralak, Mikolaj A; Gajewski, Zdzisław; Godlewski, Marek; Godlewski, Michal M

    2016-11-21

    Biodegradable zinc oxide nanoparticles (ZnO NPs) are considered promising materials for future biomedical applications. To fulfil this potential, biodistribution and elimination patterns of ZnO NPs in the living organism need to be resolved. In order to investigate gastrointestinal absorption of ZnO NPs and their intra-organism distribution, water suspension of ZnO or fluorescent ZnO:Eu (Europium-doped zinc oxide) NPs (10mg/ml; 0.3ml/mouse) was alimentary-administered (IG: intra-gastric) to adult mice. Internal organs collected at key time-points after IG were evaluated by AAS for Zn concentration and analysed by cytometric techniques. We found that Zn-based NPs were readily absorbed and distributed (3 h post IG) in the nanoparticle form throughout the organism. Results suggest, that liver and kidneys were key organs responsible for NPs elimination, while accumulation was observed in the spleen and adipose tissues. We also showed that ZnO/ZnO:Eu NPs were able to cross majority of biological barriers in the organism (including blood-brain-barrier).

  13. Interneuron precursor transplants in adult hippocampus reverse psychosis-relevant features in a mouse model of hippocampal disinhibition.

    PubMed

    Gilani, Ahmed I; Chohan, Muhammad O; Inan, Melis; Schobel, Scott A; Chaudhury, Nashid H; Paskewitz, Samuel; Chuhma, Nao; Glickstein, Sara; Merker, Robert J; Xu, Qing; Small, Scott A; Anderson, Stewart A; Ross, Margaret Elizabeth; Moore, Holly

    2014-05-20

    GABAergic interneuron hypofunction is hypothesized to underlie hippocampal dysfunction in schizophrenia. Here, we use the cyclin D2 knockout (Ccnd2(-/-)) mouse model to test potential links between hippocampal interneuron deficits and psychosis-relevant neurobehavioral phenotypes. Ccnd2(-/-) mice show cortical PV(+) interneuron reductions, prominently in hippocampus, associated with deficits in synaptic inhibition, increased in vivo spike activity of projection neurons, and increased in vivo basal metabolic activity (assessed with fMRI) in hippocampus. Ccnd2(-/-) mice show several neurophysiological and behavioral phenotypes that would be predicted to be produced by hippocampal disinhibition, including increased ventral tegmental area dopamine neuron population activity, behavioral hyperresponsiveness to amphetamine, and impairments in hippocampus-dependent cognition. Remarkably, transplantation of cells from the embryonic medial ganglionic eminence (the major origin of cerebral cortical interneurons) into the adult Ccnd2(-/-) caudoventral hippocampus reverses these psychosis-relevant phenotypes. Surviving neurons from these transplants are 97% GABAergic and widely distributed within the hippocampus. Up to 6 mo after the transplants, in vivo hippocampal metabolic activity is lowered, context-dependent learning and memory is improved, and dopamine neuron activity and the behavioral response to amphetamine are normalized. These findings establish functional links between hippocampal GABA interneuron deficits and psychosis-relevant dopaminergic and cognitive phenotypes, and support a rationale for targeting limbic cortical interneuron function in the prevention and treatment of schizophrenia.

  14. Morphological and behavioural changes occur following the X-ray irradiation of the adult mouse olfactory neuroepithelium

    PubMed Central

    2012-01-01

    Background The olfactory neuroepithelium lines the upper nasal cavity and is in direct contact with the external environment and the olfactory bulbs. The ability to self-renew throughout life and the reproducible recovery after injury, make it a model tissue to study mechanisms underlying neurogenesis. In this study, X-rays were used to disrupt proliferating olfactory stem cell populations and to assess their role in the cellular and morphological changes involved in olfactory neurogenic processes. Results We have analysed the histological and functional effects of a sub-lethal dose of X-rays on the adult mouse olfactory neuroepithelium at 2 hours, 24 hours, 1 week, 2 weeks and 5 weeks. We have shown an immediate cessation of proliferating olfactory stem cells as shown by BrdU, Ki67 and pH3 expression. At 24 hours there was an increase in the neural transcription factors Mash1 and Pax6 expression, and a disruption of the basal lamina and increase in glandular cell marker expression at 1 week post-irradiation. Coincident with these changes was an impairment of the olfactory function in vivo. Conclusions We have shown significant changes in basal cell proliferation as well as morphological changes in the olfactory neuroepithelium following X-ray irradiation. There is involvement of the basal lamina as well as a clear role for glandular and sustentacular cells. PMID:23113950

  15. Short-Term Regulation of Excitation-Contraction Coupling by the β1a Subunit in Adult Mouse Skeletal Muscle

    PubMed Central

    García, María C.; Carrillo, Elba; Galindo, José M.; Hernández, Ascensión; Copello, Julio A.; Fill, Michael; Sánchez, Jorge A.

    2005-01-01

    The β1a subunit of the skeletal muscle voltage-gated Ca2+ channel plays a fundamental role in the targeting of the channel to the tubular system as well as in channel function. To determine whether this cytosolic auxiliary subunit is also a regulatory protein of Ca2+ release from the sarcoplasmic reticulum in vivo, we pressure-injected the β1a subunit into intact adult mouse muscle fibers and recorded, with Fluo-3 AM, the intracellular Ca2+ signal induced by the action potential. We found that the β1a subunit significantly increased, within minutes, the amplitude of Ca2+ release without major changes in its time course. β1a subunits with the carboxy-terminus region deleted did not show an effect on Ca2+ release. The possibility that potentiation of Ca2+ release is due to a direct interaction between the β1a subunit and the ryanodine receptor was ruled out by bilayer experiments of RyR1 single-channel currents and also by Ca2+ flux experiments. Our data suggest that the β1a subunit is capable of regulating E-C coupling in the short term and that the integrity of the carboxy-terminus region is essential for its modulatory effect. PMID:16183888

  16. Expression Atlas of the Deubiquitinating Enzymes in the Adult Mouse Retina, Their Evolutionary Diversification and Phenotypic Roles

    PubMed Central

    Esquerdo, Mariona; Grau-Bové, Xavier; Garanto, Alejandro; Toulis, Vasileios; Garcia-Monclús, Sílvia; Millo, Erica; López-Iniesta, Ma José; Abad-Morales, Víctor; Ruiz-Trillo, Iñaki; Marfany, Gemma

    2016-01-01

    Ubiquitination is a relevant cell regulatory mechanism to determine protein fate and function. Most data has focused on the role of ubiquitin as a tag molecule to target substrates to proteasome degradation, and on its impact in the control of cell cycle, protein homeostasis and cancer. Only recently, systematic assays have pointed to the relevance of the ubiquitin pathway in the development and differentiation of tissues and organs, and its implication in hereditary diseases. Moreover, although the activity and composition of ubiquitin ligases has been largely addressed, the role of the deubiquitinating enzymes (DUBs) in specific tissues, such as the retina, remains mainly unknown. In this work, we undertook a systematic analysis of the transcriptional levels of DUB genes in the adult mouse retina by RT-qPCR and analyzed the expression pattern by in situ hybridization and fluorescent immunohistochemistry, thus providing a unique spatial reference map of retinal DUB expression. We also performed a systematic phylogenetic analysis to understand the origin and the presence/absence of DUB genes in the genomes of diverse animal taxa that represent most of the known animal diversity. The expression landscape obtained supports the potential subfunctionalization of paralogs in those families that expanded in vertebrates. Overall, our results constitute a reference framework for further characterization of the DUB roles in the retina and suggest new candidates for inherited retinal disorders. PMID:26934049

  17. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain.

    PubMed

    Hemmer, Kathrin; Zhang, Mingyue; van Wüllen, Thea; Sakalem, Marna; Tapia, Natalia; Baumuratov, Aidos; Kaltschmidt, Christian; Kaltschmidt, Barbara; Schöler, Hans R; Zhang, Weiqi; Schwamborn, Jens C

    2014-09-09

    Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]). iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC) technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications.

  18. Astrocytic adaptation during cerebral angiogenesis follows the new vessel formation induced through chronic hypoxia in adult mouse cortex

    NASA Astrophysics Data System (ADS)

    Masamoto, Kazuto; Kanno, Iwao

    2014-03-01

    We examined longitudinal changes of the neuro-glia-vascular unit during cerebral angiogenesis induced through chronic hypoxia in the adult mouse cortex. Tie2-GFP mice in which the vascular endothelial cells expressed green fluorescent proteins (GFP) were exposed to chronic hypoxia, while the spatiotemporal developments of the cortical capillary sprouts and the neighboring astrocytic remodeling were characterized with repeated two-photon microscopy. The capillary sprouts appeared at early phases of the hypoxia adaptation (1-2 weeks), while the morphological changes of the astrocytic soma and processes were not detected in this phase. In the later phases of the hypoxia adaptation (> 2 weeks), the capillary sprouts created a new connection with existing capillaries, and its neighboring astrocytes extended their processes to the newly-formed vessels. The findings show that morphological adaptation of the astrocytes follow the capillary development during the hypoxia adaptation, which indicate that the newly-formed vessels provoke cellular interactions with the neighboring astrocytes to strengthen the functional blood-brain barrier.

  19. Impaired adult hippocampal neurogenesis and cognitive ability in a mouse model of intrastriatal hemorrhage.

    PubMed

    Yang, Yuan; Zhang, Meikui; Kang, Xiaoni; Jiang, Chen; Zhang, Huan; Wang, Pei; Li, Jingjing

    2015-07-10

    Thrombin released by hematoma is an important mediator of the secondary injury of intracerebral hemorrhage (ICH), however, the effect of thrombin on adult neurogenesis and cognitive ability remains elusive. In this study, intrastriatal injection of 0.05 U thrombin didn't affect the neurogenesis at the subgranular zone (SGZ), which was distal to the injection site. 0.1 U thrombin increased the 5-bromo-2-deoxyuridine(+) (BrdU(+), S-phase proliferating cells)/doublecortin(+) (DCX(+), immature neurons) double labelled neurons, but decreased BrdU(+)/NeuN(+) double labelled mature neurons. Higher doses of thrombin (1 U, 2 U, and 5 U) significantly decreased the BrdU(+)/DCX(+) and BrdU(+)/NeuN(+) double labelled cells. After 1 U thrombin injection, cell apoptosis was found at the dentate gyrus of hippocampus at 3-24 h, but not 5 d post-injury. Thrombin infusion (1 U) induced spatial memory deficits in Morris water maze test; whereas, hirudin, the thrombin antagonist, significantly reversed both neurogenesis loss and spatial learning and memory impairment. In conclusion, at least at short term (5 days) after striatum ICH, the effect of high dose of thrombin on neurogenesis of SGZ, and the spatial learning and memory ability, is detrimental.

  20. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis

    PubMed Central

    Ostrowski, Stephen M.; Wright, Margaret C.; Bolock, Alexa M.; Geng, Xuehui; Maricich, Stephen M.

    2015-01-01

    Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression. PMID:26138479

  1. Plasticity of Astrocytic Coverage and Glutamate Transporter Expression in Adult Mouse Cortex

    PubMed Central

    Steiner, Pascal; Hirling, Harald; Welker, Egbert; Knott, Graham W

    2006-01-01

    Astrocytes play a major role in the removal of glutamate from the extracellular compartment. This clearance limits the glutamate receptor activation and affects the synaptic response. This function of the astrocyte is dependent on its positioning around the synapse, as well as on the level of expression of its high-affinity glutamate transporters, GLT1 and GLAST. Using Western blot analysis and serial section electron microscopy, we studied how a change in sensory activity affected these parameters in the adult cortex. Using mice, we found that 24 h of whisker stimulation elicited a 2-fold increase in the expression of GLT1 and GLAST in the corresponding cortical column of the barrel cortex. This returns to basal levels 4 d after the stimulation was stopped, whereas the expression of the neuronal glutamate transporter EAAC1 remained unaltered throughout. Ultrastructural analysis from the same region showed that sensory stimulation also causes a significant increase in the astrocytic envelopment of excitatory synapses on dendritic spines. We conclude that a period of modified neuronal activity and synaptic release of glutamate leads to an increased astrocytic coverage of the bouton–spine interface and an increase in glutamate transporter expression in astrocytic processes. PMID:17048987

  2. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis.

    PubMed

    Ostrowski, Stephen M; Wright, Margaret C; Bolock, Alexa M; Geng, Xuehui; Maricich, Stephen M

    2015-07-15

    Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression.

  3. Response of olfactory axons to loss of synaptic targets in the adult mouse

    PubMed Central

    Ardiles, Yona; de la Puente, Rafael; Toledo, Rafael; Isgor, Ceylan; Guthrie, Kathleen

    2007-01-01

    Glomerular convergence has been proposed to rely on interactions between like olfactory axons, however topographic targeting is influenced by guidance molecules encountered in the olfactory bulb. Disruption of these cues during development misdirects sensory axons, however little is known about the role of bulb-derived signals in later life, as new axons arise during turnover of the olfactory sensory neuron (OSN) population. To evaluate the contribution of bulb neurons in maintaining topographic projections in adults, we ablated them with N-methyl-D-aspartate (NMDA) in P2-IRES-tauLacZ mice and examined how sensory axons responded to loss of their postsynaptic partners. NMDA lesion eliminated bulb neurons without damage to sensory axons or olfactory ensheathing glia. P2 axons contained within glomeruli at the time of lesion maintained convergence at these locations; there was no evidence of compensatory growth into the remnant tissue. Delayed apoptosis of OSNs in the target-deprived epithelium led to declines in P2 neuron number as well as the gradual atrophy, and in some cases complete loss, of P2 glomeruli in lesioned bulbs by three weeks. Increased cell proliferation in the epithelium partially restored the OSN population, and by eight weeks, new P2 axons distributed within diverse locations in the bulb remnant and within the anterior olfactory nucleus. Prior studies have suggested that initial development of olfactory topography does not rely on synapse formation with target neurons, however the present data demonstrate that continued maintenance of the sensory map requires the presence of sufficient numbers and/or types of available bulbar synaptic targets. PMID:17674970

  4. GAP-43 overexpression in adult mouse Purkinje cells overrides myelin-derived inhibition of neurite growth.

    PubMed

    Gianola, Sara; Rossi, Ferdinando

    2004-02-01

    Up-regulation of growth-associated proteins in adult neurons promotes axon regeneration and neuritic elongation onto nonpermissive substrates. To investigate the interaction between these molecules and myelin-related inhibitory factors, we examined transgenic mice in which overexpression of the growth-associated protein GAP-43 is driven by the Purkinje cell-specific promoter L7. Contrary to their wild-type counterparts, which have extremely poor regenerative capabilities, axotomized transgenic Purkinje cells exhibit profuse sprouting along the intracortical neurite and at the severed stump [Buffo et al. (1997) J. Neurosci., 17, 8778-8791]. Here, we investigated the relationship between such sprouting axons and oligodendroglia to ask whether GAP-43 overexpression enables Purkinje neurites to overcome myelin-derived inhibition. Intact transgenic Purkinje axons display normal morphology and myelination. Following injury, however, many GAP-43-overexpressing neurite stumps are devoid of myelin cover and sprout into white matter regions containing densely packed myelin and Nogo-A- or MAG-immunopositive oligodendrocytes. The intracortical segments of these neurites show focal accumulations of GAP-43, which are associated with disrupted or retracted myelin sheaths. Numerous sprouts originate from such demyelinated segments and spread into the granular layer. Some myelin loss, though not axon sprouting, is also evident in wild-type mice, but this phenomenon is definitely more rapid and extensive in transgenic cerebella. Thus, GAP-43-overexpressing Purkinje axons are endowed with enhanced capabilities for growing into nonpermissive territories and show a pronounced tendency to lose myelin. Our observations suggest that accumulation of GAP-43 along precise axon segments disrupts the normal axon-glia interaction and enhances the retraction of oligodendrocytic processes to facilitate the outgrowth of neuritic sprouts.

  5. Analysis of Adult Female Mouse (Mus musculus) Group Behavior on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Globus, R. K.; Ronca, A. E.

    2016-01-01

    As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group

  6. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  7. Synaptic NMDA receptor-mediated currents in anterior piriform cortex are reduced in the adult fragile X mouse.

    PubMed

    Gocel, James; Larson, John

    2012-09-27

    Fragile X syndrome is a neurodevelopmental condition caused by the transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. The Fmr1 knockout (KO) mouse exhibits age-dependent deficits in long term potentiation (LTP) at association (ASSN) synapses in anterior piriform cortex (APC). To investigate the mechanisms for this, whole-cell voltage-clamp recordings of ASSN stimulation-evoked synaptic currents were made in APC of slices from adult Fmr1-KO and wild-type (WT) mice, using the competitive N-methyl-D-aspartate (NMDA) receptor antagonist, CPP, to distinguish currents mediated by NMDA and AMPA receptors. NMDA/AMPA current ratios were lower in Fmr1-KO mice than in WT mice, at ages ranging from 3-18months. Since amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) mediated by AMPA receptors were no different in Fmr1-KO and WT mice at these ages, the results suggest that NMDA receptor-mediated currents are selectively reduced in Fmr1-KO mice. Analyses of voltage-dependence and decay kinetics of NMDA receptor-mediated currents did not reveal differences between Fmr1-KO and WT mice, suggesting that reduced NMDA currents in Fmr1-KO mice are due to fewer synaptic receptors rather than differences in receptor subunit composition. Reduced NMDA receptor signaling may help to explain the LTP deficit seen at APC ASSN synapses in Fmr1-KO mice at 6-18months of age, but does not explain normal LTP at these synapses in mice 3-6months old. Evoked currents and mEPSCs were also examined in senescent Fmr1-KO and WT mice at 24-28months of age. NMDA/AMPA ratios were similar in senescent WT and Fmr1-KO mice, due to a decrease in the ratio in the WT mice, without significant change in AMPA receptor-mediated mEPSCs.

  8. Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain.

    PubMed

    Golmohammadi, Mohammad G; Blackmore, Daniel G; Large, Beatrice; Azari, Hassan; Esfandiary, Ebrahim; Paxinos, George; Franklin, Keith B J; Reynolds, Brent A; Rietze, Rodney L

    2008-04-01

    The neurosphere assay can detect and expand neural stem cells (NSCs) and progenitor cells, but it cannot discriminate between these two populations. Given two assays have purported to overcome this shortfall, we performed a comparative analysis of the distribution and frequency of NSCs and progenitor cells detected in 400 mum coronal segments along the ventricular neuraxis of the adult mouse brain using the neurosphere assay, the neural colony forming cell assay (N-CFCA), and label-retaining cell (LRC) approach. We observed a large variation in the number of progenitor/stem cells detected in serial sections along the neuraxis, with the number of neurosphere-forming cells detected in individual 400 mum sections varying from a minimum of eight to a maximum of 891 depending upon the rostral-caudal coordinate assayed. Moreover, the greatest variability occurred in the rostral portion of the lateral ventricles, thereby explaining the large variation in neurosphere frequency previously reported. Whereas the overall number of neurospheres (3730 +/- 276) or colonies (4275 +/- 124) we detected along the neuraxis did not differ significantly, LRC numbers were significantly reduced (1186 +/- 188, 7 month chase) in comparison to both total colonies and neurospheres. Moreover, approximately two orders of magnitude fewer NSC-derived colonies (50 +/- 10) were detected using the N-CFCA as compared to LRCs. Given only 5% of the LRCs are cycling (BrdU+/Ki-67+) or competent to divide (BrdU+/Mcm-2+), and proliferate upon transfer to culture, it is unclear whether this technique selectively detects endogenous NSCs. Overall, caution should be taken with the interpretation and employment of all these techniques.

  9. Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain.

    PubMed

    Morita, Shoko; Furube, Eriko; Mannari, Tetsuya; Okuda, Hiroaki; Tatsumi, Kouko; Wanaka, Akio; Miyata, Seiji

    2015-03-01

    The sensory circumventricular organs (CVOs), which comprise the organum vasculosum of the lamina terminalis (OVLT), the subfornical organ (SFO) and the area postrema (AP), lack a typical blood-brain barrier (BBB) and monitor directly blood-derived information to regulate body fluid homeostasis, inflammation, feeding and vomiting. Until now, almost nothing has been documented about vascular features of the sensory CVOs except fenestration of vascular endothelial cells. We therefore examine whether continuous angiogenesis occurs in the sensory CVOs of adult mouse. The angiogenesis-inducing factor vascular endothelial growth factor-A (VEGF-A) and the VEGF-A-regulating transcription factor hypoxia-inducible factor-1α were highly expressed in neurons of the OVLT and SFO and in both neurons and astrocytes of the AP. Expression of the pericyte-regulating factor platelet-derived growth factor B was high in astrocytes of the sensory CVOs. Immunohistochemistry of bromodeoxyuridine and Ki-67, a nuclear protein that is associated with cellular proliferation, revealed active proliferation of endothelial cells. Moreover, immunohistochemistry of caspase-3 and the basement membrane marker laminin showed the presence of apoptosis and sprouting of endothelial cells, respectively. Treatment with the VEGF receptor-associated tyrosine kinase inhibitor AZD2171 significantly reduced proliferation and filopodia sprouting of endothelial cells, as well as the area and diameter of microvessels. The mitotic inhibitor cytosine-b-D-arabinofuranoside reduced proliferation of endothelial cells and the vascular permeability of blood-derived low-molecular-weight molecules without changing vascular area and microvessel diameter. Thus, our data indicate that continuous angiogenesis is dependent on VEGF signaling and responsible for the dynamic plasticity of vascular structure and permeability.

  10. The transformation of synaptic to system plasticity in motor output from the sacral cord of the adult mouse

    PubMed Central

    Elbasiouny, Sherif M.; Collins, William F.; Heckman, C. J.

    2015-01-01

    Synaptic plasticity is fundamental in shaping the output of neural networks. The transformation of synaptic plasticity at the cellular level into plasticity at the system level involves multiple factors, including behavior of local networks of interneurons. Here we investigate the synaptic to system transformation for plasticity in motor output in an in vitro preparation of the adult mouse spinal cord. System plasticity was assessed from compound action potentials (APs) in spinal ventral roots, which were generated simultaneously by the axons of many motoneurons (MNs). Synaptic plasticity was assessed from intracellular recordings of MNs. A computer model of the MN pool was used to identify the middle steps in the transformation from synaptic to system behavior. Two input systems that converge on the same MN pool were studied: one sensory and one descending. The two synaptic input systems generated very different motor outputs, with sensory stimulation consistently evoking short-term depression (STD) whereas descending stimulation had bimodal plasticity: STD at low frequencies but short-term facilitation (STF) at high frequencies. Intracellular and pharmacological studies revealed contributions from monosynaptic excitation and stimulus time-locked inhibition but also considerable asynchronous excitation sustained from local network activity. The computer simulations showed that STD in the monosynaptic excitatory input was the primary driver of the system STD in the sensory input whereas network excitation underlies the bimodal plasticity in the descending system. These results provide insight on the roles of plasticity in the monosynaptic and polysynaptic inputs converging on the same MN pool to overall motor plasticity. PMID:26203107

  11. Early Social Enrichment Rescues Adult Behavioral and Brain Abnormalities in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-01-01

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases. PMID:25348604

  12. Liver Progenitors Isolated from Adult Healthy Mouse Liver Efficiently Differentiate to Functional Hepatocytes In Vitro and Repopulate Liver Tissue.

    PubMed

    Tanimizu, Naoki; Ichinohe, Norihisa; Ishii, Masayuki; Kino, Junichi; Mizuguchi, Toru; Hirata, Koichi; Mitaka, Toshihiro

    2016-12-01

    It has been proposed that tissue stem cells supply multiple epithelial cells in mature tissues and organs. However, it is unclear whether tissue stem cells generally contribute to cellular turnover in normal healthy organs. Here, we show that liver progenitors distinct from bipotent liver stem/progenitor cells (LPCs) persistently exist in mouse livers and potentially contribute to tissue maintenance. We found that, in addition to LPCs isolated as EpCAM(+) cells, liver progenitors were enriched in CD45(-) TER119(-) CD31(-) EpCAM(-) ICAM-1(+) fraction isolated from late-fetal and postnatal livers. ICAM-1(+) liver progenitors were abundant by 4 weeks (4W) after birth. Although their number decreased with age, ICAM-1(+) liver progenitors existed in livers beyond that stage. We established liver progenitor clones derived from ICAM-1(+) cells between 1 and 20W and found that those clones efficiently differentiated into mature hepatocytes (MHs), which secreted albumin, eliminated ammonium ion, stored glycogen, and showed cytochrome P450 activity. Even after long-term culture, those clones kept potential to differentiate to MHs. When ICAM-1(+) clones were transplanted into nude mice after retrorsine treatment and 70% partial hepatectomy, donor cells were incorporated into liver plates and expressed hepatocyte nuclear factor 4α, CCAAT/enhancer binding protein α, and carbamoylphosphate synthetase I. Moreover, after short-term treatment with oncostatin M, ICAM-1(+) clones could efficiently repopulate the recipient liver tissues. Our results indicate that liver progenitors that can efficiently differentiate to MHs exist in normal adult livers. Those liver progenitors could be an important source of new MHs for tissue maintenance and repair in vivo, and for regenerative medicine ex vivo. Stem Cells 2016;34:2889-2901.

  13. Characterization of thrombopoietin (TPO)-responsive progenitor cells in adult mouse bone marrow with in vivo megakaryocyte and erythroid potential.

    PubMed

    Ng, Ashley P; Kauppi, Maria; Metcalf, Donald; Di Rago, Ladina; Hyland, Craig D; Alexander, Warren S

    2012-02-14

    Hematopoietic progenitor cells are the progeny of hematopoietic stem cells that coordinate the production of precise numbers of mature blood cells of diverse functional lineages. Identification of cell-surface antigen expression associated with hematopoietic lineage restriction has allowed prospective isolation of progenitor cells with defined hematopoietic potential. To clarify further the cellular origins of megakaryocyte commitment, we assessed the in vitro and in vivo megakaryocyte and platelet potential of defined progenitor populations in the adult mouse bone marrow. We show that megakaryocytes arise from CD150(+) bipotential progenitors that display both platelet- and erythrocyte-producing potential in vivo and that can develop from the Flt3(-) fraction of the pregranulocyte-macrophage population. We define a bipotential erythroid-megakaryocyte progenitor population, the CD150(+)CD9(lo)endoglin(lo) fraction of Lin(-)cKit(+)IL7 receptor alpha(-)FcγRII/III(lo)Sca1(-) cells, which contains the bulk of the megakaryocyte colony-forming capacity of the bone marrow, including bipotential megakaryocyte-erythroid colony-forming capacity, and can generate both erythrocytes and platelets efficiently in vivo. This fraction is distinct from the CD150(+)CD9(hi)endoglin(lo) fraction, which contains bipotential precursors with characteristics of increased megakaryocytic maturation, and the CD150(+)CD9(lo)endoglin(hi) fraction, which contains erythroid lineage-committed cells. Finally, we demonstrate that bipotential erythroid-megakaryocyte progenitor and CD150(+)CD9(hi)endoglin(lo) cells are TPO-responsive and that the latter population specifically expands in the recovery from thrombocytopenia induced by anti-platelet serum.

  14. A new genus and species of demodecid mites from the tongue of a house mouse Mus musculus: description of adult and immature stages with data on parasitism.

    PubMed

    Izdebska, J N; Rolbiecki, L

    2016-06-01

    The study of the parasitofauna of the house mouse Mus musculus (Rodentia: Muridae) Linnaeus is particularly important owing to its multiple relationships with humans - as a cosmopolitan, synanthropic rodent, bred for pets, food for other animals or laboratory animal. This article proposes and describes a new genus and species of the parasitic mite based on adult and immature stages from the house mouse. Glossicodex musculi gen. n., sp. n. is a medium-sized demodecid mite (adult stages on average 199 µm in length) found in mouse tissue of the tongue. It is characterized by two large, hooked claws on each tarsus of the legs; the legs are relatively massive, consisting of large, non-overlapping segments. The palps consist of three slender, clearly separated, relatively narrow segments, wherein their coxal segments are also quite narrow and spaced. Also, segments of the palps of larva and nymphs are clearly isolated, and on the terminal segment, trident claws that resemble legs' claws can be found. On the ventral side, in immature stages, triangular scuta, topped with sclerotized spur, can be also observed. Glossicodex musculi was noted in 10.8% of mice with a mean infection intensity of 2.2 parasites per host.

  15. Embryonic mouse STO cell-derived xenografts express hepatocytic functions in the livers of nonimmunosuppressed adult rats.

    PubMed

    Zhang, Mingjun; Joseph, Brigid; Gupta, Sanjeev; Guest, I; Xu, Meng; Sell, Stewart; Son, Kyung-Hwa; Koch, Katherine S; Leffert, Hyam L

    2005-02-01

    Cells derived from embryonic mouse STO cell lines differentiate into hepatocytes when transplanted into the livers of nonimmunosuppressed dipeptidylpeptidase IV (DPPIV)-negative F344 rats. Within 1 day after intrasplenic injection, donor cells moved rapidly into the liver and were found in intravascular and perivascular sites; by 1 month, they were intrasinusoidal and also integrated into hepatic plates with approximately 2% efficiency and formed conjoint bile canaliculi. Neither donor cell proliferation nor host inflammatory responses were observed during this time. Detection of intrahepatic mouse COX1 mitochondrial DNA and mouse albumin mRNA in recipient rats indicated survival and differentiation of donor cells for at least 3 months. Mouse COX1 targets were also detected intrahepatically 4-9 weeks after STO cell injection into nonimmunosuppressed wild-type rats. In contrast to STO-transplanted rats, mouse DNA or RNA was not detectable in untreated or mock-transplanted rats or in rats injected with donor cell DNA. In cultured STO donor cells, DPPIV and glucose-6-phosphatase activities were observed in small clusters; in contrast, mouse major histocompatibility complex class I H-2Kq, H-2Dq, and H-2Lq and class II I-Aq markers were undetectable in vitro before or after interferon gamma treatment. Together with H-2K allele typing, which confirmed the Swiss mouse origin of the donor cells, these observations indicate that mouse-derived STO cell lines can differentiate along hepatocytic lineage and engraft into rat liver across major histocompatibility barriers.

  16. Hepatic progenitor cell lines from allyl alcohol-treated adult rats are derived from gamma-irradiated mouse STO cells.

    PubMed

    Zhang, Mingjun; Sell, Stewart; Leffert, Hyam L

    2003-01-01

    In attempts to recharacterize several markers of putative rat liver progenitor cells, single-stage reverse transcription-polymerase chain reaction (RT-PCR) analyses failed to confirm the reported immunochemical detection of albumin, alpha(1)-fetoprotein, and cytochrome P450-1A2 in the clonal line, 3(8)#21, and the cloned derivative, 3(8)#21-EGFP (enhanced green fluorescent protein). Undetectable expression occurred whether or not both lines were cultured on or off feeder layers of gamma-irradiated mouse embryonic STO (SIM [Sandoz inbred Swiss mouse] thioguanine-resistant ouabain-resistant) cells. PCR amplification of liver progenitor cell chromosomal (rat and mouse Pigr, rat INS1, mouse INS2) and mitochondrial (rat and mouse COX1) genes revealed only mouse sequences. Further analyses of rat and mouse COX1 sequences in cells from untampered storage vials of all 11 reported liver progenitor cell lines and strains revealed only mouse sequences. In addition, uniquely similar metaphase spreads were observed in STO, 3(8)#21, and 3(8)#21-EGFP cells. The combined results suggest that the previously reported "rat" liver progenitor cell lines were most likely generated during early derivation in cell culture from gamma-radiation-resistant or ineffectively irradiated mouse STO cells used as the feeder layers. These findings reveal new types of artifacts encountered in cocultures of tissue progenitor cells and feeder layer cell lines, and they sound a cautionary note: phenotypic and genotypic properties of feeder layers should be well-characterized before and during coculture with newly derived stem cells and clonal derivatives.

  17. Assessing the use of immersive virtual reality, mouse and touchscreen in pointing and dragging-and-dropping tasks among young, middle-aged and older adults.

    PubMed

    Chen, Jiayin; Or, Calvin

    2017-04-07

    This study assessed the use of an immersive virtual reality (VR), a mouse and a touchscreen for one-directional pointing, multi-directional pointing, and dragging-and-dropping tasks involving targets of smaller and larger widths by young (n = 18; 18-30 years), middle-aged (n = 18; 40-55 years) and older adults (n = 18; 65-75 years). A three-way, mixed-factorial design was used for data collection. The dependent variables were the movement time required and the error rate. Our main findings were that the participants took more time and made more errors in using the VR input interface than in using the mouse or the touchscreen. This pattern applied in all three age groups in all tasks, except for multi-directional pointing with a larger target width among the older group. Overall, older adults took longer to complete the tasks and made more errors than young or middle-aged adults. Larger target widths yielded shorter movement times and lower error rates in pointing tasks, but larger targets yielded higher rates of error in dragging-and-dropping tasks. Our study indicated that any other virtual environments that are similar to those we tested may be more suitable for displaying scenes than for manipulating objects that are small and require fine control. Although interacting with VR is relatively difficult, especially for older adults, there is still potential for older adults to adapt to that interface. Furthermore, adjusting the width of objects according to the type of manipulation required might be an effective way to promote performance.

  18. Selective expression of hyaluronan and receptor for hyaluronan mediated motility (Rhamm) in the adult mouse subventricular zone and rostral migratory stream and in ischemic cortex.

    PubMed

    Lindwall, Charlotta; Olsson, Martina; Osman, Ahmed M; Kuhn, H Georg; Curtis, Maurice A

    2013-03-29

    Hyaluronan is a large glycosaminoglycan, which is abundant in the extracellular matrix of the developing rodent brain. In the adult brain however, levels of hyaluronan are significantly reduced. In this study, we used neurocan-GFP as a histochemical probe to analyze the distribution of hyaluronan in the adult mouse subventricular zone (SVZ), as well as in the rostral migratory stream (RMS). Interestingly, we observed that hyaluronan is generally downregulated in the adult brain, but notably remains at high levels in the SVZ and RMS; areas in which neural stem/progenitor cells (NSPCs) persist, proliferate and migrate throughout life. In addition, we found that the receptor for hyaluronan-mediated motility (Rhamm) was expressed in migrating neuroblasts in these areas, indicating that Rhamm could be involved in regulating hyaluronan-mediated cell migration. Hyaluronan levels are balanced by synthesis through hyaluronan synthases (Has) and degradation by hyaluronidases (Hyal). We found that Has1 and Has2, as well as Hyal1 and Hyal2 were expressed in GFAP positive cells in the adult rodent SVZ and RMS, indicating that astrocytes could be regulating hyaluronan-mediated functions in these areas. We also demonstrate that hyaluronan levels are substantially increased at six weeks following a photothrombotic stroke lesion to the adult mouse cortex. Furthermore, GFAP positive cells in the peri-infarct area express Rhamm. Thus, hyaluronan may be involved in regulating cell migration in the normal SVZ and RMS and could also be responsible for priming the peri-infarct area following an ischemic lesion for cell migration.

  19. FLRF, a novel evolutionarily conserved RING finger gene, is differentially expressed in mouse fetal and adult hematopoietic stem cells and progenitors.

    PubMed

    Abdullah, J M; Li, X; Nachtman, R G; Jurecic, R

    2001-01-01

    Through differential screening of mouse hematopoietic stem cell (HSC) and progenitor subtracted cDNA libraries we have identified a HSC-specific transcript that represents a novel RING finger gene, named FLRF (fetal liver ring finger). FLRF represent a novel evolutionarily highly conserved RING finger gene, present in Drosophila, zebrafish, Xenopus, mouse, and humans. Full-length cDNA clones for mouse and human gene encode an identical protein of 317 amino acids with a C3HC4 RING finger domain at the amino terminus. During embryonic hematopoiesis FLRF is abundantly transcribed in mouse fetal liver HSC (Sca-1+c-kit+AA4.1+Lin- cells), but is not expressed in progenitors (AA4.1-). In adult mice FLRF is not transcribed in a highly enriched population of bone marrow HSC (Rh-123lowSca-1+c-kit+Lin- cells). Its expression is upregulated in a more heterogeneous population of bone marrow HSC (Lin-Sca-1+ cells), downregulated as they differentiate into progenitors (Lin-Sca-1- cells), and upregulated as progenitors differentiate into mature lymphoid and myeloid cell types. The human FLRF gene that spans a region of at least 12 kb and consists of eight exons was localized to chromosome 12q13, a region with frequent chromosome aberrations associated with multiple cases of acute myeloid leukemia and non-Hodgkin's lymphoma. The analysis of the genomic sequence upstream of the first exon in the mouse and human FLRF gene has revealed that both putative promoters contain multiple putative binding sites for several hematopoietic (GATA-1, GATA-2, GATA-3, Ikaros, SCL/Tal-1, AML1, MZF-1, and Lmo2) and other transcription factors, suggesting that mouse and human FLRF expression could be regulated in a developmental and cell-specific manner during hematopoiesis. Evolutionary conservation and differential expression in fetal and adult HSC and progenitors suggest that the FLRF gene could play an important role in HSC/progenitor cell lineage commitment and differentiation and could be

  20. Single-channel recordings of a rapid delayed rectifier current in adult mouse ventricular myocytes: basic properties and effects of divalent cations.

    PubMed

    Liu, Gong Xin; Zhou, Jun; Nattel, Stanley; Koren, Gideon

    2004-04-15

    The rapidly delayed rectifier current (I(Kr)) has been described in ventricular myocytes isolated from many species, as well as from neonatal mice. However, whether I(Kr) is present in the adult mouse heart remains controversial. We used cell-attached patch-clamp recording in symmetrical K(+) solutions to assess the presence and behaviour of single I(Kr) channels in adult mouse cardiomyocytes (mI(Kr)). Of 314 patches, 158 (50.1%) demonstrated mI(Kr) currents as compared with 131 (42.3%) for the I(K1) channel. Single mI(Kr) channel activity was rarely observed at potentials positive to -10 mV. The slope conductance at negative potentials was 12 pS. Upon repolarization, ensemble-averaged mI(Kr) showed slow deactivation with a biexponential time course. A selective I(Kr) blocker, E-4031 (1 microm), completely blocked mI(Kr) channel activity. Extracellular Ca(2+) and Mg(2+) at physiological concentrations shifted the activation by approximately 30 mV, accelerated deactivation kinetics, prolonged long-closed time, and reduced open probability without affecting single-channel conductance, suggesting a direct channel-blocking effect in addition to well-recognized voltage shifts. HERG subunits expressed in Chinese hamster ovary cells produced channels with properties similar to those of mI(Kr), except for the more-negative activation of the HERG channels. Despite the abundant expression of mI(Kr), single-channel events were rarely observed during action-potential clamp and 5 microm E-4031 had no detectable effect on the action potential parameters, confirming that mI(Kr) plays at best a minor role in repolarization of adult mouse cardiomyocytes, probably because the modulatory effects of divalent cations prevent significant mI(Kr) opening under physiological conditions.

  1. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease.

    PubMed

    Kamphuis, Willem; Mamber, Carlyn; Moeton, Martina; Kooijman, Lieneke; Sluijs, Jacqueline A; Jansen, Anne H P; Verveer, Monique; de Groot, Lody R; Smith, Vanessa D; Rangarajan, Sindhoo; Rodríguez, José J; Orre, Marie; Hol, Elly M

    2012-01-01

    Glial fibrillary acidic protein (GFAP) is the main astrocytic intermediate filament (IF). GFAP splice isoforms show differential expression patterns in the human brain. GFAPδ is preferentially expressed by neurogenic astrocytes in the subventricular zone (SVZ), whereas GFAP(+1) is found in a subset of astrocytes throughout the brain. In addition, the expression of these isoforms in human brain material of epilepsy, Alzheimer and glioma patients has been reported. Here, for the first time, we present a comprehensive study of GFAP isoform expression in both wild-type and Alzheimer Disease (AD) mouse models. In cortex, cerebellum, and striatum of wild-type mice, transcripts for Gfap-α, Gfap-β, Gfap-γ, Gfap-δ, Gfap-κ, and a newly identified isoform Gfap-ζ, were detected. Their relative expression levels were similar in all regions studied. GFAPα showed a widespread expression whilst GFAPδ distribution was prominent in the SVZ, rostral migratory stream (RMS), neurogenic astrocytes of the subgranular zone (SGZ), and subpial astrocytes. In contrast to the human SVZ, we could not establish an unambiguous GFAPδ localization in proliferating cells of the mouse SVZ. In APPswePS1dE9 and 3xTgAD mice, plaque-associated reactive astrocytes had increased transcript levels of all detectable GFAP isoforms and low levels of a new GFAP isoform, Gfap-ΔEx7. Reactive astrocytes in AD mice showed enhanced GFAPα and GFAPδ immunolabeling, less frequently increased vimentin and nestin, but no GFAPκ or GFAP(+1) staining. In conclusion, GFAPδ protein is present in SVZ, RMS, and neurogenic astrocytes of the SGZ, but also outside neurogenic niches. Furthermore, differential GFAP isoform expression is not linked with aging or reactive gliosis. This evidence points to the conclusion that differential regulation of GFAP isoforms is not involved in the reorganization of the IF network in reactive gliosis or in neurogenesis in the mouse brain.

  2. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver

    PubMed Central

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao

    2015-01-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. PMID:26400395

  3. H3 and H4 Lysine Acetylation Correlates with Developmental and Experimentally Induced Adult Experience-Dependent Plasticity in the Mouse Visual Cortex

    PubMed Central

    Vierci, Gabriela; Pannunzio, Bruno; Bornia, Natalia; Rossi, Francesco M.

    2016-01-01

    Histone posttranslational modifications play a fundamental role in orchestrating gene expression. In this work, we analyzed the acetylation of H3 and H4 histones (AcH3–AcH4) and its modulation by visual experience in the mouse visual cortex (VC) during normal development and in two experimental conditions that restore juvenile-like plasticity levels in adults (fluoxetine treatment and enriched environment). We found that AcH3–AcH4 declines with age and is upregulated by treatments restoring plasticity in the adult. We also found that visual experience modulates AcH3–AcH4 in young and adult plasticity-restored mice but not in untreated ones. Finally, we showed that the transporter vGAT is downregulated in adult plasticity-restored models. In summary, we identified a dynamic regulation of AcH3–AcH4, which is associated with high plasticity levels and enhanced by visual experience. These data, along with recent ones, indicate H3–H4 acetylation as a central hub in the control of experience-dependent plasticity in the VC. PMID:27891053

  4. Adult-Derived Human Liver Stem/Progenitor Cells Infused 3 Days Postsurgery Improve Liver Regeneration in a Mouse Model of Extended Hepatectomy.

    PubMed

    Herrero, Astrid; Prigent, Julie; Lombard, Catherine; Rosseels, Valérie; Daujat-Chavanieu, Martine; Breckpot, Karine; Najimi, Mustapha; Deblandre, Gisèle; Sokal, Etienne M

    2017-02-16

    There is growing evidence that cell therapy constitutes a promising strategy for liver regenerative medicine. In the setting of hepatic cancer treatments, cell therapy could prove a useful therapeutic approach for managing the acute liver failure that occurs following extended hepatectomy. In this study, we examined the influence of delivering adult-derived human liver stem/progenitor cells (ADHLSCs) at two different early time points in an immunodeficient mouse model (Rag2-/-IL2Rγ-/-) that had undergone a 70% hepatectomy procedure. The hepatic mesenchymal cells were intrasplenically infused either immediately after surgery (n = 26) or following a critical 3-day period (n = 26). We evaluated the cells' capacity to engraft at day 1 and day 7 following transplantation by means of human Alu qPCR quantification, along with histological assessment of human albumin and α-smooth muscle actin. In addition, cell proliferation (anti-mouse and human Ki-67 staining) and murine liver weight were measured in order to evaluate liver regeneration. At day 1 posttransplantation, the ratio of human to mouse cells was similar in both groups, whereas 1 week posttransplantation this ratio was significantly improved (p < 0.016) in mice receiving ADHLSC injection at day 3 posthepatectomy (1.7%), compared to those injected at the time of surgery (1%). On the basis of liver weight, mouse liver regeneration was more extensive 1 week posttransplantation in mice transplanted with ADHLSCs (+65.3%) compared to that of mice from the sham vehicle group (+42.7%). In conclusion, infusing ADHLSCs 3 days after extensive hepatectomy improves the cell engraftment and murine hepatic tissue regeneration, thereby confirming that ADHLSCs could be a promising cell source for liver cell therapy and hepatic tissue repair.

  5. Adamts5, the gene encoding a proteoglycan-degrading metalloprotease, is expressed by specific cell lineages during mouse embryonic development and in adult tissues.

    PubMed

    McCulloch, Daniel R; Le Goff, Carine; Bhatt, Sumantha; Dixon, Laura J; Sandy, John D; Apte, Suneel S

    2009-06-01

    The secreted metalloprotease ADAMTS5 is implicated in destruction of the cartilage proteoglycan aggrecan in arthritis, but its physiological functions are unknown. Its expression profile during embryogenesis and in adult tissues is therefore of considerable interest. beta-Galactosidase (beta-gal) histochemistry, enabled by a LacZ cassette inserted in the Adamts5 locus, and validated by in situ hybridization with an Adamts5 cRNA probe and ADAMTS5 immunohistochemistry, was used to profile Adamts5 expression during mouse embryogenesis and in adult mouse tissues. Embryonic expression was scarce prior to 11.5 days of gestation (E11.5) and noted only in the floor plate of the developing brain at E 9.5. After E11.5 there was continued expression in brain, especially in the choroid plexus, peripheral nerves, dorsal root ganglia, cranial nerve ganglia, spinal and cranial nerves, and neural plexuses of the gut. In addition to nerves, developing limbs have Adamts5 expression in skeletal muscle (from E13.5), tendons (from E16.5), and inter-digital mesenchyme of the developing autopod (E13.5-15.5). In adult tissues, there is constitutive Adamts5 expression in arterial smooth muscle cells, mesothelium lining the peritoneal, pericardial and pleural cavities, smooth muscle cells in bronchi and pancreatic ducts, glomerular mesangial cells in the kidney, dorsal root ganglia, and in Schwann cells of the peripheral and autonomic nervous system. Expression of Adamts5 during neuromuscular development and in smooth muscle cells coincides with the broadly distributed proteoglycan versican, an ADAMTS5 substrate. These observations suggest the major contexts in which developmental and physiological roles could be sought for this protease.

  6. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze

    PubMed Central

    Merritt, Jennifer; Rhodes, Justin S.

    2014-01-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316

  7. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze.

    PubMed

    Merritt, Jennifer R; Rhodes, Justin S

    2015-03-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2- to 5-fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6 J, 129S1/SvImJ, B6129SF1/J, DBA/2 J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2 J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running.

  8. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

    PubMed

    Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko

    2015-02-09

    The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue.

  9. Intrahippocampal injection of Aβ1-42 inhibits neurogenesis and down-regulates IFN-γ and NF-κB expression in hippocampus of adult mouse brain.

    PubMed

    Zheng, Meige; Liu, Jing; Ruan, Zhigang; Tian, Sumin; Ma, Yuxin; Zhu, Jiayong; Li, Guoying

    2013-03-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by accumulation of amyloid plaques and neurofibrillary tangles. Amyloid-β (Aβ) is widely recognized as a key factor in the pathogenesis of AD. Aβ1-42 a major component of amyloid plaques, has shown synaptotoxicity associated with impaired long-term potentiation and cognitive deficits. Alteration of neurogenesis in AD patients has been reported, while little is known about how Aβ1-42 affects hippocampal neurogenesis in the adult brain. In this study, we injected human Aβ1-42 peptide into hippocampal CA1 area of adult mouse brain bilaterally and evaluated histological change and neurogenesis in the hippocampus. Hematoxylin and eosin (HE) stain showed that Aβ1-42-injection resulted in an extensive neurodegeneration in the Aβ-accumulated area and CA3 in hippocampus. Immunostaining showed that intrahippocampal Aβ1-42-injection dramatically decreased the number of bromodeoxyuridine (BrdU)-positive cells in the dentate gyrus (DG) compared to the vehicle injection. Moreover, a significant decrease in the number of BrdU/double-cortin double-positive cells in Aβ1-42-injected hippocampus was observed, suggesting that Aβ1-42-injection inhibited progenitor cell proliferation and neurogenesis in subgranular zone of the DG in the adult brain. We also found that the Aβ1-42-mediated decline of neurogenesis was associated with decreased protein levels of cytokines interferon-γ (IFN-γ) and transcription factor nuclear factor-kappa B (NF-κB) in the hippocampus. These results suggest that Aβ1-42 inhibits hippocampal neurogenesis in the adult brain possibly through down-regulation of INF-γ and NF-κB signaling pathway. This study provides a new insight into Aβ1-42-mediated decrease in hippocampal neurogenesis in the adult central nervous system.

  10. Adult Neurogenesis in the Female Mouse Hypothalamus: Estradiol and High-Fat Diet Alter the Generation of Newborn Neurons Expressing Estrogen Receptor α

    PubMed Central

    Yang, Jane; Nettles, Sabin A.; Byrnes, Elizabeth M.

    2016-01-01

    Estrogens and leptins act in the hypothalamus to maintain reproduction and energy homeostasis. Neurogenesis in the adult mammalian hypothalamus has been implicated in the regulation of energy homeostasis. Recently, high-fat diet (HFD) and estradiol (E2) have been shown to alter cell proliferation and the number of newborn leptin-responsive neurons in the hypothalamus of adult female mice. The current study tested the hypothesis that new cells expressing estrogen receptor α (ERα) are generated in the arcuate nucleus (ARC) and the ventromedial nucleus of the hypothalamus (VMH) of the adult female mouse, hypothalamic regions that are critical in energy homeostasis. Adult mice were ovariectomized and implanted with capsules containing E2 or oil. Within each hormone group, mice were fed an HFD or standard chow for 6 weeks and treated with BrdU to label new cells. Newborn cells that respond to estrogens were identified in the ARC and VMH, of which a subpopulation was leptin sensitive, indicating that the subpopulation consists of neurons. Moreover, there was an interaction between diet and hormone with an effect on the number of these newborn ERα-expressing neurons that respond to leptin. Regardless of hormone treatment, HFD increased the number of ERα-expressing cells in the ARC and VMH. E2 decreased hypothalamic fibroblast growth factor 10 (Fgf10) gene expression in HFD mice, suggesting a role for Fgf10 in E2 effects on neurogenesis. These findings of newly created estrogen-responsive neurons in the adult brain provide a novel mechanism by which estrogens can act in the hypothalamus to regulate energy homeostasis in females. PMID:27679811

  11. Widespread correction of lysosomal storage following intrahepatic injection of a recombinant adeno-associated virus in the adult MPS VII mouse.

    PubMed

    Sferra, Thomas J; Backstrom, Kristin; Wang, Chuansong; Rennard, Rachel; Miller, Matt; Hu, Yan

    2004-09-01

    Mucopolysaccharidosis type VII is a lysosomal storage disease caused by deficiency of the acid hydrolase beta-glucuronidase. MPS VII mice develop progressive lysosomal accumulation of glycosaminoglycans within multiple organs, including the brain. Using this animal model, we investigated whether gene transfer mediated by a recombinant adeno-associated virus (rAAV) type 2 vector is capable of reversing the progression of storage in adult mice. We engineered an rAAV2 vector to carry the murine beta-glucuronidase cDNA under the transcriptional direction of the human elongation factor-1alpha promoter. Intrahepatic administration of this vector in adult MPS VII mice resulted in stable hepatic beta-glucuronidase expression (473 +/- 254% of that found in wild-type mouse liver) for at least 1 year postinjection. There was widespread distribution of vector genomes and beta-glucuronidase within extrahepatic organs. The level of enzyme activity was sufficient to reduce lysosomal storage within the liver, spleen, kidney, heart, lung, and brain. Within selected regions of the brain, neuronal, glial, and perivascular cells had histopathologic evidence of reduced storage. Also, brain alpha-galactosidase and beta-hexosaminidase enzyme levels, secondarily elevated by the storage abnormality, were normalized. These data demonstrate that peripheral administration of an rAAV2 vector in adult MPS VII mice can lead to transgene expression levels sufficient for improvements in both the peripheral and the central manifestations of this disease.

  12. Ketamine exposure in adult mice leads to increased cell death in C3H, DBA2 and FVB inbred mouse strains

    PubMed Central

    Majewski-Tiedeken, Chalon R.; Rabin, Cara R.; Siegel, Steven J.

    2008-01-01

    Background Drug abuse is common among adolescents and young adults. Although the consequences of intoxication are known, sequelae of drugs emerging on campuses and in clubs nationwide are not. We previously demonstrated that ketamine exposure results in lasting physiological abnormalities in mice. However, the extent to which these deficits reflect neuropathologic changes is not known. Methods The current study examines neuropathologic changes following sub-anesthetic ketamine administration (5 mg/kg i.p. × 5) to three inbred mouse strains. Stereologic quantification of silver stained nuclear and linear profiles as well as activated caspase-3 labeling was used to address: 1) whether or not ketamine increases excitotoxic and apoptotic cell death in hippocampal CA3 and 2) whether or not ketamine-induced cell death varies by genetic background. Results Ketamine increased cell death in hippocampal CA3 of adult C3H, DBA2 and FVB mice. Neither silver staining nor activated caspase-3 labeling varied by strain, nor was there an interaction between ketamine-induced cell death and strain. Conclusions Ketamine exposure among young adults, even in limited amounts, may lead to irreversible changes in both brain function and structure. Loss of CA3 hippocampal cells may underlie persistent ERP changes previously shown in mice and possibly contribute to lasting cognitive deficits among ketamine abusers. PMID:17920787

  13. The Mouse Murr1 Gene Is Imprinted in the Adult Brain, Presumably Due to Transcriptional Interference by the Antisense-Oriented U2af1-rs1 Gene

    PubMed Central

    Wang, Youdong; Joh, Keiichiro; Masuko, Sadahiko; Yatsuki, Hitomi; Soejima, Hidenobu; Nabetani, Akira; Beechey, Colin V.; Okinami, Satoshi; Mukai, Tsunehiro

    2004-01-01

    The mouse Murr1 gene contains an imprinted gene, U2af1-rs1, in its first intron. U2af1-rs1 shows paternal allele-specific expression and is transcribed in the direction opposite to that of the Murr1 gene. In contrast to a previous report of biallelic expression of Murr1 in neonatal mice, we have found that the maternal allele is expressed predominantly in the adult brain and also preferentially in other adult tissues. This maternal-predominant expression is not observed in embryonic and neonatal brains. In situ hybridization experiments that used the adult brain indicated that Murr1 gene was maternally expressed in neuronal cells in all regions of the brain. We analyzed the developmental change in the expression levels of both Murr1 and U2af1-rs1 in the brain and liver, and we propose that the maternal-predominant expression of Murr1 results from transcriptional interference of the gene by U2af1-rs1 through the Murr1 promoter region. PMID:14673161

  14. Long-term treatment with L-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson's disease.

    PubMed

    Chiu, W-H; Depboylu, C; Hermanns, G; Maurer, L; Windolph, A; Oertel, W H; Ries, V; Höglinger, G U

    2015-08-01

    Non-motor symptoms such as hyposmia and depression are often observed in Parkinson's disease (PD) and can precede the onset of motor symptoms for years. The underlying pathological alterations in the brain are not fully understood so far. Dysregulation of adult neurogenesis in the dentate gyrus of the hippocampus and the olfactory bulb has been recently suggested to be implicated in non-motor symptoms of PD. However, there is so far no direct evidence to support the relationship of non-motor symptoms and the modulation of adult neurogenesis following dopamine depletion and/or dopamine replacement. In this study, we investigated the long-term effects of l-DOPA and pramipexole, a dopamine agonist, in a mouse model of bilateral intranigral 6-OHDA lesion, in order to assess the impact of adult neurogenesis on non-motor behavior. We found that l-DOPA and pramipexole can normalize decreased neurogenesis in the hippocampal dentate gyrus and the periglomerular layer of the olfactory bulb caused by a 6-OHDA lesion. Interestingly, pramipexole showed an antidepressant and anxiolytic effect in the forced swim test and social interaction test. However, there was no significant change in learning and memory function after dopamine depletion and dopamine replacement, respectively.

  15. HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse

    PubMed Central

    Lim, Shu Ly; Geoghegan, Joel; Hempfling, Anna-Lena; Bergmann, Martin; Goodnow, Christopher C.; Ormandy, Christopher J.; Wong, Lee; Mann, Jeff; Scott, Hamish S.; Jamsai, Duangporn; Adelson, David L.

    2015-01-01

    piRNAs are critical for transposable element (TE) repression and germ cell survival during the early phases of spermatogenesis, however, their role in adult germ cells and the relative importance of piRNA methylation is poorly defined in mammals. Using a mouse model of HEN methyltransferase 1 (HENMT1) loss-of-function, RNA-Seq and a range of RNA assays we show that HENMT1 is required for the 2’ O-methylation of mammalian piRNAs. HENMT1 loss leads to piRNA instability, reduced piRNA bulk and length, and ultimately male sterility characterized by a germ cell arrest at the elongating germ cell phase of spermatogenesis. HENMT1 loss-of-function, and the concomitant loss of piRNAs, resulted in TE de-repression in adult meiotic and haploid germ cells, and the precocious, and selective, expression of many haploid-transcripts in meiotic cells. Precocious expression was associated with a more active chromatin state in meiotic cells, elevated levels of DNA damage and a catastrophic deregulation of the haploid germ cell gene expression. Collectively these results define a critical role for HENMT1 and piRNAs in the maintenance of TE repression in adult germ cells and setting the spermatogenic program. PMID:26496356

  16. Induction of murine tumors in adult mice by a combination of either avian sarcoma virus or human adenovirus and syngeneic mouse embryo cells.

    PubMed

    Takeuchi, M; Nitta, K

    1983-01-01

    Primary murine Rous sarcoma was produced in adult mice of seven strains, C57BL/6, DBA/2, BALB/c, C3H/He, CBAJ, AKR, and DDD, by s.c. inoculation of a mixture of 5 X 10(6) chicken tumor cells containing Schmidt-Ruppin Rous sarcoma virus and 9- to 12-day-old mouse embryo cells (MEC) (2 X 10(6) ) of the syngeneic strain. The sarcoma developed at the site of injection in almost all mice tested, but there were some differences in the latent period and the survival time among mouse strains. When the number of cells inoculated was reduced to 5 X 10(4) for chicken tumor cells induced by the Schmidt-Ruppin strain of Rous sarcoma virus (SR-CTC) and 2 X 10(4) for MEC, no tumor was produced in C3H/He mice. These tumors had strain specificity and the Schmidt-Ruppin strain of Rous sarcoma virus genome in masked form. The tumor at the site of injection originated in the embryo cells injected along with SR-CTC. This was confirmed by CBAT6/T6 marker chromosome analysis of the tumor cells of CBA mice induced with SR-CTC plus CBAT6/T6 MEC and also confirmed by transplantation of a C57BL/6 X C3H/He F1 tumor which had been induced with SR-CTC plus C3H/He or C57BL/6 MEC. Tumor induction in adult mouse by a mixture of virus and syngeneic 9- to 14-day-old embryo cells was tested for human adenovirus serotype 12 (Ad12) and simian virus 40. Primary Ad12 tumor was also induced in adult CBA, C3H/He, and DDD mice by 4 X 10(5 to 6) 50% tissue culture infective dose of Ad12 with 5 X 10(6) syngeneic embryo cells. This tumor contained Ad12 T-antigen-positive particles in cells. But in the case of simian virus 40, the tumor did not appear for about 300 days of observation.

  17. On-Going Frontal Alpha Rhythms Are Dominant in Passive State and Desynchronize in Active State in Adult Gray Mouse Lemurs

    PubMed Central

    Rahman, Anisur; Lamberty, Yves; Bordet, Regis; Richardson, Jill C.; Forloni, Gianluigi; Drinkenburg, Wilhelmus; Lopez, Susanna; Aujard, Fabienne; Babiloni, Claudio; Pifferi, Fabien

    2015-01-01

    The gray mouse lemur (Microcebus murinus) is considered a useful primate model for translational research. In the framework of IMI PharmaCog project (Grant Agreement n°115009, www.pharmacog.org), we tested the hypothesis that spectral electroencephalographic (EEG) markers of motor and locomotor activity in gray mouse lemurs reflect typical movement-related desynchronization of alpha rhythms (about 8–12 Hz) in humans. To this aim, EEG (bipolar electrodes in frontal cortex) and electromyographic (EMG; bipolar electrodes sutured in neck muscles) data were recorded in 13 male adult (about 3 years) lemurs. Artifact-free EEG segments during active state (gross movements, exploratory movements or locomotor activity) and awake passive state (no sleep) were selected on the basis of instrumental measures of animal behavior, and were used as an input for EEG power density analysis. Results showed a clear peak of EEG power density at alpha range (7–9 Hz) during passive state. During active state, there was a reduction in alpha power density (8–12 Hz) and an increase of power density at slow frequencies (1–4 Hz). Relative EMG activity was related to EEG power density at 2–4 Hz (positive correlation) and at 8–12 Hz (negative correlation). These results suggest for the first time that the primate gray mouse lemurs and humans may share basic neurophysiologic mechanisms of synchronization of frontal alpha rhythms in awake passive state and their desynchronization during motor and locomotor activity. These EEG markers may be an ideal experimental model for translational basic (motor science) and applied (pharmacological and non-pharmacological interventions) research in Neurophysiology. PMID:26618512

  18. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells

    SciTech Connect

    Jung, Yoon Hee

    2010-03-10

    This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/W{sup v} mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.

  19. Widespread deficits in adult neurogenesis precede plaque and tangle formation in the 3xTg mouse model of Alzheimer's disease.

    PubMed

    Hamilton, Laura K; Aumont, Anne; Julien, Carl; Vadnais, Alexandra; Calon, Frédéric; Fernandes, Karl J L

    2010-09-01

    Alzheimer's disease (AD) affects cognitive modalities that are known to be regulated by adult neurogenesis, such as hippocampal- and olfactory-dependent learning and memory. However, the relationship between AD-associated pathologies and alterations in adult neurogenesis has remained contentious. In the present study, we performed a detailed investigation of adult neurogenesis in the triple transgenic (3xTg) mouse model of AD, a unique model that generates both amyloid plaques and neurofibrillary tangles, the hallmark pathologies of AD. In both neurogenic niches of the brain, the hippocampal dentate gyrus and forebrain subventricular zone, we found that 3xTg mice had decreased numbers of (i) proliferating cells, (ii) early lineage neural progenitors, and (iii) neuroblasts at middle age (11months old) and old age (18months old). These decreases correlated with major reductions in the addition of new neurons to the respective target areas, the dentate granule cell layer and olfactory bulb. Within the subventricular zone niche, cytological alterations were observed that included a selective loss of subependymal cells and the development of large lipid droplets within the ependyma of 3xTg mice, indicative of metabolic changes. Temporally, there was a marked acceleration of age-related decreases in 3xTg mice, which affected multiple stages of neurogenesis and was clearly apparent prior to the development of amyloid plaques or neurofibrillary tangles. Our findings indicate that AD-associated mutations suppress neurogenesis early during disease development. This suggests that deficits in adult neurogenesis may mediate premature cognitive decline in AD.

  20. S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus.

    PubMed

    Yamada, Jun; Jinno, Shozo

    2014-01-01

    S100A6 (calcyclin), an EF-hand calcium binding protein, is considered to play various roles in the brain, for example, cell proliferation and differentiation, calcium homeostasis, and neuronal degeneration. In addition to some limbic nuclei, S100A6 is distributed in the rostral migratory stream, one of the major neurogenic niches of the adult brain. However, the potential involvement of S100A6 in adult neurogenesis remains unclear. In this study, we aimed to elucidate the role of S100A6 in the other major neurogenic niche, the subgranular zone of the dentate gyrus in the adult mouse hippocampus. Immunofluorescent multiple labeling showed that S100A6 was highly expressed in neural stem cells labeled by sex determining region Y-box 2, brain lipid-binding protein protein and glial fibrillary acidic protein. S100A6+ cells often extended a long process typical of radial glial morphology. In addition, S100A6 was found in some S100β+ astrocyte lineage cells. Interestingly, proliferating cell nuclear antigen was detected in a fraction of S100A6+/S100β+ cells. These cells were considered to be lineage-restricted astrocyte precursors maintaining mitotic potential. On the other hand, S100A6 was rarely seen in neural lineage cells labeled by T-box brain protein 2, doublecortin, calretinin and calbindin D28K. Cell fate-tracing experiment using BrdU showed that the majority of newly generated immature astrocytes were immunoreactive for S100A6, while mature astrocytes lacked S100A6 immunoreactivity. Administration of S100 protein inhibitor, trifluoperazine, caused a reduction in production of S100β+ astrocyte lineage cells, but had no impact on neurogenesis. Overall, our data provide the first evidence that S100A6 is a specific marker of neural stem cells and astrocyte precursors, and may be especially important for generation of astrocytes in the adult hippocampus.

  1. Adult Brtl/+ Mouse Model of Osteogenesis Imperfecta Demonstrates Anabolic Response to Sclerostin Antibody Treatment with Increased Bone Mass and Strength

    PubMed Central

    Sinder, Benjamin P.; White, Logan E.; Salemi, Joseph D.; Ominsky, Michael S.; Caird, Michelle S.; Marini, Joan C.; Kozloff, Kenneth M.

    2015-01-01

    Purpose Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk. Although OI fracture risk is greatest before puberty, adults with OI remain at risk of fracture. Anti-resorptive bisphosphonates are commonly used to treat adult OI, but have shown mixed efficacy. New treatments which consistently improve bone mass throughout the skeleton may improve patient outcomes. Neutralizing antibodies to sclerostin (Scl-Ab) are a novel anabolic therapy that have shown efficacy in preclinical studies by stimulating bone formation via the canonical wnt signaling pathway. The purpose of this study was to evaluate Scl-Ab in an adult 6 mo old Brtl/+ model of OI that harbors a typical heterozygous OI-causing Gly>Cys substitution on Col1a1. Methods 6mo old WT and Brtl/+ mice were treated with Scl-Ab (25mg/kg, 2x/week) or Veh for 5 weeks. OCN and TRACP5b serum assays, dynamic histomorphometry, microCT and mechanical testing were performed. Results Adult Brtl/+ mice demonstrated a strong anabolic response to Scl-Ab with increased serum osteocalcin and bone formation rate. This anabolic response led to improved trabecular and cortical bone mass in the femur. Mechanical testing revealed Scl-Ab increased Brtl/+ femoral stiffness and strength. Conclusion Scl-Ab was successfully anabolic in an adult Brtl/+ model of OI. PMID:24803333

  2. Craniofacial Features Resembling Frontonasal Dysplasia with a Tubulonodular Interhemispheric Lipoma in the Adult 3H1 tuft Mouse

    PubMed Central

    Fong, Keith S. K.; Cooper, Tiffiny Baring; Drumhiller, Wallace C.; Somponpun, Jack; Yang, Shiming; Ernst, Thomas; Chang, Linda; Lozanoff, Scott

    2012-01-01

    Intracranial lipomas are rare, but 45% of them occur along the midline cisterns between the hemispheres and are often associated with corpus callosum hypoplasia and craniofacial defects. They are difficult to detect, as they are generally asymptomatic and visible by MRI or by postmortem examination. The exact cause of these interhemispheric lipomas is not known, but they arise from a developmental defect resulting in the maldifferentiation of mesenchymal cells into mesodermal derivatives that are not normally present. We have identified a new mouse mutant called tuft, exhibiting a forebrain, intracranial lipoma with midline craniofacial defects resembling frontonasal dysplasia (FND) that arose spontaneously in our wild-type 3H1 colony. The tuft trait appears to be transmitted in recessive fashion, but approximately 80% less frequent than the expected Mendelian 25%, due to either incomplete penetrance or prenatal lethality. MRI and histological analysis revealed that the intracranial lipoma occurred between the hemispheres and often protruded through the sagittal suture. We also observed a lesion at the lamina terminalis that may indicate improper closure of the anterior neuropore. We have mapped the tuft trait to within an 18 cM region on mouse chromosome 10 by microsatellite linkage analysis and identified several candidate genes involved with craniofacial development and cellular differentiation of adipose tissue. tuft is the only known mouse model for midline craniofacial defects with an intracranial lipoma. Identifying the gene(s) and mutation(s) causing this early developmental defect will help us understand the pathogenesis of FND and related craniofacial disorders. PMID:22246904

  3. Long term running biphasically improves methylglyoxal-related metabolism, redox homeostasis and neurotrophic support within adult mouse brain cortex.

    PubMed

    Falone, Stefano; D'Alessandro, Antonella; Mirabilio, Alessandro; Petruccelli, Giacomo; Cacchio, Marisa; Di Ilio, Carmine; Di Loreto, Silvia; Amicarelli, Fernanda

    2012-01-01

    Oxidative stress and neurotrophic support decline seem to be crucially involved in brain aging. Emerging evidences indicate the pro-oxidant methylglyoxal (MG) as a key player in the age-related dicarbonyl stress and molecular damage within the central nervous system. Although exercise promotes the overproduction of reactive oxygen species, habitual exercise may retard cellular aging and reduce the age-dependent cognitive decline through hormetic adaptations, yet molecular mechanisms underlying beneficial effects of exercise are still largely unclear. In particular, whereas adaptive responses induced by exercise initiated in youth have been broadly investigated, the effects of chronic and moderate exercise begun in adult age on biochemical hallmarks of very early senescence in mammal brains have not been extensively studied. This research investigated whether a long-term, forced and moderate running initiated in adult age may affect the interplay between the redox-related profile and the oxidative-/MG-dependent molecular damage patterns in CD1 female mice cortices; as well, we investigated possible exercise-induced effects on the activity of the brain derived neurotrophic factor (BDNF)-dependent pathway. Our findings suggested that after a transient imbalance in almost all parameters investigated, the lately-initiated exercise regimen strongly reduced molecular damage profiles in brains of adult mice, by enhancing activities of the main ROS- and MG-targeting scavenging systems, as well as by preserving the BDNF-dependent signaling through the transition from adult to middle age.

  4. RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro.

    PubMed

    Soldati, Chiara; Caramanica, Pasquale; Burney, Matthew J; Toselli, Camilla; Bithell, Angela; Augusti-Tocco, Gabriella; Stanton, Lawrence W; Biagioni, Stefano; Buckley, Noel J; Cacci, Emanuele

    2015-08-01

    Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate.

  5. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart

    PubMed Central

    Ylä-Herttuala, Seppo; Betsholtz, Christer; Andrae, Johanna

    2016-01-01

    Platelet-derived growth factors (PDGFs) are key regulators of mesenchymal cells in vertebrate development. To what extent PDGFs also exert beneficial homeostatic or reparative roles in adult organs, as opposed to adverse fibrogenic responses in pathology, are unclear. PDGF signaling plays critical roles during heart development, during which forced overexpression of PDGFs induces detrimental cardiac fibrosis; other studies have implicated PDGF signaling in post-infarct myocardial repair. Different PDGFs may exert different effects mediated through the two PDGF receptors (PDGFRα and PDGFRβ) in different cell types. Here, we assessed responses induced by five known PDGF isoforms in the adult mouse heart in the context of adenovirus vector-mediated inflammation. Our results show that different PDGFs have different, in some cases even opposing, effects. Strikingly, whereas the major PDGFRα agonists (PDGF-A and -C) decreased the amount of scar tissue and increased the numbers of PDGFRα-positive fibroblasts, PDGFRβ agonists either induced large scars with extensive inflammation (PDGF-B) or dampened the adenovirus-induced inflammation and produced a small and dense scar (PDGF-D). These results provide evidence for PDGF isoform-specific inflammation-modulating functions that may have therapeutic implications. They also illustrate a surprising complexity in the PDGF-mediated pathophysiological responses. PMID:27513343

  6. Identification of a sustained neurogenic zone at the dorsal surface of the adult mouse hippocampus and its regulation by the chemokine SDF-1.

    PubMed

    Belmadani, Abdelhak; Ren, Dongjun; Bhattacharyya, Bula J; Rothwangl, Katharina B; Hope, Thomas J; Perlman, Harris; Miller, Richard J

    2015-11-01

    We identified a previously unknown neurogenic region at the dorsal surface of the hippocampus; (the "subhippocampal zone," SHZ) in the adult brain. Using a reporter mouse in which SHZ cells and their progeny could be traced through the expression of EGFP under the control of the CXCR4 chemokine receptor promoter we observed the presence of a pool of EGFP expressing cells migrating in direction of the dentate gyrus (DG), which is maintained throughout adulthood. This population appeared to originate from the SHZ where cells entered a caudal migratory stream (aCMS) that included the fimbria, the meninges and the DG. Deletion of CXCR4 from neural stem cells (NSCs) or neuroinflammation resulted in the appearance of neurons in the DG, which were the result of migration of NSCs from the SHZ. Some of these neurons were ectopically placed. Our observations indicate that the SHZ is a neurogenic zone in the adult brain through migration of NSCs in the aCMS. Regulation of CXCR4 signaling in these cells may be involved in repair of the DG and may also give rise to ectopic granule cells in the DG in the context of neuropathology.

  7. Identification of a Sustained Neurogenic Zone at the Dorsal Surface of the Adult Mouse Hippocampus and Its Regulation by the Chemokine SDF-1

    PubMed Central

    Belmadani, Abdelhak; Ren, Dongjun; Bhattacharyya, Bula J.; Rothwangl, Katharina B.; Hope, Thomas J.; Perlman, Harris; Miller, Richard J.

    2015-01-01

    We identified a previously unknown neurogenic region at the dorsal surface of the hippocampus; (the “subhippocampal zone,” SHZ) in the adult brain. Using a reporter mouse in which SHZ cells and their progeny could be traced through the expression of EGFP under the control of the CXCR4 chemokine receptor promoter we observed the presence of a pool of EGFP expressing cells migrating in direction of the dentate gyrus (DG), which is maintained throughout adulthood. This population appeared to originate from the SHZ where cells entered a caudal migratory stream (aCMS) that included the fimbria, the meninges and the DG. Deletion of CXCR4 from neural stem cells (NSCs) or neuroinflammation resulted in the appearance of neurons in the DG, which were the result of migration of NSCs from the SHZ. Some of these neurons were ectopically placed. Our observations indicate that the SHZ is a neurogenic zone in the adult brain through migration of NSCs in the aCMS. Regulation of CXCR4 signaling in these cells may be involved in repair of the DG and may also give rise to ectopic granule cells in the DG in the context of neuropathology. PMID:25656357

  8. Mouse embryonic stem cell-derived cells reveal niches that support neuronal differentiation in the adult rat brain.

    PubMed

    Maya-Espinosa, Guadalupe; Collazo-Navarrete, Omar; Millán-Aldaco, Diana; Palomero-Rivero, Marcela; Guerrero-Flores, Gilda; Drucker-Colín, René; Covarrubias, Luis; Guerra-Crespo, Magdalena

    2015-02-01

    A neurogenic niche can be identified by the proliferation and differentiation of its naturally residing neural stem cells. However, it remains unclear whether "silent" neurogenic niches or regions suitable for neural differentiation, other than the areas of active neurogenesis, exist in the adult brain. Embryoid body (EB) cells derived from embryonic stem cells (ESCs) are endowed with a high potential to respond to specification and neuralization signals of the embryo. Hence, to identify microenvironments in the postnatal and adult rat brain with the capacity to support neuronal differentiation, we transplanted dissociated EB cells to conventional neurogenic and non-neurogenic regions. Our results show a neuronal differentiation pattern of EB cells that was dependent on the host region. Efficient neuronal differentiation of EB cells occurred within an adjacent region to the rostral migratory stream. EB cell differentiation was initially patchy and progressed toward an even distribution along the graft by 15-21 days post-transplantation, giving rise mostly to GABAergic neurons. EB cells in the striatum displayed a lower level of neuronal differentiation and derived into a significant number of astrocytes. Remarkably, when EB cells were transplanted to the striatum of adult rats after a local ischemic stroke, increased number of neuroblasts and neurons were observed. Unexpectedly, we determined that the adult substantia nigra pars compacta, considered a non-neurogenic area, harbors a robust neurogenic environment. Therefore, neurally uncommitted cells derived from ESCs can detect regions that support neuronal differentiation within the adult brain, a fundamental step for the development of stem cell-based replacement therapies.

  9. Synergistic and additive effects of enriched environment and lithium on the generation of new cells in adult mouse hippocampus.

    PubMed

    Schaeffer, Evelin L; Cerulli, Fabiana G; Souza, Hélio O X; Catanozi, Sergio; Gattaz, Wagner F

    2014-07-01

    Hippocampal atrophy is reported in several neuropathological disorders. The hippocampal dentate gyrus (DG) is a brain region where adult neurogenesis constitutively occurs. There are some reports suggesting the ability of endogenous neurogenesis to initiate neuronal repair in the hippocampus in response to neuropathological conditions, but its capacity to compensate for neuronal loss is limited. Among strategies to enhance adult hippocampal neurogenesis are enriched environment and lithium. This study aimed to assess whether both strategies could interact to potentiate the generation of new cells in the adult DG. Healthy adult male C57BL/6 mice were divided into four treatment groups for 28 days: control, lithium, enriched environment, enriched environment plus lithium. The animals were injected with BrdU (cell proliferation marker) shortly before the start of the treatments and killed 28 days later for analysis of newly generated cells. Two-way ANOVA followed by post hoc test revealed a significant synergistic interaction between enriched environment and lithium in the total number of BrdU(+) cells in the entire DG (p = 0.019), a trend towards significant synergistic interaction in the dorsal DG (p = 0.075), and a significant additive effect in the ventral DG (p = 0.001). These findings indicate that the combination of enriched environment and lithium has both synergistic and additive effects on the generation of new cells in the healthy adult DG (these effects being possibly segregated along the dorso-ventral axis of the hippocampus), and suggest that it might be worth investigating whether this combination would have a similar effect in neuropathological conditions.

  10. Connexin36 identified at morphologically mixed chemical/electrical synapses on trigeminal motoneurons and at primary afferent terminals on spinal cord neurons in adult mouse and rat.

    PubMed

    Bautista, W; McCrea, D A; Nagy, J I

    2014-03-28

    Morphologically mixed chemical/electrical synapses at axon terminals, with the electrical component formed by gap junctions, is common in the CNS of lower vertebrates. In mammalian CNS, evidence for morphologically mixed synapses has been obtained in only a few locations. Here, we used immunofluorescence approaches to examine the localization of the neuronally expressed gap junction forming protein connexin36 (Cx36) in relation to the axon terminal marker vesicular glutamate transporter-1 (vglut1) in the spinal cord and the trigeminal motor nucleus (Mo5) of rat and mouse. In adult rodents, immunolabeling for Cx36 appeared exclusively as Cx36-puncta, and was widely distributed at all rostro-caudal levels in most spinal cord laminae and in the Mo5. A high proportion of Cx36-puncta was co-localized with vglut1, forming morphologically mixed synapses on motoneurons, in intermediate spinal cord lamina, and in regions of medial lamina VII, where vglut1-containing terminals associated with Cx36 converged on neurons adjacent to the central canal. Unilateral transection of lumbar dorsal roots reduced immunolabeling of both vglut1 and Cx36 in intermediate laminae and lamina IX. Further, vglut1-terminals displaying Cx36-puncta were contacted by terminals labeled for glutamic acid decarboxylase65, which is known to be contained in presynaptic terminals on large-diameter primary afferents. Developmentally, mixed synapses begin to emerge in the spinal cord only after the second to third postnatal week and thereafter increase to adult levels. Our findings demonstrate that axon terminals of primary afferent origin form morphologically mixed synapses containing Cx36 in broadly distributed areas of adult rodent spinal cord and Mo5.

  11. Mature adult dystrophic mouse muscle environment does not impede efficient engrafted satellite cell regeneration and self-renewal.

    PubMed

    Boldrin, Luisa; Zammit, Peter Steven; Muntoni, Francesco; Morgan, Jennifer Elizabeth

    2009-10-01

    Changes that occur in the skeletal muscle environment with the progress of muscular dystrophies may affect stem cell function and result in impaired muscle regeneration. It has previously been suggested that the success of stem cell transplantation could therefore be dependent both on the properties of the cell itself and on the host muscle environment. Here we engrafted young and mature adult mdx-nude mice, which are the genetic homolog of Duchenne muscular dystrophy, with a small number of satellite cells freshly isolated from young, normal donor mice. We found that the donor satellite cells contributed to muscle regeneration and self-renewal as efficiently within mature adult, as in young, dystrophic host muscle. Donor-derived satellite cells also contributed to robust regeneration after further injury, showing that they were functional despite the more advanced dystrophic muscle environment. These findings provide evidence that muscle tissue in a later stage of dystrophy may be effectively treated by stem cells.

  12. Loss of sigma factor RpoN increases intestinal colonization of Vibrio parahaemolyticus in an adult mouse model.

    PubMed

    Whitaker, W Brian; Richards, Gary P; Boyd, E Fidelma

    2014-02-01

    Vibrio parahaemolyticus is the leading cause of bacterial seafood-borne gastroenteritis worldwide, yet little is known about how this pathogen colonizes the human intestine. The alternative sigma factor RpoN/sigma-54 is a global regulator that controls flagellar synthesis, as well as a wide range of nonflagellar genes. We constructed an in-frame deletion mutation in rpoN (VP2670) in V. parahaemolyticus RIMD2210633, a clinical serogroup O3:K6 isolate, and examined the effects in vivo using a streptomycin-treated mouse model of colonization. We confirmed that deletion of rpoN rendered V. parahaemolyticus nonmotile, and it caused reduced biofilm formation and an apparent defect in glutamine synthetase production. In in vivo competition assays between the rpoN mutant and a wild-type RIMD2210633 strain marked with the β-galactosidase gene lacZ (WBWlacZ), the mutant colonized significantly more proficiently. Intestinal persistence competition assays also demonstrated that the rpoN mutant had enhanced fitness and outcompeted WBWlacZ. Mutants defective in the polar flagellum biosynthesis FliAP sigma factor also outcompeted WBWlacZ but not to the same level as the rpoN mutant, which suggested that lack of motility is not the sole cause of the fitness effect. In an in vitro growth competition assay in mouse intestinal mucus, the rpoN mutant also outcompeted the wild type and exhibited faster doubling times when grown in mucus and on individual components of mucus. Genes in the pathways for the catabolism of mucus sugars also had significantly higher expression levels in a ΔrpoN mutant than in the wild type. These data suggest that in V. parahaemolyticus, RpoN plays an important role in carbon utilization regulation, which may significantly affect host colonization.

  13. Suppression of c-Kit signaling induces adult neurogenesis in the mouse intestine after myenteric plexus ablation with benzalkonium chloride

    PubMed Central

    Tamada, Hiromi; Kiyama, Hiroshi

    2016-01-01

    Adult neurogenesis rarely occurs in the enteric nervous system (ENS). In this study, we demonstrated that, after intestinal myenteric plexus (MP) ablation with benzalkonium chloride (BAC), adult neurogenesis in the ENS was significantly induced in c-kit loss-of-function mutant mice (W/Wv). Almost all neurons and fibers in the MP disappeared after BAC treatment. However, 1 week after ablation, substantial penetration of nerve fibers from the non-damaged area was observed in the MP, longitudinal muscle and subserosal layers in both wildtype and W/Wv mice. Two weeks after BAC treatment, in addition to the penetrating fibers, a substantial number of ectopic neurons appeared in the subserosal and longitudinal muscle layers of W/Wv mice, whereas only a few ectopic neurons appeared in wildtype mice. Such ectopic neurons expressed either excitatory or inhibitory intrinsic motor neuron markers and formed ganglion-like structures, including glial cells, synaptic vesicles and basal lamina. Furthermore, oral administration of imatinib, an inhibitor of c-Kit and an anticancer agent for gastrointestinal stromal tumors, markedly induced appearance of ectopic neurons after BAC treatment, even in wildtype mice. These results suggest that adult neurogenesis in the ENS is negatively regulated by c-Kit signaling in vivo. PMID:27572504

  14. Suppression of c-Kit signaling induces adult neurogenesis in the mouse intestine after myenteric plexus ablation with benzalkonium chloride.

    PubMed

    Tamada, Hiromi; Kiyama, Hiroshi

    2016-08-30

    Adult neurogenesis rarely occurs in the enteric nervous system (ENS). In this study, we demonstrated that, after intestinal myenteric plexus (MP) ablation with benzalkonium chloride (BAC), adult neurogenesis in the ENS was significantly induced in c-kit loss-of-function mutant mice (W/W(v)). Almost all neurons and fibers in the MP disappeared after BAC treatment. However, 1 week after ablation, substantial penetration of nerve fibers from the non-damaged area was observed in the MP, longitudinal muscle and subserosal layers in both wildtype and W/W(v) mice. Two weeks after BAC treatment, in addition to the penetrating fibers, a substantial number of ectopic neurons appeared in the subserosal and longitudinal muscle layers of W/W(v) mice, whereas only a few ectopic neurons appeared in wildtype mice. Such ectopic neurons expressed either excitatory or inhibitory intrinsic motor neuron markers and formed ganglion-like structures, including glial cells, synaptic vesicles and basal lamina. Furthermore, oral administration of imatinib, an inhibitor of c-Kit and an anticancer agent for gastrointestinal stromal tumors, markedly induced appearance of ectopic neurons after BAC treatment, even in wildtype mice. These results suggest that adult neurogenesis in the ENS is negatively regulated by c-Kit signaling in vivo.

  15. Impaired adult hippocampal neurogenesis and its partial reversal by chronic treatment of fluoxetine in a mouse model of Angelman syndrome.

    PubMed

    Godavarthi, Swetha K; Dey, Parthanarayan; Sharma, Ankit; Jana, Nihar Ranjan

    2015-09-04

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by severe cognitive and motor deficits, caused by the loss of function of maternally inherited Ube3a. Ube3a-maternal deficient mice (AS model mice) recapitulate many essential features of AS, but how the deficiency of Ube3a lead to such behavioural abnormalities is poorly understood. Here we have demonstrated significant impairment of adult hippocampal neurogenesis in AS mice brain. Although, the number of BrdU and Ki67-positive cell in the hippocampal DG region was nearly equal at early postnatal days among wild type and AS mice, they were significantly reduced in adult AS mice compared to wild type controls. Reduced number of doublecortin-positive immature neurons in this region of AS mice further indicated impaired neurogenesis. Unaltered BrdU and Ki67-positive cells number in the sub ventricular zone of adult AS mice brain along with the absence of imprinted expression of Ube3a in the neural progenitor cell suggesting that Ube3a may not be directly linked with altered neurogenesis. Finally, we show that the impaired hippocampal neurogenesis in these mice can be partially rescued by the chronic treatment of antidepressant fluoxetine. These results suggest that the chronic stress may lead to reduced hippocampal neurogenesis in AS mice and that impaired neurogenesis could contribute to cognitive disturbances observed in these mice.

  16. p53 E3 ubiquitin protein ligase homolog regulates p53 in vivo in the adult mouse eye lens

    PubMed Central

    Jaramillo-Rangel, Gilberto; Ortega-Martínez, Marta; Sepúlveda-Saavedra, Julio; Saucedo-Cárdenas, Odila; Montes-de-Oca-Luna, Roberto

    2013-01-01

    Purpose p53 is a transcription factor that plays an important role in preventing cancer development. p53 participates in relevant aspects of cell biology, including apoptosis and cell cycle control and must be strictly regulated to maintain normal tissue homeostasis. p53 E3 ubiquitin protein ligase homolog (Mdm2) is an important negative regulator of p53. The purpose of this study was to determine if Mdm2 regulates p53 in vivo in the adult lens. Methods We analyzed mice expressing human p53 transgene (Tgp53) selectively in the lens in the presence or absence of Mdm2. Mice with the required genotypes were obtained by crossing transgenic, mdm2+/−, and p53−/− mice. Eye phenotype and lens histology and ultrastructure were analyzed in adult mice. Results In a wild-type genetic background (mdm2+/+), lens damage and microphthalmia were observed only in mice homozygous for Tgp53 (t/t). However, in an mdm2 null background, just one allele of Tgp53 (mdm2−/−/Tgp53t/0 mice) was sufficient to cause lens damage and microphthalmia. Furthermore, Mdm2 in only one allele was sufficient to rescue these deleterious effects, since the mdm2+/−/Tgp53t/0 mice had eye size and lens morphology similar to the control mice. Conclusions Mdm2 regulates p53 in the adult lens in vivo. This information may have relevance for analyzing normal and pathological conditions of the lens, and designing cancer therapies targeting Mdm2–p53 interaction. PMID:24339722

  17. Sex-comparative study of mouse cerebellum physiology under adult-onset hypothyroidism: The significance of GC-MS metabolomic data normalization in meta-analysis.

    PubMed

    Maga-Nteve, Christoniki; Vasilopoulou, Catherine G; Constantinou, Caterina; Margarity, Marigoula; Klapa, Maria I

    2017-01-15

    A systematic data quality validation and normalization strategy is an important component of the omic profile meta-analysis, ensuring comparability of the profiles and exclusion of experimental biases from the derived biological conclusions. In this study, we present the normalization methodology applied on the sets of cerebellum gas chromatography-mass spectrometry metabolic profiles of 124days old male and female animals in an adult-onset-hypothyroidism (AOH) mouse model before combining them into a sex-comparative analysis. The employed AOH model concerns the monitoring of the brain physiology of Balb/cJ mice after eight-week administration of 1%w/v KClO4 in the drinking water, initiated on the 60th day of their life. While originating from the same animal study, the tissues of the two sexes were processed and their profiles acquired and analyzed at different time periods. Hence, the previously published profile set of male mice was first re-annotated based on the presently available resources. Then, after being validated as acquired under the same analytical conditions, both profiles sets were corrected for derivatization biases and filtered for low-confidence measurements based on the same criteria. The final normalized 73-metabolite profiles contribute to the currently few available omic datasets of the AOH effect on brain molecular physiology, especially with respect to sex differentiation. Multivariate statistical analysis indicated one (unknown) and three (succinate, benzoate, myristate) metabolites with significantly higher and lower, respectively, cerebellum concentration in the hypothyroid compared to the euthyroid female mice. The respective numbers for the males were two and 24. Comparison of the euthyroid cerebellum metabolic profiles between the two sexes indicated 36 metabolites, including glucose, myo- and scyllo-inositol, with significantly lower concentration in the females versus the males. This implies that the female mouse cerebellum has been

  18. Sarcoplasmic reticulum Ca2+ depletion in adult skeletal muscle fibres measured with the biosensor D1ER.

    PubMed

    Jiménez-Moreno, Ramón; Wang, Zhong-Ming; Messi, María Laura; Delbono, Osvaldo

    2010-04-01

    The endoplasmic/sarcoplasmic reticulum (ER/SR) plays a crucial role in cytoplasmic signalling in a variety of cells. It is particularly relevant to skeletal muscle fibres, where this organelle constitutes the main Ca2+ store for essential functions, such as contraction. In this work, we expressed the cameleon biosensor D1ER by in vivo electroporation in the mouse flexor digitorum brevis (FDB) muscle to directly assess SR Ca2+ depletion in response to electrical and pharmacological stimulation. The main conclusions are: (1) D1ER is expressed in the SR of FDB fibres according to both di-8-(amino naphthyl ethenyl pyridinium) staining experiments and reductions in the Förster resonance energy transfer signal consequent to SR Ca2+ release; (2) the amplitude of D1ER citrine/cyan fluorescent protein (CFP) ratio evoked by either 4-chloro-m-cresol (4-CmC) or electrical stimulation is directly proportional to the basal citrine/CFP ratio, which indicates that SR Ca2+ modulates ryanodine-receptor-isoform-1-mediated SR Ca2+ release in the intact muscle fibre; (3) SR Ca2+ release, measured as D1ER citrine/CFP signal, is voltage-dependent and follows a Boltzmann function; and (4) average SR Ca2+ depletion is 20% in response to 4-CmC and 6.4% in response to prolonged sarcolemmal depolarization. These results indicate that significantly depleting SR Ca2+ content under physiological conditions is difficult.

  19. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    PubMed

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors.

  20. Peri-conceptional obesogenic exposure induces sex-specific programming of disease susceptibilities in adult mouse offspring.

    PubMed

    Dahlhoff, M; Pfister, S; Blutke, A; Rozman, J; Klingenspor, M; Deutsch, M J; Rathkolb, B; Fink, B; Gimpfl, M; Hrabě de Angelis, M; Roscher, A A; Wolf, E; Ensenauer, R

    2014-02-01

    Vulnerability of the fetus upon maternal obesity can potentially occur during all developmental phases. We aimed at elaborating longer-term health outcomes of fetal overnutrition during the earliest stages of development. We utilized Naval Medical Research Institute (NMRI) mice to induce pre-conceptional and gestational obesity and followed offspring outcomes in the absence of any postnatal obesogenic influences. Male adult offspring developed overweight, insulin resistance, hyperleptinemia, hyperuricemia and hepatic steatosis; all these features were not observed in females. Instead, they showed impaired fasting glucose and a reduced fat mass and adipocyte size. Influences of the interaction of maternal diet∗sex concerned offspring genes involved in fatty liver disease, lipid droplet size regulation and fat mass expansion. These data suggest that a peri-conceptional obesogenic exposure is sufficient to shape offspring gene expression patterns and health outcomes in a sex- and organ-specific manner, indicating varying developmental vulnerabilities between sexes towards metabolic disease in response to maternal overnutrition.

  1. Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight.

    PubMed

    Blackmore, Heather L; Niu, Youguo; Fernandez-Twinn, Denise S; Tarry-Adkins, Jane L; Giussani, Dino A; Ozanne, Susan E

    2014-10-01

    Obese pregnancies are not only associated with adverse consequences for the mother but also the long-term health of her child. Human studies have shown that individuals from obese mothers are at increased risk of premature death from cardiovascular disease (CVD), but are unable to define causality. This study aimed to determine causality using a mouse model of maternal diet-induced obesity. Obesity was induced in female C57BL/6 mice by feeding a diet rich in simple sugars and saturated fat 6 weeks prior to pregnancy and throughout pregnancy and lactation. Control females were fed laboratory chow. Male offspring from both groups were weaned onto chow and studied at 3, 5, 8, and 12 weeks of age for gross cardiac morphometry using stereology, cardiomyocyte cell area by histology, and cardiac fetal gene expression using qRT-PCR. Cardiac function was assessed by isolated Langendorff technology at 12 weeks of age and hearts were analyzed at the protein level for the expression of the β1 adrenergic receptor, muscarinic type-2 acetylcholine receptor, and proteins involved in cardiac contraction. Offspring from obese mothers develop pathologic cardiac hypertrophy associated with re-expression of cardiac fetal genes. By young adulthood these offspring developed severe systolic and diastolic dysfunction and cardiac sympathetic dominance. Importantly, cardiac dysfunction occurred in the absence of any change in corresponding body weight and despite the offspring eating a healthy low-fat diet. These findings provide a causal link to explain human observations relating maternal obesity with premature death from CVD in her offspring.

  2. Alteration of SLP2-like immunolabeling in mitochondria signifies early cellular damage in developing and adult mouse brain.

    PubMed

    Morozov, Yury M; Sun, Yu-Yo; Kuan, Chia-Yi; Rakic, Pasko

    2016-01-01

    Mitochondria play a critical role in various pathways of regulated cell death. Here we propose a novel method for detection of initial derangement of mitochondria in degenerating and dying neuronal cells. The method is based on our recent finding that antibodies directed against the cannabinoid type 1 receptor (CB1) also bind the mitochondrial stomatin-like protein 2 (SLP2) that belongs to an inner mitochondrial membrane protein complex. It is well established that SLP2 regulates mitochondrial biogenesis and respiratory functions. We now show that anti-CB1 antibodies recognize conformational epitopes but not the linear amino acid sequence of SLP2. In addition we found that anti-CB1 serum mostly labels swollen mitochondria with early or advanced stages of pathology in mouse brain while other proteins of the complex may mask epitopes of SLP2 in the normal mitochondria. Although neurons and endothelial cells in healthy brains contain occasional immunopositive mitochondria detectable with anti-CB1 serum, their numbers increase significantly after hypoxic insults in parallel with signs of cellular damage. Moreover, use of electron microscopy suggests relocation of SLP2 from its normal functional position in the inner mitochondrial membrane into the mitochondrial matrix in pathological cells. Thus, SLP2-like immunolabeling serves as an in situ histochemical target detecting early derangement of mitochondria. Anti-CB1 serum is crucial for this purpose because available anti-SLP2 antibodies do not provide selective labeling of mitochondria in the fixed tissue. This new method of detecting mitochondrial dysfunction can benefit the in vitro research of human diseases and developmental disorders by enabling analysis in live animal models.

  3. Treatment of adult MPSI mouse brains with IDUA-expressing mesenchymal stem cells decreases GAG deposition and improves exploratory behavior

    PubMed Central

    2012-01-01

    Background Mucopolysaccharidosis type I (MPSI) is caused by a deficiency in alpha-L iduronidase (IDUA), which leads to lysosomal accumulation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate. While the currently available therapies have good systemic effects, they only minimally affect the neurodegenerative process. Based on the neuroprotective and tissue regenerative properties of mesenchymal stem cells (MSCs), we hypothesized that the administration of MSCs transduced with a murine leukemia virus (MLV) vector expressing IDUA to IDUA KO mouse brains could reduce GAG deposition in the brain and, as a result, improve neurofunctionality, as measured by exploratory activity. Methods MSCs infected with an MLV vector encoding IDUA were injected into the left ventricle of the brain of 12- or 25-month-old IDUA KO mice. The behavior of the treated mice in the elevated plus maze and open field tests was observed for 1 to 2 months. Following these observations, the brains were removed for biochemical and histological analyses. Results After 1 or 2 months of observation, the presence of the transgene in the brain tissue of almost all of the treated mice was confirmed using PCR, and a significant reduction in GAG deposition was observed. This reduction was directly reflected in an improvement in exploratory activity in the open field and the elevated plus maze tests. Despite these behavioral improvements and the reduction in GAG deposition, IDUA activity was undetectable in these samples. Overall, these results indicate that while the initial level of IDUA was not sustainable for a month, it was enough to reduce and maintain low GAG deposition and improve the exploratory activity for months. Conclusions These data show that gene therapy, via the direct injection of IDUA-expressing MSCs into the brain, is an effective way to treat neurodegeneration in MPSI mice. PMID:22520214

  4. No effect of running and laboratory housing on adult hippocampal neurogenesis in wild caught long-tailed wood mouse

    PubMed Central

    Hauser, Thomas; Klaus, Fabienne; Lipp, Hans-Peter; Amrein, Irmgard

    2009-01-01

    Background Studies of adult hippocampal neurogenesis (AHN) in laboratory rodents have raised hopes for therapeutic interventions in neurodegenerative diseases and mood disorders, as AHN can be modulated by physical exercise, stress and environmental changes in these animals. Since it is not known whether cell proliferation and neurogenesis in wild living mice can be experimentally changed, this study investigates the responsiveness of AHN to voluntary running and to environmental change in wild caught long-tailed wood mice (Apodemus sylvaticus). Results Statistical analyses show that running had no impact on cell proliferation (p = 0.44), neurogenesis (p = 0.94) or survival of newly born neurons (p = 0.58). Likewise, housing in the laboratory has no effect on AHN. In addition, interindividual differences in the level of neurogenesis are not related to interindividual differences of running wheel performance (rs = -0.09, p = 0.79). There is a correlation between the number of proliferating cells and the number of cells of neuronal lineage (rs = 0.63, p < 0.001) and the number of pyknotic cells (rs = 0.5, p = 0.009), respectively. Conclusion Plasticity of adult neurogenesis is an established feature in strains of house mice and brown rats. Here, we demonstrate that voluntary running and environmental changes which are effective in house mice and brown rats cannot influence AHN in long-tailed wood mice. This indicates that in wild long-tailed wood mice different regulatory mechanisms act on cell proliferation and neurogenesis. If this difference reflects a species-specific adaptation or a broader adaptive strategy to a natural vs. domestic environment is unknown. PMID:19419549

  5. NTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brain.

    PubMed

    Gampe, Kristine; Stefani, Jennifer; Hammer, Klaus; Brendel, Peter; Pötzsch, Alexandra; Enikolopov, Grigori; Enjyoji, Keiichi; Acker-Palmer, Amparo; Robson, Simon C; Zimmermann, Herbert

    2015-01-01

    Nerve cells are continuously generated from stem cells in the adult mammalian subventricular zone (SVZ) and hippocampal dentate gyrus. We have previously noted that stem/progenitor cells in the SVZ and the subgranular layer (SGL) of the dentate gyrus express high levels of plasma membrane-bound nucleoside triphosphate diphosphohydrolase 2 (NTPDase2), an ectoenzyme that hydrolyzes extracellular nucleoside diphosphates and triphosphates. We inferred that deletion of NTPDase2 would increase local extracellular nucleoside triphosphate concentrations perturbing purinergic signaling and boosting progenitor cell proliferation and neurogenesis. Using newly generated mice globally null for Entpd2, we demonstrate that NTPDase2 is the major ectonucleotidase in these progenitor cell-rich areas. Using BrdU-labeling protocols, we have measured stem cell proliferation and determined long-term survival of cell progeny under basal conditions. Brains of Entpd2 null mice revealed increased progenitor cell proliferation in both the SVZ and the SGL. However, this occurred without noteworthy alterations in long-term progeny survival. The hippocampal stem cell pool and the pool of the intermediate progenitor type-2 cells clearly expanded. However, substantive proportions of these proliferating cells were lost during expansion at around type-3 stage. Cell loss was paralleled by decreases in cAMP response element-binding protein phosphorylation in the doublecortin-positive progenitor cell population and by an increase in labeling for activated caspase-3 levels. We propose that NTPDase2 has functionality in scavenging mitogenic extracellular nucleoside triphosphates in neurogenic niches of the adult brain, thereby acting as a homeostatic regulator of nucleotide-mediated neural progenitor cell proliferation and expansion.

  6. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex123

    PubMed Central

    Billeh, Yazan N.; Bernard, Amy; de Vivo, Luisa; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof

    2016-01-01

    Abstract Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25–P30, ≥50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  7. Expression of fragile X mental retardation protein in neurons and glia of the developing and adult mouse brain.

    PubMed

    Gholizadeh, Shervin; Halder, Sebok Kumar; Hampson, David R

    2015-01-30

    Fragile X syndrome is the most common inherited form of mental retardation and autism. It is caused by a reduction or elimination of the expression of fragile X mental retardation protein (FMRP). Because fragile X syndrome is a neurodevelopmental disorder, it is important to fully document the cell type expression in the developing CNS to provide a better understanding of the molecular function of FMRP, and the pathogenesis of the syndrome. We investigated FMRP expression in the brain using double-labeling immunocytochemistry and cell type markers for neurons (NeuN), astrocytes (S100β), microglia (Iba-1), and oligodendrocyte precursor cells (NG2). The hippocampus, striatum, cingulate cortex, retrosplenial cortex, corpus callosum and cerebellum were assessed in wild-type C57/BL6 mice at postnatal days 0, 10, 20, and adult. Our results demonstrate that FMRP is ubiquitously expressed in neurons at all times and brain regions studied, except for corpus callosum where FMRP was predominantly present in astrocytes at all ages. FMRP expression in Iba-1 and NG2-positive cells was detected at postnatal day 0 and 10 and gradually decreased to very low or undetectable levels in postnatal day 20 and adult mice. Our results reveal that in addition to continuous and extensive expression in neurons in the immature and mature brain, FMRP is also present in astrocytes, oligodendrocyte precursor cells, and microglia during the early and mid-postnatal developmental stages of brain maturation. Prominent expression of FMRP in glia during these crucial stages of brain development suggests an important contribution to normal brain function, and in its absence, to the fragile X phenotype.

  8. Kv3 voltage-gated potassium channels regulate neurotransmitter release from mouse motor nerve terminals.

    PubMed

    Brooke, Ruth E; Moores, Thomas S; Morris, Neil P; Parson, Simon H; Deuchars, Jim

    2004-12-01

    Voltage-gated potassium (Kv) channels are critical to regulation of neurotransmitter release throughout the nervous system but the roles and identity of the subtypes involved remain unclear. Here we show that Kv3 channels regulate transmitter release at the mouse neuromuscular junction (NMJ). Light- and electron-microscopic immunohistochemistry revealed Kv3.3 and Kv3.4 subunits within all motor nerve terminals of muscles examined [transversus abdominus, lumbrical and flexor digitorum brevis (FDB)]. To determine the roles of these Kv3 subunits, intracellular recordings were made of end-plate potentials (EPPs) in FDB muscle fibres evoked by electrical stimulation of tibial nerve. Tetraethylammonium (TEA) applied at low concentrations (0.05-0.5 mM), which blocks only a few known potassium channels including Kv3 channels, did not affect muscle fibre resting potential but significantly increased the amplitude of all EPPs tested. Significantly, this effect of TEA was still observed in the presence of the large-conductance calcium-activated potassium channel blockers iberiotoxin (25-150 nM) and Penitrem A (100 nM), suggesting a selective action on Kv3 subunits. Consistent with this, 15-microM 4-aminopyridine, which blocks Kv3 but not large-conductance calcium-activated potassium channels, enhanced evoked EPP amplitude. Unexpectedly, blood-depressing substance-I, a toxin selective for Kv3.4 subunits, had no effect at 0.05-1 microM. The combined presynaptic localization of Kv3 subunits and pharmacological enhancement of EPP amplitude indicate that Kv3 channels regulate neurotransmitter release from presynaptic terminals at the NMJ.

  9. Effects of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus, and characterization of immature neurons along the septotemporal axis

    PubMed Central

    Mahar, Ian; MacIsaac, Angus; Kim, John Junghan; Qiang, Calvin; Davoli, Maria Antonietta; Turecki, Gustavo; Mechawar, Naguib

    2016-01-01

    Adult hippocampal neurogenesis is associated with learning and affective behavioural regulation. Its diverse functionality is segregated along the septotemporal axis from the dorsal to ventral hippocampus. However, features distinguishing immature neurons in these regions have yet to be characterized. Additionally, although we have shown that administration of the neurotrophic factor neuregulin-1 (NRG1) selectively increases proliferation and overall neurogenesis in the mouse ventral dentate gyrus (DG), likely through ErbB3, NRG1’s effects on intermediate neurogenic stages in immature neurons are unknown. We examined whether NRG1 administration increases DG ErbB3 phosphorylation. We labeled adultborn cells using BrdU, then administered NRG1 to examine in vivo neurogenic effects on immature neurons with respect to cell survival, morphology, and synaptogenesis. We also characterized features of immature neurons along the septotemporal axis. We found that neurogenic effects of NRG1 are temporally and subregionally specific to proliferation in the ventral DG. Particular morphological features differentiate immature neurons in the dorsal and ventral DG, and cytogenesis differed between these regions. Finally, we identified synaptic heterogeneity surrounding the granule cell layer. These results indicate neurogenic involvement of NRG1-induced antidepressant-like behaviour is particularly associated with increased ventral DG cell proliferation, and identify novel distinctions between dorsal and ventral hippocampal neurogenic development. PMID:27469430

  10. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur

    PubMed Central

    Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne

    2015-01-01

    Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months’ supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze.jlr Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. PMID:26063461

  11. Genetic Labeling Reveals Novel Cellular Targets of Schizophrenia Susceptibility Gene: Distribution of GABA and Non-GABA ErbB4-Positive Cells in Adult Mouse Brain

    PubMed Central

    Bean, Jonathan C.; Lin, Thiri W.; Sathyamurthy, Anupama; Liu, Fang; Yin, Dong-Min; Xiong, Wen-Cheng

    2014-01-01

    Neuregulin 1 (NRG1) and its receptor ErbB4 are schizophrenia risk genes. NRG1-ErbB4 signaling plays a critical role in neural development and regulates neurotransmission and synaptic plasticity. Nevertheless, its cellular targets remain controversial. ErbB4 was thought to express in excitatory neurons, although recent studies disputed this view. Using mice that express a fluorescent protein under the promoter of the ErbB4 gene, we determined in what cells ErbB4 is expressed and their identity. ErbB4 was widely expressed in the mouse brain, being highest in amygdala and cortex. Almost all ErbB4-positive cells were GABAergic in cortex, hippocampus, basal ganglia, and most of amygdala in neonatal and adult mice, suggesting GABAergic transmission as a major target of NRG1-ErbB4 signaling in these regions. Non-GABAergic, ErbB4-positive cells were present in thalamus, hypothalamus, midbrain, and hindbrain. In particular, ErbB4 is expressed in serotoninergic neurons of raphe nuclei but not in norepinephrinergic neurons of the locus ceruleus. In hypothalamus, ErbB4 is present in neurons that express oxytocin. Finally, ErbB4 is expressed in a group of cells in the subcortical areas that are positive for S100 calcium binding protein β. These results identify novel cellular targets of NRG1-ErbB4 signaling. PMID:25274830

  12. CONVECTION-ENHANCED DELIVERY AND SYSTEMIC MANNITOL INCREASE GENE PRODUCT DISTRIBUTION OF AAV VECTORS 5, 8, AND 9 AND INCREASE GENE PRODUCT IN THE ADULT MOUSE BRAIN

    PubMed Central

    Carty, Nikisha; Lee, Daniel; Dickey, Chad; Ceballos-Diaz, Carolina; Jansen-West, Karen; Golde, Todd E.; Gordon, Marcia N.; Morgan, Dave; Nash, Kevin

    2010-01-01

    The use of recombinant adeno-associated viral (rAAV) vectors as a means of gene delivery to the central nervous system has emerged as a potentially viable method for the treatment of several types of degenerative brain diseases. However, a limitation of typical intracranial injections into the adult brain parenchyma is the relatively restricted distribution of the delivered gene to large brain regions such as the cortex, presumably due to confined dispersion of the injected particles. Optimizing the administration techniques to maximize gene distribution and gene expression is an important step in developing gene therapy studies. Here, we have found additive increases in distribution when 3 methods to increase brain distribution of rAAV were combined. The convection enhanced delivery (CED) method with the step-design cannula was used to deliver rAAV vector serotypes 5, 8 and 9 encoding GFP into the hippocampus of the mouse brain. While the CED method improved distribution of all 3 serotypes, the combination of rAAV9 and CED was particularly effective. Systemic mannitol administration, which reduces intracranial pressure, also further expanded distribution of GFP expression, in particular, increased expression on the contralateral hippocampi. These data suggest that combining advanced injection techniques with newer rAAV serotypes greatly improves viral vector distribution, which could have significant benefits for implementation of gene therapy strategies. PMID:20951738

  13. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    PubMed Central

    Chater-Diehl, Eric J.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  14. Conditional genetic deletion of Ano1 in interstitial cells of Cajal impairs Ca(2+) transients and slow waves in adult mouse small intestine.

    PubMed

    Malysz, John; Gibbons, Simon J; Saravanaperumal, Siva A; Du, Peng; Eisenman, Seth T; Cao, Chike; Oh, Uhtaek; Saur, Dieter; Klein, Sabine; Ordog, Tamas; Farrugia, Gianrico

    2017-03-01

    Myenteric plexus interstitial cells of Cajal (ICC-MY) in the small intestine are Kit(+) electrical pacemakers that express the Ano1/TMEM16A Ca(2+)-activated Cl(-) channel, whose functions in the gastrointestinal tract remain incompletely understood. In this study, an inducible Cre-LoxP-based approach was used to advance the understanding of Ano1 in ICC-MY of adult mouse small intestine. Kit(CreERT2/+);Ano1(Fl/Fl) mice were treated with tamoxifen or vehicle, and small intestines (mucosa free) were examined. Quantitative RT-PCR demonstrated ~50% reduction in Ano1 mRNA in intestines of conditional knockouts (cKOs) compared with vehicle-treated controls. Whole mount immunohistochemistry showed a mosaic/patchy pattern loss of Ano1 protein in ICC networks. Ca(2+) transients in ICC-MY network of cKOs displayed reduced duration compared with highly synchronized controls and showed synchronized and desynchronized profiles. When matched, the rank order for Ano1 expression in Ca(2+) signal imaged fields of view was as follows: vehicle controls>cKO(synchronized)>cKO(desynchronized). Maintenance of Ca(2+) transients' synchronicity despite high loss of Ano1 indicates a large functional reserve of Ano1 in the ICC-MY network. Slow waves in cKOs displayed reduced duration and increased inter-slow-wave interval and occurred in regular- and irregular-amplitude oscillating patterns. The latter activity suggested ongoing interaction by independent interacting oscillators. Lack of slow waves and depolarization, previously reported for neonatal constitutive knockouts, were also seen. In summary, Ano1 in adults regulates gastrointestinal function by determining Ca(2+) transients and electrical activity depending on the level of Ano1 expression. Partial Ano1 loss results in Ca(2+) transients and slow waves displaying reduced duration, while complete and widespread absence of Ano1 in ICC-MY causes lack of slow wave and desynchronized Ca(2+) transients.NEW & NOTEWORTHY The Ca(2+)-activated

  15. The sodium channel Nav1.5a is the predominant isoform expressed in adult mouse dorsal root ganglia and exhibits distinct inactivation properties from the full-length Nav1.5 channel.

    PubMed

    Kerr, Niall C H; Gao, Zhan; Holmes, Fiona E; Hobson, Sally-Ann; Hancox, Jules C; Wynick, David; James, Andrew F

    2007-06-01

    Nav1.5 is the principal voltage-gated sodium channel expressed in heart, and is also expressed at lower abundance in embryonic dorsal root ganglia (DRG) with little or no expression reported postnatally. We report here the expression of Nav1.5 mRNA isoforms in adult mouse and rat DRG. The major isoform of mouse DRG is Nav1.5a, which encodes a protein with an IDII/III cytoplasmic loop reduced by 53 amino acids. Western blot analysis of adult mouse DRG membrane proteins confirmed the expression of Nav1.5 protein. The Na+ current produced by the Nav1.5a isoform has a voltage-dependent inactivation significantly shifted to more negative potentials (by approximately 5 mV) compared to the full-length Nav1.5 when expressed in the DRG neuroblastoma cell line ND7/23. These results imply that the alternatively spliced exon 18 of Nav1.5 plays a role in channel inactivation and that Nav1.5a is likely to make a significant contribution to adult DRG neuronal function.

  16. Melatonin attenuates methamphetamine-induced inhibition of neurogenesis in the adult mouse hippocampus: An in vivo study.

    PubMed

    Singhakumar, Rachen; Boontem, Parichart; Ekthuwapranee, Kasima; Sotthibundhu, Areechun; Mukda, Sujira; Chetsawang, Banthit; Govitrapong, Piyarat

    2015-10-08

    Methamphetamine (METH), a highly addictive psychostimulant drug, is known to exert neurotoxic effects to the dopaminergic neural system. Long-term METH administration impairs brain functions such as cognition, learning and memory. Newly born neurons in the dentate gyrus of the hippocampus play an important role in spatial learning and memory. Previous in vitro studies have shown that METH inhibits cell proliferation and neurogenesis in the hippocampus. On the other hand, melatonin, a major indole secreted by the pineal gland, enhances neurogenesis in both the subventricular zone and dentate gyrus. In this study, adult C57BL/6 mice were used to study the beneficial effects of melatonin on METH-induced alterations in neurogenesis and post-synaptic proteins related to learning and memory functions in the hippocampus. The results showed that METH caused a decrease in neuronal phenotypes as determined by the expressions of nestin, doublecortin (DCX) and beta-III tubulin while causing an increase in glial fibrillary acidic protein (GFAP) expression. Moreover, METH inhibited mitogen-activated protein kinase (MAPK) signaling activity and altered expression of the N-methyl-d-aspartate (NMDA) receptor subunits NR2A and NR2B as well as calcium/calmodulin-dependent protein kinase II (CaMKII). These effects could be attenuated by melatonin pretreatment. In conclusion, melatonin prevented the METH-induced reduction in neurogenesis, increase in astrogliogenesis and alteration of NMDA receptor subunit expression. These findings may indicate the beneficial effects of melatonin on the impairment of learning and memory caused by METH.

  17. Prenatal stress enhances severity of atherosclerosis in the adult apolipoprotein E-deficient mouse offspring via inflammatory pathways.

    PubMed

    Ho, H; Lhotak, S; Solano, M E; Karimi, K; Pincus, M K; Austin, R C; Arck, P

    2013-02-01

    Atherosclerosis is the underlying cause of cardiovascular disease and stroke. Endothelial cell dysfunctions are early events in atherosclerosis, resulting in the recruitment of circulating monocytes. The immune system can elicit an inflammatory response toward the atherosclerotic lesion, thereby accelerating lesion growth. Risk factors for atherosclerosis include hypertension, smoking, stress perception or low birth weight. As prenatal stress challenge decreases the birth weight and affects the offspring's postnatal immune response, we aimed to investigate whether prenatal stress contributes to the development of atherosclerosis in mice. Syngenic pregnant apolipoprotein E-deficient (apoE-/-) dams were exposed to sound stress on gestation days 12.5 and 14.5. The presence and size of atherosclerotic plaques in the offspring at the age of 15 weeks was evaluated by histomorphology, accompanied by flow cytometric analysis of the frequency and phenotype of monocytes/macrophages and regulatory T (Treg) cells in the blood. Further, cytokine secretion of peripheral blood lymphocytes was analyzed. In response to prenatal stress challenge, an increased frequency of large atherosclerotic plaques was detectable in apoE-/- offspring, which was particularly profound in females. Prenatal stress also resulted in alterations of the offspring's immune response, such as a decreased frequency of Treg cells in blood, alterations of macrophage populations in blood and an increased secretion of inflammatory cytokines. We provide novel evidence that prenatally stressed adult offspring show an increased severity of atherosclerosis. As Treg cells are key players in dampening inflammation, the observed increase in atherosclerosis may be due to the lack of Treg cell frequency. Future interdisciplinary research is urgently required to understand the developmental origin of prenatal stress-induced atherosclerosis. The availability of our model may facilitate and foster such research endeavors.

  18. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    PubMed

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  19. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    SciTech Connect

    Bredow, Sebastian . E-mail: sbredow@LRRI.org; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-06-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m{sup 3} for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease.

  20. Phenotypic characterization of a Csf1r haploinsufficient mouse model of adult-onset leukodystrophy with axonal spheroids and pigmented glia (ALSP)

    PubMed Central

    Chitu, Violeta; Gokhan, Solen; Gulinello, Maria; Branch, Craig A.; Patil, Madhuvati; Basu, Ranu; Stoddart, Corrina; Mehler, Mark F.; Stanley, E. Richard

    2014-01-01

    Mutations in the colony stimulating factor-1 receptor (CSF1R) that abrogate the expression of the affected allele or lead to the expression of mutant receptor chains devoid of kinase activity have been identified in both familial and sporadic cases of ALSP. To determine the validity of the Csf1r heterozygous mouse as a model of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) we performed behavioral, radiologic, histopathologic, ultrastructural and cytokine expression studies of young and old Csf1r+/− and control Csf1r+/+ mice. Six to 8-month old Csf1r+/− mice exhibit cognitive deficits, and by 9-11 months develop sensorimotor deficits and in male mice, depression and anxiety-like behavior. MRIs of one year-old Csf1r+/− mice reveal lateral ventricle enlargement and thinning of the corpus callosum. Ultrastructural analysis of the corpus callosum uncovers dysmyelinated axons as well as neurodegeneration, evidenced by the presence of axonal spheroids. Histopathological examination of 11-week-old mice reveals increased axonal and myelin staining in the cortex, increase of neuronal cell density in layer V and increase of microglial cell densities throughout the brain, suggesting that early developmental changes contribute to disease. By 10-months of age, the neuronal cell density normalizes, oligodendrocyte precursor cells increase in layers II-III and V and microglial densities remain elevated without an increase in astrocytes. Also, the age-dependent increase in CSF-1R+ neurons in cortical layer V is reduced. Moreover, the expression of Csf2, Csf3, Il27 and Il6 family cytokines is increased, consistent with microglia-mediated inflammation. These results demonstrate that the inactivation of one Csf1r allele is sufficient to cause an ALSP-like disease in mice. The Csf1r+/− mouse is a model of ALSP that will allow the critical events for disease development to be determined and permit rapid evaluation of therapeutic approaches

  1. A Small Motor Cortex Lesion Abolished Ocular Dominance Plasticity in the Adult Mouse Primary Visual Cortex and Impaired Experience-Dependent Visual Improvements.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Greifzu, Franziska; Löwel, Siegrid

    2015-01-01

    It was previously shown that a small lesion in the primary somatosensory cortex (S1) prevented both cortical plasticity and sensory learning in the adult mouse visual system: While 3-month-old control mice continued to show ocular dominance (OD) plasticity in their primary visual cortex (V1) after monocular deprivation (MD), age-matched mice with a small photothrombotically induced (PT) stroke lesion in S1, positioned at least 1 mm anterior to the anterior border of V1, no longer expressed OD-plasticity. In addition, in the S1-lesioned mice, neither the experience-dependent increase of the spatial frequency threshold ("visual acuity") nor of the contrast threshold ("contrast sensitivity") of the optomotor reflex through the open eye was present. To assess whether these plasticity impairments can also occur if a lesion is placed more distant from V1, we tested the effect of a PT-lesion in the secondary motor cortex (M2). We observed that mice with a small M2-lesion restricted to the superficial cortical layers no longer expressed an OD-shift towards the open eye after 7 days of MD in V1 of the lesioned hemisphere. Consistent with previous findings about the consequences of an S1-lesion, OD-plasticity in V1 of the nonlesioned hemisphere of the M2-lesioned mice was still present. In addition, the experience-dependent improvements of both visual acuity and contrast sensitivity of the open eye were severely reduced. In contrast, sham-lesioned mice displayed both an OD-shift and improvements of visual capabilities of their open eye. To summarize, our data indicate that even a very small lesion restricted to the superficial cortical layers and more than 3mm anterior to the anterior border of V1 compromised V1-plasticity and impaired learning-induced visual improvements in adult mice. Thus both plasticity phenomena cannot only depend on modality-specific and local nerve cell networks but are clearly influenced by long-range interactions even from distant brain regions.

  2. A Small Motor Cortex Lesion Abolished Ocular Dominance Plasticity in the Adult Mouse Primary Visual Cortex and Impaired Experience-Dependent Visual Improvements

    PubMed Central

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Greifzu, Franziska; Löwel, Siegrid

    2015-01-01

    It was previously shown that a small lesion in the primary somatosensory cortex (S1) prevented both cortical plasticity and sensory learning in the adult mouse visual system: While 3-month-old control mice continued to show ocular dominance (OD) plasticity in their primary visual cortex (V1) after monocular deprivation (MD), age-matched mice with a small photothrombotically induced (PT) stroke lesion in S1, positioned at least 1 mm anterior to the anterior border of V1, no longer expressed OD-plasticity. In addition, in the S1-lesioned mice, neither the experience-dependent increase of the spatial frequency threshold (“visual acuity”) nor of the contrast threshold (“contrast sensitivity”) of the optomotor reflex through the open eye was present. To assess whether these plasticity impairments can also occur if a lesion is placed more distant from V1, we tested the effect of a PT-lesion in the secondary motor cortex (M2). We observed that mice with a small M2-lesion restricted to the superficial cortical layers no longer expressed an OD-shift towards the open eye after 7 days of MD in V1 of the lesioned hemisphere. Consistent with previous findings about the consequences of an S1-lesion, OD-plasticity in V1 of the nonlesioned hemisphere of the M2-lesioned mice was still present. In addition, the experience-dependent improvements of both visual acuity and contrast sensitivity of the open eye were severely reduced. In contrast, sham-lesioned mice displayed both an OD-shift and improvements of visual capabilities of their open eye. To summarize, our data indicate that even a very small lesion restricted to the superficial cortical layers and more than 3mm anterior to the anterior border of V1 compromised V1-plasticity and impaired learning-induced visual improvements in adult mice. Thus both plasticity phenomena cannot only depend on modality-specific and local nerve cell networks but are clearly influenced by long-range interactions even from distant brain

  3. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APP(swe)/PS1(DeltaE9) transgenic mouse model of Alzheimer's disease.

    PubMed

    Tang, Jun; Song, Min; Wang, Yanyan; Fan, Xiaotang; Xu, Haiwei; Bai, Yun

    2009-07-31

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP(swe)/PS1(DeltaE9) mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP(swe)/PS1(DeltaE9) transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.

  4. Spontaneous kisspeptin neuron firing in the adult mouse reveals marked sex and brain region differences but no support for a direct role in negative feedback.

    PubMed

    de Croft, Simon; Piet, Richard; Mayer, Christian; Mai, Oliver; Boehm, Ulrich; Herbison, Allan E

    2012-11-01

    Kisspeptin-Gpr54 signaling is critical for the GnRH neuronal network controlling fertility. The present study reports on a kisspeptin (Kiss)-green fluorescent protein (GFP) mouse model enabling brain slice electrophysiological recordings to be made from Kiss neurons in the arcuate nucleus (ARN) and rostral periventricular region of the third ventricle (RP3V). Using dual immunofluorescence, approximately 90% of GFP cells in the RP3V of females, and ARN in both sexes, are shown to be authentic Kiss-synthesizing neurons in adult mice. Cell-attached recordings of ARN Kiss-GFP cells revealed a marked sex difference in their mean firing rates; 90% of Kiss-GFP cells in males exhibited slow irregular firing (0.17 ± 0.04 Hz) whereas neurons from diestrous (0.01 ± 0.01 Hz) and ovariectomized (0 Hz) mice were mostly or completely silent. In contrast, RP3V Kiss-GFP cells were all spontaneously active, exhibiting tonic, irregular, and bursting firing patterns. Mean firing rates were significantly (P < 0.05) higher in diestrus (2.1 ± 0.3 Hz) compared with ovariectomized (1.0 ± 0.2 Hz) mice without any changes in firing pattern. Recordings from RP3V Kiss-GFP neurons at the time of the proestrous GnRH surge revealed a significant decline in firing rate after the surge. Together, these observations demonstrate unexpected sex differences in the electrical activity of ARN Kiss neurons and markedly different patterns of firing by Kiss neurons in the ARN and RP3V. Although data supported a positive influence of gonadal steroids on RP3V Kiss neuron firing, no direct evidence was found to support the previously postulated role of ARN Kiss neurons in the estrogen-negative feedback mechanism.

  5. Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring.

    PubMed

    Powers, Brian E; Kelley, Christy M; Velazquez, Ramon; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J

    2017-01-06

    The Ts65Dn mouse model of Down syndrome (DS) and Alzheimer's disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12-17months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NBM/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD.

  6. Dopamine D1 Receptor Immunoreactivity on Fine Processes of GFAP-Positive Astrocytes in the Substantia Nigra Pars Reticulata of Adult Mouse

    PubMed Central

    Nagatomo, Katsuhiro; Suga, Sechiko; Saitoh, Masato; Kogawa, Masahito; Kobayashi, Kazuto; Yamamoto, Yoshio; Yamada, Katsuya

    2017-01-01

    Substantia nigra pars reticulata (SNr), the major output nucleus of the basal ganglia, receives dopamine from dendrites extending from dopaminergic neurons of the adjacent nucleus pars compacta (SNc), which is known for its selective degeneration in Parkinson's disease. As a recipient for dendritically released dopamine, the dopamine D1 receptor (D1R) is a primary candidate due to its very dense immunoreactivity in the SNr. However, the precise location of D1R remains unclear at the cellular level in the SNr except for that reported on axons/axon terminals of presumably striatal GABAergic neurons. To address this, we used D1R promotor-controlled, mVenus-expressing transgenic mice. When cells were acutely dissociated from SNr of mouse brain, prominent mVenus fluorescence was detected in fine processes of glia-like cells, but no such fluorescence was detected from neurons in the same preparation, except for the synaptic bouton-like structure on the neurons. Double immunolabeling of SNr cells dissociated from adult wild-type mice brain further revealed marked D1R immunoreactivity in the processes of glial fibrillary acidic protein (GFAP)-positive astrocytes. Such D1R imunoreactivity was significantly stronger in the SNr astrocytes than that in those of the visual cortex in the same preparation. Interestingly, GFAP-positive astrocytes dissociated from the striatum demonstrated D1R immunoreactivity, either remarkable or minimal, similarly to that shown in neurons in this nucleus. In contrast, in the SNr and visual cortex, only weak D1R immunoreactivity was detected in the neurons tested. These results suggest that the SNr astrocyte may be a candidate recipient for dendritically released dopamine. Further study is required to fully elucidate the physiological roles of divergent dopamine receptor immunoreactivity profiles in GFAP-positive astrocytes. PMID:28203148

  7. The differential expression of low-threshold K+ currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurones.

    PubMed

    Catacuzzeno, Luigi; Fioretti, Bernard; Pietrobon, Daniela; Franciolini, Fabio

    2008-11-01

    In adult mouse trigeminal ganglion (TG) neurones we identified three neuronal subpopulations, defined in terms of their firing response to protracted depolarizations, namely MF neurones, characterized by a multiple tonic firing; DMF neurones, characterized by a delay before the beginning of repetitive firing; and SS neurones, characterized by a strongly adapting response. The three subpopulations also differed in several other properties important for defining their functional role in vivo, namely soma size, action potential (AP) shape and capsaicin sensitivity. MF neurones had small soma, markedly long AP and mostly responded to capsaicin, properties typical of a subgroup of C-type nociceptors. SS neurones had large soma, short AP duration and were mostly capsaicin insensitive, suggesting that most of them have functions other than nociception. DMF neurones were all capsaicin insensitive, had a small soma size and intermediate AP duration, making them functionally distinct from both MF and SS neurones. We investigated the ionic basis underlying the delay to the generation of the first AP of DMF neurones, and the strong adaptation of SS neurones. We found that the expression of a fast-inactivating, 4-AP- and CP-339,818-sensitive K+ current (I(A)) in DMF neurones plays a critical role in the generation of the delay, whereas a DTX-sensitive K+ current (I(DTX)) selectively expressed in SS neurones appeared to be determinant for their strong firing adaptation. A minimal theoretical model of TG neuronal excitability confirmed that I(A) and I(DTX) have properties congruent with their suggested role.

  8. Postnatal day 7 ethanol treatment causes persistent reductions in adult mouse brain volume and cortical neurons with sex specific effects on neurogenesis.

    PubMed

    Coleman, Leon G; Oguz, Ipek; Lee, Joohwi; Styner, Martin; Crews, Fulton T

    2012-09-01

    Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure (Ikonomidou et al., 2000). To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5 g/kg, s.c., 2 h apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV + IR) interneurons (18-33%) and reduced Cux1+IR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology.

  9. Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization.

    PubMed

    Bernstein, Hans-Gert; Bannier, Jana; Meyer-Lotz, Gabriela; Steiner, Johann; Keilhoff, Gerburg; Dobrowolny, Henrik; Walter, Martin; Bogerts, Bernhard

    2014-11-01

    Glutamine synthetase catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a pivotal role in glutamate and glutamine homoeostasis. Despite a plethora of studies on this enzyme, knowledge about the regional and cellular distribution of this enzyme in human brain is still fragmentary. Therefore, we mapped fourteen post-mortem brains of psychically healthy individuals for the distribution of the glutamine synthetase immunoreactive protein. It was found that glutamine synthetase immunoreactivity is expressed in multiple gray and white matter astrocytes, but also in oligodendrocytes, ependymal cells and certain neurons. Since a possible extra-astrocytic expression of glutamine synthetase is highly controversial, we paid special attention to its appearance in oligodendrocytes and neurons. By double immunolabeling of mouse brain slices and cultured mouse brain cells for glutamine synthetase and cell-type-specific markers we provide evidence that besides astrocytes subpopulations of oligodendrocytes, microglial cells and neurons express glutamine synthetase. Moreover, we show that glutamine synthetase-immunopositive neurons are not randomly distributed throughout human and mouse brain, but represent a subpopulation of nitrergic (i.e. neuronal nitric oxide synthase expressing) neurons. Possible functional implications of an extra-astrocytic localization of glutamine synthetase are discussed.

  10. Effect of mitochondria poisoning by FCCP on Ca2+ signaling in mouse skeletal muscle fibers.

    PubMed

    Caputo, Carlo; Bolaños, Pura

    2008-01-01

    We have studied the effects of mitochondria poisoning by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) on Ca(2+) signaling in enzymatically dissociated mouse flexor digitorum brevis (FDB) muscle fibers. We used Fura-2AM to measure resting [Ca(2+)](i) and MagFluo-4AM to measure Ca(2+) transients. Exposure to FCCP (2 microM, 2 min) caused a continuous increase in [Ca(2+)](i) at a rate of 0.60 nM/s and a drastic reduction of electrically elicited Ca(2+) transients without much effect on their decay phase. Half of the maximal effect occurred at [Ca(2+)](i) = 220 nM. This effect was partially reversible after long recuperation and was not diminished by Tiron, a reactive oxygen species (ROS) scavenger. FCCP had no effects on fiber excitability as shown by the generation of action potentials. 4CmC, an agonist of ryanodine receptors, induced a massive Ca(2+) release. FCCP diminished the rate but not the amount of Ca(2+) released, indicating that depletion of Ca(2+) stores did not cause the decrease in Ca(2+) transient amplitude. Ca(2+) transient amplitude could also be diminished, but to a lesser degree, by increases in [Ca(2+)](i) induced by repetitive stimulation of fibers treated with ciclopiazonic acid. This suggests an important role for Ca(2+) in the FCCP effect on transient amplitude.

  11. Response of adult mouse uterus to early disruption of estrogen receptor-alpha signaling is influenced by Krüppel-like factor 9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inappropriate early exposure of the hormone-responsive uterus to estrogenic compounds is associated with increased risk for adult reproductive diseases including endometrial cancers. While the dysregulation of estrogen receptor-alpha (ESR1) signaling is a well-acknowledged early event in tumor initi...

  12. Developmental time course and effects of immunostressors that alter hormone-responsive behavior on microglia in the peripubertal and adult female mouse brain

    PubMed Central

    Blaustein, Jeffrey D.

    2017-01-01

    In female mice, the experience of being shipped from the breeder facility or a single injection of the bacterial endotoxin, lipopolysaccharide (LPS), during pubertal development alters the behavioral response to estradiol in adulthood as demonstrated by perturbations of estradiol’s effects on sexual behavior, cognitive function, as well as its anxiolytic and anti-depressive properties. Microglia, the primary type of immunocompetent cell within the brain, contribute to brain development and respond to stressors with marked and long-lasting morphological and functional changes. Here, we describe the morphology of microglia and their response to shipping and LPS in peripubertal and adult female mice. Peripubertal mice have more microglia with long, thick processes in the hippocampus, amygdala and hypothalamus as compared with adult mice in the absence of an immune challenge. An immune challenge also increases immunoreactivity (IR) of ionized calcium binding adaptor molecule 1 (Iba1), which is constitutively expressed in microglia. In the hippocampus, the age of animal was without effect on the increase in Iba1- IR following shipping from the breeder facility or LPS exposure. In the amygdala, we observed more Iba1-IR following shipping or LPS treatment in peripubertal mice, compared to adult mice. In the hypothalamus, there was a disassociation of the effects of shipping and LPS treatment as LPS treatment, but not shipping, induced an increase in Iba1-IR. Taken together these data indicate that microglial morphologies differ between pubertal and adult mice; moreover, the microglial response to complex stressors is greater in pubertal mice as compared to adult mice. PMID:28158270

  13. Gestational and lactational exposure to atrazine via the drinking water causes specific behavioral deficits and selectively alters monoaminergic systems in C57BL/6 mouse dams, juvenile and adult offspring.

    PubMed

    Lin, Zhoumeng; Dodd, Celia A; Xiao, Shuo; Krishna, Saritha; Ye, Xiaoqin; Filipov, Nikolay M

    2014-09-01

    Atrazine (ATR) is one of the most frequently detected pesticides in the U.S. water supply. This study aimed to investigate neurobehavioral and neurochemical effects of ATR in C57BL/6 mouse offspring and dams exposed to a relatively low (3 mg/l, estimated intake 1.4 mg/kg/day) concentration of ATR via the drinking water (DW) from gestational day 6 to postnatal day (PND) 23. Behavioral tests included open field, pole, grip strength, novel object recognition (NOR), forced swim, and marble burying tests. Maternal weight gain and offspring (PND21, 35, and 70) body or brain weights were not affected by ATR. However, ATR-treated dams exhibited decreased NOR performance and a trend toward hyperactivity. Juvenile offspring (PND35) from ATR-exposed dams were hyperactive (both sexes), spent less time swimming (males), and buried more marbles (females). In adult offspring (PND70), the only behavioral change was a sex-specific (females) decreased NOR performance by ATR. Neurochemically, a trend toward increased striatal dopamine (DA) in dams and a significant increase in juvenile offspring (both sexes) was observed. Additionally, ATR exposure decreased perirhinal cortex serotonin in the adult female offspring. These results suggest that perinatal DW exposure to ATR targets the nigrostriatal DA pathway in dams and, especially, juvenile offspring, alters dams' cognitive performance, induces sex-selective changes involving motor and emotional functions in juvenile offspring, and decreases cognitive ability of adult female offspring, with the latter possibly associated with altered perirhinal cortex serotonin homeostasis. Overall, ATR exposure during gestation and lactation may cause adverse nervous system effects to both offspring and dams.

  14. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

    PubMed Central

    Tyler, Christina R.; Hafez, Alexander K.; Solomon, Elizabeth R.; Allan, Andrea M.

    2015-01-01

    Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity alters the epigenome, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and expression of associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region- specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development induces alterations in the adult brain via histone modifications and chromatin modifiers a sex- and

  15. Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells.

    PubMed

    Aiba, Kazuhiro; Sharov, Alexei A; Carter, Mark G; Foroni, Chiara; Vescovi, Angelo L; Ko, Minoru S H

    2006-04-01

    To understand global features of gene expression changes during in vitro neural differentiation, we carried out the microarray analysis of embryonic stem cells (ESCs), embryonal carcinoma cells, and adult neural stem/progenitor (NS) cells. Expression profiling of ESCs during differentiation in monolayer culture revealed three distinct phases: undifferentiated ESCs, primitive ectoderm-like cells, and neural progenitor cells. Principal component (PC) analysis revealed that these cells were aligned on PC1 over the course of 6 days. This PC1 represents approximately 4,000 genes, the expression of which increased with neural commitment/differentiation. Furthermore, NS cells derived from adult brain and their differentiated cells were positioned along this PC axis further away from undifferentiated ESCs than embryonic stem-derived neural progenitors. We suggest that this PC1 defines a path to neural fate, providing a scale for the degree of commitment/differentiation.

  16. Functional liver tissue engineering by an adult mouse liver-derived neuro-glia antigen 2-expressing stem/progenitor population.

    PubMed

    Zhang, Hongyu; Siegel, Christopher T; Li, Jing; Lai, Jiejuan; Shuai, Ling; Lai, Xiangdong; Zhang, Yujun; Jiang, Yan; Bie, Ping; Bai, Lianhua

    2016-09-17

    Deaths due to end-stage liver diseases (ESLD) are increasingly registered annually in the world. Liver transplantation is the ultimate treatment for ESLD to date, which has been hampered by a critical shortage of organs. The potential of decellularized liver scaffolds (DLS) derived from solid organs as a three dimensional (3D) platform has been evolved as a promising approach in liver tissue engineering for translating functional liver organ replacements, but questions still exist regarding the optimal cell population for seeding in DLS and the preparation of the DLS themselves. The aim of our study was to utilize a sodium dodecyl sulfate (SDS) decellularization procedure in combination with a low concentration of trypsin (0.005%)-EDTA (0.002%) process to manufacture DLS from whole mouse livers and recellularized with hepatic stem/progenitors for use in liver tissue engineering and injured liver treatment. Results showed that the DLS generated with all the necessary microstructure and the extracellular components to support seeded hepatic stem/progenitor cell attachment, functional hepatic cell differentiation. Hepatic differentiation from stem/progenitor cells loaded by DLS was more efficient than that of the stem/progenitor cells in the 2D cell culture model. In summary, the method of DLS loaded by hepatic stem/progenitor cells provided by this study was effective in maintaining DLS extracellular matrix (ECM) to introduce seeded stem/progenitor cell differentiation, hepatic-like tissue formation and functional hepatic protein production in vitro that promoted functional recovery and survival in a mouse model of dimethylnitrosamine (DEN)-induced liver cirrhosis after auxiliary heterotopic liver transplantation.

  17. RNAi silencing of P/Q-type calcium channels in Purkinje neurons of adult mouse leads to episodic ataxia type 2.

    PubMed

    Salvi, Julie; Bertaso, Federica; Mausset-Bonnefont, Anne-Laure; Metz, Alexandra; Lemmers, Céline; Ango, Fabrice; Fagni, Laurent; Lory, Philippe; Mezghrani, Alexandre

    2014-08-01

    Episodic ataxia type-2 (EA2) is a dominantly inherited human neurological disorder caused by loss of function mutations in the CACNA1A gene, which encodes the CaV2.1 subunit of P/Q-type voltage-gated calcium channels. It remains however unknown whether the deficit of cerebellar CaV2.1 in adult is in direct link with the disease. To address this issue, we have used lentiviral based-vector RNA interference (RNAi) to knock-down CaV2.1 expression in the cerebellum of adult mice. We show that suppression of the P/Q-type channels in Purkinje neurons induced motor abnormalities, such as imbalance and ataxic gait. Interestingly, moderate channel suppression caused no basal ataxia, while β-adrenergic activation and exercise mimicked stress induced motor disorders. Moreover, stress-induced ataxia was stable, non-progressive and totally abolished by acetazolamide, a carbonic anhydrase inhibitor used to treat EA2. Altogether, these data reveal that P/Q-type channel suppression in adult mice supports the episodic status of EA2 disease.

  18. Neural stem cell transplantation in mouse brain.

    PubMed

    Lee, Jean-Pyo; McKercher, Scott; Muller, Franz-Josef; Snyder, Evan Y

    2008-01-01

    Neural stem cells (NSCs) are the most primordial, least committed cells of the nervous system, and transplantation of these multipotent cells holds the promise of regenerative therapy for many central nervous system (CNS) diseases. This unit describes methods for NSC transplantation into neonatal mouse pups, embryonic mouse brain, and adult mouse brain. A description of options for detection of labeled donor cells in engrafted mouse brain is provided along with an example protocol for detecting lacZ-expressing cells in situ. Also included is a protocol for preparing NSCs for transplantation.

  19. Humoral hypercalcemia of malignancy: severe combined immunodeficient/beige mouse model of adult T-cell lymphoma independent of human T-cell lymphotropic virus type-1 tax expression.

    PubMed

    Richard, V; Lairmore, M D; Green, P L; Feuer, G; Erbe, R S; Albrecht, B; D'Souza, C; Keller, E T; Dai, J; Rosol, T J

    2001-06-01

    The majority of patients with adult T-cell leukemia/lymphoma (ATL) resulting from human T-cell lymphotropic virus type-1 (HTLV-1) infection develop humoral hypercalcemia of malignancy (HHM). We used an animal model using severe combined immunodeficient (SCID)/beige mice to study the pathogenesis of HHM. SCID/beige mice were inoculated intraperitoneally with a human ATL line (RV-ATL) and were euthanized 20 to 32 days after inoculation. SCID/beige mice with engrafted RV-ATL cells developed lymphoma in the mesentery, liver, thymus, lungs, and spleen. The lymphomas stained positively for human CD45RO surface receptor and normal mouse lymphocytes stained negatively confirming the human origin of the tumors. The ATL cells were immunohistochemically positive for parathyroid hormone-related protein (PTHrP). In addition, PTHrP mRNA was highly expressed in lymphomas when compared to MT-2 cells (HTLV-1-positive cell line). Mice with lymphoma developed severe hypercalcemia. Plasma PTHrP concentrations were markedly increased in mice with hypercalcemia, and correlated with the increase in plasma calcium concentrations. Bone densitometry and histomorphometry in lymphoma-bearing mice revealed significant bone loss because of a marked increase in osteoclastic bone resorption. RV-ATL cells contained 1.5 HTLV-1 proviral copies of the tax gene as determined by quantitative real-time polymerase chain reaction (PCR). However, tax expression was not detected by Western blot or reverse transcriptase (RT)-PCR in RV-ATL cells, which suggests that factors other than Tax are modulators of PTHrP gene expression. The SCID/beige mouse model mimics HHM as it occurs in ATL patients, and will be useful to investigate the regulation of PTHrP expression by ATL cells in vivo.

  20. Magnesium Elevation Promotes Neuronal Differentiation While Suppressing Glial Differentiation of Primary Cultured Adult Mouse Neural Progenitor Cells through ERK/CREB Activation

    PubMed Central

    Liao, Wang; Jiang, Mujun; Li, Mei; Jin, Congli; Xiao, Songhua; Fan, Shengnuo; Fang, Wenli; Zheng, Yuqiu; Liu, Jun

    2017-01-01

    This study aimed to explore the influence of magnesium elevation on fate determination of adult neural progenitor cells (aNPCs) and the underlying mechanism in vitro. Adult neurogenesis, which is the generation of functional neurons from neural precursors, occurs throughout life in restricted anatomical regions in mammals. Magnesium is the fourth most abundant ion in mammals, and its elevation in the brain has been shown to enhance memory and synaptic plasticity in vivo. However, the effects of magnesium on fate determination of aNPCs, which are vital processes in neurogenesis, remain unknown. NPCs isolated from the dentate gyrus of adult C57/BL6 mice were induced to differentiate in a medium with varying magnesium concentrations (0.6, 0.8, and 1.0 mM) and extracellular signal-regulated kinase (ERK) inhibitor PD0325901. The proportion of cells that differentiated into neurons and glial cells was evaluated using immunofluorescence. Quantitative real-time polymerase chain reaction and Western blot methods were used to determine the expression of β-III tubulin (Tuj1) and glial fibrillary acidic protein (GFAP). The activation of ERK and cAMP response element-binding protein (CREB) was examined by Western blot to reveal the underlying mechanism. Magnesium elevation increased the proportion of Tju1-positive cells and decreased the proportion of GFAP-positive cells. Also, the expression of Tuj1 was upregulated, whereas the expression of GFAP was downregulated. Moreover, magnesium elevation enhanced the activation of both ERK and CREB. Treatment with PD0325901 reversed these effects in a dose-dependent manner. Magnesium elevation promoted neural differentiation while suppressing glial cell differentiation, possibly via ERK-induced CREB activation. PMID:28280456

  1. Comparison of drug and cell-based delivery: engineered adult mesenchymal stem cells expressing soluble tumor necrosis factor receptor II prevent arthritis in mouse and rat animal models.

    PubMed

    Liu, Linda N; Wang, Gang; Hendricks, Kyle; Lee, Keunmyoung; Bohnlein, Ernst; Junker, Uwe; Mosca, Joseph D

    2013-05-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with unknown etiology where tumor necrosis factor-α (TNFα) plays a critical role. Etanercept, a recombinant fusion protein of human soluble tumor necrosis factor receptor II (hsTNFR) linked to the Fc portion of human IgG1, is used to treat RA based on the rationale that sTNFR binds TNFα and blocks TNFα-mediated inflammation. We compared hsTNFR protein delivery from genetically engineered human mesenchymal stem cells (hMSCs) with etanercept. Blocking TNFα-dependent intercellular adhesion molecule-1 expression on transduced hMSCs and inhibition of nitric oxide production from TNFα-treated bovine chondrocytes by conditioned culture media from transduced hMSCs demonstrated the functionality of the hsTNFR construction. Implanted hsTNFR-transduced mesenchymal stem cells (MSCs) reduced mouse serum circulating TNFα generated from either implanted TNFα-expressing cells or lipopolysaccharide induction more effectively than etanercept (TNFα, 100%; interleukin [IL]-1α, 90%; and IL-6, 60% within 6 hours), suggesting faster clearance of the soluble tumor necrosis factor receptor (sTNFR)-TNFα complex from the animals. In vivo efficacy of sTNFR-transduced MSCs was illustrated in two (immune-deficient and immune-competent) arthritic rodent models. In the antibody-induced arthritis BalbC/SCID mouse model, intramuscular injection of hsTNFR-transduced hMSCs reduced joint inflammation by 90% compared with untransduced hMSCs; in the collagen-induced arthritis Fischer rat model, both sTNFR-transduced rat MSCs and etanercept inhibited joint inflammation by 30%. In vitro chondrogenesis assays showed the ability of TNFα and IL1α, but not interferon γ, to inhibit hMSC differentiation to chondrocytes, illustrating an additional negative role for inflammatory cytokines in joint repair. The data support the utility of hMSCs as therapeutic gene delivery vehicles and their potential to be used in alleviating inflammation

  2. Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain.

    PubMed

    Pineda, Jose R; Daynac, Mathieu; Chicheportiche, Alexandra; Cebrian-Silla, Arantxa; Sii Felice, Karine; Garcia-Verdugo, Jose Manuel; Boussin, François D; Mouthon, Marc-André

    2013-04-01

    Neurogenesis decreases during aging and following cranial radiotherapy, causing a progressive cognitive decline that is currently untreatable. However, functional neural stem cells remained present in the subventricular zone of high dose-irradiated and aged mouse brains. We therefore investigated whether alterations in the neurogenic niches are perhaps responsible for the neurogenesis decline. This hypothesis was supported by the absence of proliferation of neural stem cells that were engrafted into the vascular niches of irradiated host brains. Moreover, we observed a marked increase in TGF-β1 production by endothelial cells in the stem cell niche in both middle-aged and irradiated mice. In co-cultures, irradiated brain endothelial cells induced the apoptosis of neural stem/progenitor cells via TGF-β/Smad3 signalling. Strikingly, the blockade of TGF-β signalling in vivo using a neutralizing antibody or the selective inhibitor SB-505124 significantly improved neurogenesis in aged and irradiated mice, prevented apoptosis and increased the proliferation of neural stem/progenitor cells. These findings suggest that anti-TGF-β-based therapy may be used for future interventions to prevent neurogenic collapse following radiotherapy or during aging.

  3. Mapping of neurotrophins and their receptors in the adult mouse brain and their role in the pathogenesis of a transgenic murine model of bovine spongiform encephalopathy.

    PubMed

    Marco-Salazar, P; Márquez, M; Fondevila, D; Rabanal, R M; Torres, J M; Pumarola, M; Vidal, E

    2014-05-01

    Neurotrophins are a family of growth factors that act on neuronal cells. The neurotrophins include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-3, -4 and -5. The action of neurotrophins depends on two transmembrane-receptor signalling systems: (1) the tropomyosin-related kinase (Trk) family of tyrosine kinase receptors (Trk A, Trk B and Trk C) and (2) the p75 neurotrophin receptor (p75(NTR)). The interaction between neurotrophic factors and their receptors may be involved in the mechanisms that regulate the differential susceptibility of neuronal populations in neurodegenerative diseases. The aim of the present study was to evaluate the role of neurotrophins in the pathogenesis of bovine spongiform encephalopathy (BSE) using a transgenic mouse overexpressing bovine prnp (BoTg 110). Histochemistry for Lycopersicum esculentum agglutinin, haematoxylin and eosin staining and immunohistochemistry for the abnormal isoform of the prion protein (PrP(d)), glial fibrillary acidic protein (GFAP), NGF, BDNF, NT-3 and the receptors Trk A, Trk B, Trk C and p75(NTR) was performed. The lesions and the immunolabelling patterns were assessed semiquantitatively in different areas of the brain. No significant differences in the immunolabelling of neurotrophins and their receptors were observed between BSE-inoculated and control animals, except for p75(NTR), which showed increased expression correlating with the distribution of lesions, PrP(d) deposition and gliosis in the BSE-inoculated mice.

  4. Are you also what your mother eats? Distinct proteomic portrait as a result of maternal high-fat diet in the cerebral cortex of the adult mouse.

    PubMed

    Manousopoulou, A; Woo, J; Woelk, C H; Johnston, H E; Singhania, A; Hawkes, C; Garbis, S D; Carare, R O

    2015-08-01

    Epidemiological studies suggest an association between maternal obesity and adverse neurodevelopmental outcomes in offspring. Our aim was to compare the global proteomic portrait in the cerebral cortex between mice born to mothers on a high-fat or control diet who themselves were fed a high-fat or control diet. Male mice born to dams fed a control (C) or high-fat (H) diet 4 weeks before conception and during gestation, and lactation were assigned to either C or H diet at weaning. Mice were killed at 19 weeks and their cerebral cortices were analysed using a two-dimensional liquid chromatography-mass spectrometry methodology. In total, 6 695 proteins were identified (q<0.01), 10% of which were modulated in at least one of the groups relative to controls. In silico analysis revealed that mice clustered based on the diet of the mother and not their own diet and that maternal high-fat diet was significantly associated with response to hypoxia/oxidative stress and apoptosis in the cerebral cortex of the adult offspring. Maternal high-fat diet resulted in distinct endophenotypic changes of the adult offspring cerebral cortex independent of its current diet. The identified proteins could represent novel therapeutic targets for the prevention of neuropathological features resulting from maternal obesity.

  5. The effect of in vivo hydrocortisone administration on the labelling index and size of chromaffin tissue in the postnatal and adult mouse.

    PubMed Central

    Monkhouse, W S

    1986-01-01

    Hydrocortisone administration in vivo to neonatal mice for seven days led to a significant increase in both the size and the labelling index of extra-adrenal chromaffin tissue (as represented by the para-aortic body) of 8 days old mice. In untreated animals at this age, the para-aortic body was in most cases too small to obtain a valid labelling index. In the para-aortic bodies of 14 days old, 21 days old and adult mice, the extra-adrenal chromaffin tissue was too dispersed to obtain values for either volumetric analysis or labelling indices, and hydrocortisone was without significant effect in promoting a hyperplastic response. In the postnatal adrenal medulla at all ages studied, hydrocortisone had no effect on the medullary size or on the labelling indices of either adrenaline- or noradrenaline-storing cells, although it led to a marked diminution of adrenocortical volume. The relative proportion of adrenaline-storing cells increased between the values for 8 days old animals and those for adults; this was unaffected by hydrocortisone. The cortico-medullary ratio remained unchanged from the eighth postnatal day onwards. The results are discussed and related to those of other workers. It is suggested that factors as yet unknown might modulate the response to corticosteroids of developing intra- and extra-adrenal chromaffin tissue. Images Fig. 1 Fig. 2 PMID:3693040

  6. Transgenerational disruption of functional 5-HT1AR-induced connectivity in the adult mouse brain by traumatic stress in early life.

    PubMed

    Razoux, F; Russig, H; Mueggler, T; Baltes, C; Dikaiou, K; Rudin, M; Mansuy, I M

    2017-04-01

    Traumatic stress in early life is a strong risk factor for psychiatric disorders that can affect individuals across several generations. Although the underlying mechanisms have been proposed to implicate serotonergic transmission in the brain, the neural circuits involved remain poorly delineated. Using pharmacological functional magnetic resonance imaging in mice, we demonstrate that traumatic stress in postnatal life alters 5-HT1A receptor-evoked local and global functions in both, the exposed animals and their progeny when adult. Disrupted functional connectivity is consistent across generations and match limbic circuits implicated in mood disorders, but also networks not previously linked to traumatic stress. These findings underscore the neurobiology and functional mapping of transgenerational effects of early life experiences.

  7. Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease.

    PubMed

    Mirochnic, Sebastian; Wolf, Susanne; Staufenbiel, Matthias; Kempermann, Gerd

    2009-10-01

    An active lifestyle is to some degree protective against Alzheimer's disease (AD), but the biological basis for this benefit is still far from clear. We hypothesize that physical and cognitive activity increase a reserve for plasticity by increasing adult neurogenesis in the hippocampal dentate gyrus (DG). We thus assessed how age affects the response to activity in the murine APP23 model of AD compared with wild type (WT) controls and studied the effects of physical exercise (RUN) and environmental enrichment (ENR) in comparison with standard housing (CTR) at two different ages (6 months and 18 months) and in both genotypes. At 18 months, both activity paradigms reduced the hippocampal human Abeta1-42/Abeta1-40 ratio when compared with CTR, despite a stable plaque load in the hippocampus. At this age, both RUN and ENR increased the number of newborn granule cells in the DG of APP23 mice when compared with CTR, whereas the levels of regulation were equivalent to those in WT mice under the same housing conditions. At 6 months, however, neurogenesis in ENR but not RUN mice responded like the WT. Quantifying the number of cells at the doublecortin-positive stage in relation to the number of cells on postmitotic stages we found that ENR overproportionally increased the number of the DCX-positive "late" progenitor cells, indicative of an increased potential to recruit even more new neurons. In summary, the biological substrates for activity-dependent regulation of adult hippocampal neurogenesis were preserved in the APP23 mice. We thus propose that in this model, ENR even more than RUN might contribute to a "neurogenic reserve" despite a stable plaque load and that age affects the outcome of an interaction based on "activity."

  8. Nogo-A deletion increases the plasticity of the optokinetic response and changes retinal projection organization in the adult mouse visual system.

    PubMed

    Guzik-Kornacka, Anna; van der Bourg, Alexander; Vajda, Flora; Joly, Sandrine; Christ, Franziska; Schwab, Martin E; Pernet, Vincent

    2016-01-01

    The inhibitory action of Nogo-A on axonal growth has been well described. However, much less is known about the effects that Nogo-A could exert on the plasticity of neuronal circuits under physiological conditions. We investigated the effects of Nogo-A knock-out (KO) on visual function of adult mice using the optokinetic response (OKR) and the monocular deprivation (MD)-induced OKR plasticity and analyzed the anatomical organization of the eye-specific retinal projections. The spatial frequency sensitivity was higher in intact Nogo-A KO than in wild-type (WT) mice. After MD, Nogo-A KO mice reached a significantly higher spatial frequency and contrast sensitivity. Bilateral ablation of the visual cortex did not affect the OKR sensitivity before MD but reduced the MD-induced enhancement of OKR by approximately 50% in Nogo-A KO and WT mice. These results suggest that cortical and subcortical brain structures contribute to the OKR plasticity. The tracing of retinal projections to the dorsal lateral geniculate nucleus (dLGN) revealed that the segregation of eye-specific terminals was decreased in the adult Nogo-A KO dLGN compared with WT mice. Strikingly, MD of the right eye led to additional desegregation of retinal projections in the left dLGN of Nogo-A KO but not in WT mice. In particular, MD promoted ectopic varicosity formation in Nogo-A KO dLGN axons. The present data show that Nogo-A restricts visual experience-driven plasticity of the OKR and plays a role in the segregation and maintenance of retinal projections to the brain.

  9. The majority of newly generated cells in the adult mouse substantia nigra express low levels of Doublecortin, but their proliferation is unaffected by 6-OHDA-induced nigral lesion or Minocycline-mediated inhibition of neuroinflammation.

    PubMed

    Worlitzer, Maik M A; Viel, Thomas; Jacobs, Andreas H; Schwamborn, Jens C

    2013-09-01

    Parkinson's disease is characterized by a selective loss of dopaminergic neurons in the substantia nigra (SN). However, whether regenerative endogenous neurogenesis is taking place in the mammalian SN of parkinsonian and non-parkinsonian brains remains of debate. Here, we tested whether proliferating cells in the SN and their neurogenic potential would be affected by anti-inflammatory treatment under physiological conditions and in the 6-hydroxy-dopamine (6-OHDA) Parkinson's disease mouse model. We report that the majority of newly generated nigral cells are positive for Doublecortin (Dcx), which is an often used marker for neural progenitor cells. Yet, Dcx expression levels in these cells were much lower than in neural progenitor cells of the subventricular zone and the dentate gyrus neural progenitor cells. Furthermore, these newly generated nigral cells are negative for neuronal lineage markers such as TuJ1 and NeuN. Therefore, their neuronal commitment is questionable. Instead, we found evidence for oligodendrogenesis and astrogliosis in the SN. Finally, neither short-term nor long-term inhibition of neuroinflammation by Minocycline- or 6-OHDA-induced lesion affected the numbers of newly generated cells in our disease paradigm. Our findings of adult generated Dcx(+) cells in the SN add important data for understanding the cellular composition and consequently the regenerative capacity of the SN.

  10. Mouse models of sickle cell disease.

    PubMed

    Beuzard, Y

    2008-01-01

    In the absence of a natural animal model for sickle cell disease, transgenic mouse models have been generated to better understand the complex pathophysiology of the disease and to evaluate potential specific therapies. In the early nineties, the simple addition of human globin genes induced the expression of hemoglobin S (HbS) or HbS-related human hemoglobins in mice still expressing mouse hemoglobin. To increase the proportion of human hemoglobin and the severity of the mouse sickle cell syndrome, the proportion of mouse hemoglobin could be decreased by a combination of mouse alpha- and beta-thalassemic defects, leading to complex genotypes and mild disease. Following the discovery of gene targeting in the mouse embryonic stem cells (ES cells), it was made possible to knock out all mouse adult globin genes (2alpha and 2beta) and to add the human homologous genes elsewhere in the mouse genome. In addition, the human gamma gene of fetal hemoglobin was protecting the fetus from HbS polymer formation. Accordingly, the resulting adult mouse models obtained in 1997, expressing human HbS-only, had a very severe anemia (Hb=5-6 g/dL). In order to survive, these "HbS-only mice" had to reduce the HbS concentration within the red blood cells. The phenotype could be less severe by adding modified human gamma genes, still expressed in adult mice. In 2006, a last "S-only" model was obtained by homologous knock in, replacing the mouse globin genes by human genes. This array of models contributes to better understand the role of different interacting factors in the complexity of sickle cell events, such as red cell defects, changes in blood flow and vaso-occlusion, hyperhemolysis, vascular tone dysregulation, oxidations, inflammation, activation and adhesion of cells, ischemia, reperfusion... In addition, each model has an appropriate usefulness to evaluate experimental therapies in vivo and to perform preclinical studies.

  11. The Impact of Long-Term Exposure to Space Environment on Adult Mammalian Organisms: A Study on Mouse Thyroid and Testis

    PubMed Central

    Masini, Maria Angela; Albi, Elisabetta; Barmo, Cristina; Bonfiglio, Tommaso; Bruni, Lara; Canesi, Laura; Cataldi, Samuela; Curcio, Francesco; D'Amora, Marta; Ferri, Ivana; Goto, Katsumasa; Kawano, Fuminori; Lazzarini, Remo; Loreti, Elisabetta; Nakai, Naoya; Ohira, Takashi; Ohira, Yoshinobu; Palmero, Silvio; Prato, Paola; Ricci, Franco; Scarabelli, Linda; Shibaguchi, Tsubasa; Spelat, Renza; Strollo, Felice; Ambesi-Impiombato, Francesco Saverio

    2012-01-01

    Hormonal changes in humans during spaceflight have been demonstrated but the underlying mechanisms are still unknown. To clarify this point thyroid and testis/epididymis, both regulated by anterior pituitary gland, have been analyzed on long-term space-exposed male C57BL/10 mice, either wild type or pleiotrophin transgenic, overexpressing osteoblast stimulating factor-1. Glands were submitted to morphological and functional analysis. In thyroids, volumetric ratios between thyrocytes and colloid were measured. cAMP production in 10−7M and 10−8M thyrotropin-treated samples was studied. Thyrotropin receptor and caveolin-1 were quantitized by immunoblotting and localized by immunofluorescence. In space-exposed animals, both basal and thyrotropin-stimulated cAMP production were always higher. Also, the structure of thyroid follicles appeared more organized, while thyrotropin receptor and caveolin-1 were overexpressed. Unlike the control samples, in the space samples thyrotropin receptor and caveolin-1 were both observed at the intracellular junctions, suggesting their interaction in specific cell membrane microdomains. In testes, immunofluorescent reaction for 3β- steroid dehydrogenase was performed and the relative expressions of hormone receptors and interleukin-1β were quantified by RT-PCR. Epididymal sperm number was counted. In space-exposed animals, the presence of 3β and 17β steroid dehydrogenase was reduced. Also, the expression of androgen and follicle stimulating hormone receptors increased while lutenizing hormone receptor levels were not affected. The interleukin 1 β expression was upregulated. The tubular architecture was altered and the sperm cell number was significantly reduced in spaceflight mouse epididymis (approx. −90% vs. laboratory and ground controls), indicating that the space environment may lead to degenerative changes in seminiferous tubules. Space-induced changes of structure and function of thyroid and testis/epididymis could be

  12. The impact of long-term exposure to space environment on adult mammalian organisms: a study on mouse thyroid and testis.

    PubMed

    Masini, Maria Angela; Albi, Elisabetta; Barmo, Cristina; Bonfiglio, Tommaso; Bruni, Lara; Canesi, Laura; Cataldi, Samuela; Curcio, Francesco; D'Amora, Marta; Ferri, Ivana; Goto, Katsumasa; Kawano, Fuminori; Lazzarini, Remo; Loreti, Elisabetta; Nakai, Naoya; Ohira, Takashi; Ohira, Yoshinobu; Palmero, Silvio; Prato, Paola; Ricci, Franco; Scarabelli, Linda; Shibaguchi, Tsubasa; Spelat, Renza; Strollo, Felice; Ambesi-Impiombato, Francesco Saverio

    2012-01-01

    Hormonal changes in humans during spaceflight have been demonstrated but the underlying mechanisms are still unknown. To clarify this point thyroid and testis/epididymis, both regulated by anterior pituitary gland, have been analyzed on long-term space-exposed male C57BL/10 mice, either wild type or pleiotrophin transgenic, overexpressing osteoblast stimulating factor-1. Glands were submitted to morphological and functional analysis.In thyroids, volumetric ratios between thyrocytes and colloid were measured. cAMP production in 10(-7)M and 10(-8)M thyrotropin-treated samples was studied. Thyrotropin receptor and caveolin-1 were quantitized by immunoblotting and localized by immunofluorescence. In space-exposed animals, both basal and thyrotropin-stimulated cAMP production were always higher. Also, the structure of thyroid follicles appeared more organized, while thyrotropin receptor and caveolin-1 were overexpressed. Unlike the control samples, in the space samples thyrotropin receptor and caveolin-1 were both observed at the intracellular junctions, suggesting their interaction in specific cell membrane microdomains.In testes, immunofluorescent reaction for 3β- steroid dehydrogenase was performed and the relative expressions of hormone receptors and interleukin-1β were quantified by RT-PCR. Epididymal sperm number was counted. In space-exposed animals, the presence of 3β and 17β steroid dehydrogenase was reduced. Also, the expression of androgen and follicle stimulating hormone receptors increased while lutenizing hormone receptor levels were not affected. The interleukin 1 β expression was upregulated. The tubular architecture was altered and the sperm cell number was significantly reduced in spaceflight mouse epididymis (approx. -90% vs. laboratory and ground controls), indicating that the space environment may lead to degenerative changes in seminiferous tubules.Space-induced changes of structure and function of thyroid and testis/epididymis could be

  13. Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of beta-glucuronidase.

    PubMed

    Taylor, R M; Wolfe, J H

    1997-07-01

    A deficiency of beta-glucuronidase (GUSB) causes the multisystem progressive degenerative syndrome, mucopolysaccharidosis (MPS) type VII (Sly disease), which includes mental retardation. Animal homologues of MPS VII (ref. 3, 4) are models for testing somatic gene transfer approaches to treat the central nervous system in this and other lysosomal storage disorders. Previous attempts to correct murine MPS VII by gene therapy have successfully treated lesions in some organs but not in the brain. Other experimental modalities have forestalled some disease progression in the brain, but only if done at birth, before the onset of severe lesions, when the animals are phenotypically normal. We tested whether therapeutic amounts of GUSB could be delivered to the diseased adult brain by transplanting cells engineered to super-secrete the normal enzyme for export to surrounding neural tissues. Lysosomal distention was cleared from neurons and glial cells in the vicinity of the grafts, showing that the secreted enzyme could reach the diseased cells and reverse lesions in the severely diseased brain. The ability to correct established lesions will be important for the treatment of many lysosomal storage diseases affecting the brain, because most patients are not diagnosed until lesions are advanced enough to affect phenotype or developmental milestones in early childhood, and some forms of the diseases do not become apparent until later in life.

  14. Influence of levamisole and Freund's adjuvant on mouse immunisation with antigens of adults of the liver fluke Fasciola hepatica Linnaeus, 1758.

    PubMed

    Gutierrez-Sanchez, Maria de Los Angeles; Luna-Herrera, Julieta; Trejo-Castro, Lauro; Montenegro-Cristino, Natividad; Almanza-Gonzalez, Alfredo; Escobar-Gutierrez, Alejandro; de la Rosa-Arana, Jorge Luis

    2015-08-28

    We have studied the influence of both levamisole (AL) and Freund's adjuvant (AF) on the immunisation of mice with the secretory antigens of adults of the liver fluke Fasciola hepatica Linnaeus, 1758. Total IgG antibodies were detected in all groups where the F. hepatica antigen was administered, been levels of IgG1 increased respect to IgG2a antibodies. During immunisation, IL-4 and IFN-γ were only detected in AL and AF groups, but after infection, IL-4 boosted in all groups. IFN-γ increased two fold in AF and AL groups compared to the saline solution (AS) group. Worm recovering was of 32-35% in groups administered without antigen whereas in AS, AL and AF groups recovering was of 25%, 12% and 8%, respectively. Macroscopical lesions in the liver were scarce in AL and AF groups. Our data suggest that immunisation of mice with antigens of F. hepatica enhances the immune response avoiding both liver damage and worm establishment after challenge infection. The murine model of fasciolosis has appeared to be useful to elucidate the mechanism by which the parasite modulates immune responses toward a Th2 type but also the development of Th1 type-inducing vaccines.

  15. Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse.

    PubMed

    Benton, Richard L; Maddie, Melissa A; Minnillo, Danielle R; Hagg, Theo; Whittemore, Scott R

    2008-03-01

    After traumatic spinal cord injury (SCI), disruption and plasticity of the microvasculature within injured spinal tissue contribute to the pathological cascades associated with the evolution of both primary and secondary injury. Conversely, preserved vascular function most likely results in tissue sparing and subsequent functional recovery. It has been difficult to identify subclasses of damaged or regenerating blood vessels at the cellular level. Here, adult mice received a single intravenous injection of the Griffonia simplicifolia isolectin B4 (IB4) at 1-28 days following a moderate thoracic (T9) contusion. Vascular binding of IB4 was maximally observed 7 days following injury, a time associated with multiple pathologic aspects of the intrinsic adaptive angiogenesis, with numbers of IB4 vascular profiles decreasing by 21 days postinjury. Quantitative assessment of IB4 binding shows that it occurs within the evolving lesion epicenter, with affected vessels expressing a temporally specific dysfunctional tight junctional phenotype as assessed by occludin, claudin-5, and ZO-1 immunoreactivities. Taken together, these results demonstrate that intravascular lectin delivery following SCI is a useful approach not only for observing the functional status of neovascular formation but also for definitively identifying specific subpopulations of reactive spinal microvascular elements.

  16. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain

    PubMed Central

    Mullier, Amandine; Bouret, Sébastien G.; Prevot, Vincent; Dehouck, Bénédicte

    2010-01-01

    The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we report on our use of immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1 and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties. PMID:20127760

  17. Mapping of Cbln1-like immunoreactivity in adult and developing mouse brain and its localization to the endolysosomal compartment of neurons.

    PubMed

    Wei, Peng; Smeyne, Richard J; Bao, Dashi; Parris, Jennifer; Morgan, James I

    2007-11-01

    Cbln1 is a secreted glycoprotein essential for synapse structure and function in cerebellum that is also expressed in extracerebellar structures where its function is unknown. Furthermore, Cbln1 assembles into homomeric complexes and heteromeric complexes with three family members (Cbln2-Cbln4), thereby influencing each other's degradation and secretion. Therefore, to understand its function, it is essential to establish the location of Cbln1 relative to other family members. The localization of Cbln1 in brain was determined using immunohistochemistry and cbln1-lacZ transgenic mice. Cbln1-like immunoreactivity (CLI) was always punctate and localized to the cytoplasm of neurons. The punctate CLI colocalized with cathepsin D, a lysosomal marker, but not with markers of endoplasmic reticulum or Golgi, indicating that Cbln1 is present in neuronal endosomes/lysosomes. This may represent the cellular mechanism underlying the regulated degradation of Cbln1 observed in vivo. Outside the cerebellum, CLI mapped to multiple brain regions that were frequently synaptically interconnected, warranting their analysis in cbln1-null mice. Furthermore, whereas CLI increased dramatically in the cerebellum of cbln3-null mice it was unchanged in extracerebellar neurons. This opens the possibility that other family members that are coexpressed in these areas control Cbln1 levels, potentially by modulating processing in the endolysosomal pathway. During development of cbln1-lacZ mice, beta-galactosidase staining was first observed in proliferating granule cell precursors prior to synaptogenesis and thereafter in maturing and adult granule cells. As cbln3 is only expressed in post-mitotic, post-migratory granule cells, Cbln1 homomeric complexes in precursors and Cbln1-Cbln3 heteromeric complexes in mature granule cells may have distinct functions and turnover.

  18. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain.

    PubMed

    Mullier, Amandine; Bouret, Sebastien G; Prevot, Vincent; Dehouck, Bénédicte

    2010-04-01

    The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes, which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we utilize immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1, and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties.

  19. Gene clusters FDB1 and FDB2 in Fusarium verticillioides were acquired through multiple horizontal gene transfer events

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The corn pathogen Fusarium verticillioides is of significant importance because of its deleterious effects on plant and animal health and on the quality of their products due to mycotoxin contamination. The fungus is known to metabolize antimicrobial compounds produced by corn using genes within t...

  20. Correlated 5-Hydroxymethylcytosine (5hmC) and Gene Expression Profiles Underpin Gene and Organ-Specific Epigenetic Regulation in Adult Mouse Brain and Liver

    PubMed Central

    Lin, I-Hsuan; Chen, Yi-Fan; Hsu, Ming-Ta

    2017-01-01

    Background DNA methylation is an epigenetic mechanism essential for gene regulation and vital for mammalian development. 5-hydroxymethylcytosine (5hmC) is the first oxidative product of the TET-mediated 5-methylcytosine (5mC) demethylation pathway. Aside from being a key intermediate in cytosine demethylation, 5hmC may have potential regulatory functions with emerging importance in mammalian biology. Methods Here, we investigate the global 5hmC enrichment in five brain structures, including cerebellum, cerebral cortex, hippocampus, hypothalamus and thalamus, as well as liver tissues from female and male adult mice by using chemical capture-based technique coupled with next-generation sequencing. At the same time, we carried out total RNA sequencing (RNA-seq) to analyze the transcriptomes of brain regions and liver tissues. Results Our results reveal preferential 5hmC enrichment in the gene bodies of expressed genes, and 5hmC levels of many protein-coding genes are positively correlated with RNA expression intensity. However, more than 75% of genes with low or no 5hmC enrichment are genes encode for mitochondrial proteins and ribosomal proteins despite being actively transcribed, implying different transcriptional regulation mechanisms of these housekeeping genes. Brain regions developed from the same embryonic structures have more similar 5hmC profiles. Also, the genic 5hmC enrichment pattern is highly tissue-specific, and 5hmC marks genes involving in tissue-specific biological processes. Sex chromosomes are mostly depleted of 5hmC, and the X inactive specific transcript (Xist) gene located on the X chromosome is the only gene to show sex-specific 5hmC enrichment. Conclusions This is the first report of the whole-genome 5hmC methylome of five major brain structures and liver tissues in mice of both sexes. This study offers a comprehensive resource for future work of mammalian cytosine methylation dynamics. Our findings offer additional evidence that suggests 5hm

  1. Neurogenesis in mouse models of Alzheimer's disease.

    PubMed

    Chuang, Tsu Tshen

    2010-10-01

    The brains of the adult mouse and human possess neural stem cells (NSCs) that retain the capacity to generate new neurons through the process of neurogenesis. They share the same anatomical locations of stem cell niches in the brain, as well as the prominent feature of rostral migratory stream formed by neuroblasts migrating from the lateral ventricles towards the olfactory bulb. Therefore the mouse possesses some fundamental features that may qualify it as a relevant model for adult human neurogenesis. Adult born young hippocampal neurons in the mouse display the unique property of enhanced plasticity, and can integrate physically and functionally into existing neural circuits in the brain. Such crucial properties of neurogenesis may at least partially underlie the improved learning and memory functions observed in the mouse when hippocampal neurogenesis is augmented, leading to the suggestion that neurogenesis induction may be a novel therapeutic approach for diseases with cognitive impairments such as Alzheimer's disease (AD). Research towards this goal has benefited significantly from the use of AD mouse models to facilitate the understanding in the impact of AD pathology on neurogenesis. The present article reviews the growing body of controversial data on altered neurogenesis in mouse models of AD and attempts to assess their relative relevance to humans.

  2. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APP{sub swe}/PS1{sub {Delta}E9} transgenic mouse model of Alzheimer's disease

    SciTech Connect

    Tang, Jun; Song, Min; Wang, Yanyan; Fan, Xiaotang; Xu, Haiwei; Bai, Yun

    2009-07-31

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP{sub swe}/PS1{sub {Delta}E9} mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP{sub swe}/PS1{sub {Delta}E9} transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.

  3. Muscle fibers from senescent mice retain excitation-contraction coupling properties in culture.

    PubMed

    Wang, Zhong-Min; Zheng, Zhenlin; Messi, María L; Delbono, Osvaldo

    2007-01-01

    In the present study, we test the hypothesis that mouse skeletal muscle in culture retains the fundamental properties of excitation-sarcoplasmic reticulum Ca(2+) release coupling reported for young-adult (3-4 mo) and senescent (22-23) mice. Dissociated flexor digitorum brevis (FDB) muscles from young-adult and senescent mice were cultured for 7 d in a serum-free medium. During this period, the overall morphology of cultured fibers resembled that exhibited by acutely dissociated cells. In addition, survival analysis revealed that more than 70% of the fibers from both young and old mice remained suitable for electrophysiological studies during this same culture period. Charge movement and intracellular Ca(2+) recordings in FDB fibers, voltage clamped in the whole cell configuration of the patch-clamp technique, reproduced the maximal values, and voltage dependence similarly displayed by acutely dissociated cells for both parameters in young-adult and senescent mice. The analysis of the dihydropyridine receptor by immunoblots confirmed, in the culture system, the age-dependent decrease in the expression of this protein. In conclusion, FDB fibers from young-adult and old mice retain the excitation-contraction coupling phenotype during the course of a week in serum-free medium culture.

  4. Olfactory Behavioral Testing in the Adult Mouse

    PubMed Central

    M. Witt, Rochelle; M. Galligan, Meghan; R. Despinoy, Jennifer; Segal, Rosalind

    2009-01-01

    The rodent olfactory system is of increasing interest to scientists, studied, in part, in systems biology because of its stereotyped, yet accessible circuitry. In addition, this area's unique ability to generate new neurons throughout an organism's lifetime makes it an attractive system for developmental and regenerative biologists alike. Such interest necessitates a means for a quick, yet reliable assessment of olfactory function. Many tests of olfactory ability are complex, variable or not specifically designed for mice. Also, some tests are sensitive to memory deficits as well as defects in olfactory abilities, confounding obtained results. Here, we describe a simple battery of tests designed to identify defects in olfactory sensitivity and preference. First, an initial general health assessment allows for the identification of animals suitable for further testing. Second, mice are exposed to various dilutions of scents to ascertain whether there is a threshold difference. Third, mice are presented with various scents, both attractive and aversive, that allow for the assessment of olfactory preference. These simple studies should make the initial characterization of olfactory behavior accessible for labs of varied resources and expertise. PMID:19229182

  5. Olfactory behavioral testing in the adult mouse.

    PubMed

    Witt, Rochelle M; Galligan, Meghan M; Despinoy, Jennifer R; Segal, Rosalind

    2009-01-28

    The rodent olfactory system is of increasing interest to scientists, studied, in part, in systems biology because of its stereotyped, yet accessible circuitry. In addition, this area's unique ability to generate new neurons throughout an organism's lifetime makes it an attractive system for developmental and regenerative biologists alike. Such interest necessitates a means for a quick, yet reliable assessment of olfactory function. Many tests of olfactory ability are complex, variable or not specifically designed for mice. Also, some tests are sensitive to memory deficits as well as defects in olfactory abilities, confounding obtained results. Here, we describe a simple battery of tests designed to identify defects in olfactory sensitivity and preference. First, an initial general health assessment allows for the identification of animals suitable for further testing. Second, mice are exposed to various dilutions of scents to ascertain whether there is a threshold difference. Third, mice are presented with various scents, both attractive and aversive, that allow for the assessment of olfactory preference. These simple studies should make the initial characterization of olfactory behavior accessible for labs of varied resources and expertise.

  6. Immunizing adult female mice with a TcpA-A2-CTB chimera provides a high level of protection for their pups in the infant mouse model of cholera.

    PubMed

    Price, Gregory A; Holmes, Randall K

    2014-12-01

    Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT) and the toxin-coregulated pilus (TCP). CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA) is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB) to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an effective multivalent

  7. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  8. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  9. Effects of alphafetoprotein on isolated mouse oocytes.

    PubMed

    Lambert, J C; Seralini, G E; Stora, C; Vallette, G; Vranckx, R; Nunez, E A

    1986-01-01

    The supposition of an effect of alphafetoprotein (AFP) on female germinal cells is put forward. The spontaneous in vitro maturation of adult mouse oocytes is significantly inhibited when mouse AFP replaces albumin in culture medium. Furthermore, the very unusual degenerative appearance of the cells subjected to AFP seems to indicate that this meiotic inhibition is linked to a premature degeneration of the oocytes rather than to a blockage of the cells at an earlier stage of maturation. Accordingly AFP, perhaps through its ligands, may play a role in reducing the number of gonocytes during fetal and immediate post-natal life rather than in stopping oocyte meiosis at the diplotene stage.

  10. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  11. Distinctive features of adult ocular dominance plasticity.

    PubMed

    Sato, Masaaki; Stryker, Michael P

    2008-10-08

    Sensory experience profoundly shapes neural circuitry of juvenile brain. Although the visual cortex of adult rodents retains a capacity for plasticity in response to monocular visual deprivation, the nature of this plasticity and the neural circuit changes that accompany it remain enigmatic. Here, we investigate differences between adult and juvenile ocular dominance plasticity using Fourier optical imaging of intrinsic signals in mouse visual cortex. This comparison reveals that adult plasticity takes longer than in the juvenile mouse, is of smaller magnitude, has a greater contribution from the increase in response to the open eye, and has less effect on the hemisphere ipsilateral to the deprived eye. Binocular deprivation also causes different changes in the adult. Adult plasticity is similar to juvenile plasticity in its dependence on signaling through NMDA receptors. We propose that adult ocular dominance plasticity arises from compensatory mechanisms that counterbalance the loss of afferent activity caused by visual deprivation.

  12. An encyclopedia of mouse DNA elements (Mouse ENCODE).

    PubMed

    Stamatoyannopoulos, John A; Snyder, Michael; Hardison, Ross; Ren, Bing; Gingeras, Thomas; Gilbert, David M; Groudine, Mark; Bender, Michael; Kaul, Rajinder; Canfield, Theresa; Giste, Erica; Johnson, Audra; Zhang, Mia; Balasundaram, Gayathri; Byron, Rachel; Roach, Vaughan; Sabo, Peter J; Sandstrom, Richard; Stehling, A Sandra; Thurman, Robert E; Weissman, Sherman M; Cayting, Philip; Hariharan, Manoj; Lian, Jin; Cheng, Yong; Landt, Stephen G; Ma, Zhihai; Wold, Barbara J; Dekker, Job; Crawford, Gregory E; Keller, Cheryl A; Wu, Weisheng; Morrissey, Christopher; Kumar, Swathi A; Mishra, Tejaswini; Jain, Deepti; Byrska-Bishop, Marta; Blankenberg, Daniel; Lajoie, Bryan R; Jain, Gaurav; Sanyal, Amartya; Chen, Kaun-Bei; Denas, Olgert; Taylor, James; Blobel, Gerd A; Weiss, Mitchell J; Pimkin, Max; Deng, Wulan; Marinov, Georgi K; Williams, Brian A; Fisher-Aylor, Katherine I; Desalvo, Gilberto; Kiralusha, Anthony; Trout, Diane; Amrhein, Henry; Mortazavi, Ali; Edsall, Lee; McCleary, David; Kuan, Samantha; Shen, Yin; Yue, Feng; Ye, Zhen; Davis, Carrie A; Zaleski, Chris; Jha, Sonali; Xue, Chenghai; Dobin, Alex; Lin, Wei; Fastuca, Meagan; Wang, Huaien; Guigo, Roderic; Djebali, Sarah; Lagarde, Julien; Ryba, Tyrone; Sasaki, Takayo; Malladi, Venkat S; Cline, Melissa S; Kirkup, Vanessa M; Learned, Katrina; Rosenbloom, Kate R; Kent, W James; Feingold, Elise A; Good, Peter J; Pazin, Michael; Lowdon, Rebecca F; Adams, Leslie B

    2012-08-13

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  13. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  14. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-04

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  15. In vivo high-resolution diffusion tensor imaging of the mouse brain

    PubMed Central

    Wu, Dan; Xu, Jiadi; McMahon, Michael T.; van Zijl, Peter C.M.; Mori, Susumu; Northington, Frances, J.; Zhang, Jiangyang

    2013-01-01

    Diffusion tensor imaging (DTI) of the laboratory mouse brain provides important macroscopic information for anatomical characterization of mouse models in basic research. Currently, in vivo DTI of the mouse brain is often limited by the available resolution. In this study, we demonstrate in vivo high-resolution DTI of the mouse brain using a cryogenic probe and a modified diffusion-weighted gradient and spin echo (GRASE) imaging sequence at 11.7 Tesla. Three-dimensional (3D) DTI of the entire mouse brain at 0.125 mm isotropic resolution could be obtained in approximately two hours. The high spatial resolution, which was previously only available with ex vivo imaging, enabled non-invasive examination of small structures in the adult and neonatal mouse brains. Based on data acquired from eight adult mice, a group-averaged DTI atlas of the in vivo adult mouse brain with 60 structure segmentations was developed. Comparisons between in vivo and ex vivo mouse brain DTI data showed significant differences in brain morphology and tissue contrasts, which indicate the importance of the in vivo DTI based mouse brain atlas. PMID:23769916

  16. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex

    PubMed Central

    Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604

  17. [Echocardiography in mouse].

    PubMed

    Fayssoil, A

    2008-06-01

    Assessing cardiac phenotype requires invasive or noninvasive techniques in mouse. Echocardiography is a noninvasive technique for evaluating cardiac function. The purpose of this paper is to underline echocardiography modalities and new tools Doppler applications like tissue Doppler imaging.

  18. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  19. Somatic Cell Nuclear Transfer in the Mouse

    NASA Astrophysics Data System (ADS)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  20. Development and consistency of gait in the mouse.

    PubMed

    Clarke, K A; Still, J

    2001-05-01

    Mouse models of human disease may display developmental abnormalities or adult onset of the condition. Since many diseases are accompanied by gait disturbances, knowledge of normal gait development in the mouse and its adult characteristics might be valuable as standards against which to appraise disease progression and the efficacy of putative therapies. Assessment of the gait of mice from postnatal day (pnd) 13 to postnatal week (pnw) 80 was undertaken utilising video techniques to examine velocity, stride, stance and swing times and between pnw 29 and 80 using load cells for analysis of the vertical reaction force (P(z)) associated with limb placements. Some adult features are apparent by pnd 13, but in the hindlimb (HL) particularly, the adult pattern of relationships between stride, stance and swing are not established. Adult characteristics of forelimb (FL) deployment develop earlier than those of HL while the systems controlling HL stance develop earlier than those regulating its swing. All the features measured, however, such as the shorter stance and longer swing of FL compared to HL, are established in their adult form by pnd 24 and maintained throughout adult life. In healthy mice at pnw 80, there was no deviation from the adult pattern of gait in which P(z) transmitted via FL exceeds that via HL by around 5%. We did not detect any significant change in any other variable or in their relationships.

  1. Polymyositis - adult

    MedlinePlus

    ... rash is a sign of a similar condition, dermatomyositis . Common symptoms include: Muscle weakness in the shoulders ... in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. ...

  2. Relationships of ultrasound measures of intrinsic foot muscle cross-sectional area and muscle volume with maximum toe flexor muscle strength and physical performance in young adults

    PubMed Central

    Abe, Takashi; Tayashiki, Kota; Nakatani, Miyuki; Watanabe, Hironori

    2016-01-01

    [Purpose] To investigate the relationships between toe flexor muscle strength with (TFS-5-toes) and without (TFS-4-toes) the contribution of the great toe, anatomical and physiological muscle cross-sectional areas (CSA) of intrinsic toe flexor muscle and physical performance were measured. [Subjects] Seventeen men (82% sports-active) and 17 women (47% sports-active), aged 20 to 35 years, volunteered. [Methods] Anatomical CSA was measured in two intrinsic toe flexor muscles (flexor digitorum brevis [FDB] and abductor hallucis) by ultrasound. Muscle volume and muscle length of the FDB were also estimated, and physiological CSA was calculated. [Results] Both TFS-5-toes and TFS-4-toes correlated positively with walking speed in men (r=0.584 and r=0.553, respectively) and women (r=0.748 and r=0.533, respectively). Physiological CSA of the FDB was significantly correlated with TFS-5-toes (r=0.748) and TFS-4-toes (r=0.573) in women. In men, physiological CSA of the FDB correlated positively with TFS-4-toes (r=0.536), but not with TFS-5-toes (r=0.333). [Conclusion] Our results indicate that physiological CSA of the FDB is moderately associated with TFS-4-toes while toe flexor strength correlates with walking performance. PMID:26957721

  3. Mouse bladder wall injection.

    PubMed

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  4. The spiny mouse (Acomys cahirinus) completes nephrogenesis before birth.

    PubMed

    Dickinson, Hayley; Walker, David W; Cullen-McEwen, Luise; Wintour, E Marelyn; Moritz, Karen

    2005-08-01

    The spiny mouse is relatively mature at birth. We hypothesized that like other organs, the kidney may be more developed in the spiny mouse at birth, than in other rodents. If nephrogenesis is complete before birth, the spiny mouse may provide an excellent model with which to study the effects of an altered intrauterine environment on renal development. Due to its desert adaptation, the spiny mouse may have a reduced cortex-to-medulla ratio but an equivalent total nephron number to the C57/BL mouse. Kidneys were collected from fetal and neonatal spiny mice and sectioned for gross examination of metanephric development. Kidneys were collected from adult spiny mice (10 wk of age), and glomerular number, volume, and cortex-to-medulla ratios were determined using unbiased stereology. Nephrogenesis is complete in spiny mouse kidneys before birth. Metanephrogenesis begins at approximately day 18, and by day 38 of a 40-day gestation, the nephrogenic zone is no longer present. Spiny mice have a significantly (P < 0.001) lower total nephron number compared with C57/BL mice, although the total glomerular volume is similar. The cortex-to-medulla ratio of the spiny mouse is significantly (P < 0.01) smaller. The spiny mouse is the first rodent species shown to complete nephrogenesis before birth. This makes it an attractive candidate for the study of fetal and neonatal kidney development and function. The reduced total nephron number and cortex-to-medulla ratio in the spiny mouse may contribute to its ability to highly concentrate its urine under stressful conditions (i.e., dehydration).

  5. Researchers Create Artificial Mouse 'Embryo'

    MedlinePlus

    ... news/fullstory_163881.html Researchers Create Artificial Mouse 'Embryo' Experiment used two types of gene-modified stem ... they've created a kind of artificial mouse embryo using stem cells, which can be coaxed to ...

  6. Autologous Tax-specific CTL therapy in a primary adult T cell leukemia/lymphoma cell-bearing NOD/Shi-scid, IL-2Rγnull mouse model.

    PubMed

    Masaki, Ayako; Ishida, Takashi; Suzuki, Susumu; Ito, Asahi; Mori, Fumiko; Sato, Fumihiko; Narita, Tomoko; Yamada, Tomiko; Ri, Masaki; Kusumoto, Shigeru; Komatsu, Hirokazu; Tanaka, Yuetsu; Niimi, Akio; Inagaki, Hiroshi; Iida, Shinsuke; Ueda, Ryuzo

    2013-07-01

    We expanded human T-lymphotropic virus type 1 Tax-specific CTL in vitro from PBMC of three individual adult T cell leukemia/lymphoma (ATL) patients and assessed their therapeutic potential in an in vivo model using NOG mice bearing primary ATL cells from the respective three patients (ATL/NOG). In these mice established with cells from a chronic-type patient, treatment by i.p. injection of autologous Tax-CTL resulted in greater infiltration of CD8-positive T cells into each ATL lesion. This was associated with a significant decrease of ATL cell infiltration into blood, spleen, and liver. Tax-CTL treatment also significantly decreased human soluble IL-2R concentrations in the sera. In another group of ATL/NOG mice, Tax-CTL treatment led to a significant prolongation of survival time. These findings show that Tax-CTL can infiltrate the tumor site, recognize, and kill autologous ATL cells in mice in vivo. In ATL/NOG mice with cells from an acute-type patient, whose postchemotherapeutic remission continued for >18 mo, antitumor efficacy of adoptive Tax-CTL therapy was also observed. However, in ATL/NOG mice from a different acute-type patient, whose ATL relapsed after 6 mo of remission, no efficacy was observed. Thus, although the therapeutic effects were different for different ATL patients, to the best of our knowledge, this is the first report that adoptive therapy with Ag-specific CTL expanded from a cancer patient confers antitumor effects, leading to significant survival benefit for autologous primary cancer cell-bearing mice in vivo. The present study contributes to research on adoptive CTL therapy, which should be applicable to several types of cancer.

  7. The SH2 domain-containing 5-phosphatase SHIP2 is expressed in the germinal layers of embryo and adult mouse brain: increased expression in N-CAM-deficient mice.

    PubMed

    Muraille, E; Dassesse, D; Vanderwinden, J M; Cremer, H; Rogister, B; Erneux, C; Schiffmann, S N

    2001-01-01

    The germinative ventricular zone of embryonic brain contains neural lineage progenitor cells that give rise to neurons, astrocytes and oligodendrocytes. The ability to generate neurons persists at adulthood in restricted brain areas. During development, many growth factors exert their effects by interacting with tyrosine kinase receptors and activate the phosphatidylinositol 3-kinase and the Ras/MAP kinase pathways. By its ability to modulate these pathways, the recently identified Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 2, SHIP2, has the potential to regulate neuronal development. Using in situ hybridization technique with multiple synthetic oligonucleotides, we demonstrated that SHIP2 mRNA was highly expressed in the ventricular zone at early embryonic stages and subventricular zones at latter stages of brain and spinal cord and in the sympathetic chain. No significant expression was seen in differentiated fields. This restricted expression was maintained from embryonic day 11.5 to birth. In the periphery, large expression was detected in muscle and kidney and moderate expression in thyroid, pituitary gland, digestive system and bone. In the adult brain, SHIP2 was mainly restricted in structures containing neural stem cells such as the anterior subventricular zone, the rostral migratory stream and the olfactory tubercle. SHIP2 was also detected in the choroid plexuses and the granular layer of the cerebellum. The specificity of SHIP2 expression in neural stem cells was further demonstrated by (i) the dramatic increase in SHIP2 mRNA signal in neural cell adhesion molecule (N-CAM)-deficient mice, which present an accumulation of progenitor cells in the anterior subventricular zone and the rostral migratory stream, (ii) the abundant expression of 160-kDa SHIP2 by western blotting in proliferating neurospheres in culture and its downregulation in non-proliferating differentiated neurospheres. In conclusion, the close correlation between

  8. Biology of Mouse Thymic Virus, a Herpesvirus of Mice, and the Antigenic Relationship to Mouse Cytomegalovirus

    PubMed Central

    Cross, S. S.; Parker, J. C.; Rowe, W. P.; Robbins, M. L.

    1979-01-01

    Mouse thymic virus (TA) is a herpesvirus which produces extensive necrosis of the thymus of newborn mice 7 to 14 days after infection. Infectious virus can be recovered from the thymus for only 10 days after infection, with highest titers occurring between days 5 and 7. In mice 5 days old or less, TA infects thymus cells and produces massive necrosis. TA also infects the salivary glands and persists as a chronic infection. Newborn mice infected with TA have no detectable humoral immune response. Infected adult mice respond, and humoral antibody is detected 7 days after infection. Titers are maintained for months thereafter. Regardless of the age of the mice inoculated with TA, persistent infection was established in the salivary glands, but no evidence for thymus involvement was observed when adults were infected. TA does not cross-react serologically by immunofluorescent, complement fixation, or virus neutralization tests with mouse cytomegalovirus; however, interestingly, the epidemiology of the two herpesviruses are similar. Both mouse cytomegalovirus and TA were isolated from the same animals in populations of laboratory and wild mice. Evidence of infection with mouse cytomegalovirus and TA were most apparent by virus isolations, since humoral antibody responses are rarely observed. All strains of mice tested were susceptible to TA infection. However, in some strains maximum necrosis occurred at 7 days, compared with 10 to 14 days for other strains. The difference in age susceptibility and the target tissue of thymus in newborn mice suggests that TA is a model herpesvirus for studying the effects of viral infections on humoral and cell-mediated immunological functions. Images PMID:231008

  9. The Mouse That Soared

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a

  10. Isolation and Culture of Individual Myofibers and their Satellite Cells from Adult Skeletal Muscle

    PubMed Central

    Pasut, Alessandra; Jones, Andrew E.; Rudnicki, Michael A.

    2013-01-01

    Muscle regeneration in the adult is performed by resident stem cells called satellite cells. Satellite cells are defined by their position between the basal lamina and the sarcolemma of each myofiber. Current knowledge of their behavior heavily relies on the use of the single myofiber isolation protocol. In 1985, Bischoff described a protocol to isolate single live fibers from the Flexor Digitorum Brevis (FDB) of adult rats with the goal to create an in vitro system in which the physical association between the myofiber and its stem cells is preserved 1. In 1995, Rosenblattmodified the Bischoff protocol such that myofibers are singly picked and handled separately after collagenase digestion instead of being isolated by gravity sedimentation 2, 3. The Rosenblatt or Bischoff protocol has since been adapted to different muscles, age or conditions 3-6. The single myofiber isolation technique is an indispensable tool due its unique advantages. First, in the single myofiber protocol, satellite cells are maintained beneath the basal lamina. This is a unique feature of the protocol as other techniques such as Fluorescence Activated Cell Sorting require chemical and mechanical tissue dissociation 7. Although the myofiber culture system cannot substitute for in vivo studies, it does offer an excellent platform to address relevant biological properties of muscle stem cells. Single myofibers can be cultured in standard plating conditions or in floating conditions. Satellite cells on floating myofibers are subjected to virtually no other influence than the myofiber environment. Substrate stiffness and coating have been shown to influence satellite cells' ability to regenerate muscles 8, 9 so being able to control each of these factors independently allows discrimination between niche-dependent and -independent responses. Different concentrations of serum have also been shown to have an effect on the transition from quiescence to activation. To preserve the quiescence state of

  11. RIKEN mouse genome encyclopedia.

    PubMed

    Hayashizaki, Yoshihide

    2003-01-01

    We have been working to establish the comprehensive mouse full-length cDNA collection and sequence database to cover as many genes as we can, named Riken mouse genome encyclopedia. Recently we are constructing higher-level annotation (Functional ANnoTation Of Mouse cDNA; FANTOM) not only with homology search based annotation but also with expression data profile, mapping information and protein-protein database. More than 1,000,000 clones prepared from 163 tissues were end-sequenced to classify into 159,789 clusters and 60,770 representative clones were fully sequenced. As a conclusion, the 60,770 sequences contained 33,409 unique. The next generation of life science is clearly based on all of the genome information and resources. Based on our cDNA clones we developed the additional system to explore gene function. We developed cDNA microarray system to print all of these cDNA clones, protein-protein interaction screening system, protein-DNA interaction screening system and so on. The integrated database of all the information is very useful not only for analysis of gene transcriptional network and for the connection of gene to phenotype to facilitate positional candidate approach. In this talk, the prospect of the application of these genome resourced should be discussed. More information is available at the web page: http://genome.gsc.riken.go.jp/.

  12. Mouse models in oncoimmunology.

    PubMed

    Zitvogel, Laurence; Pitt, Jonathan M; Daillère, Romain; Smyth, Mark J; Kroemer, Guido

    2016-12-01

    Fundamental cancer research and the development of efficacious antineoplastic treatments both rely on experimental systems in which the relationship between malignant cells and immune cells can be studied. Mouse models of transplantable, carcinogen-induced or genetically engineered malignancies - each with their specific advantages and difficulties - have laid the foundations of oncoimmunology. These models have guided the immunosurveillance theory that postulates that evasion from immune control is an essential feature of cancer, the concept that the long-term effects of conventional cancer treatments mostly rely on the reinstatement of anticancer immune responses and the preclinical development of immunotherapies, including currently approved immune checkpoint blockers. Specific aspects of pharmacological development, as well as attempts to personalize cancer treatments using patient-derived xenografts, require the development of mouse models in which murine genes and cells are replaced with their human equivalents. Such 'humanized' mouse models are being progressively refined to characterize the leukocyte subpopulations that belong to the innate and acquired arms of the immune system as they infiltrate human cancers that are subjected to experimental therapies. We surmise that the ever-advancing refinement of murine preclinical models will accelerate the pace of therapeutic optimization in patients.

  13. Manipulation of Mouse Embryonic Stem Cells for Knockout Mouse Production

    PubMed Central

    Limaye, Advait; Hall, Bradford; Kulkarni, Ashok B

    2009-01-01

    The establishment of mouse embryonic stem (ES) cell liness has allowed for the generation of the knockout mouse. ES cells that are genetically altered in culture can then be manipulated to derive a whole mouse containing the desired mutation. To successfully generate a knockout mouse, however, the ES cells must be carefully cultivated in a pluripotent state throughout the gene targeting experiment. This unit describes detailed step-by-step protocols, reagents, equipment, and strategies needed for the successful generation of gene knockout embryonic stem cells using homologous recombination technologies. PMID:19731225

  14. CPR: Adult

    MedlinePlus

    Refresher Center Home FIRST AID, CPR and AED LIFEGUARDING Refresher Putting It All Together: CPR—Adult (2:03) Refresher videos only utilize this player QUICK LINKS Home RedCross.org Purchase Course ...

  15. Mouse genetics: catalogue and scissors.

    PubMed

    Sung, Young Hoon; Baek, In-Jeoung; Seong, Je Kyung; Kim, Jin Soo; Lee, Han-Woong

    2012-12-01

    Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-Like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics.

  16. In vivo axial loading of the mouse tibia.

    PubMed

    Melville, Katherine M; Robling, Alexander G; van der Meulen, Marjolein C H

    2015-01-01

    Noninvasive methods to apply controlled, cyclic loads to the living skeleton are used as anabolic procedures to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days.

  17. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    PubMed Central

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2009-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) – originally identified and investigated in rats - can be measured in C57Bl/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioral phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom. PMID:18771687

  18. Chandra Catches the `Mouse'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  19. Molecular characterization of the mouse agouti locus.

    PubMed

    Bultman, S J; Michaud, E J; Woychik, R P

    1992-12-24

    The agouti (a) locus acts within the microenvironment of the hair follicle to regulate coat color pigmentation in the mouse. We have characterized a gene encoding a novel 131 amino acid protein that we propose is the one gene associated with the agouti locus. This gene is normally expressed in a manner consistent with a locus function, and, more importantly, its structure and expression are affected by a number of representative alleles in the agouti dominance hierarchy. In addition, we found that the pleiotropic effects associated with the lethal yellow (Ay) mutation, which include pronounced obesity, diabetes, and the development of neoplasms, are accompanied by deregulated overexpression of the agouti gene in numerous tissues of the adult animal.

  20. Mouse models for neurological disease.

    PubMed

    Hafezparast, Majid; Ahmad-Annuar, Azlina; Wood, Nicholas W; Tabrizi, Sarah J; Fisher, Elizabeth M C

    2002-08-01

    The mouse has many advantages over human beings for the study of genetics, including the unique property that genetic manipulation can be routinely carried out in the mouse genome. Most importantly, mice and human beings share the same mammalian genes, have many similar biochemical pathways, and have the same diseases. In the minority of cases where these features do not apply, we can still often gain new insights into mouse and human biology. In addition to existing mouse models, several major programmes have been set up to generate new mouse models of disease. Alongside these efforts are new initiatives for the clinical, behavioural, and physiological testing of mice. Molecular genetics has had a major influence on our understanding of the causes of neurological disorders in human beings, and much of this has come from work in mice.

  1. The scarless heart and the MRL mouse.

    PubMed Central

    Heber-Katz, Ellen; Leferovich, John; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise

    2004-01-01

    The ability to regenerate tissues and limbs in its most robust form is seen in many non-mammalian species. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivalling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. The adult MRL mouse regrows cartilage, skin, hair follicles and myocardium with near perfect fidelity and without scarring. This is seen in the ability to close through-and-through ear holes, which are generally used for lifelong identification of mice, and the anatomic and functional recovery of myocardium after a severe cryo-injury. We present histological, biochemical and genetic data indicating that the enhanced breakdown of scar-like tissue may be an underlying factor in the MRL regenerative response. Studies as to the source of the cells in the regenerating MRL tissue are discussed. Such studies appear to support multiple mechanisms for cell replacement. PMID:15293806

  2. Regional structure-function relationships in mouse aortic valve tissue

    PubMed Central

    Krishnamurthy, Varun K.; Guilak, Farshid; Narmoneva, Daria A.; Hinton, Robert B.

    2010-01-01

    Site-specific biomechanical properties of the aortic valve play an important role in native valve function, and alterations in these properties may reflect mechanisms of degeneration and disease. Small animals such as targeted mutagenesis mice provide a powerful approach to model human valve disease pathogenesis; however, physical mechanical testing in small animals is limited by valve tissue size. Aortic valves are comprised of highly organized extracellular matrix compartmentalized in cusp and annulus regions, which have different functions. The objective of this study was to measure regional mechanical properties of mouse aortic valve tissue using a modified micropipette aspiration technique. Aortic valves were isolated from juvenile, adult and aged adult C57BL/6 wild type mice. Tissue tensile stiffness was determined for annulus and cusp regions using a half-space punch model. Stiffness for the annulus region was significantly higher compared to the cusp region at all stages. Further, aged adult valve tissue had decreased stiffness in both the cusp and annulus. Quantitative histochemical analysis revealed a collagen-rich annulus and a proteoglycan-rich cusp at all stages. In aged adult valves, there was proteoglycan infiltration of the annulus hinge, consistent with observed mechanical differences over time. These findings indicate that valve tissue biomechanical properties vary in wild type mice in a region-specific and age-related manner. The micropipette aspiration technique provides a promising approach for studies of valve structure and function in small animal models, such as transgenic mouse models of valve disease. PMID:20863504

  3. Functional neurogenesis in the adult hippocampus

    NASA Astrophysics Data System (ADS)

    van Praag, Henriette; Schinder, Alejandro F.; Christie, Brian R.; Toni, Nicolas; Palmer, Theo D.; Gage, Fred H.

    2002-02-01

    There is extensive evidence indicating that new neurons are generated in the dentate gyrus of the adult mammalian hippocampus, a region of the brain that is important for learning and memory. However, it is not known whether these new neurons become functional, as the methods used to study adult neurogenesis are limited to fixed tissue. We use here a retroviral vector expressing green fluorescent protein that only labels dividing cells, and that can be visualized in live hippocampal slices. We report that newly generated cells in the adult mouse hippocampus have neuronal morphology and can display passive membrane properties, action potentials and functional synaptic inputs similar to those found in mature dentate granule cells. Our findings demonstrate that newly generated cells mature into functional neurons in the adult mammalian brain.

  4. Adult Psychology.

    ERIC Educational Resources Information Center

    Bischof, Ledford J.

    This volume comprehensively reviews the research on the psychology of the middle aged (ages 40-65). Topics include the concept of maturity and maturation models, the measurement and influences of adult self image; marriage and sexual patterns; intergenerational relationships between and children; vocations and avocations (work, retirement, play,…

  5. ADULT EDUCATION OF MIGRANT ADULTS.

    ERIC Educational Resources Information Center

    BEAL, CATHERINE; AND OTHERS

    UNITS ON MIGRANT ADULT EDUCATION, AND A UNIT ON ORGANIZING INFORMAL GROUPS OF MIGRANT WOMEN TO DISCUSS MAINTAINING AND IMPROVING THEIR TEMPORARY HOMES, ARE PRESENTED. THE GOALS OF THE UNIT ON EDUCATION FOR MIGRANT MEN ARE ECONOMIC INDEPENDENCE, BETTER HEALTH AND WELL-BEING, AND BETTER HANDLING OF RESPONSIBILITIES. THE MAIN DIVISIONS OF THE…

  6. Panic Disorder among Adults

    MedlinePlus

    ... Autism Spectrum Disorder (ASD) Eating Disorders Among Adults - Anorexia Nervosa Eating Disorders Among Adults - Binge Eating Disorder ... Autism Spectrum Disorder (ASD) Eating Disorders Among Adults - Anorexia Nervosa Eating Disorders Among Adults - Binge Eating Disorder ...

  7. Obstructive sleep apnea - adults

    MedlinePlus

    Sleep apnea - obstructive - adults; Apnea - obstructive sleep apnea syndrome - adults; Sleep-disordered breathing - adults; OSA - adults ... When you sleep, all of the muscles in your body become more relaxed. This includes the muscles that help keep your ...

  8. Mouse Models of Gastric Carcinogenesis

    PubMed Central

    Yu, Sungsook; Yang, Mijeong

    2014-01-01

    Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field. PMID:25061535

  9. Morphological phenotyping of mouse hearts using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lin, Eric; Lee, Ling; Sheng, Xiaoye; Wong, Kevin S. K.; Tibbits, Glen F.; Beg, Mirza Faisal; Sarunic, Marinko V.

    2014-11-01

    Transgenic mouse models have been instrumental in the elucidation of the molecular mechanisms behind many genetically based cardiovascular diseases such as Marfan syndrome (MFS). However, the characterization of their cardiac morphology has been hampered by the small size of the mouse heart. In this report, we adapted optical coherence tomography (OCT) for imaging fixed adult mouse hearts, and applied tools from computational anatomy to perform morphometric analyses. The hearts were first optically cleared and imaged from multiple perspectives. The acquired volumes were then corrected for refractive distortions, and registered and stitched together to form a single, high-resolution OCT volume of the whole heart. From this volume, various structures such as the valves and myofibril bundles were visualized. The volumetric nature of our dataset also allowed parameters such as wall thickness, ventricular wall masses, and luminal volumes to be extracted. Finally, we applied the entire acquisition and processing pipeline in a preliminary study comparing the cardiac morphology of wild-type mice and a transgenic mouse model of MFS.

  10. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein

    PubMed Central

    Much, Christian; Pavlinic, Dinko; Buness, Andreas; Rappsilber, Juri; Benes, Vladimir; Allshire, Robin; O’Carroll, Dónal

    2016-01-01

    Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse. PMID:27254021

  11. Mouse genetics: Catalogue and scissors

    PubMed Central

    Sung, Young Hoon; Baek, In-Jeoung; Seong, Je Kyung; Kim, Jin-Soo; Lee, Han-Woong

    2012-01-01

    Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-Like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics. [BMB Reports 2012; 45(12): 686-692] PMID:23261053

  12. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE PERMANENTLY ALTERS REPRODUCTIVE COMPETENCE IN THE CD-1 MOUSE

    EPA Science Inventory

    While the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 m...

  13. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  14. Thyroid Hormone Signaling in the Mouse Retina

    PubMed Central

    Arbogast, Patrick; Flamant, Frédéric; Godement, Pierre; Glösmann, Martin

    2016-01-01

    Thyroid hormone is a crucial regulator of gene expression in the developing and adult retina. Here we sought to map sites of thyroid hormone signaling at the cellular level using the transgenic FINDT3 reporter mouse model in which neurons express β-galactosidase (β-gal) under the control of a hybrid Gal4-TRα receptor when triiodothyronine (T3) and cofactors of thyroid receptor signaling are present. In the adult retina, nearly all neurons of the ganglion cell layer (GCL, ganglion cells and displaced amacrine cells) showed strong β-gal labeling. In the inner nuclear layer (INL), a minority of glycineric and GABAergic amacrine cells showed β-gal labeling, whereas the majority of amacrine cells were unlabeled. At the level of amacrine types, β-gal labeling was found in a large proportion of the glycinergic AII amacrines, but only in a small proportion of the cholinergic/GABAergic ‘starburst’ amacrines. At postnatal day 10, there also was a high density of strongly β-gal-labeled neurons in the GCL, but only few amacrine cells were labeled in the INL. There was no labeling of bipolar cells, horizontal cells and Müller glia cells at both stages. Most surprisingly, the photoreceptor somata in the outer nuclear layer also showed no β-gal label, although thyroid hormone is known to control cone opsin expression. This is the first record of thyroid hormone signaling in the inner retina of an adult mammal. We hypothesize that T3 levels in photoreceptors are below the detection threshold of the reporter system. The topographical distribution of β-gal-positive cells in the GCL follows the overall neuron distribution in that layer, with more T3-signaling cells in the ventral than the dorsal half-retina. PMID:27942035

  15. Protein Expression Dynamics During Postnatal Mouse Brain Development

    PubMed Central

    Laeremans, Annelies; Van de Plas, Babs; Clerens, Stefan; Van den Bergh, Gert; Arckens, Lutgarde; Hu, Tjing-Tjing

    2013-01-01

    We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation. PMID:25157209

  16. Segmentation of the mouse hippocampal formation in magnetic resonance images.

    PubMed

    Richards, Kay; Watson, Charles; Buckley, Rachel F; Kurniawan, Nyoman D; Yang, Zhengyi; Keller, Marianne D; Beare, Richard; Bartlett, Perry F; Egan, Gary F; Galloway, Graham J; Paxinos, George; Petrou, Steven; Reutens, David C

    2011-10-01

    The hippocampal formation plays an important role in cognition, spatial navigation, learning, and memory. High resolution magnetic resonance (MR) imaging makes it possible to study in vivo changes in the hippocampus over time and is useful for comparing hippocampal volume and structure in wild type and mutant mice. Such comparisons demand a reliable way to segment the hippocampal formation. We have developed a method for the systematic segmentation of the hippocampal formation using the perfusion-fixed C57BL/6 mouse brain for application in longitudinal and comparative studies. Our aim was to develop a guide for segmenting over 40 structures in an adult mouse brain using 30 μm isotropic resolution images acquired with a 16.4 T MR imaging system and combined using super-resolution reconstruction.

  17. Adult Development and Learning of Older Adults

    ERIC Educational Resources Information Center

    Roberson, Donald N., Jr.

    2005-01-01

    This summary of adult development covers a wide range of authors. Adult development is one way of understanding how the internal and external changes in our lives have an impact on learning. Of particular importance in this work are the developmental issues of older adults. I present various theories of adult development such as linear and…

  18. Mouse models for graft arteriosclerosis.

    PubMed

    Qin, Lingfeng; Yu, Luyang; Min, Wang

    2013-05-14

    Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional

  19. Identification of a set of genes showing regionally enriched expression in the mouse brain

    PubMed Central

    D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM

    2008-01-01

    Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066

  20. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates.

    PubMed

    Picq, Jean-Luc; Villain, Nicolas; Gary, Charlotte; Pifferi, Fabien; Dhenain, Marc

    2015-01-01

    The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination.

  1. A mouse model of mandibular osteotomy healing.

    PubMed

    Paccione, M F; Warren, S M; Spector, J A; Greenwald, J A; Bouletreau, P J; Longaker, M T

    2001-09-01

    The purpose of this study was to establish a novel mouse model of membranous osteotomy healing. By applying this model to transgenic mice or using in situ hybridization techniques, we can subsequently investigate candidate genes that are believed to be important in membranous osteotomy healing. In the current study, 20 adult male CD-1 mice underwent a full-thickness osteotomy between the second and third molars of the right hemimandible using a 3-mm diamond disc and copious irrigation. Compo-Post pins were secured into the mandible, 2 mm anterior and posterior to the osteotomy. After the soft tissues were reapproximated and the skin was closed, an acrylic external fixator was attached to the exposed posts for stabilization. The animals were killed on postoperative day number 7, 10, 14, and 28 (n=5 animals per time point). The right hemimandibles were decalcified and embedded in paraffin for histologic evaluation or immunohistochemistry localizing osteocalcin. At 7 days after the osteotomy, early intramembranous bone formation could be seen extending from either edge of the osteotomized bone. By 10 days, an increasing number of small blood vessels could be seen within and around the osteotomy. At 14 days, the bone edges were in close approximation, and by 28 days the callus had been replaced by actively remodeling woven bone in all specimens examined. Immunohistochemistry demonstrated that osteocalcin expression correlated temporally with the transition from a soft to a hard callus. Furthermore, osteocalcin was spatially confined to osteoblasts actively laying down new osteoid or remodeling bone. This study describes a novel mouse model of membranous osteotomy healing that can be used as a paradigm for future osteotomy healing studies investigating candidate genes critical for osteogenesis and successful bone repair.

  2. Cardiac mouse lymphatics: developmental and anatomical update.

    PubMed

    Flaht-Zabost, Aleksandra; Gula, Grzegorz; Ciszek, Bogdan; Czarnowska, Elżbieta; Jankowska-Steifer, Ewa; Madej, Maria; Niderla-Bielińska, Justyna; Radomska-Leśniewska, Dorota; Ratajska, Anna

    2014-06-01

    The adult mouse heart possesses an extensive lymphatic plexus draining predominantly the subepicardium and the outer layer of the myocardial wall. However, the development of this plexus has not been entirely explored, partially because of the lack of suitable methods for its visualization as well as prolonged lymphatic vessel formation that starts prenatally and proceeds during postnatal stages. Also, neither the course nor location of collecting vessels draining lymph from the mouse heart have been precisely characterized. In this article, we report that murine cardiac lymphatic plexus development that is limited prenatally only to the subepicardial area, postnatally proceeds from the subepicardium toward the myocardial wall with the base-to-apex gradient; this plexus eventually reaches the outer half of the myocardium with a predominant location around branches of coronary arteries and veins. Based on multiple marker immunostaining, the molecular marker-phenotype of cardiac lymphatic endothelial cells can be characterized as: Prox-1(+), Lyve-1(+), VEGFR3(+), Podoplanin(+), VEGFR2(+), CD144(+), Tie2(+), CD31(+), vWF(-), CD34(-), CD133(-). There are two major collecting vessels: one draining the right and left ventricles along the left conal vein and running upwards to the left side of the pulmonary trunk and further to the nearest lymph nodes (under the aortic arch and near the trachea), and the other one with its major branch running along the left cardiac vein and further on the surface of the coronary sinus and the left atrium to paratracheal lymph nodes. The extracardiac collectors gain the smooth muscle cell layer during late postnatal stages.

  3. Patterning by heritage in mouse molar row development.

    PubMed

    Prochazka, Jan; Pantalacci, Sophie; Churava, Svatava; Rothova, Michaela; Lambert, Anne; Lesot, Hervé; Klein, Ophir; Peterka, Miroslav; Laudet, Vincent; Peterkova, Renata

    2010-08-31

    It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mouse molar development are highly controversial because of a lack of molecular data. Here, we searched for typical tooth signaling centers in these two bud-like structures, and followed their fate using molecular markers, 3D reconstructions, and lineage tracing in vitro. Transient signaling centers were indeed found to be located at the tips of both the anterior and posterior rudimentary buds. These centers expressed a similar set of molecular markers as the "primary enamel knot" (pEK), the signaling center of the first molar (M1). These two transient signaling centers were sequentially patterned before and anterior to the M1 pEK. We also determined the dynamics of the M1 pEK, which, slightly later during development, spread up to the field formerly occupied by the posterior transient signaling center. It can be concluded that two rudimentary tooth buds initiate the sequential development of the mouse molars and these have previously been mistaken for early stages of M1 development. Although neither rudiment progresses to form an adult tooth, the posterior one merges with the adjacent M1, which may explain the anterior enlargement of the M1 during mouse family evolution. This study highlights how rudiments of lost structures can stay integrated and participate in morphogenesis of functional organs and help in understanding their evolution, as Darwin suspected long ago.

  4. Patterning by heritage in mouse molar row development

    PubMed Central

    Prochazka, Jan; Pantalacci, Sophie; Churava, Svatava; Rothova, Michaela; Lambert, Anne; Lesot, Hervé; Klein, Ophir; Peterka, Miroslav; Laudet, Vincent; Peterkova, Renata

    2010-01-01

    It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mouse molar development are highly controversial because of a lack of molecular data. Here, we searched for typical tooth signaling centers in these two bud-like structures, and followed their fate using molecular markers, 3D reconstructions, and lineage tracing in vitro. Transient signaling centers were indeed found to be located at the tips of both the anterior and posterior rudimentary buds. These centers expressed a similar set of molecular markers as the “primary enamel knot” (pEK), the signaling center of the first molar (M1). These two transient signaling centers were sequentially patterned before and anterior to the M1 pEK. We also determined the dynamics of the M1 pEK, which, slightly later during development, spread up to the field formerly occupied by the posterior transient signaling center. It can be concluded that two rudimentary tooth buds initiate the sequential development of the mouse molars and these have previously been mistaken for early stages of M1 development. Although neither rudiment progresses to form an adult tooth, the posterior one merges with the adjacent M1, which may explain the anterior enlargement of the M1 during mouse family evolution. This study highlights how rudiments of lost structures can stay integrated and participate in morphogenesis of functional organs and help in understanding their evolution, as Darwin suspected long ago. PMID:20709958

  5. Tet1 Regulates Adult Hippocampal Neurogenesis and Cognition

    PubMed Central

    Zhang, Run-Rui; Cui, Qing-Yan; Murai, Kiyohito; Lim, Yen Ching; Smith, Zachary D.; Jin, Shengnan; Ye, Peng; Rosa, Luis; Lee, Yew Kok; Wu, Hai-Ping; Liu, Wei; Xu, Zhi-Mei; Yang, Lu; Ding, Yu-Qiang; Tang, Fuchou; Meissner, Alexander; Ding, Chunming; Shi, Yanhong; Xu, Guo-Liang

    2015-01-01

    SUMMARY DNA hydroxylation catalyzed by Tet dioxygenases occurs abundantly in embryonic stem cells and neurons in mammals. However, its biological function in vivo is largely unknown. Here we demonstrate that Tet1 plays an important role in regulating neural progenitor cell proliferation in adult mouse brain. Mice lacking Tet1 exhibit impaired hippocampal neurogenesis accompanied by poor learning and memory. In adult neural progenitor cells deficient in Tet1, a cohort of genes involved in progenitor proliferation were hypermethylated and down-regulated. Our results indicate that Tet1 is positively involved in the epigenetic regulation of neural progenitor cell proliferation in the adult brain. PMID:23770080

  6. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus.

    PubMed

    Song, Juan; Sun, Jiaqi; Moss, Jonathan; Wen, Zhexing; Sun, Gerald J; Hsu, Derek; Zhong, Chun; Davoudi, Heydar; Christian, Kimberly M; Toni, Nicolas; Ming, Guo-Li; Song, Hongjun

    2013-12-01

    Using immunohistology, electron microscopy, electrophysiology and optogenetics, we found that proliferating adult mouse hippocampal neural precursors received immature GABAergic synaptic inputs from parvalbumin-expressing interneurons. Recently shown to suppress adult quiescent neural stem cell activation, parvalbumin interneuron activation promoted newborn neuronal progeny survival and development. Our results suggest a niche mechanism involving parvalbumin interneurons that couples local circuit activity to the diametric regulation of two critical early phases of adult hippocampal neurogenesis.

  7. 10. international mouse genome conference

    SciTech Connect

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  8. Preparing Educators of Adults.

    ERIC Educational Resources Information Center

    Grabowski, Stanley M.; And Others

    Model programs are described for two areas of adult education--the preparation of adult educators and the training conducted by adult educators. In Chapter One, Phyllis Caldwell reviews the literature concerning the preservice training of adult educators, concentrating on the competencies of adult education administrators and teachers. In Chapter…

  9. Apoptosis Process in Mouse Leydig Cells during Postnatal Development

    NASA Astrophysics Data System (ADS)

    Salles Faria, Maria José; Simões, Zilá Paulino; Luz; Orive Lunardi, Laurelucia; Hartfelder, Klaus

    2003-02-01

    The development of Leydig cells in mammals has been widely described as a biphasic pattern with two temporally mature Leydig cell populations, fetal stage followed by the adult generation beginning at puberty. In the present study, mouse Leydig cells were examined for apoptosis during postnatal testis development using electron microscopy and in situ DNA fragmentation by terminal deoxynucleotidyl transferase staining (TdT). Both the morphological study and the DNA fragmentation analysis showed that cellular death by apoptosis did not occur in Leydig cells during the neonatal, prepubertal, puberty, and adult periods. From these results, we suggest that the remaining fetal Leydig cells in the neonatal testis are associated with the involution or degeneration processes. In contrast, in the prepubertal and puberty stages, fragmentation of apoptotic DNA was detected in germ cells present in some seminiferous tubules.

  10. Adults Need Vaccines, Too!

    MedlinePlus

    ... turn JavaScript on. Feature: Adult Vaccinations Adults Need Vaccines, Too! Past Issues / Summer 2015 Table of Contents ... of the millions of adults not receiving the vaccines you need? What vaccines do you need? All ...

  11. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  12. Adult Day Care

    MedlinePlus

    ... Page Resize Text Printer Friendly Online Chat Adult Day Care Adult Day Care Centers are designed to provide care and ... adults who need assistance or supervision during the day. Programs offer relief to family members and caregivers, ...

  13. Adult Still's disease

    MedlinePlus

    Still's disease - adult; AOSD ... than 1 out of 100,000 people develop adult-onset Still's disease each year. It affects women more often than men. The cause of adult Still's disease is unknown. No risk factors for ...

  14. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  15. Mouse Models of Rheumatoid Arthritis.

    PubMed

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients.

  16. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  17. Mouse models of myasthenia gravis.

    PubMed

    Ban, Joanne; Phillips, William D

    2015-01-01

    Myasthenia gravis is a muscle weakness disease characterized by autoantibodies that target components of the neuromuscular junction, impairing synaptic transmission. The most common form of myasthenia gravis involves antibodies that bind the nicotinic acetylcholine receptors in the postsynaptic membrane. Many of the remaining cases are due to antibodies against muscle specific tyrosine kinase (MuSK). Recently, autoantibodies against LRP4 (another component of the MuSK signaling complex in the postsynaptic membrane) were identified as the likely cause of myasthenia gravis in some patients. Fatiguing weakness is the common symptom in all forms of myasthenia gravis, but muscles of the body are differentially affected, for reasons that are not fully understood. Much of what we have learnt about the immunological and neurobiological aspects of the pathogenesis derives from mouse models. The most widely used mouse models involve either passive transfer of autoantibodies, or active immunization of the mouse with acetylcholine receptors or MuSK protein. These models can provide a robust replication of many of the features of the human disease. Depending upon the protocol, acute fatiguing weakness develops 2 - 14 days after the start of autoantibody injections (passive transfer) or might require repeated immunizations over several weeks (active models). Here we review mouse models of myasthenia gravis, including what they have contributed to current understanding of the pathogenic mechanisms and their current application to the testing of therapeutics.

  18. High-throughput mouse phenotyping.

    PubMed

    Gates, Hilary; Mallon, Ann-Marie; Brown, Steve D M

    2011-04-01

    Comprehensive phenotyping will be required to reveal the pleiotropic functions of a gene and to uncover the wider role of genetic loci within diverse biological systems. The challenge will be to devise phenotyping approaches to characterise the thousands of mutants that are being generated as part of international efforts to acquire a mutant for every gene in the mouse genome. In order to acquire robust datasets of broad based phenotypes from mouse mutants it is necessary to design and implement pipelines that incorporate standardised phenotyping platforms that are validated across diverse mouse genetics centres or mouse clinics. We describe here the rationale and methodology behind one phenotyping pipeline, EMPReSSslim, that was designed as part of the work of the EUMORPHIA and EUMODIC consortia, and which exemplifies some of the challenges facing large-scale phenotyping. EMPReSSslim captures a broad range of data on diverse biological systems, from biochemical to physiological amongst others. Data capture and dissemination is pivotal to the operation of large-scale phenotyping pipelines, including the definition of parameters integral to each phenotyping test and the associated ontological descriptions. EMPReSSslim data is displayed within the EuroPhenome database, where a variety of tools are available to allow the user to search for interesting biological or clinical phenotypes.

  19. Generation of pluripotent stem cells from adult human testis.

    PubMed

    Conrad, Sabine; Renninger, Markus; Hennenlotter, Jörg; Wiesner, Tina; Just, Lothar; Bonin, Michael; Aicher, Wilhelm; Bühring, Hans-Jörg; Mattheus, Ulrich; Mack, Andreas; Wagner, Hans-Joachim; Minger, Stephen; Matzkies, Matthias; Reppel, Michael; Hescheler, Jürgen; Sievert, Karl-Dietrich; Stenzl, Arnulf; Skutella, Thomas

    2008-11-20

    Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.

  20. Inhibition of Adult Neurogenesis by Inducible and Targeted Deletion of ERK5 MAP Kinase Specifically in Adult Neurogenic Regions Impairs Contextual Fear Memory Extinction and Remote Fear Memory

    PubMed Central

    Pan, Yung-Wei; Chan, Guy C.K.; Kuo, Chay T.; Storm, Daniel R.; Xia, Zhengui

    2012-01-01

    Although there is evidence suggesting that adult neurogenesis may contribute to hippocampus-dependent memory, signaling mechanisms responsible for adult hippocampal neurogenesis are not well characterized. Here we report that ERK5 MAP kinase is specifically expressed in the neurogenic regions of the adult mouse brain. The inducible and conditional knockout (icKO) of erk5 specifically in neural progenitors of the adult mouse brain attenuated adult hippocampal neurogenesis. It also caused deficits in several forms of hippocampus-dependent memory including contextual fear conditioning generated by a weak foot shock. The ERK5 icKO mice were also deficient in extinction of contextual fear memory and reversal of Morris water maze spatial learning and memory, suggesting that adult neurogenesis is important for learning that requires active forgetting of a prior memory. Furthermore, our data suggest a critical role for ERK5-mediated adult neurogenesis in pattern separation, a form of dentate gyrus-dependent spatial learning and memory. Moreover, ERK5 icKO mice have no memory 21 days post-training in the passive avoidance test, suggesting a pivotal role for adult hippocampal neurogenesis in the expression of remote memory. Together, our results implicate ERK5 as a novel signaling molecule regulating adult neurogenesis and provide strong evidence that adult neurogenesis is critical for several forms of hippocampus-dependent memory formation including memory extinction, and for the expression of remote memory. PMID:22573667

  1. Toxicokinetics and toxicodynamics of paraquat accumulation in mouse brain

    PubMed Central

    Prasad, Kavita; Tarasewicz, Elizabeth; Mathew, Jason; Ohman Strickland, Pamela A.; Buckley, Brian; Richardson, Jason R.; Richfield, Eric K.

    2014-01-01

    Paraquat (PQ) is a potential human neurotoxicant and is used in models of oxidative stress. We determined the toxicokinetics (TK) and toxicodynamics (TD) of PQ in adult mouse brain following repeated or prolonged PQ exposure. PQ accumulated in different brain regions and reached a plateau after ~18 i.p. (10 mg/kg) doses and resulted in modest morbidity and mortality unpredictably associated with dose interval and number. PQ had divergent effects on horizontal locomotor behavior depending on the number of doses. PQ decreased striatal dopamine levels after the 18th to 36th i.p. dose (10 mg/kg) and reduced the striatal level of tyrosine hydroxylase. Drinking water exposure to PQ (0.03– 0.05 mg/ml) did not result in any mortality and resulted in concentration and time dependent levels in the brain. The brain half-life of PQ varied with mouse strain. PQ accumulates and may saturate a site in mouse brain resulting in complex PQ level and duration-related consequences. These findings should alter our risk assessment of this compound and demonstrate a useful, but complex dynamic model for understanding the consequences of PQ in the brain. PMID:19084006

  2. Mouse thymic necrosis virus: a novel murine lymphotropic agent.

    PubMed

    Morse, S S

    1987-12-01

    Mouse thymic necrosis virus (TA), one of two naturally occurring herpesviruses in laboratory mice, was first described in 1961. TA has received relatively little attention even though the virus has been isolated independently from various mouse colonies. This neglect is probably due, at least in part, to the lack of suitable cell culture systems. This review summarizes current knowledge concerning thymic necrosis virus, including new results from the author's laboratory. In vivo, TA causes massive thymic necrosis in newborn mice, with temporary ablation of thymocyte precursors for most T lymphocyte classes except T suppressor cells. All strains of laboratory mice appear susceptible. Severe immunosuppression has been demonstrated in acutely infected mice. Most infected animals survive and shed TA chronically from salivary glands and possibly other glandular tissues. In adult mice, primary infection results in persistent salivary gland infection without overt thymic lesions. Infection appears lifelong, with few clinical signs, but possible effects of chronic TA infection on immune function have been studied little. Recent evidence from the author's laboratory suggests that chronic infection may involve T lymphocytes. The name mouse T lymphotropic virus (abbreviation MTLV) is proposed.

  3. Adiponectin Enhances Mouse Fetal Fat Deposition

    PubMed Central

    Qiao, Liping; Yoo, Hyung sun; Madon, Alysha; Kinney, Brice; Hay, William W.; Shao, Jianhua

    2012-01-01

    Maternal obesity increases offspring birth weight and susceptibility to obesity. Adiponectin is an adipocyte-secreted hormone with a prominent function in maintaining energy homeostasis. In contrast to adults, neonatal blood adiponectin levels are positively correlated with anthropometric parameters of adiposity. This study was designed to investigate the role of adiponectin in maternal obesityenhanced fetal fat deposition. By using high-fat diet–induced obese mouse models, our study showed that maternal obesity increased fetal fat tissue mass, with a significant elevation in fetal blood adiponectin. However, adiponectin gene knockout (Adipoq−/−) attenuated maternal obesity-induced high fetal fat tissue mass. We further studied the effects of fetal adiponectin on fetal fat deposition by using a cross breeding approach to create Adipoq−/+ and Adipoq−/− offspring, whereas maternal adiponectin was null. Adipoq−/+ offspring had more fat tissue mass at both birth and adulthood. Significantly high levels of lipogenic genes, such as sterol regulatory element–binding protein 1c and fatty acid synthase, were detected in the livers of Adipoq−/+ fetuses. In addition, expression of genes for placental fatty acid transport was significantly increased in Adipoq−/+ fetuses. Together, our study indicates that adiponectin enhances fetal fat deposition and plays an important role in maternal obesity-induced high birth weight. PMID:22872236

  4. NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus.

    PubMed

    Demitrack, Elise S; Gifford, Gail B; Keeley, Theresa M; Horita, Nobukatsu; Todisco, Andrea; Turgeon, D Kim; Siebel, Christian W; Samuelson, Linda C

    2017-02-01

    The Notch signaling pathway is known to regulate stem cells and epithelial cell homeostasis in gastrointestinal tissues; however, Notch function in the corpus region of the stomach is poorly understood. In this study we examined the consequences of Notch inhibition and activation on cellular proliferation and differentiation and defined the specific Notch receptors functioning in the mouse and human corpus. Notch pathway activity was observed in the mouse corpus epithelium, and gene expression analysis revealed NOTCH1 and NOTCH2 to be the predominant Notch receptors in both mouse and human. Global Notch inhibition for 5 days reduced progenitor cell proliferation in the mouse corpus, as well as in organoids derived from mouse and human corpus tissue. Proliferation effects were mediated through both NOTCH1 and NOTCH2 receptors, as demonstrated by targeting each receptor alone or in combination with Notch receptor inhibitory antibodies. Analysis of differentiation by marker expression showed no change to the major cell lineages; however, there was a modest increase in the number of transitional cells coexpressing markers of mucous neck and chief cells. In contrast to reduced proliferation after pathway inhibition, Notch activation in the adult stomach resulted in increased proliferation coupled with reduced differentiation. These findings suggest that NOTCH1 and NOTCH2 signaling promotes progenitor cell proliferation in the mouse and human gastric corpus, which is consistent with previously defined roles for Notch in promoting stem and progenitor cell proliferation in the intestine and antral stomach.

  5. Distinct patterns of expression of the RB gene family in mouse and human retina.

    PubMed

    Spencer, Clarellen; Pajovic, Sanja; Devlin, Hollie; Dinh, Quynh-Dao; Corson, Timothy W; Gallie, Brenda L

    2005-06-01

    Although RB1 function is disrupted in the majority of human cancers, an undefined cell of developing human retina is uniquely sensitive to cancer induction when the RB1 tumor suppressor gene is lost. Murine retinoblastoma is initiated only when two of the RB family of genes, RB1 and p107 or p130, are inactivated. Although whole embryonic retina shows RB family gene expression by several techniques, when E14 developing retina was depleted of the earliest differentiating cells, ganglion cells, the remaining proliferating murine embryonic retinal progenitor cells clearly did not express RB1 or p130, while the longer splice form of p107 was expressed. Each retinal cell type expressed some member of the RB family at some stage of differentiation. Rod photoreceptors stained for the RB1 protein product, pRB, and p107 in only a brief window of postnatal murine development, with no detectable staining for any of the RB family proteins in adult human and mouse rod photoreceptors. Adult mouse and human Muller glia, ganglion and rare horizontal cells, and adult human, but not adult mouse, cone photoreceptors stained for pRB. The RB gene family is dynamically and variably expressed through retinal development in specific retinal cells.

  6. Transcriptome Analysis of Mouse Stem Cells and Early Embryos

    PubMed Central

    Sharov, Alexei A; Piao, Yulan; Matoba, Ryo; Dudekula, Dawood B; Qian, Yong; VanBuren, Vincent; Falco, Geppino; Martin, Patrick R; Stagg, Carole A; Bassey, Uwem C; Wang, Yuxia; Carter, Mark G; Hamatani, Toshio; Aiba, Kazuhiro; Akutsu, Hidenori; Sharova, Lioudmila; Tanaka, Tetsuya S; Kimber, Wendy L; Yoshikawa, Toshiyuki; Jaradat, Saied A; Pantano, Serafino; Nagaraja, Ramaiah; Boheler, Kenneth R; Taub, Dennis; Hodes, Richard J; Longo, Dan L; Schlessinger, David; Keller, Jonathan; Klotz, Emily; Kelsoe, Garnett; Umezawa, Akihiro; Vescovi, Angelo L; Rossant, Janet; Kunath, Tilo; Hogan, Brigid L. M; Curci, Anna; D'Urso, Michele; Kelso, Janet; Hide, Winston

    2003-01-01

    Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine. PMID:14691545

  7. Chronic hypercapnia alters lung matrix composition in mouse pups

    PubMed Central

    Heldt, Gregory P.; Nguyen, Mary; Gavrialov, Orit; Haddad, Gabriel G.

    2010-01-01

    Rationale: permissive hypercapnia, a stretch-limiting ventilation strategy, often results in high PaCO2. This strategy is associated with reduced morbidity and mortality in premature infants and its benefits have been attributed to diminished barotrauma. However, little is known about the independent effect of high CO2 levels during the lung development. Methods: mice were exposed to 8% CO2 or room air for 2 wk either from postnatal day 2 through 17 or as adults (∼2 mo of age). Lungs were excised and processed for protein, RNA, histology, and total lung volumes. Results: histologic analysis demonstrated that alveolar walls of CO2-exposed mouse pups were thinner than those of controls and had twice the total lung volume. Molecular analysis revealed that several matrix proteins in the lung were downregulated in mouse pups exposed to hypercapnia. Interstitial collagen type I α1, type III α1, elastin and fibronectin protein, and mRNA levels were less than half of controls while collagen IV α5 was unaffected. This decrease in interstitial collagen could thus account for the thinning of the interstitial matrix and the altered lung biomechanics. Matrix metalloproteinase (MMP)-8, a collagenase that has specificity for collagen types I and III, increased in hypercapnic mouse pups, suggesting increased collagen degradation. Moreover, tissue inhibitor of MMP (TIMP)-1, a potent inhibitor of MMP-8, was significantly decreased. However, unlike pups, adult mice exposed to hypercapnia demonstrated only a mild increase in total lung volumes and did not exhibit similar molecular or histologic changes. Conclusions: although permissive hypercapnia may prevent lung injury from barotrauma, our study revealed that exposure to hypercapnia may be an important factor in lung remodeling and function, especially in early life. PMID:20360436

  8. Uroporphyrinogen-III synthase: Molecular cloning, nucleotide sequence, expression of a mouse full-length cDNA, and its localization on mouse chromosome 7

    SciTech Connect

    Xu, W.; Desnick, R.J.; Kozak, C.A.

    1995-04-10

    Uroporphyrinogen-III synthase, the fourth enzyme in the heme biosynthetic pathway, is responsible for the conversion of hydroxymethylbilane to the cyclic tetrapyrrole, uroporphyrinogen III. The deficient activity of URO-S is the enzymatic defect in congenital erythropoietic porphyria (CEP), an autosomal recessive disorder. For the generation of a mouse model of CEP, the human URO-S cDNA was used to screen 2 X 10{sup 6} recombinants from a mouse adult liver cDNA library. Ten positive clones were isolated, and dideoxy sequencing of the entire 1.6-kb insert of clone pmUROS-1 revealed 5{prime} and 3{prime} untranslated sequences of 144 and 623 bp, respectively, and an open reading frame of 798 bp encoding a 265-amino-acid polypeptide with a predicted molecular mass of 28,501 Da. The mouse and human coding sequences had 80.5 and 77.8% nucleotide and amino acid identity, respectively. The authenticity of the mouse cDNA was established by expression of the active monomeric enzyme in Escherichia coli. In addition, the analysis of two multilocus genetic crosses localized the mouse gene on chromosome 7, consistent with the mapping of the human gene to a position of conserved synteny on chromosome 10. The isolation, expression, and chromosomal mapping of this full-length cDNA should facilitate studies of the structure and organization of the mouse genomic sequence and the development of a mouse model of CEP for characterization of the disease pathogenesis and evaluation of gene therapy. 38 refs., 1 tab.

  9. Adult Recruitment Practices.

    ERIC Educational Resources Information Center

    Kaufman, Juliet, Ed.; And Others

    Findings of an American College Testing Program 1981 survey on college recruitment of adult students are summarized, and 12 articles on adult recruitment are presented. Titles and authors are as follows: "Adult Recruitment Practices: A Report of a National Survey" (Patricia Spratt, Juliet Kaufmann, Lee Noel); "Three Programs for Adults in Shopping…

  10. Further studies toward a mouse model for biochemical assessment of neuropathic potential of organophosphorus compounds.

    PubMed

    Makhaeva, Galina F; Rudakova, Elena V; Hein, Nichole D; Serebryakova, Olga G; Kovaleva, Nadezhda V; Boltneva, Natalia P; Fink, John K; Richardson, Rudy J

    2014-12-01

    Inhibition and aging of neuropathy target esterase (NTE) by neuropathic organophosphorus (OP) compounds triggers OP compound-induced delayed neuropathy (OPIDN), whereas inhibition of acetylcholinesterase (AChE) produces cholinergic toxicity. The neuropathic potential of an OP compound is defined by its relative inhibitory potency toward NTE vs. AChE assessed by enzyme assays following dosing in vivo or after incubations of direct-acting compounds or active metabolites with enzymes in vitro. The standard animal model of OPIDN is the adult hen, but its large size and high husbandry costs make this species a burdensome model for assessing neuropathic potential. Although the mouse does not readily exhibit clinical signs of OPIDN, it displays axonal lesions and expresses brain AChE and NTE. Therefore, the present research was performed as a further test of the hypothesis that inhibition of mouse brain AChE and NTE could be used to assess neuropathic potential using mouse brain preparations in vitro or employing mouse brain assays following dosing of OP compounds in vivo. Excellent correlations were obtained for inhibition kinetics in vitro of mouse brain enzymes vs. hen brain and human recombinant enzymes. Furthermore, inhibition of mouse brain AChE and NTE after dosing with OP compounds afforded ED(50) ratios that agreed with relative inhibitory potencies assessed in vitro. Taken together, results with mouse brain enzymes demonstrated consistent correspondence between in vitro and in vivo predictors of neuropathic potential, thus adding to previous studies supporting the validity of a mouse model for biochemical assessment of the ability of OP compounds to produce OPIDN.

  11. The mouse and human genes encoding the recognition component of the N-end rule pathway

    PubMed Central

    Kwon, Yong Tae; Reiss, Yuval; Fried, Victor A.; Hershko, Avram; Yoon, Jeong Kyo; Gonda, David K.; Sangan, Pitchai; Copeland, Neal G.; Jenkins, Nancy A.; Varshavsky, Alexander

    1998-01-01

    The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. The N-end rule pathway is one proteolytic pathway of the ubiquitin system. The recognition component of this pathway, called N-recognin or E3, binds to a destabilizing N-terminal residue of a substrate protein and participates in the formation of a substrate-linked multiubiquitin chain. We report the cloning of the mouse and human Ubr1 cDNAs and genes that encode a mammalian N-recognin called E3α. Mouse UBR1p (E3α) is a 1,757-residue (200-kDa) protein that contains regions of sequence similarity to the 225-kDa Ubr1p of the yeast Saccharomyces cerevisiae. Mouse and human UBR1p have apparent homologs in other eukaryotes as well, thus defining a distinct family of proteins, the UBR family. The residues essential for substrate recognition by the yeast Ubr1p are conserved in the mouse UBR1p. The regions of similarity among the UBR family members include a putative zinc finger and RING-H2 finger, another zinc-binding domain. Ubr1 is located in the middle of mouse chromosome 2 and in the syntenic 15q15-q21.1 region of human chromosome 15. Mouse Ubr1 spans ≈120 kilobases of genomic DNA and contains ≈50 exons. Ubr1 is ubiquitously expressed in adults, with skeletal muscle and heart being the sites of highest expression. In mouse embryos, the Ubr1 expression is highest in the branchial arches and in the tail and limb buds. The cloning of Ubr1 makes possible the construction of Ubr1-lacking mouse strains, a prerequisite for the functional understanding of the mammalian N-end rule pathway. PMID:9653112

  12. Mouse Models of Human Phenylketonuria

    PubMed Central

    Shedlovsky, A.; McDonald, J. D.; Symula, D.; Dove, W. F.

    1993-01-01

    Phenylketonuria (PKU) results from a deficiency in phenylalanine hydroxylase, the enzyme catalyzing the conversion of phenylalanine (PHE) to tyrosine. Although this inborn error of metabolism was among the first in humans to be understood biochemically and genetically, little is known of the mechanism(s) involved in the pathology of PKU. We have combined mouse germline mutagenesis with screens for hyperphenylalaninemia to isolate three mutants deficient in phenylalanine hydroxylase (PAH) activity and cross-reactive protein. Two of these have reduced PAH mRNA and display characteristics of untreated human PKU patients. A low PHE diet partially reverses these abnormalities. Our success in using high frequency random germline point mutagenesis to obtain appropriate disease models illustrates how such mutagenesis can complement the emergent power of targeted mutagenesis in the mouse. The mutants now can be used as models in studying both maternal PKU and somatic gene therapy. PMID:8375656

  13. Aging Research Using Mouse Models.

    PubMed

    Ackert-Bicknell, Cheryl L; Anderson, Laura C; Sheehan, Susan; Hill, Warren G; Chang, Bo; Churchill, Gary A; Chesler, Elissa J; Korstanje, Ron; Peters, Luanne L

    2015-06-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in "health-span," or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, and immune function, as well as physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process.

  14. Aging Research Using Mouse Models

    PubMed Central

    Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.

    2015-01-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080

  15. Retinofugal projections in the mouse.

    PubMed

    Morin, Lawrence P; Studholme, Keith M

    2014-11-01

    The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species' visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 μm free-floating sections with diaminobenzidine as the chromogen. The mouse retina projects to ~46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat, and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition.

  16. Retinofugal Projections in the Mouse

    PubMed Central

    Morin, Lawrence P.; Studholme, Keith M.

    2014-01-01

    The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species’ visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 Am free floating sections with diaminobenzidine as the chromogen. The mouse retina projects to approximately 46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition. PMID:24889098

  17. Mouse Models for Methylmalonic Aciduria

    PubMed Central

    Peters, Heidi L.; Pitt, James J.; Wood, Leonie R.; Hamilton, Natasha J.; Sarsero, Joseph P.; Buck, Nicole E.

    2012-01-01

    Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM). MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene). Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation. PMID:22792386

  18. The mouse dead-end gene isoform α is necessary for germ cell and embryonic viability

    PubMed Central

    Bhattacharya, Chitralekha; Aggarwal, Sita; Zhu, Rui; Kumar, Madhu; Zhao, Ming; Meistrich, Marvin L.; Matin, Angabin

    2007-01-01

    Inactivation of the dead-end (Dnd1) gene in the Ter mouse strain results in depletion of primordial germ cells (PGCs) so that mice become sterile. However, on the 129 mouse strain background, loss of Dnd1 also increases testicular germ cell tumor incidence in parallel to PGC depletion. We report that inactivation of Dnd1 also affects embryonic viability in the 129 strain. Mouse Dnd1 encodes two protein isoforms, DND1-isoform α (DND1- α) and DND1-isoform β (DND1-β). Using isoform specific antibodies, we determined DND1-α is expressed in embryos and embryonic gonads whereas DND1-β expression is restricted to germ cells of the adult testis. Our data implicates DND1-α isoform to be necessary for germ cell viability and therefore its loss in Ter mice results in PGC depletion, germ cell tumor development and partial embryonic lethality in the 129 strain. PMID:17291453

  19. Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting

    PubMed Central

    2012-01-01

    Background The use of the Cre/loxP system for gene targeting has been proven to be a powerful tool for understanding gene function. The purpose of this study was to create and characterize an inducible, skeletal muscle-specific Cre transgenic mouse strain. Methods To achieve skeletal muscle-specific expression, the human α-skeletal actin promoter was used to drive expression of a chimeric Cre recombinase containing two mutated estrogen receptor ligand-binding domains. Results Western blot analysis, PCR and β-galactosidase staining confirmed that Cre-mediated recombination was restricted to limb and craniofacial skeletal muscles only after tamoxifen administration. Conclusions A transgenic mouse was created that allows inducible, gene targeting of floxed genes in adult skeletal muscle of different developmental origins. This new mouse will be of great utility to the skeletal muscle community. PMID:22564549

  20. Isolation and characterization of human and mouse ZIRTL, a member of the IRT1 family of transporters, mapping within the epidermal differentiation complex.

    PubMed

    Lioumi, M; Ferguson, C A; Sharpe, P T; Freeman, T; Marenholz, I; Mischke, D; Heizmann, C; Ragoussis, J

    1999-12-01

    We report the precise mapping and characterization of ZIRTL (zinc-iron regulated transporter-like) gene, the first mammalian member of an extensive family of divalent metal ion transporters, comprising IRT1 and ZIP1, ZIP2, ZIP3, and ZIP4 in plants and ZRT1 and ZRT2 in yeast. The human gene maps at the telomeric end of the epidermal differentiation complex (EDC), within chromosomal band 1q21, while the mouse gene maps within the mouse EDC, on mouse chromosome 3, between S100A9 and S100A13. The structure of the human gene has been determined, and message was detected in most adult and fetal tissues including the epidermis. The mouse gene is developmentally regulated and found expressed in fetal and adult suprabasal epidermis, osteoblasts, small intestine, and salivary gland.

  1. Visually guided whole cell patch clamp of mouse supraoptic nucleus neurons in cultured and acute conditions.

    PubMed

    Stachniak, Tevye J E; Bourque, Charles W

    2006-07-01

    Recent advances in neuronal culturing techniques have supplied a new set of tools for studying neural tissue, providing effective means to study molecular aspects of regulatory elements in the supraoptic nucleus of the hypothalamus (SON). To combine molecular biology techniques with electrophysiological recording, we modified an organotypic culture protocol to permit transfection and whole cell patch-clamp recordings from SON cells. Neonatal mouse brain coronal sections containing the SON were dissected out, placed on a filter insert in culture medium, and incubated for at least 4 days to allow attachment to the insert. The SON was identifiable using gross anatomical landmarks, which remained intact throughout the culturing period. Immunohistochemical staining identified both vasopressinergic and oxytocinergic cells present in the cultures, typically appearing in well-defined clusters. Whole cell recordings from these cultures demonstrated that certain properties of the neonatal mouse SON were comparable to adult mouse magnocellular neurons. SON neurons in both neonatal cultures and acute adult slices showed similar sustained outward rectification above -60 mV and action potential broadening during evoked activity. Membrane potential, input resistance, and rapidly inactivating potassium current density (IA) were reduced in the cultures, whereas whole cell capacitance and spontaneous synaptic excitation were increased, perhaps reflecting developmental changes in cell physiology that warrant further study. The use of the outlined organotypic culturing procedures will allow the study of such electrophysiological properties of mouse SON using whole cell patch-clamp, in addition to various molecular, techniques that require longer incubation times.

  2. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes.

    PubMed

    Staahl, Brett T; Benekareddy, Madhurima; Coulon-Bainier, Claire; Banfal, Ashwin A; Floor, Stephen N; Sabo, Jennifer K; Urnes, Cole; Munares, Gabriela Acevedo; Ghosh, Anirvan; Doudna, Jennifer A

    2017-02-13

    We demonstrate editing of post-mitotic neurons in the adult mouse brain following injection of Cas9 ribonucleoprotein (RNP) complexes in the hippocampus, striatum and cortex. Engineered variants of Cas9 with multiple SV40 nuclear localization sequences enabled a tenfold increase in the efficiency of neuronal editing in vivo. These advances indicate the potential of genome editing in the brain to correct or inactivate the underlying genetic causes of neurological diseases.

  3. Clueless? Adult Mysteries with Young Adult Appeal.

    ERIC Educational Resources Information Center

    Charles, John; Morrison, Joanna

    1997-01-01

    Presents a list of adult mystery titles for young adult readers. Includes first titles in a series (for reading in order); new and lesser-known mystery authors' works are the focus. Annotations include plot summary. The rest of each annotation is for professional use (includes date and name of award bestowed). (AEF)

  4. Young Adult Literature for Young Adult Males.

    ERIC Educational Resources Information Center

    Gill, Sam D.

    1999-01-01

    Argues that young adult literature can play a significant role in the emotional and mental health of an adolescent as well as help young males become more literate. Offers a 19-item annotated list of young adult novels with male protagonists, sorted by themes: nature and adventure stories, sports stories, genre stories, historical stories, and…

  5. A Dual Reporter Mouse Model of the Human β-Globin Locus: Applications and Limitations

    PubMed Central

    Papadopoulos, Petros; Gutiérrez, Laura; van der Linden, Reinier; Kong-A-San, John; Maas, Alex; Drabek, Dubravka; Patrinos, George P.; Philipsen, Sjaak; Grosveld, Frank

    2012-01-01

    The human β-globin locus contains the β-like globin genes (i.e. fetal γ-globin and adult β-globin), which heterotetramerize with α-globin subunits to form fetal or adult hemoglobin. Thalassemia is one of the commonest inherited disorders in the world, which results in quantitative defects of the globins, based on a number of genome variations found in the globin gene clusters. Hereditary persistence of fetal hemoglobin (HPFH) also caused by similar types of genomic alterations can compensate for the loss of adult hemoglobin. Understanding the regulation of the human γ-globin gene expression is a challenge for the treatment of thalassemia. A mouse model that facilitates high-throughput assays would simplify such studies. We have generated a transgenic dual reporter mouse model by tagging the γ- and β-globin genes with GFP and DsRed fluorescent proteins respectively in the endogenous human β-globin locus. Erythroid cell lines derived from this mouse model were tested for their capacity to reactivate the γ-globin gene. Here, we discuss the applications and limitations of this fluorescent reporter model to study the genetic basis of red blood cell disorders and the potential use of such model systems in high-throughput screens for hemoglobinopathies therapeutics. PMID:23272095

  6. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2014-09-01

    year old mouse menisci. MSPCs grow as colonies, express stem cell and meniscal gene signature markers found in adult human meniscus, and can be...be collected from parallel cultures for measurement of meniscus signature genes , stem cell markers as well as markers that identify bone, cartilage...in control media from both 8wk and 6month old meniscal explants. We then used real time PCR to analyze gene expression. 0   1   2   3

  7. Optimized cell transplantation using adult rag2 mutant zebrafish

    PubMed Central

    Tang, Qin; Abdelfattah, Nouran S.; Blackburn, Jessica S.; Moore, John C.; Martinez, Sarah A.; Moore, Finola E.; Lobbardi, Riadh; Tenente, Inês M.; Ignatius, Myron S.; Berman, Jason N.; Liwski, Robert S.; Houvras, Yariv; Langenau, David M.

    2014-01-01

    Cell transplantation into adult zebrafish has lagged behind mouse due to the lack of immune compromised models. Here, we have created homozygous rag2E450fs mutant zebrafish that have reduced numbers of functional T and B cells but are viable and fecund. Mutant fish engraft zebrafish muscle, blood stem cells, and cancers. rag2E450fs mutant zebrafish are the first immune compromised zebrafish model that permits robust, long-term engraftment of multiple tissues and cancer. PMID:25042784

  8. Mouse differentiating spermatogonia can generate germinal stem cells in vivo.

    PubMed

    Barroca, Vilma; Lassalle, Bruno; Coureuil, Mathieu; Louis, Jean Paul; Le Page, Florence; Testart, Jacques; Allemand, Isabelle; Riou, Lydia; Fouchet, Pierre

    2009-02-01

    In adults, stem cells are responsible for the maintenance of many actively renewing tissues, such as haematopoietic, skin, gut and germinal tissues. These stem cells can self-renew or be committed to becoming progenitors. Stem-cell commitment is thought to be irreversible but in male and female Drosophila melanogaster, it was shown recently that differentiating germ cells can revert to functional stem cells that can restore germinal lineage. Whether progenitors are also able to generate stem cells in mammals remains unknown. Here we show that purified mouse spermatogonial progenitors committed to differentiation can generate functional germinal stem cells that can repopulate germ-cell-depleted testes when transplanted into adult mice. We found that GDNF, a key regulator of the stem-cell niche, and FGF2 are able to reprogram in vitro spermatogonial progenitors for reverse differentiation. This study supports the emerging concept that the stem-cell identity is not restricted in adults to a definite pool of cells that self-renew, but that stemness could be acquired by differentiating progenitors after tissue injury and throughout life.

  9. Rescue of Xrcc1 knockout mouse embryo lethality by transgene-complementation.

    PubMed

    Tebbs, Robert S; Thompson, Larry H; Cleaver, James E

    2003-12-09

    Xrcc1 knockout embryos show increased DNA breakage and apoptosis in tissues of the embryo proper prior to death at embryonic day E6.5. An additional deficiency in Trp53 allows Xrcc1(-/-) embryos to enlarge slightly and initiate gastrulation although ultimately death is delayed by less than 24h. Death presumably results from DNA damage that reaches toxic levels in the post-implantation mouse embryo. To investigate the level of XRCC1 protein needed for successful mouse development, we derived Xrcc1 transgene-complemented Xrcc1(-/-) mice that express Xrcc1 within the normal range or at a greatly reduced level (<10% normal). The greatly reduced XRCC1 protein level destabilized the XRCC1 partner protein DNA ligase III (LIG3) but still allowed for successful mouse development and healthy, fertile adults. Fibroblasts from these animals exhibited almost normal alkylation sensitivity measured by differential cytotoxicity. Thus, a large reduction of both XRCC1 and DNA ligase III has no observable effect on mouse embryogenesis and post-natal development, and no significant effect on cellular sensitivity to DNA alkylation. The presence of XRCC1, even at reduced levels of expression, is therefore capable of supporting mouse development and DNA repair.

  10. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre

  11. Mouse models of human thalassemia

    SciTech Connect

    Anderson, W.F.; Martinell, J.; Whitney, J.B. III; Popp, R.A.

    1981-01-01

    The group of diseases called the thalassemias is the largest single-gene health problem in the world according the World Health Organization. The thalassemias are lethal hereditary anemias in which the infants cannot make their own blood. Three mouse mutants are shown to be models of the human disease ..cap alpha..-thalassemia. However, since an additional gene is affected, these mutants represent a particularly severe condition in which death occurs in the homozygous embryo even before globin genes are activated. Phenotypic and genotypic characteristics are described. (ACR)

  12. [Psoriasis SCID-mouse model].

    PubMed

    Pfeffer, J; Kaufmann, R; Boehncke, W-H

    2006-07-01

    Psoriasis is characterized by a complex phenotype and pathogenesis along with polygenic determination. Several psoriasis animal models have only been able to incompletely reproduce the disease. A xenogeneic transplantation approach, grafting skin from psoriatic patients onto mice with a severe combined immunodeficiency (SCID), was the first to meet the criteria for a psoriasis model. During the last 10 years, this psoriasis SCID-mouse model not only allowed telling experiments focusing on pathogenetic aspects, but also proved being a powerful tool for drug discovery with a good predictive value.

  13. Expression profile and transcription factor binding site exploration of imprinted genes in human and mouse

    PubMed Central

    Steinhoff, Christine; Paulsen, Martina; Kielbasa, Szymon; Walter, Jörn; Vingron, Martin

    2009-01-01

    Background In mammals, imprinted genes are regulated by an epigenetic mechanism that results in parental origin-specific expression. Though allele-specific regulation of imprinted genes has been studied for several individual genes in detail, little is known about their overall tissue-specific expression patterns and interspecies conservation of expression. Results We performed a computational analysis of microarray expression data of imprinted genes in human and mouse placentae and in a variety of adult tissues. For mouse, early embryonic stages were also included. The analysis reveals that imprinted genes are expressed in a broad spectrum of tissues for both species. Overall, the relative tissue-specific expression levels of orthologous imprinted genes in human and mouse are not highly correlated. However, in both species distinctive expression profiles are found in tissues of the endocrine pathways such as adrenal gland, pituitary, pancreas as well as placenta. In mouse, the placental and embryonic expression patterns of imprinted genes are highly similar. Transcription factor binding site (TFBS) prediction reveals correlation of tissue-specific expression patterns and the presence of distinct TFBS signatures in the upstream region of human imprinted genes. Conclusion Imprinted genes are broadly expressed pre- and postnatally and do not exhibit a distinct overall expression pattern when compared to non-imprinted genes. The relative expression of most orthologous gene pairs varies significantly between human and mouse suggesting rapid species-specific changes in gene regulation. Distinct expression profiles of imprinted genes are confined to certain human and mouse hormone producing tissues, and placentae. In contrast to the overall variability, distinct expression profiles and enriched TFBS signatures are found in human and mouse endocrine tissues and placentae. This points towards an important role played by imprinted gene regulation in these tissues. PMID

  14. Depression in Older Adults

    ERIC Educational Resources Information Center

    Stickle, Fred; Onedera, Jill D.

    2006-01-01

    The purpose of this article is to address selected aspects of depression in older adults. Specifically, symptoms, risk factors, diagnosis, and interventions for depression in older adults are reviewed.

  15. Immunization Schedules for Adults

    MedlinePlus

    ... ACIP Vaccination Recommendations Why Immunize? Vaccines: The Basics Immunization Schedules for Adults in Easy-to-read Formats ... previous immunizations. View or Print a Schedule Recommended Immunizations for Adults (19 Years and Older) by Age ...

  16. Adult Education Update

    ERIC Educational Resources Information Center

    Hall, Clyde W.

    1975-01-01

    Summarized are speeches dealing with adult education's stiff-necked adherence to middle-class values; the need for upgraded management skills; and a report of a study of adult education in area vocational schools in Georgia. (Author/AJ)

  17. Production of MPS VII mouse (Gustm(hE540A·mE536A)Sly) doubly tolerant to human and mouse β-glucuronidase

    PubMed Central

    Tomatsu, Shunji; Orii, Koji O.; Vogler, Carole; Grubb, Jeffrey H.; Snella, Elizabeth M.; Gutierrez, Monica; Dieter, Tatiana; Holden, Christopher C.; Sukegawa, Kazuko; Orii, Tadao; Kondo, Naomi; Sly, William S.

    2006-01-01

    Mucopolysaccharidosis VII (MPS VII, Sly syndrome) is an autosomal recessive lysosomal storage disease caused by β-glucuronidase (GUS) deficiency. A naturally occurring mouse model of that disease has been very useful for studying experimental approaches to therapy. However, immune responses can complicate evaluation of the long-term benefits of enzyme replacement or gene therapy delivered to adult MPS VII mice. To make this model useful for studying the long-term effectiveness and side effects of experimental therapies delivered to adult mice, we developed a new MPS VII mouse model, which is tolerant to both human and murine GUS. To achieve this, we used homologous recombination to introduce simultaneously a human cDNA transgene expressing inactive human GUS into intron 9 of the murine Gus gene and a targeted active site mutation (E536A) into the adjacent exon 10. When the heterozygote products of germline transmission were bred to homozygosity, the homozygous mice expressed no GUS enzyme activity but expressed inactive human GUS protein highly and were tolerant to immune challenge with human enzyme. Expression of the mutant murine Gus gene was reduced to about 10% of normal levels, but the inactive murine GUS enzyme also conferred tolerance to murine GUS. This MPS VII mouse model should be useful to evaluate therapeutic responses in adult mice receiving repetitive doses of enzyme or mice receiving gene therapy as adults. Heterozygotes expressed only 9.5–26% of wild-type levels of murine GUS instead of the expected 50%, indicating a dominant-negative effect of the mutant enzyme monomers on the activity of GUS tetramers in different tissues. Corrective gene therapy in this model should provide high enough levels of expression of normal GUS monomers to overcome the dominant negative effect of mutant monomers on newly synthesized GUS tetramers in most tissues. PMID:12700165

  18. Adult Education in Sweden.

    ERIC Educational Resources Information Center

    Miller, Harry; And Others

    Folk high schools, study circles, labor market training, union education, and municipal adult schools are the major providers of adult education in Sweden. For the most part, these programs are financed by the government and are tuition free. Folk high schools, which are the oldest type, were founded to provide young adults with a general civic…

  19. The Adult Experience.

    ERIC Educational Resources Information Center

    Belsky, Janet

    The 14 chapters of this textbook chronicle adult development from youth through old age, emphasizing both research and interviews with adults at various stages in their lives. Topics covered include the following: (1) the academic field of adult development; (2) theories and research methods; (3) aging and disease prevention; (4) sexuality and…

  20. Adult Survival Skills Assessment.

    ERIC Educational Resources Information Center

    Walsko, Gregory M.

    The purpose of this instrument is to supplement data from the Adult Basic Learning Examination in assessing the functional level of adults in daily situations. It may also be used as a teaching tool for adults requesting tutoring in specific concepts and skills presented in the instrument. This instrument is an informal assessment instrument and…

  1. Kids Who Outwit Adults.

    ERIC Educational Resources Information Center

    Seita, John R.; Brendtro, Larry K.

    Kids who distrust adults are highly skilled at hiding their real nature and resisting change. Most adults shun such youths or get mired in conflict with them. Punitive get tough practices as well as traditional flaw-fixing treatment are reactive strategies that often drive these youths further from adult bonds and reinforce oppositional and…

  2. Urbanization and Adult Education

    ERIC Educational Resources Information Center

    Short, W. Fisher

    1974-01-01

    The impact of urbanization, the main tasks facing the adult educator in an urban context, identifying the casualties of urbanization, recognizing and dealing with social deprivation, and the various agencies involved in adult education are relevant considerations for adult educators. (MW)

  3. Dimensions of Adult Learning

    ERIC Educational Resources Information Center

    Foley, Griff, Ed.

    2004-01-01

    This broad introduction to adult and postcompulsory education offers an overview of the field for students, adult educators and workplace trainers. The book establishes an analytical framework to emphasize the nature of learning and agency of learners; examines the core knowledge and skills that adult educators need; discusses policy, research and…

  4. Adult Learning: A Reader.

    ERIC Educational Resources Information Center

    Sutherland, Peter, Ed.

    This book on adult learning is divided into six sections. Section 1, Cognitive Processes, includes the following chapters: "Cognitive Processes: Contemporary Paradigms of Learning" (Jack Mezirow); "Information Processing, Memory, Age and Adult Learning" (Gillian Boulton-Lewis); "Adult Learners' Metacognitive Behaviour in Higher Education" (Barry…

  5. Adult Education in Israel.

    ERIC Educational Resources Information Center

    Kirmayer, Paul, Ed.; And Others

    This volume contains 13 articles that reflect the development of adult education in Israel during recent years. The material relates to the principal areas with which the Division of Adult Education deals: formal and nonformal education for adults, language and cultural absorption of new immigrants, and training of facilitators for parental…

  6. Adults Role in Bullying

    ERIC Educational Resources Information Center

    Notar, Charles E.; Padgett, Sharon

    2013-01-01

    Do adults play a role in bullying? Do parents, teachers, school staff, and community adult leaders influence bullying behavior in children and teenagers? This article will focus on research regarding all adults who have almost daily contact with children and teens and their part in how bullying is identified, addressed, and prevented. This article…

  7. Adult Education in Greece

    ERIC Educational Resources Information Center

    Kokkos, Alexios

    2008-01-01

    The central aim of this article is to analyse the current situation of adult education in Greece. The article focuses on the following points: (a) the degree of participation in programmes of continuing professional training and general adult education courses, (b) the quality and the outcomes of the adult education provision in Greece, and (c)…

  8. Adult Competency Education Profile.

    ERIC Educational Resources Information Center

    Bureau of Occupational and Adult Education (DHEW/OE), Washington, DC. Div. of Adult Education.

    A compilation of abstracts of 120 current Adult Performance Level (APL) and Adult Competency Education (ACE) federally supported projects being conducted in 34 States and the District of Columbia, this project profile was developed for adult and secondary education administrators, teachers, and program developers who are beginning or are currently…

  9. Adult Competency Education Resources.

    ERIC Educational Resources Information Center

    Bureau of Occupational and Adult Education (DHEW/OE), Washington, DC. Div. of Adult Education.

    A compilation of brief descriptions of 20 current resources for Adult Performance Level (APL) and Adult Competency Education (ACE) programs, this guide was developed for adult and secondary education administrators, teachers, and program developers who are beginning or are already involved with APL/ACE programs. Each citation contains information…

  10. Adult Academy Volunteer Manual.

    ERIC Educational Resources Information Center

    Cora, Marie T., Ed.; Wood, Nicole R., Ed.

    This handbook was written specifically for volunteer tutors but is appropriate for teachers, student interns, coordinators, and others working with Adult Basic Education (ABE) and English-as-a-Second-Language (ESL) adult learners. It presents an overview of adult and non-traditional education models, some principles of reading and writing, a…

  11. Canadian Adult Basic Education.

    ERIC Educational Resources Information Center

    Brooke, W. Michael, Comp.

    "Trends," a publication of the Canadian Association for Adult Education, is a collection of abstracts on selected subjects affecting adult education; this issue is on adult basic education (ABE). It covers teachers and teacher training, psychological factors relating to the ABE teacher and students, manuals for teachers, instructional…

  12. Young Adult Services Manual.

    ERIC Educational Resources Information Center

    Boegen, Anne, Ed.

    Designed to offer guidelines, ideas and help to those who provide library service to young adults, this manual includes information about the provision of young adult (YA) services in six sections. The first section, which addresses planning and administration, includes a definition of a young adult and a checklist for determining community needs…

  13. Adult Educators' Core Competences

    ERIC Educational Resources Information Center

    Wahlgren, Bjarne

    2016-01-01

    Which competences do professional adult educators need? This research note discusses the topic from a comparative perspective, finding that adult educators' required competences are wide-ranging, heterogeneous and complex. They are subject to context in terms of national and cultural environment as well as the kind of adult education concerned…

  14. An Adult ESL Curriculum.

    ERIC Educational Resources Information Center

    South Carolina Literacy Resource Center, Columbia.

    This curriculum framework for adult literacy was written by 21 South Carolina adult English-as-a-Second-Language (ESL) instructors, as submitted to the South Carolina Literacy Resource Center. It is based on current theories in the fields of adult education and second language acquisition and is designed to be flexible so that it may be adapted to…

  15. Mouse Models of Alzheimer's Disease.

    PubMed

    Esquerda-Canals, Gisela; Montoliu-Gaya, Laia; Güell-Bosch, Jofre; Villegas, Sandra

    2017-03-10

    Alzheimer's disease (AD) is a neurodegenerative disorder that nowadays affects more than 40 million people worldwide and it is predicted to exponentially increase in the coming decades. Because no curative treatment exists, research on the pathophysiology of the disease, as well as the testing of new drugs, are mandatory. For these purposes, animal models constitute a valuable, although perfectible tool. This review takes a tour through several aspects of mouse models of AD, such as the generation of transgenic models, the relevance of the promoter driving the expression of the transgenes, and the concrete transgenes used to simulate AD pathophysiology. Then, transgenic mouse lines harboring mutated human genes at several loci such as APP, PSEN1, APOEɛ4, and ob (leptin) are reviewed. Therefore, not only the accumulation of the Aβ peptide is emulated but also cholesterol and insulin metabolism. Further novel information about the disease will allow for the development of more accurate animal models, which in turn will undoubtedly be helpful for bringing preclinical research closer to clinical trials in humans.

  16. Mouse models of the laminopathies

    SciTech Connect

    Stewart, Colin L. . E-mail: stewartc@ncifcrf.gov; Kozlov, Serguei; Fong, Loren G.; Young, Stephen G. . E-mail: sgyoung@mednet.ucla.edu

    2007-06-10

    The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.

  17. Mouse Models of Tumor Immunotherapy.

    PubMed

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients.

  18. Genetic mouse models of depression.

    PubMed

    Barkus, Christopher

    2013-01-01

    This chapter focuses on the use of genetically modified mice in investigating the neurobiology of depressive behaviour. First, the behavioural tests commonly used as a model of depressive-like behaviour in rodents are described. These tests include those sensitive to antidepressant treatment such as the forced swim test and the tail suspension test, as well as other tests that encompass the wider symptomatology of a depressive episode. A selection of example mutant mouse lines is then presented to illustrate the use of these tests. As our understanding of depression increases, an expanding list of candidate genes is being investigated using mutant mice. Here, mice relevant to the monoamine and corticotrophin-releasing factor hypotheses of depression are covered as well as those relating to the more recent candidate, brain-derived neurotrophic factor. This selection provides interesting examples of the use of complimentary lines, such as those that have genetic removal or overexpression, and also opposing behavioural changes seen following manipulation of closely related genes. Finally, factors such as the issue of background strain and influence of environmental factors are reflected upon, before considering what can realistically be expected of a mouse model of this complex psychiatric disorder.

  19. Mouse Auditory Brainstem Response Testing

    PubMed Central

    Akil, Omar; Oursler, A. E.; Fan, Kevin; Lustig, Lawrence R.

    2016-01-01

    The auditory brainstem response (ABR) test provides information about the inner ear (cochlea) and the central pathways for hearing. The ABR reflects the electrical responses of both the cochlear ganglion neurons and the nuclei of the central auditory pathway to sound stimulation (Zhou et al., 2006; Burkard et al., 2007). The ABR contains 5 identifiable wave forms, labeled as I-V. Wave I represents the summated response from the spiral ganglion and auditory nerve while waves II-V represent responses from the ascending auditory pathway. The ABR is recorded via electrodes placed on the scalp of an anesthetized animal. ABR thresholds refer to the lowest sound pressure level (SPL) that can generate identifiable electrical response waves. This protocol describes the process of measuring the ABR of small rodents (mouse, rat, guinea pig, etc.), including anesthetizing the mouse, placing the electrodes on the scalp, recording click and tone burst stimuli and reading the obtained waveforms for ABR threshold values. As technology continues to evolve, ABR will likely provide more qualitative and quantitative information regarding the function of the auditory nerve and brainstem pathways involved in hearing.

  20. Measuring Viscoelastic Deformation with an Optical Mouse

    ERIC Educational Resources Information Center

    Ng, T. W.

    2004-01-01

    The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.

  1. Mouse Behavior: Conjectures about Adaptations for Survival.

    ERIC Educational Resources Information Center

    Rop, Charles

    2001-01-01

    Presents an experiment on mouse behavior in which students learn to observe, pay attention to details, record field notes, and ask questions about their observations. Uses a white mouse to eliminate the risk of disease that a wild rodent might carry. Lists materials, set up, and procedure. (YDS)

  2. Obsessive Compulsive Disorder among Adults

    MedlinePlus

    ... Autism Spectrum Disorder (ASD) Eating Disorders Among Adults - Anorexia Nervosa Eating Disorders Among Adults - Binge Eating Disorder ... Autism Spectrum Disorder (ASD) Eating Disorders Among Adults - Anorexia Nervosa Eating Disorders Among Adults - Binge Eating Disorder ...

  3. Isolation and characterization of a gene from the DiGeorge chromosomal region homologous to the mouse Tbx1 gene.

    PubMed

    Chieffo, C; Garvey, N; Gong, W; Roe, B; Zhang, G; Silver, L; Emanuel, B S; Budarf, M L

    1997-08-01

    DiGeorge syndrome, velocardiofacial syndrome, conotruncal anomaly face syndrome, and isolated and familial forms of conotruncal cardiac defects have been associated with deletions of chromosomal region 22q11.2. This report describes the identification, cloning, and characterization of the human TBX1 gene, which maps to the center of the DiGeorge chromosomal region. Further, we have extended the mouse cDNA sequence to permit comparisons between human and mouse Tbx1. TBX1 is a member of a phylogenetically conserved family of genes that share a common DNA-binding domain, the T-box. T-box genes are transcription factors involved in the regulation of developmental processes. There is 98% amino acid identity between human and mouse TBX1 proteins overall, and within the T-box domain, the proteins are identical except for two amino acids. Expression of human TBX1 in adult and fetal tissues, as determined by Northern blot analysis, is similar to that found in the mouse. Additionally, using 3 'RACE, we obtained a differentially spliced message in adult skeletal muscle. Mouse Tbx1 has been previously shown to be expressed during early embryogenesis in the pharyngeal arches, pouches, and otic vesicle. Later in development, expression is seen in the vertebral column and tooth bud. Thus, human TBX1 is a candidate for some of the features seen in the 22q11 deletion syndrome.

  4. Chromosomal rearrangements associated with LINE elements in the mouse genome.

    PubMed Central

    Shyman, S; Weaver, S

    1985-01-01

    Two segments of DNA that have apparently inserted in the interval between the two adult beta-globin genes in BALB/c (Hbbd haplotype) but not in C57B1/10 (Hbbs haplotype) mouse strains have been described (1). These putative insertions, each about 1000 bp in length, mapped near a repetitive element. To determine the precise position of these alleged insertions, their target sites, and the nature of their boundaries, we cloned and sequenced the appropriate regions of both chromosomes. One of the two segments is not an insertion but rather a region between two independently integrated L1 repetitive elements (LINEs) (2), one in Hbbd and the other in the Hbbs chromosome. The other segment is an insertion of 940 bp which is located within the L1 element in the Hbbd chromosome. This insert is unusual in that it exists in only one copy in the BALB/c genome. PMID:2991852

  5. Targeted disruption of the mouse Lipoma Preferred Partner gene

    SciTech Connect

    Vervenne, Hilke B.V.K.; Crombez, Koen R.M.O.; Delvaux, Els L.; Janssens, Veerle; Ven, Wim J.M. van de Petit, Marleen M.R.

    2009-02-06

    LPP (Lipoma Preferred Partner) is a zyxin-related cell adhesion protein that is involved in the regulation of cell migration. We generated mice with a targeted disruption of the Lpp gene and analysed the importance of Lpp for embryonic development and adult functions. Aberrant Mendelian inheritance in heterozygous crosses suggested partial embryonic lethality of Lpp{sup -/-} females. Fertility of Lpp{sup -/-} males was proven to be normal, however, females from Lpp{sup -/-} x Lpp{sup -/-} crosses produced a strongly reduced number of offspring, probably due to a combination of female embryonic lethality and aberrant pregnancies. Apart from these developmental and reproductive abnormalities, Lpp{sup -/-} mice that were born reached adulthood without displaying any additional macroscopic defects. On the other hand, Lpp{sup -/-} mouse embryonic fibroblasts exhibited reduced migration capacity, reduced viability, and reduced expression of some Lpp interaction partners. Finally, we discovered a short nuclear form of Lpp, expressed mainly in testis via an alternative promoter.

  6. PRDM16 expression in the developing mouse embryo.

    PubMed

    Horn, Kristin H; Warner, Dennis R; Pisano, Michele; Greene, Robert M

    2011-02-01

    PRDM16 is a member of the PR domain-containing protein family and is associated with various disease states including myelodysplastic syndrome and adult T-cell leukemia, as well as developmental abnormalities such as cleft palate. It is also known to act as a regulator of cell differentiation. Expression analysis of PRDM16 is limited, especially within the developing embryo. The current study evaluated the temporal and spatial localization of PRDM16 during early mouse development (embryonic days 8.5-14.5). PRDM16 was first detected on E9.5 in a limited number of tissues and by E14.5, was expressed in a broad range of developing tissues including those of the brain, lung, kidney, and gastrointestinal tract. The expression pattern is consistent with a role for PRDM16 in the development of multiple tissues. Collectively, these studies are the first to characterize the expression of the PRDM16 gene during early murine development.

  7. Sex-reversed somatic cell cloning in the mouse.

    PubMed

    Inoue, Kimiko; Ogonuki, Narumi; Mekada, Kazuyuki; Yoshiki, Atsushi; Sado, Takashi; Ogura, Atsuo

    2009-10-01

    Somatic cell nuclear transfer has many potential applications in the fields of basic and applied sciences. However, it has a disadvantage that can never be overcome technically-the inflexibility of the sex of the offspring. Here, we report an accidental birth of a female mouse following nuclear transfer using an immature Sertoli cell. We produced a batch of 27 clones in a nuclear transfer experiment using Sertoli cells collected from neonatal male mice. Among them, one pup was female. This "male-derived female" clone grew into a normal adult and produced offspring by natural mating with a littermate. Chromosomal analysis revealed that the female clone had a 39,X karyotype, indicating that the Y chromosome had been deleted in the donor cell or at some early step during nuclear transfer. This finding suggests the possibility of resuming sexual reproduction after a single male is cloned, which should be especially useful for reviving extinct or endangered species.

  8. Gene Therapy in Mouse Models of Huntington Disease

    PubMed Central

    Southwell, Amber L.; Patterson, Paul H.

    2011-01-01

    Huntingtin, the protein that when mutated causes Huntington disease (HD), has many known interactors and participates in diverse cellular functions. Mutant Htt (mHtt) engages in a variety of aberrant interactions that lead to pathological gain of toxic functions as well as loss of normal functions. The broad symptomatology of HD, including diminished voluntary motor control, cognitive decline, and psychiatric disturbances, reflects the multifaceted neuropathology. Although currently available therapies for HD focus on symptom management, the autosomal dominant cause and the adult onset make this disease an ideal candidate for genetic intervention. A variety of gene therapy approaches have been tested in mouse models of HD, ranging from those aimed at ameliorating downstream pathology or replacing lost neuronal populations to more upstream strategies to reduce mHtt levels. Here the authors review the results of these preclinical trials. PMID:21489966

  9. A physical map of the mouse genome.

    PubMed

    Gregory, Simon G; Sekhon, Mandeep; Schein, Jacqueline; Zhao, Shaying; Osoegawa, Kazutoyo; Scott, Carol E; Evans, Richard S; Burridge, Paul W; Cox, Tony V; Fox, Christopher A; Hutton, Richard D; Mullenger, Ian R; Phillips, Kimbly J; Smith, James; Stalker, Jim; Threadgold, Glen J; Birney, Ewan; Wylie, Kristine; Chinwalla, Asif; Wallis, John; Hillier, LaDeana; Carter, Jason; Gaige, Tony; Jaeger, Sara; Kremitzki, Colin; Layman, Dan; Maas, Jason; McGrane, Rebecca; Mead, Kelly; Walker, Rebecca; Jones, Steven; Smith, Michael; Asano, Jennifer; Bosdet, Ian; Chan, Susanna; Chittaranjan, Suganthi; Chiu, Readman; Fjell, Chris; Fuhrmann, Dan; Girn, Noreen; Gray, Catharine; Guin, Ran; Hsiao, Letticia; Krzywinski, Martin; Kutsche, Reta; Lee, Soo Sen; Mathewson, Carrie; McLeavy, Candice; Messervier, Steve; Ness, Steven; Pandoh, Pawan; Prabhu, Anna-Liisa; Saeedi, Parvaneh; Smailus, Duane; Spence, Lorraine; Stott, Jeff; Taylor, Sheryl; Terpstra, Wesley; Tsai, Miranda; Vardy, Jill; Wye, Natasja; Yang, George; Shatsman, Sofiya; Ayodeji, Bola; Geer, Keita; Tsegaye, Getahun; Shvartsbeyn, Alla; Gebregeorgis, Elizabeth; Krol, Margaret; Russell, Daniel; Overton, Larry; Malek, Joel A; Holmes, Mike; Heaney, Michael; Shetty, Jyoti; Feldblyum, Tamara; Nierman, William C; Catanese, Joseph J; Hubbard, Tim; Waterston, Robert H; Rogers, Jane; de Jong, Pieter J; Fraser, Claire M; Marra, Marco; McPherson, John D; Bentley, David R

    2002-08-15

    A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human-mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.

  10. A mouse model for juvenile doxorubicin-induced cardiac dysfunction.

    PubMed

    Zhu, Wuqiang; Shou, Weinian; Payne, R Mark; Caldwell, Randall; Field, Loren J

    2008-11-01

    Doxorubicin (DOX) is a potent antitumor agent. DOX can also induce cardiotoxicity, and high cumulative doses are associated with recalcitrant heart failure. Children are particularly sensitive to DOX-induced heart failure. The ability to genetically modify mice makes them an ideal experimental system to study the molecular basis of DOX-induced cardiotoxicity. However, most mouse DOX studies rely on acute drug administration in adult animals, which typically are analyzed within 1 wk. Here, we describe a juvenile mouse model of chronic DOX-induced cardiac dysfunction. DOX treatment was initiated at 2 wk of age and continued for a period of 5 wk (25 mg/kg cumulative dose). This resulted in a decline in cardiac systolic function, which was accompanied by marked atrophy of the heart, low levels of cardiomyocyte apoptosis, and decreased growth velocity. Other animals were allowed to recover for 13 wk after the final DOX injection. Cardiac systolic function improved during this recovery period but remained depressed compared with the saline injected controls, despite the reversal of cardiac atrophy. Interestingly, increased levels of cardiomyocyte apoptosis and concomitant myocardial fibrosis were observed after DOX withdrawal. These data suggest that different mechanisms contribute to cardiac dysfunction during the treatment and recovery phases.

  11. [VOCALIZATIONS OF SEX PARTNERS IN THE HOUSE MOUSE (MUS MUSCULUS)].

    PubMed

    Lupanova, A S; Egorova, M A

    2015-01-01

    Acoustic parameters of the house mouse male and female vocalizations accompanying the sexual behavior were studied. The spectral-temporal analysis of female defensive call and male ultrasound call was carried out for adult house mice--hybrids of outbreed strains CBA and C57B1/6. The principal feature of the female defensive call is its harmonic structure formed by three--five main harmonics with the fundamental frequency about 3 kHz. The major energy of the signal is concentrated below 25 kHz. The basic harmonic structure could be modified by frequency and amplitude modulation or/and.noise. Call duration varied widely from 40 up to 470 ms with the average value of 180 ± 70 ins. The principal feature of male ultrasound vocalization is its low intensity and rareness of noise components. Depending on semantic load of the call, its fundamental frequency averaged 67.3 ± 8.5 or 45.6 ± 3.7 kHz. Male ultrasound vocalizations were shorter than female defensive calls and their duration did not exceed 220 ms. Key words: house mouse, acoustic structure of vocalizations, sexual behavior, sound and ultrasound vocalizations of rodents.

  12. Mouse Spermatogenesis Requires Classical and Nonclassical Testosterone Signaling.

    PubMed

    Toocheck, Corey; Clister, Terri; Shupe, John; Crum, Chelsea; Ravindranathan, Preethi; Lee, Tae-Kyung; Ahn, Jung-Mo; Raj, Ganesh V; Sukhwani, Meena; Orwig, Kyle E; Walker, William H

    2016-01-01

    Testosterone acts though the androgen receptor in Sertoli cells to support germ cell development (spermatogenesis) and male fertility, but the molecular and cellular mechanisms by which testosterone acts are not well understood. Previously, we found that in addition to acting through androgen receptor to directly regulate gene expression (classical testosterone signaling pathway), testosterone acts through a nonclassical pathway via the androgen receptor to rapidly activate kinases that are known to regulate spermatogenesis. In this study, we provide the first evidence that nonclassical testosterone signaling occurs in vivo as the MAP kinase cascade is rapidly activated in Sertoli cells within the testis by increasing testosterone levels in the rat. We find that either classical or nonclassical signaling regulates testosterone-mediated Rhox5 gene expression in Sertoli cells within testis explants. The selective activation of classical or nonclassical signaling pathways in Sertoli cells within testis explants also resulted in the differential activation of the Zbtb16 and c-Kit genes in adjacent spermatogonia germ cells. Delivery of an inhibitor of either pathway to Sertoli cells of mouse testes disrupted the blood-testis barrier that is essential for spermatogenesis. Furthermore, an inhibitor of nonclassical testosterone signaling blocked meiosis in pubertal mice and caused the loss of meiotic and postmeiotic germ cells in adult mouse testes. An inhibitor of the classical pathway caused the premature release of immature germ cells. Collectively, these observations indicate that classical and nonclassical testosterone signaling regulate overlapping and distinct functions that are required for the maintenance of spermatogenesis and male fertility.

  13. Genetics of primary and timing effects in the mnd mouse

    SciTech Connect

    Messer, A.; Plummer, J.; MacMillen, M.C.

    1995-06-05

    The mnd mouse shows a spontaneous adult-onset hereditary neurological disease, with motor abnormality by 6 months of age, progressing to severe spastic paralysis and premature death. The disease is autosomal recessive, with heterozygote effects seen under stress. It maps to mouse chromosome (chr) 8. Histopathology with Nissl stains documents substantial abnormalities of upper and lower motor neurons, and there is retinal degeneration beginning in the first month, even without light exposure. Increasing levels of autofluorescent lipopigment are found in both neuronal and non-neuronal tissues as the mnd mice age. Recently, NCL-like inclusions and accumulating subunit c have also been described. When mnd is outcrossed to the AKR/J genetic background, ca. 40% of the mnd/mnd F2 progeny show early onset (onset by 4.5-5 months and death by 7 months). This accelerated timing effect seems to be strain-specific, and unlinked to the mnd gene itself. Our current working hypothesis is that the timing effect is due to 2 or 3 unlinked dominant genes with incomplete penetrance at any single locus. In a combined RFLP/PCR fragment genetic analysis, the strongest deviation from the expected ratio of AKR vs B6 alleles occurs with markers on proximal half of chr 1. Additional loci on chrs 5 and 10 may also be involved. The mechanism of interaction of these modifying genes with the primary mnd gene may offer new therapeutic avenues. 22 refs., 2 tabs.

  14. Effects of benzene on erythropoiesis in the fetal mouse

    SciTech Connect

    Mizens, M.

    1981-01-01

    Benzene toxicity in humans and adult animals appears as a functional disturbance of hematopoiesis. The work presented here examined the effects of benzene on the fetal mouse and its blood forming organ, the liver. The study includes the effects on macromolecular synthesis in the fetal liver erythropoietic cells and the general effects of benzene on the development of the fetus. Although biochemical changes were noted in the liver of the fetus when the female was exposed to benzene, no histopathologic changes were found. The effects on DNA and heme synthesis in the fetal liver cell population suggest disturbances in the proliferation and maturation phases of the developing red blood cell. The biochemical perturbations observed in the erythropoietic activity of the fetal mouse liver appeared to have no long term effects on the fetus. It is suggested that the temporary effect on the fetus may be the result of inteplay between an increase in the females' rate of metabolism of benzene and the ability of the fetal liver to recover rapidly from disturbances in the erythropoietic cell cycle. Only when the dosing period was extended from day 11 of gestation to term, and the maternal health appeared to be deteriorating, was the viability of the litter affected.

  15. Recording Mouse Ultrasonic Vocalizations to Evaluate Social Communication

    PubMed Central

    Ferhat, Allain-Thibeault; Torquet, Nicolas; Le Sourd, Anne-Marie; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Faure, Philippe; Bourgeron, Thomas; Ey, Elodie

    2016-01-01

    Mice emit ultrasonic vocalizations in different contexts throughout development and in adulthood. These vocal signals are now currently used as proxies for modeling the genetic bases of vocal communication deficits. Characterizing the vocal behavior of mouse models carrying mutations in genes associated with neuropsychiatric disorders such as autism spectrum disorders will help to understand the mechanisms leading to social communication deficits. We provide here protocols to reliably elicit ultrasonic vocalizations in pups and in adult mice. This standardization will help reduce inter-study variability due to the experimental settings. Pup isolation calls are recorded throughout development from individual pups isolated from dam and littermates. In adulthood, vocalizations are recorded during same-sex interactions (without a sexual component) by exposing socially motivated males or females to an unknown same-sex conspecific. We also provide a protocol to record vocalizations from adult males exposed to an estrus female. In this context, there is a sexual component in the interaction. These protocols are established to elicit a large amount of ultrasonic vocalizations in laboratory mice. However, we point out the important inter-individual variability in the vocal behavior of mice, which should be taken into account by recording a minimal number of individuals (at least 12 in each condition). These recordings of ultrasonic vocalizations are used to evaluate the call rate, the vocal repertoire and the acoustic structure of the calls. Data are combined with the analysis of synchronous video recordings to provide a more complete view on social communication in mice. These protocols are used to characterize the vocal communication deficits in mice lacking ProSAP1/Shank2, a gene associated with autism spectrum disorders. More ultrasonic vocalizations recordings can also be found on the mouseTube database, developed to favor the exchange of such data. PMID:27341321

  16. A Neonatal Mouse Spinal Cord Compression Injury Model

    PubMed Central

    Züchner, Mark; Glover, Joel C.; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1. PMID:27078037

  17. Recording Mouse Ultrasonic Vocalizations to Evaluate Social Communication.

    PubMed

    Ferhat, Allain-Thibeault; Torquet, Nicolas; Le Sourd, Anne-Marie; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Faure, Philippe; Bourgeron, Thomas; Ey, Elodie

    2016-06-05

    Mice emit ultrasonic vocalizations in different contexts throughout development and in adulthood. These vocal signals are now currently used as proxies for modeling the genetic bases of vocal communication deficits. Characterizing the vocal behavior of mouse models carrying mutations in genes associated with neuropsychiatric disorders such as autism spectrum disorders will help to understand the mechanisms leading to social communication deficits. We provide here protocols to reliably elicit ultrasonic vocalizations in pups and in adult mice. This standardization will help reduce inter-study variability due to the experimental settings. Pup isolation calls are recorded throughout development from individual pups isolated from dam and littermates. In adulthood, vocalizations are recorded during same-sex interactions (without a sexual component) by exposing socially motivated males or females to an unknown same-sex conspecific. We also provide a protocol to record vocalizations from adult males exposed to an estrus female. In this context, there is a sexual component in the interaction. These protocols are established to elicit a large amount of ultrasonic vocalizations in laboratory mice. However, we point out the important inter-individual variability in the vocal behavior of mice, which should be taken into account by recording a minimal number of individuals (at least 12 in each condition). These recordings of ultrasonic vocalizations are used to evaluate the call rate, the vocal repertoire and the acoustic structure of the calls. Data are combined with the analysis of synchronous video recordings to provide a more complete view on social communication in mice. These protocols are used to characterize the vocal communication deficits in mice lacking ProSAP1/Shank2, a gene associated with autism spectrum disorders. More ultrasonic vocalizations recordings can also be found on the mouseTube database, developed to favor the exchange of such data.

  18. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome

    PubMed Central

    Goodliffe, Joseph W.; Olmos-Serrano, Jose Luis; Aziz, Nadine M.; Pennings, Jeroen L.A.; Guedj, Faycal; Bianchi, Diana W.

    2016-01-01

    Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. SIGNIFICANCE STATEMENT Down syndrome (DS) leads to intellectual disability. Several mouse models have increased our understanding of the neuropathology of DS and are currently being used to test therapeutic strategies. A new mouse model that contains an expanded number of DS-related genes, known as Dp(16)1Yey/+ (Dp16), has been generated recently. We sought to determine whether the extended triplication creates a better phenocopy of DS-related brain pathologies. We measured embryonic development, forebrain maturation, and perinatal/adult behavior and revealed an absence of prenatal phenotypes in Dp16 fetal brain, but specific cellular and behavioral

  19. Mouse models of adrenocortical tumors

    PubMed Central

    Basham, Kaitlin J.; Hung, Holly A.; Lerario, Antonio M.; Hammer, Gary D.

    2016-01-01

    The molecular basis of the organogenesis, homeostasis, and tumorigenesis of the adrenal cortex has been the subject of intense study for many decades. Specifically, characterization of tumor predisposition syndromes with adrenocortical manifestations and molecular profiling of sporadic adrenocortical tumors have led to the discovery of key molecular pathways that promote pathological adrenal growth. However, given the observational nature of such studies, several important questions regarding the molecular pathogenesis of adrenocortical tumors have remained. This review will summarize naturally occurring and genetically engineered mouse models that have provided novel tools to explore the molecular and cellular underpinnings of adrenocortical tumors. New paradigms of cancer initiation, maintenance, and progression that have emerged from this work will be discussed. PMID:26678830

  20. The Mouse Forced Swim Test

    PubMed Central

    Can, Adem; Dao, David T.; Arad, Michal; Terrillion, Chantelle E.; Piantadosi, Sean C.; Gould, Todd D.

    2012-01-01

    The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment. Successful implementation of the forced swim test requires adherence to certain procedural details and minimization of unwarranted stress to the mice. In the protocol description and the accompanying video, we explain how to conduct the mouse version of this test with emphasis on potential pitfalls that may be detrimental to interpretation of results and how to avoid them. Additionally, we explain how the behaviors manifested in the test are assessed. PMID:22314943

  1. The mouse forced swim test.

    PubMed

    Can, Adem; Dao, David T; Arad, Michal; Terrillion, Chantelle E; Piantadosi, Sean C; Gould, Todd D

    2012-01-29

    The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment. Successful implementation of the forced swim test requires adherence to certain procedural details and minimization of unwarranted stress to the mice. In the protocol description and the accompanying video, we explain how to conduct the mouse version of this test with emphasis on potential pitfalls that may be detrimental to interpretation of results and how to avoid them. Additionally, we explain how the behaviors manifested in the test are assessed.

  2. Bioenergetic characterization of mouse podocytes.

    PubMed

    Abe, Yoshifusa; Sakairi, Toru; Kajiyama, Hiroshi; Shrivastav, Shashi; Beeson, Craig; Kopp, Jeffrey B

    2010-08-01

    Mitochondrial dysfunction contributes to podocyte injury, but normal podocyte bioenergetics have not been characterized. We measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR), using a transformed mouse podocyte cell line and the Seahorse Bioscience XF24 Extracellular Flux Analyzer. Basal OCR and ECAR were 55.2 +/- 9.9 pmol/min and 3.1 +/- 1.9 milli-pH units/min, respectively. The complex V inhibitor oligomycin reduced OCR to approximately 45% of baseline rates, indicating that approximately 55% of cellular oxygen consumption was coupled to ATP synthesis. Rotenone, a complex I inhibitor, reduced OCR to approximately 25% of the baseline rates, suggesting that mitochondrial respiration accounted for approximately 75% of the total cellular respiration. Thus approximately 75% of mitochondrial respiration was coupled to ATP synthesis and approximately 25% was accounted for by proton leak. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), which uncouples electron transport from ATP generation, increased OCR and ECAR to approximately 360% and 840% of control levels. FCCP plus rotenone reduced ATP content by 60%, the glycolysis inhibitor 2-deoxyglucose reduced ATP by 35%, and 2-deoxyglucose in combination with FCCP or rotenone reduced ATP by >85%. The lactate dehydrogenase inhibitor oxamate and 2-deoxyglucose did not reduce ECAR, and 2-deoxyglucose had no effect on OCR, although 2-deoxyglucose reduced ATP content by 25%. Mitochondrial uncoupling induced by FCCP was associated with increased OCR with certain substrates, including lactate, glucose, pyruvate, and palmitate. Replication of these experiments in primary mouse podocytes yielded similar data. We conclude that mitochondria play the primary role in maintaining podocyte energy homeostasis, while glycolysis makes a lesser contribution.

  3. What Pace Is Best? Assessing Adults' Learning from Slideshows and Video

    ERIC Educational Resources Information Center

    Sage, Kara

    2014-01-01

    When acquiring information from a 2D platform, self-control and/or optimal pacing may help reduce cognitive load and enhance learning outcomes. In the present research, adults viewed novel action sequences via one of four learning media: (1) self-paced slideshows, where viewers advanced through slides at their own pace by clicking a mouse, (2)…

  4. Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors.

    PubMed

    Hill, Alexis S; Sahay, Amar; Hen, René

    2015-09-01

    Adult hippocampal neurogenesis is increased by antidepressants, and is required for some of their behavioral effects. However, it remains unclear whether expanding the population of adult-born neurons is sufficient to affect anxiety and depression-related behavior. Here, we use an inducible transgenic mouse model in which the pro-apoptotic gene Bax is deleted from neural stem cells and their progeny in the adult brain, and thereby increases adult neurogenesis. We find no effects on baseline anxiety and depression-related behavior; however, we find that increasing adult neurogenesis is sufficient to reduce anxiety and depression-related behaviors in mice treated chronically with corticosterone (CORT), a mouse model of stress. Thus, neurogenesis differentially affects behavior under baseline conditions and in a model of chronic stress. Moreover, we find no effect of increased adult hippocampal neurogenesis on hypothalamic-pituitary-adrenal (HPA) axis regulation, either at baseline or following chronic CORT administration, suggesting that increasing adult hippocampal neurogenesis can affect anxiety and depression-related behavior through a mechanism independent of the HPA axis. The use of future techniques to specifically inhibit BAX in the hippocampus could be used to augment adult neurogenesis, and may therefore represent a novel strategy to promote antidepressant-like behavioral effects.

  5. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2001-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  6. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2004-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  7. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  8. Humanization of the mouse mammary gland.

    PubMed

    Wronski, A; Arendt, L M; Kuperwasser, Charlotte

    2015-01-01

    Although mouse models have provided invaluable information on the mechanisms of mammary gland development, anatomical and developmental differences between human and mice limit full understanding of this fundamental process. Humanization of the mouse mammary gland by injecting immortalized human breast stromal cells into the cleared murine mammary fat pad enables the growth and development of human mammary epithelial cells or tissue. This facilitates the characterization of human mammary gland development or tumorigenesis by utilizing the mouse mammary fat pad. Here we describe the process of isolating human mammary stromal and epithelial cells as well as their introduction into the mammary fat pads of immunocompromised mice.

  9. Myelin basic protein is affected by reduced synthesis of myelin proteolipid protein in the jimpy mouse.

    PubMed Central

    Fannon, A M; Moscarello, M A

    1990-01-01

    Myelin basic proteins (MBPs) from 6-day-old, 10-day-old, 20-day-old and adult normal mouse brain were compared with those from 20-day-old jimpy (dysmyelinating mutant) mouse brain to determine the effect of reduced levels of proteolipid protein (PLP) on MBPs. Alkaline-urea-gel electrophoresis showed that 6-day-old and 10-day-old normal and jimpy MBPs lacked charge microheterogeneity, since C8 (the least cationic of the components; not be confused with complement component C8) was the only charge isomer present. In contrast, MBPs from 20-day-old and adult normal mouse brain displayed extensive charge microheterogeneity, having at least eight components. A 32 kDa MBP was the major isoform observed on immunoblots of acid-soluble protein from 6-day-old and 10-day-old normal and 20-day-old jimpy mouse brain. There were eight bands present in 20-day-old and adult normal mouse brain. Purified human MBP charge heteromers C1, C2, C3 and C4 reacted strongly with rat 14 kDa MBP antiserum, whereas the reaction with human C8 was weak. This suggested that MBPs from early-myelinating and jimpy mice did not react to MBP antisera because C8 was the major charge isomer in these animals. Purification of MBPs from normal and jimpy brain by alkaline-gel electrophoresis showed that both normal and jimpy MBPs have size heterogeneity when subjected to SDS/PAGE. However, the size isoforms in normal mouse brain (32, 21, 18.5, 17 and 14 kDa) differed from those in jimpy brain (32, 21, 20, 17, 15 and 14 kDa) in both size and relative amounts. Amino acid analyses of MBPs from jimpy brain showed an increase in glutamic acid, alanine and ornithine, and a decrease in histidine, arginine and proline. The changes in glutamic acid, ornithine and arginine are characteristic of the differences observed in human C8 when compared with C1. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1693071

  10. A novel SCID mouse model for studying spontaneous metastasis of human lung cancer to human tissue.

    PubMed

    Teraoka, S; Kyoizumi, S; Seyama, T; Yamakido, M; Akiyama, M

    1995-05-01

    We established a novel severe combined immunodeficient (SCID) mouse model for the study of human lung cancer metastasis to human lung. Implantation of both human fetal and adult lung tissue into mammary fat pads of SCID mice showed a 100% rate of engraftment, but only fetal lung implants revealed normal morphology of human lung tissue. Using these chimeric mice, we analyzed human lung cancer metastasis to both mouse and human lungs by subcutaneous inoculation of human squamous cell carcinoma and adenocarcinoma cell lines into the mice. In 60 to 70% of SCID mice injected with human-lung squamous-cell carcinoma, RERF-LC-AI, cancer cells were found to have metastasized to both mouse lungs and human fetal lung implants but not to human adult lung implants 80 days after cancer inoculation. Furthermore, human-lung adenocarcinoma cells, RERF-LC-KJ, metastasized to the human lung implants within 90 days in about 40% of SCID mice, whereas there were no metastases to the lungs of the mice. These results demonstrate the potential of this model for the in vivo study of human lung cancer metastasis.

  11. Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion.

    PubMed

    Yang, Baoxue; Zhao, Dan; Qian, Liman; Verkman, A S

    2006-08-01

    Transgenic mouse models of defective urinary concentrating ability produced by deletion of various membrane transport or receptor proteins, including aquaporin-2 (AQP2), are associated with neonatal mortality from polyuria. Here, we report an inducible mouse model of AQP2 gene deletion with severe polyuria in adult mice. LoxP sequences were inserted into introns 1 and 2 in the mouse AQP2 gene by homologous recombination in embryonic stem cells. Mating of germ-line AQP2-loxP mice with tamoxifen-inducible Cre-expressing mice produced offspring with inducible homozygous Cre-AQP2-loxP, which had a normal phenotype. Tamoxifen injections over 10 days resulted in AQP2 gene excision, with undetectable full-length AQP2 transcript in kidney and a >95% reduction in immunoreactive AQP2 protein. Urine osmolality decreased from approximately 2,000 to <500 mosmol/kgH(2)O after 4-5 days, with urine output increasing from 2 to 25 ml/day. Urine osmolality did not increase after water deprivation. Interestingly, AQP3 protein expression in the collecting duct was increased by about fivefold after AQP2 gene excision. Mild renal damage was seen after 6 wk of polyuria, with collecting duct dilatation, yet normal creatinine clearance and serum chemistries. These results establish the first adult model of nephrogenic diabetes insipidus (NDI) caused by AQP2 deficiency, with daily urine output comparable to body weight, although remarkable preservation of renal function compared with non-inducible NDI models.

  12. Application of mouse model for effective evaluation of foot-and-mouth disease vaccine.

    PubMed

    Lee, Seo-Yong; Ko, Mi-Kyeong; Lee, Kwang-Nyeong; Choi, Joo-Hyung; You, Su-Hwa; Pyo, Hyun-Mi; Lee, Myoung-Heon; Kim, Byounghan; Lee, Jong-Soo; Park, Jong-Hyeon

    2016-07-19

    Efficacy evaluation of foot-and-mouth disease (FMD) vaccines has been conducted in target animals such as cows and pigs. In particular, handling FMD virus requires a high level of biosafety management and facilities to contain the virulent viruses. The lack of a laboratory animal model has resulted in inconvenience when it comes to using target animals for vaccine evaluation, bringing about increased cost, time and labor for the experiments. The FMD mouse model has been studied, but most FMD virus (FMDV) strains are not known to cause disease in adult mice. In the present study, we created a series of challenge viruses that are lethal to adult C57BL/6 mice. FMDV types O, A, and Asia1, which are related to frequent FMD outbreaks, were adapted for mice and the pathogenesis of each virus was evaluated in the mouse model. Challenge experiments after vaccination using in-house and commercial vaccines demonstrated vaccine-mediated protection in a dose-dependent manner. In conclusion, we propose that FMD vaccine evaluation should be carried out using mouse-adapted challenge viruses as a swift, effective efficacy test of experimental or commercial vaccines.

  13. Expression of cubilin in mouse testes and Leydig cells.

    PubMed

    Oh, Y S; Seo, J T; Ahn, H S; Gye, M C

    2016-04-01

    Cubilin (cubn) is a receptor for vitamins and various protein ligands. Cubn lacks a transmembrane domain but anchors to apical membranes by forming complexes with Amnionless or Megalin. In an effort to better understand the uptake of nutrients in testis, we analysed cubn expression in the developing mice testes. In testes, cubn mRNA increased from birth to adulthood. In the inter-stitium and isolated seminiferous tubules, neonatal increase in cubn mRNA until 14 days post-partum (pp) was followed by a marked increase at puberty (28 days pp). Cubn was found in the gonocytes, spermatogonia, spermatocytes and spermatids in the developing testes. In adult testes, strong Cubn immunoreactivity was found in the elongating spermatids, suggesting the role of Cubn in endocytosis during early spermiogenesis. In Sertoli cells and peritubular cells, Cubn immunoreactivity was weak throughout the testis development. In the inter-stitium, Cubn immunoreactivity was found in foetal Leydig cells, was weak to negligible in the stem cells and progenitor Leydig cells and was strong in immature and adult Leydig cells, demonstrating a positive association between Cubn and steroidogenic activity of Leydig cells. Collectively, these results suggest that Cubn may participate in the endocytotic uptake of nutrients in germ cells and somatic cells, supporting the spermatogenesis and steroidogenesis in mouse testes.

  14. Targeting neurogenesis ameliorates danger assessment in a mouse model of Alzheimer's disease.

    PubMed

    Shruster, Adi; Offen, Daniel

    2014-03-15

    Alzheimer's disease (AD) affects 13% of the population over the age of 65. Behavioral and neuropsychiatric symptoms are frequent and affect 80% of patients. Adult hippocampal neurogenesis, which is impaired in AD, is involved in learning and memory. It remains unclear, however, whether increasing adult neurogenesis improves behavioral symptoms in AD. We report that in the 3xTgAD mouse model of AD, chronic Wnt3a overexpression in the ventral hippocampus dentate gyrus (DG) restored adult neurogenesis to physiological levels. The restoration of adult neurogenesis led to full recovery of danger assessment impairment and the effect was blocked by ablation of neurogenesis with X-irradiation. Finally, using a bed nucleus of stria terminalis (BNST) mRNA expression array, we found that the expression of the 5-HT1A receptor in 3xTgAD mice is selectively decreased and normalized by Wnt3a overexpression in the ventral hippocampus DG, and this normalization is neurogenesis dependent. These findings indicate that reestablishing a functional population of hippocampal newborn neurons in adult AD mice rescues behavioral symptoms, suggesting that adult neurogenesis may be a promising therapeutic target for alleviating behavioral deficits in AD patients.

  15. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community.

  16. Integration of Mouse Phenome Data Resources

    SciTech Connect

    Hancock, John M; Adams, Neils; Aidinis, Vassilis; Blake, Judith A; Bogue, Molly; Brown, Steve D M; Chesler, Elissa J; Davidson, Duncan; Duran, Christopher; Eppig, Janan T; Gailus-Durner, Valerie; Gkoutos, Georgios V; Greenaway, Simon; Angelis, Martin Hrabe de; Kollias, George; Leblanc, Sophie; Lee, Kirsty; Lengger, Christoph; Maier, Holger; Mallon, Ann-Marie; Masuya, Hiroshi; Melvin, David; Muller, Werner; Parkinson, Helen; Proctor, Glenn; Reuveni, Eli; Schofield, Paul; Shukla, Aadya; Smith, Cynthia; Toyoda, Tetsuro; Vasseur, Laurent; Wakana, Shigeharu; Walling, Alison; White, Jacqui; Wood, Joe; Zouberakis, Michalis

    2008-01-01

    Understanding the functions encoded in the mouse genome will be central to an understanding of the genetic basis of human disease. To achieve this it will be essential to be able to characterise the phenotypic consequences of variation and alterations in individual genes. Data on the phenotypes of mouse strains are currently held in a number of different forms (detailed descriptions of mouse lines, first line phenotyping data on novel mutations, data on the normal features of inbred lines, etc.) at many sites worldwide. For the most efficient use of these data sets, we have set in train a process to develop standards for the description of phenotypes (using ontologies), and file formats for the description of phenotyping protocols and phenotype data sets. This process is ongoing, and needs to be supported by the wider mouse genetics and phenotyping communities to succeed. We invite interested parties to contact us as we develop this process further.

  17. Melatonin receptors: latest insights from mouse models

    PubMed Central

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  18. Effects of endotoxin on the lactating mouse

    SciTech Connect

    Carr, J.K.

    1985-01-01

    The regulation of endogenous mouse mammary tumor virus (MMTV) sequences in trans by a host gene, the Lps locus on mouse chromosome 4, was suspected from a genetic linkage analysis. The Lps locus mediates the mouse's response to the injection of lipopolysaccharide (LPS) in the responder mouse while mice with the deficient allele are incapable of responding. Others have found that endotoxin exposure reduces milk production in lactating animals. This observation was confirmed in mice and extended by examining /sup 125/I-prolactin binding to liver membranes of lactating mice. Endotoxin treatment of responder mice increases liver prolactin binding within 15 minutes, followed by a decline over 6 hours. Scatchard analysis shows that the immediate increase comes from both increased affinity and abundance of the prolactin receptor. No such change in prolactin binding is seen in the non-responder following endotoxin treatment nor in /sup 125/I-insulin binding in responders.

  19. In vivo analysis of mouse gastrin gene regulation in enhanced GFP-BAC transgenic mice

    PubMed Central

    Takaishi, Shigeo; Shibata, Wataru; Tomita, Hiroyuki; Jin, Guangchun; Yang, Xiangdong; Ericksen, Russell; Dubeykovskaya, Zinaida; Asfaha, Samuel; Quante, Michael; Betz, Kelly S.; Shulkes, Arthur

    2011-01-01

    Gastrin is secreted from a subset of neuroendocrine cells residing in the gastric antrum known as G cells, but low levels are also expressed in fetal pancreas and intestine and in many solid malignancies. Although past studies have suggested that antral gastrin is transcriptionally regulated by inflammation, gastric pH, somatostatin, and neoplastic transformation, the transcriptional regulation of gastrin has not previously been demonstrated in vivo. Here, we describe the creation of an enhanced green fluorescent protein reporter (mGAS-EGFP) mouse using a bacterial artificial chromosome that contains the entire mouse gastrin gene. Three founder lines expressed GFP signals in the gastric antrum and the transitional zone to the corpus. In addition, GFP(+) cells could be detected in the fetal pancreatic islets and small intestinal villi, but not in these organs of the adult mice. The administration of acid-suppressive reagents such as proton pump inhibitor omeprazole and gastrin/CCK-2 receptor antagonist YF476 significantly increased GFP signal intensity and GFP(+) cell numbers in the antrum, whereas these parameters were decreased by overnight fasting, octreotide (long-lasting somatostatin ortholog) infusion, and Helicobacter felis infection. GFP(+) cells were also detected in the anterior lobe of the pituitary gland and importantly in the colonic tumor cells induced by administration with azoxymethane and dextran sulfate sodium salt. This transgenic mouse provides a useful tool to study the regulation of mouse gastrin gene in vivo, thus contributing to our understanding of the mechanisms involved in transcriptional control of the gastrin gene. PMID:21051525

  20. Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos.

    PubMed

    Yokomizo, Tomomasa; Dzierzak, Elaine

    2010-11-01

    Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Despite their importance, hematopoietic clusters have not been systematically quantitated or mapped because of technical limitations posed by the opaqueness of whole mouse embryos. Here, we combine an approach to make whole mouse embryos transparent, with multicolor marking, to allow observation of hematopoietic clusters using high-resolution 3-dimensional confocal microscopy. Our method provides the first complete map and temporal quantitation of all hematopoietic clusters in the mouse embryonic vasculature. We show that clusters peak in number at embryonic day 10.5, localize to specific vascular subregions and are heterogeneous, indicating a basal endothelial to non-basal (outer cluster) hematopoietic cell transition. Clusters enriched with the c-Kit(+)CD31(+)SSEA1(-) cell population contain functional hematopoietic progenitors and stem cells. Thus, three-dimensional cartography of transparent mouse embryos provides novel insight into the vascular subregions instrumental in hematopoietic progenitor/stem cell development, and represents an important technological advancement for comprehensive in situ hematopoietic cluster analysis.