Science.gov

Sample records for adult mouse forebrain

  1. Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology

    PubMed Central

    Unal, Cagri T.; Golowasch, Jorge P.; Zaborszky, Laszlo

    2012-01-01

    We performed whole-cell recordings from basal forebrain (BF) cholinergic neurons in transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the choline acetyltransferase promoter. BF cholinergic neurons can be differentiated into two electrophysiologically identifiable subtypes: early and late firing neurons. Early firing neurons (∼70%) are more excitable, show prominent spike frequency adaptation and are more susceptible to depolarization blockade, a phenomenon characterized by complete silencing of the neuron following initial action potentials. Late firing neurons (∼30%), albeit being less excitable, could maintain a tonic discharge at low frequencies. In voltage clamp analysis, we have shown that early firing neurons have a higher density of low voltage activated (LVA) calcium currents. These two cholinergic cell populations might be involved in distinct functions: the early firing group being more suitable for phasic changes in cortical acetylcholine release associated with attention while the late firing neurons could support general arousal by maintaining tonic acetylcholine levels. PMID:22586380

  2. Peptidergic influences on proliferation, migration, and placement of neural progenitors in the adult mouse forebrain.

    PubMed

    Stanic, Davor; Paratcha, Gustavo; Ledda, Fernanda; Herzog, Herbert; Kopin, Alan S; Hökfelt, Tomas

    2008-03-01

    Neural progenitor proliferation, differentiation, and migration are continually ongoing processes in the subventricular zone (SVZ) and rostral migratory stream (RMS) of the adult brain. There is evidence that peptidergic systems may be involved in the molecular cascades regulating these neurogenic processes, and we examined a possible influence of neuropeptide Y (NPY) and cholecystokinin (CCK) systems in cell proliferation and neuroblast formation in the SVZ and RMS and generation of interneurons in the olfactory bulb (OB). We show that NPY and the Y1 and Y2 receptor (R) proteins are expressed in and surrounding the SVZ and RMS and that Y1R is located on neuroblasts in the anterior RMS. Mice deficient in Y1Rs or Y2Rs have fewer Ki-67-immunoreactive (ir) proliferating precursor cells and doublecortin-ir neuroblasts in the SVZ and RMS than WT mice, and less calbindin-, calretinin-, and tyrosine hydroxylase-ir interneurons in the OB. Mice lacking CCK1Rs have fewer proliferating cells and neuroblasts than normal and a shortage of interneurons in the OB. These findings suggest that both NPY and CCK through their receptors help to regulate the proliferation of precursor cells, the amount of neuroblast cells in the SVZ and RMS, and influence the differentiation of OB interneurons.

  3. Adult neurogenesis and the ischemic forebrain.

    PubMed

    Lichtenwalner, Robin J; Parent, Jack M

    2006-01-01

    The recent identification of endogenous neural stem cells and persistent neuronal production in the adult brain suggests a previously unrecognized capacity for self-repair after brain injury. Neurogenesis not only continues in discrete regions of the adult mammalian brain, but new evidence also suggests that neural progenitors form new neurons that integrate into existing circuitry after certain forms of brain injury in the adult. Experimental stroke in adult rodents and primates increases neurogenesis in the persistent forebrain subventricular and hippocampal dentate gyrus germinative zones. Of greater relevance for regenerative potential, ischemic insults stimulate endogenous neural progenitors to migrate to areas of damage and form neurons in otherwise dormant forebrain regions, such as the neostriatum and hippocampal pyramidal cell layer, of the mature brain. This review summarizes the current understanding of adult neurogenesis and its regulation in vivo, and describes evidence for stroke-induced neurogenesis and neuronal replacement in the adult. Current strategies used to modify endogenous neurogenesis after ischemic brain injury also will be discussed, as well as future research directions with potential for achieving regeneration after stroke and other brain insults. PMID:15959458

  4. Isolation of Radial Glia-Like Neural Stem Cells from Fetal and Adult Mouse Forebrain via Selective Adhesion to a Novel Adhesive Peptide-Conjugate

    PubMed Central

    Markó, Károly; Kőhidi, Tímea; Hádinger, Nóra; Jelitai, Márta; Mező, Gábor; Madarász, Emília

    2011-01-01

    Preferential adhesion of neural stem cells to surfaces covered with a novel synthetic adhesive polypeptide (AK-cyclo[RGDfC]) provided a unique, rapid procedure for isolating radial glia-like cells from both fetal and adult rodent brain. Radial glia-like (RGl) neural stem/progenitor cells grew readily on the peptide-covered surfaces under serum-free culture conditions in the presence of EGF as the only growth factor supplement. Proliferating cells derived either from fetal (E 14.5) forebrain or from different regions of the adult brain maintained several radial glia-specific features including nestin, RC2 immunoreactivity and Pax6, Sox2, Blbp, Glast gene expression. Proliferating RGl cells were obtained also from non-neurogenic zones including the parenchyma of the adult cerebral cortex and dorsal midbrain. Continuous proliferation allowed isolating one-cell derived clones of radial glia-like cells. All clones generated neurons, astrocytes and oligodendrocytes under appropriate inducing conditions. Electrophysiological characterization indicated that passive conductance with large delayed rectifying potassium current might be a uniform feature of non-induced radial glia-like cells. Upon induction, all clones gave rise to GABAergic neurons. Significant differences were found, however, among the clones in the generation of glutamatergic and cathecolamine-synthesizing neurons and in the production of oligodendrocytes. PMID:22163310

  5. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome

    PubMed Central

    Goodliffe, Joseph W.; Olmos-Serrano, Jose Luis; Aziz, Nadine M.; Pennings, Jeroen L.A.; Guedj, Faycal; Bianchi, Diana W.

    2016-01-01

    Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. SIGNIFICANCE STATEMENT Down syndrome (DS) leads to intellectual disability. Several mouse models have increased our understanding of the neuropathology of DS and are currently being used to test therapeutic strategies. A new mouse model that contains an expanded number of DS-related genes, known as Dp(16)1Yey/+ (Dp16), has been generated recently. We sought to determine whether the extended triplication creates a better phenocopy of DS-related brain pathologies. We measured embryonic development, forebrain maturation, and perinatal/adult behavior and revealed an absence of prenatal phenotypes in Dp16 fetal brain, but specific cellular and behavioral

  6. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome.

    PubMed

    Goodliffe, Joseph W; Olmos-Serrano, Jose Luis; Aziz, Nadine M; Pennings, Jeroen L A; Guedj, Faycal; Bianchi, Diana W; Haydar, Tarik F

    2016-03-01

    Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. PMID:26961948

  7. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome.

    PubMed

    Goodliffe, Joseph W; Olmos-Serrano, Jose Luis; Aziz, Nadine M; Pennings, Jeroen L A; Guedj, Faycal; Bianchi, Diana W; Haydar, Tarik F

    2016-03-01

    Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16.

  8. Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons

    PubMed Central

    Oettinghaus, B; Schulz, J M; Restelli, L M; Licci, M; Savoia, C; Schmidt, A; Schmitt, K; Grimm, A; Morè, L; Hench, J; Tolnay, M; Eckert, A; D'Adamo, P; Franken, P; Ishihara, N; Mihara, K; Bischofberger, J; Scorrano, L; Frank, S

    2016-01-01

    Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration. PMID:25909888

  9. Diffusion-weighted magnetic resonance imaging detection of basal forebrain cholinergic degeneration in a mouse model.

    PubMed

    Kerbler, Georg M; Hamlin, Adam S; Pannek, Kerstin; Kurniawan, Nyoman D; Keller, Marianne D; Rose, Stephen E; Coulson, Elizabeth J

    2013-02-01

    Loss of basal forebrain cholinergic neurons is an early and key feature of Alzheimer's disease, and magnetic resonance imaging (MRI) volumetric measurement of the basal forebrain has recently gained attention as a potential diagnostic tool for this condition. The aim of this study was to determine whether loss of basal forebrain cholinergic neurons underpins changes which can be detected through diffusion MRI using diffusion tensor imaging (DTI) and probabilistic tractography in a mouse model. To cause selective basal forebrain cholinergic degeneration, the toxin saporin conjugated to a p75 neurotrophin receptor antibody (mu-p75-SAP) was used. This resulted in ~25% loss of the basal forebrain cholinergic neurons and significant loss of terminal cholinergic projections in the hippocampus, as determined by histology. To test whether lesion of cholinergic neurons caused basal forebrain, hippocampal, or whole brain atrophy, we performed manual segmentation analysis, which revealed no significant atrophy in lesioned animals compared to controls (Rb-IgG-SAP). However, analysis by DTI of the basal forebrain area revealed a significant increase in fractional anisotropy (FA; +7.7%), mean diffusivity (MD; +6.1%), axial diffusivity (AD; +8.5%) and radial diffusivity (RD; +4.0%) in lesioned mice compared to control animals. These parameters strongly inversely correlated with the number of choline acetyl transferase-positive neurons, with FA showing the greatest association (r(2)=0.72), followed by MD (r(2)=0.64), AD (r(2)=0.64) and RD (r(2)=0.61). Moreover, probabilistic tractography analysis of the septo-hippocampal tracts originating from the basal forebrain revealed an increase in streamline MD (+5.1%) and RD (+4.3%) in lesioned mice. This study illustrates that moderate loss of basal forebrain cholinergic neurons (representing only a minor proportion of all septo-hippocampal axons) can be detected by measuring either DTI parameters of the basal forebrain nuclei or

  10. Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex.

    PubMed

    Ahern, Todd H; Krug, Stefanie; Carr, Audrey V; Murray, Elaine K; Fitzpatrick, Emmett; Bengston, Lynn; McCutcheon, Jill; De Vries, Geert J; Forger, Nancy G

    2013-08-01

    Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain.

  11. Ablation of Ca(V)2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments.

    PubMed

    Mallmann, Robert Theodor; Elgueta, Claudio; Sleman, Faten; Castonguay, Jan; Wilmes, Thomas; van den Maagdenberg, Arn; Klugbauer, Norbert

    2013-01-01

    Voltage-gated Ca(V)2.1 (P/Q-type) Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V)2.1 mouse models. Global Ca(V)2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V)2.1 Ca²⁺ channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V)2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V)2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V)2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V)2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V)2.1 in the adult murine forebrain.

  12. Dynamic gene and protein expression patterns of the autism-associated Met receptor tyrosine kinase in the developing mouse forebrain

    PubMed Central

    Judson, Matthew C.; Bergman, Mica Y.; Campbell, Daniel B.; Eagleson, Kathie L.; Levitt, Pat

    2009-01-01

    The establishment of appropriate neural circuitry depends upon the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival - all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits with particular relevance to social and emotional dimensions of behavior. PMID:19226509

  13. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer's Disease in Mouse Models.

    PubMed

    Yue, Wei; Li, Yuanyuan; Zhang, Ting; Jiang, Man; Qian, Yun; Zhang, Min; Sheng, Nengyin; Feng, Su; Tang, Ke; Yu, Xiang; Shu, Yousheng; Yue, Chunmei; Jing, Naihe

    2015-11-10

    Degeneration of basal forebrain cholinergic neurons (BFCNs) is associated with cognitive impairments of Alzheimer's disease (AD), implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs) are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD. PMID:26489896

  14. Distribution and Intrinsic Membrane Properties of Basal Forebrain GABAergic and Parvalbumin Neurons in the Mouse

    PubMed Central

    McKenna, James T.; Yang, Chun; Franciosi, Serena; Winston, Stuart; Abarr, Kathleen K.; Rigby, Matthew S.; Yanagawa, Yuchio; McCarley, Robert W.; Brown, Ritchie E.

    2013-01-01

    The basal forebrain (BF) strongly regulates cortical activation, sleep homeostasis, and attention. Many BF neurons involved in these processes are GABAergic, including a subpopulation of projection neurons containing the calcium-binding protein, parvalbumin (PV). However, technical difficulties in identification have prevented a precise mapping of the distribution of GABAergic and GABA/PV+ neurons in the mouse or a determination of their intrinsic membrane properties. Here we used mice expressing fluorescent proteins in GABAergic (GAD67-GFP knock-in mice) or PV+ neurons (PV-Tomato mice) to study these neurons. Immunohistochemical staining for GABA in GAD67-GFP mice confirmed that GFP selectively labeled BF GABAergic neurons. GFP+ neurons and fibers were distributed throughout the BF, with the highest density in the magnocellular preoptic area (MCPO). Immunohistochemistry for PV indicated that the majority of PV+ neurons in the BF were large (>20 μm) or medium-sized (15–20 μm) GFP+ neurons. Most medium and large-sized BF GFP+ neurons, including those retrogradely labeled from the neocortex, were fast-firing and spontaneously active in vitro. They exhibited prominent hyperpolarization-activated inward currents and subthreshold “spikelets,” suggestive of electrical coupling. PV+ neurons recorded in PV-Tomato mice had similar properties but had significantly narrower action potentials and a higher maximal firing frequency. Another population of smaller GFP+ neurons had properties similar to striatal projection neurons. The fast firing and electrical coupling of BF GABA/PV+ neurons, together with their projections to cortical interneurons and the thalamic reticular nucleus, suggest a strong and synchronous control of the neocortical fast rhythms typical of wakefulness and REM sleep. PMID:23254904

  15. [Novel calretinin-positive cells with polymorphous spines in the mouse forebrain during early postnatal ontogenesis].

    PubMed

    Revishchin, A V; Okhotin, V E; Pavlova, G V

    2009-01-01

    Using an immunocytochemical method for calretinin (CR) detection, we have earlier described (Morfologiya, 2009 v. 135. No. 3, p. 7-19) the population of previously unknown mono- and bipolar cells with polymorphous spines (PS) covering their cell bodies and processes, in adult mice forebrain structures adjacent to anterior horn of lateral ventricle. CR-positive spiny (CR+PS) cells were negative to GAD67 and were detected in the white matter and in layers V and VI of frontal area of dorsomedial cortex close to the cingulum, in in rostro-dorsal part of the caudate nucleus-putamen complex, anterior olfactory nucleus and in subependymal layer of the dorso-lateral angle of the lateral ventricle. In this work, the distribution of these cells in 7-day-old mice was studied. Comparative topographical analysis of definitive and early CR+PS cells demonstrated that in 7-day-old mice CR+PS cells were absent from the areas of their localization in adult animals - anterior olfactory nucleus, cortical plate and inner portion of neostriatum. Meanwhile, some CR+PS-like cells were detected in 7-day-old mice inside the rostral migratory route, close to neostriatum anterior boundary, along the dorsal border between neostriatum and corpus callosum, subependymal layer of lateral wall of the lateral ventricle, and in the cingulum area. These findings are indicative of the possible postnatal appearance of CR+PS cells. To test this hypothesis, the experiments were conducted in which bromodeoxyuridine (BrdU) was administered to the mice on their postnatal days 2-4 with the subsequent study of the brain sections of these animals sacrificed on their postnatal day 20. Double immunolabeling of these sections for CR and BrdU has detected the presence of CR+PS cells that contained postnatally administered BrdU. These results strongly suggest that, at least, some portion of CR+PS cells have their mitosis postnatally. It may be assumed, that CR+PS cells migrate to the sites of their distribution in

  16. New calretinin-positive cells with polymorphous spines in the mouse forebrain during early postnatal ontogeny.

    PubMed

    Revishchin, A V; Okhotin, V E; Pavlova, G V

    2010-10-01

    Immunohistochemical studies of calretinin (CR) in forebrain structures adjacent to the anterior horn of the lateral ventricle in adult mice allowed us to detect a population of previously unknown mono- and bipolar cells whose bodies and processes were coated with polymorphous spines (PS) (Morfologiya, 135, No. 3, 7-19 (2009)). CR-positive spiny (CR(+)PS) cells did not contain GAD67 and were located in the white matter and layers V-VI of the frontal area of the dorsomedial cortex close to the cingulum, the rostrodorsal part of the caudate-putamen, the anterior olfactory nucleus, and the subependyma of the dorsolateral angle of the lateral ventricle. We report here studies of the distribution of these cells in seven-day-old mice. Comparative topographic analysis of definitive and early CR(+)PS cells showed that in seven-day-old mice, CR(+)PS cells were absent from the sites at which they were seen in adults, i.e., the anterior olfactory cortex, the cortical plate, and the inner part of the neostriatum. In addition, small numbers of CR(+)PS-like cells were seen at this age within the dorsal migration pathway, at the anterior margin of the neostriatum, along the dorsal border of the neostriatum with the corpus callosum, in the subependymal layer of the lateral wall of the lateral ventricle, and in the cingulum area. These data demonstrate that CR(+)PS cells may have a postnatal origin. Experiments to verify this hypothesis were performed using postnatal administration of bromodeoxyuridine (BrdU) to mice aged 2-4 days, followed by assessment of brain sections fixed at age 20 days. Double immunolabeling of sections for CR and BrdU demonstrated the presence of CR(+)PS cells containing postnatally supplied BrdU. These data provide evidence that at least some CR(+)PS cells undergo mitosis at postnatal age. In all probability, during the period from 7 to 20 days of postnatal development, CR(+)PS cells migrate to the sites that they occupy in adult animals. PMID:20721693

  17. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly

    PubMed Central

    McKean, David M.; Niswander, Lee

    2012-01-01

    Summary Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI) biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse) and TDGF1 (human ortholog) have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGFβ signaling, and we show that TGFβ signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly. PMID:23213481

  18. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly.

    PubMed

    McKean, David M; Niswander, Lee

    2012-09-15

    Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI) biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse) and TDGF1 (human ortholog) have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGFβ signaling, and we show that TGFβ signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly. PMID:23213481

  19. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A.

    PubMed

    Yaoi, Takeshi; Itoh, Kyoko; Nakamura, Keiko; Ogi, Hiroshi; Fujiwara, Yasuhiro; Fushiki, Shinji

    2008-11-21

    Bisphenol A (BPA) is one of endocrine disrupting chemicals, being distributed widely in the environment. We have been studying the low dose effects of BPA on murine forebrain development. Here, we have investigated the genome-wide effect of maternal exposure to BPA on the epigenome in mouse forebrain at E12.5 and at E14.5. We scanned CpG methylation status in 2500 NotI loci, representing 48 (de)methylated unique loci. Methylation status in most of them was primarily developmental stage-dependent. Each of almost all cloned NotI loci was located in a CpG island (CGI) adjacent to 5' end of the transcriptional unit. The mRNA expression of two functionally related genes changed with development as well as the exposure to BPA. In both genes, changes at the transcriptional level correlated well with the changes in NotI methylation status. Taken together, epigenetic alterations in promoter-associated CGIs after exposure to BPA may underlie some effects on brain development. PMID:18804091

  20. Obesity induces neuroinflammation mediated by altered expression of the renin-angiotensin system in mouse forebrain nuclei.

    PubMed

    de Kloet, Annette D; Pioquinto, David J; Nguyen, Dan; Wang, Lei; Smith, Justin A; Hiller, Helmut; Sumners, Colin

    2014-09-01

    Obesity is a widespread health concern that is associated with an increased prevalence of hypertension and cardiovascular disease. Both obesity and hypertension have independently been associated with increased levels of inflammatory cytokines and immune cells within specific brain regions, as well as increased activity of the renin-angiotensin system (RAS). To test the hypothesis that high-fat diet (HFD) induced obesity leads to an angiotensin-II (Ang-II)-dependent increase in inflammatory cells within specific forebrain regions that are important for cardiovascular regulation, we first assessed microglial activation, astrocyte activation, inflammation and RAS component gene expression within selected metabolic and cardiovascular control centers of the forebrain in adult male C57BL/6 mice given either a HFD or a low-fat diet (LFD) for 8weeks. Subsequently, we assessed the necessity of the paraventricular nucleus of the hypothalamus (PVN) angiotensin type-1a (AT1a) receptor for these responses by using the Cre/lox system in mice to selectively delete the AT1a receptor from the PVN. These studies reveal that in addition to the arcuate nucleus of the hypothalamus (ARC), the PVN and the subfornical organ (SFO), two brain regions that are known to regulate blood pressure and energy balance, also initiate proinflammatory responses after the consumption of a diet high in fat. They further indicate that some, but not all, of these responses are reversed upon deletion of AT1a specifically within the PVN.

  1. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain

    PubMed Central

    Bráz, JM; Sharif-Naeini, R; Vogt, D; Kriegstein, A; Alvarez-Buylla, A; Rubenstein, JL; Basbaum, AI

    2012-01-01

    Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain, but is also potentially disease modifying. We show that transplantation of immature telencephalic GABAergic interneurons from the mouse medial ganglionic eminence (MGE) into the adult mouse spinal cord completely reverses the mechanical hypersensitivity produced by peripheral nerve injury. Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve-injury induced neuropathic pain. PMID:22632725

  2. Marrow Stromal Cells Migrate Throughout Forebrain and Cerebellum, and They Differentiate into Astrocytes after Injection into Neonatal Mouse Brains

    NASA Astrophysics Data System (ADS)

    Kopen, Gene C.; Prockop, Darwin J.; Phinney, Donald G.

    1999-09-01

    Stem cells are a valuable resource for treating disease, but limited access to stem cells from tissues such as brain restricts their utility. Here, we injected marrow stromal cells (MSCs) into the lateral ventricle of neonatal mice and asked whether these multipotential mesenchymal progenitors from bone marrow can adopt neural cell fates when exposed to the brain microenvironment. By 12 days postinjection, MSCs migrated throughout the forebrain and cerebellum without disruption to the host brain architecture. Some MSCs within the striatum and the molecular layer of the hippocampus expressed glial fibrillary acidic protein and, therefore, differentiated into mature astrocytes. MSCs also populated neuron rich regions including the Islands of Calleja, the olfactory bulb, and the internal granular layer of the cerebellum. A large number of MSCs also were found within the external granular layer of the cerebellum. In addition, neurofilament positive donor cells were found within the reticular formation of the brain stem, suggesting that MSCs also may have differentiated into neurons. Therefore, MSCs are capable of producing differentiated progeny of a different dermal origin after implantation into neonatal mouse brains. These results suggest that MSCs are potentially useful as vectors for treating a variety of central nervous system disorders.

  3. Sex differences in the cholinergic basal forebrain in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease.

    PubMed

    Kelley, Christy M; Powers, Brian E; Velazquez, Ramon; Ash, Jessica A; Ginsberg, Stephen D; Strupp, Barbara J; Mufson, Elliott J

    2014-01-01

    In the Down syndrome (DS) population, there is an early incidence of dementia and neuropathology similar to that seen in sporadic Alzheimer's disease (AD), including dysfunction of the basal forebrain cholinergic neuron (BFCN) system. Using Ts65Dn mice, a model of DS and AD, we examined differences in the BFCN system between male and female segmentally trisomic (Ts65Dn) and disomic (2N) mice at ages 5-8 months. Quantitative stereology was applied to BFCN subfields immunolabeled for choline acetyltransferase (ChAT) within the medial septum/vertical limb of the diagonal band (MS/VDB), horizontal limb of the diagonal band (HDB) and nucleus basalis of Meynert/substantia innominata (NBM/SI). We found no sex differences in neuron number or subregion area measurement in the MS/VDB or HDB. However, 2N and Ts65Dn females showed an average 34% decrease in BFCN number and an average 20% smaller NBM/SI region area compared with genotype-matched males. Further, relative to genotype-matched males, female mice had smaller BFCNs in all subregions. These findings demonstrate that differences between the sexes in BFCNs of young adult Ts65Dn and 2N mice are region and genotype specific. In addition, changes in post-processing tissue thickness suggest altered parenchymal characteristics between male and female Ts65Dn mice.

  4. Sex differences in the cholinergic basal forebrain in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease.

    PubMed

    Kelley, Christy M; Powers, Brian E; Velazquez, Ramon; Ash, Jessica A; Ginsberg, Stephen D; Strupp, Barbara J; Mufson, Elliott J

    2014-01-01

    In the Down syndrome (DS) population, there is an early incidence of dementia and neuropathology similar to that seen in sporadic Alzheimer's disease (AD), including dysfunction of the basal forebrain cholinergic neuron (BFCN) system. Using Ts65Dn mice, a model of DS and AD, we examined differences in the BFCN system between male and female segmentally trisomic (Ts65Dn) and disomic (2N) mice at ages 5-8 months. Quantitative stereology was applied to BFCN subfields immunolabeled for choline acetyltransferase (ChAT) within the medial septum/vertical limb of the diagonal band (MS/VDB), horizontal limb of the diagonal band (HDB) and nucleus basalis of Meynert/substantia innominata (NBM/SI). We found no sex differences in neuron number or subregion area measurement in the MS/VDB or HDB. However, 2N and Ts65Dn females showed an average 34% decrease in BFCN number and an average 20% smaller NBM/SI region area compared with genotype-matched males. Further, relative to genotype-matched males, female mice had smaller BFCNs in all subregions. These findings demonstrate that differences between the sexes in BFCNs of young adult Ts65Dn and 2N mice are region and genotype specific. In addition, changes in post-processing tissue thickness suggest altered parenchymal characteristics between male and female Ts65Dn mice. PMID:23802663

  5. Distribution of the orexin-1 receptor (OX1R) in the mouse forebrain and rostral brainstem: A characterisation of OX1R-eGFP mice.

    PubMed

    Ch'ng, Sarah Sulaiman; Lawrence, Andrew J

    2015-01-01

    We have utilised a transgenic reporter mouse in which green fluorescent protein (GFP) expression is driven by the orexin-1 receptor (OX1R) promoter to systematically map the distribution of OX1R-expressing neurons throughout the mouse forebrain and rostral brainstem. GFP labelling was observed in perikarya and fibres in an extensive range of brain loci encompassing the olfactory and cerebral cortices, dorsal and ventral pallidum, hippocampus, amygdaloid regions, septal areas, thalamic nuclei, hypothalamic nuclei and several brainstem regions, consistent with previous studies of OX1R mRNA expression. This is the first study to systematically characterise the neuroanatomical distribution of OX1R in the OX1R-eGFP mouse, confirming its veracity as a faithful reporter of OX1R expression and utility for future studies assessing the role of OX1R in more complex behaviours.

  6. Effects of neonatal handling on the basal forebrain cholinergic system of adult male and female rats.

    PubMed

    Pondiki, S; Stamatakis, A; Fragkouli, A; Philippidis, H; Stylianopoulou, F

    2006-10-13

    Neonatal handling is an early experience which results in improved function of the hypothalamic-pituitary-adrenal axis, increased adaptability and coping as a response to stress, as well as better cognitive abilities. In the present study, we investigated the effect of neonatal handling on the basal forebrain cholinergic system, since this system is known to play an important role in cognitive processes. We report that neonatal handling results in increased number of choline-acetyl transferase immunopositive cells in the septum/diagonal band, in both sexes, while no such effect was observed in the other cholinergic nuclei, such as the magnocellular preoptic nucleus and the nucleus basalis of Meynert. In addition, neonatal handling resulted in increased M1 and M2 muscarinic receptor binding sites in the cingulate and piriform cortex of both male and female rats. A handling-induced increase in M1 muscarinic receptor binding sites was also observed in the CA3 and CA4 (fields 3 and 4 of Ammon's horn) areas of the hippocampus. Furthermore, a handling-induced increase in acetylcholinesterase staining was found only in the hippocampus of females. Our results thus show that neonatal handling acts in a sexually dimorphic manner on one of the cholinergic parameters, and has a beneficial effect on BFCS function, which could be related to the more efficient and adaptive stress response and the superior cognitive abilities of handled animals.

  7. 5-hydroxymethyl-2-furfural prolongs survival and inhibits oxidative stress in a mouse model of forebrain ischemia☆

    PubMed Central

    Ya, Bailiu; Zhang, Lan; Zhang, Li; Li, Yali; Li, Lin

    2012-01-01

    In the present study, we hypothesized that 5-hydroxymethyl-2-furfural could attenuate ischemic brain damage by reducing oxidative injury. Thus, mice were subjected to bilateral common carotid artery occlusion to establish a model of permanent forebrain ischemia. The mice were intraperitoneally injected with 5-hydroxymethyl-2-furfural 30 minutes before ischemia or 5 minutes after ischemia. The survival time of mice injected with 5-hydroxymethyl-2-furfural was longer compared with untreated mice. The mice subjected to ischemia for 30 minutes and reperfusion for 5 minutes were intraperitoneally injected with 5-hydroxymethyl-2-furfural 5 minutes prior to reperfusion, which increased superoxide dismutase content and reduced malondialdehyde content, similar to the effects of Edaravone, a hydroxyl radical scavenger used for the treatment of stroke. These findings indicate that intraperitoneal injection of 5-hydroxymethyl-2-furfural can prolong the survival of mice with permanent forebrain ischemia. This outcome may be mediated by its antioxidative effects. PMID:25624794

  8. Aberrant Lipid Metabolism in the Forebrain Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model of Alzheimer's Disease.

    PubMed

    Hamilton, Laura K; Dufresne, Martin; Joppé, Sandra E; Petryszyn, Sarah; Aumont, Anne; Calon, Frédéric; Barnabé-Heider, Fanie; Furtos, Alexandra; Parent, Martin; Chaurand, Pierre; Fernandes, Karl J L

    2015-10-01

    Lipid metabolism is fundamental for brain development and function, but its roles in normal and pathological neural stem cell (NSC) regulation remain largely unexplored. Here, we uncover a fatty acid-mediated mechanism suppressing endogenous NSC activity in Alzheimer's disease (AD). We found that postmortem AD brains and triple-transgenic Alzheimer's disease (3xTg-AD) mice accumulate neutral lipids within ependymal cells, the main support cell of the forebrain NSC niche. Mass spectrometry and microarray analyses identified these lipids as oleic acid-enriched triglycerides that originate from niche-derived rather than peripheral lipid metabolism defects. In wild-type mice, locally increasing oleic acid was sufficient to recapitulate the AD-associated ependymal triglyceride phenotype and inhibit NSC proliferation. Moreover, inhibiting the rate-limiting enzyme of oleic acid synthesis rescued proliferative defects in both adult neurogenic niches of 3xTg-AD mice. These studies support a pathogenic mechanism whereby AD-induced perturbation of niche fatty acid metabolism suppresses the homeostatic and regenerative functions of NSCs.

  9. Cerebroventricular Microinjection (CVMI) into Adult Zebrafish Brain Is an Efficient Misexpression Method for Forebrain Ventricular Cells

    PubMed Central

    Kizil, Caghan; Brand, Michael

    2011-01-01

    The teleost fish Danio rerio (zebrafish) has a remarkable ability to generate newborn neurons in its brain at adult stages of its lifespan-a process called adult neurogenesis. This ability relies on proliferating ventricular progenitors and is in striking contrast to mammalian brains that have rather restricted capacity for adult neurogenesis. Therefore, investigating the zebrafish brain can help not only to elucidate the molecular mechanisms of widespread adult neurogenesis in a vertebrate species, but also to design therapies in humans with what we learn from this teleost. Yet, understanding the cellular behavior and molecular programs underlying different biological processes in the adult zebrafish brain requires techniques that allow manipulation of gene function. As a complementary method to the currently used misexpression techniques in zebrafish, such as transgenic approaches or electroporation-based delivery of DNA, we devised a cerebroventricular microinjection (CVMI)-assisted knockdown protocol that relies on vivo morpholino oligonucleotides, which do not require electroporation for cellular uptake. This rapid method allows uniform and efficient knockdown of genes in the ventricular cells of the zebrafish brain, which contain the neurogenic progenitors. We also provide data on the use of CVMI for growth factor administration to the brain – in our case FGF8, which modulates the proliferation rate of the ventricular cells. In this paper, we describe the CVMI method and discuss its potential uses in zebrafish. PMID:22076157

  10. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia.

    PubMed Central

    Lois, C; Alvarez-Buylla, A

    1993-01-01

    Subventricular zone (SVZ) cells proliferate spontaneously in vivo in the telencephalon of adult mammals. Several studies suggest that SVZ cells do not differentiate after mitosis into neurons or glia but die. In the present work, we show that SVZ cells labeled in the brains of adult mice with [3H]thymidine differentiate directly into neurons and glia in explant cultures. In vitro labeling with [3H]thymidine shows that 98% of the neurons that differentiate from the SVZ explants are derived from precursor cells that underwent their last division in vivo. This report identifies the SVZ cells as neuronal precursors in an adult mammalian brain. Images Fig. 1 Fig. 2 Fig. 3 PMID:8446631

  11. Plastic and stable electrophysiological properties of adult avian forebrain song-control neurons across changing breeding conditions.

    PubMed

    Meitzen, John; Weaver, Adam L; Brenowitz, Eliot A; Perkel, David J

    2009-05-20

    Steroid sex hormones drive changes in the nervous system and behavior in many animal taxa, but integrating the former with the latter remains challenging. One useful model system for meeting this challenge is seasonally breeding songbirds. In these species, plasma testosterone levels rise and fall across the seasons, altering song behavior and causing dramatic growth and regression of the song-control system, a discrete set of nuclei that control song behavior. Whereas the cellular mechanisms underlying changes in nucleus volume have been studied as a model for neural growth and degeneration, it is unknown whether these changes in neural structure are accompanied by changes in electrophysiological properties other than spontaneous firing rate. Here we test the hypothesis that passive and active neuronal properties in the forebrain song-control nuclei HVC and RA change across breeding conditions. We exposed adult male Gambel's white-crowned sparrows to either short-day photoperiod or long-day photoperiod and systemic testosterone to simulate nonbreeding and breeding conditions, respectively. We made whole-cell recordings from RA and HVC neurons in acute brain slices. We found that RA projection neuron membrane time constant, capacitance, and evoked and spontaneous firing rates were all increased in the breeding condition; the measured electrophysiological properties of HVC interneurons and projection neurons were stable across breeding conditions. This combination of plastic and stable intrinsic properties could directly impact the song-control system's motor control across seasons, underlying changes in song stereotypy. These results provide a valuable framework for integrating how steroid hormones modulate cellular physiology to change behavior.

  12. Plastic and stable electrophysiological properties of adult avian forebrain song-control neurons across changing breeding conditions.

    PubMed

    Meitzen, John; Weaver, Adam L; Brenowitz, Eliot A; Perkel, David J

    2009-05-20

    Steroid sex hormones drive changes in the nervous system and behavior in many animal taxa, but integrating the former with the latter remains challenging. One useful model system for meeting this challenge is seasonally breeding songbirds. In these species, plasma testosterone levels rise and fall across the seasons, altering song behavior and causing dramatic growth and regression of the song-control system, a discrete set of nuclei that control song behavior. Whereas the cellular mechanisms underlying changes in nucleus volume have been studied as a model for neural growth and degeneration, it is unknown whether these changes in neural structure are accompanied by changes in electrophysiological properties other than spontaneous firing rate. Here we test the hypothesis that passive and active neuronal properties in the forebrain song-control nuclei HVC and RA change across breeding conditions. We exposed adult male Gambel's white-crowned sparrows to either short-day photoperiod or long-day photoperiod and systemic testosterone to simulate nonbreeding and breeding conditions, respectively. We made whole-cell recordings from RA and HVC neurons in acute brain slices. We found that RA projection neuron membrane time constant, capacitance, and evoked and spontaneous firing rates were all increased in the breeding condition; the measured electrophysiological properties of HVC interneurons and projection neurons were stable across breeding conditions. This combination of plastic and stable intrinsic properties could directly impact the song-control system's motor control across seasons, underlying changes in song stereotypy. These results provide a valuable framework for integrating how steroid hormones modulate cellular physiology to change behavior. PMID:19458226

  13. Glycoprotein M6a is present in glutamatergic axons in adult rat forebrain and cerebellum.

    PubMed

    Cooper, Ben; Werner, Hauke B; Flügge, Gabriele

    2008-03-01

    Glycoprotein M6a is a neuronally expressed member of the proteolipid protein (PLP) family of tetraspans. In vitro studies suggested a potential role in neurite outgrowth and spine formation and previous investigations have identified M6a as a stress-regulated gene. To investigate whether the distribution of M6a correlates with neuronal structures susceptible to alterations in response to stress, we localized M6a expression in neurons of hippocampal formation, prefrontal cortex and cerebellum using in situ hybridization and confocal immunofluorescence microscopy. In situ hybridization confirmed that M6a is expressed in dentate gyrus and cerebellar granule neurons and in hippocampal and cortical pyramidal neurons. Confocal microscopy localized M6a immunoreactivity to distinct sites within axonal membranes, but not in dendrites or neuronal somata. Moreover, M6a colocalized with synaptic markers of glutamatergic, but not GABAergic nerve terminals. M6a expression in the adult brain is particularly strong in unmyelinated axonal fibers, i.e. cerebellar parallel and hippocampal mossy fibers. In contrast, myelinated axons exhibit only minimal M6a immunoreactivity localized exclusively to terminal regions. The present neuroanatomical data demonstrate that M6a is an axonal component of glutamatergic neurons and that it is localized to distinct sites of the axonal plasma membrane of pyramidal and granule cells. PMID:18241840

  14. The Novel α7β2-Nicotinic Acetylcholine Receptor Subtype Is Expressed in Mouse and Human Basal Forebrain: Biochemical and Pharmacological Characterization

    PubMed Central

    Moretti, Milena; Zoli, Michele; George, Andrew A.; Lukas, Ronald J.; Pistillo, Francesco; Maskos, Uwe

    2014-01-01

    We examined α7β2-nicotinic acetylcholine receptor (α7β2-nAChR) expression in mammalian brain and compared pharmacological profiles of homomeric α7-nAChRs and α7β2-nAChRs. α-Bungarotoxin affinity purification or immunoprecipitation with anti-α7 subunit antibodies (Abs) was used to isolate nAChRs containing α7 subunits from mouse or human brain samples. α7β2-nAChRs were detected in forebrain, but not other tested regions, from both species, based on Western blot analysis of isolates using β2 subunit–specific Abs. Ab specificity was confirmed in control studies using subunit-null mutant mice or cell lines heterologously expressing specific human nAChR subtypes and subunits. Functional expression in Xenopus oocytes of concatenated pentameric (α7)5-, (α7)4(β2)1-, and (α7)3(β2)2-nAChRs was confirmed using two-electrode voltage clamp recording of responses to nicotinic ligands. Importantly, pharmacological profiles were indistinguishable for concatenated (α7)5-nAChRs or for homomeric α7-nAChRs constituted from unlinked α7 subunits. Pharmacological profiles were similar for (α7)5-, (α7)4(β2)1-, and (α7)3(β2)2-nAChRs except for diminished efficacy of nicotine (normalized to acetylcholine efficacy) at α7β2- versus α7-nAChRs. This study represents the first direct confirmation of α7β2-nAChR expression in human and mouse forebrain, supporting previous mouse studies that suggested relevance of α7β2-nAChRs in Alzheimer disease etiopathogenesis. These data also indicate that α7β2-nAChR subunit isoforms with different α7/β2 subunit ratios have similar pharmacological profiles to each other and to α7 homopentameric nAChRs. This supports the hypothesis that α7β2-nAChR agonist activation predominantly or entirely reflects binding to α7/α7 subunit interface sites. PMID:25002271

  15. Stimulation of 5-HT7 receptor during adolescence determines its persistent upregulation in adult rat forebrain areas.

    PubMed

    Nativio, Paola; Zoratto, Francesca; Romano, Emilia; Lacivita, Enza; Leopoldo, Marcello; Pascale, Esterina; Passarelli, Francesca; Laviola, Giovanni; Adriani, Walter

    2015-11-01

    Brain serotonin 7 (5-HT7) receptors play an important functional role in learning and memory, in regulation of mood and motivation, and for circadian rhythms. Recently, we have studied the modulatory effects of a developmental exposure (under subchronic regimen) in rats with LP-211, a brain-penetrant and selective 5-HT7 receptor agonist. We aimed at further deciphering long-term sequelae into adulthood. LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during the adolescent phase (postnatal days 43-45 to 47-49). When adult (postnatal days >70), forebrain areas were obtained for ex vivo immunohistochemistry, whose results prompted us to reconsider the brain connectivity maps presented in our previous study (Canese et al., Psycho-Pharmacol 2015;232:75-89.) Significant elevation in levels of 5-HT7 receptors were evidenced due to adolescent LP-211 exposure, in dorsal striatum (which also shows an increase of dopaminergic D2 auto-receptors) and-unexpectedly-in piriform cortex, with no changes in ventral striatum. We observed that functional connectivity from a seed on the right hippocampus was more extended than reported, also including the piriform cortex. As a whole, the cortical loop rearranged by adolescent LP-211 exposure consisted in a hippocampus receiving connections from piriform cortex and dorsal striatum, the latter both directly and through functional control over the 'extended amygdala'. Such results represent a starting point to explore neurophysiology of 5-HT7 receptors. Further investigation is warranted to develop therapies for sleep disorders, for impaired emotional and motivational regulation, for attentive and executive deficit. The 5-HT7 agonist LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during adolescence (postnatal days 43-45 to 47-49) in rats. When adult (postnatal days >70), a significant elevation in levels of 5-HT7 receptors were evidenced in dorsal striatum and-unexpectedly-in piriform cortex. PMID:26364910

  16. Hypoxia-Induced Developmental Delays of Inhibitory Interneurons Are Reversed by Environmental Enrichment in the Postnatal Mouse Forebrain

    PubMed Central

    Komitova, Mila; Xenos, Dionysios; Salmaso, Natalina; May Tran, Kathy; Brand, Theresa; Schwartz, Michael L.; Ment, Laura

    2013-01-01

    Infants born premature experience hypoxic episodes due to immaturity of their respiratory and central nervous systems. This profoundly affects brain development and results in cognitive impairments. We used a mouse model to examine the impact of hypoxic rearing (9.5–10.5% O2) from postnatal day 3 to 11 (P3–P11) on GABAergic interneurons and the potential for environmental enrichment to ameliorate these developmental abnormalities. At P15 the numbers of cortical interneurons expressing immunohistochemically detectable levels of parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide were decreased in hypoxic-reared mice by 59%, 32%, and 38%, respectively, compared with normoxic controls. Hypoxia also decreased total GABA content in frontal neocortex by 31%. However, GAD67-EGFP knock-in mice reared under hypoxic conditions showed no changes in total number of GAD67-EGFP+ cells and no evidence of increased interneuron death, suggesting that the total number of interneurons was not decreased, but rather, that hypoxic-rearing decreased interneuron marker expression in these cells. In adulthood, PV and SST expression levels were decreased in hypoxic-reared mice. In contrast, intensity of reelin (RLN) expression was significantly increased in adult hypoxic-reared mice compared with normoxic controls. Housing mice in an enriched environment from P21 until adulthood normalized phenotypic interneuron marker expression without affecting total interneuron numbers or leading to increased neurogenesis. Our data show that (1) hypoxia decreases PV and SST and increases RLN expression in cortical interneurons during postnatal cortical development and (2) enriched environment has the capacity to normalize the interneuron abnormalities in cortex. PMID:23946395

  17. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor.

    PubMed

    Gritti, A; Parati, E A; Cova, L; Frolichsthal, P; Galli, R; Wanke, E; Faravelli, L; Morassutti, D J; Roisen, F; Nickel, D D; Vescovi, A L

    1996-02-01

    It has been established that the adult mouse forebrain contains multipotential (neuronal/glial) progenitor cells that can be induced to proliferate in vitro when epidermal growth factor is provided. These cells are found within the subventricular zone of the lateral ventricles, together with other progenitor cell populations, whose requirements for proliferation remain undefined. Using basic fibroblast growth factor (bFGF), we have isolated multipotential progenitors from adult mouse striatum. These progenitors proliferate and can differentiate into cells displaying the antigenic properties of astrocytes, oligodendrocytes, and neurons. The neuron-like cells possess neuronal features, exhibit neuronal electrophysiological properties, and are immunoreactive for GABA, substance P, choline acetyl-transferase, and glutamate. Clonal analysis confirmed the multipotency of these bFGF-dependent cells. Most significantly, subcloning experiments demonstrated that they were capable of self-renewal, which led to a progressive increase in population size over serial passaging. These results demonstrate that bFGF is mitogenic for multipotential cells from adult mammalian forebrain that possess stem cell properties. PMID:8558238

  18. Conditional Knockout of Breast Carcinoma Amplified Sequence 2 (BCAS2) in Mouse Forebrain Causes Dendritic Malformation via β-catenin

    PubMed Central

    Huang, Chu-Wei; Chen, Yi-Wen; Lin, Yi-Rou; Chen, Po-Han; Chou, Meng-Hsuan; Lee, Li-Jen; Wang, Pei-Yu; Wu, June-Tai; Tsao, Yeou-Ping; Chen, Show-Li

    2016-01-01

    Breast carcinoma amplified sequence 2 (BCAS2) is a core component of the hPrP19 complex that controls RNA splicing. Here, we performed an exon array assay and showed that β-catenin is a target of BCAS2 splicing regulation. The regulation of dendrite growth and morphology by β-catenin is well documented. Therefore, we generated conditional knockout (cKO) mice to eliminate the BCAS2 expression in the forebrain to investigate the role of BCAS2 in dendrite growth. BCAS2 cKO mice showed a microcephaly-like phenotype with a reduced volume in the dentate gyrus (DG) and low levels of learning and memory, as evaluated using Morris water maze analysis and passive avoidance, respectively. Golgi staining revealed shorter dendrites, less dendritic complexity and decreased spine density in the DG of BCAS2 cKO mice. Moreover, the cKO mice displayed a short dendrite length in newborn neurons labeled by DCX, a marker of immature neurons, and BrdU incorporation. To further examine the mechanism underlying BCAS2-mediated dendritic malformation, we overexpressed β-catenin in BCAS2-depleted primary neurons and found that the dendritic growth was restored. In summary, BCAS2 is an upstream regulator of β-catenin gene expression and plays a role in dendrite growth at least partly through β-catenin. PMID:27713508

  19. Light scattering properties vary across different regions of the adult mouse brain.

    PubMed

    Al-Juboori, Saif I; Dondzillo, Anna; Stubblefield, Elizabeth A; Felsen, Gidon; Lei, Tim C; Klug, Achim

    2013-01-01

    Recently developed optogenetic tools provide powerful approaches to optically excite or inhibit neural activity. In a typical in-vivo experiment, light is delivered to deep nuclei via an implanted optical fiber. Light intensity attenuates with increasing distance from the fiber tip, determining the volume of tissue in which optogenetic proteins can successfully be activated. However, whether and how this volume of effective light intensity varies as a function of brain region or wavelength has not been systematically studied. The goal of this study was to measure and compare how light scatters in different areas of the mouse brain. We delivered different wavelengths of light via optical fibers to acute slices of mouse brainstem, midbrain and forebrain tissue. We measured light intensity as a function of distance from the fiber tip, and used the data to model the spread of light in specific regions of the mouse brain. We found substantial differences in effective attenuation coefficients among different brain areas, which lead to substantial differences in light intensity demands for optogenetic experiments. The use of light of different wavelengths additionally changes how light illuminates a given brain area. We created a brain atlas of effective attenuation coefficients of the adult mouse brain, and integrated our data into an application that can be used to estimate light scattering as well as required light intensity for optogenetic manipulation within a given volume of tissue.

  20. Light Scattering Properties Vary across Different Regions of the Adult Mouse Brain

    PubMed Central

    Stubblefield, Elizabeth A.; Felsen, Gidon

    2013-01-01

    Recently developed optogenetic tools provide powerful approaches to optically excite or inhibit neural activity. In a typical in-vivo experiment, light is delivered to deep nuclei via an implanted optical fiber. Light intensity attenuates with increasing distance from the fiber tip, determining the volume of tissue in which optogenetic proteins can successfully be activated. However, whether and how this volume of effective light intensity varies as a function of brain region or wavelength has not been systematically studied. The goal of this study was to measure and compare how light scatters in different areas of the mouse brain. We delivered different wavelengths of light via optical fibers to acute slices of mouse brainstem, midbrain and forebrain tissue. We measured light intensity as a function of distance from the fiber tip, and used the data to model the spread of light in specific regions of the mouse brain. We found substantial differences in effective attenuation coefficients among different brain areas, which lead to substantial differences in light intensity demands for optogenetic experiments. The use of light of different wavelengths additionally changes how light illuminates a given brain area. We created a brain atlas of effective attenuation coefficients of the adult mouse brain, and integrated our data into an application that can be used to estimate light scattering as well as required light intensity for optogenetic manipulation within a given volume of tissue. PMID:23874433

  1. Light scattering properties vary across different regions of the adult mouse brain

    NASA Astrophysics Data System (ADS)

    Al-Juboori, Saif I.

    Recently developed optogenetic tools provide powerful approaches to optically excite or inhibit neural activity. In a typical in-vivo experiment, light is delivered to deep nuclei via an implanted optical fiber. Light intensity attenuates with increasing distance from the fiber tip, determining the volume of tissue in which optogenetic proteins can successfully be activated. However, whether and how this volume of effective light intensity varies as a function of brain region or wavelength has not been systematically studied. The goal of this study was to measure and compare how light scatters in different areas of the mouse brain. We delivered different wavelengths of light via optical fibers to acute slices of mouse brainstem, midbrain and forebrain tissue. We measured light intensity as a function of distance from the fiber tip, and used the data to model the spread of light in specific regions of the mouse brain. We found substantial differences in effective attenuation coefficients among different brain areas, which lead to substantial differences in light intensity demands for optogenetic experiments. The use of light of different wavelengths additionally changes how light illuminates a given brain area. We created a brain atlas of effective attenuation coefficients of the adult mouse brain, and integrated our data into an application that can be used to estimate light scattering as well as required light intensity for optogenetic manipulation within a given volume of tissue.

  2. Targeted deletion of Vglut2 expression in the embryonal telencephalon promotes an anxiolytic phenotype of the adult mouse

    PubMed Central

    Nordenankar, Karin; Bergfors, Assar

    2015-01-01

    Background Anxiety is a natural emotion experienced by all individuals. However, when anxiety becomes excessive, it contributes to the substantial group of anxiety disorders that affect one in three people and thus are among the most common psychiatric disorders. Anxiolysis, the reduction of anxiety, is mediated via several large groups of therapeutical compounds, but the relief is often only temporary, and increased knowledge of the neurobiology underlying anxiety is needed in order to improve future therapies. Aim We previously demonstrated that mice lacking forebrain expression of the Vesicular glutamate transporter 2 (Vglut2) from adolescence showed a strong anxiolytic behaviour as adults. In the current study, we wished to analyse if removal of Vglut2 expression already from mid-gestation of the mouse embryo would give rise to similar anxiolysis in the adult mouse. Methods We produced transgenic mice lacking Vglut2 from mid-gestation and analysed their affective behaviour, including anxiety, when they had reached adulthood. Results The transgenic mice lacking Vglut2 expression from mid-gestation showed certain signs of anxiolytic behaviour, but this phenotype was not as prominent as when Vglut2 was removed during adolescence. Conclusion Our results suggest that both embryonal and adolescent forebrain expression of Vglut2 normally contributes to balancing the level of anxiety. As the neurobiological basis for anxiety is similar across species, our results in mice may help improve the current understanding of the neurocircuitry of anxiety, and hence anxiolysis, also in humans. PMID:25857802

  3. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures.

    PubMed

    Hellwig, Sabine; Masuch, Annette; Nestel, Sigrun; Katzmarski, Natalie; Meyer-Luehmann, Melanie; Biber, Knut

    2015-01-01

    The role of microglia in amyloid-β (Aβ) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to Aβ plaque formation. We found that microglia ingested Aβ, thereby preventing plaque formation in OHSCs. Conversely, Aβ deposits formed rapidly in microglia-free wild-type slices. The capacity to prevent Aβ plaque formation was absent in forebrain microglia from young adult but not juvenile 5xFamilial Alzheimer's disease (FAD) mice. Since no loss of Aβ clearance capacity was observed in both wild-type and cerebellar microglia from 5xFAD animals, the high Aβ1-42 burden in the forebrain of 5xFAD animals likely underlies the exhaustion of microglial Aβ clearance capacity. These data may therefore explain why Aβ plaque formation has never been described in wild-type mice, and point to a beneficial role of microglia in AD pathology. We also describe a new method to study Aβ plaque formation in a cell culture setting.

  4. Synthetic analgesics and other phenylpiperidines: effects on uptake and storage of dopamine and other monoamines mouse forebrain tissue.

    PubMed

    Baldessarini, R J; Kula, N S; Francoeur, D; Finklestein, S P; Murphy, F; Neumeyer, J L

    1986-11-10

    The neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can induce degeneration of dopamine (DA) and other central monoamine neurons, leading to Parkinson's disease-like effects in man, monkey, and mouse. MPTP and other substituted phenylpiperidines related to synthetic analgesics including alphaprodine and meperidine were evaluated for potency vs. uptake of 0.1 microM tritiated DA, norepinephrine (NE), or serotonin (5HT) in synaptosomal preparations of mouse striatum or cerebral cortex. The most potent inhibitor of the uptake of 3H-DA was N-methyl-4-phenylpyridinium ion (MPP+; IC50 = 1 microM, Ki = 0.4 microM), a metabolite of MPTP; its effect was competitive and reversible. Other analogs of MPTP: the N-ethylindole AHR-1709, N,N-dimethyl-MPTP, and N-methyl-4-phenylpiperidine were all more potent than MPTP against 3H-DA uptake. N-dealkylation and N-propyl substitution, as well as pyridine ring substitution, decreased affinity for DA uptake while 3',4'-dihydroxyphenyl substitution increased potency and selectivity for catecholamine uptake, and quarternarization of the pyridine ring also increased potency against DA uptake. Active compounds showed higher potency against the uptake of NE than of DA. MPP+ was also more potent than MPTP in releasing endogenous DA from striatal synaptosomes (EC50 = 3 vs. 30 microM), but did not release the cytoplasmic markers tyrosine hydroxylase and lactate dehydrogenase (LDH). In contrast to MPTP, synthetic phenylpiperidine analgesics, their potential metabolites and the experimental neuroleptic agent AHR-1709 all failed to deplete striatal DA in vivo, even if active in vitro against DA uptake.

  5. Shifts in the Vascular endothelial growth factor (Vegf) isoforms result in transcriptome changes correlated with early neural stem cell proliferation and differentiation in mouse forebrain

    PubMed Central

    Cain, Jacob T.; Berosik, Matthew A.; Snyder, Stephanie D.; Crawford, Natalie F.; Nour, Shirin I.; Schaubhut, Geoffrey J.; Darland, Diane C.

    2014-01-01

    Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multi-layered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta-analysis identified gene pathways linked to chromosome-level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho-Histone H3 (pHH3)-positive] and intermediate progenitor cells (Tbr2/Eomes-positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2-positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. PMID:24124161

  6. Cyclic AMP reduces adhesion of isolated neuronal growth cones from developing rat forebrain to an astrocytic cell line from embryonic mouse striatum.

    PubMed

    Lockerbie, R O; Autillo-Touati, A; Araud, D; Seite, R; Chneiweiss, H; Glowinski, J; Prochiantz, A

    1989-01-01

    We have recently shown that isolated neuronal growth cones from developing rat forebrain possess an appreciable activity of adenylate cyclase, producing cyclic adenosine monophosphate, which can be stimulated by various neurotransmitter receptor agonists and by forskolin [Lockerbie R. O., Hervé D., Blanc G., Tassin J. P. and Glowinski J. (1988) Devl Brain Res. 38, 19-25]. In the present study, we have investigated the effect of cyclic adenosine monophosphate in an in vitro adhesion assay established between [3H]GABA-labelled isolated growth cones and a Simian virus-40 transformed astrocytic cell line from embryonic mouse striatum. Adhesion of the isolated growth cones onto the astrocytic clone increased steadily up to about 45 min before it began to level off at ca 16-18% of total [3H]GABA-labelled isolated growth cones added. Adhesion of the isolated growth cones onto the astrocytic clone was much superior to that seen on polyornithine and, in particular, on non-treated tissue culture wells. Adhesion "at plateau" was independent of both temperature and extracellular Ca2+ and was markedly reduced (ca 50%) by trypsin pre-treatment of the isolated growth cones. Pre-treatment of the isolated growth cones with either forskolin or lipophilic analogues of cyclic adenosine monophosphate attenuated adhesion in a time- and concentration-dependent manner. Approximately 30% reduction in adhesion to the astrocytic clone "at plateau" was observed after a 15 min pre-treatment of the isolated growth cones with forskolin at 10(-4) M or cyclic adenosine monophosphate analogues at 10(-3) M. A cyclic guanosine monophosphate analogue was without effect on adhesion of isolated growth cones. Scanning electron microscope analysis showed that isolated growth cones pre-treated with either cyclic adenosine monophosphate analogues or forskolin had a simpler morphology when attached to the astrocytic clone than isolated growth cones under control conditions. Pre-treatment of the isolated

  7. The forebrain of the Pacific hagfish: a cladistic reconstruction of the ancestral craniate forebrain.

    PubMed

    Wicht, H; Northcutt, R G

    1992-01-01

    The forebrain of the Pacific hagfish is described with regard to its morphology, cytoarchitecture, and secondary olfactory projections. The forebrain ventricular system is greatly reduced in adult hagfishes, although vestiges of ventricular structures can still be recognized. In order to clarify topographical relationships within the forebrain, we provide a three-dimensional reconstruction of the ventricular system, including the vestigial portions. Topography and embryology lead us to conclude that the 'primordium hippocampi' of previous authors is a diencephalic structure. For topographical and hodological reasons, we interpret the 'area basalis' of previous authors to be part of the preoptic region, and we identify a part of the so-called 'nucleus olfactorius anterior' as the homologue of the striatum. The laminated pallium is dominated by secondary olfactory projections and shows a high degree of regional cytoarchitectural specialization, as does the entire forebrain. In all, 42 cell groups are identified in the forebrain of hagfishes (compared to only about 25 in lampreys, for example). This surprisingly high degree of cytoarchitectural complexity prompted us to re-examine the phylogenetic history of craniate brains with this complexity in mind. In this paper we use cladistic methodology to reconstruct a morphotype, and we conclude that the forebrains of the earliest craniates may have been more complex than previously believed. This reconstruction includes hypotheses regarding the general morphology, secondary olfactory system, and visual system, as well as the relative sizes of major divisions of the forebrain in the earliest craniates.

  8. Cell proliferation and neurogenesis in adult mouse brain.

    PubMed

    Bordiuk, Olivia L; Smith, Karen; Morin, Peter J; Semënov, Mikhail V

    2014-01-01

    Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU) to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ), and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS) occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain.

  9. Cell proliferation and neurogenesis in adult mouse brain.

    PubMed

    Bordiuk, Olivia L; Smith, Karen; Morin, Peter J; Semënov, Mikhail V

    2014-01-01

    Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU) to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ), and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS) occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain. PMID:25375658

  10. Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice.

    PubMed

    Verpeut, Jessica L; DiCicco-Bloom, Emanuel; Bello, Nicholas T

    2016-07-01

    Prolonged consumption of ketogenic diets (KD) has reported neuroprotective benefits. Several studies suggest KD interventions could be useful in the management of neurological and developmental disorders. Alterations in the Engrailed (En) genes, specifically Engrailed 2 (En2), have neurodevelopmental consequences and produce autism-related behaviors. The following studies used En2 knockout (KO; En2(-/-)), and wild-type (WT; En2(+/+)), male mice fed either KD (80% fat, 0.1% carbohydrates) or control diet (CD; 10% fat, 70% carbohydrates). The objective was to determine whether a KD fed from weaning at postnatal day (PND) 21 to adulthood (PND 60) would alter brain monoamines concentrations, previously found dysregulated, and improve social outcomes. In WT animals, there was an increase in hypothalamic norepinephrine content in the KD-fed group. However, regional monoamines were not altered in KO mice in KD-fed compared with CD-fed group. In order to determine the effects of juvenile exposure to KD in mice with normal blood ketone levels, separate experiments were conducted in mice removed from the KD or CD and fed standard chow for 2days (PND 62). In a three-chamber social test with a novel mouse, KO mice previously exposed to the KD displayed similar social and self-grooming behaviors compared with the WT group. Groups previously exposed to a KD, regardless of genotype, had more c-Fos-positive cells in the cingulate cortex, lateral septal nuclei, and anterior bed nucleus of the stria terminalis. In the novel object condition, KO mice previously exposed to KD had similar behavioral responses and pattern of c-Fos immunoreactivity compared with the WT group. Thus, juvenile exposure to KD resulted in short-term consequences of improving social interactions and appropriate exploratory behaviors in a mouse model that displays autism-related behaviors. Such findings further our understanding of metabolic-based therapies for neurological and developmental disorders. PMID

  11. Histomorphological Phenotyping of the Adult Mouse Brain.

    PubMed

    Mikhaleva, Anna; Kannan, Meghna; Wagner, Christel; Yalcin, Binnaz

    2016-01-01

    This article describes a series of standard operating procedures for morphological phenotyping of the mouse brain using basic histology. Many histological studies of the mouse brain use qualitative approaches based on what the human eye can detect. Consequently, some phenotypic information may be missed. Here we describe a quantitative approach for the assessment of brain morphology that is simple and robust. A total of 78 measurements are made throughout the brain at specific and well-defined regions, including the cortex, the hippocampus, and the cerebellum. Experimental design and timeline considerations, including strain background effects, the importance of sectioning quality, measurement variability, and efforts to correct human errors are discussed. © 2016 by John Wiley & Sons, Inc. PMID:27584555

  12. Prepuberal subchronic methylphenidate and atomoxetine induce different long-term effects on adult behaviour and forebrain dopamine, norepinephrine and serotonin in Naples high-excitability rats.

    PubMed

    Ruocco, L A; Carnevale, U A Gironi; Treno, C; Sadile, A G; Melisi, D; Arra, C; Ibba, M; Schirru, C; Carboni, E

    2010-06-26

    The psychostimulant methylphenidate and the non-stimulant atomoxetine are two approved drugs for attention-deficit hyperactivity disorder (ADHD) therapy. The aim of this study was to investigate the long-term effects of prepuberal subchronic methylphenidate and atomoxetine on adult behaviour and the forebrain neurotransmitter and metabolite content of Naples High-Excitability (NHE) rats, a genetic model for the mesocortical variant of ADHD. Male NHE rats were given a daily intraperitoneal injection (1.0mg/kg) of methylphenidate, atomoxetine or vehicle from postnatal day 29 to 42. At postnatal day 70-75, rats were exposed to spatial novelty in the Làt and radial (Olton) mazes. Behavioural analysis for indices of horizontal, vertical, non-selective (NSA) and selective spatial attention (SSA) indicated that only methylphenidate significantly reduced horizontal activity to a different extent, i.e., 39 and 16% respectively. Moreover methylphenidate increased NSA as assessed by higher leaning duration. The high-performance liquid chromatography (HPLC) tissue content assessment of dopamine, norepinephrine, serotonin and relative metabolites in the prefrontal cortex (PFC), cortical motor area (MC), dorsal striatum (DS), ventral striatum (VS), hippocampus and mesencephalon indicated that methylphenidate decreased (i) dopamine, DOPAC, norepinephrine, MHPG, 5-HT and 5-HIAA in the PFC, (ii) dopamine, DOPAC, HVA, serotonin, 5-HIAA in the DS, (iii) dopamine, DOPAC, HVA and MHPG (but increased norepinephrine) in the VS and (iv) norepinephrine, MHPG, serotonin and 5-HIAA in the hippocampus. Atomoxetine increased dopamine and decreased MHPG in the PFC. Like methylphenidate, atomoxetine decreased dopamine, DOPAC, HVA, serotonin and 5-HIAA in the DS, but decreased MHPG in the VS. These results suggest that methylphenidate determined long-term effects on behavioural and neurochemical parameters, whereas atomoxetine affected only the latter.

  13. ATM localization and gene expression in the adult mouse eye

    PubMed Central

    Leemput, Julia; Masson, Christel; Bigot, Karine; Errachid, Abdelmounaim; Dansault, Anouk; Provost, Alexandra; Gadin, Stéphanie; Aoufouchi, Said; Menasche, Maurice

    2009-01-01

    Purpose High levels of metabolism and oxygen consumption in most adult murine ocular compartments, combined with exposure to light and ultraviolet (UV) radiation, are major sources of oxidative stress, causing DNA damage in ocular cells. Of all mammalian body cells, photoreceptor cells consume the largest amount of oxygen and generate the highest levels of oxidative damage. The accumulation of such damage throughout life is a major factor of aging tissues. Several multiprotein complexes have recently been identified as the major sensors and mediators involved in the maintenance of DNA integrity. The activity of these complexes initially seemed to be restricted to dividing cells, given their ultimate role in major cell cycle checkpoints. However, it was later established that they are also active in post-mitotic cells. Recent findings demonstrate that the DNA damage response (DDR) is essential for the development, maintenance, and normal functioning of the adult central nervous system. One major molecular factor in the DDR is the protein, ataxia telangiectasia mutated (ATM). It is required for the rapid induction of cellular responses to DNA double-strand breaks. These cytotoxic DNA lesions may be caused by oxidative damage. To understand how ATM prevents oxidative stress and participates in the maintenance of genomic integrity and cell viability of the adult retina, we determined the ATM expression patterns and studied its localization in the adult mouse eye. Methods Atm gene expression was analyzed by RT–PCR experiments and its localization by in situ hybridization on adult mouse ocular and cerebellar tissue sections. ATM protein expression was determined by western blot analysis of proteins homogenates extracted from several mouse tissues and its localization by immunohistochemistry experiments performed on adult mouse ocular and cerebellar tissue sections. In addition, subcellular localization was realized by confocal microscopy imaging of ocular tissue

  14. A Comprehensive Atlas of the Adult Mouse Penis.

    PubMed

    Phillips, Tiffany R; Wright, David K; Gradie, Paul E; Johnston, Leigh A; Pask, Andrew J

    2015-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures.

  15. A Comprehensive Atlas of the Adult Mouse Penis

    PubMed Central

    Phillips, Tiffany R.; Wright, David K.; Gradie, Paul E.; Johnston, Leigh A.; Pask, Andrew J.

    2016-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures. PMID:26112156

  16. Adult mouse brain gene expression patterns bear an embryologic imprint.

    PubMed

    Zapala, Matthew A; Hovatta, Iiris; Ellison, Julie A; Wodicka, Lisa; Del Rio, Jo A; Tennant, Richard; Tynan, Wendy; Broide, Ron S; Helton, Rob; Stoveken, Barbara S; Winrow, Christopher; Lockhart, Daniel J; Reilly, John F; Young, Warren G; Bloom, Floyd E; Lockhart, David J; Barlow, Carrolee

    2005-07-19

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional "imprint" consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior-posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org).

  17. Dissection of complex adult traits in a mouse synthetic population.

    PubMed

    Burke, David T; Kozloff, Kenneth M; Chen, Shu; West, Joshua L; Wilkowski, Jodi M; Goldstein, Steven A; Miller, Richard A; Galecki, Andrzej T

    2012-08-01

    Finding the causative genetic variations that underlie complex adult traits is a significant experimental challenge. The unbiased search strategy of genome-wide association (GWAS) has been used extensively in recent human population studies. These efforts, however, typically find only a minor fraction of the genetic loci that are predicted to affect variation. As an experimental model for the analysis of adult polygenic traits, we measured a mouse population for multiple phenotypes and conducted a genome-wide search for effector loci. Complex adult phenotypes, related to body size and bone structure, were measured as component phenotypes, and each subphenotype was associated with a genomic spectrum of candidate effector loci. The strategy successfully detected several loci for the phenotypes, at genome-wide significance, using a single, modest-sized population (N = 505). The effector loci each explain 2%-10% of the measured trait variation and, taken together, the loci can account for over 25% of a trait's total population variation. A replicate population (N = 378) was used to confirm initially observed loci for one trait (femur length), and, when the two groups were merged, the combined population demonstrated increased power to detect loci. In contrast to human population studies, our mouse genome-wide searches find loci that individually explain a larger fraction of the observed variation. Also, the additive effects of our detected mouse loci more closely match the predicted genetic component of variation. The genetic loci discovered are logical candidates for components of the genetic networks having evolutionary conservation with human biology. PMID:22588897

  18. Effects of estradiol, sex, and season on estrogen receptor alpha mRNA expression and forebrain morphology in adult green anole lizards.

    PubMed

    Beck, L A; Wade, J

    2009-05-19

    Steroid hormones, especially estradiol, facilitate reproductive behaviors in male and female rodents and birds. In green anole lizards estradiol facilitates receptivity in females but, unlike in some other species, is not the activating hormone for courtship and copulatory behavior in males. Instead, testicular androgens directly facilitate male courtship and copulation. Yet, activity of the estradiol synthesizing enzyme aromatase is higher in the brain of male than female green anoles, and it is increased during the breeding compared to the non-breeding season. The functional relevance of these differences in local estradiol production is unknown. They might prime the male forebrain to facilitate production of appropriate sexual behaviors, perhaps by modifying morphology of relevant brain regions. In addition, we recently reported increased expression of estrogen receptor alpha (ERalpha) in selected brain regions in females compared to males [Beck LA, Wade J (2009b) Sexually dimorphic estrogen receptor alpha mRNA expression in the preoptic area and ventromedial hypothalamus of green anole lizards. 55:398-403]. Thus, it is possible that the hormone serves to downregulate its receptor in males to inhibit the expression of estradiol-dependent receptive behaviors. To begin to address these ideas, the present study examines the effects of estradiol treatment, sex, and season on forebrain morphology and ERalpha mRNA abundance in three regions important for anole reproductive behavior-the preoptic area, ventromedial amygdala, and ventromedial hypothalamus. While a number of effects of sex and season on forebrain morphology were detected, direct effects of estradiol treatment on these measures were minimal. ERalpha expression was greatest in the ventromedial hypothalamus, and a large female-biased sex difference was detected in this area alone; it resulted from estradiol-treated animals. These results indicate a sex- and region-specific mechanism by which estradiol can

  19. Evolution of vertebrate forebrain development: how many different mechanisms?

    PubMed

    Foley, A C; Stern, C D

    2001-01-01

    Over the past 50 years and more, many models have been proposed to explain how the nervous system is initially induced and how it becomes subdivided into gross regions such as forebrain, midbrain, hindbrain and spinal cord. Among these models is the 2-signal model of Nieuwkoop & Nigtevecht (1954), who suggested that an initial signal ('activation') from the organiser both neuralises and specifies the forebrain, while later signals ('transformation') from the same region progressively caudalise portions of this initial territory. An opposing idea emerged from the work of Otto Mangold (1933) and other members of the Spemann laboratory: 2 or more distinct organisers, emitting different signals, were proposed to be responsible for inducing the head, trunk and tail regions. Since then, evidence has accumulated that supports one or the other model, but it has been very difficult to distinguish between them. Recently, a considerable body of work from mouse embryos has been interpreted as favouring the latter model, and as suggesting that a 'head organiser', required for the induction of the forebrain, is spatially separate from the classic organiser (Hensen's node). An extraembryonic tissue, the 'anterior visceral endoderm' (AVE), was proposed to be the source of forebrain-inducing signals. It is difficult to find tissues that are directly equivalent embryologically or functionally to the AVE in other vertebrates, which led some (e.g. Kessel, 1998) to propose that mammals have evolved a new way of patterning the head. We will present evidence from the chick embryo showing that the hypoblast is embryologically and functionally equivalent to the mouse AVE. Like the latter, the hypoblast also plays a role in head development. However, it does not act like a true organiser. It induces pre-neural and pre-forebrain markers, but only transiently. Further development of neural and forebrain phenotypes requires additional signals not provided by the hypoblast. In addition, the

  20. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    PubMed Central

    Webb, Carol F.; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. PMID:26111446

  1. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    SciTech Connect

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  2. Tissue tropism of recombinant coxsackieviruses in an adult mouse model.

    PubMed

    Harvala, Heli; Kalimo, Hannu; Bergelson, Jeffrey; Stanway, Glyn; Hyypiä, Timo

    2005-07-01

    Recombinant viruses, constructed by exchanging the 5' non-coding region (5'NCR), structural and non-structural protein coding sequences were used to investigate determinants responsible for differences between coxsackievirus A9 (CAV9) and coxsackievirus B3 (CBV3) infections in adult mice and two cell lines. Plaque assay titration of recombinant and parental viruses from different tissues from adult BALB/c mice demonstrated that the structural region of CBV3 determined tropism to the liver tissue due to receptor recognition, and the 5'NCR of CBV3 enhanced viral multiplication in the mouse pancreas. Infection with a chimeric virus, containing the structural region from CBV3 and the rest of the genome from CAV9, and the parental CBV3 strain, caused high levels of viraemia in adult mice. The ability of these viruses to infect the central nervous system suggested that neurotropism is associated with high replication levels and the presence of the CBV3 capsid proteins, which also enhanced formation of neutralizing antibodies. Moreover, the appearance of neutralizing antibodies correlated directly with the clearance of the viruses from the tissues. These results demonstrate potential pathogenicity of intraspecies recombinant coxsackieviruses, and the complexity of the genetic determinants underlying tissue tropism.

  3. Functional properties of K+ currents in adult mouse ventricular myocytes

    PubMed Central

    Brouillette, Judith; Clark, Robert B; Giles, Wayne R; Fiset, Céline

    2004-01-01

    Although the K+ currents expressed in hearts of adult mice have been studied extensively, detailed information concerning their relative sizes and biophysical properties in ventricle and atrium is lacking. Here we describe and validate pharmacological and biophysical methods that can be used to isolate the three main time- and voltage-dependent outward K+ currents which modulate action potential repolarization. A Ca2+-independent transient outward K+ current, Ito, can be separated from total outward current using an ‘inactivating prepulse’. The rapidly activating, slowly inactivating delayed rectifier K+ current, IKur, can be isolated using submillimolar concentrations of 4-aminopyridine (4-AP). The remaining K+ current, Iss, can be obtained by combining these two procedures: (i) inactivating Ito and (ii) eliminating IKur by application of low concentration of 4-AP. Iss activates relatively slowly and shows very little inactivation, even during depolarizations lasting several seconds. Our findings also show that the rate of reactivation of Ito is more than 20-fold faster than that of IKur. These results demonstrate that the outward K+ currents in mouse ventricles can be separated based on their distinct time and voltage dependence, and different sensitivities to 4-AP. Data obtained at both 22 and 32°C demonstrate that although the duration of the inactivating prepulse has to be adapted for the recording temperature, this approach for separation of K+ current components is also valid at more physiological temperatures. To demonstrate that these methods also allow separation of these K+ currents in other cell types, we have applied this same approach to myocytes from mouse atria. Molecular approaches have been used to compare the expression levels of different K+ channels in mouse atrium and ventricle. These findings provide new insights into the functional roles of IKur, Ito and Iss during action potential repolarization. PMID:15272047

  4. An anatomic gene expression atlas of the adult mouse brain.

    PubMed

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M; Dang, Chinh; Bohland, Jason W; Bokil, Hemant; Mitra, Partha P; Puelles, Luis; Hohmann, John; Anderson, David J; Lein, Ed S; Jones, Allan R; Hawrylycz, Michael

    2009-03-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea). PMID:19219037

  5. Immunochemical detection of arylamine N-acetyltransferase during mouse embryonic development and in adult mouse brain.

    PubMed

    Stanley, L A; Copp, A J; Pope, J; Rolls, S; Smelt, V; Perry, V H; Sim, E

    1998-11-01

    Arylamine N-acetyltransferases (NATs) are important in susceptibility to xenobiotic-induced disorders (e.g., drug-induced autoimmune disease, bladder cancer), but their role in endogenous metabolism is yet to be elucidated. The discovery that human NAT1 acts upon p-aminobenzoylgluatamate (p-ABG) to generate p-acetamidobenzoylglutamate (p-AABG), a major urinary metabolite of folic acid, suggests that human NAT1 may play a role in folic acid metabolism and hence in the normal development of the neural tube. In this study we examined the distribution of NAT in neuronal tissue from adult mice and embryos. Immunohistochemical staining of the adult mouse cerebellum revealed NAT2 (the mouse homologue of human NAT1) expression in the cell bodies and dendrites of Purkinje cells and in the neuroglia of the molecular layer. In embryos, NAT2 was detected in developing neuronal tissue on days 9.5, 11.5, and 13.5. It was expressed intensely in the nerual tube around the time of closure. The level of expression subsequently declined in the neuroepithelium but increased in glial cells. In addition, NAT2 was detected in the developing heart and gut. These findings demonstrate that the embryo itself expresses an enzyme which is involved in the metabolism of folic acid, so that the role played by both mother and embryo must be considered when examining the role of folic acid in embryonic development. These findings imply that polymorphisms in NAT genes could play a role in determining susceptibility to neural tube defects (NTD) and orofacial clefting, developmental disorders which can be prevented by dietary administration of folic acid. PMID:9839355

  6. Blocking miRNA Biogenesis in Adult Forebrain Neurons Enhances Seizure Susceptibility, Fear Memory, and Food Intake by Increasing Neuronal Responsiveness.

    PubMed

    Fiorenza, Anna; Lopez-Atalaya, Jose P; Rovira, Victor; Scandaglia, Marilyn; Geijo-Barrientos, Emilio; Barco, Angel

    2016-04-01

    The RNase Dicer is essential for the maturation of most microRNAs, a molecular system that plays an essential role in fine-tuning gene expression. To gain molecular insight into the role of Dicer and the microRNA system in brain function, we conducted 2 complementary RNA-seq screens in the hippocampus of inducible forebrain-restricted Dicer1 mutants aimed at identifying the microRNAs primarily affected by Dicer loss and their targets, respectively. Functional genomics analyses predicted the main biological processes and phenotypes associated with impaired microRNA maturation, including categories related to microRNA biology, signal transduction, seizures, and synaptic transmission and plasticity. Consistent with these predictions, we found that, soon after recombination, Dicer-deficient mice exhibited an exaggerated seizure response, enhanced induction of immediate early genes in response to different stimuli, stronger and more stable fear memory, hyperphagia, and increased excitability of CA1 pyramidal neurons. In the long term, we also observed slow and progressive excitotoxic neurodegeneration. Overall, our results indicate that interfering with microRNA biogenesis causes an increase in neuronal responsiveness and disrupts homeostatic mechanisms that protect the neuron against overactivation, which may explain both the initial and late phenotypes associated with the loss of Dicer in excitatory neurons. PMID:25595182

  7. Corticotropin-Releasing Factor Modulation of Forebrain GABAergic Transmission has a Pivotal Role in the Expression of Anabolic Steroid-Induced Anxiety in the Female Mouse

    PubMed Central

    Oberlander, Joseph G; Henderson, Leslie P

    2012-01-01

    Increased anxiety is commonly observed in individuals who illicitly administer anabolic androgenic steroids (AAS). Behavioral effects of steroid abuse have become an increasing concern in adults and adolescents of both sexes. The dorsolateral bed nucleus of the stria terminalis (dlBnST) has a critical role in the expression of diffuse anxiety and is a key site of action for the anxiogenic neuromodulator, corticotropin releasing factor (CRF). Here we demonstrate that chronic, but not acute, exposure of female mice during adolescence to AAS augments anxiety-like behaviors; effects that were blocked by central infusion of the CRF receptor type 1 antagonist, antalarmin. AAS treatment selectively increased action potential (AP) firing in neurons of the central amygdala (CeA) that project to the dlBnST, increased the frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in dlBnST target neurons, and decreased both c-FOS immunoreactivity (IR) and AP frequency in these postsynaptic cells. Acute application of antalarmin abrogated the enhancement of GABAergic inhibition induced by chronic AAS exposure whereas application of CRF to brain slices of naïve mice mimicked the actions of this treatment. These results, in concert with previous data demonstrating that chronic AAS treatment results in enhanced levels of CRF mRNA in the CeA and increased CRF-IR in the dlBnST neuropil, are consistent with a mechanism in which the enhanced anxiety elicited by chronic AAS exposure involves augmented inhibitory activity of CeA afferents to the dlBnST and CRF-dependent enhancement of GABAergic inhibition in this brain region. PMID:22298120

  8. The forebrain of actinopterygians revisited.

    PubMed

    Nieuwenhuys, Rudolf

    2009-01-01

    The forebrain of actinopterygian fishes differs from that of other vertebrates in that it consists of a pair of solid lobes. Lateral ventricles surrounded by nervous tissue are entirely lacking. Comparative anatomical and embryological studies have shown that the unusual configuration of the forebrain in actinopterygians results from an outward bending or eversion of the dorsal portions of its lateral walls. Due to this eversion, the telencephalic roof plate is transformed into a wide, membranous structure which surrounds the dorsal and lateral parts of the solid lobes and is attached to their lateral or ventrolateral aspects. The taeniae, i.e. the lines of attachment of the widened roof plate, represent important landmarks in actinopterygian forebrains. In the present paper, the process of eversion is specified and quantified. It is pointed out that recent suggestions to modify the original eversion concept lack an empirical basis. Eversion is the antithesis of the inward bending or inversion that occurs in the forebrains of most other vertebrates. The forebrain lobes in actinopterygians, like those in other vertebrates, comprise a pallium and a subpallium, both of which include a number of distinct cell masses. The morphological interpretations of these cell masses over the past 130 years are reviewed and evaluated in light of a set of carefully selected criteria for homologous relationships. Special attention is paid to the interpretation of a cell mass known as Dp, situated in the caudolateral portion of the pallium in teleosts (by far the largest clade of living actinopterygians). Based on its position close to the taenia, and given the everted condition of the pallium in teleosts, this cell mass clearly corresponds with the medial pallium in inverted forebrains; however, Dp receives a dense olfactory input, and it shares this salient feature with the lateral pallium, rather than with the medial pallium of inverted forebrains. There is presently no consensus

  9. Forebrain Pain Mechanisms

    PubMed Central

    Neugebauer, Volker; Galhardo, Vasco; Maione, Sabatino; Mackey, Sean C.

    2009-01-01

    Emotional-affective and cognitive dimensions of pain are less well understood than nociceptive and nocifensive components, but the forebrain is believed to play an important role. Recent evidence suggests subcortical and cortical brain areas outside the traditional pain processing network contribute critically to emotional-affective responses and cognitive deficits related to pain. These brain areas include different nuclei of the amygdala and certain prefrontal cortical areas. Their roles in various aspects of pain will be discussed. Biomarkers of cortical dysfunction are being identified that may evolve into therapeutic targets to modulate pain experience and improve pain-related cognitive impairment. Supporting data from preclinical studies in neuropathic pain models will be presented. Neuroimaging analysis provides evidence for plastic changes in the pain processing brain network. Results of clinical studies in neuropathic pain patients suggest that neuroimaging may help determine mechanisms of altered brain functions in pain as well as monitor the effects of pharmacologic interventions to optimize treatment in individual patients. Recent progress in the analysis of higher brain functions emphasizes the concept of pain as a multidimensional experience and the need for integrative approaches to determine the full spectrum of harmful or protective neurobiological changes in pain. PMID:19162070

  10. Purinergic signaling promotes proliferation of adult mouse subventricular zone cells.

    PubMed

    Suyama, Satoshi; Sunabori, Takehiko; Kanki, Hiroaki; Sawamoto, Kazunobu; Gachet, Christian; Koizumi, Schuichi; Okano, Hideyuki

    2012-07-01

    In adult mammalian brains, neural stem cells (NSCs) exist in the subventricular zone (SVZ), where persistent neurogenesis continues throughout life. Those NSCs produce neuroblasts that migrate into the olfactory bulb via formation of transit-amplifying cells, which are committed precursor cells of the neuronal lineage. In this SVZ niche, cell-cell communications conducted by diffusible factors as well as physical cell-cell contacts are important for the regulation of the proliferation and fate determination of NSCs. Previous studies have suggested that extracellular purinergic signaling, which is mediated by purine compounds such as ATP, plays important roles in cell-cell communication in the CNS. Purinergic signaling also promotes the proliferation of adult NSCs in vitro. However, the in vivo roles of purinergic signaling in the neurogenic niche still remain unknown. In this study, ATP infusion into the lateral ventricle of the mouse brain resulted in an increase in the numbers of rapidly dividing cells and Mash1-positive transit-amplifying cells (Type C cells) in the SVZ. Mash1-positive cells express the P2Y1 purinergic signaling receptor and infusion of the P2Y1 receptor-specific antagonist MRS2179 decreased the number of rapidly dividing bromodeoxyuridine (BrdU)-positive cells and Type C cells. Moreover, a 17% reduction of rapidly dividing BrdU-positive cells and a 19% reduction of Mash1-positive cells were observed in P2Y1 knock-out mice. Together, these results suggest that purinergic signaling promotes the proliferation of rapidly dividing cells and transit-amplifying cells, in the SVZ niche through the P2Y1 receptor. PMID:22764232

  11. Direct transcriptional regulation of Six6 is controlled by SoxB1 binding to a remote forebrain enhancer

    PubMed Central

    Lee, Bumwhee; Rizzoti, Karine; Kwon, David S.; Kim, Seon-Young; Oh, Sangtaek; Epstein, Douglas J.; Son, Youngsook; Yoon, Jaeseung; Baek, Kwanghee; Jeong, Yongsu

    2014-01-01

    Six6, a sine oculis homeobox protein, plays a crucial and conserved role in the development of the forebrain and eye. To understand how the expression of Six6 is regulated during embryogenesis, we screened ~250 kb of genomic DNA encompassing the Six6 locus for cis-regulatory elements capable of directing reporter gene expression to sites of Six6 transcription in transgenic mouse embryos. Here, we describe two novel enhancer elements, that are highly conserved in vertebrate species and whose activities recapitulate Six6 expression in the ventral forebrain and eye, respectively. Cross-species comparisons of the Six6 forebrain enhancer sequences revealed highly conserved binding sites matching the consensus for homeodomain and SoxB1 transcription factors. Deletion of either of the binding sites resulted in loss of the forebrain enhancer activity in the ventral forebrain. Moreover, our studies show that members of the SoxB1 family, including Sox2 and Sox3, are expressed in the overlapping region of the ventral forebrain with Six6 and can bind to the Six6 forebrain enhancer. Loss of function of SoxB1 genes in vivo further emphasizes their role in regulating Six6 forebrain enhancer activity. Thus, our data strongly suggest that SoxB1 transcription factors are direct activators of Six6 expression in the ventral forebrain. PMID:22561201

  12. MAPK signaling determines anxiety in the juvenile mouse brain but depression-like behavior in adults.

    PubMed

    Wefers, Benedikt; Hitz, Christiane; Hölter, Sabine M; Trümbach, Dietrich; Hansen, Jens; Weber, Peter; Pütz, Benno; Deussing, Jan M; de Angelis, Martin Hrabé; Roenneberg, Till; Zheng, Fang; Alzheimer, Christian; Silva, Alcino; Wurst, Wolfgang; Kühn, Ralf

    2012-01-01

    MAP kinase signaling has been implicated in brain development, long-term memory, and the response to antidepressants. Inducible Braf knockout mice, which exhibit protein depletion in principle forebrain neurons, enabled us to unravel a new role of neuronal MAPK signaling for emotional behavior. Braf mice that were induced during adulthood showed normal anxiety but increased depression-like behavior, in accordance with pharmacological findings. In contrast, the inducible or constitutive inactivation of Braf in the juvenile brain leads to normal depression-like behavior but decreased anxiety in adults. In juvenile, constitutive mutants we found no alteration of GABAergic neurotransmission but reduced neuronal arborization in the dentate gyrus. Analysis of gene expression in the hippocampus revealed nine downregulated MAPK target genes that represent candidates to cause the mutant phenotype.Our results reveal the differential function of MAPK signaling in juvenile and adult life phases and emphasize the early postnatal period as critical for the determination of anxiety in adults. Moreover, these results validate inducible gene inactivation as a new valuable approach, allowing it to discriminate between gene function in the adult and the developing postnatal brain. PMID:22529971

  13. Protein Expression Dynamics During Postnatal Mouse Brain Development

    PubMed Central

    Laeremans, Annelies; Van de Plas, Babs; Clerens, Stefan; Van den Bergh, Gert; Arckens, Lutgarde; Hu, Tjing-Tjing

    2013-01-01

    We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation. PMID:25157209

  14. Sox2 and Jagged1 Expression in Normal and Drug-Damaged Adult Mouse Inner Ear

    PubMed Central

    Campbell, Sean; Taylor, Ruth R.; Forge, Andrew; Hume, Clifford R.

    2007-01-01

    Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear. PMID:18157569

  15. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    SciTech Connect

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  16. From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells.

    PubMed

    Lupo, Giuseppe; Bertacchi, Michele; Carucci, Nicoletta; Augusti-Tocco, Gabriella; Biagioni, Stefano; Cremisi, Federico

    2014-08-01

    Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy. PMID:24643740

  17. From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells.

    PubMed

    Lupo, Giuseppe; Bertacchi, Michele; Carucci, Nicoletta; Augusti-Tocco, Gabriella; Biagioni, Stefano; Cremisi, Federico

    2014-08-01

    Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.

  18. Localization of PPAR isotypes in the adult mouse and human brain

    PubMed Central

    Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B.; Mayfield, R. Dayne; Harris, R. Adron

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain. PMID:27283430

  19. Oligodendrogenesis in the fornix of adult mouse brain; the effect of LPS-induced inflammatory stimulation.

    PubMed

    Fukushima, Shohei; Nishikawa, Kazunori; Furube, Eriko; Muneoka, Shiori; Ono, Katsuhiko; Takebayashi, Hirohide; Miyata, Seiji

    2015-11-19

    Evidence have been accumulated that continuous oligodendrogenesis occurs in the adult mammalian brain. The fornix, projection and commissure pathway of hippocampal neurons, carries signals from the hippocampus to other parts of the brain and has critical role in memory and learning. However, basic characterization of adult oligodendrogenesis in this brain region is not well understood. In the present study, therefore, we aimed to examine the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) and the effect of acute inflammatory stimulation on oligodendrogenesis in the fornix of adult mouse. We demonstrated the proliferation of OPCs and a new generation of mature oligodendrocytes by using bromodeoxyuridine and Ki67 immunohistochemistry. Oligodendrogenesis of adult fornix was also demonstrated by using oligodendrocyte transcription factor 2 transgenic mouse. A single systemic administration of lipopolysaccharide (LPS) attenuated proliferation of OPCs in the fornix together with reduced proliferation of hippocampal neural stem/progenitor cells. Time course analysis showed that a single administration of LPS attenuated the proliferation of OPCs during 24-48 h. On the other hand, consecutive administration of LPS did not suppress proliferation of OPCs. The treatment of LPS did not affect differentiation of OPCs into mature oligodendrocytes. Treatment of a microglia inhibitor minocycline significantly attenuated basal proliferation of OPCs under normal condition. In conclusion, the present study indicates that continuous oligodendrogenesis occurs and a single administration of LPS transiently attenuates proliferation of OPCs without changing differentiation in the fornix of the adult mouse brains.

  20. Regeneration and characterization of adult mouse hippocampal neurons in a defined in vitro system.

    PubMed

    Varghese, Kucku; Das, Mainak; Bhargava, Neelima; Stancescu, Maria; Molnar, Peter; Kindy, Mark S; Hickman, James J

    2009-02-15

    Although the majority of human illnesses occur during adulthood, most of the available in vitro disease models are based upon cells obtained from embryonic/fetal tissues because of the difficulties involved with culturing adult cells. Development of adult mouse neuronal cultures has a special significance because of the abundance of transgenic disease models that use this species. In this study a novel cell culture method has been developed that supports the long-term survival and physiological regeneration of adult mouse hippocampal cells in a serum-free defined environment. In this well-defined, controlled system, adult mouse hippocampal cells survived for up to 21 days in culture. The cultured cells exhibited typical hippocampal neuronal morphology and electrophysiological properties after recovery from the trauma of dissociation, and stained positive for the expected neuronal markers. This system has great potential as an investigative tool for in vitro studies of adult diseases, the aging brain or transgenic models of age-associated disorders. PMID:18955083

  1. Ascl3 marks adult progenitor cells of the mouse salivary gland.

    PubMed

    Rugel-Stahl, Anastasia; Elliott, Marilyn E; Ovitt, Catherine E

    2012-05-01

    The Ascl3 transcription factor marks a subset of salivary gland duct cells present in the three major salivary glands of the mouse. In vivo, these cells generate both duct and secretory acinar cell descendants. Here, we have analyzed whether Ascl3-expressing cells retain this multipotent lineage potential in adult glands. Cells isolated from mouse salivary glands were cultured in vitro as non-adherent spheres. Lineage tracing of the Ascl3-expressing cells within the spheres demonstrates that Ascl3+ cells isolated from adult glands remain multipotent, generating both duct and acinar cell types in vitro. Furthermore, we demonstrate that the progenitor cells characterized by Keratin 5 expression are an independent population from Ascl3+ progenitor cells. We conclude that the Ascl3+ cells are intermediate lineage-restricted progenitor cells of the adult salivary glands.

  2. A comprehensive transcriptomic analysis of infant and adult mouse ovary.

    PubMed

    Pan, Linlin; Gong, Wei; Zhou, Yuanyuan; Li, Xiaonuan; Yu, Jun; Hu, Songnian

    2014-10-01

    Ovary development is a complex process involving numerous genes. A well-developed ovary is essential for females to keep fertility and reproduce offspring. In order to gain a better insight into the molecular mechanisms related to the process of mammalian ovary development, we performed a comparative transcriptomic analysis on ovaries isolated from infant and adult mice by using next-generation sequencing technology (SOLiD). We identified 15,454 and 16,646 transcriptionally active genes at the infant and adult stage, respectively. Among these genes, we also identified 7021 differentially expressed genes. Our analysis suggests that, in general, the adult ovary has a higher level of transcriptomic activity. However, it appears that genes related to primordial follicle development, such as those encoding Figla and Nobox, are more active in the infant ovary, whereas expression of genes vital for follicle development, such as Gdf9, Bmp4 and Bmp15, is upregulated in the adult. These data suggest a dynamic shift in gene expression during ovary development and it is apparent that these changes function to facilitate follicle maturation, when additional functional gene studies are considered. Furthermore, our investigation has also revealed several important functional pathways, such as apoptosis, MAPK and steroid biosynthesis, that appear to be much more active in the adult ovary compared to those of the infant. These findings will provide a solid foundation for future studies on ovary development in mice and other mammals and help to expand our understanding of the complex molecular and cellular events that occur during postnatal ovary development. PMID:25251848

  3. A comprehensive transcriptomic analysis of infant and adult mouse ovary.

    PubMed

    Pan, Linlin; Gong, Wei; Zhou, Yuanyuan; Li, Xiaonuan; Yu, Jun; Hu, Songnian

    2014-10-01

    Ovary development is a complex process involving numerous genes. A well-developed ovary is essential for females to keep fertility and reproduce offspring. In order to gain a better insight into the molecular mechanisms related to the process of mammalian ovary development, we performed a comparative transcriptomic analysis on ovaries isolated from infant and adult mice by using next-generation sequencing technology (SOLiD). We identified 15,454 and 16,646 transcriptionally active genes at the infant and adult stage, respectively. Among these genes, we also identified 7021 differentially expressed genes. Our analysis suggests that, in general, the adult ovary has a higher level of transcriptomic activity. However, it appears that genes related to primordial follicle development, such as those encoding Figla and Nobox, are more active in the infant ovary, whereas expression of genes vital for follicle development, such as Gdf9, Bmp4 and Bmp15, is upregulated in the adult. These data suggest a dynamic shift in gene expression during ovary development and it is apparent that these changes function to facilitate follicle maturation, when additional functional gene studies are considered. Furthermore, our investigation has also revealed several important functional pathways, such as apoptosis, MAPK and steroid biosynthesis, that appear to be much more active in the adult ovary compared to those of the infant. These findings will provide a solid foundation for future studies on ovary development in mice and other mammals and help to expand our understanding of the complex molecular and cellular events that occur during postnatal ovary development.

  4. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org).

  5. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org). PMID:22832508

  6. Primary monolayer culture of adult mouse hepatocytes -- a model for the study of hepatotropic viruses.

    PubMed

    Arnheiter, H

    1980-01-01

    Primary monolayer cultures of adult mouse hepatocytes isolated by collagenase perfusion of the liver in situ were exposed to 2 hepatotropic viruses, an avian influenza A virus adapted to grow in mouse liver in vivo and a herpes simplex type I virus. Influenza virus infection led to lysis ofindividual hepatocytes and total monolayer destruction within 18 to 120 hours after infection according to the virus dose used. Virus replication was evidenced by assaying hepatocyte supernates for hemagglutinin and infectivity, by immunofluorescent staining and by electron microscopy. Herpes virus infection resulted in polykaryocyte formation followed by nuclear pycnosis and cell lysis. Virus replication was assayed by titration of supernate infectivity.

  7. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex

    PubMed Central

    Ruiz-Perera, L.; Muniz, M.; Vierci, G.; Bornia, N.; Baroncelli, L.; Sale, A.; Rossi, F.M.

    2015-01-01

    The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain. PMID:26205348

  8. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics

    PubMed Central

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-01-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  9. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

    PubMed

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T; Sorensen, Staci A; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-02-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type-specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties.

  10. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches.

    PubMed

    Giannakis, Marios; Stappenbeck, Thaddeus S; Mills, Jason C; Leip, Douglas G; Lovett, Michael; Clifton, Sandra W; Ippolito, Joseph E; Glasscock, Jarret I; Arumugam, Manimozhiyan; Brent, Michael R; Gordon, Jeffrey I

    2006-04-21

    We have sequenced 36,641 expressed sequence tags from laser capture microdissected adult mouse gastric and small intestinal epithelial progenitors, obtaining 4031 and 3324 unique transcripts, respectively. Using Gene Ontology (GO) terms, each data set was compared with cDNA libraries from intact adult stomach and small intestine. Genes in GO categories enriched in progenitors were filtered against genes in GO categories represented in hematopoietic, neural, and embryonic stem cell transcriptomes and mapped onto transcription factor networks, plus canonical signal transduction and metabolic pathways. Wnt/beta-catenin, phosphoinositide-3/Akt kinase, insulin-like growth factor-1, vascular endothelial growth factor, integrin, and gamma-aminobutyric acid receptor signaling cascades, plus glycerolipid, fatty acid, and amino acid metabolic pathways are among those prominently represented in adult gut progenitors. The results reveal shared as well as distinctive features of adult gut stem cells when compared with other stem cell populations.

  11. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes

    PubMed Central

    Nickerson, John M.; Goodman, Penny; Chrenek, Micah A.; Johnson, Christiana J.; Berglin, Lennart; Redmond, T. Michael.; Boatright, Jeffrey H.

    2013-01-01

    Subretinal injection offers one of the best ways to deliver many classes of drugs, reagents, cells and treatments to the photoreceptor, Müller, and retinal pigment epithelium (RPE) cells of the retina. Agents delivered to this space are placed within microns of the intended target cell, accumulating to high concentrations because there is no dilution due to transport processes or diffusion. Dilution in the interphotoreceptor space (IPS) is minimal because the IPS volume is only 10-20 microliters in the human eye and less than 1 microliter in the mouse eye. For gene delivery purposes, we wished to transfect the cells adjacent to the IPS in adult mouse eyes. Others transfect these cells in neonatal rats to study the development of the retina. In both neonates and adults, electroporation is found to be effective Here we describe the optimization of electroporation conditions for RPE cells in the adult mouse eye with naked plasmids. However, both techniques, subretinal injection and electroporation, present some technical challenges that require skill on the part of the surgeon to prevent untoward damage to the eye. Here we describe methods that we have used for the past ten years (1). PMID:22688698

  12. Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function.

    PubMed

    Fragkouli, A; Stamatakis, A; Zographos, E; Pachnis, V; Stylianopoulou, F

    2006-01-01

    It has been reported recently that mice lacking both alleles of the LIM-homeobox gene Lhx7, display dramatically reduced number of forebrain cholinergic neurons. In the present study, we investigated whether the Lhx7 mutation affects male and female mice differently, given the fact that gender differences are consistently observed in forebrain cholinergic function. Our results show that in adult male as well as female Lhx7 homozygous mutants there is a dramatic loss of choline acetyltransferase immunoreactive forebrain neurons, both projection and interneurons. The reduction of forebrain choline acetyltransferase immunoreactive neurons in Lhx7 homozygous mutants is accompanied by a decrease of acetylcholinesterase histochemical staining in all forebrain cholinergic neuron target areas of both male and female homozygous mutants. Furthermore, there was an increase of M1-, but not M2-, muscarinic acetylcholine receptor binding site density in the somatosensory cortex and basal ganglia of only the female homozygous mutant mice. Such an increase can be regarded as a mechanism acting to compensate for the dramatically reduced cholinergic input, raising the possibility that the forebrain cholinergic system in female mice may be more plastic and responsive to situations of limited neurotransmitter availability. Finally, our study provides additional data for the sexual dimorphism of the forebrain cholinergic system, as female mice appear to have a lower density of M1-muscarinic acetylcholine receptors in the striatal areas of the basal ganglia and a higher density of M2-muscarinic acetylcholine receptors, in a number of cortical areas, as well as the striatal areas of the basal ganglia.

  13. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  14. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS. PMID:27284195

  15. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation.

    PubMed

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  16. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS.

  17. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus.

    PubMed

    van Praag, H; Kempermann, G; Gage, F H

    1999-03-01

    Exposure to an enriched environment increases neurogenesis in the dentate gyrus of adult rodents. Environmental enrichment, however, typically consists of many components, such as expanded learning opportunities, increased social interaction, more physical activity and larger housing. We attempted to separate components by assigning adult mice to various conditions: water-maze learning (learner), swim-time-yoked control (swimmer), voluntary wheel running (runner), and enriched (enriched) and standard housing (control) groups. Neither maze training nor yoked swimming had any effect on bromodeoxyuridine (BrdU)-positive cell number. However, running doubled the number of surviving newborn cells, in amounts similar to enrichment conditions. Our findings demonstrate that voluntary exercise is sufficient for enhanced neurogenesis in the adult mouse dentate gyrus.

  18. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  19. Histology and Ultrastructure of Transitional Changes in Skin Morphology in the Juvenile and Adult Four-Striped Mouse (Rhabdomys pumilio)

    PubMed Central

    Stewart, Eranée; Ajao, Moyosore Salihu

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin. PMID:24288469

  20. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    PubMed

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  1. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons

    PubMed Central

    Hawryluk, J. M.; Ferrari, L. L.; Keating, S. A.

    2012-01-01

    Adenosine has been proposed as an endogenous homeostatic sleep factor that accumulates during waking and inhibits wake-active neurons to promote sleep. It has been specifically hypothesized that adenosine decreases wakefulness and promotes sleep recovery by directly inhibiting wake-active neurons of the basal forebrain (BF), particularly BF cholinergic neurons. We previously showed that adenosine directly inhibits BF cholinergic neurons. Here, we investigated 1) how adenosine modulates glutamatergic input to BF cholinergic neurons and 2) how adenosine uptake and adenosine metabolism are involved in regulating extracellular levels of adenosine. Our experiments were conducted using whole cell patch-clamp recordings in mouse brain slices. We found that in BF cholinergic neurons, adenosine reduced the amplitude of AMPA-mediated evoked glutamatergic excitatory postsynaptic currents (EPSCs) and decreased the frequency of spontaneous and miniature EPSCs through presynaptic A1 receptors. Thus we have demonstrated that in addition to directly inhibiting BF cholinergic neurons, adenosine depresses excitatory inputs to these neurons. It is therefore possible that both direct and indirect inhibition may synergistically contribute to the sleep-promoting effects of adenosine in the BF. We also found that blocking the influx of adenosine through the equilibrative nucleoside transporters or inhibiting adenosine kinase and adenosine deaminase increased endogenous adenosine inhibitory tone, suggesting a possible mechanism through which adenosine extracellular levels in the basal forebrain are regulated. PMID:22357797

  2. Placenta-derived hypo-serotonin situations in the developing forebrain cause autism.

    PubMed

    Sato, Kohji

    2013-04-01

    Autism is a pervasive developmental disorder that is characterized by the behavioral traits of impaired social cognition and communication, and repetitive and/or obsessive behavior and interests. Although there are many theories and speculations about the pathogenetic causes of autism, the disruption of the serotonergic system is one of the most consistent and well-replicated findings. Recently, it has been reported that placenta-derived serotonin is the main source in embryonic day (E) 10-15 mouse forebrain, after that period, the serotonergic fibers start to supply serotonin into the forebrain. E 10-15 is the very important developing period, when cortical neurogenesis, migration and initial axon targeting are processed. Since all these events have been considered to be involved in the pathogenesis of autism and they are highly controlled by serotonin signals, the paucity of placenta-derived serotonin should have potential importance when the pathogenesis of autism is considered. I, thus, postulate a hypothesis that placenta-derived hypo-serotonin situations in the developing forebrain cause autism. The hypothesis is as follows. Various factors, such as inflammation, dysfunction of the placenta, together with genetic predispositions cause a decrease of placenta-derived serotonin levels. The decrease of placenta-derived serotonin levels leads to hypo-serotonergic situations in the forebrain of the fetus. The paucity of serotonin in the forebrain leads to mis-wiring in important regions which are responsible for the theory of mind. The paucity of serotonin in the forebrain also causes over-growth of serotonergic fibers. These disturbances result in network deficiency and aberration of the serotonergic system, leading to the autistic phenotypes.

  3. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation.

    PubMed

    Korogod, Natalya; Petersen, Carl C H; Knott, Graham W

    2015-01-01

    Analysis of brain ultrastructure using electron microscopy typically relies on chemical fixation. However, this is known to cause significant tissue distortion including a reduction in the extracellular space. Cryo fixation is thought to give a truer representation of biological structures, and here we use rapid, high-pressure freezing on adult mouse neocortex to quantify the extent to which these two fixation methods differ in terms of their preservation of the different cellular compartments, and the arrangement of membranes at the synapse and around blood vessels. As well as preserving a physiological extracellular space, cryo fixation reveals larger numbers of docked synaptic vesicles, a smaller glial volume, and a less intimate glial coverage of synapses and blood vessels compared to chemical fixation. The ultrastructure of mouse neocortex therefore differs significantly comparing cryo and chemical fixation conditions. PMID:26259873

  4. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation

    PubMed Central

    Korogod, Natalya; Petersen, Carl CH; Knott, Graham W

    2015-01-01

    Analysis of brain ultrastructure using electron microscopy typically relies on chemical fixation. However, this is known to cause significant tissue distortion including a reduction in the extracellular space. Cryo fixation is thought to give a truer representation of biological structures, and here we use rapid, high-pressure freezing on adult mouse neocortex to quantify the extent to which these two fixation methods differ in terms of their preservation of the different cellular compartments, and the arrangement of membranes at the synapse and around blood vessels. As well as preserving a physiological extracellular space, cryo fixation reveals larger numbers of docked synaptic vesicles, a smaller glial volume, and a less intimate glial coverage of synapses and blood vessels compared to chemical fixation. The ultrastructure of mouse neocortex therefore differs significantly comparing cryo and chemical fixation conditions. DOI: http://dx.doi.org/10.7554/eLife.05793.001 PMID:26259873

  5. Distribution of vasopressin in the forebrain of spotted hyenas.

    PubMed

    Rosen, Greta J; De Vries, Geert J; Villalba, Constanza; Weldele, Mary L; Place, Ned J; Coscia, Elizabeth M; Glickman, Steve E; Forger, Nancy G

    2006-09-01

    The extreme virilization of the female spotted hyena raises interesting questions with respect to sexual differentiation of the brain and behavior. Females are larger and more aggressive than adult, non-natal males and dominate them in social encounters; their external genitalia also are highly masculinized. In many vertebrates, the arginine vasopressin (VP) innervation of the forebrain, particularly that of the lateral septum, is associated with social behaviors such as aggression and dominance. Here, we used immunohistochemistry to examine the distribution of VP cells and fibers in the forebrains of adult spotted hyenas. We find the expected densely staining VP immunoreactive (VP-ir) neurons in the paraventricular and supraoptic nuclei, as well as an unusually extensive distribution of magnocelluar VP-ir neurons in accessory regions. A small number of VP-ir cell bodies are present in the suprachiasmatic nucleus and bed nucleus of the stria terminalis; however, there are extensive VP-ir fiber networks in presumed projection areas of these nuclei, for example, the subparaventricular zone and lateral septum, respectively. No significant sex differences were detected in the density of VP-ir fibers in any area examined. In the lateral septum, however, marked variability was observed. Intact females exhibited a dense fiber network, as did two of the four males examined; the two other males had almost no VP-ir septal fibers. This contrasts with findings in many other vertebrate species, in which VP innervation of the lateral septum is consistently greater in males than in females.

  6. De novo cerebrovascular malformation in the adult mouse after endothelial Alk1 deletion and angiogenic stimulation

    PubMed Central

    Chen, Wanqiu; Sun, Zhengda; Han, Zhenying; Jun, Kristine; Camus, Marine; Wankhede, Mamta; Mao, Lei; Arnold, Tom; Young, William L.; Su, Hua

    2014-01-01

    Background and Purpose In humans, activin receptor-like kinase 1 (Alk1) deficiency causes arteriovenous malformations (AVMs) in multiple organs, including the brain. Focal Alk1 pan-cellular deletion plus vascular endothelial growth factor (VEGF) stimulation induces brain AVMs (bAVMs) in the adult mouse. We hypothesized that deletion of Alk1 in endothelial cell (EC) alone plus focal VEGF stimulation is sufficient to induce bAVM in the adult mouse. Methods Focal angiogenesis was induced in the brain of eight-week-old Pdgfb-iCreER;Alk12f/2f mice by injection of adeno-associated viral vectors expressing VEGF (AAV-VEGF). Two weeks later, EC-Alk1 deletion was induced by tamoxifen (TM) treatment. Vascular morphology was analyzed, and EC proliferation and Dysplasia Index (number of vessels with diameter >15μm per 200 vessels) were quantified10 days after TM administration. Results Tangles of enlarged vessels resembling AVMs were present in the brain angiogenic region of TM-treated Pdgfb-iCreER;Alk12f/2f mice. Induced bAVMs were marked by increased Dysplasia Index (P<0.001), and EC proliferation clustered within the dysplastic vessels. AVMs were also detected around the ear tag-wound and in other organs. Conclusions Deletion of Alk1 in EC in adult mice leads to an increased local EC proliferation during brain angiogenesis and de novo bAVM. PMID:24457293

  7. Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells.

    PubMed

    Wang, X; Al-Dhalimy, M; Lagasse, E; Finegold, M; Grompe, M

    2001-02-01

    The emergence of cells with hepatocellular properties in the adult pancreas has been described in several experimental models. To determine whether adult pancreas contains cells that can give rise to therapeutically useful and biochemically normal hepatocytes, we transplanted suspensions of wild-type mouse pancreatic cells into syngeneic recipients deficient in fumarylacetoacetate hydrolase and manifesting tyrosinemia. Four of 34 (12%) mutant mice analyzed were fully rescued by donor-derived cells and had normal liver function. Ten additional mice (29%) showed histological evidence of donor-derived hepatocytes in the liver. Previous work has suggested that pancreatic liver precursors reside within or close to pancreatic ducts. We therefore performed additional transplantations using either primary cell suspensions enriched for ducts or cultured ducts. Forty-four mutant mice were transplanted with cells enriched for pancreatic duct cells, but only three of the 34 (9%) recipients analyzed displayed donor-derived hepatocytes. In addition, 28 of the fumarylacetoacetate hydrolase-deficient mice were transplanted with cultured pancreatic duct cells, but no donor-derived hepatocytes were observed. Our results demonstrate for the first time that adult mouse pancreas contains hepatocyte progenitor cells capable of significant therapeutic liver reconstitution. However, contrary to previous reports, we were unable to detect these cells within the duct compartment. PMID:11159194

  8. Human tau expression reduces adult neurogenesis in a mouse model of tauopathy.

    PubMed

    Komuro, Yutaro; Xu, Guixiang; Bhaskar, Kiran; Lamb, Bruce T

    2015-06-01

    Accumulation of hyperphosphorylated and aggregated microtubule-associated protein tau (MAPT) is a central feature of a class of neurodegenerative diseases termed tauopathies. Notably, there is increasing evidence that tauopathies, including Alzheimer's disease, are also characterized by a reduction in neurogenesis, the birth of adult neurons. However, the exact relationship between hyperphosphorylation and aggregation of MAPT and neurogenic deficits remains unclear, including whether this is an early- or late-stage disease marker. In the present study, we used the genomic-based hTau mouse model of tauopathy to examine the temporal and spatial regulation of adult neurogenesis during the course of the disease. Surprisingly, hTau mice exhibited reductions in adult neurogenesis in 2 different brain regions by as early as 2 months of age, before the development of robust MAPT pathology in this model. This reduction was found to be due to reduced proliferation and not because of enhanced apoptosis in the hippocampus. At these same time points, hTau mice also exhibited altered MAPT phosphorylation with neurogenic precursors. To examine whether the effects of MAPT on neurogenesis were cell autonomous, neurospheres prepared from hTau animals were examined in vitro, revealing a growth deficit when compared with non-transgenic neurosphere cultures. Taken together, these studies provide evidence that altered adult neurogenesis is a robust and early marker of altered, cell-autonomous function of MAPT in the hTau mouse mode of tauopathy and that altered adult neurogenesis should be examined as a potential marker and therapeutic target for human tauopathies.

  9. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    PubMed

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-05-15

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.

  10. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    SciTech Connect

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  11. A novel type of self-beating cardiomyocytes in adult mouse ventricles

    SciTech Connect

    Omatsu-Kanbe, Mariko; Matsuura, Hiroshi

    2009-04-10

    This study was designed to investigate the presence of resident heart cells that are distinct from terminally-differentiated cardiomyocytes. Adult mouse heart was coronary perfused with collagenase, and ventricles were excised and further digested. After spinning cardiomyocyte-containing fractions down, the supernatant fraction was collected and cultured without adding any chemicals. Two to five days after plating, some of rounded cells adhered to the culture dish, gradually changed their shape and then started self-beating. These self-beating cells did not appreciably proliferate but underwent a further morphological maturation process to form highly branched shapes with many projections. These cells were mostly multinucleated, well sarcomeric-organized and expressed cardiac marker proteins, defined as atypically-shaped cardiomyocytes (ACMs). Patch-clamp experiments revealed that ACMs exhibited spontaneous action potentials arising from the preceding slow diastolic depolarization. We thus found a novel type of resident heart cells in adult cardiac ventricles that spontaneously develop into self-beating cardiomyocytes.

  12. Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast.

    PubMed

    Foley, A C; Skromne, I; Stern, C D

    2000-09-01

    Several models have been proposed for the generation of the rostral nervous system. Among them, Nieuwkoop's activation/transformation hypothesis and Spemann's idea of separate head and trunk/tail organizers have been particularly favoured recently. In the mouse, the finding that the visceral endoderm (VE) is required for forebrain development has been interpreted as support for the latter model. Here we argue that the chick hypoblast is equivalent to the mouse VE, based on fate, expression of molecular markers and characteristic anterior movements around the time of gastrulation. We show that the hypoblast does not fit the criteria for a head organizer because it does not induce neural tissue from naïve epiblast, nor can it change the regional identity of neural tissue. However, the hypoblast does induce transient expression of the early markers Sox3 and Otx2. The spreading of the hypoblast also directs cell movements in the adjacent epiblast, such that the prospective forebrain is kept at a distance from the organizer at the tip of the primitive streak. We propose that this movement is important to protect the forebrain from the caudalizing influence of the organizer. This dual role of the hypoblast is more consistent with the Nieuwkoop model than with the notion of separate organizers, and accommodates the available data from mouse and other vertebrates. PMID:10934028

  13. Expression of Quaking RNA-Binding Protein in the Adult and Developing Mouse Retina

    PubMed Central

    Aono, Kentaro; Kawashima, Togo; Inoue, Kiyoshi; Ku, Li; Feng, Yue; Koike, Chieko

    2016-01-01

    Quaking (QKI), which belongs to the STAR family of KH domain-containing RNA-binding proteins, functions in pre-mRNA splicing, microRNA regulation, and formation of circular RNA. QKI plays critical roles in myelinogenesis in the central and peripheral nervous systems and has been implicated neuron-glia fate decision in the brain; however, neither the expression nor function of QKI in the neural retina is known. Here we report the expression of QKI RNA-binding protein in the developing and mature mouse retina. QKI was strongly expressed by Müller glial cells in both the developing and adult retina. Intriguingly, during development, QKI was expressed in early differentiating neurons, such as the horizontal and amacrine cells, and subsequently in later differentiating bipolar cells, but not in photoreceptors. Neuronal expression was uniformly weak in the adult. Among QKI isoforms (5, 6, and 7), QKI-5 was the predominantly expressed isoform in the adult retina. To study the function of QKI in the mouse retina, we examined quakingviable(qkv) mice, which have a dysmyelination phenotype that results from deficiency of QKI expression and reduced numbers of mature oligodendrocytes. In homozygous qkv mutant mice (qkv/qkv), the optic nerve expression levels of QKI-6 and 7, but not QKI-5 were reduced. In the retina of the mutant homozygote, QKI-5 levels were unchanged, and QKI-6 and 7 levels, already low, were also unaffected. We conclude that QKI is expressed in developing and adult Müller glia. QKI is additionally expressed in progenitors and in differentiating neurons during retinal development, but expression weakened or diminished during maturation. Among QKI isoforms, we found that QKI-5 predominated in the adult mouse retina. Since Müller glial cells are thought to share properties with retinal progenitor cells, our data suggest that QKI may contribute to maintaining retinal progenitors prior to differentiation into neurons. On the other hand, the expression of QKI in

  14. Establishment of Leptin-Responsive Cell Lines from Adult Mouse Hypothalamus

    PubMed Central

    Iwakura, Hiroshi; Dote, Katsuko; Bando, Mika; Koyama, Hiroyuki; Hosoda, Kiminori; Kangawa, Kenji; Nakao, Kazuwa

    2016-01-01

    Leptin resistance is considered to be the primary cause of obesity. However, the cause of leptin resistance remains incompletely understood, and there is currently no cure for the leptin-resistant state. In order to identify novel drug-target molecules that could overcome leptin resistance, it would be useful to develop in vitro assay systems for evaluating leptin resistance. In this study, we established immortalized adult mouse hypothalamus—derived cell lines, termed adult mouse hypothalamus (AMH) cells, by developing transgenic mice in which SV40 Tag was overexpressed in chromogranin A—positive cells in a tamoxifen-dependent manner. In order to obtain leptin-responsive clones, we selected clones based on the phosphorylation levels of STAT3 induced by leptin. The selected clones were fairly responsive to leptin in terms of STAT3, ERK, and Akt phosphorylation and induction of c-Fos mRNA induction. Pretreatment with leptin, insulin, and palmitate attenuated the c-Fos mRNA response to leptin, suggesting that certain aspects of leptin resistance might be reconstituted in this cellular model. These cell lines are useful tools for understanding the molecular nature of the signal disturbance in the leptin-resistant state and for identifying potential target molecules for drugs that relieve leptin resistance, although they have drawbacks including de-differentiated nature and lack of long-time stability. PMID:26849804

  15. Dynamic variation in forebrain estradiol levels during song learning.

    PubMed

    Chao, Andrew; Paon, Ashley; Remage-Healey, Luke

    2015-03-01

    Estrogens shape brain circuits during development, and the capacity to synthesize estrogens locally has consequences for both sexual differentiation and the acute modulation of circuits during early learning. A recently optimized method to detect and quantify fluctuations in brain estrogens in vivo provides a direct means to explore how brain estrogen production contributes to both differentiation and neuromodulation during development. Here, we use this method to test the hypothesis that neuroestrogens are sexually differentiated as well as dynamically responsive to song tutoring (via passive video/audio playback) during the period of song learning in juvenile zebra finches. Our results show that baseline neuroestradiol levels in the caudal forebrain do not differ between males and females during an early critical masculinization window. Instead, we observe a prominent difference between males and females in baseline neuroestradiol that emerges during the subadult stage as animals approach sexual maturity. Second, we observe that fluctuating neuroestradiol levels during periods of passive song tutoring exhibit a markedly different profile in juveniles as compared to adults. Specifically, neuroestrogens in the caudal forebrain are elevated following (rather than during) tutor song exposure in both juvenile males and females, suggesting an important role for the early consolidation of tutor song memories. These results further reveal a circadian influence on the fluctuations in local neuroestrogens during sensory/cognitive tasks. Taken together, these findings uncover several unexpected features of brain estrogen synthesis in juvenile animals that may have implications for secondary masculinization as well as the consolidation of recent sensory experiences. PMID:25205304

  16. Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries?

    PubMed Central

    2012-01-01

    positive immuno staining on germ cell nest-like clusters and at places primordial follicles appeared connected through oocytes. Conclusions The results of the present study show that gonadotropin (PMSG) treatment to adult mouse leads to increased pluripotent stem cell activity in the ovaries, associated with increased meiosis, appearance of several cohorts of PF and their assembly in close proximity of OSE. This was found associated with the presence of germ cell nests and cytoplasmic continuity of oocytes in PF. We have earlier reported that pluripotent ovarian stem cells in the adult mammalian ovary are the VSELs which give rise to slightly differentiated OGSCs. Thus we propose that gonadotropin through its action on pluripotent VSELs augments neo-oogenesis and PF assembly in adult mouse ovaries. PMID:23134576

  17. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    PubMed Central

    Keighren, Margaret A.; Flockhart, Jean H.

    2016-01-01

    ABSTRACT The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues. PMID:27103217

  18. Fingolimod induces neurogenesis in adult mouse hippocampus and improves contextual fear memory.

    PubMed

    Efstathopoulos, P; Kourgiantaki, A; Karali, K; Sidiropoulou, K; Margioris, A N; Gravanis, A; Charalampopoulos, I

    2015-11-24

    Fingolimod (FTY720) was the first per os administered disease-modifying agent approved for the treatment of relapsing-remitting multiple sclerosis. It is thought that fingolimod modulates the immune response by activating sphingosine-1 phosphate receptor type 1 (S1P1) on lymphocytes following its in vivo phosphorylation. In addition to its immune-related effects, there is evidence that fingolimod exerts several other effects in the central nervous system, including regulation of the proliferation, survival and differentiation of various cell types and their precursors. In the present study, we have investigated the effect of fingolimod on the production of new neurons in the adult mouse hippocampus and the association of this effect with the ability for pattern separation, an established adult neurogenesis-dependent memory function. Immunofluorescence analysis after chronic administration of a physiologic dose of fingolimod (0.3 mg kg(-1)) revealed a significant increase in both the proliferation and the survival of neural progenitors in the area of dentate gyrus of hippocampus, compared with control animals. These effects were replicated in vitro, in cultures of murine hippocampal neural stem/precursor cells that express S1P1 receptor, suggesting cell-autonomous actions. The effects of fingolimod on neurogenesis were correlated to enhanced ability for context discrimination after fear conditioning. Since impairment of adult hippocampal neurogenesis and memory is a common feature of many neuropsychiatric conditions, fingolimod treatment may be beneficial in therapeutic armamentarium of these disorders.

  19. Localization and regulation of PML bodies in the adult mouse brain.

    PubMed

    Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M

    2016-06-01

    PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.

  20. A mouse model of adult-onset anaemia due to erythropoietin deficiency.

    PubMed

    Yamazaki, Shun; Souma, Tomokazu; Hirano, Ikuo; Pan, Xiaoqing; Minegishi, Naoko; Suzuki, Norio; Yamamoto, Masayuki

    2013-01-01

    Erythropoietin regulates erythropoiesis in a hypoxia-inducible manner. Here we generate inherited super-anaemic mice (ISAM) as a mouse model of adult-onset anaemia caused by erythropoietin deficiency. ISAM express erythropoietin in the liver but lack erythropoietin production in the kidney. Around weaning age, when the major erythropoietin-producing organ switches from the liver to the kidney, ISAM develop anaemia due to erythropoietin deficiency, which is curable by administration of recombinant erythropoietin. In ISAM severe chronic anaemia enhances transgenic green fluorescent protein and Cre expression driven by the complete erythropoietin-gene regulatory regions, which facilitates efficient labelling of renal erythropoietin-producing cells. We show that the majority of cortical and outer medullary fibroblasts have the innate potential to produce erythropoietin, and also reveal a new set of erythropoietin target genes. ISAM are a useful tool for the evaluation of erythropoiesis-stimulating agents and to trace the dynamics of erythropoietin-producing cells. PMID:23727690

  1. Expression profiling of long noncoding RNAs in neonatal and adult mouse testis.

    PubMed

    Sun, Jin; Wu, Ji

    2015-09-01

    In recent years, advancements in genome-wide analyses of the mammalian transcriptome have revealed that long noncoding RNAs (lncRNAs) is pervasively transcribed in the genome and an increasing number of studies have demonstrated lncRNAs as a new class of regulatory molecules are involved in mammalian development (Carninci et al. (2005); Fatica and Bozzoni (2014)), but very few studies have been conducted on the potential roles of lncRNAs in mammalian testis development. To get insights into the expression patterns of lncRNA during mouse testis development, we investigated the lncRNAs expression profiles of neonatal and adult mouse testes using microarray platform and related results have been published (Sun et al., PLoS One 8 (2013) e75750.). Here, we describe in detail the experimental system, methods and validation for the generation of the microarray data associated with our recent publication (Sun et al., PLoS One 8 (2013) e75750.). Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE43442. PMID:26217809

  2. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum.

    PubMed

    Cheng, Dongmei; Hoogenraad, Casper C; Rush, John; Ramm, Elizabeth; Schlager, Max A; Duong, Duc M; Xu, Ping; Wijayawardana, Sameera R; Hanfelt, John; Nakagawa, Terunaga; Sheng, Morgan; Peng, Junmin

    2006-06-01

    The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD. PMID:16507876

  3. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion.

    PubMed

    Miller, Michelle Erin; Rosten, Patty; Lemieux, Madeleine E; Lai, Courteney; Humphries, R Keith

    2016-01-01

    Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1's importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1's functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs) and implicate reactive oxygen species (ROS) as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA)26Sor(tm1(Cre/ERT)Nat)/J or B6.Cg-Tg(Mx1-Cre)1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1's role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation. PMID:26986211

  4. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion

    PubMed Central

    Miller, Michelle Erin; Rosten, Patty; Lemieux, Madeleine E.; Lai, Courteney; Humphries, R. Keith

    2016-01-01

    Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1’s importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1’s functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs) and implicate reactive oxygen species (ROS) as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA)26Sortm1(Cre/ERT)Nat/J or B6.Cg-Tg(Mx1-Cre)1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1’s role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation. PMID:26986211

  5. Chronic morphine induces premature mitosis of proliferating cells in the adult mouse subgranular zone.

    PubMed

    Mandyam, Chitra D; Norris, Rebekah D; Eisch, Amelia J

    2004-06-15

    The birth of cells with neurogenic potential in the adult brain is assessed commonly by detection of exogenous S phase markers, such as bromodeoxyuridine (BrdU). Analysis of other phases of the cell cycle, however, can provide insight into how external factors, such as opiates, influence the cycling of newly born cells. To this end, we examined the expression of two endogenous cell cycle markers in relation to BrdU: proliferating cell nuclear antigen (PCNA) and phosphorylated histone H3 (pHisH3). Two hours after one intraperitoneal BrdU injection, BrdU-, PCNA-, and pHisH3-immunoreactive (IR) cells exhibited similar distribution in the adult mouse subgranular zone (SGZ). Quantitative analysis within the SGZ revealed a relative abundance of cells labeled for PCNA > BrdU > pHisH3. Similar to our reports in rat SGZ, chronic morphine treatment decreased BrdU- and PCNA-IR cells in mouse SGZ by 28 and 38%, respectively. We also show that pHisH3-IR cells are influenced by chronic morphine to a greater extent (58% decrease) than are BrdU- or PCNA-IR cells. Cell cycle phase analysis of SGZ BrdU-IR cells using triple labeling for BrdU, PCNA, and pHisH3 revealed premature mitosis in chronic morphine-treated mice. These results suggest that morphine-treated mice have a shorter Gap2/mitosis (G(2)/M) phase when compared to sham-treated mice. These findings demonstrate the power of using a combination of exogenous and endogenous cell cycle markers and nuclear morphology to track proliferating cells through different phases of the cell cycle and to reveal the regulation of cell cycle phase by chronic morphine. PMID:15160390

  6. Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.

    PubMed

    Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde

    2016-09-01

    Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. PMID:26663520

  7. Generation of a novel mouse model that recapitulates early and adult onset glycogenosis type IV.

    PubMed

    Akman, H Orhan; Sheiko, Tatiana; Tay, Stacey K H; Finegold, Milton J; Dimauro, Salvatore; Craigen, William J

    2011-11-15

    Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by deficiency of the glycogen branching enzyme (GBE). The diagnostic feature of the disease is the accumulation of a poorly branched form of glycogen known as polyglucosan (PG). The disease is clinically heterogeneous, with variable tissue involvement and age of disease onset. Absence of enzyme activity is lethal in utero or in infancy affecting primarily muscle and liver. However, residual enzyme activity (5-20%) leads to juvenile or adult onset of a disorder that primarily affects muscle as well as central and peripheral nervous system. Here, we describe two mouse models of GSD IV that reflect this spectrum of disease. Homologous recombination was used to insert flippase recognition target recombination sites around exon 7 of the Gbe1 gene and a phosphoglycerate kinase-Neomycin cassette within intron 7, leading to a reduced synthesis of GBE. Mice bearing this mutation (Gbe1(neo/neo)) exhibit a phenotype similar to juvenile onset GSD IV, with wide spread accumulation of PG. Meanwhile, FLPe-mediated homozygous deletion of exon 7 completely eliminated GBE activity (Gbe1(-/-)), leading to a phenotype of lethal early onset GSD IV, with significant in utero accumulation of PG. Adult mice with residual GBE exhibit progressive neuromuscular dysfunction and die prematurely. Differently from muscle, PG in liver is a degradable source of glucose and readily depleted by fasting, emphasizing that there are structural and regulatory differences in glycogen metabolism among tissues. Both mouse models recapitulate typical histological and physiological features of two human variants of branching enzyme deficiency. PMID:21856731

  8. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration

    PubMed Central

    McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors. PMID:26444546

  9. Overexpression of the Type 1 Adenylyl Cyclase in the Forebrain Leads to Deficits of Behavioral Inhibition

    PubMed Central

    Cao, Hong; Saraf, Amit; Zweifel, Larry S.

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126

  10. Clonally related forebrain interneurons disperse broadly across both, functional areas and structural boundaries

    PubMed Central

    Mayer, Christian; Jaglin, Xavier H.; Cobbs, Lucy V.; Bandler, Rachel C.; Streicher, Carmen; Cepko, Constance L.; Hippenmeyer, Simon; Fishell, Gord

    2015-01-01

    The medial ganglionic eminence (MGE) gives rise to the majority of mouse forebrain interneurons. Here, we examine the lineage relationship among MGE-derived interneurons using a replication-defective retroviral library containing a highly diverse set of DNA barcodes. Recovering the barcodes from the mature progeny of infected progenitor cells enabled us to unambiguously determine their respective lineal relationship. We found that clonal dispersion occurs across large areas of the brain and is not restricted by anatomical divisions. As such, sibling interneurons can populate the cortex, hippocampus striatum and globus pallidus. The majority of interneurons appeared to be generated from asymmetric divisions of MGE progenitor cells, followed by symmetric divisions within the subventricular zone. Altogether, our findings uncover that lineage relationships do not appear to determine interneuron allocation to particular regions. As such, it is likely that clonally-related interneurons have considerable flexibility as to the particular forebrain circuits to which they can contribute. PMID:26299473

  11. Overexpression of the type 1 adenylyl cyclase in the forebrain leads to deficits of behavioral inhibition.

    PubMed

    Chen, Xuanmao; Cao, Hong; Saraf, Amit; Zweifel, Larry S; Storm, Daniel R

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition.

  12. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    SciTech Connect

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  13. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    PubMed

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  14. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice

    PubMed Central

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-01-01

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes. PMID:26923756

  15. Forebrain noradrenaline concentration following weakly reinforced training.

    PubMed

    Crowe, S F; Ng, K T; Gibbs, M E

    1991-09-01

    Day-old chicks trained on a single-trial discriminated passive avoidance task using a concentrated taste aversant, methyl anthranilate, have been shown to exhibit three stages of memory processing; short-, intermediate-, and long-term memory. If the aversant is diluted to 20% v/v methyl anthranilate in absolute ethanol, only the short-term and some of the intermediate stage are observed. In this study we investigated the whole forebrain levels of noradrenaline in response to differing intensities of the training experience. The results show a profound difference in the level of whole forebrain NA at all training-sacrifice intervals for the trained as compared to the untrained controls, except at 15- and 20-minute posttraining, when a substantial reduction in the level of NA was achieved under all training conditions. Furthermore, subjects which received treatments which resulted in the emergence of behavioural evidence of long-term memory tended to have higher levels of whole-forebrain NA at 30 minutes after initial training. This is the time when we have postulated that triggering of protein synthesis associated with long-term memory formation takes place.

  16. Patterns and dynamics of subventricular zone neuroblast migration in the ischemic striatum of the adult mouse

    PubMed Central

    Zhang, Rui L; Chopp, Michael; Gregg, Sara R; Toh, Yier; Roberts, Cindi; LeTourneau, Yvonne; Buller, Benjamin; Jia, Longfei; Davarani, Siamak P Nejad; Zhang, Zheng G

    2009-01-01

    The migratory behavior of neuroblasts after a stroke is poorly understood. Using time-lapse microscopy, we imaged migration of neuroblasts and cerebral vessels in living brain slices of adult doublecortin (DCX, a marker of neuroblasts) enhanced green fluorescent protein (eGFP) transgenic mice that were subjected to 7 days of stroke. Our results show that neuroblasts originating in the subventricular zone (SVZ) of adult mouse brain laterally migrated in chains or individually to reach the ischemic striatum. The chains were initially formed at the border between the SVZ and the striatum by neuroblasts in the SVZ and then extended to the striatum. The average speed of DCX-eGFP-expressing cells within chains was 28.67±1.04 μm/h, which was significantly faster (P < 0.01) than the speed of the cells in the SVZ (17.98±0.57 μm/h). Within the ischemic striatum, individual neuroblasts actively extended or retracted their processes, suggestive of probing the immediate microenvironment. The neuroblasts close to cerebral blood vessels exhibited multiple processes. Our data suggest that neuroblasts actively interact with the microenvironment to reach the ischemic striatum by multiple migratory routes. PMID:19436318

  17. Notch2 is required for maintaining sustentacular cell function in the adult mouse main olfactory epithelium

    PubMed Central

    Rodriguez, Steve; Sickles, Heather M.; DeLeonardis, Chris; Alcaraz, Ana; Gridley, Thomas; Lin, David M.

    2008-01-01

    Notch receptors are expressed in neurons and glia in the adult nervous system, but why this expression persists is not well-understood. Here we examine the role of the Notch pathway in the postnatal mouse main olfactory system, and show evidence consistent with a model where Notch2 is required for maintaining sustentacular cell function. In the absence of Notch2, the laminar nature of these glial-like cells is disrupted. Hes1, Hey1, and Six1, which are downstream effectors of the Notch pathway, are down-regulated, and cytochrome P450 and Glutathione S-transferase (GST) expression by sustentacular cells is reduced. Functional levels of GST activity are also reduced. These disruptions are associated with increased olfactory sensory neuron degeneration. Surprisingly, expression of Notch3 is also down-regulated. This suggests the existence of a feedback loop where expression of Notch3 is initially independent of Notch2, but requires Notch2 for maintained expression. While the Notch pathway has previously been shown to be important for promoting gliogenesis during development, this is the first demonstration that the persistent expression of Notch receptors is required for maintaining glial function in adult. PMID:18155189

  18. Temporal profiles of synaptic plasticity-related signals in adult mouse hippocampus with methotrexate treatment.

    PubMed

    Yang, Miyoung; Kim, Juhwan; Kim, Sung-Ho; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-07-25

    Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced hippocampal dysfunction are poorly understood. To evaluate temporal changes in synaptic plasticity-related signals, the expression and activity of N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, extracellular signal-regulated kinase 1/2, cAMP responsive element-binding protein, glutamate receptor 1, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor were examined in the hippocampi of adult C57BL/6 mice after methotrexate (40 mg/kg) intraperitoneal injection. Western blot analysis showed biphasic changes in synaptic plasticity-related signals in adult hippocampi following methotrexate treatment. N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, and glutamate receptor 1 were acutely activated during the early phase (1 day post-injection), while extracellular signal-regulated kinase 1/2 and cAMP responsive element-binding protein activation showed biphasic increases during the early (1 day post-injection) and late phases (7-14 days post-injection). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression increased significantly during the late phase (7-14 days post-injection). Therefore, methotrexate treatment affects synaptic plasticity-related signals in the adult mouse hippocampus, suggesting that changes in synaptic plasticity-related signals may be associated with neuronal survival and plasticity-related cellular remodeling.

  19. Stroke Increases Neural Stem Cells and Angiogenesis in the Neurogenic Niche of the Adult Mouse

    PubMed Central

    Zhang, Rui Lan; Chopp, Michael; Roberts, Cynthia; Liu, Xianshuang; Wei, Min; Nejad-Davarani, Siamak P.; Wang, Xinli; Zhang, Zheng Gang

    2014-01-01

    The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ) neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP) positive neural stem cells that are in contact with the cerebrospinal fluid (CSF) via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction. PMID:25437857

  20. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  1. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord

    PubMed Central

    Beaudet, Marie-Josée; Yang, Qiurui; Cadau, Sébastien; Blais, Mathieu; Bellenfant, Sabrina; Gros-Louis, François; Berthod, François

    2015-01-01

    Extraction of mouse spinal motor neurons from transgenic mouse embryos recapitulating some aspects of neurodegenerative diseases like amyotrophic lateral sclerosis has met with limited success. Furthermore, extraction and long-term culture of adult mouse spinal motor neurons and glia remain also challenging. We present here a protocol designed to extract and purify high yields of motor neurons and glia from individual spinal cords collected on embryos and adult (5-month-old) normal or transgenic mice. This method is based on mild digestion of tissue followed by gradient density separation allowing to obtain two millions motor neurons over 92% pure from one E14.5 single embryo and more than 30,000 from an adult mouse. These cells can be cultured more than 14 days in vitro at a density of 100,000 cells/cm2 to maintain optimal viability. Functional astrocytes and microglia and small gamma motor neurons can be purified at the same time. This protocol will be a powerful and reliable method to obtain motor neurons and glia to better understand mechanisms underlying spinal cord diseases. PMID:26577180

  2. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease.

    PubMed

    Baker-Nigh, Alaina; Vahedi, Shahrooz; Davis, Elena Goetz; Weintraub, Sandra; Bigio, Eileen H; Klein, William L; Geula, Changiz

    2015-06-01

    The mechanisms that contribute to selective vulnerability of the magnocellular basal forebrain cholinergic neurons in neurodegenerative diseases, such as Alzheimer's disease, are not fully understood. Because age is the primary risk factor for Alzheimer's disease, mechanisms of interest must include age-related alterations in protein expression, cell type-specific markers and pathology. The present study explored the extent and characteristics of intraneuronal amyloid-β accumulation, particularly of the fibrillogenic 42-amino acid isoform, within basal forebrain cholinergic neurons in normal young, normal aged and Alzheimer's disease brains as a potential contributor to the selective vulnerability of these neurons using immunohistochemistry and western blot analysis. Amyloid-β1-42 immunoreactivity was observed in the entire cholinergic neuronal population regardless of age or Alzheimer's disease diagnosis. The magnitude of this accumulation as revealed by optical density measures was significantly greater than that in cortical pyramidal neurons, and magnocellular neurons in the globus pallidus did not demonstrate a similar extent of amyloid immunoreactivity. Immunoblot analysis with a panel of amyloid-β antibodies confirmed accumulation of high concentration of amyloid-β in basal forebrain early in adult life. There was no age- or Alzheimer-related alteration in total amyloid-β content within this region. In contrast, an increase in the large molecular weight soluble oligomer species was observed with a highly oligomer-specific antibody in aged and Alzheimer brains when compared with the young. Similarly, intermediate molecular weight oligomeric species displayed an increase in aged and Alzheimer brains when compared with the young using two amyloid-β42 antibodies. Compared to cortical homogenates, small molecular weight oligomeric species were lower and intermediate species were enriched in basal forebrain in ageing and Alzheimer's disease. Regional and age

  3. Doublecortin (DCX) is not Essential for Survival and Differentiation of Newborn Neurons in the Adult Mouse Dentate Gyrus

    PubMed Central

    Dhaliwal, Jagroop; Xi, Yanwei; Bruel-Jungerman, Elodie; Germain, Johanne; Francis, Fiona; Lagace, Diane C.

    2016-01-01

    In the adult brain, expression of the microtubule-associated protein Doublecortin (DCX) is associated with neural progenitor cells (NPCs) that give rise to new neurons in the dentate gyrus. Many studies quantify the number of DCX-expressing cells as a proxy for the level of adult neurogenesis, yet no study has determined the effect of removing DCX from adult hippocampal NPCs. Here, we use a retroviral and inducible mouse transgenic approach to either knockdown or knockout DCX from adult NPCs in the dentate gyrus and examine how this affects cell survival and neuronal maturation. Our results demonstrate that shRNA-mediated knockdown of DCX or Cre-mediated recombination in floxed DCX mice does not alter hippocampal neurogenesis and does not change the neuronal fate of the NPCs. Together these findings show that the survival and maturation of adult-generated hippocampal neurons does not require DCX. PMID:26793044

  4. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    PubMed

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered. PMID:24992362

  5. Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine.

    PubMed

    Schreiber, Rainer; Faria, Diana; Skryabin, Boris V; Wanitchakool, Podchanart; Rock, Jason R; Kunzelmann, Karl

    2015-06-01

    Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca(2+) and opening of apical Cl(-) channels. In infants and young animals, but not in adults, Ca(2+)-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) channels, analysis of the role of Ca(2+)-dependent Cl(-) channels became possible through identification of the anoctamin (TMEM16) family of proteins. We demonstrate expression of several anoctamin paralogues in mouse small and large intestines. Using intestinal-specific mouse knockout models for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a conventional knockout model for anoctamin 6 (Ano6), we demonstrate the role of anoctamins for Ca(2+)-dependent Cl(-) secretion induced by the muscarinic agonist carbachol (CCH). Ano1 is preferentially expressed in the ileum and large intestine, where it supports Ca(2+)-activated Cl(-) secretion. In contrast, Ano10 is essential for Ca(2+)-dependent Cl(-) secretion in jejunum, where expression of Ano1 was not detected. Although broadly expressed, Ano6 has no role in intestinal cholinergic Cl(-) secretion. Ano1 is located in a basolateral compartment/membrane rather than in the apical membrane, where it supports CCH-induced Ca(2+) increase, while the essential and possibly only apical Cl(-) channel is CFTR. These results define a new role of Ano1 for intestinal Ca(2+)-dependent Cl(-) secretion and demonstrate for the first time a contribution of Ano10 to intestinal transport.

  6. Rhythmic Ganglion Cell Activity in Bleached and Blind Adult Mouse Retinas

    PubMed Central

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa – a degenerative disease which often leads to incurable blindness- the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor’s dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the

  7. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    PubMed

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  8. Vasoactive intestinal peptide antagonist treatment during mouse embryogenesis impairs social behavior and cognitive function of adult male offspring.

    PubMed

    Hill, Joanna M; Cuasay, Katrina; Abebe, Daniel T

    2007-07-01

    Vasoactive intestinal peptide (VIP) is a regulator of rodent embryogenesis during the period of neural tube closure. VIP enhanced growth in whole cultured mouse embryos; treatment with a VIP antagonist during embryogenesis inhibited growth and development. VIP antagonist treatment during embryogenesis also had permanent effects on adult brain chemistry and impaired social recognition behavior in adult male mice. The neurological deficits of autism appear to be initiated during neural tube closure and social behavior deficits are among the key characteristics of this disorder that is more common in males and is frequently accompanied by mental retardation. The current study examined the blockage of VIP during embryogenesis as a model for the behavioral deficits of autism. Treatment of pregnant mice with a VIP antagonist during embryonic days 8 through 10 had no apparent effect on the general health or sensory or motor capabilities of adult offspring. However, male offspring exhibited reduced sociability in the social approach task and deficits in cognitive function, as assessed through cued and contextual fear conditioning. Female offspring did not show these deficiencies. These results suggest that this paradigm has usefulness as a mouse model for aspects of autism as it selectively impairs male offspring who exhibit the reduced social behavior and cognitive dysfunction seen in autism. Furthermore, the study indicates that the foundations of some aspects of social behavior are laid down early in mouse embryogenesis, are regulated in a sex specific manner and that interference with embryonic regulators such as VIP can have permanent effects on adult social behavior.

  9. Quantitative Expression Profile of Distinct Functional Regions in the Adult Mouse Brain

    PubMed Central

    Nagano, Mamoru; Uno, Kenichiro D.; Tsujino, Kaori; Hanashima, Carina; Shigeyoshi, Yasufumi; Ueda, Hiroki R.

    2011-01-01

    The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B*) project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/) for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems. PMID:21858037

  10. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease

    PubMed Central

    Ambade, Aditya; Satishchandran, Abhishek; Gyongyosi, Benedek; Lowe, Patrick; Szabo, Gyongyi

    2016-01-01

    AIM: To establish a mouse model of alcohol-driven hepatocellular carcinoma (HCC) that develops in livers with alcoholic liver disease (ALD). METHODS: Adult C57BL/6 male mice received multiple doses of chemical carcinogen diethyl nitrosamine (DEN) followed by 7 wk of 4% Lieber-DeCarli diet. Serum alanine aminotransferase (ALT), alpha fetoprotein (AFP) and liver Cyp2e1 were assessed. Expression of F4/80, CD68 for macrophages and Ly6G, MPO, E-selectin for neutrophils was measured. Macrophage polarization was determined by IL-1β/iNOS (M1) and Arg-1/IL-10/CD163/CD206 (M2) expression. Liver steatosis and fibrosis were measured by oil-red-O and Sirius red staining respectively. HCC development was monitored by magnetic resonance imaging, confirmed by histology. Cellular proliferation was assessed by proliferating cell nuclear antigen (PCNA). RESULTS: Alcohol-DEN mice showed higher ALTs than pair fed-DEN mice throughout the alcohol feeding without weight gain. Alcohol feeding resulted in increased ALT, liver steatosis and inflammation compared to pair-fed controls. Alcohol-DEN mice had reduced steatosis and increased fibrosis indicating advanced liver disease. Molecular characterization showed highest levels of both neutrophil and macrophage markers in alcohol-DEN livers. Importantly, M2 macrophages were predominantly higher in alcohol-DEN livers. Magnetic resonance imaging revealed increased numbers of intrahepatic cysts and liver histology confirmed the presence of early HCC in alcohol-DEN mice compared to all other groups. This correlated with increased serum alpha-fetoprotein, a marker of HCC, in alcohol-DEN mice. PCNA immunostaining revealed significantly increased hepatocyte proliferation in livers from alcohol-DEN compared to pair fed-DEN or alcohol-fed mice. CONCLUSION: We describe a new 12-wk HCC model in adult mice that develops in livers with alcoholic hepatitis and defines ALD as co-factor in HCC. PMID:27122661

  11. Forebrain substrates of reward and motivation.

    PubMed

    Wise, Roy A

    2005-12-01

    Electrical stimulation of the medial forebrain bundle can reward arbitrary acts or motivate biologically primitive, species-typical behaviors like feeding or copulation. The subsystems involved in these behaviors are only partially characterized, but they appear to transsynaptically activate the mesocorticolimbic dopamine system. Basal function of the dopamine system is essential for arousal and motor function; phasic activation of this system is rewarding and can potentiate the effectiveness of reward-predictors that guide learned behaviors. This system is phasically activated by most drugs of abuse and such activation contributes to the habit-forming actions of these drugs.

  12. Forebrain substrates of reward and motivation

    PubMed Central

    Wise, Roy A.

    2008-01-01

    Electrical stimulation of the medial forebrain bundle can reward arbitrary acts or motivate biologically primitive, species-typical behaviors like feeding or copulation. The sub-systems involved in these behaviors are only partially characterized, but they appear to trans-synaptically activate the mesocorticolimbic dopamine system. Basal function of the dopamine system is essential for arousal and motor function; phasic activation of this system is rewarding and can potentiate the effectiveness of reward-predictors that guide learned behaviors. This system is phasically activated by most drugs of abuse and such activation contributes to the habit-forming actions of these drugs. PMID:16254990

  13. Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

    PubMed

    Paradells, Sara; Rocamonde, Brenda; Llinares, Cristina; Herranz-Pérez, Vicente; Jimenez, Misericordia; Garcia-Verdugo, Jose Manuel; Zipancic, Ivan; Soria, Jose Miguel; Garcia-Esparza, Ma Angeles

    2015-07-01

    Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5-bromo-2-deoxyuridine-positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose-dependent manner. PMID:25256750

  14. LRRK2 is expressed in areas affected by Parkinson's disease in the adult mouse brain.

    PubMed

    Simón-Sánchez, Javier; Herranz-Pérez, Vicente; Olucha-Bordonau, Francisco; Pérez-Tur, Jordi

    2006-02-01

    The leucine-rich repeat kinase 2 (LRRK2) gene was recently found to have multiple mutations that are causative for autosomal dominant inherited Parkinson's disease (PD). Previously, we used Northern blot analysis to show that this gene was expressed in the cerebellum, cerebral cortex, medulla, spinal cord, occipital pole, frontal lobe, temporal lobe and caudate putamen. However, a more comprehensive map of LRRK2 mRNA localization in the central nervous system is still lacking. In this study we have mapped the distribution of the mRNA encoding for LRRK2 using nonradioactive in situ hybridization. We detected a moderate expression of this PD-related gene throughout the adult B2B6 mouse brain. A stronger hybridization signal was observed in deep cerebral cortex layers, superficial cingulate cortex layers, the piriform cortex, hippocampal formation, caudate putamen, substantia nigra, the basolateral and basomedial anterior amygdala nuclei, reticular thalamic nucleus and also in the cerebellar granular cell layer. Given that LRRK2 mRNA is highly enriched in motor systems and also is expressed in other systems, we may conclude that mutations in LRRK2 may affect several motor and nonmotor structures that may play an important role in the development of PD.

  15. Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

    PubMed

    Paradells, Sara; Rocamonde, Brenda; Llinares, Cristina; Herranz-Pérez, Vicente; Jimenez, Misericordia; Garcia-Verdugo, Jose Manuel; Zipancic, Ivan; Soria, Jose Miguel; Garcia-Esparza, Ma Angeles

    2015-07-01

    Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5-bromo-2-deoxyuridine-positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose-dependent manner.

  16. Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors

    PubMed Central

    Belgard, T. Grant; Montiel, Juan F.; Wang, Wei Zhi; García-Moreno, Fernando; Ponting, Chris P.; Molnár, Zoltán

    2013-01-01

    The thorniest problem in comparative neurobiology is the identification of the particular brain region of birds and reptiles that corresponds to the mammalian neocortex [Butler AB, Reiner A, Karten HJ (2011) Ann N Y Acad Sci 1225:14–27; Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Proc Natl Acad Sci USA 107(28):12676–12681]. We explored which genes are actively transcribed in the regions of controversial ancestry in a representative bird (chicken) and mammal (mouse) at adult stages. We conducted four analyses comparing the expression patterns of their 5,130 most highly expressed one-to-one orthologous genes that considered global patterns of expression specificity, strong gene markers, and coexpression networks. Our study demonstrates transcriptomic divergence, plausible convergence, and, in two exceptional cases, conservation between specialized avian and mammalian telencephalic regions. This large-scale study potentially resolves the complex relationship between developmental homology and functional characteristics on the molecular level and settles long-standing evolutionary debates. PMID:23878249

  17. Visualizing form and function in organotypic slices of the adult mouse parotid gland

    PubMed Central

    Warner, Jennifer D.; Peters, Christian G.; Saunders, Rudel; Won, Jong Hak; Betzenhauser, Matthew J.; Gunning, William T.; Yule, David I.; Giovannucci, David R.

    2008-01-01

    An organotypic slice preparation of the adult mouse parotid salivary gland amenable to a variety of optical assessments of fluid and protein secretion dynamics is described. The semi-intact preparation rendered without the use of enzymatic treatment permitted live-cell imaging and multiphoton analysis of cellular and supracellular signals. Toward this end we demonstrated that the parotid slice is a significant addition to the repertoire of tools available to investigators to probe exocrine structure and function since there is currently no cell culture system that fully recapitulates parotid acinar cell biology. Importantly, we show that a subpopulation of the acinar cells of parotid slices can be maintained in short-term culture and retain their morphology and function for up to 2 days. This in vitro model system is a significant step forward compared with enzymatically dispersed acini that rapidly lose their morphological and functional characteristics over several hours, and it was shown to be long enough for the expression and trafficking of exogenous protein following adenoviral infection. This system is compatible with a variety of genetic and physiological approaches used to study secretory function. PMID:18669626

  18. Expression of dominant negative cadherin in the adult mouse brain modifies rearing behavior.

    PubMed

    Edsbagge, Josefina; Zhu, Shunwei; Xiao, Min-Yi; Wigström, Holger; Mohammed, Abdul H; Semb, Henrik

    2004-03-01

    The cadherin superfamily of cell-cell adhesion molecules (CAM) are crucial regulators of morphogenesis and axonal guidance during development of the nervous system and have been suggested to play important roles in neural plasticity of the brain. To study the latter, we created a mouse model that expressed a dominant negative classical cadherin in the brain of adult mice. The mice were tested for spontaneous motor activity and exploratory behavior in the open field, anxiety in the plus-maze, and spatial learning and memory in the water-T maze. Mice expressing the dominant negative cadherin displayed reduced rearing behavior, but no change in motor activity, in the open field, indicating deficits in exploratory behavior. In the water maze, animals expressing the mutant cadherin showed normal escape latencies and were indistinguishable from control littermates. Similarly, LTP in hippocampal slices of cadherin mutant and control mice were indistinguishable. These findings demonstrate intact spatial learning in mice expressing a dominant negative cadherin but altered rearing behavior, suggesting the involvement of classical cadherins in mechanisms mediating rearing behavior.

  19. Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors.

    PubMed

    Belgard, T Grant; Montiel, Juan F; Wang, Wei Zhi; García-Moreno, Fernando; Margulies, Elliott H; Ponting, Chris P; Molnár, Zoltán

    2013-08-01

    The thorniest problem in comparative neurobiology is the identification of the particular brain region of birds and reptiles that corresponds to the mammalian neocortex [Butler AB, Reiner A, Karten HJ (2011) Ann N Y Acad Sci 1225:14-27; Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Proc Natl Acad Sci USA 107(28):12676-12681]. We explored which genes are actively transcribed in the regions of controversial ancestry in a representative bird (chicken) and mammal (mouse) at adult stages. We conducted four analyses comparing the expression patterns of their 5,130 most highly expressed one-to-one orthologous genes that considered global patterns of expression specificity, strong gene markers, and coexpression networks. Our study demonstrates transcriptomic divergence, plausible convergence, and, in two exceptional cases, conservation between specialized avian and mammalian telencephalic regions. This large-scale study potentially resolves the complex relationship between developmental homology and functional characteristics on the molecular level and settles long-standing evolutionary debates.

  20. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    PubMed

    Hickmott, Jack W; Chen, Chih-Yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  1. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina

    PubMed Central

    Hickmott, Jack W; Chen, Chih-yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  2. Sleep-waking states develop independently in the isolated forebrain and brain stem following early postnatal midbrain transection in cats.

    PubMed

    Villablanca, J R; de Andrés, I; Olmstead, C E

    2001-01-01

    We report the effects of permanently separating the immature forebrain from the brain stem upon sleeping and waking development. Kittens ranging from postnatal 9 to 27 days of age sustained a mesencephalic transection and were maintained for up to 135 days. Prior to postnatal day 40, the electroencephalogram of the isolated forebrain and behavioral sleep-wakefulness of the decerebrate animal showed the immature patterns of normal young kittens. Thereafter, the isolated forebrain showed alternating sleep-wakefulness electrocortical rhythms similar to the corresponding normal patterns of intact, mature cats. Olfactory stimuli generally changed forebrain sleeping into waking activity, and in cats with the section behind the third nerve nuclei, normal correlates of eye movements-pupillary activity with electrocortical rhythms were present. Behind the transection, decerebrate animals showed wakefulness, and after 20 days of age displayed typical behavioral episodes of rapid eye movements sleep and, during these periods, the pontine recordings showed ponto-geniculo-occipital waves, which are markers for this sleep stage, together with muscle atonia and rapid lateral eye movements. Typically, but with remarkable exceptions suggesting humoral interactions, the sleep-waking patterns of the isolated forebrain were dissociated from those of the decerebrate animal. These results were very similar to our previous findings in midbrain-transected adult cats. However, subtle differences suggested greater functional plasticity in the developing versus the adult isolated forebrain. We conclude that behavioral and electroencephalographic patterns of non-rapid eye movement sleep and of rapid eye movement sleep states mature independently in the forebrain and the brain stem, respectively, after these structures are separated early postnatally. In terms of waking, the findings strengthen our concept that in higher mammals the rostral brain can independently support wakefulness

  3. Dynamic expression of TrkB receptor protein on proliferating and maturing cells in the adult mouse dentate gyrus

    PubMed Central

    Donovan, Michael H.; Yamaguchi, Masahiro; Eisch, Amelia J.

    2008-01-01

    Brain-derived neurotrophic factor (BDNF) is implicated in regulation of adult hippocampal neurogenesis, presumably via its primary receptor, TrkB, but controversy exists about how BDNF affects neurogenesis (e.g. proliferation vs. survival/differentiation). This controversy arises, in part, due to the lack of information about if and when TrkB is expressed on adult neural precursors in vivo. Using multiple methods to analyze proliferating and maturing cells in the adult mouse subgranular zone (SGZ), we find that the proportion of proliferating cells that are TrkB-IR is low and it remains low for at least one week following BrdU labeling, but increases as neuroblasts mature. Use of the nestin-GFP transgenic mouse revealed the likelihood of being TrkB-IR increased with presumed maturity of the cell type. Stem-like cells, which rarely divide, were likely to express TrkB. However, early progenitors and late progenitors, which are still in the cell cycle had rare TrkB expression. Immature neuroblasts, however, were more likely to express TrkB, especially as their morphology became more mature. Taken together, these findings emphasize that expression of TrkB protein is closely linked to progression towards neuronal maturity. This provides evidence that maturing cells but not proliferating cells in the adult mouse SGZ have the molecular machinery necessary to respond directly to BDNF. Furthermore, these findings lay critical groundwork for further exploration of the role of BDNF-TrkB signaling in regulation of adult hippocampal neurogenesis. PMID:18240316

  4. Distribution of neurotensin/neuromedin N mRNA in rat forebrain: Unexpected abundance in hippocampus and subiculum

    SciTech Connect

    Alexander, M.J.; Miller, M.A.; Dorsa, D.M.; Bullock, B.P.; Helloni, R.H. Jr.; Dobner, P.R.; Leeman, S.E. )

    1989-07-01

    The authors have used in situ hybridization to determine the regional distribution of mRNA encoding the neurotensin/neuromedin N (NT/N) precursor in the forebrain of the adult male rat. Cells containing NT/N mRNA are widely distributed in the forebrain. These areas include the septum, bed nucleus of the stria terminalis, preoptic area, hypothalamus, amygdala, accumbens nucleus, caudate-putamen, and piriform and retrosplenial cortex. In general, the regional distribution of NT/N mRNA corresponds to the previously determined distribution of neurotensin-immunoreactive cell bodies; however, several notable exceptions were observed. The most striking difference occurs specifically in the CA1 region of the hippocampus, where intense labeling is associated with the pyramidal cell layer despite the reported absence of neurotensin-immunoreactive cells in this region. A second major discrepancy between NT/N mRNA abundance and neurotensin-immunoreactivity occurs in the intensely labeled subiculum, a region that contains only scattered neurotensin-immunoreactive cells in the adult. These results suggest that, in specific regions of the forebrain, NT/N precursor is processed to yield products other than neurotensin. In addition, these results provide an anatomical basis for studying the physiological regulation of NT/N mRNA levels in the forebrain.

  5. Endoglin Deficiency in Bone Marrow Is Sufficient to Cause Cerebrovascular Dysplasia in the Adult Mouse after VEGF Stimulation

    PubMed Central

    Choi, Eun-Jung; Walker, Espen J.; Degos, Vincent; Jun, Kristine; Kuo, Robert; Pile-Spellman, John; Su, Hua; Young, William L.

    2013-01-01

    Background and Purpose Bone marrow-derived cells (BMDCs) home to vascular endothelial growth factor (VEGF)-induced brain angiogenic foci, and VEGF induces cerebrovascular dysplasia in adult endoglin heterozygous (Eng+/−) mice. We hypothesized that Eng+/− BMDCs cause cerebrovascular dysplasia in the adult mouse after VEGF stimulation. Methods BM transplantation was performed using adult wild-type (WT) and Eng+/− mice as donors/recipients. An adeno-associated viral vector expressing VEGF (AAV-VEGF) was injected into the basal ganglia 4 weeks after transplantation. Vascular density, dysplasia index (vessels >15 μm/100 vessels), and BMDCs in the angiogenic foci were analyzed. Results The dysplasia index of WT/Eng+/− BM mice was higher than WT/WT BM mice (p<0.001) and was similar to Eng+/−/Eng+/− BM mice (p=0.2). Dysplasia in Eng+/− mice was partially rescued by WT BM (p<0.001). WT/WT BM and WT/Eng+/− BM mice had similar numbers of BMDCs in the angiogenic foci (p=0.4), most of which were CD68+. Eng+/− monocytes/macrophages expressed less matrix metalloproteinase-9 and Notch1. Conclusions ENG-deficient BMDCs are sufficient for VEGF to induce vascular dysplasia in the adult mouse brain. Our data support a previously unrecognized role of BM in the development of cerebrovascular malformations. PMID:23306322

  6. Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex

    PubMed Central

    Fader, Sarah M.; Imaizumi, Kazuo; Yanagawa, Yuchio; Lee, Charles C.

    2016-01-01

    Perineuronal nets (PNNs) are specialized extracellular matrix molecules that are associated with the closing of the critical period, among other functions. In the adult brain, PNNs surround specific types of neurons, however the expression of PNNs in the auditory system of the mouse, particularly at the level of the midbrain and forebrain, has not been fully described. In addition, the association of PNNs with excitatory and inhibitory cell types in these structures remains unknown. Therefore, we sought to investigate the expression of PNNs in the inferior colliculus (IC), thalamic reticular nucleus (TRN) and primary auditory cortex (A1) of the mouse brain by labeling with wisteria floribunda agglutinin (WFA). To aid in the identification of inhibitory neurons in these structures, we employed the vesicular GABA transporter (VGAT)-Venus transgenic mouse strain, which robustly expresses an enhanced yellow-fluorescent protein (Venus) natively in nearly all gamma-amino butyric acid (GABA)-ergic inhibitory neurons, thus enabling a rapid and unambiguous assessment of inhibitory neurons throughout the nervous system. Our results demonstrate that PNNs are expressed throughout the auditory midbrain and forebrain, but vary in their local distribution. PNNs are most dense in the TRN and least dense in A1. Furthermore, PNNs are preferentially associated with inhibitory neurons in A1 and the TRN, but not in the IC of the mouse. These data suggest regionally specific roles for PNNs in auditory information processing. PMID:27089371

  7. Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex.

    PubMed

    Fader, Sarah M; Imaizumi, Kazuo; Yanagawa, Yuchio; Lee, Charles C

    2016-01-01

    Perineuronal nets (PNNs) are specialized extracellular matrix molecules that are associated with the closing of the critical period, among other functions. In the adult brain, PNNs surround specific types of neurons, however the expression of PNNs in the auditory system of the mouse, particularly at the level of the midbrain and forebrain, has not been fully described. In addition, the association of PNNs with excitatory and inhibitory cell types in these structures remains unknown. Therefore, we sought to investigate the expression of PNNs in the inferior colliculus (IC), thalamic reticular nucleus (TRN) and primary auditory cortex (A1) of the mouse brain by labeling with wisteria floribunda agglutinin (WFA). To aid in the identification of inhibitory neurons in these structures, we employed the vesicular GABA transporter (VGAT)-Venus transgenic mouse strain, which robustly expresses an enhanced yellow-fluorescent protein (Venus) natively in nearly all gamma-amino butyric acid (GABA)-ergic inhibitory neurons, thus enabling a rapid and unambiguous assessment of inhibitory neurons throughout the nervous system. Our results demonstrate that PNNs are expressed throughout the auditory midbrain and forebrain, but vary in their local distribution. PNNs are most dense in the TRN and least dense in A1. Furthermore, PNNs are preferentially associated with inhibitory neurons in A1 and the TRN, but not in the IC of the mouse. These data suggest regionally specific roles for PNNs in auditory information processing. PMID:27089371

  8. Fructose metabolism in the adult mouse optic nerve, a central white matter tract.

    PubMed

    Meakin, Paul J; Fowler, Maxine J; Rathbone, Alex J; Allen, Lynne M; Ransom, Bruce R; Ray, David E; Brown, Angus M

    2007-01-01

    Our recent report that fructose supported the metabolism of some, but not all axons, in the adult mouse optic nerve prompted us to investigate in detail fructose metabolism in this tissue, a typical central white matter tract, as these data imply efficient fructose metabolism in the central nervous system (CNS). In artificial cerebrospinal fluid containing 10 mmol/L glucose or 20 mmol/L fructose, the stimulus-evoked compound action potential (CAP) recorded from the optic nerve consisted of three stable peaks. Replacing 10 mmol/L glucose with 10 mmol/L fructose, however, caused delayed loss of the 1st CAP peak (the 2nd and 3rd CAP peaks were unaffected). Glycogen-derived metabolic substrate(s) temporarily sustained the 1st CAP peak in 10 mmol/L fructose, as depletion of tissue glycogen by a prior period of aglycaemia or high-frequency CAP discharge rendered fructose incapable of supporting the 1st CAP peak. Enzyme assays showed the presence of both hexokinase and fructokinase (both of which can phosphorylate fructose) in the optic nerve. In contrast, only hexokinase was expressed in cerebral cortex. Hexokinase in optic nerve had low affinity and low capacity with fructose as substrate, whereas fructokinase displayed high affinity and high capacity for fructose. These findings suggest an explanation for the curious fact that the fast conducting axons comprising the 1st peak of the CAP are not supported in 10 mmol/L fructose medium; these axons probably do not express fructokinase, a requirement for efficient fructose metabolism.

  9. Genetic influences on exercise-induced adult hippocampal neurogenesis across 12 divergent mouse strains

    PubMed Central

    Clark, Peter J.; Kohman, Rachel A.; Miller, Daniel S.; Bhattacharya, Tushar K.; Brzezinska, Weronika J.; Rhodes, Justin S.

    2011-01-01

    New neurons are continuously born in the hippocampus of several mammalian species throughout adulthood. Adult neurogenesis represents a natural model for understanding how to grow and incorporate new nerve cells into pre-existing circuits in the brain. Finding molecules or biological pathways that increase neurogenesis has broad potential for regenerative medicine. One strategy is to identify mouse strains that display large versus small increases in neurogenesis in response to wheel running so the strains can be contrasted to find common genes or biological pathways associated with enhanced neuron formation. Therefore, mice from 12 different isogenic strains were housed with or without running wheels for 43 days to measure the genetic regulation of exercise-induced neurogenesis. The first 10 days mice received daily injections of BrdU to label dividing cells. Neurogenesis was measured as the total number of BrdU cells co-expressing NeuN mature neuronal marker in the hippocampal granule cell layer by immunohistochemistry. Exercise increased neurogenesis in all strains, but the magnitude significantly depended on genotype. Strain means for distance run on wheels, but not distance traveled in cages without wheels, were significantly correlated with strain mean level of neurogenesis. Further, certain strains displayed greater neurogenesis than others for a fixed level of running. Strain means for neurogenesis under sedentary conditions were not correlated with neurogenesis under runner conditions suggesting that different genes influence baseline versus exercise-induced neurogenesis. Genetic contributions to exercise-induced hippocampal neurogenesis suggest that it may be possible to identify genes and pathways associated with enhanced neuroplastic responses to exercise. PMID:21223504

  10. Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures

    PubMed Central

    Gelain, Fabrizio; Bottai, Daniele; Vescovi, Angleo; Zhang, Shuguang

    2006-01-01

    Biomedical researchers have become increasingly aware of the limitations of conventional 2-dimensional tissue cell culture systems, including coated Petri dishes, multi-well plates and slides, to fully address many critical issues in cell biology, cancer biology and neurobiology, such as the 3-D microenvironment, 3-D gradient diffusion, 3-D cell migration and 3-D cell-cell contact interactions. In order to fully understand how cells behave in the 3-D body, it is important to develop a well-controlled 3-D cell culture system where every single ingredient is known. Here we report the development of a 3-D cell culture system using a designer peptide nanofiber scaffold with mouse adult neural stem cells. We attached several functional motifs, including cell adhesion, differentiation and bone marrow homing motifs, to a self-assembling peptide RADA16 (Ac-RADARADARADARADA-COHN2). These functionalized peptides undergo self-assembly into a nanofiber structure similar to Matrigel. During cell culture, the cells were fully embedded in the 3-D environment of the scaffold. Two of the peptide scaffolds containing bone marrow homing motifs significantly enhanced the neural cell survival without extra soluble growth and neurotrophic factors to the routine cell culture media. In these designer scaffolds, the cell populations with β-Tubulin+, GFAP+ and Nestin+ markers are similar to those found in cell populations cultured on Matrigel. The gene expression profiling array experiments showed selective gene expression, possibly involved in neural stem cell adhesion and differentiation. Because the synthetic peptides are intrinsically pure and a number of desired function cellular motifs are easy to incorporate, these designer peptide nanofiber scaffolds provide a promising controlled 3-D culture system for diverse tissue cells, and are useful as well for general molecular and cell biology. PMID:17205123

  11. Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba)

    PubMed Central

    Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca

    2015-01-01

    Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior–posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals. PMID:26594155

  12. Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba).

    PubMed

    Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca

    2015-01-01

    Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior-posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals. PMID:26594155

  13. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  14. Comprehensive Analysis of Neonatal versus Adult Unilateral Decortication in a Mouse Model Using Behavioral, Neuroanatomical, and DNA Microarray Approaches

    PubMed Central

    Yoshikawa, Akira; Nakamachi, Tomoya; Shibato, Junko; Rakwal, Randeep; Shioda, Seiji

    2014-01-01

    Previously, studying the development, especially of corticospinal neurons, it was concluded that the main compensatory mechanism after unilateral brain injury in rat at the neonatal stage was due in part to non-lesioned ipsilateral corticospinal neurons that escaped selection by axonal elimination or neuronal apoptosis. However, previous results suggesting compensatory mechanism in neonate brain were not correlated with high functional recovery. Therefore, what is the difference among neonate and adult in the context of functional recovery and potential mechanism(s) therein? Here, we utilized a brain unilateral decortication mouse model and compared motor functional recovery mechanism post-neonatal brain hemisuction (NBH) with adult brain hemisuction (ABH). Three analyses were performed: (1) Quantitative behavioral analysis of forelimb movements using ladder walking test; (2) neuroanatomical retrograde tracing analysis of unlesioned side corticospinal neurons; and (3) differential global gene expressions profiling in unlesioned-side neocortex (rostral from bregma) in NBH and ABH on a 8 × 60 K mouse whole genome Agilent DNA chip. Behavioral data confirmed higher recovery ability in NBH over ABH is related to non-lesional frontal neocortex including rostral caudal forelimb area. A first inventory of differentially expressed genes genome-wide in the NBH and ABH mouse model is provided as a resource for the scientific community. PMID:25490135

  15. Comparative proteomic analysis of mouse livers from embryo to adult reveals an association with progression of hepatocellular carcinoma.

    PubMed

    Lee, Nikki P Y; Leung, Kar-wai; Cheung, Nicole; Lam, Brian Y; Xu, Michelle Z; Sham, Pak C; Lau, George K; Poon, Ronnie T P; Fan, Sheung Tat; Luk, John M

    2008-05-01

    To identify potential oncofetal biomarkers that distinguish hepatocellular carcinoma (HCC) from healthy liver tissues, we compared and analyzed the proteomic profiles of mouse livers at different developmental stages. Fetal (E13.5, E16.5), newborn (NB), postnatal (3-week) and adult (3-month) livers were isolated and profiled by 2-D PAGE. Statistical analysis using linear regression and false discovery rate (FDR) revealed that 361 protein spots showed significant changes. Unsupervised hierarchical tree analysis segregated the proteins into fetal, NB, and postnatal-adult clusters. Distinctive protein markers were identified by MALDI-TOF/MS and the corresponding mRNA profiles were further determined by Q-PCR. Fetal markers (hPCNA, hHSP7C, hHEM6) and postnatal-adult markers (hARGI1, hASSY, hBHMT, hFABPL) were selected for testing against a panel of seven human hepatocyte/HCC cell lines and 59 clinical specimens. The fetal proteins were found to be overexpressed in the metastatic HCC cell lines and the tumor tissues, whereas the postnatal-adult proteins were expressed in non-tumor tissues and normal hepatocytes. This "Ying-Yang" pattern, as orchestrated by distinct fetal and adult markers, is hypothesized to indicate the progressive change of the liver from a growing, less-differentiated organ into a functional metabolic center. Thus, embryogenesis and tumorigenesis share certain oncofetal markers and adult "hepatic" phenotypes are lost in HCC.

  16. The bilaterian forebrain: an evolutionary chimaera.

    PubMed

    Tosches, Maria Antonietta; Arendt, Detlev

    2013-12-01

    The insect, annelid and vertebrate forebrains harbour two major centres of output control, a sensory-neurosecretory centre releasing hormones and a primordial locomotor centre that controls the initiation of muscular body movements. In vertebrates, both reside in the hypothalamus. Here, we review recent comparative neurodevelopmental evidence indicating that these centres evolved from separate condensations of neurons on opposite body sides ('apical nervous system' versus 'blastoporal nervous system') and that their developmental specification involved distinct regulatory networks (apical six3 and rx versus mediolateral nk and pax gene-dependent patterning). In bilaterian ancestors, both systems approached each other and became closely intermingled, physically, functionally and developmentally. Our 'chimeric brain hypothesis' sheds new light on the vast success and rapid diversification of bilaterian animals in the Cambrian and revises our understanding of brain architecture.

  17. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine.

    PubMed

    Al Alam, Denise; Danopoulos, Soula; Schall, Kathy; Sala, Frederic G; Almohazey, Dana; Fernandez, G Esteban; Georgia, Senta; Frey, Mark R; Ford, Henri R; Grikscheit, Tracy; Bellusci, Saverio

    2015-04-15

    Intestinal epithelial cell renewal relies on the right balance of epithelial cell migration, proliferation, differentiation, and apoptosis. Intestinal epithelial cells consist of absorptive and secretory lineage. The latter is comprised of goblet, Paneth, and enteroendocrine cells. Fibroblast growth factor 10 (FGF10) plays a central role in epithelial cell proliferation, survival, and differentiation in several organs. The expression pattern of FGF10 and its receptors in both human and mouse intestine and their role in small intestine have yet to be investigated. First, we analyzed the expression of FGF10, FGFR1, and FGFR2, in the human ileum and throughout the adult mouse small intestine. We found that FGF10, FGFR1b, and FGFR2b are expressed in the human ileum as well as in the mouse small intestine. We then used transgenic mouse models to overexpress Fgf10 and a soluble form of Fgfr2b, to study the impact of gain or loss of Fgf signaling in the adult small intestine. We demonstrated that overexpression of Fgf10 in vivo and in vitro induces goblet cell differentiation while decreasing Paneth cells. Moreover, FGF10 decreases stem cell markers such as Lgr5, Lrig1, Hopx, Ascl2, and Sox9. FGF10 inhibited Hes1 expression in vitro, suggesting that FGF10 induces goblet cell differentiation likely through the inhibition of Notch signaling. Interestingly, Fgf10 overexpression for 3 days in vivo and in vitro increased the number of Mmp7/Muc2 double-positive cells, suggesting that goblet cells replace Paneth cells. Further studies are needed to determine the mechanism by which Fgf10 alters cell differentiation in the small intestine.

  18. GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability

    PubMed Central

    He, Minchao; Singh, Prabhakar; Cheng, Shaowu; Zhang, Qiang; Peng, Wei; Ding, XueFeng; Li, Longxuan; Liu, Jun; Premont, Richard T.; Morgan, Dave; Burns, Jeffery M.; Swerdlow, Russell H.; Suo, William Z.

    2016-01-01

    Why certain diseases primarily affect one specific neuronal subtype rather than another is a puzzle whose solution underlies the development of specific therapies. Selective basal forebrain cholinergic (BFC) neurodegeneration participates in cognitive impairment in Alzheimer’s disease (AD), yet the underlying mechanism remains elusive. Here, we report the first recapitulation of the selective BFC neuronal loss that is typical of human AD in a mouse model termed GAP. We created GAP mice by crossing Tg2576 mice that over-express the Swedish mutant human β-amyloid precursor protein gene with G protein-coupled receptor kinase-5 (GRK5) knockout mice. This doubly defective mouse displayed significant BFC neuronal loss at 18 months of age, which was not observed in either of the singly defective parent strains or in the wild type. Along with other supporting evidence, we propose that GRK5 deficiency selectively renders BFC neurons more vulnerable to degeneration. PMID:27193825

  19. GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability.

    PubMed

    He, Minchao; Singh, Prabhakar; Cheng, Shaowu; Zhang, Qiang; Peng, Wei; Ding, XueFeng; Li, Longxuan; Liu, Jun; Premont, Richard T; Morgan, Dave; Burns, Jeffery M; Swerdlow, Russell H; Suo, William Z

    2016-05-19

    Why certain diseases primarily affect one specific neuronal subtype rather than another is a puzzle whose solution underlies the development of specific therapies. Selective basal forebrain cholinergic (BFC) neurodegeneration participates in cognitive impairment in Alzheimer's disease (AD), yet the underlying mechanism remains elusive. Here, we report the first recapitulation of the selective BFC neuronal loss that is typical of human AD in a mouse model termed GAP. We created GAP mice by crossing Tg2576 mice that over-express the Swedish mutant human β-amyloid precursor protein gene with G protein-coupled receptor kinase-5 (GRK5) knockout mice. This doubly defective mouse displayed significant BFC neuronal loss at 18 months of age, which was not observed in either of the singly defective parent strains or in the wild type. Along with other supporting evidence, we propose that GRK5 deficiency selectively renders BFC neurons more vulnerable to degeneration.

  20. Forebrain-specific deletion of Cdk5 in pyramidal neurons results in mania-like behavior and cognitive impairment

    PubMed Central

    Su, Susan C.; Rudenko, Andrii; Cho, Sukhee; Tsai, Li-Huei

    2013-01-01

    Cyclin-dependent kinase 5 (Cdk5) is associated with synaptic plasticity and cognitive function. Previous reports have demonstrated that Cdk5 is necessary for memory formation, although others have reported Cdk5 conditional knockout mouse models exhibiting enhanced learning and memory. Furthermore, how Cdk5 acts in specific cell populations to affect behavior and cognitive outcomes remains unclear. Here we conduct a behavioral characterization of a forebrain-specific Cdk5 conditional knockout mouse model under the αCaMKII promoter, in which Cdk5 is ablated in excitatory pyramidal neurons of the forebrain. The Cdk5 conditional knockouts exhibit hyperactivitiy in the open field, reduced anxiety, and reduced behavioral despair. Moreover, the Cdk5 conditional knockouts also display impaired spatial learning in the Morris water maze and are severely impaired in contextual fear memory, which correspond to deficits in synaptic transmission. Remarkably, the hyperactivity of the Cdk5 conditional knockouts can be ameliorated by the administration of lithium chloride, an inhibitor of GSK3β signaling. Collectively, our data reveal that Cdk5 ablation from forebrain excitatory neurons results in deleterious effects on emotional and cognitive behavior and highlight a key role for Cdk5 in regulating the GSK3β signaling pathway. PMID:23850563

  1. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    SciTech Connect

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  2. Patterning of the chick forebrain anlage by the prechordal plate.

    PubMed

    Pera, E M; Kessel, M

    1997-10-01

    We analysed the role of the prechordal plate in forebrain development of chick embryos in vivo. After transplantation to uncommitted ectoderm a prechordal plate induces an ectopic, dorsoventrally patterned, forebrain-like vesicle. Grafting laterally under the anterior neural plate causes ventralization of the lateral side of the forebrain, as indicated by a second expression domain of the homeobox gene NKX2.1. Such a lateral ventralization cannot be induced by the secreted factor Sonic Hedgehog alone, as this is only able to distort the ventral forebrain medially. Removal of the prechordal plate does not reduce the rostrocaudal extent of the anterior neural tube, but leads to significant narrowing and cyclopia. Excision of the head process results in the caudal expansion of the NKX2.1 expression in the ventral part of the anterior neural tube, while PAX6 expression in the dorsal part remains unchanged. We suggest that there are three essential steps in early forebrain patterning, which culminate in the ventralization of the forebrain. First, anterior neuralization occurs at the primitive streak stage, when BMP-4-antagonizing factors emanate from the node and spread in a planar fashion to induce anterior neural ectoderm. Second, the anterior translocation of organizer-derived cells shifts the source of neuralizing factors anteriorly, where the relative concentration of BMP-4-antagonists is thus elevated, and the medial part of the prospective forebrain becomes competent to respond to ventralizing factors. Third, the forebrain anlage is ventralized by signals including Sonic Hedgehog, thereby creating a new identity, the prospective hypothalamus, which splits the eye anlage into two lateral domains.

  3. Basal forebrain projections to the lateral habenula modulate aggression reward.

    PubMed

    Golden, Sam A; Heshmati, Mitra; Flanigan, Meghan; Christoffel, Daniel J; Guise, Kevin; Pfau, Madeline L; Aleyasin, Hossein; Menard, Caroline; Zhang, Hongxing; Hodes, Georgia E; Bregman, Dana; Khibnik, Lena; Tai, Jonathan; Rebusi, Nicole; Krawitz, Brian; Chaudhury, Dipesh; Walsh, Jessica J; Han, Ming-Hu; Shapiro, Matt L; Russo, Scott J

    2016-06-30

    Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing. PMID:27357796

  4. Basal forebrain projections to the lateral habenula modulate aggression reward.

    PubMed

    Golden, Sam A; Heshmati, Mitra; Flanigan, Meghan; Christoffel, Daniel J; Guise, Kevin; Pfau, Madeline L; Aleyasin, Hossein; Menard, Caroline; Zhang, Hongxing; Hodes, Georgia E; Bregman, Dana; Khibnik, Lena; Tai, Jonathan; Rebusi, Nicole; Krawitz, Brian; Chaudhury, Dipesh; Walsh, Jessica J; Han, Ming-Hu; Shapiro, Matt L; Russo, Scott J

    2016-06-30

    Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing.

  5. Engrailed-2 (En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior.

    PubMed

    Genestine, Matthieu; Lin, Lulu; Durens, Madel; Yan, Yan; Jiang, Yiqin; Prem, Smrithi; Bailoor, Kunal; Kelly, Brian; Sonsalla, Patricia K; Matteson, Paul G; Silverman, Jill; Crawley, Jacqueline N; Millonig, James H; DiCicco-Bloom, Emanuel

    2015-10-15

    Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2-knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ∼35% in forebrain, they were increased 40 -: 75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5 -: 15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human

  6. PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain

    PubMed Central

    Liu, Mali; Wu, Guoxin; Baysarowich, Jennifer; Kavana, Michael; Addona, George H.; Bierilo, Kathleen K.; Mudgett, John S.; Pavlovic, Guillaume; Sitlani, Ayesha; Renger, John J.; Hubbard, Brian K.; Fisher, Timothy S.; Zerbinatti, Celina V.

    2010-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that regulates hepatic low-density lipoprotein receptor (LDLR) levels in humans. PCSK9 has also been shown to regulate the levels of additional membrane-bound proteins in vitro, including the very low-density lipoprotein receptor (VLDLR), apolipoprotein E receptor 2 (ApoER2) and the β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), which are all highly expressed in the CNS and have been implicated in Alzheimer's disease. To better understand the role of PCSK9 in regulating these additional target proteins in vivo, their steady-state levels were measured in the brain of wild-type, PCSK9-deficient, and human PCSK9 overexpressing transgenic mice. We found that while PCSK9 directly bound to recombinant LDLR, VLDLR, and apoER2 protein in vitro, changes in PCSK9 expression did not alter the level of these receptors in the mouse brain. In addition, we found no evidence that PCSK9 regulates BACE1 levels or APP processing in the mouse brain. In conclusion, our results suggest that while PCSK9 plays an important role in regulating circulating LDL cholesterol levels by reducing the number of hepatic LDLRs, it does not appear to modulate the levels of LDLR and other membrane-bound proteins in the adult mouse brain. PMID:20453200

  7. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons.

    PubMed

    Wang, Z-Y; McDowell, T; Wang, P; Alvarez, R; Gomez, T; Bjorling, D E

    2014-09-26

    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.

  8. PPARγ mRNA in the adult mouse hypothalamus: distribution and regulation in response to dietary challenges

    PubMed Central

    Liu, Yang; Huang, Ying; Lee, Syann; Bookout, Angie L.; Castorena, Carlos M.; Wu, Hua; Gautron, Laurent

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that was originally identified as a regulator of peroxisome proliferation and adipocyte differentiation. Emerging evidence suggests that functional PPARγ signaling also occurs within the hypothalamus. However, the exact distribution and identities of PPARγ-expressing hypothalamic cells remains under debate. The present study systematically mapped PPARγ mRNA expression in the adult mouse brain using in situ hybridization histochemistry. PPARγ mRNA was found to be expressed at high levels outside the hypothalamus including the neocortex, the olfactory bulb, the organ of the vasculosum of the lamina terminalis (VOLT), and the subfornical organ. Within the hypothalamus, PPARγ was present at moderate levels in the suprachiasmatic nucleus (SCh) and the ependymal of the 3rd ventricle. In all examined feeding-related hypothalamic nuclei, PPARγ was expressed at very low levels that were close to the limit of detection. Using qPCR techniques, we demonstrated that PPARγ mRNA expression was upregulated in the SCh in response to fasting. Double in situ hybridization further demonstrated that PPARγ was primarily expressed in neurons rather than glia. Collectively, our observations provide a comprehensive map of PPARγ distribution in the intact adult mouse hypothalamus. PMID:26388745

  9. A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development.

    PubMed

    Brake, Denise G; Evenson, Donald P

    2004-01-01

    The health safety of transgenic soybeans (glyphosate-tolerant or Roundup Ready) was studied using the mammalian testis (mouse model) as a sensitive biomonitor of potential toxic effects. Pregnant mice were fed a transgenic soybean or a non-transgenic (conventional) diet through gestation and lactation. After weaning, the young male mice were maintained on the respective diets. At 8, 16, 26, 32, 63 and 87 days after birth, three male mice and an adult reference mouse were killed, the testes surgically removed, and the cell populations measured by flow cytometry. Multi-generational studies were conducted in the same manner. The results showed that the transgenic foodstuffs had no effect on macromolecular synthesis or cell growth and differentiation as evidenced by no differences in the percentages of testicular cell populations (haploid, diploid, and tetraploid) between the transgenic soybean-fed mice and those fed the conventional diet. Additionally, there were no differences in litter sizes and body weights of the two groups. It was concluded that the transgenic soybean diet had no negative effect on fetal, postnatal, pubertal or adult testicular development.

  10. Chronic serotonin-norepinephrine reuptake transporter inhibition modifies basal respiratory output in adult mouse in vitro and in vivo

    PubMed Central

    Warren, Kelly A.; Solomon, Irene C.

    2012-01-01

    Respiratory disturbances are a common feature of panic disorder and present as breathing irregularity, hyperventilation, and increased sensitivity to carbon dioxide. Common therapeutic interventions, such as tricyclic (TCA) and selective serotonin reuptake inhibitor (SSRI) antidepressants, have been shown to ameliorate not only the psychological components of panic disorder but also the respiratory disturbances. These drugs are also prescribed for generalized anxiety and depressive disorders, neither of which are characterized by respiratory disturbances, and previous studies have demonstrated that TCAs and SSRIs exert effects on basal respiratory activity in animal models without panic disorder symptoms. Whether serotonin-norepinephrine reuptake inhibitors (SNRIs) have similar effects on respiratory activity remains to be determined. Therefore, the current study was designed to investigate the effects of chronic administration of the SNRI antidepressant venlafaxine (VHCL) on basal respiratory output. For these experiments, we recorded phrenic nerve discharge in an in vitro arterially-perfused adult mouse preparation and diaphragm electromyogram (EMG) activity in an in vivo urethane-anesthetized adult mouse preparation. We found that following 28-d VHCL administration, basal respiratory burst frequency was markedly reduced due to an increase in expiratory duration (TE), and the inspiratory duty cycle (TI/Ttot) was significantly shortened. In addition, post-inspiratory and spurious expiratory discharges were seen in vitro. Based on our observations, we suggest that drugs capable of simultaneously blocking both 5-HT and NE reuptake transporters have the potential to influence the respiratory control network in patients using SNRI therapy. PMID:22871263

  11. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    PubMed Central

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  12. Forebrain-Cerebellar Interactions During Learning

    PubMed Central

    Weible, Aldis P.; Galvez, Roberto; Disterhoft, John F.

    2013-01-01

    The cerebral cortex and cerebellum are high level neural centers that must interact cooperatively to generate coordinated and efficient goal directed movements, including those necessary for a well-timed conditioned response. In this review we describe the progress made in utilizing the forebrain-dependent trace eyeblink conditioning paradigm to understand the neural substrates mediating cerebro-cerebellar interactions during learning and consolidation of conditioned responses. This review expands upon our previous hypothesis that the interaction occurs at sites that project to the pontine nuclei (Weiss & Disterhoft, 1996), by offering more details on the function of the hippocampus and prefrontal cortex during acquisition and the circuitry involved in facilitating pontine input to the cerebellum as a necessary requisite for trace eyeblink conditioning. Our discussion describes the role of the hippocampus, caudal anterior cingulate gyrus, basal ganglia, thalamus, and sensory cortex, including the benefit of utilizing the whisker barrel cortical system. We propose that permanent changes in the sensory cortex, along with input from the caudate and claustrum, and a homologue of the primate dorsolateral prefrontal cortex, serve to bridge the stimulus free trace interval and allow the cerebellum to generate a well-timed conditioned response. PMID:26617664

  13. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse

    SciTech Connect

    Lin Zhoumeng; Fisher, Jeffrey W.; Ross, Matthew K.; Filipov, Nikolay M.

    2011-02-15

    Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR and DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.

  14. Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis

    PubMed Central

    Zhang, Hongyu; Siegel, Christopher T.; Shuai, Ling; Lai, Jiejuan; Zeng, Linli; Zhang, Yujun; Lai, Xiangdong; Bie, Ping; Bai, Lianhua

    2016-01-01

    NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2+ cells) that were isolated from healthy adult mouse liver by using a “Percoll-Plate-Wait” procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 106 cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2+ cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2+ cells may be novel adult liver progenitors that participate in liver regeneration. PMID:26905303

  15. MicroRNAs and Their Targets Are Differentially Regulated in Adult and Neonatal Mouse CD8+ T Cells.

    PubMed

    Wissink, Erin M; Smith, Norah L; Spektor, Roman; Rudd, Brian D; Grimson, Andrew

    2015-11-01

    Immunological memory, which protects organisms from re-infection, is a hallmark of the mammalian adaptive immune system and the underlying principle of vaccination. In early life, however, mice and other mammals are deficient at generating memory CD8+ T cells, which protect organisms from intracellular pathogens. The molecular basis that differentiates adult and neonatal CD8+ T cells is unknown. MicroRNAs (miRNAs) are both developmentally regulated and required for normal adult CD8+ T cell functions. We used next-generation sequencing to identify mouse miRNAs that are differentially regulated in adult and neonatal CD8+ T cells, which may contribute to the impaired development of neonatal memory cells. The miRNA profiles of adult and neonatal cells were surprisingly similar during infection; however, we observed large differences prior to infection. In particular, miR-29 and miR-130 have significant differential expression between adult and neonatal cells before infection. Importantly, using RNA-Seq, we detected reciprocal changes in expression of messenger RNA targets for both miR-29 and miR-130. Moreover, targets that we validated include Eomes and Tbx21, key genes that regulate the formation of memory CD8+ T cells. Notably, age-dependent changes in miR-29 and miR-130 are conserved in human CD8+ T cells, further suggesting that these developmental differences are biologically relevant. Together, these results demonstrate that miR-29 and miR-130 are likely important regulators of memory CD8+ T cell formation and suggest that neonatal cells are committed to a short-lived effector cell fate prior to infection. PMID:26416483

  16. MicroRNAs and Their Targets Are Differentially Regulated in Adult and Neonatal Mouse CD8+ T Cells

    PubMed Central

    Wissink, Erin M.; Smith, Norah L.; Spektor, Roman; Rudd, Brian D.; Grimson, Andrew

    2015-01-01

    Immunological memory, which protects organisms from re-infection, is a hallmark of the mammalian adaptive immune system and the underlying principle of vaccination. In early life, however, mice and other mammals are deficient at generating memory CD8+ T cells, which protect organisms from intracellular pathogens. The molecular basis that differentiates adult and neonatal CD8+ T cells is unknown. MicroRNAs (miRNAs) are both developmentally regulated and required for normal adult CD8+ T cell functions. We used next-generation sequencing to identify mouse miRNAs that are differentially regulated in adult and neonatal CD8+ T cells, which may contribute to the impaired development of neonatal memory cells. The miRNA profiles of adult and neonatal cells were surprisingly similar during infection; however, we observed large differences prior to infection. In particular, miR-29 and miR-130 have significant differential expression between adult and neonatal cells before infection. Importantly, using RNA-Seq, we detected reciprocal changes in expression of messenger RNA targets for both miR-29 and miR-130. Moreover, targets that we validated include Eomes and Tbx21, key genes that regulate the formation of memory CD8+ T cells. Notably, age-dependent changes in miR-29 and miR-130 are conserved in human CD8+ T cells, further suggesting that these developmental differences are biologically relevant. Together, these results demonstrate that miR-29 and miR-130 are likely important regulators of memory CD8+ T cell formation and suggest that neonatal cells are committed to a short-lived effector cell fate prior to infection. PMID:26416483

  17. Impact of basal forebrain cholinergic inputs on basolateral amygdala neurons.

    PubMed

    Unal, Cagri T; Pare, Denis; Zaborszky, Laszlo

    2015-01-14

    In addition to innervating the cerebral cortex, basal forebrain cholinergic (BFc) neurons send a dense projection to the basolateral nucleus of the amygdala (BLA). In this study, we investigated the effect of near physiological acetylcholine release on BLA neurons using optogenetic tools and in vitro patch-clamp recordings. Adult transgenic mice expressing cre-recombinase under the choline acetyltransferase promoter were used to selectively transduce BFc neurons with channelrhodopsin-2 and a reporter through the injection of an adeno-associated virus. Light-induced stimulation of BFc axons produced different effects depending on the BLA cell type. In late-firing interneurons, BFc inputs elicited fast nicotinic EPSPs. In contrast, no response could be detected in fast-spiking interneurons. In principal BLA neurons, two different effects were elicited depending on their activity level. When principal BLA neurons were quiescent or made to fire at low rates by depolarizing current injection, light-induced activation of BFc axons elicited muscarinic IPSPs. In contrast, with stronger depolarizing currents, eliciting firing above ∼ 6-8 Hz, these muscarinic IPSPs lost their efficacy because stimulation of BFc inputs prolonged current-evoked afterdepolarizations. All the effects observed in principal neurons were dependent on muscarinic receptors type 1, engaging different intracellular mechanisms in a state-dependent manner. Overall, our results suggest that acetylcholine enhances the signal-to-noise ratio in principal BLA neurons. Moreover, the cholinergic engagement of afterdepolarizations may contribute to the formation of stimulus associations during fear-conditioning tasks where the timing of conditioned and unconditioned stimuli is not optimal for the induction of synaptic plasticity.

  18. Forebrain pathway for auditory space processing in the barn owl.

    PubMed

    Cohen, Y E; Miller, G L; Knudsen, E I

    1998-02-01

    The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway. PMID:9463450

  19. Daily rhythms of core temperature and locomotor activity indicate different adaptive strategies to cold exposure in adult and aged mouse lemurs acclimated to a summer-like photoperiod.

    PubMed

    Terrien, Jeremy; Zizzari, Philippe; Epelbaum, Jacques; Perret, Martine; Aujard, Fabienne

    2009-07-01

    Daily variations in core temperature (Tc) within the normothermic range imply thermoregulatory processes that are essential for optimal function and survival. Higher susceptibility towards cold exposure in older animals suggests that these processes are disturbed with age. In the mouse lemur, a long-day breeder, we tested whether aging affected circadian rhythmicity of Tc, locomotor activity (LA), and energy balance under long-day conditions when exposed to cold. Adult (N = 7) and aged (N = 5) mouse lemurs acclimated to LD14/10 were exposed to 10-day periods at 25 and 12 degrees C. Tc and LA rhythms were recorded by telemetry, and caloric intake (CI), body mass changes, and plasma IGF-1 were measured. During exposure to 25 degrees C, both adult and aged mouse lemurs exhibited strong daily variations in Tc. Aged animals exhibited lower levels of nocturnal LA and nocturnal and diurnal Tc levels in comparison to adults. Body mass and IGF-1 levels remained unchanged with aging. Under cold exposure, torpor bout occurrence was never observed whatever the age category. Adult and aged mouse lemurs maintained their Tc in the normothermic range and a positive energy balance. All animals exhibited increase in CI and decrease in IGF-1 in response to cold. The decrease in IGF-1 was delayed in aged mouse lemurs compared to adults. Moreover, both adult and aged animals responded to cold exposure by increasing their diurnal LA compared to those under Ta = 25 degrees C. However, aged animals exhibited a strong decrease in nocturnal LA and Tc, whereas cold effects were only slight in adults. The temporal organization and amplitude of the daily phase of low Tc were particularly well preserved under cold exposure in both age groups. Sexually active mouse lemurs exposed to cold thus seemed to prevent torpor exhibition and temporal disorganization of daily rhythms of Tc, even during aging. However, although energy balance was not impaired with age in mouse lemurs after cold exposure

  20. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections.

    PubMed

    Cronan, Mark R; Rosenberg, Allison F; Oehlers, Stefan H; Saelens, Joseph W; Sisk, Dana M; Jurcic Smith, Kristen L; Lee, Sunhee; Tobin, David M

    2015-12-01

    Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ. PMID:26449262

  1. POD Nanoparticles Expressing GDNF Provide Structural and Functional Rescue of Light-induced Retinal Degeneration in an Adult Mouse

    PubMed Central

    Read, Sarah P; Cashman, Siobhan M; Kumar-Singh, Rajendra

    2010-01-01

    Peptide for ocular delivery (POD) is a novel cationic cell-penetrating peptide (CPP) which, when conjugated with polyethylene glycol (PEG-POD), can deliver plasmid DNA to the retinal pigment epithelium (RPE) of adult murine retina. PEG-POD nanoparticles containing an expression cassette for glial cell line–derived neurotrophic factor (PEG–POD~GDNF) were investigated for their ability to inhibit light-induced photoreceptor apoptosis. PEG-POD~GDNF, control nanoparticles, or buffer were injected into the subretinal space of adult murine retina and retinal degeneration induced by blue light. Animals injected with PEG-POD~GDNF showed a significant reduction (3.9–7.7 fold) in apoptosis relative to control-injected animals. The thickness of the outer nuclear layer (ONL) of the superior retina of PEG-POD~GDNF-injected eyes was significantly greater (23.6–39.3%) than control-injected retina 14 days post-light treatment. PEG-POD~GDNF-injected eyes showed a 27–39% greater functional response relative to controls, as measured by electroretinogram (ERG) 7 days post-light treatment. This is one of only two studies demonstrating histological and functional rescue of a mouse model of retinal degeneration following nonviral administration of a transgene into adult retina. Although rescue is short lived for clinical application, this study represents an important step in the development of nonviral gene therapy for retinal diseases. PMID:20700110

  2. Chronic Social Stress Affects Synaptic Maturation of Newly Generated Neurons in the Adult Mouse Dentate Gyrus

    PubMed Central

    Chen, Chien-Chung; Huang, Chiung-Chun

    2016-01-01

    Background: Chronic stress has been found to suppress adult neurogenesis, but it remains unclear whether it may affect the maturation process of adult-born neurons. Here, we examined the influence of chronic social defeat stress on the morphological and electrophysiological properties of adult-born dentate granule cells at different developmental stages. Methods: Adult C57BL/6 mice were subjected to 10 days of chronic social defeat stress followed by a social interaction test 24 hours after the last defeat. Defeated mice were segregated into susceptible and unsusceptible subpopulations based on a measure of social interaction test. Combining electrophysiology with retrovirus-mediated birth-dating and labeling, we examined the impact of chronic social defeat stress on temporal regulation of synaptic plasticity of adult-born dentate granule cells along their maturation. Results: Chronic social defeat stress decreases the survival and dendritic complexity of adult-born dentate granule cells. While chronic social defeat stress doesn’t alter the intrinsic electrophysiological properties and synaptic transmission of surviving adult-born dentate granule cells, it promotes the developmental switch in synaptic N-methyl-D-aspartate receptors from predominant GluN2B- to GluN2A-containing receptors, which transform the immature synapse of adult-born dentate granule cells from one that exhibits enhanced long-term potentiation to one that has normal levels of long-term potentiation. Furthermore, chronic social defeat stress increases the level of endogenous repressor element-1 silencing transcription factor mRNA in adult-born dentate granule cells, and knockdown of the repressor element-1 silencing transcription factor in adult-born dentate granule cells rescues chronic social defeat stress-induced morphological deficits and accelerated developmental switch in synaptic N-methyl-D-aspartate receptor subunit composition. Conclusions: These results uncover a previously

  3. Pregnenolone sulfate and its enantiomer: differential modulation of memory in a spatial discrimination task using forebrain NMDA receptor deficient mice

    PubMed Central

    Petit, Géraldine H.; Tobin, Christine; Krishnan, Kathiresan; Moricard, Yves; Covey, Douglas F.; Rondi-Reig, Laure; Akwa, Yvette

    2010-01-01

    This study examined the role of forebrain N-methyl-D-aspartate receptors (NMDA-Rs) in the promnesiant effects of natural (+) pregnenolone sulfate (PREGS) and its synthetic (−) enantiomer ent-PREGS in young adult mice. Using the two-trial arm discrimination task in a Y-maze, PREGS and ent-PREGS administration to control mice increased memory performances. In mice with a knock-out of the NR1 subunit of NMDA-Rs in the forebrain, the promnesiant effect of ent-PREGS was maintained whereas the activity of PREGS was lost. Memory enhancement by PREGS involves the NMDA-R activity in the hippocampal CA1 area and possibly in some locations of the cortical layers, whereas ent-PREGS acts independently of NMDA-R function. PMID:21036556

  4. Chick homeobox gene cDlx expression demarcates the forebrain anlage, indicating the onset of forebrain regional specification at gastrulation.

    PubMed

    Borghjid, S; Siddiqui, M A

    2000-01-01

    Here we describe the isolation and characterization of a chick homeobox-containing gene, cDlx, which shows greater than 85% homology to the homeodomain of other vertebrate Distal-less genes. Northern blot analysis and in situ hybridization studies reveal that cDlx expression is developmentally regulated and is tissue specific. In particular, the developmental expression pattern is characterized by an early appearance of cDlx transcript in the prospective forebrain region of gastrulating embryos. During neurulation, cDlx is consistently expressed in a spatially restricted domain in the presumptive ventral forebrain region of the neural plate that will give rise to the hypothalamus and the adenohypophysis. Our data support the notion that members of the Dlx gene family are part of a homeobox gene code in forebrain pattern formation and suggest that regional specification of the forebrain occurs at much earlier stages than previously thought. The homeobox gene cDlx may thus play a role in defining forebrain regional identity as early as gastrulation.

  5. Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion.

    PubMed

    Launay, Pierre-Serge; Godefroy, David; Khabou, Hanen; Rostene, William; Sahel, Jose-Alain; Baudouin, Christophe; Melik Parsadaniantz, Stéphane; Reaux-Le Goazigo, Annabelle

    2015-10-01

    Tissue clearing and subsequent imaging of intact transparent tissues have provided an innovative way to analyze anatomical pathways in the nervous system. In this study, we combined a recent 3-dimensional imaging of solvent cleared organ (3DISCO) procedure, light-sheet microscopy, fluorescent retrograde tracer, and Imaris software to 3D map corneal sensory neurons within a whole adult mouse trigeminal ganglion (TG). We first established the optimized steps to easily and rapidly clear a fixed TG. We found that the 3DISCO procedure gave excellent results and took less than 3 h to clear the TG. In a second set of experiments, a retrograde tracer (cholera toxin B Alexa 594-conjugated) was applied to de-epithelialized cornea to retrograde-labeled corneal sensory neurons. Two days later, TGs were cleared by the 3DISCO method and serial imaging was performed using light-sheet ultramicroscopic technology. High-resolution images of labeled neurons can be easily and rapidly obtained from a 3D reconstructed whole mouse TG. We then provided a 3D reconstruction of corneal afferent neurons and analyzed their precise localization in the TG. Thus, we showed that neurons supplying corneal sensory innervation exhibit a highly specific limited dorsomedial localization within the TG. We report that our combined method offers the possibility to perform manual (on 20 μm sections) and automated (on 3D reconstructed TG) counting of labeled cells in a cleared mouse TG. To conclude, we illustrate that the combination of the 3DISCO clearing method with light-sheet microscopy, retrograde tracer, and automatic counting represents a rapid and reliable method to analyze a subpopulation of neurons within the peripheral and central nervous system.

  6. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia.

    PubMed

    Simon, Camille; Chagraoui, Jalila; Krosl, Jana; Gendron, Patrick; Wilhelm, Brian; Lemieux, Sébastien; Boucher, Geneviève; Chagnon, Pierre; Drouin, Simon; Lambert, Raphaëlle; Rondeau, Claude; Bilodeau, Annie; Lavallée, Sylvie; Sauvageau, Martin; Hébert, Josée; Sauvageau, Guy

    2012-04-01

    In this study, we show the high frequency of spontaneous γδ T-cell leukemia (T-ALL) occurrence in mice with biallelic deletion of enhancer of zeste homolog 2 (Ezh2). Tumor cells show little residual H3K27 trimethylation marks compared with controls. EZH2 is a component of the PRC2 Polycomb group protein complex, which is associated with DNA methyltransferases. Using next-generation sequencing, we identify alteration in gene expression levels of EZH2 and acquired mutations in PRC2-associated genes (DNMT3A and JARID2) in human adult T-ALL. Together, these studies document that deregulation of EZH2 and associated genes leads to the development of mouse, and likely human, T-ALL.

  7. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer's disease.

    PubMed

    Kim, Hye Yun; Kim, Hyunjin V; Yoon, Jin H; Kang, Bo Ram; Cho, Soo Min; Lee, Sejin; Kim, Ji Yoon; Kim, Joo Won; Cho, Yakdol; Woo, Jiwan; Kim, YoungSoo

    2014-12-12

    Alzheimer's disease (AD) is a lethal progressive neurological disorder affecting the memory. Recently, US Food and Drug Administration mitigated the standard for drug approval, allowing symptomatic drugs that only improve cognitive deficits to be allowed to accelerate on to clinical trials. Our study focuses on taurine, an endogenous amino acid found in high concentrations in humans. It has demonstrated neuroprotective properties against many forms of dementia. In this study, we assessed cognitively enhancing property of taurine in transgenic mouse model of AD. We orally administered taurine via drinking water to adult APP/PS1 transgenic mouse model for 6 weeks. Taurine treatment rescued cognitive deficits in APP/PS1 mice up to the age-matching wild-type mice in Y-maze and passive avoidance tests without modifying the behaviours of cognitively normal mice. In the cortex of APP/PS1 mice, taurine slightly decreased insoluble fraction of Aβ. While the exact mechanism of taurine in AD has not yet been ascertained, our results suggest that taurine can aid cognitive impairment and may inhibit Aβ-related damages.

  8. The Phospholipase D2 Knock Out Mouse Has Ectopic Purkinje Cells and Suffers from Early Adult-Onset Anosmia

    PubMed Central

    Zhang, Qifeng; Smethurst, Elizabeth; Segonds-Pichon, Anne; Schrewe, Heinrich; Wakelam, Michael J. O.

    2016-01-01

    Phospholipase D2 (PLD2) is an enzyme that produces phosphatidic acid (PA), a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO) mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA) regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction. PMID:27658289

  9. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer's disease

    PubMed Central

    Kim, Hye Yun; Kim, Hyunjin V.; Yoon, Jin H.; Kang, Bo Ram; Cho, Soo Min; Lee, Sejin; Kim, Ji Yoon; Kim, Joo Won; Cho, Yakdol; Woo, Jiwan; Kim, YoungSoo

    2014-01-01

    Alzheimer's disease (AD) is a lethal progressive neurological disorder affecting the memory. Recently, US Food and Drug Administration mitigated the standard for drug approval, allowing symptomatic drugs that only improve cognitive deficits to be allowed to accelerate on to clinical trials. Our study focuses on taurine, an endogenous amino acid found in high concentrations in humans. It has demonstrated neuroprotective properties against many forms of dementia. In this study, we assessed cognitively enhancing property of taurine in transgenic mouse model of AD. We orally administered taurine via drinking water to adult APP/PS1 transgenic mouse model for 6 weeks. Taurine treatment rescued cognitive deficits in APP/PS1 mice up to the age-matching wild-type mice in Y-maze and passive avoidance tests without modifying the behaviours of cognitively normal mice. In the cortex of APP/PS1 mice, taurine slightly decreased insoluble fraction of Aβ. While the exact mechanism of taurine in AD has not yet been ascertained, our results suggest that taurine can aid cognitive impairment and may inhibit Aβ-related damages. PMID:25502280

  10. Deletion and replacement of the mouse adult beta-globin genes by a "plug and socket" repeated targeting strategy.

    PubMed

    Detloff, P J; Lewis, J; John, S W; Shehee, W R; Langenbach, R; Maeda, N; Smithies, O

    1994-10-01

    We describe a two-step strategy to alter any mouse locus repeatedly and efficiently by direct positive selection. Using conventional targeting for the first step, a functional neo gene and a nonfunctional HPRT minigene (the "socket") are introduced into the genome of HPRT- embryonic stem (ES) cells close to the chosen locus, in this case the beta-globin locus. For the second step, a targeting construct (the "plug") that recombines homologously with the integrated socket and supplies the remaining portion of the HPRT minigene is used; this homologous recombination generates a functional HPRT gene and makes the ES cells hypoxanthine-aminopterin-thymidine resistant. At the same time, the plug provides DNA sequences that recombine homologously with sequences in the target locus and modifies them in the desired manner; the plug is designed so that correctly targeted cells also lose the neo gene and become G418 sensitive. We have used two different plugs to make alterations in the mouse beta-globin locus starting with the same socket-containing ES cell line. One plug deleted 20 kb of DNA containing the two adult beta-globin genes. The other replaced the same region with the human beta-globin gene containing the mutation responsible for sickle cell anemia.

  11. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse.

    PubMed

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2016-03-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood-brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus.

  12. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse.

    PubMed

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2016-03-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood-brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  13. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  14. RUNX1B Expression Is Highly Heterogeneous and Distinguishes Megakaryocytic and Erythroid Lineage Fate in Adult Mouse Hematopoiesis

    PubMed Central

    Draper, Julia E.; Sroczynska, Patrycja; Tsoulaki, Olga; Leong, Hui Sun; Fadlullah, Muhammad Z. H.; Miller, Crispin; Kouskoff, Valerie; Lacaud, Georges

    2016-01-01

    The Core Binding Factor (CBF) protein RUNX1 is a master regulator of definitive hematopoiesis, crucial for hematopoietic stem cell (HSC) emergence during ontogeny. RUNX1 also plays vital roles in adult mice, in regulating the correct specification of numerous blood lineages. Akin to the other mammalian Runx genes, Runx1 has two promoters P1 (distal) and P2 (proximal) which generate distinct protein isoforms. The activities and specific relevance of these two promoters in adult hematopoiesis remain to be fully elucidated. Utilizing a dual reporter mouse model we demonstrate that the distal P1 promoter is broadly active in adult hematopoietic stem and progenitor cell (HSPC) populations. By contrast the activity of the proximal P2 promoter is more restricted and its upregulation, in both the immature Lineage- Sca1high cKithigh (LSK) and bipotential Pre-Megakaryocytic/Erythroid Progenitor (PreMegE) populations, coincides with a loss of erythroid (Ery) specification. Accordingly the PreMegE population can be prospectively separated into “pro-erythroid” and “pro-megakaryocyte” populations based on Runx1 P2 activity. Comparative gene expression analyses between Runx1 P2+ and P2- populations indicated that levels of CD34 expression could substitute for P2 activity to distinguish these two cell populations in wild type (WT) bone marrow (BM). Prospective isolation of these two populations will enable the further investigation of molecular mechanisms involved in megakaryocytic/erythroid (Mk/Ery) cell fate decisions. Having characterized the extensive activity of P1, we utilized a P1-GFP homozygous mouse model to analyze the impact of the complete absence of Runx1 P1 expression in adult mice and observed strong defects in the T cell lineage. Finally, we investigated how the leukemic fusion protein AML1-ETO9a might influence Runx1 promoter usage. Short-term AML1-ETO9a induction in BM resulted in preferential P2 upregulation, suggesting its expression may be important to

  15. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    PubMed Central

    Hu, Rongfeng; Jin, Sen; He, Xiaobin; Xu, Fuqiang; Hu, Ji

    2016-01-01

    The basal forebrain cholinergic system (BFCS) robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum, central amygdala, paraventricular nucleus of hypothalamus, dorsal raphe, and parabrachial nucleus. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal–hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function. PMID:27777554

  16. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone

    PubMed Central

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  17. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone.

    PubMed

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  18. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone.

    PubMed

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis.

  19. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death.

    PubMed

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB1 receptor antagonist AM251, but not with the selective CB2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB1 receptor, but not by the CB2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain.

  20. Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells

    SciTech Connect

    Wu, Qiuling; Ma, Qi; Shehadeh, Lina A.; Wilson, Amber; Xia, Linghui; Yu, Hong; Webster, Keith A.

    2010-06-11

    Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressed in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.

  1. Deficits in Adult Neurogenesis, Contextual Fear Conditioning, and Spatial Learning in a Gfap Mutant Mouse Model of Alexander Disease

    PubMed Central

    Paylor, Richard; Messing, Albee

    2013-01-01

    Glial fibrillary acidic protein (GFAP) is the major intermediate filament of mature astrocytes in the mammalian CNS. Dominant gain of function mutations in GFAP lead to the fatal neurodegenerative disorder, Alexander disease (AxD), which is characterized by cytoplasmic protein aggregates known as Rosenthal fibers along with variable degrees of leukodystrophy and intellectual disability. The mechanisms by which mutant GFAP leads to these pleiotropic effects are unknown. In addition to astrocytes, GFAP is also expressed in other cell types, particularly neural stem cells that form the reservoir supporting adult neurogenesis in the hippocampal dentate gyrus and subventricular zone of the lateral ventricles. Here, we show that mouse models of AxD exhibit significant pathology in GFAP-positive radial glia-like cells in the dentate gyrus, and suffer from deficits in adult neurogenesis. In addition, they display impairments in contextual learning and spatial memory. This is the first demonstration of cognitive phenotypes in a model of primary astrocyte disease. PMID:24259590

  2. HETEROTOPICALLY TRANSPLANTED CVO NEURAL STEM CELLS GENERATE NEURONS AND MIGRATE WITH SVZ CELLS IN THE ADULT MOUSE BRAIN

    PubMed Central

    Bennett, Lori B.; Cai, Jingli; Enikolopov, Grigori; Iacovitti, Lorraine

    2010-01-01

    Production of new neurons throughout adulthood has been well characterized in two brain regions, the subventricular zone (SVZ) of the anterolateral ventricle and the subgranular zone (SGZ) of the hippocampus. The neurons produced from these regions arise from neural stem cells (NSCs) found in highly regulated stem cell niches. We recently showed that midline structures called circumventricular organs (CVOs) also contain NSCs capable of neurogenesis and/or astrogliogenesis in vitro and in situ [3]. The present study demonstrates that NSCs derived from two astrogliogenic CVOs, the median eminence and organum vasculosum of the lamina terminalis of the Nestin-GFP mouse, possess the potential to integrate into the SVZ and differentiate into cells with a neuronal phenotype. These NSCs, following expansion and BrdU-labeling in culture and heterotopic transplantation into a region proximal to the SVZ in adult mice, migrate caudally to the SVZ and express early neuronal markers (TUC-4, PSA-NCAM) as they migrate along the rostral migratory stream. CVO-derived BrdU+ cells ultimately reach the olfactory bulb where they express early (PSA-NCAM) and mature (NeuN) neuronal markers. Collectively, these data suggest that although NSCs derived from the ME and OVLT CVOs are astrogliogenic in situ, they produce cells phenotypic of neurons in vivo when placed in a neurogenic environment. These findings may have implications for neural repair in the adult brain. PMID:20298755

  3. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart.

    PubMed

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo

    2013-02-01

    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3-4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation.

  4. Loss of Lrp2 in zebrafish disrupts pronephric tubular clearance but not forebrain development.

    PubMed

    Kur, Esther; Christa, Anna; Veth, Kerry N; Gajera, Chandresh R; Andrade-Navarro, Miguel A; Zhang, Jingjing; Willer, Jason R; Gregg, Ronald G; Abdelilah-Seyfried, Salim; Bachmann, Sebastian; Link, Brian A; Hammes, Annette; Willnow, Thomas E

    2011-06-01

    Low-density lipoprotein receptor-related protein 2 (LRP2) is a multifunctional cell surface receptor conserved from nematodes to humans. In mammals, it acts as regulator of sonic hedgehog and bone morphogenetic protein pathways in patterning of the embryonic forebrain and as a clearance receptor in the adult kidney. Little is known about activities of this LRP in other phyla. Here, we extend the functional elucidation of LRP2 to zebrafish as a model organism of receptor (dys)function. We demonstrate that expression of Lrp2 in embryonic and larval fish recapitulates the patterns seen in mammalian brain and kidney. Furthermore, we studied the consequence of receptor deficiencies in lrp2 and in lrp2b, a homologue unique to fish, using ENU mutagenesis or morpholino knockdown. While receptor-deficient zebrafish suffer from overt renal resorption deficiency, their brain development proceeds normally, suggesting evolutionary conservation of receptor functions in pronephric duct clearance but not in patterning of the teleost forebrain.

  5. Chronic coexistence of two troponin T isoforms in adult transgenic mouse cardiomyocytes decreased contractile kinetics and caused dilatative remodeling.

    PubMed

    Yu, Zhi-Bin; Wei, Hongguang; Jin, J-P

    2012-07-01

    Our previous in vivo and ex vivo studies suggested that coexistence of two or more troponin T (TnT) isoforms in adult cardiac muscle decreased cardiac function and efficiency (Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP, Am J Physiol Cell Physiol 294: C213-C22, 2008; Feng HZ, Jin JP, Am J Physiol Heart Circ Physiol 299: H97-H105, 2010). Here we characterized Ca(2+)-regulated contractility of isolated adult cardiomyocytes from transgenic mice coexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT. Without the influence of extracellular matrix, coexistence of the two TnT isoforms resulted in lower shortening amplitude, slower shortening and relengthening velocities, and longer relengthening time. The level of resting cytosolic Ca(2+) was unchanged, but the peak Ca(2+) transient was lowered and the durations of Ca(2+) rising and decaying were longer in the transgenic mouse cardiomyocytes vs. the wild-type controls. Isoproterenol treatment diminished the differences in shortening amplitude and shortening and relengthening velocities, whereas the prolonged durations of relengthening and Ca(2+) transient in the transgenic cardiomyocytes remained. At rigor state, a result from depletion of Ca(2+), resting sarcomere length of the transgenic cardiomyocytes became shorter than that in wild-type cells. Inhibition of myosin motor diminished this effect of TnT function on cross bridges. The length but not width of transgenic cardiomyocytes was significantly increased compared with the wild-type controls, corresponding to longitudinal addition of sarcomeres and dilatative remodeling at the cellular level. These dominantly negative effects of normal fast TnT demonstrated that chronic coexistence of functionally distinct variants of TnT in adult cardiomyocytes reduces contractile performance with pathological consequences.

  6. Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex.

    PubMed

    Keck, Tara; Scheuss, Volker; Jacobsen, R Irene; Wierenga, Corette J; Eysel, Ulf T; Bonhoeffer, Tobias; Hübener, Mark

    2011-09-01

    A fundamental property of neuronal circuits is the ability to adapt to altered sensory inputs. It is well established that the functional synaptic changes underlying this adaptation are reflected by structural modifications in excitatory neurons. In contrast, the degree to which structural plasticity in inhibitory neurons accompanies functional changes is less clear. Here, we use two-photon imaging to monitor the fine structure of inhibitory neurons in mouse visual cortex after deprivation induced by retinal lesions. We find that a subset of inhibitory neurons carry dendritic spines, which form glutamatergic synapses. Removal of visual input correlates with a rapid and lasting reduction in the number of inhibitory cell spines. Similar to the effects seen for dendritic spines, the number of inhibitory neuron boutons dropped sharply after retinal lesions. Together, these data suggest that structural changes in inhibitory neurons may precede structural changes in excitatory circuitry, which ultimately result in functional adaptation following sensory deprivation.

  7. Task-phase-specific dynamics of basal forebrain neuronal ensembles

    PubMed Central

    Tingley, David; Alexander, Andrew S.; Kolbu, Sean; de Sa, Virginia R.; Chiba, Andrea A.; Nitz, Douglas A.

    2014-01-01

    Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases. PMID:25309352

  8. Laser-scanning photostimulation of optogenetically targeted forebrain circuits.

    PubMed

    Lee, Charles C; Lam, Ying-Wan; Imaizumi, Kazuo; Sherman, S Murray

    2013-01-01

    The sensory forebrain is composed of intricately connected cell types, of which functional properties have yet to be fully elucidated. Understanding the interactions of these forebrain circuits has been aided recently by the development of optogenetic methods for light-mediated modulation of neuronal activity. Here, we describe a protocol for examining the functional organization of forebrain circuits in vitro using laser-scanning photostimulation of channelrhodopsin, expressed optogenetically via viral-mediated transfection. This approach also exploits the utility of cre-lox recombination in transgenic mice to target expression in specific neuronal cell types. Following transfection, neurons are physiologically recorded in slice preparations using whole-cell patch clamp to measure their evoked responses to laser-scanning photostimulation of channelrhodopsin expressing fibers. This approach enables an assessment of functional topography and synaptic properties. Morphological correlates can be obtained by imaging the neuroanatomical expression of channelrhodopsin expressing fibers using confocal microscopy of the live slice or post-fixed tissue. These methods enable functional investigations of forebrain circuits that expand upon more conventional approaches. PMID:24430760

  9. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles.

    PubMed

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G; Flaws, Jodi A

    2016-02-15

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36μM) for 18-96h. Every 24h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96h, and the expression of cell cycle regulators at 18h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. PMID:26792615

  10. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines

    PubMed Central

    Pasumarthi, Ravi K.; Baridon, Brian; Djan, Esi; Trainor, Amanda; Griffey, Stephen M.; Engelhard, Eric K.; Rapp, Jared; Li, Bowen; de Jong, Pieter J.; Lloyd, K.C. Kent

    2015-01-01

    Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼80% of mutants showed specific staining in one or more tissues, while ∼20% showed no specific staining, ∼13% had staining in only one tissue, and ∼25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known. PMID:25591789

  11. The Bulk of Autotaxin Activity Is Dispensable for Adult Mouse Life.

    PubMed

    Katsifa, Aggeliki; Kaffe, Eleanna; Nikolaidou-Katsaridou, Nefeli; Economides, Aris N; Newbigging, Susan; McKerlie, Colin; Aidinis, Vassilis

    2015-01-01

    Autotaxin (ATX, Enpp2) is a secreted lysophospholipase D catalysing the production of lysophosphatidic acid, a pleiotropic growth factor-like lysophospholipid. Increased ATX expression has been detected in a number of chronic inflammatory diseases and different types of cancer, while genetic interventions have proven a role for ATX in disease pathogenesis. Therefore, ATX has emerged as a potential drug target and a large number of ATX inhibitors have been developed exhibiting promising therapeutic potential. However, the embryonic lethality of ATX null mice and the ubiquitous expression of ATX and LPA receptors in adult life question the suitability of ATX as a drug target. Here we show that inducible, ubiquitous genetic deletion of ATX in adult mice, as well as long-term potent pharmacologic inhibition, are well tolerated, alleviating potential toxicity concerns of ATX therapeutic targeting. PMID:26569406

  12. The Bulk of Autotaxin Activity Is Dispensable for Adult Mouse Life

    PubMed Central

    Katsifa, Aggeliki; Kaffe, Eleanna; Nikolaidou-Katsaridou, Nefeli; Economides, Aris N.; Newbigging, Susan; McKerlie, Colin; Aidinis, Vassilis

    2015-01-01

    Autotaxin (ATX, Enpp2) is a secreted lysophospholipase D catalysing the production of lysophosphatidic acid, a pleiotropic growth factor-like lysophospholipid. Increased ATX expression has been detected in a number of chronic inflammatory diseases and different types of cancer, while genetic interventions have proven a role for ATX in disease pathogenesis. Therefore, ATX has emerged as a potential drug target and a large number of ATX inhibitors have been developed exhibiting promising therapeutic potential. However, the embryonic lethality of ATX null mice and the ubiquitous expression of ATX and LPA receptors in adult life question the suitability of ATX as a drug target. Here we show that inducible, ubiquitous genetic deletion of ATX in adult mice, as well as long-term potent pharmacologic inhibition, are well tolerated, alleviating potential toxicity concerns of ATX therapeutic targeting. PMID:26569406

  13. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    NASA Astrophysics Data System (ADS)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  14. Volume of the Human Septal Forebrain Region Is a Predictor of Source Memory Accuracy

    PubMed Central

    Butler, Tracy; Blackmon, Karen; Zaborszky, Laszlo; Wang, Xiuyuan; DuBois, Jonathan; Carlson, Chad; Barr, William B.; French, Jacqueline; Devinsky, Orrin; Kuzniecky, Ruben; Halgren, Eric; Thesen, Thomas

    2012-01-01

    Septal nuclei, components of basal forebrain, are strongly and reciprocally connected with hippocampus, and have been shown in animals to play a critical role in memory. In humans, the septal forebrain has received little attention. To examine the role of human septal forebrain in memory, we acquired high-resolution magnetic resonance imaging scans from 25 healthy subjects and calculated septal forebrain volume using recently developed probabilistic cytoarchitectonic maps. We indexed memory with the California Verbal Learning Test-II. Linear regression showed that bilateral septal forebrain volume was a significant positive predictor of recognition memory accuracy. More specifically, larger septal forebrain volume was associated with the ability to recall item source/context accuracy. Results indicate specific involvement of septal forebrain in human source memory, and highlight the need for additional research into the role of septal nuclei in memory and other impairments associated with human diseases. PMID:22152217

  15. Neonatal tissue injury reduces the intrinsic excitability of adult mouse superficial dorsal horn neurons.

    PubMed

    Li, J; Baccei, M L

    2014-01-01

    Tissue damage during the neonatal period evokes long-lasting changes in nociceptive processing within the adult spinal cord which contribute to persistent alterations in pain sensitivity. However, it remains unclear if the observed modifications in neuronal activity within the mature superficial dorsal horn (SDH) following early injury reflect shifts in the intrinsic membrane properties of these cells. Therefore, the present study was undertaken to identify the effects of neonatal surgical injury on the intrinsic excitability of both GABAergic and presumed glutamatergic neurons within lamina II of the adult SDH using in vitro patch clamp recordings from spinal cord slices prepared from glutamic acid decarboxylase-green fluorescent protein (Gad-GFP) mice. The results demonstrate that hindpaw surgical incision at postnatal day (P) 3 altered the passive membrane properties of both Gad-GFP and adjacent, non-GFP neurons in the mature SDH, as evidenced by decreased membrane resistance and more negative resting potentials in comparison to naïve littermate controls. This was accompanied by a reduction in the prevalence of spontaneous activity within the GABAergic population. Both Gad-GFP and non-GFP neurons displayed a significant elevation in rheobase and decreased instantaneous firing frequency after incision, suggesting that early tissue damage lowers the intrinsic membrane excitability of adult SDH neurons. Isolation of inward-rectifying K(+) (K(ir)) currents revealed that neonatal incision significantly increased K(ir) conductance near physiological membrane potentials in GABAergic, but not glutamatergic, lamina II neurons. Overall, these findings suggest that neonatal tissue injury causes a long-term dampening of intrinsic firing across the general population of lamina II interneurons, but the underlying ionic mechanisms may be cell-type specific.

  16. Odour enrichment increases adult-born dopaminergic neurons in the mouse olfactory bulb.

    PubMed

    Bonzano, Sara; Bovetti, Serena; Fasolo, Aldo; Peretto, Paolo; De Marchis, Silvia

    2014-11-01

    The olfactory bulb (OB) is the first brain region involved in the processing of olfactory information. In adult mice, the OB is highly plastic, undergoing cellular/molecular dynamic changes that are modulated by sensory experience. Odour deprivation induces down-regulation of tyrosine hydroxylase (TH) expression in OB dopaminergic interneurons located in the glomerular layer (GL), resulting in decreased dopamine in the OB. Although the effect of sensory deprivation is well established, little is known about the influence of odour enrichment on dopaminergic cells. Here we report that prolonged odour enrichment on C57BL/6J strain mice selectively increases TH-immunopositive cells in the GL by nearly 20%. Following odour enrichment on TH-green fluorescent protein (GFP) transgenic mice, in which GFP identified both mature TH-positive cells and putative immature dopaminergic cells expressing TH mRNA but not TH protein, we found a similar 20% increase in GFP-expressing cells, with no changes in the ratio between TH-positive and TH-negative cells. These data suggest that enriched conditions induce an expansion in the whole dopaminergic lineage. Accordingly, by using 5-bromo-2-deoxyuridine injections to label adult-generated cells in the GL of TH-GFP mice, we found an increase in the percentage of 5-bromo-2-deoxyuridine-positive dopaminergic cells in enriched compared with control conditions, whereas no differences were found for calretinin- and calbindin-positive subtypes. Strikingly, the fraction of newborn cells among the dopaminergic population doubled in enriched conditions. On the whole, our results demonstrate that odour enrichment drives increased integration of adult-generated dopaminergic cells that could be critical to adapt the OB circuits to the environmental incoming information.

  17. Characterizing Newly Repopulated Microglia in the Adult Mouse: Impacts on Animal Behavior, Cell Morphology, and Neuroinflammation

    PubMed Central

    Elmore, Monica R. P.; Lee, Rafael J.; West, Brian L.; Green, Kim N.

    2015-01-01

    Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the

  18. Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation.

    PubMed

    Elmore, Monica R P; Lee, Rafael J; West, Brian L; Green, Kim N

    2015-01-01

    Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the

  19. TRANSIENT EARLY-LIFE FOREBRAIN CRH ELEVATION CAUSES LONG LASTING ANXIOGENIC AND DESPAIR-LIKE CHANGES IN MICE

    PubMed Central

    Kolber, Benedict J.; Boyle, Maureen P.; Wieczorek, Lindsay; Kelley, Crystal L.; Onwuzurike, Chiamaka C.; Nettles, Sabin; Vogt, Sherri K.; Muglia, Louis J.

    2010-01-01

    During development, early-life stress, such as abuse or trauma, induces long-lasting changes that are linked to adult anxiety and depressive behavior. It has been postulated that altered expression of corticotropin-releasing hormone (CRH) can at least partially account for the various effects of stress on behavior. In accord with this hypothesis, evidence from pharmacological and genetic studies has indicated the capacity of differing levels of CRH activity in different brain areas to produce behavioral changes. Furthermore, stress during early life or adulthood causes an increase in CRH release in a variety of neural sites. To evaluate the temporal and spatial specificity of the effect of early-life CRH exposure on adult behavior, the tetracycline-off system was used to produce mice with forebrain-restricted inducible expression of CRH (FBCRHOE). After transient elevation of CRH during development only, behavioral testing in adult mice revealed a persistent anxiogenic and despair-like phenotype. These behavioral changes were not associated with alterations in adult circadian or stress-induced corticosterone release but were associated with changes in CRH receptor type 1 expression. Furthermore, the despair-like changes were normalized with antidepressant treatment. Overall, these studies suggest that forebrain-restricted CRH signaling during development can permanently alter stress adaptation leading to increases in maladaptive behavior in adulthood. PMID:20164342

  20. Expression pattern of STOP lacZ reporter gene in adult and developing mouse brain.

    PubMed

    Couégnas, Alice; Schweitzer, Annie; Andrieux, Annie; Ghandour, M Said; Boehm, Nelly

    2007-05-15

    Stable tubulin-only polypeptide (STOP) proteins are microtubule-associated proteins responsible for microtubule stabilization in neurons. STOP null mice show apparently normal cerebral anatomy but display synaptic defects associated with neuroleptic-sensitive behavioral disorders. STOP null mice have therefore been proposed as an animal model for the study of schizophrenia. In the present study, the expression pattern of STOP gene in developing and adult brain has been examined by using lacZ gene inserted in the STOP locus, as a reporter gene. beta-Galactosidase (beta-gal) immunostaining was confined to neuronal cells and projections. Strong labeling was observed in the whole olfactory system, cortical layer VII, hippocampus, hypothalamus, cerebellum, habenula, fasciculus retroflexus, and interpeduncular nucleus in adults. Additionally, ventral thalamic nucleus, clusters of positive cells in striatum, and Cajal-Retzius cells of cortical layer I were labeled in young mice. The strong expression of STOP lacZ reporter gene observed in brain is confined to areas that may be involved in the schizophrenia-related symptoms observed in STOP-deficient mice.

  1. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis

    PubMed Central

    Ferrón, S. R.; Radford, E. J.; Domingo-Muelas, A.; Kleine, I.; Ramme, A.; Gray, D.; Sandovici, I.; Constancia, M.; Ward, A.; Menheniott, T. R.; Ferguson-Smith, A. C.

    2015-01-01

    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis. PMID:26369386

  2. Competition and Homeostasis of Excitatory and Inhibitory Connectivity in the Adult Mouse Visual Cortex

    PubMed Central

    Saiepour, M. Hadi; Chakravarthy, Sridhara; Min, Rogier; Levelt, Christiaan N.

    2015-01-01

    During cortical development, synaptic competition regulates the formation and adjustment of neuronal connectivity. It is unknown whether synaptic competition remains active in the adult brain and how inhibitory neurons participate in this process. Using morphological and electrophysiological measurements, we show that expressing a dominant-negative form of the TrkB receptor (TrkB.T1) in the majority of pyramidal neurons in the adult visual cortex does not affect excitatory synapse densities. This is in stark contrast to the previously reported loss of excitatory input which occurs if the exact same transgene is expressed in sparse neurons at the same age. This indicates that synaptic competition remains active in adulthood. Additionally, we show that interneurons not expressing the TrkB.T1 transgene may have a competitive advantage and obtain more excitatory synapses when most neighboring pyramidal neurons do express the transgene. Finally, we demonstrate that inhibitory synapses onto pyramidal neurons are reduced when TrkB signaling is interfered with in most pyramidal neurons but not when few pyramidal neurons have this deficit. This adjustment of inhibitory innervation is therefore not a cell-autonomous consequence of decreased TrkB signaling but more likely a homeostatic mechanism compensating for activity changes at the population level. PMID:25316336

  3. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9

    PubMed Central

    Carroll, Kelli J.; Makarewich, Catherine A.; McAnally, John; Anderson, Douglas M.; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart. PMID:26719419

  4. A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland.

    PubMed

    Catalán, Marcelo A; Kondo, Yusuke; Peña-Munzenmayer, Gaspar; Jaramillo, Yasna; Liu, Frances; Choi, Sooji; Crandall, Edward; Borok, Zea; Flodby, Per; Shull, Gary E; Melvin, James E

    2015-02-17

    Activation of an apical Ca(2+)-activated Cl(-) channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl(-) current and Cl(-) efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl(-) channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A(-/-)). Ca(2+)-dependent salivation was abolished in Tmem16A(-/-) mice, demonstrating that Tmem16A is obligatory for Ca(2+)-mediated fluid secretion. However, the amount of saliva secreted by Tmem16A(-/-) mice in response to the β-adrenergic receptor agonist isoproterenol (IPR) was comparable to that seen in controls, indicating that Tmem16A does not significantly contribute to cAMP-induced secretion. Furthermore, IPR-stimulated secretion was unaffected in mice lacking Cftr (Cftr(∆F508/∆F508)) or ClC-2 (Clcn2(-/-)) Cl(-) channels. The time course for activation of IPR-stimulated fluid secretion closely correlated with that of the IPR-induced cell volume increase, suggesting that acinar swelling may activate a volume-sensitive Cl(-) channel. Indeed, Cl(-) channel blockers abolished fluid secretion, indicating that Cl(-) channel activity is critical for IPR-stimulated secretion. These data suggest that β-adrenergic-induced, cAMP-dependent fluid secretion involves a volume-regulated anion channel. In summary, our results using acinar-specific Tmem16A(-/-) mice identify Tmem16A as the Cl(-) channel essential for muscarinic, Ca(2+)-dependent fluid secretion in adult mouse salivary glands.

  5. Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse

    PubMed Central

    Zampieri, Alexandre; Champagne, Julien; Auzemery, Baptiste; Fuentes, Ivanna; Maurel, Benjamin; Bienvenu, Frédéric

    2015-01-01

    We present here a novel method for the semi-quantitative detection of low abundance proteins in solution that is both fast and simple. It is based on Homogenous Time Resolved Förster Resonance Energy Transfer (HTRF), between a lanthanide labeled donor antibody and a d2 or XL665 labeled acceptor antibody that are both raised against different epitopes of the same target. This novel approach we termed “Tandem-HTRF”, can specifically reveal rare polypeptides from only a few microliters of cellular lysate within one hour in a 384-well plate format. Using this sensitive approach, we observed surprisingly that the core cell cycle regulator Cyclin D1 is sustained in fully developed adult organs and harbors an unexpected expression pattern affected by environmental challenge. Thus our method, Tandem-HTRF offers a promising way to investigate subtle variations in the dynamics of sparse proteins from limited biological material. PMID:26503526

  6. Build a better mouse: directly-observed issues in computer use for adults with SMI.

    PubMed

    Black, Anne C; Serowik, Kristin L; Schensul, Jean J; Bowen, Anne M; Rosen, Marc I

    2013-03-01

    Integrating information technology into healthcare has the potential to bring treatment to hard-to-reach people. Individuals with serious mental illness (SMI), however, may derive limited benefit from these advances in care because of lack of computer ownership and experience. To date, conclusions about the computer skills and attitudes of adults with SMI have been based primarily on self-report. In the current study, 28 psychiatric outpatients with co-occurring cocaine use were interviewed about their computer use and opinions, and 25 were then directly observed using task analysis and think aloud methods as they navigated a multi-component health informational website. Participants reported low rates of computer ownership and use, and negative attitudes towards computers. Self-reported computer skills were higher than demonstrated in the task analysis. However, some participants spontaneously expressed more positive attitudes and greater computer self-efficacy after navigating the website. Implications for increasing access to computer-based health information are discussed.

  7. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer

    PubMed Central

    Ou, Jingxing; Vijayasarathy, Camasamudram; Ziccardi, Lucia; Chen, Shan; Zeng, Yong; Marangoni, Dario; Pope, Jodie G.; Bush, Ronald A.; Wu, Zhijian; Li, Wei; Sieving, Paul A.

    2015-01-01

    Strategies aimed at invoking synaptic plasticity have therapeutic potential for several neurological conditions. The human retinal synaptic disease X-linked retinoschisis (XLRS) is characterized by impaired visual signal transmission through the retina and progressive visual acuity loss, and mice lacking retinoschisin (RS1) recapitulate human disease. Here, we demonstrate that restoration of RS1 via retina-specific delivery of adeno-associated virus type 8-RS1 (AAV8-RS1) vector rescues molecular pathology at the photoreceptor–depolarizing bipolar cell (photoreceptor-DBC) synapse and restores function in adult Rs1-KO animals. Initial development of the photoreceptor-DBC synapse was normal in the Rs1-KO retina; however, the metabotropic glutamate receptor 6/transient receptor potential melastatin subfamily M member 1–signaling (mGluR6/TRPM1-signaling) cascade was not properly maintained. Specifically, the TRPM1 channel and G proteins Gαo, Gβ5, and RGS11 were progressively lost from postsynaptic DBC dendritic tips, whereas the mGluR6 receptor and RGS7 maintained proper synaptic position. This postsynaptic disruption differed from other murine night-blindness models with an electronegative electroretinogram response, which is also characteristic of murine and human XLRS disease. Upon AAV8-RS1 gene transfer to the retina of adult XLRS mice, TRPM1 and the signaling molecules returned to their proper dendritic tip location, and the DBC resting membrane potential was restored. These findings provide insight into the molecular plasticity of a critical synapse in the visual system and demonstrate potential therapeutic avenues for some diseases involving synaptic pathology. PMID:26098217

  8. Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring

    PubMed Central

    Sussman, Dafna; Germann, Jurgen; Henkelman, Mark

    2015-01-01

    Introduction The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood. Methods To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy. Results The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume. Conclusions These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood. PMID:25642385

  9. Contribution of Bone Marrow Hematopoietic Stem Cells to Adult Mouse Inner Ear: Mesenchymal Cells and Fibrocytes

    PubMed Central

    Lang, Hainan; Ebihara, Yasuhiro; Schmiedt, Richard A.; Minamiguchi, Hitoshi; Zhou, Daohong; Smythe, Nancy; Liu, Liya; Ogawa, Makio; Schulte, Bradley A.

    2008-01-01

    Bone marrow (BM)-derived stem cells have shown plasticity with a capacity to differentiate into a variety of specialized cells. To test the hypothesis that some cells in the inner ear are derived from BM, we transplanted either isolated whole BM cells or clonally expanded hematopoietic stem cells (HSCs) prepared from transgenic mice expressing enhanced green fluorescent protein (EGFP) into irradiated adult mice. Isolated GFP+ BM cells also were transplanted into conditioned newborn mice derived from pregnant mice injected with busulfan (which ablates HSCs in the newborns). Quantification of GFP+ cells was performed 3-20 months after transplant. GFP+ cells were found in the inner ear with all transplant conditions. They were most abundant within the spiral ligament but were also found in other locations normally occupied by fibrocytes and mesenchymal cells. No GFP+ neurons or hair cells were observed in inner ears of transplanted mice. Dual immunofluorescence assays demonstrated that most of the GFP+ cells were negative for CD45, a macrophage and hematopoietic cell marker. A portion of the GFP+ cells in the spiral ligament expressed immunoreactive Na, K-ATPase or the Na-K-Cl transporter (NKCC), proteins used as markers for specialized ion transport fibrocytes. Phenotypic studies indicated that the GFP+ cells did not arise from fusion of donor cells with endogenous cells. This study provides the first evidence for the origin of inner ear cells from BM and more specifically from HSCs. The results suggest that mesenchymal cells, including fibrocytes in the adult inner ear, may be derived continuously from HSCs. PMID:16538683

  10. Comparative Analysis of the Expression Profile of Wnk1 and Wnk1/Hsn2 Splice Variants in Developing and Adult Mouse Tissues

    PubMed Central

    Shekarabi, Masoud; Lafrenière, Ron G.; Gaudet, Rébecca; Laganière, Janet; Marcinkiewicz, Martin M.; Dion, Patrick A.; Rouleau, Guy A.

    2013-01-01

    The With No lysine (K) family of serine/threonine kinase (WNK) defines a small family of kinases with significant roles in ion homeostasis. WNK1 has been shown to have different isoforms due to what seems to be largely tissue specific splicing. Here, we used two distinct in situ hybridization riboprobes on developing and adult mouse tissues to make a comparative analysis of Wnk1 and its sensory associated splice isoform, Wnk1/Hsn2. The hybridization signals in developing mouse tissues, which were prepared at embryonic day e10.5 and e12.5, revealed a homogenous expression profile with both probes. At e15.5 and in the newborn mouse, the two probes revealed different expression profiles with prominent signals in nervous system tissues and also other tissues such as kidney, thymus and testis. In adult mouse tissues, the two expression profiles appeared even more restricted to the nervous tissues, kidney, thymus and testis, with no detectable signal in the other tissues. Throughout the nervous system, sensory tissues, as well as in Cornu Ammonis 1 (CA1), CA2 and CA3 areas of the hippocampus, were strongly labeled with both probes. Hybridization signals were also strongly detected in Schwann and supporting satellite cells. Our results show that the expression profiles of Wnk1 isoforms change during the development, and that the expression of the Wnk1 splice variant containing the Hsn2 exon is prominent during developing and in adult mouse tissues, suggesting its important role in the development and maintenance of the nervous system. PMID:23451271

  11. Analysis of chaperone mRNA expression in the adult mouse brain by meta analysis of the Allen Brain Atlas.

    PubMed

    Tebbenkamp, Andrew T N; Borchelt, David R

    2010-10-28

    The pathology of many neurodegenerative diseases is characterized by the accumulation of misfolded and aggregated proteins in various cell types and regional substructures throughout the central and peripheral nervous systems. The accumulation of these aggregated proteins signals dysfunction of cellular protein homeostatic mechanisms such as the ubiquitin/proteasome system, autophagy, and the chaperone network. Although there are several published studies in which transcriptional profiling has been used to examine gene expression in various tissues, including tissues of neurodegenerative disease models, there has not been a report that focuses exclusively on expression of the chaperone network. In the present study, we used the Allen Brain Atlas online database to analyze chaperone expression levels. This database utilizes a quantitative in situ hybridization approach and provides data on 270 chaperone genes within many substructures of the adult mouse brain. We determined that 256 of these chaperone genes are expressed at some level. Surprisingly, relatively few genes, only 30, showed significant variations in levels of mRNA across different substructures of the brain. The greatest degree of variability was exhibited by genes of the DnaJ co-chaperone, Tetratricopeptide repeat, and the HSPH families. Our analysis provides a valuable resource towards determining how variations in chaperone gene expression may modulate the vulnerability of specific neuronal populations of mammalian brain.

  12. Expression Atlas of the Deubiquitinating Enzymes in the Adult Mouse Retina, Their Evolutionary Diversification and Phenotypic Roles

    PubMed Central

    Esquerdo, Mariona; Grau-Bové, Xavier; Garanto, Alejandro; Toulis, Vasileios; Garcia-Monclús, Sílvia; Millo, Erica; López-Iniesta, Ma José; Abad-Morales, Víctor; Ruiz-Trillo, Iñaki; Marfany, Gemma

    2016-01-01

    Ubiquitination is a relevant cell regulatory mechanism to determine protein fate and function. Most data has focused on the role of ubiquitin as a tag molecule to target substrates to proteasome degradation, and on its impact in the control of cell cycle, protein homeostasis and cancer. Only recently, systematic assays have pointed to the relevance of the ubiquitin pathway in the development and differentiation of tissues and organs, and its implication in hereditary diseases. Moreover, although the activity and composition of ubiquitin ligases has been largely addressed, the role of the deubiquitinating enzymes (DUBs) in specific tissues, such as the retina, remains mainly unknown. In this work, we undertook a systematic analysis of the transcriptional levels of DUB genes in the adult mouse retina by RT-qPCR and analyzed the expression pattern by in situ hybridization and fluorescent immunohistochemistry, thus providing a unique spatial reference map of retinal DUB expression. We also performed a systematic phylogenetic analysis to understand the origin and the presence/absence of DUB genes in the genomes of diverse animal taxa that represent most of the known animal diversity. The expression landscape obtained supports the potential subfunctionalization of paralogs in those families that expanded in vertebrates. Overall, our results constitute a reference framework for further characterization of the DUB roles in the retina and suggest new candidates for inherited retinal disorders. PMID:26934049

  13. Astrocytic adaptation during cerebral angiogenesis follows the new vessel formation induced through chronic hypoxia in adult mouse cortex

    NASA Astrophysics Data System (ADS)

    Masamoto, Kazuto; Kanno, Iwao

    2014-03-01

    We examined longitudinal changes of the neuro-glia-vascular unit during cerebral angiogenesis induced through chronic hypoxia in the adult mouse cortex. Tie2-GFP mice in which the vascular endothelial cells expressed green fluorescent proteins (GFP) were exposed to chronic hypoxia, while the spatiotemporal developments of the cortical capillary sprouts and the neighboring astrocytic remodeling were characterized with repeated two-photon microscopy. The capillary sprouts appeared at early phases of the hypoxia adaptation (1-2 weeks), while the morphological changes of the astrocytic soma and processes were not detected in this phase. In the later phases of the hypoxia adaptation (> 2 weeks), the capillary sprouts created a new connection with existing capillaries, and its neighboring astrocytes extended their processes to the newly-formed vessels. The findings show that morphological adaptation of the astrocytes follow the capillary development during the hypoxia adaptation, which indicate that the newly-formed vessels provoke cellular interactions with the neighboring astrocytes to strengthen the functional blood-brain barrier.

  14. An In Vitro Adult Mouse Muscle-nerve Preparation for Studying the Firing Properties of Muscle Afferents

    PubMed Central

    Franco, Joy A.; Kloefkorn, Heidi E.; Hochman, Shawn; Wilkinson, Katherine A.

    2014-01-01

    Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice. PMID:25285602

  15. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain.

    PubMed

    Hemmer, Kathrin; Zhang, Mingyue; van Wüllen, Thea; Sakalem, Marna; Tapia, Natalia; Baumuratov, Aidos; Kaltschmidt, Christian; Kaltschmidt, Barbara; Schöler, Hans R; Zhang, Weiqi; Schwamborn, Jens C

    2014-09-01

    Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]). iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC) technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications. PMID:25241741

  16. The transformation of synaptic to system plasticity in motor output from the sacral cord of the adult mouse.

    PubMed

    Jiang, Mingchen C; Elbasiouny, Sherif M; Collins, William F; Heckman, C J

    2015-09-01

    Synaptic plasticity is fundamental in shaping the output of neural networks. The transformation of synaptic plasticity at the cellular level into plasticity at the system level involves multiple factors, including behavior of local networks of interneurons. Here we investigate the synaptic to system transformation for plasticity in motor output in an in vitro preparation of the adult mouse spinal cord. System plasticity was assessed from compound action potentials (APs) in spinal ventral roots, which were generated simultaneously by the axons of many motoneurons (MNs). Synaptic plasticity was assessed from intracellular recordings of MNs. A computer model of the MN pool was used to identify the middle steps in the transformation from synaptic to system behavior. Two input systems that converge on the same MN pool were studied: one sensory and one descending. The two synaptic input systems generated very different motor outputs, with sensory stimulation consistently evoking short-term depression (STD) whereas descending stimulation had bimodal plasticity: STD at low frequencies but short-term facilitation (STF) at high frequencies. Intracellular and pharmacological studies revealed contributions from monosynaptic excitation and stimulus time-locked inhibition but also considerable asynchronous excitation sustained from local network activity. The computer simulations showed that STD in the monosynaptic excitatory input was the primary driver of the system STD in the sensory input whereas network excitation underlies the bimodal plasticity in the descending system. These results provide insight on the roles of plasticity in the monosynaptic and polysynaptic inputs converging on the same MN pool to overall motor plasticity.

  17. Selective depression of nociceptive responses of dorsal horn neurones by SNC 80 in a perfused hindquarter preparation of adult mouse.

    PubMed

    Cao, C Q; Hong, Y G; Dray, A; Perkins, M N

    2001-01-01

    -nociceptive dorsal horn neurones were not inhibited by SNC 80 at a dose of up to 10 microM (n=5). These data demonstrate that delta-opioid receptor modulate nociceptive, but not non-nociceptive, transmission in spinal dorsal horn neurones of the adult mouse. The potentiation of neuronal activity by HS 378 may reflect an autoregulatory role of the endogenous delta-opioid in nociceptive transmission in mouse. PMID:11731107

  18. Transient forebrain ischemia-induced neuronal degeneration in fascia dentata transplants.

    PubMed

    Tønder, N; Aznar, S; Johansen, F F

    1994-01-01

    Fascia dentata tissue blocks from newborn rats were grafted into one-week-old, ibotenic acid-induced lesions of the fascia dentata, or the normal fascia dentata of adult rats. After at least 2 months survival the recipient rats were subjected to 10 min of forebrain ischemia (4-vessel occlusion), and examined 2 or 4 days later for neuronal degeneration in the host hippocampi and the transplants, by silver staining and immunohistochemistry. Transplants survived well in both normal and lesioned host brains, with easily recognizable subfields and layers and presence of normal types of principal and non-principal neurons. As expected, argyrophilic, degenerating neurons were present in the pyramidal cell layer of CAl and CA3c of the non-grafted contralateral host hippocampus and in the contralateral dentate hilus (CA4). In the hilus the degeneration corresponded to the loss of somatostatin-immunoreactive neurons, while parvalbumin-immunoreactive neurons were spared. In the dentate transplants degenerating neurons were observed in the granule cell layer, the hilus and the adjacent CA3 pyramidal cell layer. There was no obvious loss of either somatostatin- or parvalbumin-immunoreactive neurons. The degeneration varied considerably between transplants, from a few to large groups of silver stained neurons, but this difference did not display any obvious relation to grafting into normal or lesioned hosts, the exact location of the grafts or the general organization and distribution of intrinsic or extrinsic host afferents in the grafts. The results demonstrate that both ischemia-susceptible and -resistant types of neurons grafted to normal and lesioned adult rat brains are susceptible to transient forebrain ischemia after transplantation. In spite of an extensive reorganization of transplant nerve connections, the physiologicalbiochemical mechanisms necessary for the induction of ischemic cell death were accordingly present in the transplants.

  19. Morphological analysis of activity-reduced adult-born neurons in the mouse olfactory bulb.

    PubMed

    Dahlen, Jeffrey E; Jimenez, Daniel A; Gerkin, Richard C; Urban, Nathan N

    2011-01-01

    Adult-born neurons (ABNs) are added to the olfactory bulb (OB) throughout life in rodents. While many factors have been identified as regulating the survival and integration of ABNs into existing circuitry, the understanding of how these factors affect ABN morphology and connectivity is limited. Here we compare how cell intrinsic [small interfering RNA (siRNA) knock-down of voltage gated sodium channels Na(V)1.1-1.3] and circuit level (naris occlusion) reductions in activity affect ABN morphology during integration into the OB. We found that both manipulations reduce the number of dendritic spines (and thus likely the number of reciprocal synaptic connections) formed with the surrounding circuitry and inhibited dendritic ramification of ABNs. Further, we identified regions of ABN apical dendrites where the largest and most significant decreases occur following siRNA knock-down or naris occlusion. In siRNA knock-down cells, reduction of spines is observed in proximal regions of the apical dendrite. This suggests that distal regions of the dendrite may remain active independent of Na(V)1.1-1.3 channel expression, perhaps facilitated by activation of T-type calcium channels and NMDA receptors. By contrast, circuit level reduction of activity by naris occlusion resulted in a global depression of spine number. Together, these results indicate that ABNs retain the ability to develop their typical overall morphological features regardless of experienced activity, and activity modulates the number and location of formed connections.

  20. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis.

    PubMed

    Ostrowski, Stephen M; Wright, Margaret C; Bolock, Alexa M; Geng, Xuehui; Maricich, Stephen M

    2015-07-15

    Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression.

  1. Basal forebrain control of wakefulness and cortical rhythms

    PubMed Central

    Anaclet, Christelle; Pedersen, Nigel P.; Ferrari, Loris L.; Venner, Anne; Bass, Caroline E.; Arrigoni, Elda; Fuller, Patrick M.

    2015-01-01

    Wakefulness, along with fast cortical rhythms and associated cognition, depend on the basal forebrain (BF). BF cholinergic cell loss in dementia and the sedative effect of anti-cholinergic drugs have long implicated these neurons as important for cognition and wakefulness. The BF also contains intermingled inhibitory GABAergic and excitatory glutamatergic cell groups whose exact neurobiological roles are unclear. Here we show that genetically targeted chemogenetic activation of BF cholinergic or glutamatergic neurons in behaving mice produced significant effects on state consolidation and/or the electroencephalogram but had no effect on total wake. Similar activation of BF GABAergic neurons produced sustained wakefulness and high-frequency cortical rhythms, whereas chemogenetic inhibition increased sleep. Our findings reveal a major contribution of BF GABAergic neurons to wakefulness and the fast cortical rhythms associated with cognition. These findings may be clinically applicable to manipulations aimed at increasing forebrain activation in dementia and the minimally conscious state. PMID:26524973

  2. Basal forebrain control of wakefulness and cortical rhythms.

    PubMed

    Anaclet, Christelle; Pedersen, Nigel P; Ferrari, Loris L; Venner, Anne; Bass, Caroline E; Arrigoni, Elda; Fuller, Patrick M

    2015-11-03

    Wakefulness, along with fast cortical rhythms and associated cognition, depend on the basal forebrain (BF). BF cholinergic cell loss in dementia and the sedative effect of anti-cholinergic drugs have long implicated these neurons as important for cognition and wakefulness. The BF also contains intermingled inhibitory GABAergic and excitatory glutamatergic cell groups whose exact neurobiological roles are unclear. Here we show that genetically targeted chemogenetic activation of BF cholinergic or glutamatergic neurons in behaving mice produced significant effects on state consolidation and/or the electroencephalogram but had no effect on total wake. Similar activation of BF GABAergic neurons produced sustained wakefulness and high-frequency cortical rhythms, whereas chemogenetic inhibition increased sleep. Our findings reveal a major contribution of BF GABAergic neurons to wakefulness and the fast cortical rhythms associated with cognition. These findings may be clinically applicable to manipulations aimed at increasing forebrain activation in dementia and the minimally conscious state.

  3. ARX/Arx is expressed in germ cells during spermatogenesis in both marsupial and mouse.

    PubMed

    Yu, Hongshi; Pask, Andrew J; Hu, Yanqiu; Shaw, Geoff; Renfree, Marilyn B

    2014-03-01

    The X-linked aristaless gene, ARX, is essential for the development of the gonads, forebrain, olfactory bulb, pancreas, and skeletal muscle in mice and humans. Mutations cause neurological diseases, often accompanied by ambiguous genitalia. There are a disproportionately high number of testis and brain genes on the human and mouse X chromosomes. It is still unknown whether the X chromosome accrued these genes during its evolution or whether genes that find themselves on the X chromosome evolve such roles. ARX was originally autosomal in mammals and remains so in marsupials, whereas in eutherian mammals it translocated to the X chromosome. In this study, we examined autosomal ARX in tammars and compared it with the X-linked Arx in mice. We detected ARX mRNA in the neural cells of the forebrain, midbrain and hindbrain, and olfactory bulbs in developing tammars, consistent with the expression in mice. ARX was detected by RT-PCR and mRNA in situ hybridization in the developing tammar wallaby gonads of both sexes, suggestive of a role in sexual development as in mice. We also detected ARX/Arx mRNA in the adult testis in both tammars and mice, suggesting a potential novel role for ARX/Arx in spermiogenesis. ARX transcripts were predominantly observed in round spermatids. Arx mRNA localization distributions in the mouse adult testis suggest that it escaped meiotic sex chromosome inactivation during spermatogenesis. Our findings suggest that ARX in the therian mammal ancestor already played a role in male reproduction before it was recruited to the X chromosome in eutherians.

  4. Running increases neurogenesis without retinoic acid receptor activation in the adult mouse dentate gyrus.

    PubMed

    Aberg, Elin; Perlmann, Thomas; Olson, Lars; Brené, Stefan

    2008-01-01

    Both vitamin A deficiency and high doses of retinoids can result in learning and memory impairments, depression as well as decreases in cell proliferation, neurogenesis and cell survival. Physical activity enhances hippocampal neurogenesis and can also exert an antidepressant effect. Here we elucidate a putative link between running, retinoid signaling, and neurogenesis in hippocampus. Adult transgenic reporter mice designed to detect ligand-activated retinoic acid receptors (RAR) or retinoid X receptors (RXR) were used to localize the distribution of activated RAR or RXR at the single-cell level in the brain. Two months of voluntary wheel-running induced an increase in hippocampal neurogenesis as indicated by an almost two-fold increase in doublecortin-immunoreactive cells. Running activity was correlated with neurogenesis. Under basal conditions a distinct pattern of RAR-activated cells was detected in the granule cell layer of the dentate gyrus (DG), thalamus, and cerebral cortex layers 3-4 and to a lesser extent in hippocampal pyramidal cell layers CA1-CA3. Running did not change the number of RAR-activated cells in the DG. There was no correlation between running and RAR activation or between RAR activation and neurogenesis in the DG of hippocampus. Only a few scattered activated retinoid X receptors were found in the DG under basal conditions and after wheel-running, but RXR was detected in other areas such as in the hilus region of hippocampus and in layer VI of cortex cerebri. RAR agonists affect mood in humans and reduce neurogenesis, learning and memory in animal models. In our study, long-term running increased neurogenesis but did not alter RAR ligand activation in the DG in individually housed mice. Thus, our data suggest that the effects of exercise on neurogenesis and other plasticity changes in the hippocampal formation are mediated by mechanisms that do not involve retinoid receptor activation.

  5. Corelease of acetylcholine and GABA from cholinergic forebrain neurons

    PubMed Central

    Saunders, Arpiar; Granger, Adam J; Sabatini, Bernardo L

    2015-01-01

    Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-synaptic currents (PSCs) in layer 1 interneurons. Surprisingly, we observed PSCs mediated by GABAA receptors in addition to nicotinic acetylcholine receptors. Based on PSC latency and pharmacological sensitivity, our results suggest monosynaptic release of both GABA and ACh. Anatomical analysis showed that forebrain cholinergic neurons express the GABA synthetic enzyme Gad2 and the vesicular GABA transporter (Slc32a1). We confirmed the direct release of GABA by knocking out Slc32a1 from cholinergic neurons. Our results identify GABA as an overlooked fast neurotransmitter utilized throughout the forebrain cholinergic system. GABA/ACh corelease may have major implications for modulation of cortical function by cholinergic neurons. DOI: http://dx.doi.org/10.7554/eLife.06412.001 PMID:25723967

  6. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  7. The transformation of synaptic to system plasticity in motor output from the sacral cord of the adult mouse.

    PubMed

    Jiang, Mingchen C; Elbasiouny, Sherif M; Collins, William F; Heckman, C J

    2015-09-01

    Synaptic plasticity is fundamental in shaping the output of neural networks. The transformation of synaptic plasticity at the cellular level into plasticity at the system level involves multiple factors, including behavior of local networks of interneurons. Here we investigate the synaptic to system transformation for plasticity in motor output in an in vitro preparation of the adult mouse spinal cord. System plasticity was assessed from compound action potentials (APs) in spinal ventral roots, which were generated simultaneously by the axons of many motoneurons (MNs). Synaptic plasticity was assessed from intracellular recordings of MNs. A computer model of the MN pool was used to identify the middle steps in the transformation from synaptic to system behavior. Two input systems that converge on the same MN pool were studied: one sensory and one descending. The two synaptic input systems generated very different motor outputs, with sensory stimulation consistently evoking short-term depression (STD) whereas descending stimulation had bimodal plasticity: STD at low frequencies but short-term facilitation (STF) at high frequencies. Intracellular and pharmacological studies revealed contributions from monosynaptic excitation and stimulus time-locked inhibition but also considerable asynchronous excitation sustained from local network activity. The computer simulations showed that STD in the monosynaptic excitatory input was the primary driver of the system STD in the sensory input whereas network excitation underlies the bimodal plasticity in the descending system. These results provide insight on the roles of plasticity in the monosynaptic and polysynaptic inputs converging on the same MN pool to overall motor plasticity. PMID:26203107

  8. Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome.

    PubMed

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-03-13

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases.

  9. Early Social Enrichment Rescues Adult Behavioral and Brain Abnormalities in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-01-01

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases. PMID:25348604

  10. Spatiotemporally Regulated Ablation of Klf4 in Adult Mouse Corneal Epithelial Cells Results in Altered Epithelial Cell Identity and Disrupted Homeostasis

    PubMed Central

    Delp, Emili E.; Swamynathan, Sudha; Kao, Winston W.; Swamynathan, Shivalingappa K.

    2015-01-01

    Purpose. In previous studies, conditional disruption of Klf4 in the developing mouse ocular surface from embryonic day 10 resulted in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells, revealing the importance of Klf4 in ocular surface maturation. Here, we use spatiotemporally regulated ablation of Klf4 to investigate its functions in maintenance of adult corneal epithelial homeostasis. Methods. Expression of Cre was induced in ternary transgenic (Klf4LoxP/LoxP/Krt12rtTA/rtTA/Tet-O-Cre) mouse corneal epithelium by doxycycline administered through intraperitoneal injections and drinking water, to generate corneal epithelium–specific deletion of Klf4 (Klf4Δ/ΔCE). Corneal epithelial barrier function was tested by fluorescein staining. Expression of selected Klf4-target genes was determined by quantitative PCR (QPCR), immunoblotting, and immunofluorescent staining. Results. Klf4 was efficiently ablated within 5 days of doxycycline administration in adult Klf4Δ/ΔCE corneal epithelium. The Klf4Δ/ΔCE corneal epithelial barrier function was disrupted, and the basal cells were swollen and rounded after 15 days of doxycycline treatment. Increased numbers of cell layers and Ki67-positive proliferating cells suggested deregulated Klf4Δ/ΔCE corneal epithelial homeostasis. Expression of tight junction proteins ZO-1 and occludin, desmosomal Dsg and Dsp, basement membrane laminin-332, and corneal epithelial–specific keratin-12 was decreased, while that of matrix metalloproteinase Mmp9 and noncorneal keratin-17 increased, suggesting altered Klf4Δ/ΔCE corneal epithelial cell identity. Conclusions. Ablation of Klf4 in the adult mouse corneas resulted in the absence of characteristic corneal epithelial cell differentiation, disrupted barrier function, and squamous metaplasia, revealing that Klf4 is essential for maintenance of the adult corneal epithelial cell identity and homeostasis. PMID:26047041

  11. A new genus and species of demodecid mites from the tongue of a house mouse Mus musculus: description of adult and immature stages with data on parasitism.

    PubMed

    Izdebska, J N; Rolbiecki, L

    2016-06-01

    The study of the parasitofauna of the house mouse Mus musculus (Rodentia: Muridae) Linnaeus is particularly important owing to its multiple relationships with humans - as a cosmopolitan, synanthropic rodent, bred for pets, food for other animals or laboratory animal. This article proposes and describes a new genus and species of the parasitic mite based on adult and immature stages from the house mouse. Glossicodex musculi gen. n., sp. n. is a medium-sized demodecid mite (adult stages on average 199 µm in length) found in mouse tissue of the tongue. It is characterized by two large, hooked claws on each tarsus of the legs; the legs are relatively massive, consisting of large, non-overlapping segments. The palps consist of three slender, clearly separated, relatively narrow segments, wherein their coxal segments are also quite narrow and spaced. Also, segments of the palps of larva and nymphs are clearly isolated, and on the terminal segment, trident claws that resemble legs' claws can be found. On the ventral side, in immature stages, triangular scuta, topped with sclerotized spur, can be also observed. Glossicodex musculi was noted in 10.8% of mice with a mean infection intensity of 2.2 parasites per host.

  12. Purification of oogonial stem cells from adult mouse and human ovaries: an assessment of the literature and a view toward the future.

    PubMed

    Woods, Dori C; White, Yvonne A R; Tilly, Jonathan L

    2013-01-01

    Contemporary claims that mitotically active female germ line or oogonial stem cells (OSCs) exist and support oogenesis during postnatal life in mammals have been debated in the field of reproductive biology since March 2004, when a mouse study posed the first serious challenge to the dogma of a fixed pool of oocytes being endowed at birth in more than 50 years. Other studies have since been put forth that further question the validity of this dogma, including the isolation of OSCs from neonatal and adult mouse ovaries by 4 independent groups using multiple strategies. Two of these groups also reported that isolated mouse OSCs, once transplanted back into ovaries of adult female mice, differentiate into fully functional eggs that ovulate, fertilize, and produce healthy embryos and offspring. Arguably, one of the most significant advances in this emerging field was provided by a new research study published this year, which reported the successful isolation and functional characterization of OSCs from ovaries of reproductive age women. Two commentaries on this latest work, one cautiously supportive and one highly skeptical, were published soon afterward. This article evaluates the current literature regarding postnatal oogenesis in mammals and discusses important next steps for future work on OSC biology and function.

  13. Progressive loss of dopaminergic neurons induced by unilateral rotenone infusion into the medial forebrain bundle.

    PubMed

    Norazit, Anwar; Meedeniya, Adrian C B; Nguyen, Maria Nga; Mackay-Sim, Alan

    2010-11-11

    Rotenone, a mitochondrial complex 1 inhibitor, causes oxidative damage via production of reactive oxygen species. We examined the pathophysiology of neuronal and glial cells of the nigrostriatal pathway following unilateral infusion of varying doses of rotenone into the substantia nigra or medial forebrain bundle of adult male Sprague-Dawley rats, sacrificed 14 and 60 days after infusion. Immunofluorescence techniques were used to qualitatively and quantitatively assay dopaminergic neurons, their projections, glial cells, synapses, and oxidative stress. Rotenone infusion into the substantia nigra at all concentrations caused extensive damage and tissue necrosis, therefore of limited relevance for producing a Parkinson disease model. Infusion of 0.5μg of rotenone targeting the medial forebrain bundle induced oxidative stress in dopaminergic neurons causing ongoing cell stress as defined by an elevation of stress granule and oxidative stress markers. This treatment resulted in the loss of tyrosine hydroxylase immunoreactive cells in the substantia nigra (p≤0.01) and loss of tyrosine hydroxylase immunoreactive nerve fibres and synaptic specialisations in the striatum (p≤0.01). The infusion of 0.5μg of rotenone also caused an increase in astrocytes and microglial cells in the substantia nigra in comparison to control (p≤0.01). We examined the time-dependent reduction of tyrosine hydroxylase-positive nerve fibres and cell bodies in the striatum and substantia nigra respectively, with a progressive reduction evident 60days after infusion (p≤0.01, p≤0.05). Dopaminergic axons exposed to low-dose rotenone undergo oxidative stress, with a resultant ongoing loss of dopaminergic neurons, providing an animal model relevant to Parkinson disease.

  14. Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development.

    PubMed

    Domínguez, L; Schlosser, G; Shen, S

    2015-04-01

    We have analyzed the expression pattern of a novel serine/threonine kinase gene Ulk4 during forebrain development in Xenopus laevis. To this aim, we firstly cloned a Ulk4 cDNA fragment from X.laevis and generated a RNA probe that was used for its detection by in situ hybridization. Throughout development xUlk4 expression was detected along the ventricular (vz) and subventricular zones (svz) of all forebrain regions, with the exception of the vz of the striatum. In the adult, xUlk4 was also mainly located in the vz, with some xUlk4 expressing cells reaching the svz/mantle zone (mz). This xUlk4 expression was especially remarkable in forebrain regions involving the homeostatic control of the brain such as the preoptic region, the hypothalamic territory and some neurosecretory circumventricular organs (CVOs). We further combined in situ hybridization for xUlk4 with immunohistochemistry for the neural progenitor cell marker SOX3, the radial glial marker brain lipid-binding protein (BLBP), neuronal markers MAP2 and doublecortin (DCX) and the specific neuronal marker tyrosine hydroxylase (TH). xUlk4 was co-expressed with the neural stem/progenitor cell marker SOX3 in the vz of all the forebrain regions throughout development and in the adult, and this co-expression was also especially evident in the svz of the hypothalamic region. xUlk4 was also expressed in the radial glia along the whole brain. We have also found minor expression of xUlk4 in some DCX- or MAP2-positive cells but not in TH-positive neurons. These findings suggest that Ulk4 may play roles in neural stem/progenitor cells during neurogenesis both in development and in the adulthood, in migrating cells as well as in cells committed to neuronal fate in Xenopus. Moreover, the results obtained in this study argue for an involvement of Ulk4 in the control of the neuroendocrine homeostatic functions in the brain. PMID:25637795

  15. Treatment of beta amyloid 1–42 (Aβ1–42)-induced basal forebrain cholinergic damage by a non-classical estrogen signaling activator in vivo

    PubMed Central

    Kwakowsky, Andrea; Potapov, Kyoko; Kim, SooHyun; Peppercorn, Katie; Tate, Warren P.; Ábrahám, István M.

    2016-01-01

    In Alzheimer’s disease (AD), there is a loss in cholinergic innervation targets of basal forebrain which has been implicated in substantial cognitive decline. Amyloid beta peptide (Aβ1–42) accumulates in AD that is highly toxic for basal forebrain cholinergic (BFC) neurons. Although the gonadal steroid estradiol is neuroprotective, the administration is associated with risk of off-target effects. Previous findings suggested that non-classical estradiol action on intracellular signaling pathways has ameliorative potential without estrogenic side effects. After Aβ1–42 injection into mouse basal forebrain, a single dose of 4-estren-3α, 17β-diol (estren), the non-classical estradiol pathway activator, restored loss of cholinergic cortical projections and also attenuated the Aβ1–42-induced learning deficits. Estren rapidly and directly phosphorylates c-AMP-response–element-binding-protein and extracellular-signal-regulated-kinase-1/2 in BFC neurons and restores the cholinergic fibers via estrogen receptor-α. These findings indicated that selective activation of non-classical intracellular estrogen signaling has a potential to treat the damage of cholinergic neurons in AD. PMID:26879842

  16. CLoNe is a new method to target single progenitors and study their progeny in mouse and chick.

    PubMed

    García-Moreno, Fernando; Vasistha, Navneet A; Begbie, Jo; Molnár, Zoltán

    2014-04-01

    Cell lineage analysis enables us to address pivotal questions relating to: the embryonic origin of cells and sibling cell relationships in the adult body; the contribution of progenitors activated after trauma or disease; and the comparison across species in evolutionary biology. To address such fundamental questions, several techniques for clonal labelling have been developed, each with its shortcomings. Here, we report a novel method, CLoNe that is designed to work in all vertebrate species and tissues. CLoNe uses a cocktail of labelling, targeting and transposition vectors that enables targeting of specific subpopulations of progenitor types with a combination of fluorophores resulting in multifluorescence that describes multiple clones per specimen. Furthermore, transposition into the genome ensures the longevity of cell labelling. We demonstrate the robustness of this technique in mouse and chick forebrain development, and show evidence that CLoNe will be broadly applicable to study clonal relationships in different tissues and species.

  17. CLoNe is a new method to target single progenitors and study their progeny in mouse and chick.

    PubMed

    García-Moreno, Fernando; Vasistha, Navneet A; Begbie, Jo; Molnár, Zoltán

    2014-04-01

    Cell lineage analysis enables us to address pivotal questions relating to: the embryonic origin of cells and sibling cell relationships in the adult body; the contribution of progenitors activated after trauma or disease; and the comparison across species in evolutionary biology. To address such fundamental questions, several techniques for clonal labelling have been developed, each with its shortcomings. Here, we report a novel method, CLoNe that is designed to work in all vertebrate species and tissues. CLoNe uses a cocktail of labelling, targeting and transposition vectors that enables targeting of specific subpopulations of progenitor types with a combination of fluorophores resulting in multifluorescence that describes multiple clones per specimen. Furthermore, transposition into the genome ensures the longevity of cell labelling. We demonstrate the robustness of this technique in mouse and chick forebrain development, and show evidence that CLoNe will be broadly applicable to study clonal relationships in different tissues and species. PMID:24644261

  18. CLoNe is a new method to target single progenitors and study their progeny in mouse and chick

    PubMed Central

    García-Moreno, Fernando; Vasistha, Navneet A.; Begbie, Jo; Molnár, Zoltán

    2014-01-01

    Cell lineage analysis enables us to address pivotal questions relating to: the embryonic origin of cells and sibling cell relationships in the adult body; the contribution of progenitors activated after trauma or disease; and the comparison across species in evolutionary biology. To address such fundamental questions, several techniques for clonal labelling have been developed, each with its shortcomings. Here, we report a novel method, CLoNe that is designed to work in all vertebrate species and tissues. CLoNe uses a cocktail of labelling, targeting and transposition vectors that enables targeting of specific subpopulations of progenitor types with a combination of fluorophores resulting in multifluorescence that describes multiple clones per specimen. Furthermore, transposition into the genome ensures the longevity of cell labelling. We demonstrate the robustness of this technique in mouse and chick forebrain development, and show evidence that CLoNe will be broadly applicable to study clonal relationships in different tissues and species. PMID:24644261

  19. Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U.

    PubMed

    Tsai, Kuen-Jer; Yang, Chun-Hung; Fang, Yen-Hsin; Cho, Kuan-Hung; Chien, Wei-Lin; Wang, Wei-Ting; Wu, Tzu-Wei; Lin, Ching-Po; Fu, Wen-Mei; Shen, Che-Kun James

    2010-08-01

    TDP-43 is a multifunctional DNA/RNA-binding factor that has been implicated in the regulation of neuronal plasticity. TDP-43 has also been identified as the major constituent of the neuronal cytoplasmic inclusions (NCIs) that are characteristic of a range of neurodegenerative diseases, including the frontotemporal lobar degeneration with ubiquitin(+) inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). We have generated a FTLD-U mouse model (CaMKII-TDP-43 Tg) in which TDP-43 is transgenically overexpressed in the forebrain resulting in phenotypic characteristics mimicking those of FTLD-U. In particular, the transgenic (Tg) mice exhibit impaired learning/memory, progressive motor dysfunction, and hippocampal atrophy. The cognitive and motor impairments are accompanied by reduced levels of the neuronal regulators phospho-extracellular signal-regulated kinase and phosphorylated cAMP response element-binding protein and increased levels of gliosis in the brains of the Tg mice. Moreover, cells with TDP-43(+), ubiquitin(+) NCIs and TDP-43-deleted nuclei appear in the Tg mouse brains in an age-dependent manner. Our data provide direct evidence that increased levels of TDP-43 protein in the forebrain is sufficient to lead to the formation of TDP-43(+), ubiquitin(+) NCIs and neurodegeneration. This FTLD-U mouse model should be valuable for the mechanistic analysis of the role of TDP-43 in the pathogenesis of FTLD-U and for the design of effective therapeutic approaches of the disease. PMID:20660618

  20. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.

    PubMed

    Broutier, Laura; Andersson-Rolf, Amanda; Hindley, Christopher J; Boj, Sylvia F; Clevers, Hans; Koo, Bon-Kyoung; Huch, Meritxell

    2016-09-01

    Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol. PMID:27560176

  1. No evidence for inositol 1,4,5-trisphosphate-dependent Ca2+ release in isolated fibers of adult mouse skeletal muscle.

    PubMed

    Blaauw, Bert; Del Piccolo, Paola; Rodriguez, Laura; Hernandez Gonzalez, Victor-Hugo; Agatea, Lisa; Solagna, Francesca; Mammano, Fabio; Pozzan, Tullio; Schiaffino, Stefano

    2012-08-01

    The presence and role of functional inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) in adult skeletal muscle are controversial. The current consensus is that, in adult striated muscle, the relative amount of IP(3)Rs is too low and the kinetics of Ca(2+) release from IP(3)R is too slow compared with ryanodine receptors to contribute to the Ca(2+) transient during excitation-contraction coupling. However, it has been suggested that IP(3)-dependent Ca(2+) release may be involved in signaling cascades leading to regulation of muscle gene expression. We have reinvestigated IP(3)-dependent Ca(2+) release in isolated flexor digitorum brevis (FDB) muscle fibers from adult mice. Although Ca(2+) transients were readily induced in cultured C2C12 muscle cells by (a) UTP stimulation, (b) direct injection of IP(3), or (c) photolysis of membrane-permeant caged IP(3), no statistically significant change in calcium signal was detected in adult FDB fibers. We conclude that the IP(3)-IP(3)R system does not appear to affect global calcium levels in adult mouse skeletal muscle.

  2. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.

    PubMed

    Broutier, Laura; Andersson-Rolf, Amanda; Hindley, Christopher J; Boj, Sylvia F; Clevers, Hans; Koo, Bon-Kyoung; Huch, Meritxell

    2016-09-01

    Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol.

  3. Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly

    PubMed Central

    Chen, Lei; Melendez, Jaime; Campbell, Kenneth; Kuan, Chia-Yi; Zheng, Yi

    2009-01-01

    The Rho family of small GTPases has been implicated in many neurological disorders including mental retardation, but whether they are involved in primary microcephaly (microcephalia vera) is unknown. Here, we examine the role of Rac1 in mammalian neural progenitors and forebrain development by a conditional gene-targeting strategy using the Foxg1-Cre line to delete floxed-Rac1 alleles in the telencephalic ventricular zone (VZ) of mouse embryos. We found that Rac1 deletion in the telencephalic VZ progenitors resulted in reduced sizes of both the striatum and cerebral cortex. Analyses further indicated that this abnormality was caused by accelerated cell-cycle exit and increased apoptosis during early corticogenesis (approximately E14.5), leading to a decrease of the neural progenitor pool in mid-to-late telencephalic development (E16.5 to E18.5). Moreover, the formation of patch-matrix compartments in the striatum was impaired by Rac1-deficiency. Together, these results suggest that Rac1 regulates self-renewal, survival, and differentiation of telencephalic neural progenitors, and that dysfunctions of Rac1 may lead to primary microcephaly. PMID:19007770

  4. Cell type-specific long-range connections of basal forebrain circuit.

    PubMed

    Do, Johnny Phong; Xu, Min; Lee, Seung-Hee; Chang, Wei-Cheng; Zhang, Siyu; Chung, Shinjae; Yung, Tyler J; Fan, Jiang Lan; Miyamichi, Kazunari; Luo, Liqun; Dan, Yang

    2016-09-19

    The basal forebrain (BF) plays key roles in multiple brain functions, including sleep-wake regulation, attention, and learning/memory, but the long-range connections mediating these functions remain poorly characterized. Here we performed whole-brain mapping of both inputs and outputs of four BF cell types - cholinergic, glutamatergic, and parvalbumin-positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons - in the mouse brain. Using rabies virus -mediated monosynaptic retrograde tracing to label the inputs and adeno-associated virus to trace axonal projections, we identified numerous brain areas connected to the BF. The inputs to different cell types were qualitatively similar, but the output projections showed marked differences. The connections to glutamatergic and SOM+ neurons were strongly reciprocal, while those to cholinergic and PV+ neurons were more unidirectional. These results reveal the long-range wiring diagram of the BF circuit with highly convergent inputs and divergent outputs and point to both functional commonality and specialization of different BF cell types.

  5. Cell type-specific long-range connections of basal forebrain circuit.

    PubMed

    Do, Johnny Phong; Xu, Min; Lee, Seung-Hee; Chang, Wei-Cheng; Zhang, Siyu; Chung, Shinjae; Yung, Tyler J; Fan, Jiang Lan; Miyamichi, Kazunari; Luo, Liqun; Dan, Yang

    2016-01-01

    The basal forebrain (BF) plays key roles in multiple brain functions, including sleep-wake regulation, attention, and learning/memory, but the long-range connections mediating these functions remain poorly characterized. Here we performed whole-brain mapping of both inputs and outputs of four BF cell types - cholinergic, glutamatergic, and parvalbumin-positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons - in the mouse brain. Using rabies virus -mediated monosynaptic retrograde tracing to label the inputs and adeno-associated virus to trace axonal projections, we identified numerous brain areas connected to the BF. The inputs to different cell types were qualitatively similar, but the output projections showed marked differences. The connections to glutamatergic and SOM+ neurons were strongly reciprocal, while those to cholinergic and PV+ neurons were more unidirectional. These results reveal the long-range wiring diagram of the BF circuit with highly convergent inputs and divergent outputs and point to both functional commonality and specialization of different BF cell types. PMID:27642784

  6. Aging analysis reveals slowed tau turnover and enhanced stress response in a mouse model of tauopathy.

    PubMed

    Dickey, Chad; Kraft, Clara; Jinwal, Umesh; Koren, John; Johnson, Amelia; Anderson, Laura; Lebson, Lori; Lee, Daniel; Dickson, Dennis; de Silva, Rohan; Binder, Lester I; Morgan, David; Lewis, Jada

    2009-01-01

    We have extensively analyzed the biochemical and histochemical profiles of the tau protein from the rTg4510 transgenic mouse model in which the animals uniquely develop forebrain tau pathologies similar to those found in human tauopathies. Levels of several soluble phosphorylated tau species were highest at 1 month relative to later time points, suggesting that certain tau hyperphosphorylation events were insufficient to drive tangle formation in young mice. Despite a robust, pre-tangle-like accumulation of phospho-tau in 1-month-old mice, this material was cleared by 3 months, indicating that the young mouse brain either fails to facilitate tau insolubility or possesses an enhanced ability to clear tau relative to the adult. We also found that while heat shock protein expression increased with normal aging, this process was accelerated in rTg4510 mice. Moreover, by exploiting an exon 10 (-) specific antibody, we demonstrated that endogenous mouse tau turnover was slowed in response to human tau over-expression, and that this endogenous tau adopted disease-related properties. These data suggest that a younger brain fails to develop lasting tau pathology despite elevated levels of phosphorylated tau, perhaps because of reduced expression of stress-related proteins. Moreover, we show that the active production of small amounts of abnormal tau protein facilitates dysfunction and accumulation of otherwise normal tau, a significant implication for the pathogenesis of patients with Alzheimer's disease.

  7. Estradiol selectively enhances auditory function in avian forebrain neurons.

    PubMed

    Caras, Melissa L; O'Brien, Matthew; Brenowitz, Eliot A; Rubel, Edwin W

    2012-12-01

    Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or nonbreeding conditions by manipulating plasma 17β-estradiol levels in wild-caught female Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner.

  8. Learning and the motivation to eat: Forebrain circuitry

    PubMed Central

    Petrovich, Gorica D.

    2011-01-01

    Appetite and eating are not only controlled by energy needs, but also by extrinsic factors that are not directly related to energy balance. Environmental signals that acquire motivational properties through associative learning—learned cues—can override homeostatic signals and stimulate eating in sated states, or inhibit eating in states of hunger. Such influences are important, as environmental factors are believed to contribute to the increased susceptibility to overeating and the rise in obesity in the developed world. Similarly, environmental and social factors contribute to the onset and maintenance of anorexia nervosa and other eating disorders through interactions with the individual genetic background. Nevertheless, how learning enables environmental signals to control feeding, and the underlying brain mechanisms are poorly understood. We developed two rodent models to study how learned cues are integrated with homeostatic signals within functional forebrain networks, and how these networks are modulated by experience. In one model, a cue previously paired with food when an animal was hungry induces eating in sated rats. In the other model, food-deprived rats inhibit feeding when presented with a cue that signals danger, a tone previously paired with footshocks. Here evidence will be reviewed that the forebrain network formed by the amygdala, lateral hypothalamus and medial prefrontal cortex mediates cue-driven feeding, while a parallel amygdalar circuitry mediates suppression of eating by the fear cue. Findings from the animal models may be relevant for understanding aspects of human appetite and eating, and maladaptive mechanisms that could lead to overeating and anorexia. PMID:21549730

  9. Learning and the motivation to eat: forebrain circuitry.

    PubMed

    Petrovich, Gorica D

    2011-09-26

    Appetite and eating are not only controlled by energy needs, but also by extrinsic factors that are not directly related to energy balance. Environmental signals that acquire motivational properties through associative learning-learned cues-can override homeostatic signals and stimulate eating in sated states, or inhibit eating in states of hunger. Such influences are important, as environmental factors are believed to contribute to the increased susceptibility to overeating and the rise in obesity in the developed world. Similarly, environmental and social factors contribute to the onset and maintenance of anorexia nervosa and other eating disorders through interactions with the individual genetic background. Nevertheless, how learning enables environmental signals to control feeding, and the underlying brain mechanisms are poorly understood. We developed two rodent models to study how learned cues are integrated with homeostatic signals within functional forebrain networks, and how these networks are modulated by experience. In one model, a cue previously paired with food when an animal was hungry induces eating in sated rats. In the other model, food-deprived rats inhibit feeding when presented with a cue that signals danger, a tone previously paired with footshocks. Here evidence will be reviewed that the forebrain network formed by the amygdala, lateral hypothalamus and medial prefrontal cortex mediates cue-driven feeding, while a parallel amygdalar circuitry mediates suppression of eating by the fear cue. Findings from the animal models may be relevant for understanding aspects of human appetite and eating, and maladaptive mechanisms that could lead to overeating and anorexia. PMID:21549730

  10. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic, and Parvalbumin Neurons in Mice

    PubMed Central

    Yang, Chun; Franciosi, Serena; Brown, Ritchie E.

    2013-01-01

    Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF) region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV) neurons to determine the effect of adenosine. Whole-cell recordings were made from BF cholinergic neurons and from BF GABAergic and PV neurons with the size (>20 μm) and intrinsic membrane properties (prominent H-currents) corresponding to cortically projecting neurons. A brief (2 min) bath application of adenosine (100 μM) decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (EPSCs) in all groups of BF cholinergic, GABAergic, and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM). Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1 receptor-mediated inhibition of glutamatergic inputs to cortically projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required

  11. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze.

    PubMed

    Merritt, Jennifer R; Rhodes, Justin S

    2015-03-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2- to 5-fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6 J, 129S1/SvImJ, B6129SF1/J, DBA/2 J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2 J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running.

  12. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze

    PubMed Central

    Merritt, Jennifer; Rhodes, Justin S.

    2014-01-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316

  13. Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer's Disease Patients.

    PubMed

    Kerbler, Georg M; Nedelska, Zuzana; Fripp, Jurgen; Laczó, Jan; Vyhnalek, Martin; Lisý, Jiří; Hamlin, Adam S; Rose, Stephen; Hort, Jakub; Coulson, Elizabeth J

    2015-01-01

    The basal forebrain degenerates in Alzheimer's disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants' ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy.

  14. Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer's Disease Patients.

    PubMed

    Kerbler, Georg M; Nedelska, Zuzana; Fripp, Jurgen; Laczó, Jan; Vyhnalek, Martin; Lisý, Jiří; Hamlin, Adam S; Rose, Stephen; Hort, Jakub; Coulson, Elizabeth J

    2015-01-01

    The basal forebrain degenerates in Alzheimer's disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants' ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy. PMID:26441643

  15. Visualization of growth factor receptor sites in rat forebrain

    SciTech Connect

    Quirion, R.; Araujo, D.; Nair, N.P.; Chabot, J.G.

    1988-01-01

    It is now known that various growth factors may also act in the central nervous system. Among them, it has recently been shown that epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) may possess trophic effects in the mammalian brain. We report here on the respective autoradiographic distribution of (/sup 125/I)EGF and (/sup 125/I)IGF-I receptor binding sites in the rat brain, both during ontogeny and in adulthood. It appears that (/sup 125/I)EGF sites are mostly found in the rat forebrain during brain development. On the other hand, (/sup 125/I)IGF-I sites are more widely distributed both during ontogeny and in adulthood. These results reveal the plasticity of the expression of EGF and IGF-I receptor sites in the mammalian brain. This could be relevant for the respective role of these two growth factors in the development and maintenance of neuronal function.

  16. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

    PubMed

    Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko

    2015-02-01

    The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue.

  17. Intracellular calcium and survival of tadpole forebrain cells in anoxia.

    PubMed

    Hedrick, Michael S; Fahlman, Christian S; Bickler, Philip E

    2005-02-01

    The frog brain survives hypoxia with a slow loss of energy charge and ion homeostasis. Because hypoxic death in most neurons is associated with increases in intracellular calcium ([Ca2+]i), we examined the relationship between [Ca2+]i and survival of a mixed population of isolated cells from the forebrain of North American bullfrog Rana catesbeiana tadpoles. Forebrain cells from stage V-XV tadpoles were isolated by enzymatic digestion and loaded with one of three different calcium indicators (Fura-2, Fura 2-FF and BTC) to provide estimates of [Ca2+]i accurate at low and high [Ca2+]i. Propidium iodide (PI) fluorescence was used as an indicator of cell viability. Cells were exposed to anoxia (100% N2) and measurements of [Ca2+]i and cell survival made from 1 h to 18 h. Intracellular [Ca2+] increased significantly after 3-6 h anoxia (P<0.05), regardless of the type of Ca2+ indicator used; however, there were substantial differences in the measurements of [Ca2+]i with the different indicators, reflecting their varying affinities for Ca2+. Resting [Ca2+]i was approximately 50 nmol l(-1) and increased to about 9-30 micromol l(-1) after 4-6 h anoxia. The significant increase in [Ca2+]i during anoxia was not associated with significant increases in cell death, with 85-95% survival over this time period. Cells exposed to anoxia for 18 h, or those made anoxic for 4-6 and reoxygenated for 12 h to 16 h, had survival rates greater than 70%, but survival was significantly less than normoxic controls. These results indicate that large increases in [Ca2+]i are not necessarily associated with hypoxic cell death in vertebrate brain cells. PMID:15695760

  18. Adult Neurogenesis in the Female Mouse Hypothalamus: Estradiol and High-Fat Diet Alter the Generation of Newborn Neurons Expressing Estrogen Receptor α

    PubMed Central

    Yang, Jane; Nettles, Sabin A.; Byrnes, Elizabeth M.

    2016-01-01

    Estrogens and leptins act in the hypothalamus to maintain reproduction and energy homeostasis. Neurogenesis in the adult mammalian hypothalamus has been implicated in the regulation of energy homeostasis. Recently, high-fat diet (HFD) and estradiol (E2) have been shown to alter cell proliferation and the number of newborn leptin-responsive neurons in the hypothalamus of adult female mice. The current study tested the hypothesis that new cells expressing estrogen receptor α (ERα) are generated in the arcuate nucleus (ARC) and the ventromedial nucleus of the hypothalamus (VMH) of the adult female mouse, hypothalamic regions that are critical in energy homeostasis. Adult mice were ovariectomized and implanted with capsules containing E2 or oil. Within each hormone group, mice were fed an HFD or standard chow for 6 weeks and treated with BrdU to label new cells. Newborn cells that respond to estrogens were identified in the ARC and VMH, of which a subpopulation was leptin sensitive, indicating that the subpopulation consists of neurons. Moreover, there was an interaction between diet and hormone with an effect on the number of these newborn ERα-expressing neurons that respond to leptin. Regardless of hormone treatment, HFD increased the number of ERα-expressing cells in the ARC and VMH. E2 decreased hypothalamic fibroblast growth factor 10 (Fgf10) gene expression in HFD mice, suggesting a role for Fgf10 in E2 effects on neurogenesis. These findings of newly created estrogen-responsive neurons in the adult brain provide a novel mechanism by which estrogens can act in the hypothalamus to regulate energy homeostasis in females. PMID:27679811

  19. Adult Neurogenesis in the Female Mouse Hypothalamus: Estradiol and High-Fat Diet Alter the Generation of Newborn Neurons Expressing Estrogen Receptor α

    PubMed Central

    Yang, Jane; Nettles, Sabin A.; Byrnes, Elizabeth M.

    2016-01-01

    Estrogens and leptins act in the hypothalamus to maintain reproduction and energy homeostasis. Neurogenesis in the adult mammalian hypothalamus has been implicated in the regulation of energy homeostasis. Recently, high-fat diet (HFD) and estradiol (E2) have been shown to alter cell proliferation and the number of newborn leptin-responsive neurons in the hypothalamus of adult female mice. The current study tested the hypothesis that new cells expressing estrogen receptor α (ERα) are generated in the arcuate nucleus (ARC) and the ventromedial nucleus of the hypothalamus (VMH) of the adult female mouse, hypothalamic regions that are critical in energy homeostasis. Adult mice were ovariectomized and implanted with capsules containing E2 or oil. Within each hormone group, mice were fed an HFD or standard chow for 6 weeks and treated with BrdU to label new cells. Newborn cells that respond to estrogens were identified in the ARC and VMH, of which a subpopulation was leptin sensitive, indicating that the subpopulation consists of neurons. Moreover, there was an interaction between diet and hormone with an effect on the number of these newborn ERα-expressing neurons that respond to leptin. Regardless of hormone treatment, HFD increased the number of ERα-expressing cells in the ARC and VMH. E2 decreased hypothalamic fibroblast growth factor 10 (Fgf10) gene expression in HFD mice, suggesting a role for Fgf10 in E2 effects on neurogenesis. These findings of newly created estrogen-responsive neurons in the adult brain provide a novel mechanism by which estrogens can act in the hypothalamus to regulate energy homeostasis in females.

  20. Nicotine administration in the wake-promoting basal forebrain attenuates sleep-promoting effects of alcohol.

    PubMed

    Sharma, Rishi; Lodhi, Shafi; Sahota, Pradeep; Thakkar, Mahesh M

    2015-10-01

    Nicotine and alcohol co-abuse is highly prevalent, although the underlying causes are unclear. It has been suggested that nicotine enhances pleasurable effects of alcohol while reducing aversive effects. Recently, we reported that nicotine acts via the basal forebrain (BF) to activate nucleus accumbens and increase alcohol consumption. Does nicotine suppress alcohol-induced aversive effects via the BF? We hypothesized that nicotine may act via the BF to suppress sleep-promoting effects of alcohol. To test this hypothesis, adult male Sprague-Dawley rats were implanted with sleep-recording electrodes and bilateral guides targeted toward the BF. Nicotine (75 pmol/500 nL/side) or artificial cerebrospinal fluid (ACSF; 500 nL/side) was microinjected into the BF followed by intragastric alcohol (ACSF + EtOH and NiC + EtOH groups; 3 g/kg) or water (NiC + W and ACSF + W groups; 10 mL/kg) administration. On completion, rats were killed and processed to localize injection sites in the BF. The statistical analysis revealed a significant effect of treatment on sleep-wakefulness. While rats exposed to alcohol (ACSF + EtOH) displayed strong sleep promotion, nicotine pre-treatment in the BF (NiC + EtOH) attenuated alcohol-induced sleep and normalized sleep-wakefulness. These results suggest that nicotine acts via the BF to suppress the aversive, sleep-promoting effects of alcohol, further supporting the role of BF in alcohol-nicotine co-use.

  1. Long-term treatment with L-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson's disease.

    PubMed

    Chiu, W-H; Depboylu, C; Hermanns, G; Maurer, L; Windolph, A; Oertel, W H; Ries, V; Höglinger, G U

    2015-08-01

    Non-motor symptoms such as hyposmia and depression are often observed in Parkinson's disease (PD) and can precede the onset of motor symptoms for years. The underlying pathological alterations in the brain are not fully understood so far. Dysregulation of adult neurogenesis in the dentate gyrus of the hippocampus and the olfactory bulb has been recently suggested to be implicated in non-motor symptoms of PD. However, there is so far no direct evidence to support the relationship of non-motor symptoms and the modulation of adult neurogenesis following dopamine depletion and/or dopamine replacement. In this study, we investigated the long-term effects of l-DOPA and pramipexole, a dopamine agonist, in a mouse model of bilateral intranigral 6-OHDA lesion, in order to assess the impact of adult neurogenesis on non-motor behavior. We found that l-DOPA and pramipexole can normalize decreased neurogenesis in the hippocampal dentate gyrus and the periglomerular layer of the olfactory bulb caused by a 6-OHDA lesion. Interestingly, pramipexole showed an antidepressant and anxiolytic effect in the forced swim test and social interaction test. However, there was no significant change in learning and memory function after dopamine depletion and dopamine replacement, respectively.

  2. Long-term treatment with L-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson's disease.

    PubMed

    Chiu, W-H; Depboylu, C; Hermanns, G; Maurer, L; Windolph, A; Oertel, W H; Ries, V; Höglinger, G U

    2015-08-01

    Non-motor symptoms such as hyposmia and depression are often observed in Parkinson's disease (PD) and can precede the onset of motor symptoms for years. The underlying pathological alterations in the brain are not fully understood so far. Dysregulation of adult neurogenesis in the dentate gyrus of the hippocampus and the olfactory bulb has been recently suggested to be implicated in non-motor symptoms of PD. However, there is so far no direct evidence to support the relationship of non-motor symptoms and the modulation of adult neurogenesis following dopamine depletion and/or dopamine replacement. In this study, we investigated the long-term effects of l-DOPA and pramipexole, a dopamine agonist, in a mouse model of bilateral intranigral 6-OHDA lesion, in order to assess the impact of adult neurogenesis on non-motor behavior. We found that l-DOPA and pramipexole can normalize decreased neurogenesis in the hippocampal dentate gyrus and the periglomerular layer of the olfactory bulb caused by a 6-OHDA lesion. Interestingly, pramipexole showed an antidepressant and anxiolytic effect in the forced swim test and social interaction test. However, there was no significant change in learning and memory function after dopamine depletion and dopamine replacement, respectively. PMID:25839898

  3. HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse

    PubMed Central

    Lim, Shu Ly; Geoghegan, Joel; Hempfling, Anna-Lena; Bergmann, Martin; Goodnow, Christopher C.; Ormandy, Christopher J.; Wong, Lee; Mann, Jeff; Scott, Hamish S.; Jamsai, Duangporn; Adelson, David L.

    2015-01-01

    piRNAs are critical for transposable element (TE) repression and germ cell survival during the early phases of spermatogenesis, however, their role in adult germ cells and the relative importance of piRNA methylation is poorly defined in mammals. Using a mouse model of HEN methyltransferase 1 (HENMT1) loss-of-function, RNA-Seq and a range of RNA assays we show that HENMT1 is required for the 2’ O-methylation of mammalian piRNAs. HENMT1 loss leads to piRNA instability, reduced piRNA bulk and length, and ultimately male sterility characterized by a germ cell arrest at the elongating germ cell phase of spermatogenesis. HENMT1 loss-of-function, and the concomitant loss of piRNAs, resulted in TE de-repression in adult meiotic and haploid germ cells, and the precocious, and selective, expression of many haploid-transcripts in meiotic cells. Precocious expression was associated with a more active chromatin state in meiotic cells, elevated levels of DNA damage and a catastrophic deregulation of the haploid germ cell gene expression. Collectively these results define a critical role for HENMT1 and piRNAs in the maintenance of TE repression in adult germ cells and setting the spermatogenic program. PMID:26496356

  4. Purification of neural precursor cells reveals the presence of distinct, stimulus-specific subpopulations of quiescent precursors in the adult mouse hippocampus.

    PubMed

    Jhaveri, Dhanisha J; O'Keeffe, Imogen; Robinson, Gregory J; Zhao, Qiong-Yi; Zhang, Zong Hong; Nink, Virginia; Narayanan, Ramesh K; Osborne, Geoffrey W; Wray, Naomi R; Bartlett, Perry F

    2015-05-27

    The activity of neural precursor cells in the adult hippocampus is regulated by various stimuli; however, whether these stimuli regulate the same or different precursor populations remains unknown. Here, we developed a novel cell-sorting protocol that allows the purification to homogeneity of neurosphere-forming neural precursors from the adult mouse hippocampus and examined the responsiveness of individual precursors to various stimuli using a clonal assay. We show that within the Hes5-GFP(+)/Nestin-GFP(+)/EGFR(+) cell population, which comprises the majority of neurosphere-forming precursors, there are two distinct subpopulations of quiescent precursor cells, one directly activated by high-KCl depolarization, and the other activated by norepinephrine (NE). We then demonstrate that these two populations are differentially distributed along the septotemporal axis of the hippocampus, and show that the NE-responsive precursors are selectively regulated by GABA, whereas the KCl-responsive precursors are selectively modulated by corticosterone. Finally, based on RNAseq analysis by deep sequencing, we show that the progeny generated by activating NE-responsive versus KCl-responsive quiescent precursors are molecularly different. These results demonstrate that the adult hippocampus contains phenotypically similar but stimulus-specific populations of quiescent precursors, which may give rise to neural progeny with different functional capacity.

  5. HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse.

    PubMed

    Lim, Shu Ly; Qu, Zhi Peng; Kortschak, R Daniel; Lawrence, David M; Geoghegan, Joel; Hempfling, Anna-Lena; Bergmann, Martin; Goodnow, Christopher C; Ormandy, Christopher J; Wong, Lee; Mann, Jeff; Scott, Hamish S; Jamsai, Duangporn; Adelson, David L; O'Bryan, Moira K

    2015-10-01

    piRNAs are critical for transposable element (TE) repression and germ cell survival during the early phases of spermatogenesis, however, their role in adult germ cells and the relative importance of piRNA methylation is poorly defined in mammals. Using a mouse model of HEN methyltransferase 1 (HENMT1) loss-of-function, RNA-Seq and a range of RNA assays we show that HENMT1 is required for the 2' O-methylation of mammalian piRNAs. HENMT1 loss leads to piRNA instability, reduced piRNA bulk and length, and ultimately male sterility characterized by a germ cell arrest at the elongating germ cell phase of spermatogenesis. HENMT1 loss-of-function, and the concomitant loss of piRNAs, resulted in TE de-repression in adult meiotic and haploid germ cells, and the precocious, and selective, expression of many haploid-transcripts in meiotic cells. Precocious expression was associated with a more active chromatin state in meiotic cells, elevated levels of DNA damage and a catastrophic deregulation of the haploid germ cell gene expression. Collectively these results define a critical role for HENMT1 and piRNAs in the maintenance of TE repression in adult germ cells and setting the spermatogenic program. PMID:26496356

  6. The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain.

    PubMed

    Okerlund, Nathan D; Stanley, Robert E; Cheyette, Benjamin N R

    2016-07-01

    The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice. Given increasing evidence linking psychiatric pathophysiology to these subneuronal sites and structures, our findings underscore the relevance of core PCP proteins including Vangl2 to the underlying biology of major mental illnesses and their treatment. PMID:27606324

  7. Neurodevelopment Genes in Lampreys Reveal Trends for Forebrain Evolution in Craniates

    PubMed Central

    Guérin, Adèle; d'Aubenton-Carafa, Yves; Marrakchi, Emna; Da Silva, Corinne; Wincker, Patrick; Mazan, Sylvie; Rétaux, Sylvie

    2009-01-01

    The forebrain is the brain region which has undergone the most dramatic changes through vertebrate evolution. Analyses conducted in lampreys are essential to gain insight into the broad ancestral characteristics of the forebrain at the dawn of vertebrates, and to understand the molecular basis for the diversifications that have taken place in cyclostomes and gnathostomes following their splitting. Here, we report the embryonic expression patterns of 43 lamprey genes, coding for transcription factors or signaling molecules known to be involved in cell proliferation, stemcellness, neurogenesis, patterning and regionalization in the developing forebrain. Systematic expression patterns comparisons with model organisms highlight conservations likely to reflect shared features present in the vertebrate ancestors. They also point to changes in signaling systems –pathways which control the growth and patterning of the neuroepithelium-, which may have been crucial in the evolution of forebrain anatomy at the origin of vertebrates. PMID:19399187

  8. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes.

    PubMed

    Garcia-Alvarez, Gisela; Shetty, Mahesh S; Lu, Bo; Yap, Kenrick An Fu; Oh-Hora, Masatsugu; Sajikumar, Sreedharan; Bichler, Zoë; Fivaz, Marc

    2015-01-01

    Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca(2+) channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories.

  9. On-Going Frontal Alpha Rhythms Are Dominant in Passive State and Desynchronize in Active State in Adult Gray Mouse Lemurs

    PubMed Central

    Rahman, Anisur; Lamberty, Yves; Bordet, Regis; Richardson, Jill C.; Forloni, Gianluigi; Drinkenburg, Wilhelmus; Lopez, Susanna; Aujard, Fabienne; Babiloni, Claudio; Pifferi, Fabien

    2015-01-01

    The gray mouse lemur (Microcebus murinus) is considered a useful primate model for translational research. In the framework of IMI PharmaCog project (Grant Agreement n°115009, www.pharmacog.org), we tested the hypothesis that spectral electroencephalographic (EEG) markers of motor and locomotor activity in gray mouse lemurs reflect typical movement-related desynchronization of alpha rhythms (about 8–12 Hz) in humans. To this aim, EEG (bipolar electrodes in frontal cortex) and electromyographic (EMG; bipolar electrodes sutured in neck muscles) data were recorded in 13 male adult (about 3 years) lemurs. Artifact-free EEG segments during active state (gross movements, exploratory movements or locomotor activity) and awake passive state (no sleep) were selected on the basis of instrumental measures of animal behavior, and were used as an input for EEG power density analysis. Results showed a clear peak of EEG power density at alpha range (7–9 Hz) during passive state. During active state, there was a reduction in alpha power density (8–12 Hz) and an increase of power density at slow frequencies (1–4 Hz). Relative EMG activity was related to EEG power density at 2–4 Hz (positive correlation) and at 8–12 Hz (negative correlation). These results suggest for the first time that the primate gray mouse lemurs and humans may share basic neurophysiologic mechanisms of synchronization of frontal alpha rhythms in awake passive state and their desynchronization during motor and locomotor activity. These EEG markers may be an ideal experimental model for translational basic (motor science) and applied (pharmacological and non-pharmacological interventions) research in Neurophysiology. PMID:26618512

  10. On-Going Frontal Alpha Rhythms Are Dominant in Passive State and Desynchronize in Active State in Adult Gray Mouse Lemurs.

    PubMed

    Infarinato, Francesco; Rahman, Anisur; Del Percio, Claudio; Lamberty, Yves; Bordet, Regis; Richardson, Jill C; Forloni, Gianluigi; Drinkenburg, Wilhelmus; Lopez, Susanna; Aujard, Fabienne; Babiloni, Claudio; Pifferi, Fabien

    2015-01-01

    The gray mouse lemur (Microcebus murinus) is considered a useful primate model for translational research. In the framework of IMI PharmaCog project (Grant Agreement n°115009, www.pharmacog.org), we tested the hypothesis that spectral electroencephalographic (EEG) markers of motor and locomotor activity in gray mouse lemurs reflect typical movement-related desynchronization of alpha rhythms (about 8-12 Hz) in humans. To this aim, EEG (bipolar electrodes in frontal cortex) and electromyographic (EMG; bipolar electrodes sutured in neck muscles) data were recorded in 13 male adult (about 3 years) lemurs. Artifact-free EEG segments during active state (gross movements, exploratory movements or locomotor activity) and awake passive state (no sleep) were selected on the basis of instrumental measures of animal behavior, and were used as an input for EEG power density analysis. Results showed a clear peak of EEG power density at alpha range (7-9 Hz) during passive state. During active state, there was a reduction in alpha power density (8-12 Hz) and an increase of power density at slow frequencies (1-4 Hz). Relative EMG activity was related to EEG power density at 2-4 Hz (positive correlation) and at 8-12 Hz (negative correlation). These results suggest for the first time that the primate gray mouse lemurs and humans may share basic neurophysiologic mechanisms of synchronization of frontal alpha rhythms in awake passive state and their desynchronization during motor and locomotor activity. These EEG markers may be an ideal experimental model for translational basic (motor science) and applied (pharmacological and non-pharmacological interventions) research in Neurophysiology. PMID:26618512

  11. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    PubMed

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  12. Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment?

    PubMed

    Manuel, Marin; Heckman, C J

    2011-10-19

    Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation ("primary range") up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing ("subprimary range") that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units.

  13. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells

    SciTech Connect

    Jung, Yoon Hee

    2010-03-10

    This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/W{sup v} mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.

  14. Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment?

    PubMed

    Manuel, Marin; Heckman, C J

    2011-10-19

    Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation ("primary range") up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing ("subprimary range") that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units. PMID:22016552

  15. Forebrain glucocorticoid receptor gene deletion attenuates behavioral changes and antidepressant responsiveness during chronic stress.

    PubMed

    Jacobson, Lauren

    2014-10-01

    Stress is an important risk factor for mood disorders. Stress also stimulates the secretion of glucocorticoids, which have been found to influence mood. To determine the role of forebrain glucocorticoid receptors (GR) in behavioral responses to chronic stress, the present experiments compared behavioral effects of repeated social defeat in mice with forebrain GR deletion and in floxed GR littermate controls. Repeated defeat produced alterations in forced swim and tail suspension immobility in floxed GR mice that did not occur in mice with forebrain GR deletion. Defeat-induced changes in immobility in floxed GR mice were prevented by chronic antidepressant treatment, indicating that these behaviors were dysphoria-related. In contrast, although mice with forebrain GR deletion exhibited antidepressant-induced decreases in tail suspension immobility in the absence of stress, this response did not occur in mice with forebrain GR deletion after defeat. There were no marked differences in plasma corticosterone between genotypes, suggesting that behavioral differences depended on forebrain GR rather than on abnormal glucocorticoid secretion. Defeat-induced gene expression of the neuronal activity marker c-fos in the ventral hippocampus, paraventricular thalamus and lateral septum correlated with genotype-related differences in behavioral effects of defeat, whereas c-fos induction in the nucleus accumbens and central and basolateral amygdala correlated with genotype-related differences in behavioral responses to antidepressant treatment. The dependence of both negative (dysphoria-related) and positive (antidepressant-induced) behaviors on forebrain GR is consistent with the contradictory effects of glucocorticoids on mood, and implicates these or other forebrain regions in these effects.

  16. Forebrain glucocorticoid receptor gene deletion attenuates behavioral changes and antidepressant responsiveness during chronic stress

    PubMed Central

    Jacobson, Lauren

    2014-01-01

    Stress is an important risk factor for mood disorders. Stress also stimulates the secretion of glucocorticoids, which have been found to influence mood. To determine the role of forebrain glucocorticoid receptors (GR) in behavioral responses to chronic stress, the present experiments compared behavioral effects of repeated social defeat in mice with forebrain GR deletion and in floxed GR littermate controls. Repeated defeat produced alterations in forced swim and tail suspension immobility in floxed GR mice that did not occur in mice with forebrain GR deletion. Defeat-induced changes in immobility in floxed GR mice were prevented by chronic antidepressant treatment, indicating that these behaviors were dysphoria-related. In contrast, although mice with forebrain GR deletion exhibited antidepressant-induced decreases in tail suspension immobility in the absence of stress, this response did not occur in mice with forebrain GR deletion after defeat. There were no marked differences in plasma corticosterone between genotypes, suggesting that behavioral differences depended on forebrain GR rather than on abnormal glucocorticoid secretion. Defeat-induced gene expression of the neuronal activity marker c-fos in the ventral hippocampus, paraventricular thalamus and lateral septum correlated with genotype-related differences in behavioral effects of defeat, whereas c-fos induction in the nucleus accumbens and central and basolateral amygdala correlated with genotype-related differences in behavioral responses to antidepressant treatment. The dependence of both negative (dysphoria-related) and positive (antidepressant-induced) behaviors on forebrain GR is consistent with the contradictory effects of glucocorticoids on mood, and implicates these or other forebrain regions in these effects. PMID:25168761

  17. S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus.

    PubMed

    Yamada, Jun; Jinno, Shozo

    2014-01-01

    S100A6 (calcyclin), an EF-hand calcium binding protein, is considered to play various roles in the brain, for example, cell proliferation and differentiation, calcium homeostasis, and neuronal degeneration. In addition to some limbic nuclei, S100A6 is distributed in the rostral migratory stream, one of the major neurogenic niches of the adult brain. However, the potential involvement of S100A6 in adult neurogenesis remains unclear. In this study, we aimed to elucidate the role of S100A6 in the other major neurogenic niche, the subgranular zone of the dentate gyrus in the adult mouse hippocampus. Immunofluorescent multiple labeling showed that S100A6 was highly expressed in neural stem cells labeled by sex determining region Y-box 2, brain lipid-binding protein protein and glial fibrillary acidic protein. S100A6+ cells often extended a long process typical of radial glial morphology. In addition, S100A6 was found in some S100β+ astrocyte lineage cells. Interestingly, proliferating cell nuclear antigen was detected in a fraction of S100A6+/S100β+ cells. These cells were considered to be lineage-restricted astrocyte precursors maintaining mitotic potential. On the other hand, S100A6 was rarely seen in neural lineage cells labeled by T-box brain protein 2, doublecortin, calretinin and calbindin D28K. Cell fate-tracing experiment using BrdU showed that the majority of newly generated immature astrocytes were immunoreactive for S100A6, while mature astrocytes lacked S100A6 immunoreactivity. Administration of S100 protein inhibitor, trifluoperazine, caused a reduction in production of S100β+ astrocyte lineage cells, but had no impact on neurogenesis. Overall, our data provide the first evidence that S100A6 is a specific marker of neural stem cells and astrocyte precursors, and may be especially important for generation of astrocytes in the adult hippocampus.

  18. A fast-evolving human NPAS3 enhancer gained reporter expression in the developing forebrain of transgenic mice

    PubMed Central

    Kamm, Gretel B.; López-Leal, Rodrigo; Lorenzo, Juan R.; Franchini, Lucía F.

    2013-01-01

    The developmental brain gene NPAS3 stands out as a hot spot in human evolution because it contains the largest number of human-specific, fast-evolving, conserved, non-coding elements. In this paper we studied 2xHAR142, one of these elements that is located in the fifth intron of NPAS3. Using transgenic mice, we show that the mouse and chimp 2xHAR142 orthologues behave as transcriptional enhancers driving expression of the reporter gene lacZ to a similar NPAS3 expression subdomain in the mouse central nervous system. Interestingly, the human 2xHAR142 orthologue drives lacZ expression to an extended expression pattern in the nervous system. Thus, molecular evolution of 2xHAR142 provides the first documented example of human-specific heterotopy in the forebrain promoted by a transcriptional enhancer and suggests that it may have contributed to assemble the unique properties of the human brain. PMID:24218632

  19. Time-of-Day-Dependent Enhancement of Adult Neurogenesis in the Hippocampus

    PubMed Central

    Fukada, Yoshitaka

    2008-01-01

    Background Adult neurogenesis occurs in specific regions of the mammalian brain such as the dentate gyrus of the hippocampus. In the neurogenic region, neural progenitor cells continuously divide and give birth to new neurons. Although biological properties of neurons and glia in the hippocampus have been demonstrated to fluctuate depending on specific times of the day, it is unclear if neural progenitors and neurogenesis in the adult brain are temporally controlled within the day. Methodology/Principal Findings Here we demonstrate that in the dentate gyrus of the adult mouse hippocampus, the number of M-phase cells shows a day/night variation throughout the day, with a significant increase during the nighttime. The M-phase cell number is constant throughout the day in the subventricular zone of the forebrain, another site of adult neurogenesis, indicating the daily rhythm of progenitor mitosis is region-specific. Importantly, the nighttime enhancement of hippocampal progenitor mitosis is accompanied by a nighttime increase of newborn neurons. Conclusions/Significance These results indicate that neurogenesis in the adult hippocampus occurs in a time-of-day-dependent fashion, which may dictate daily modifications of dentate gyrus physiology. PMID:19048107

  20. Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia.

    PubMed

    Yoo, Dae Young; Lee, Kwon Young; Park, Joon Ha; Jung, Hyo Young; Kim, Jong Whi; Yoon, Yeo Sung; Won, Moo-Ho; Choi, Jung Hoon; Hwang, In Koo

    2016-08-01

    Recent evidence exists that glucose transporter 3 (GLUT3) plays an important role in the energy metabolism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein (GFAP), we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion. In a double immunofluorescence study using GLUT3 and doublecortin (DCX), we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus. PMID:27651772

  1. Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia

    PubMed Central

    Yoo, Dae Young; Lee, Kwon Young; Park, Joon Ha; Jung, Hyo Young; Kim, Jong Whi; Yoon, Yeo Sung; Won, Moo-Ho; Choi, Jung Hoon; Hwang, In Koo

    2016-01-01

    Recent evidence exists that glucose transporter 3 (GLUT3) plays an important role in the energy metabolism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein (GFAP), we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion. In a double immunofluorescence study using GLUT3 and doublecortin (DCX), we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus. PMID:27651772

  2. Sex-dependent species discrimination in auditory forebrain of naturally hybridizing birds.

    PubMed

    Gee, Jennifer M; Tomaszycki, Michelle L; Adkins-Regan, Elizabeth

    2009-01-01

    Pairs of individuals breed together only if they recognize each other as the same species, but the process of recognizing conspecifics can depend on flexible criteria even when species-specific signals are innate and fixed. This study examines species recognition in naturally hybridizing sister species, California and Gambel's quail (Callipepla californica and Callipepla gambelii), that have vocalizations which are not learned. Specifically, this study tests whether being raised in a vocalizing mixed-species cohort affects neural activity in the adult auditory forebrain in response to heterospecific and conspecific calls. After hatching, quail chicks were raised either with their own kind or with both species. Once reaching reproductive condition, each adult was played a recording that was one of three types: Gambel's quail opposite-sex contact calls; California quail opposite-sex contact calls; or synthetic tones. Brains were collected following playback and assessed for neuronal activity by quantifying expression of the protein of the immediate early gene, ZENK, in two brain regions, the caudomedial nidopallium (NCM) and the caudomedial mesopallium (CMM). ZENK levels were greater in NCM of males than females, but female NCM cells responded differentially to conspecific compared to heterospecific calls. Namely, females had more immuno-positive NCM cells when they heard conspecific calls rather than heterospecific male calls. Early experience with heterospecific broodmates did not alter neural responses in the NCM or CMM to heterospecific vocalizations. This study suggests that the NCM plays a role in species discrimination but that rearing condition does not alter the response in these non-vocal-learning species. PMID:19996584

  3. Sex-Dependent Species Discrimination in Auditory Forebrain of Naturally Hybridizing Birds

    PubMed Central

    Gee, Jennifer M.; Tomaszycki, Michelle L.; Adkins-Regan, Elizabeth

    2010-01-01

    Pairs of individuals breed together only if they recognize each other as the same species, but the process of recognizing conspecifics can depend on flexible criteria even when species-specific signals are innate and fixed. This study examines species recognition in naturally hybridizing sister species, California and Gambel's quail (Callipepla californica and Callipepla gambelii), that have vocalizations which are not learned. Specifically, this study tests whether being raised in a vocalizing mixed-species cohort affects neural activity in the adult auditory forebrain in response to heterospecific and conspecific calls. After hatching, quail chicks were raised either with their own kind or with both species. Once reaching reproductive condition, each adult was played a recording that was one of three types: Gambel's quail opposite-sex contact calls; California quail opposite-sex contact calls; or synthetic tones. Brains were collected following playback and assessed for neuronal activity by quantifying expression of the protein of the immediate early gene, ZENK, in two brain regions, the caudomedial nidopallium (NCM) and the caudomedial mesopallium (CMM). ZENK levels were greater in NCM of males than females, but female NCM cells responded differentially to conspecific compared to heterospecific calls. Namely, females had more immuno-positive NCM cells when they heard conspecific calls rather than heterospecific male calls. Early experience with heterospecific broodmates did not alter neural responses in the NCM or CMM to heterospecific vocalizations. This study suggests that the NCM plays a role in species discrimination but that rearing condition does not alter the response in these non-vocal-learning species. PMID:19996584

  4. Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia

    PubMed Central

    Yoo, Dae Young; Lee, Kwon Young; Park, Joon Ha; Jung, Hyo Young; Kim, Jong Whi; Yoon, Yeo Sung; Won, Moo-Ho; Choi, Jung Hoon; Hwang, In Koo

    2016-01-01

    Recent evidence exists that glucose transporter 3 (GLUT3) plays an important role in the energy metabolism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein (GFAP), we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion. In a double immunofluorescence study using GLUT3 and doublecortin (DCX), we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.

  5. Methods in laboratory investigation. Autoradiographic demonstration of the specific binding and nuclear localization of 3H-dexamethasone in adult mouse lung.

    PubMed

    Beer, D G; Cunha, G R; Malkinson, A M

    1983-12-01

    This report describes the first autoradiographic demonstration of specific nuclear localization of 3H-dexamethasone in different cell types of the lung. Adult mouse lung tissue was incubated in vitro for 90 minutes with 17 nM 3H-dexamethasone in the presence or absence of various nonradioactive steroids. After extensive washing to remove any nonspecifically bound ligand, the specimens were processed for autoradiography using the thaw-mount method. In the absence of competing steroids, silver grains were localized in the nuclei of alveolar type II cells, bronchiolar and arteriolar smooth muscle cells, fibroblasts, and endothelial cells of the pulmonary vasculature. No significant nuclear concentration of label was observed in the bronchiolar epithelium, however. The specificity of 3H-dexamethasone labeling was demonstrated by incubating 17 nM 3H-dexamethasone with a 600-fold excess of either unlabeled dexamethasone, estrogen, dihydrotestosterone, or progesterone. These autoradiographic binding and steroid competition studies were confirmed by quantifying with liquid scintillation counting the specific 3H-dexamethasone binding in nuclear and cytosolic fractions prepared from lung tissues that had undergone identical incubation and washing procedures as those for autoradiography. These results demonstrate that many cell types in adult lung are targets for glucocorticoids and may respond to physiologic concentrations of this hormone.

  6. RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro.

    PubMed

    Soldati, Chiara; Caramanica, Pasquale; Burney, Matthew J; Toselli, Camilla; Bithell, Angela; Augusti-Tocco, Gabriella; Stanton, Lawrence W; Biagioni, Stefano; Buckley, Noel J; Cacci, Emanuele

    2015-08-01

    Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate. PMID:25691247

  7. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart

    PubMed Central

    Ylä-Herttuala, Seppo; Betsholtz, Christer; Andrae, Johanna

    2016-01-01

    Platelet-derived growth factors (PDGFs) are key regulators of mesenchymal cells in vertebrate development. To what extent PDGFs also exert beneficial homeostatic or reparative roles in adult organs, as opposed to adverse fibrogenic responses in pathology, are unclear. PDGF signaling plays critical roles during heart development, during which forced overexpression of PDGFs induces detrimental cardiac fibrosis; other studies have implicated PDGF signaling in post-infarct myocardial repair. Different PDGFs may exert different effects mediated through the two PDGF receptors (PDGFRα and PDGFRβ) in different cell types. Here, we assessed responses induced by five known PDGF isoforms in the adult mouse heart in the context of adenovirus vector-mediated inflammation. Our results show that different PDGFs have different, in some cases even opposing, effects. Strikingly, whereas the major PDGFRα agonists (PDGF-A and -C) decreased the amount of scar tissue and increased the numbers of PDGFRα-positive fibroblasts, PDGFRβ agonists either induced large scars with extensive inflammation (PDGF-B) or dampened the adenovirus-induced inflammation and produced a small and dense scar (PDGF-D). These results provide evidence for PDGF isoform-specific inflammation-modulating functions that may have therapeutic implications. They also illustrate a surprising complexity in the PDGF-mediated pathophysiological responses. PMID:27513343

  8. Identification of a Sustained Neurogenic Zone at the Dorsal Surface of the Adult Mouse Hippocampus and Its Regulation by the Chemokine SDF-1

    PubMed Central

    Belmadani, Abdelhak; Ren, Dongjun; Bhattacharyya, Bula J.; Rothwangl, Katharina B.; Hope, Thomas J.; Perlman, Harris; Miller, Richard J.

    2015-01-01

    We identified a previously unknown neurogenic region at the dorsal surface of the hippocampus; (the “subhippocampal zone,” SHZ) in the adult brain. Using a reporter mouse in which SHZ cells and their progeny could be traced through the expression of EGFP under the control of the CXCR4 chemokine receptor promoter we observed the presence of a pool of EGFP expressing cells migrating in direction of the dentate gyrus (DG), which is maintained throughout adulthood. This population appeared to originate from the SHZ where cells entered a caudal migratory stream (aCMS) that included the fimbria, the meninges and the DG. Deletion of CXCR4 from neural stem cells (NSCs) or neuroinflammation resulted in the appearance of neurons in the DG, which were the result of migration of NSCs from the SHZ. Some of these neurons were ectopically placed. Our observations indicate that the SHZ is a neurogenic zone in the adult brain through migration of NSCs in the aCMS. Regulation of CXCR4 signaling in these cells may be involved in repair of the DG and may also give rise to ectopic granule cells in the DG in the context of neuropathology. PMID:25656357

  9. Identification of a sustained neurogenic zone at the dorsal surface of the adult mouse hippocampus and its regulation by the chemokine SDF-1.

    PubMed

    Belmadani, Abdelhak; Ren, Dongjun; Bhattacharyya, Bula J; Rothwangl, Katharina B; Hope, Thomas J; Perlman, Harris; Miller, Richard J

    2015-11-01

    We identified a previously unknown neurogenic region at the dorsal surface of the hippocampus; (the "subhippocampal zone," SHZ) in the adult brain. Using a reporter mouse in which SHZ cells and their progeny could be traced through the expression of EGFP under the control of the CXCR4 chemokine receptor promoter we observed the presence of a pool of EGFP expressing cells migrating in direction of the dentate gyrus (DG), which is maintained throughout adulthood. This population appeared to originate from the SHZ where cells entered a caudal migratory stream (aCMS) that included the fimbria, the meninges and the DG. Deletion of CXCR4 from neural stem cells (NSCs) or neuroinflammation resulted in the appearance of neurons in the DG, which were the result of migration of NSCs from the SHZ. Some of these neurons were ectopically placed. Our observations indicate that the SHZ is a neurogenic zone in the adult brain through migration of NSCs in the aCMS. Regulation of CXCR4 signaling in these cells may be involved in repair of the DG and may also give rise to ectopic granule cells in the DG in the context of neuropathology.

  10. RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro.

    PubMed

    Soldati, Chiara; Caramanica, Pasquale; Burney, Matthew J; Toselli, Camilla; Bithell, Angela; Augusti-Tocco, Gabriella; Stanton, Lawrence W; Biagioni, Stefano; Buckley, Noel J; Cacci, Emanuele

    2015-08-01

    Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate.

  11. Synergistic and additive effects of enriched environment and lithium on the generation of new cells in adult mouse hippocampus.

    PubMed

    Schaeffer, Evelin L; Cerulli, Fabiana G; Souza, Hélio O X; Catanozi, Sergio; Gattaz, Wagner F

    2014-07-01

    Hippocampal atrophy is reported in several neuropathological disorders. The hippocampal dentate gyrus (DG) is a brain region where adult neurogenesis constitutively occurs. There are some reports suggesting the ability of endogenous neurogenesis to initiate neuronal repair in the hippocampus in response to neuropathological conditions, but its capacity to compensate for neuronal loss is limited. Among strategies to enhance adult hippocampal neurogenesis are enriched environment and lithium. This study aimed to assess whether both strategies could interact to potentiate the generation of new cells in the adult DG. Healthy adult male C57BL/6 mice were divided into four treatment groups for 28 days: control, lithium, enriched environment, enriched environment plus lithium. The animals were injected with BrdU (cell proliferation marker) shortly before the start of the treatments and killed 28 days later for analysis of newly generated cells. Two-way ANOVA followed by post hoc test revealed a significant synergistic interaction between enriched environment and lithium in the total number of BrdU(+) cells in the entire DG (p = 0.019), a trend towards significant synergistic interaction in the dorsal DG (p = 0.075), and a significant additive effect in the ventral DG (p = 0.001). These findings indicate that the combination of enriched environment and lithium has both synergistic and additive effects on the generation of new cells in the healthy adult DG (these effects being possibly segregated along the dorso-ventral axis of the hippocampus), and suggest that it might be worth investigating whether this combination would have a similar effect in neuropathological conditions.

  12. Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis.

    PubMed

    Wen, Qing; Zheng, Qiao-Song; Li, Xi-Xia; Hu, Zhao-Yuan; Gao, Fei; Cheng, C Yan; Liu, Yi-Xun

    2014-12-15

    Wilms' tumor 1 (Wt1) is a tumor suppressor gene encoding ∼24 zinc finger transcription factors. In the mammalian testis, Wt1 is expressed mostly by Sertoli cells (SCs) involved in testis development, spermatogenesis, and adult Leydig cell (ALC) steroidogenesis. Global knockout (KO) of Wt1 is lethal in mice due to defects in embryogenesis. Herein, we showed that Wt1 is involved in regulating fetal Leydig cell (FLC) degeneration and ALC differentiation during testicular development. Using Wt1(-/flox);Amh-Cre mice that specifically deleted Wt1 in the SC vs. age-matched wild-type (WT) controls, FLC-like-clusters were found in Wt1-deficient testes that remained mitotically active from postnatal day 1 (P1) to P56, and no ALC was detected at these ages. Leydig cells in mutant adult testes displayed morphological features of FLC. Also, FLC-like cells in adult mutant testes had reduced expression in ALC-associated genes Ptgds, Sult1e1, Vcam1, Hsd11b1, Hsd3b6, and Hsd17b3 but high expression of FLC-associated genes Thbs2 and Hsd3b1. Whereas serum LH and testosterone level in mutant mice were not different from controls, intratesticular testosterone level was significantly reduced. Deletion of Wt1 gene also perturbed the expression of steroidogenic enzymes Star, P450c17, Hsd3b6, Hsd3b1, Hsd17b1, and Hsd17b3. FLCs in adult mutant testes failed to convert androstenedione to testosterone due to a lack of Hsd17b3, and this defect was rescued by coculturing with fetal SCs. In summary, FLC-like cells in mutant testes are putative FLCs that remain mitotically active in adult mice, illustrating that Wt1 dictates the fate of FLC and ALC during postnatal testis development.

  13. Deletion of Nuclear Factor kappa B p50 Subunit Decreases Inflammatory Response and Mildly Protects Neurons from Transient Forebrain Ischemia-induced Damage

    PubMed Central

    Rolova, Taisia; Dhungana, Hiramani; Korhonen, Paula; Valonen, Piia; Kolosowska, Natalia; Konttinen, Henna; Kanninen, Katja; Tanila, Heikki; Malm, Tarja; Koistinaho, Jari

    2016-01-01

    Transient forebrain ischemia induces delayed death of the hippocampal pyramidal neurons, particularly in the CA2 and medial CA1 area. Early pharmacological inhibition of inflammatory response can ameliorate neuronal death, but it also inhibits processes leading to tissue regeneration. Therefore, research efforts are now directed to modulation of post-ischemic inflammation, with the aim to promote beneficial effects of inflammation and limit adverse effects. Transcription factor NF-κB plays a key role in the inflammation and cell survival/apoptosis pathways. In the brain, NF-κB is predominantly found in the form of a heterodimer of p65 (RelA) and p50 subunit, where p65 has a transactivation domain while p50 is chiefly involved in DNA binding. In this study, we subjected middle-aged Nfkb1 knockout mice (lacking p50 subunit) and wild-type controls of both sexs to 17 min of transient forebrain ischemia and assessed mouse performance in a panel of behavioral tests after two weeks of post-operative recovery. We found that ischemia failed to induce clear memory and motor deficits, but affected spontaneous locomotion in genotype- and sex-specific way. We also show that both the lack of the NF-κB p50 subunit and female sex independently protected CA2 hippocampal neurons from ischemia-induced cell death. Additionally, the NF-κB p50 subunit deficiency significantly reduced ischemia-induced microgliosis, astrogliosis, and neurogenesis. Lower levels of hippocampal microgliosis significantly correlated with faster spatial learning. We conclude that NF-κB regulates the outcome of transient forebrain ischemia in middle-aged subjects in a sex-specific way, having an impact not only on neuronal death but also specific inflammatory responses and neurogenesis. PMID:27493832

  14. Evolution and development of interhemispheric connections in the vertebrate forebrain

    PubMed Central

    Suárez, Rodrigo; Gobius, Ilan; Richards, Linda J.

    2014-01-01

    Axonal connections between the left and right sides of the brain are crucial for bilateral integration of lateralized sensory, motor, and associative functions. Throughout vertebrate species, forebrain commissures share a conserved developmental plan, a similar position relative to each other within the brain and similar patterns of connectivity. However, major events in the evolution of the vertebrate brain, such as the expansion of the telencephalon in tetrapods and the origin of the six-layered isocortex in mammals, resulted in the emergence and diversification of new commissural routes. These new interhemispheric connections include the pallial commissure, which appeared in the ancestors of tetrapods and connects the left and right sides of the medial pallium (hippocampus in mammals), and the corpus callosum, which is exclusive to eutherian (placental) mammals and connects both isocortical hemispheres. A comparative analysis of commissural systems in vertebrates reveals that the emergence of new commissural routes may have involved co-option of developmental mechanisms and anatomical substrates of preexistent commissural pathways. One of the embryonic regions of interest for studying these processes is the commissural plate, a portion of the early telencephalic midline that provides molecular specification and a cellular scaffold for the development of commissural axons. Further investigations into these embryonic processes in carefully selected species will provide insights not only into the mechanisms driving commissural evolution, but also regarding more general biological problems such as the role of developmental plasticity in evolutionary change. PMID:25071525

  15. Forebrain neurocircuitry associated with human reflex cardiovascular control

    PubMed Central

    Shoemaker, J. Kevin; Goswami, Ruma

    2015-01-01

    Physiological homeostasis depends upon adequate integration and responsiveness of sensory information with the autonomic nervous system to affect rapid and effective adjustments in end organ control. Dysregulation of the autonomic nervous system leads to cardiovascular disability with consequences as severe as sudden death. The neural pathways involved in reflexive autonomic control are dependent upon brainstem nuclei but these receive modulatory inputs from higher centers in the midbrain and cortex. Neuroimaging technologies have allowed closer study of the cortical circuitry related to autonomic cardiovascular adjustments to many stressors in awake humans and have exposed many forebrain sites that associate strongly with cardiovascular arousal during stress including the medial prefrontal cortex, insula cortex, anterior cingulate, amygdala and hippocampus. Using a comparative approach, this review will consider the cortical autonomic circuitry in rodents and primates with a major emphasis on more recent neuroimaging studies in awake humans. A challenge with neuroimaging studies is their interpretation in view of multiple sensory, perceptual, emotive and/or reflexive components of autonomic responses. This review will focus on those responses related to non-volitional baroreflex control of blood pressure and also on the coordinated responses to non-fatiguing, non-painful volitional exercise with particular emphasis on the medial prefrontal cortex and the insula cortex. PMID:26388780

  16. Forebrain neurocircuitry associated with human reflex cardiovascular control.

    PubMed

    Shoemaker, J Kevin; Goswami, Ruma

    2015-01-01

    Physiological homeostasis depends upon adequate integration and responsiveness of sensory information with the autonomic nervous system to affect rapid and effective adjustments in end organ control. Dysregulation of the autonomic nervous system leads to cardiovascular disability with consequences as severe as sudden death. The neural pathways involved in reflexive autonomic control are dependent upon brainstem nuclei but these receive modulatory inputs from higher centers in the midbrain and cortex. Neuroimaging technologies have allowed closer study of the cortical circuitry related to autonomic cardiovascular adjustments to many stressors in awake humans and have exposed many forebrain sites that associate strongly with cardiovascular arousal during stress including the medial prefrontal cortex, insula cortex, anterior cingulate, amygdala and hippocampus. Using a comparative approach, this review will consider the cortical autonomic circuitry in rodents and primates with a major emphasis on more recent neuroimaging studies in awake humans. A challenge with neuroimaging studies is their interpretation in view of multiple sensory, perceptual, emotive and/or reflexive components of autonomic responses. This review will focus on those responses related to non-volitional baroreflex control of blood pressure and also on the coordinated responses to non-fatiguing, non-painful volitional exercise with particular emphasis on the medial prefrontal cortex and the insula cortex. PMID:26388780

  17. Basal forebrain circuit for sleep-wake control.

    PubMed

    Xu, Min; Chung, Shinjae; Zhang, Siyu; Zhong, Peng; Ma, Chenyan; Chang, Wei-Cheng; Weissbourd, Brandon; Sakai, Noriaki; Luo, Liqun; Nishino, Seiji; Dan, Yang

    2015-11-01

    The mammalian basal forebrain (BF) has important roles in controlling sleep and wakefulness, but the underlying neural circuit remains poorly understood. We examined the BF circuit by recording and optogenetically perturbing the activity of four genetically defined cell types across sleep-wake cycles and by comprehensively mapping their synaptic connections. Recordings from channelrhodopsin-2 (ChR2)-tagged neurons revealed that three BF cell types, cholinergic, glutamatergic and parvalbumin-positive (PV+) GABAergic neurons, were more active during wakefulness and rapid eye movement (REM) sleep (wake/REM active) than during non-REM (NREM) sleep, and activation of each cell type rapidly induced wakefulness. By contrast, activation of somatostatin-positive (SOM+) GABAergic neurons promoted NREM sleep, although only some of them were NREM active. Synaptically, the wake-promoting neurons were organized hierarchically by glutamatergic→cholinergic→PV+ neuron excitatory connections, and they all received inhibition from SOM+ neurons. Together, these findings reveal the basic organization of the BF circuit for sleep-wake control.

  18. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. )

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  19. Habituation and extinction of fear recruit overlapping forebrain structures.

    PubMed

    Furlong, Teri M; Richardson, Rick; McNally, Gavan P

    2016-02-01

    Establishing the neurocircuitry involved in inhibiting fear is important for understanding and treating anxiety disorders. To date, extinction procedures have been predominately used to examine the inhibition of learned fear, where fear is reduced to a conditioned stimulus (CS) by presenting it in the absence of the unconditioned stimulus (US). However, learned fear can also be reduced by habituation procedures where the US is presented in the absence of the CS. Here we used expression of the activity marker c-Fos in rats to compare the recruitment of several forebrain structures following fear habituation and extinction. Following fear conditioning where a tone CS was paired with a loud noise US, fear was then reduced the following day by either presentation of the CS or US alone (i.e. CS extinction or US habituation, respectively). This extinction and habituation training recruited several common structures, including infralimbic cortex, basolateral amygdala, midline thalamus and medial hypothalamus (orexin neurons). Moreover, this overlap was shared when examining the neural correlates of the expression of habituation and extinction, with common recruitment of infralimbic cortex and midline thalamus. However, there were also important differences. Specifically, acquisition of habituation was associated with greater recruitment of prelimbic cortex whereas expression of habituation was associated with greater recruitment of paraventricular thalamus. There was also less recruitment of central amygdala for habituation compared to extinction in the retention phase. These findings indicate that largely overlapping neurocircuitries underlie habituation and fear extinction and imply common mechanisms for reducing fear across different inhibitory treatments.

  20. Effects of maternal L-tryptophan depletion and corticosterone administration on neurobehavioral adjustments in mouse dams and their adolescent and adult daughters.

    PubMed

    Zoratto, Francesca; Berry, Alessandra; Anzidei, Francesca; Fiore, Marco; Alleva, Enrico; Laviola, Giovanni; Macrì, Simone

    2011-08-01

    Major depressive disorder (MDD), a pathology characterized by mood and neurovegetative disturbances, depends on a multi-factorial contribution of individual predisposition (e.g., diminished serotonergic transmission) and environmental factors (e.g., neonatal abuse or neglect). Despite its female-biased prevalence, MDD basic research has mainly focused on male rodents. Most of present models of depression are also devalued due to the fact that they typically address only one of the aforementioned pathogenetic factors. In this paper we first describe the basic principles behind mouse model development and evaluation and then articulate that current models of depression are intrinsically devalued due to poor construct and/or external validity. We then report a first attempt to overcome this limitation through the design of a mouse model in which the genetic and the environmental components of early risk factors for depression are mimicked together. Environmental stress is mimicked through the supplementation of corticosterone in the maternal drinking water while biological predisposition is mimicked through maternal access to an L-tryptophan (the serotonin precursor) deficient diet during the first week of lactation. CD1 dams and their offspring exposed to the L-tryptophan deficient diet (T) and to corticosterone (80mg/l; C) were compared to animal facility reared (AFR) subjects. T and C mice served as intermediate reference groups. Adolescent TC offspring, compared to AFR mice, showed decreased time spent floating in the forced-swim test and increased time spent in the open sectors of an elevated 0-maze. Adult TC offspring showed reduced preference for novelty, decreased breakpoints in the progressive ratio operant procedure and major alterations in central BDNF levels and altered HPA regulation. The route of administration and the possibility to control the independent variables predisposing to depressive-like symptoms disclose novel avenues towards the development

  1. Secretion of Shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor

    PubMed Central

    Zhao, Hu; Feng, Jifan; Seidel, Kerstin; Shi, Songtao; Klein, Ophir; Sharpe, Paul; Chai, Yang

    2014-01-01

    Mesenchymal stem cells (MSCs) are typically defined by their in vitro characteristics, and as a consequence the in vivo identity of MSCs and their niches are poorly understood. To address this issue, we used lineage tracing in a mouse incisor model and identified the neurovascular bundle (NVB) as an MSC niche. We found that NVB sensory nerves secrete Shh protein, which activates Gli1 expression in periarterial cells that contribute to all mesenchymal derivatives. These periarterial cells do not express classical MSC markers used to define MSCs in vitro. In contrast, NG2+ pericytes represent an MSC subpopulation derived from Gli1+ cells; they express classical MSC markers and contribute little to homeostasis but are actively involved in injury repair. Likewise, incisor Gli1+ cells but not NG2+ cells exhibit typical MSC characteristics in vitro. Collectively, we demonstrate that MSCs originate from periarterial cells and are regulated by Shh secretion from a NVB. PMID:24506883

  2. Effects of organisational oestradiol on adult immunoreactive oestrogen receptors (alpha and beta) in the male mouse brain.

    PubMed

    Kudwa, A E; Harada, N; Honda, S-I; Rissman, E F

    2007-10-01

    Steroid hormones act on developing neural circuits that regulate the hypothalamic-pituitary-gonadal axis and are involved in hormone-sensitive behaviours. To test the hypothesis that developmental exposure to oestradiol (E(2)) organises the quantity of adult oestrogen receptors (ERalpha and ERbeta), we used male mice with a targeted mutation of the aromatase enzyme gene (ArKO) and their wild-type (WT) littermates. These mice are unable to aromatise testosterone to E(2), but still express both ERalpha and beta. To evaluate adult responsiveness to E(2), gonadectomised males were implanted with Silastic capsules containing E(2), or an empty implant, 5 days prior to sacrifice. Immunoreactivity for ERalpha and ERbeta was quantified in the caudal ventromedial nucleus (VMN) and the medial preoptic area (POA). Regardless of genotype, adult treatment with E(2) reduced ERalpha-immunoreactive (ir) and ERbeta-ir cell numbers in the POA, as well as ERbeta-ir, but not ERalpha-ir, cell numbers in the VMN. Genotype, and thus endogenous exposure to E(2), produced opposite effects on ER expression in the two brain areas. In the VMN, ArKO males had more ERalpha-ir and ERbeta-ir cells than did WT males. In the POA, ArKO males had fewer ERalpha-ir and ERbeta-ir cells than did WT males. Thus, numbers of immunoreactive neurones containing both ERs in the adult ArKO male were enhanced in the POA, but decreased in the VMN, and most likely these patterns were established during the developmental critical period. Furthermore, although both ERalpha and beta-ir cell numbers are altered by the disruption of the aromatase gene, ERbeta is altered in a more robust and region-specific manner.

  3. Suppression of c-Kit signaling induces adult neurogenesis in the mouse intestine after myenteric plexus ablation with benzalkonium chloride.

    PubMed

    Tamada, Hiromi; Kiyama, Hiroshi

    2016-01-01

    Adult neurogenesis rarely occurs in the enteric nervous system (ENS). In this study, we demonstrated that, after intestinal myenteric plexus (MP) ablation with benzalkonium chloride (BAC), adult neurogenesis in the ENS was significantly induced in c-kit loss-of-function mutant mice (W/W(v)). Almost all neurons and fibers in the MP disappeared after BAC treatment. However, 1 week after ablation, substantial penetration of nerve fibers from the non-damaged area was observed in the MP, longitudinal muscle and subserosal layers in both wildtype and W/W(v) mice. Two weeks after BAC treatment, in addition to the penetrating fibers, a substantial number of ectopic neurons appeared in the subserosal and longitudinal muscle layers of W/W(v) mice, whereas only a few ectopic neurons appeared in wildtype mice. Such ectopic neurons expressed either excitatory or inhibitory intrinsic motor neuron markers and formed ganglion-like structures, including glial cells, synaptic vesicles and basal lamina. Furthermore, oral administration of imatinib, an inhibitor of c-Kit and an anticancer agent for gastrointestinal stromal tumors, markedly induced appearance of ectopic neurons after BAC treatment, even in wildtype mice. These results suggest that adult neurogenesis in the ENS is negatively regulated by c-Kit signaling in vivo. PMID:27572504

  4. Impaired adult hippocampal neurogenesis and its partial reversal by chronic treatment of fluoxetine in a mouse model of Angelman syndrome.

    PubMed

    Godavarthi, Swetha K; Dey, Parthanarayan; Sharma, Ankit; Jana, Nihar Ranjan

    2015-09-01

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by severe cognitive and motor deficits, caused by the loss of function of maternally inherited Ube3a. Ube3a-maternal deficient mice (AS model mice) recapitulate many essential features of AS, but how the deficiency of Ube3a lead to such behavioural abnormalities is poorly understood. Here we have demonstrated significant impairment of adult hippocampal neurogenesis in AS mice brain. Although, the number of BrdU and Ki67-positive cell in the hippocampal DG region was nearly equal at early postnatal days among wild type and AS mice, they were significantly reduced in adult AS mice compared to wild type controls. Reduced number of doublecortin-positive immature neurons in this region of AS mice further indicated impaired neurogenesis. Unaltered BrdU and Ki67-positive cells number in the sub ventricular zone of adult AS mice brain along with the absence of imprinted expression of Ube3a in the neural progenitor cell suggesting that Ube3a may not be directly linked with altered neurogenesis. Finally, we show that the impaired hippocampal neurogenesis in these mice can be partially rescued by the chronic treatment of antidepressant fluoxetine. These results suggest that the chronic stress may lead to reduced hippocampal neurogenesis in AS mice and that impaired neurogenesis could contribute to cognitive disturbances observed in these mice.

  5. Suppression of c-Kit signaling induces adult neurogenesis in the mouse intestine after myenteric plexus ablation with benzalkonium chloride

    PubMed Central

    Tamada, Hiromi; Kiyama, Hiroshi

    2016-01-01

    Adult neurogenesis rarely occurs in the enteric nervous system (ENS). In this study, we demonstrated that, after intestinal myenteric plexus (MP) ablation with benzalkonium chloride (BAC), adult neurogenesis in the ENS was significantly induced in c-kit loss-of-function mutant mice (W/Wv). Almost all neurons and fibers in the MP disappeared after BAC treatment. However, 1 week after ablation, substantial penetration of nerve fibers from the non-damaged area was observed in the MP, longitudinal muscle and subserosal layers in both wildtype and W/Wv mice. Two weeks after BAC treatment, in addition to the penetrating fibers, a substantial number of ectopic neurons appeared in the subserosal and longitudinal muscle layers of W/Wv mice, whereas only a few ectopic neurons appeared in wildtype mice. Such ectopic neurons expressed either excitatory or inhibitory intrinsic motor neuron markers and formed ganglion-like structures, including glial cells, synaptic vesicles and basal lamina. Furthermore, oral administration of imatinib, an inhibitor of c-Kit and an anticancer agent for gastrointestinal stromal tumors, markedly induced appearance of ectopic neurons after BAC treatment, even in wildtype mice. These results suggest that adult neurogenesis in the ENS is negatively regulated by c-Kit signaling in vivo. PMID:27572504

  6. Impaired adult hippocampal neurogenesis and its partial reversal by chronic treatment of fluoxetine in a mouse model of Angelman syndrome.

    PubMed

    Godavarthi, Swetha K; Dey, Parthanarayan; Sharma, Ankit; Jana, Nihar Ranjan

    2015-09-01

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by severe cognitive and motor deficits, caused by the loss of function of maternally inherited Ube3a. Ube3a-maternal deficient mice (AS model mice) recapitulate many essential features of AS, but how the deficiency of Ube3a lead to such behavioural abnormalities is poorly understood. Here we have demonstrated significant impairment of adult hippocampal neurogenesis in AS mice brain. Although, the number of BrdU and Ki67-positive cell in the hippocampal DG region was nearly equal at early postnatal days among wild type and AS mice, they were significantly reduced in adult AS mice compared to wild type controls. Reduced number of doublecortin-positive immature neurons in this region of AS mice further indicated impaired neurogenesis. Unaltered BrdU and Ki67-positive cells number in the sub ventricular zone of adult AS mice brain along with the absence of imprinted expression of Ube3a in the neural progenitor cell suggesting that Ube3a may not be directly linked with altered neurogenesis. Finally, we show that the impaired hippocampal neurogenesis in these mice can be partially rescued by the chronic treatment of antidepressant fluoxetine. These results suggest that the chronic stress may lead to reduced hippocampal neurogenesis in AS mice and that impaired neurogenesis could contribute to cognitive disturbances observed in these mice. PMID:26231800

  7. Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus

    PubMed Central

    Ferran, José L.; Puelles, Luis; Rubenstein, John L. R.

    2015-01-01

    The prosomeric model proposes that the hypothalamus is a rostral forebrain entity, placed ventral to the telencephalon and rostral to the diencephalon. Gene expression markers differentially label molecularly distinct dorsoventral progenitor domains, which represent continuous longitudinal bands across the hypothalamic alar and basal regions. There is also circumstantial support for a rostrocaudal subdivision of the hypothalamus into transverse peduncular (caudal) and terminal (rostral) territories (PHy, THy). In addition, there is evidence for a specialized acroterminal domain at the rostral midline of the terminal hypothalamus (ATD). The PHy and THy transverse structural units are presently held to form part of two hypothalamo-telencephalic prosomeres (hp1 and hp2, respectively), which end dorsally at the telencephalic septocommissural roof. PHy and THy have distinct adult nuclei, at all dorsoventral levels. Here we report the results of data mining from the Allen Developing Mouse Brain Atlas database, looking for genes expressed differentially in the PHy, Thy, and ATD regions of the hypothalamus at several developmental stages. This search allowed us to identify additional molecular evidence supporting the postulated fundamental rostrocaudal bipartition of the mouse hypothalamus into the PHy and THy, and also corroborated molecularly the singularity of the ATD. A number of markers were expressed in Thy (Fgf15, Gsc, Nkx6.2, Otx1, Zic1/5), but were absent in PHy, while other genes showed the converse pattern (Erbb4, Irx1/3/5, Lmo4, Mfap4, Plagl1, Pmch). We also identified markers that selectively label the ATD (Fgf8/10/18, Otx2, Pomc, Rax, Six6). On the whole, these data help to explain why, irrespective of the observed continuity of all dorsoventral molecular hypothalamic subdivisions across PHy and THy, different nuclear structures originate within each of these two domains, and also why singular structures arise at the ATD, e.g., the suprachiasmatic nuclei, the

  8. Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus.

    PubMed

    Ferran, José L; Puelles, Luis; Rubenstein, John L R

    2015-01-01

    The prosomeric model proposes that the hypothalamus is a rostral forebrain entity, placed ventral to the telencephalon and rostral to the diencephalon. Gene expression markers differentially label molecularly distinct dorsoventral progenitor domains, which represent continuous longitudinal bands across the hypothalamic alar and basal regions. There is also circumstantial support for a rostrocaudal subdivision of the hypothalamus into transverse peduncular (caudal) and terminal (rostral) territories (PHy, THy). In addition, there is evidence for a specialized acroterminal domain at the rostral midline of the terminal hypothalamus (ATD). The PHy and THy transverse structural units are presently held to form part of two hypothalamo-telencephalic prosomeres (hp1 and hp2, respectively), which end dorsally at the telencephalic septocommissural roof. PHy and THy have distinct adult nuclei, at all dorsoventral levels. Here we report the results of data mining from the Allen Developing Mouse Brain Atlas database, looking for genes expressed differentially in the PHy, Thy, and ATD regions of the hypothalamus at several developmental stages. This search allowed us to identify additional molecular evidence supporting the postulated fundamental rostrocaudal bipartition of the mouse hypothalamus into the PHy and THy, and also corroborated molecularly the singularity of the ATD. A number of markers were expressed in Thy (Fgf15, Gsc, Nkx6.2, Otx1, Zic1/5), but were absent in PHy, while other genes showed the converse pattern (Erbb4, Irx1/3/5, Lmo4, Mfap4, Plagl1, Pmch). We also identified markers that selectively label the ATD (Fgf8/10/18, Otx2, Pomc, Rax, Six6). On the whole, these data help to explain why, irrespective of the observed continuity of all dorsoventral molecular hypothalamic subdivisions across PHy and THy, different nuclear structures originate within each of these two domains, and also why singular structures arise at the ATD, e.g., the suprachiasmatic nuclei, the

  9. Restoring eye size in Astyanax mexicanus blind cavefish embryos through modulation of the Shh and Fgf8 forebrain organising centres.

    PubMed

    Pottin, Karen; Hinaux, Hélène; Rétaux, Sylvie

    2011-06-01

    The cavefish morph of the Mexican tetra (Astyanax mexicanus) is blind at adult stage, although an eye that includes a retina and a lens develops during embryogenesis. There are, however, two major defects in cavefish eye development. One is lens apoptosis, a phenomenon that is indirectly linked to the expansion of ventral midline sonic hedgehog (Shh) expression during gastrulation and that induces eye degeneration. The other is the lack of the ventral quadrant of the retina. Here, we show that such ventralisation is not extended to the entire forebrain because fibroblast growth factor 8 (Fgf8), which is expressed in the forebrain rostral signalling centre, is activated 2 hours earlier in cavefish embryos than in their surface fish counterparts, in response to stronger Shh signalling in cavefish. We also show that neural plate patterning and morphogenesis are modified in cavefish, as assessed by Lhx2 and Lhx9 expression. Inhibition of Fgf receptor signalling in cavefish with SU5402 during gastrulation/early neurulation mimics the typical surface fish phenotype for both Shh and Lhx2/9 gene expression. Fate-mapping experiments show that posterior medial cells of the anterior neural plate, which lack Lhx2 expression in cavefish, contribute to the ventral quadrant of the retina in surface fish, whereas they contribute to the hypothalamus in cavefish. Furthermore, when Lhx2 expression is rescued in cavefish after SU5402 treatment, the ventral quadrant of the retina is also rescued. We propose that increased Shh signalling in cavefish causes earlier Fgf8 expression, a crucial heterochrony that is responsible for Lhx2 expression and retina morphogenesis defect.

  10. Anxiety- rather than depression-like behavior is associated with adult neurogenesis in a female mouse model of higher trait anxiety- and comorbid depression-like behavior.

    PubMed

    Sah, A; Schmuckermair, C; Sartori, S B; Gaburro, S; Kandasamy, M; Irschick, R; Klimaschewski, L; Landgraf, R; Aigner, L; Singewald, N

    2012-01-01

    Adult neurogenesis has been implicated in affective disorders and the action of antidepressants (ADs) although the functional significance of this association is still unclear. The use of animal models closely mimicking human comorbid affective and anxiety disorders seen in the majority of patients should provide relevant novel information. Here, we used a unique genetic mouse model displaying higher trait anxiety (HAB) and comorbid depression-like behavior. We demonstrate that HABs have a lower rate of hippocampal neurogenesis and impaired functional integration of newly born neurons as compared with their normal anxiety/depression-like behavior (NAB) controls. In HABs, chronic treatment with the AD fluoxetine alleviated their higher depression-like behavior and protected them from relapse for 3 but not 7 weeks after discontinuation of the treatment without affecting neurogenesis. Similar to what has been observed in depressed patients, fluoxetine treatment induced anxiogenic-like effects during the early treatment phase in NABs along with a reduction in neurogenesis. On the other hand, treatment with AD drugs with a particularly strong anxiolytic component, namely the neurokinin-1-receptor-antagonist L-822 429 or tianeptine, increased the reduced rate of neurogenesis in HABs up to NAB levels. In addition, challenge-induced hypoactivation of dentate gyrus (DG) neurons in HABs was normalized by all three drugs. Overall, these data suggest that AD-like effects in a psychopathological mouse model are commonly associated with modulation of DG hypoactivity but not neurogenesis, suggesting normalization of hippocampal hypoactivity as a neurobiological marker indicating successful remission. Finally, rather than to higher depression-related behavior, neurogenesis seems to be linked to pathological anxiety. PMID:23047242

  11. Characterization of Aromatase Expression in the Adult Male and Female Mouse Brain. I. Coexistence with Oestrogen Receptors α and β, and Androgen Receptors

    PubMed Central

    Stanić, Davor; Dubois, Sydney; Chua, Hui Kheng; Tonge, Bruce; Rinehart, Nicole; Horne, Malcolm K.; Boon, Wah Chin

    2014-01-01

    Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα−, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females. PMID:24646567

  12. p53 E3 ubiquitin protein ligase homolog regulates p53 in vivo in the adult mouse eye lens

    PubMed Central

    Jaramillo-Rangel, Gilberto; Ortega-Martínez, Marta; Sepúlveda-Saavedra, Julio; Saucedo-Cárdenas, Odila; Montes-de-Oca-Luna, Roberto

    2013-01-01

    Purpose p53 is a transcription factor that plays an important role in preventing cancer development. p53 participates in relevant aspects of cell biology, including apoptosis and cell cycle control and must be strictly regulated to maintain normal tissue homeostasis. p53 E3 ubiquitin protein ligase homolog (Mdm2) is an important negative regulator of p53. The purpose of this study was to determine if Mdm2 regulates p53 in vivo in the adult lens. Methods We analyzed mice expressing human p53 transgene (Tgp53) selectively in the lens in the presence or absence of Mdm2. Mice with the required genotypes were obtained by crossing transgenic, mdm2+/−, and p53−/− mice. Eye phenotype and lens histology and ultrastructure were analyzed in adult mice. Results In a wild-type genetic background (mdm2+/+), lens damage and microphthalmia were observed only in mice homozygous for Tgp53 (t/t). However, in an mdm2 null background, just one allele of Tgp53 (mdm2−/−/Tgp53t/0 mice) was sufficient to cause lens damage and microphthalmia. Furthermore, Mdm2 in only one allele was sufficient to rescue these deleterious effects, since the mdm2+/−/Tgp53t/0 mice had eye size and lens morphology similar to the control mice. Conclusions Mdm2 regulates p53 in the adult lens in vivo. This information may have relevance for analyzing normal and pathological conditions of the lens, and designing cancer therapies targeting Mdm2–p53 interaction. PMID:24339722

  13. Dissociating basal forebrain and medial temporal amnesic syndromes: insights from classical conditioning.

    PubMed

    Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A

    2002-01-01

    In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.

  14. Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala's nucleus.

    PubMed

    Teipel, Stefan J; Flatz, Wilhelm; Ackl, Nibal; Grothe, Michel; Kilimann, Ingo; Bokde, Arun L W; Grinberg, Lea; Amaro, Edson; Kljajevic, Vanja; Alho, Eduardo; Knels, Christina; Ebert, Anne; Heinsen, Helmut; Danek, Adrian

    2014-03-30

    Primary progressive aphasia (PPA) is characterized by left hemispheric frontotemporal cortical atrophy. Evidence from anatomical studies suggests that the nucleus subputaminalis (NSP), a subnucleus of the cholinergic basal forebrain, may be involved in the pathological process of PPA. Therefore, we studied the pattern of cortical and basal forebrain atrophy in 10 patients with a clinical diagnosis of PPA and 18 healthy age-matched controls using high-resolution magnetic resonance imaging (MRI). We determined the cholinergic basal forebrain nuclei according to Mesulam's nomenclature and the NSP in MRI reference space based on histological sections and the MRI scan of a post-mortem brain in cranio. Using voxel-based analysis, we found left hemispheric cortical atrophy in PPA patients compared with controls, including prefrontal, lateral temporal and medial temporal lobe areas. We detected cholinergic basal forebrain atrophy in left predominant localizations of Ch4p, Ch4am, Ch4al, Ch3 and NSP. For the first time, we have described the pattern of basal forebrain atrophy in PPA and confirmed the involvement of NSP that had been predicted based on theoretical considerations. Our findings may enhance understanding of the role of cholinergic degeneration for the regional specificity of the cortical destruction leading to the syndrome of PPA.

  15. Sox2-mediated differential activation of Six3.2 contributes to forebrain patterning.

    PubMed

    Beccari, Leonardo; Conte, Ivan; Cisneros, Elsa; Bovolenta, Paola

    2012-01-01

    The vertebrate forebrain is patterned during gastrulation into telencephalic, retinal, hypothalamic and diencephalic primordia. Specification of each of these domains requires the concerted activity of combinations of transcription factors (TFs). Paradoxically, some of these factors are widely expressed in the forebrain, which raises the question of how they can mediate regional differences. To address this issue, we focused on the homeobox TF Six3.2. With genomic and functional approaches we demonstrate that, in medaka fish, Six3.2 regulates, in a concentration-dependent manner, telencephalic and retinal specification under the direct control of Sox2. Six3.2 and Sox2 have antagonistic functions in hypothalamic development. These activities are, in part, executed by Foxg1 and Rx3, which seem to be differentially and directly regulated by Six3.2 and Sox2. Together, these data delineate the mechanisms by which Six3.2 diversifies its activity in the forebrain and highlight a novel function for Sox2 as one of the main regulators of anterior forebrain development. They also demonstrate that graded levels of the same TF, probably operating in partially independent transcriptional networks, pattern the vertebrate forebrain along the anterior-posterior axis. PMID:22096077

  16. Tissue inhibitor of metalloproteinases-2 is expressed in the interstitial matrix in adult mouse organs and during embryonic development.

    PubMed Central

    Blavier, L; DeClerck, Y A

    1997-01-01

    Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a member of a family of inhibitors of matrix-degrading metalloproteinases. A better insight into the role of this inhibitor during development and in organ function was obtained by examining the temporospatial expression of TIMP-2 in mice. Northern blot analysis indicated high levels of TIMP-2 mRNA in the lung, skin, reproductive organs, and brain. Lower levels of expression were found in all other organs with the exception of the liver and gastrointestinal tissue, which were negative of these tissues with complete absence of TIMP-2 mRNA in the epithelium. In the testis, TIMP-2 was present in the Leydig cells, and in the brain, it was expressed in pia matter and in neuronal tissues. TIMP-2 expression in the placenta increased during late gestation and was particularly abundant in spongiotrophoblasts In mouse embryo (day 10.5-18.5), TIMP-2 mRNA was abundant in mesenchymal tissues that surrounded developing epithelia and maturing skeleton. The pattern of expression significantly differs from that observed with TIMP-1 and TIMP-3, therefore, suggesting specific roles for each inhibitor during tissue remodeling and development. Images PMID:9285822

  17. Bioluminescence imaging of mitochondrial Ca2+ dynamics in soma and neurites of individual adult mouse sympathetic neurons

    PubMed Central

    Núñez, Lucía; Senovilla, Laura; Sanz-Blasco, Sara; Chamero, Pablo; Alonso, María T; Villalobos, Carlos; García-Sancho, Javier

    2007-01-01

    Changes in the cytosolic Ca2+ concentration ([Ca2+]c) are essential for triggering neurotransmitter release from presynaptic nerve terminals. Calcium-induced Ca2+ release (CICR) from the endoplasmic reticulum (ER) may amplify the [Ca2+]c signals and facilitate neurotransmitter release in sympathetic neurons. In adrenal chromaffin cells, functional triads are formed by voltage-operated Ca2+ channels (VOCCs), CICR sites and mitochondria. In fact, mitochondria take up most of the Ca2+ load entering the cells and are essential for shaping [Ca2+]c signals and exocytosis. Here we have investigated the existence of such functional triads in sympathetic neurons. The mitochondrial Ca2+ concentration ([Ca2+]m) in soma and neurites of individual mouse superior cervical ganglion (SCG) neurons was monitored by bioluminescence imaging of targeted aequorins. In soma, Ca2+ entry through VOCCs evoked rapid, near millimolar [Ca2+]m increases in a subpopulation of mitochondria containing about 40% of the aequorin. Caffeine evoked a similar [Ca2+]m increase in a mitochondrial pool containing about 30% of the aequorin and overlapping with the VOCC-sensitive pool. These observations suggest the existence of functional triads similar to the ones described in chromaffin cells. In neurites, mitochondria were able to buffer [Ca2+]c increases resulting from activation of VOCCs but not those mediated by caffeine-induced Ca2+ release from the ER. The weaker Ca2+ buffering by mitochondria in neurites could contribute to facilitate Ca2+-induced exocytosis at the presynaptic sites. PMID:17234693

  18. Genomic Recombination Leading to Decreased Virulence of Group B Streptococcus in a Mouse Model of Adult Invasive Disease

    PubMed Central

    Teatero, Sarah; Lemire, Paul; Dewar, Ken; Wasserscheid, Jessica; Calzas, Cynthia; Mallo, Gustavo V.; Li, Aimin; Athey, Taryn B.T.; Segura, Mariela; Fittipaldi, Nahuel

    2016-01-01

    Adult invasive disease caused by Group B Streptococcus (GBS) is increasing worldwide. Whole-genome sequencing (WGS) now permits rapid identification of recombination events, a phenomenon that occurs frequently in GBS. Using WGS, we described that strain NGBS375, a capsular serotype V GBS isolate of sequence type (ST)297, has an ST1 genomic background but has acquired approximately 300 kbp of genetic material likely from an ST17 strain. Here, we examined the virulence of this strain in an in vivo model of GBS adult invasive infection. The mosaic ST297 strain showed intermediate virulence, causing significantly less systemic infection and reduced mortality than a more virulent, serotype V ST1 isolate. Bacteremia induced by the ST297 strain was similar to that induced by a serotype III ST17 strain, which was the least virulent under the conditions tested. Yet, under normalized bacteremia levels, the in vivo intrinsic capacity to induce the production of pro-inflammatory cytokines was similar between the ST297 strain and the virulent ST1 strain. Thus, the diminished virulence of the mosaic strain may be due to reduced capacity to disseminate or multiply in blood during a systemic infection which could be mediated by regulatory factors contained in the recombined region. PMID:27527222

  19. Alteration of SLP2-like immunolabeling in mitochondria signifies early cellular damage in developing and adult mouse brain.

    PubMed

    Morozov, Yury M; Sun, Yu-Yo; Kuan, Chia-Yi; Rakic, Pasko

    2016-01-01

    Mitochondria play a critical role in various pathways of regulated cell death. Here we propose a novel method for detection of initial derangement of mitochondria in degenerating and dying neuronal cells. The method is based on our recent finding that antibodies directed against the cannabinoid type 1 receptor (CB1) also bind the mitochondrial stomatin-like protein 2 (SLP2) that belongs to an inner mitochondrial membrane protein complex. It is well established that SLP2 regulates mitochondrial biogenesis and respiratory functions. We now show that anti-CB1 antibodies recognize conformational epitopes but not the linear amino acid sequence of SLP2. In addition we found that anti-CB1 serum mostly labels swollen mitochondria with early or advanced stages of pathology in mouse brain while other proteins of the complex may mask epitopes of SLP2 in the normal mitochondria. Although neurons and endothelial cells in healthy brains contain occasional immunopositive mitochondria detectable with anti-CB1 serum, their numbers increase significantly after hypoxic insults in parallel with signs of cellular damage. Moreover, use of electron microscopy suggests relocation of SLP2 from its normal functional position in the inner mitochondrial membrane into the mitochondrial matrix in pathological cells. Thus, SLP2-like immunolabeling serves as an in situ histochemical target detecting early derangement of mitochondria. Anti-CB1 serum is crucial for this purpose because available anti-SLP2 antibodies do not provide selective labeling of mitochondria in the fixed tissue. This new method of detecting mitochondrial dysfunction can benefit the in vitro research of human diseases and developmental disorders by enabling analysis in live animal models.

  20. Identification and Characterization of Lineage(-)CD45(-)Sca-1(+) VSEL Phenotypic Cells Residing in Adult Mouse Bone Tissue.

    PubMed

    Nakatsuka, Ryusuke; Iwaki, Ryuji; Matsuoka, Yoshikazu; Sumide, Keisuke; Kawamura, Hiroshi; Fujioka, Tatsuya; Sasaki, Yutaka; Uemura, Yasushi; Asano, Hiroaki; Kwon, A-Hon; Sonoda, Yoshiaki

    2016-01-01

    Murine bone marrow (BM)-derived very small embryonic-like stem cells (BM VSELs), defined by a lineage-negative (Lin(-)), CD45-negative (CD45(-)), Sca-1-positive (Sca-1(+)) immunophenotype, were previously reported as postnatal pluripotent stem cells (SCs). We developed a highly efficient method for isolating Lin(-)CD45(-)Sca-1(+) small cells using enzymatic treatment of murine bone. We designated these cells as bone-derived VSELs (BD VSELs). The incidences of BM VSELs in the BM-derived nucleated cells and that of BD VSELs in bone-derived nucleated cells were 0.002% and 0.15%, respectively. These BD VSELs expressed a variety of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and endothelial cell markers. The gene expression profile of the BD VSELs was clearly distinct from those of HSCs, MSCs, and ES cells. In the steady state, the BD VSELs proliferated slowly, however, the number of BD VSELs significantly increased in the bone after acute liver injury. Moreover, green fluorescent protein-mouse derived BD VSELs transplanted via tail vein injection after acute liver injury were detected in the liver parenchyma of recipient mice. Immunohistological analyses suggested that these BD VSELs might transdifferentiate into hepatocytes. This study demonstrated that the majority of the Lin(-)CD45(-)Sca-1(+) VSEL phenotypic cells reside in the bone rather than the BM. However, the immunophenotype and the gene expression profile of BD VSELs were clearly different from those of other types of SCs, including BM VSELs, MSCs, HSCs, and ES cells. Further studies will therefore be required to elucidate their cellular and/or SC characteristics and the potential relationship between BD VSELs and BM VSELs.

  1. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex123

    PubMed Central

    Billeh, Yazan N.; Bernard, Amy; de Vivo, Luisa; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof

    2016-01-01

    Abstract Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25–P30, ≥50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  2. No effect of running and laboratory housing on adult hippocampal neurogenesis in wild caught long-tailed wood mouse

    PubMed Central

    Hauser, Thomas; Klaus, Fabienne; Lipp, Hans-Peter; Amrein, Irmgard

    2009-01-01

    Background Studies of adult hippocampal neurogenesis (AHN) in laboratory rodents have raised hopes for therapeutic interventions in neurodegenerative diseases and mood disorders, as AHN can be modulated by physical exercise, stress and environmental changes in these animals. Since it is not known whether cell proliferation and neurogenesis in wild living mice can be experimentally changed, this study investigates the responsiveness of AHN to voluntary running and to environmental change in wild caught long-tailed wood mice (Apodemus sylvaticus). Results Statistical analyses show that running had no impact on cell proliferation (p = 0.44), neurogenesis (p = 0.94) or survival of newly born neurons (p = 0.58). Likewise, housing in the laboratory has no effect on AHN. In addition, interindividual differences in the level of neurogenesis are not related to interindividual differences of running wheel performance (rs = -0.09, p = 0.79). There is a correlation between the number of proliferating cells and the number of cells of neuronal lineage (rs = 0.63, p < 0.001) and the number of pyknotic cells (rs = 0.5, p = 0.009), respectively. Conclusion Plasticity of adult neurogenesis is an established feature in strains of house mice and brown rats. Here, we demonstrate that voluntary running and environmental changes which are effective in house mice and brown rats cannot influence AHN in long-tailed wood mice. This indicates that in wild long-tailed wood mice different regulatory mechanisms act on cell proliferation and neurogenesis. If this difference reflects a species-specific adaptation or a broader adaptive strategy to a natural vs. domestic environment is unknown. PMID:19419549

  3. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex.

    PubMed

    Billeh, Yazan N; Rodriguez, Alexander V; Bellesi, Michele; Bernard, Amy; de Vivo, Luisa; Funk, Chadd M; Harris, Julie; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof; Cirelli, Chiara; Tononi, Giulio

    2016-01-01

    Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25-P30, ≥ 50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  4. Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome.

    PubMed

    Mardirossian, Sandrine; Rampon, Claire; Salvert, Denise; Fort, Patrice; Sarda, Nicole

    2009-12-01

    Angelman syndrome (AS) is a severe neurodevelopmental disorder characterized by mental retardation, seizures and sleep disturbances. It results from lack of the functional maternal allele of UBE3A gene. Ube3a maternal-deficient mice (Ube3a m-/p+), animal models for AS, are impaired in hippocampal-dependent learning tasks as compared with control (Ube3a m+/p+) mice. We first examined the basal expression of immediate early genes which expression is required for synaptic plasticity and memory formation. We found that basal expression of c-fos and Arc genes is reduced in the DG of Ube3a maternal deficient mice compared to their non-transgenic littermates. We then examined whether adult hippocampal neurogenesis, which likely serves as a mechanism toward brain plasticity, is altered in these transgenic mice. Neurogenesis occurs throughout life in mammalian dentate gyrus (DG) and recent findings suggest that newborn granule cells are involved in some forms of learning and memory. Whether maternal Ube3a deletion is detrimental on hippocampal neurogenesis is unclear. Herein, we show, using the mitotic marker Ki67, the birthdating marker 5-bromo-2'-dexoyuridine (BrdU) and the marker doublecortin (DCX) to respectively label cell proliferation, cell survival or young neuron production, that the Ube3a maternal deletion does not affect the proliferation nor the survival of newborn cells in the hippocampus. In contrast, using the postmitotic neuronal marker (NeuN), we show that Ube3a maternal deletion is associated with a lower fraction of BrdU+/NeuN+ newborn neurons among the population of surviving new cells in the hippocampus. Collectively, these findings suggest that some aspects of adult neurogenesis and plasticity are affected by Ube3a deletion and may contribute to the hippocampal dysfunction observed in AS mice.

  5. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits.

    PubMed

    Patel, Jyoti C; Rossignol, Elsa; Rice, Margaret E; Machold, Robert P

    2012-01-01

    Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.

  6. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    PubMed Central

    Chater-Diehl, Eric J.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  7. New mouse model of acute adult T-cell leukemia generated by transplantation of AKT, BCLxL, and HBZ-transduced T cells.

    PubMed

    Kasugai, Yumiko; Yoshida, Noriaki; Ohshima, Koichi; Matsuo, Keitaro; Seto, Masao; Tsuzuki, Shinobu

    2016-08-01

    Adult T-cell leukemia/lymphoma (ATL) develops in human T-cell leukemia virus type 1 (HTLV-1) carriers. Although the HTLV-1-encoded HBZ gene is critically involved, HBZ alone is insufficient and additional, cooperative "hits" are required for the development of ATL. Candidate cooperative hits are being defined, but methods to rapidly explore their roles in ATL development in collaboration with HBZ are lacking. Here, we present a new mouse model of acute type ATL that can be generated rapidly by transplanting in vitro-induced T cells that have been retrovirally transduced with HBZ and two cooperative genes, BCLxL and AKT, into mice. Co-transduction of HBZ and BCLxL/AKT allowed these T cells to grow in vitro in the absence of cytokines (Flt3-ligand and interleukin-7), which did not occur with any two-gene combination. Although transplanted T cells were a mixture of cells transduced with different combinations of the genes, tumors that developed in mice were composed of HBZ/BCLxL/AKT triply transduced T cells, showing the synergistic effect of the three genes. The genetic/epigenetic landscape of ATL has only recently been elucidated, and the roles of additional "hits" in ATL pathogenesis remain to be explored. Our model provides a versatile tool to examine the roles of these hits, in collaboration with HBZ, in the development of acute ATL. PMID:27223899

  8. Effects of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus, and characterization of immature neurons along the septotemporal axis

    PubMed Central

    Mahar, Ian; MacIsaac, Angus; Kim, John Junghan; Qiang, Calvin; Davoli, Maria Antonietta; Turecki, Gustavo; Mechawar, Naguib

    2016-01-01

    Adult hippocampal neurogenesis is associated with learning and affective behavioural regulation. Its diverse functionality is segregated along the septotemporal axis from the dorsal to ventral hippocampus. However, features distinguishing immature neurons in these regions have yet to be characterized. Additionally, although we have shown that administration of the neurotrophic factor neuregulin-1 (NRG1) selectively increases proliferation and overall neurogenesis in the mouse ventral dentate gyrus (DG), likely through ErbB3, NRG1’s effects on intermediate neurogenic stages in immature neurons are unknown. We examined whether NRG1 administration increases DG ErbB3 phosphorylation. We labeled adultborn cells using BrdU, then administered NRG1 to examine in vivo neurogenic effects on immature neurons with respect to cell survival, morphology, and synaptogenesis. We also characterized features of immature neurons along the septotemporal axis. We found that neurogenic effects of NRG1 are temporally and subregionally specific to proliferation in the ventral DG. Particular morphological features differentiate immature neurons in the dorsal and ventral DG, and cytogenesis differed between these regions. Finally, we identified synaptic heterogeneity surrounding the granule cell layer. These results indicate neurogenic involvement of NRG1-induced antidepressant-like behaviour is particularly associated with increased ventral DG cell proliferation, and identify novel distinctions between dorsal and ventral hippocampal neurogenic development. PMID:27469430

  9. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur.

    PubMed

    Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne

    2015-08-01

    Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months' supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze. Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. PMID:26063461

  10. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult

    PubMed Central

    Zhang, Bin; Arun, Gayatri; Mao, Yuntao S.; Lazar, Zsolt; Hung, Gene; Bhattacharjee, Gourab; Xiao, Xiaokun; Booth, Carmen J.; Wu, Jie; Zhang, Chaolin; Spector, David L.

    2012-01-01

    SUMMARY Genome-wide studies have identified thousands of long noncoding RNAs (lncRNAs) lacking protein coding capacity. However, most lncRNAs are expressed at a very low level, and in most cases there is no genetic evidence to support their in vivo function. Malat1 (metastasis associated lung adenocarcinoma transcript 1) is among the most abundant and highly conserved lncRNAs, and it exhibits an uncommon 3′-end processing mechanism. In addition, its specific nuclear localization, developmental regulation, and dysregulation in cancer are suggestive of it having a critical biological function. We have characterized a Malat1 loss-of-function genetic model that indicates Malat1 is not essential for mouse pre- and post-natal development. Furthermore, depletion of Malat1 does not impact global gene expression, splicing factor level and phosphorylation status, or alternative pre-mRNA splicing. However, among a small number of genes that were dysregulated in adult Malat1 knockout mice, many were Malat1 neighboring genes, thus indicating a potential cis regulatory role of Malat1 gene transcription. PMID:22840402

  11. Organization of the avian basal forebrain: chemical anatomy in the parrot (Melopsittacus undulatus).

    PubMed

    Roberts, Todd Freeman; Hall, William Sterling; Brauth, Steven Earle

    2002-12-23

    Hodological, electrophysiological, and ablation studies indicate a role for the basal forebrain in telencephalic vocal control; however, to date the organization of the basal forebrain has not been extensively studied in any nonmammal or nonhuman vocal learning species. To this end the chemical anatomy of the avian basal forebrain was investigated in a vocal learning parrot, the budgerigar (Melopsittacus undulatus). Immunological and histological stains, including choline acetyltransferase, acetylcholinesterase, tyrosine hydroxylase, dopamine and cAMP-regulated phosphoprotein (DARPP)-32, the calcium binding proteins calbindin D-28k and parvalbumin, calcitonin gene-related peptide, iron, substance P, methionine enkephalin, nicotinamide adenine dinucleotide phosphotase diaphorase, and arginine vasotocin were used in the present study. We conclude that the ventral paleostriatum (cf. Kitt and Brauth [1981] Neuroscience 6:1551-1566) and adjacent archistriatal regions can be subdivided into several distinct subareas that are chemically comparable to mammalian basal forebrain structures. The nucleus accumbens is histochemically separable into core and shell regions. The nucleus taeniae (TN) is theorized to be homologous to the medial amygdaloid nucleus. The archistriatum pars ventrolateralis (Avl; comparable to the pigeon archistriatum pars dorsalis) is theorized to be a possible homologue of the central amygdaloid nucleus. The TN and Avl are histochemically continuous with the medial aspects of the bed nucleus of the stria terminalis and the ventromedial striatum, forming an avian analogue of the extended amygdala. The apparent counterpart in budgerigars of the mammalian nucleus basalis of Meynert consists of a field of cholinergic neurons spanning the basal forebrain. The budgerigar septal region is theorized to be homologous as a field to the mammalian septum. Our results are discussed with regard to both the evolution of the basal forebrain and its role in vocal

  12. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the basal forebrain

    PubMed Central

    Murillo-Rodriguez, Eric; Liu, Meng; Blanco-Centurion, Carlos; Shiromani, Priyattam J.

    2009-01-01

    Neurons containing the neuropeptide hypocretin (orexin) are localized only in the lateral hypothalamus from where they innervate multiple regions implicated in arousal, including the basal forebrain. HCRT activation of downstream arousal neurons is likely to stimulate release of endogenous factors. One such factor is adenosine (AD), which in the basal forebrain increases with waking and decreases with sleep, and is hypothesized to regulate the waxing and waning of sleep drive. Does loss of HCRT neurons affect AD levels in the basal forebrain? Is the increased sleep that accompanies HCRT loss a consequence of higher AD levels in the basal forebrain? In the present study, we investigate these questions by lesioning the HCRT neurons (hypocretin-2-saporin) and measuring sleep and extracellular levels of AD in the basal forebrain. In separate groups of rats, the neurotoxin HCRT2-SAP or saline were administered locally to the lateral hypothalamus and 80 days later AD and sleep were assessed. Rats given the neurotoxin had a 94% loss of the HCRT neurons. These rats awake less at night, and had more REM sleep, which is consistent with a HCRT hypofunction. These rats also had more sleep after brief periods of sleep deprivation. However, in the lesioned rats, AD levels did not increase with 6h sleep deprivation, whereas such an increase in AD occurred in rats without lesion of the HCRT neurons. These findings indicate that AD levels do not increase with waking in rats with a HCRT lesion, and that the increased sleep in these rats occurs independently of AD levels in the basal forebrain. PMID:18783368

  13. Expression of complexin I and II mRNAs and their regulation by antipsychotic drugs in the rat forebrain.

    PubMed

    Eastwood, S L; Burnet, P W; Harrison, P J

    2000-06-01

    Complexin (cx) I and II are homologous synaptic protein genes which are differentially expressed in mouse and human brain and differentially affected in schizophrenia. We characterized the distribution of cx I and II mRNAs in rat forebrain and examined whether their abundance, or the transcript of the synaptic marker synaptophysin, is affected by 14 days' administration of antipsychotic drugs (haloperidol, chlorpromazine, risperidone, olanzapine, or clozapine). Cx I mRNA predominated in medial habenula, medial septum-diagonal band complex, and thalamus, whereas cx II mRNA was more abundant in most other regions, including isocortex and hippocampus. Within the hippocampus, cx I mRNA was primarily expressed by interneurons and cx II mRNA by granule cells and pyramidal neurons. Localized cx II mRNA signal was seen in the dentate gyrus molecular layer, suggestive of its transport into granule cell dendrites. Antipsychotic treatment produced selective, modest effects on cx mRNA expression. Cx I mRNA was elevated by olanzapine in dorsolateral striatum and frontoparietal cortex, while the abundance of cx II mRNA relative to cx I mRNA was decreased in both areas by olanzapine and haloperidol. Chlorpromazine increased cx II mRNA in frontoparietal cortex and synaptophysin mRNA in dorsolateral striatum. In summary, the data have implications both for understanding the effects of antipsychotic medication on synaptic organization, and for synaptic protein expression studies in patients treated with the drugs.

  14. Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain.

    PubMed

    Köles, László; Garção, Pedro; Zádori, Zoltán S; Ferreira, Samira G; Pinheiro, Bárbara S; da Silva-Santos, Carla S; Ledent, Catherine; Köfalvi, Attila

    2013-08-01

    Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal.

  15. Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain.

    PubMed

    Köles, László; Garção, Pedro; Zádori, Zoltán S; Ferreira, Samira G; Pinheiro, Bárbara S; da Silva-Santos, Carla S; Ledent, Catherine; Köfalvi, Attila

    2013-08-01

    Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal. PMID:23831917

  16. Catecholamine innervation of the forebrain in the bull frog, Rana catesbiana.

    PubMed

    Tohyama, M; Yamamoto, K; Satoh, K; Sakumoto, T; Shimizu, N

    1977-01-01

    The innervation of forebrain catecholamine (CA) were experimentally investigated with use of sensitive fluorescence method of glyoxylic acid formaldehyde in the brain of the bull frog, Rana catesbiana. The CA of the olfactory bulb is supplied by CA neurons situated in olfactory bulb. And CA neurons in the hypothalamus contribute the main source for the forebrain CA except olfactory bulb. The hypothalamic CA neurons also give rise to long descending axons to innervate the brain stem. Judging from their anatomical aspects it seems that the structure homologous to mammalian nigro-neostriatal dopamine or mesolimbic dopamine system is not present in amphibian brain. PMID:303652

  17. Y1 receptors are critical for the proliferation of adult mouse precursor cells in the olfactory neuroepithelium.

    PubMed

    Doyle, Kharen L; Karl, Tim; Hort, Yvonne; Duffy, Liesl; Shine, John; Herzog, Herbert

    2008-05-01

    While the regenerative capacity of the olfactory neuroepithelium has been well studied less is known about the molecular events controlling precursor cell activity. Neuropeptide Y (NPY) is expressed at high levels in the olfactory system, and NPY has been shown to play a role in neuroregeneration of the brain. In this study, we show that the numbers of olfactory neurospheres derived from NPY, NPY/peptide YY, and Y1 receptor knockout mice are decreased compared with wild type (WT) controls. Furthermore, flow cytometric analysis of isolated horizontal basal cells, globose basal cells, and glandular cells showed that only glandular cells derived from WT mice, but not from NPY and Y1 receptor knockout mice, formed secondary neurospheres suggesting a critical role for NPY signaling in this process. Interestingly, olfactory function tests revealed that olfaction in Y1 knockout mice is impaired compared with those of WT mice, probably because of the reduced number of olfactory neurons formed. Together these results indicate that NPY and the Y1 receptor are required for the normal proliferation of adult olfactory precursors and olfactory function.

  18. Is forebrain neurogenesis a potential repair mechanism after stroke?

    PubMed

    Inta, Dragos; Gass, Peter

    2015-07-01

    The use of adult subventricular zone (SVZ) neurogenesis as brain repair strategy after stroke represents a hot topic in neurologic research. Recent radiocarbon-14 dating has revealed a lack of poststroke neurogenesis in the adult human neocortex; however, adult neurogenesis has been shown to occur, even under physiologic conditions, in the human striatum. Here, these results are contrasted with experimental poststroke neurogenesis in the murine brain. Both in humans and in rodents, the SVZ generates predominantly calretinin (CR)-expressing GABAergic interneurons, which cannot replace the broad spectrum of neuronal subtypes damaged by stroke. Therefore, SVZ neurogenesis may represent a repair mechanism only after genetic manipulation redirecting its differentiation.

  19. Is forebrain neurogenesis a potential repair mechanism after stroke?

    PubMed Central

    Inta, Dragos; Gass, Peter

    2015-01-01

    The use of adult subventricular zone (SVZ) neurogenesis as brain repair strategy after stroke represents a hot topic in neurologic research. Recent radiocarbon-14 dating has revealed a lack of poststroke neurogenesis in the adult human neocortex; however, adult neurogenesis has been shown to occur, even under physiologic conditions, in the human striatum. Here, these results are contrasted with experimental poststroke neurogenesis in the murine brain. Both in humans and in rodents, the SVZ generates predominantly calretinin (CR)-expressing GABAergic interneurons, which cannot replace the broad spectrum of neuronal subtypes damaged by stroke. Therefore, SVZ neurogenesis may represent a repair mechanism only after genetic manipulation redirecting its differentiation. PMID:25966955

  20. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    PubMed

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  1. Melatonin attenuates methamphetamine-induced inhibition of neurogenesis in the adult mouse hippocampus: An in vivo study.

    PubMed

    Singhakumar, Rachen; Boontem, Parichart; Ekthuwapranee, Kasima; Sotthibundhu, Areechun; Mukda, Sujira; Chetsawang, Banthit; Govitrapong, Piyarat

    2015-10-01

    Methamphetamine (METH), a highly addictive psychostimulant drug, is known to exert neurotoxic effects to the dopaminergic neural system. Long-term METH administration impairs brain functions such as cognition, learning and memory. Newly born neurons in the dentate gyrus of the hippocampus play an important role in spatial learning and memory. Previous in vitro studies have shown that METH inhibits cell proliferation and neurogenesis in the hippocampus. On the other hand, melatonin, a major indole secreted by the pineal gland, enhances neurogenesis in both the subventricular zone and dentate gyrus. In this study, adult C57BL/6 mice were used to study the beneficial effects of melatonin on METH-induced alterations in neurogenesis and post-synaptic proteins related to learning and memory functions in the hippocampus. The results showed that METH caused a decrease in neuronal phenotypes as determined by the expressions of nestin, doublecortin (DCX) and beta-III tubulin while causing an increase in glial fibrillary acidic protein (GFAP) expression. Moreover, METH inhibited mitogen-activated protein kinase (MAPK) signaling activity and altered expression of the N-methyl-d-aspartate (NMDA) receptor subunits NR2A and NR2B as well as calcium/calmodulin-dependent protein kinase II (CaMKII). These effects could be attenuated by melatonin pretreatment. In conclusion, melatonin prevented the METH-induced reduction in neurogenesis, increase in astrogliogenesis and alteration of NMDA receptor subunit expression. These findings may indicate the beneficial effects of melatonin on the impairment of learning and memory caused by METH.

  2. Function-triggering antibodies to the adhesion molecule L1 enhance recovery after injury of the adult mouse femoral nerve.

    PubMed

    Guseva, Daria; Loers, Gabriele; Schachner, Melitta

    2014-01-01

    L1 is among the few adhesion molecules that favors repair after trauma in the adult central nervous system of vertebrates by promoting neuritogenesis and neuronal survival, among other beneficial features. In the peripheral nervous system, L1 is up-regulated in Schwann cells and regrowing axons after nerve damage, but the functional consequences of this expression remain unclear. Our previous study of L1-deficient mice in a femoral nerve injury model showed an unexpected improved functional recovery, attenuated motoneuronal cell death, and enhanced Schwann cell proliferation, being attributed to the persistent synthesis of neurotrophic factors. On the other hand, transgenic mice over-expressing L1 in neurons led to improved remyelination, but not improved functional recovery. The present study was undertaken to investigate whether the monoclonal L1 antibody 557 that triggers beneficial L1 functions in vitro would trigger these also in femoral nerve repair. We analyzed femoral nerve regeneration in C57BL/6J mice that received this antibody in a hydrogel filled conduit connecting the cut and sutured nerve before its bifurcation, leading to short-term release of antibody by diffusion. Video-based quantitative analysis of motor functions showed improved recovery when compared to mice treated with conduits containing PBS in the hydrogel scaffold, as a vehicle control. This improved recovery was associated with attenuated motoneuron loss, remyelination and improved precision of preferential motor reinnervation. We suggest that function-triggering L1 antibodies applied to the lesion site at the time of injury over a limited time period will not only be beneficial in peripheral, but also central nervous system regeneration. PMID:25393007

  3. Despite strong behavioral disruption, Delta9-tetrahydrocannabinol does not affect cell proliferation in the adult mouse dentate gyrus.

    PubMed

    Kochman, Linda J; dos Santos, Angela Amancio; Fornal, Casimir A; Jacobs, Barry L

    2006-10-01

    Marijuana is a widely abused illicit drug known to cause significant cognitive impairments. Marijuana has been hypothesized to target neurons in the hippocampus because of the abundance of cannabinoid receptors present in this structure. While there is no clear evidence of neuropathology in vivo, suppression of brain mitogenesis, and ultimately neurogenesis, may provide a sensitive index of marijuana's more subtle effects on neural mechanisms subserving cognitive functions. We examined the effects of different doses and treatment regimens of Delta(9)-tetrahydrocannabinol (THC), the main active ingredient in marijuana, on cell proliferation in the dentate gyrus of adult male mice. Following drug treatment, the thymidine analog 5-bromo-2'-deoxyuridine (BrdU; 200 mg/kg, i.p.) was administered two hours prior to sacrifice to assess cell proliferation, the first step in neurogenesis. Administration of THC produced dose-dependent catalepsy and suppression of motor activity. The number of BrdU-labeled cells was not significantly changed from vehicle control levels following either acute (1, 3, 10, 30 mg/kg, i.p.), sequential (two injections of 10 or 30 mg/kg, i.p., separated by 5 h), or chronic escalating (20 to 80 mg/kg, p.o.; for 3 weeks) drug administration. Furthermore, acute administration of the potent synthetic cannabinoid receptor agonist R-(+)-WIN 55,212-2 (WIN; 5 mg/kg, i.p.) also had no significant effect on cell proliferation. These findings provide no evidence for an effect of THC on hippocampal cell proliferation, even at doses producing gross behavioral intoxication. Whether marijuana or THC affects neurogenesis remains to be explored.

  4. Subchronic Inhalation of Soluble Manganese Induces Expression of Hypoxia-associated Angiogenic Genes in Adult Mouse Lungs

    PubMed Central

    Bredow, Sebastian; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-01-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE) these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m3 for 5 days at 6h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease. PMID:17467022

  5. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem.

    PubMed

    Muzerelle, Aude; Scotto-Lomassese, Sophie; Bernard, Jean François; Soiza-Reilly, Mariano; Gaspar, Patricia

    2016-01-01

    Serotoninergic innervation of the central nervous system is provided by hindbrain raphe nuclei (B1-B9). The extent to which each raphe subdivision has distinct topographic organization of their projections is still unclear. We provide a comprehensive description of the main targets of the rostral serotonin (5-HT) raphe subgroups (B5-B9) in the mouse brain. Adeno-associated viruses that conditionally express GFP under the control of the 5-HT transporter promoter were used to label small groups of 5-HT neurons in the dorsal (B7d), ventral (B7v), lateral (B7l), and caudal (B6) subcomponents of the dorsal raphe (DR) nucleus as well as in the rostral and caudal parts of the median raphe (MR) nucleus (B8 and B5, respectively), and in the supralemniscal (B9) cell group. We illustrate the distinctive and largely non-overlapping projection areas of these cell groups: for instance, DR (B7) projects to basal parts of the forebrain, such as the amygdala, whereas MR (B8) is the main 5-HT source to the hippocampus, septum, and mesopontine tegmental nuclei. Distinct subsets of B7 have preferential brain targets: B7v is the main source of 5-HT for the cortex and amygdala while B7d innervates the hypothalamus. We reveal for the first time the target areas of the B9 cell group, demonstrating projections to the caudate, prefrontal cortex, substantia nigra, locus coeruleus and to the raphe cell groups. The broad topographic organization of the different raphe subnuclei is likely to underlie the different functional roles in which 5-HT has been implicated in the brain. The present mapping study could serve as the basis for genetically driven specific targeting of the different subcomponents of the mouse raphe system.

  6. Phenotypic characterization of a Csf1r haploinsufficient mouse model of adult-onset leukodystrophy with axonal spheroids and pigmented glia (ALSP).

    PubMed

    Chitu, Violeta; Gokhan, Solen; Gulinello, Maria; Branch, Craig A; Patil, Madhuvati; Basu, Ranu; Stoddart, Corrina; Mehler, Mark F; Stanley, E Richard

    2015-02-01

    Mutations in the colony stimulating factor-1 receptor (CSF1R) that abrogate the expression of the affected allele or lead to the expression of mutant receptor chains devoid of kinase activity have been identified in both familial and sporadic cases of ALSP. To determine the validity of the Csf1r heterozygous mouse as a model of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) we performed behavioral, radiologic, histopathologic, ultrastructural and cytokine expression studies of young and old Csf1r+/- and control Csf1r+/+ mice. Six to 8-month old Csf1r+/- mice exhibit cognitive deficits, and by 9-11 months develop sensorimotor deficits and in male mice, depression and anxiety-like behavior. MRIs of one year-old Csf1r+/- mice reveal lateral ventricle enlargement and thinning of the corpus callosum. Ultrastructural analysis of the corpus callosum uncovers dysmyelinated axons as well as neurodegeneration, evidenced by the presence of axonal spheroids. Histopathological examination of 11-week-old mice reveals increased axonal and myelin staining in the cortex, increase of neuronal cell density in layer V and increase of microglial cell densities throughout the brain, suggesting that early developmental changes contribute to disease. By 10-months of age, the neuronal cell density normalizes, oligodendrocyte precursor cells increase in layers II-III and V and microglial densities remain elevated without an increase in astrocytes. Also, the age-dependent increase in CSF-1R+ neurons in cortical layer V is reduced. Moreover, the expression of Csf2, Csf3, Il27 and Il6 family cytokines is increased, consistent with microglia-mediated inflammation. These results demonstrate that the inactivation of one Csf1r allele is sufficient to cause an ALSP-like disease in mice. The Csf1r+/- mouse is a model of ALSP that will allow the critical events for disease development to be determined and permit rapid evaluation of therapeutic approaches. Furthermore

  7. Development of a Unilaterally-lesioned 6-OHDA Mouse Model of Parkinson's Disease

    PubMed Central

    Thiele, Sherri L.; Warre, Ruth; Nash, Joanne E.

    2012-01-01

    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients1-4. However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise3,5. In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)8, allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice9,10. However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer11. More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia11,12,13,14 was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse15. Whilst this model has proven

  8. Vocal control pathways through the anterior forebrain of a parrot (Melopsittacus undulatus).

    PubMed

    Durand, S E; Heaton, J T; Amateau, S K; Brauth, S E

    1997-01-13

    A feature of the telencephalic vocal control system in the budgerigar (Melopsittacus undulatus) that has been hypothesized to represent a profound difference in organization from the oscine vocal system is its reported lack of an inherent circuit through the anterior forebrain. The present study reports anatomical connections that indicate the existence of an anterior forebrain circuit comparable in important ways to the "recursive" pathway of oscine songbirds. Results from anterograde and retrograde tracing experiments with biocytin and fluorescently labeled dextran amines indicate that the central nucleus of the anterior archistriatum (AAc) is the source of ascending projections upon the oval nuclei of the anterior neostriatum and ventral hyperstriatum (NAo and HVo, respectively). Efferent projections from the latter nuclei terminate in the lateral neostriatum afferent to AAc, thereby forming a short recurrent pathway through the pallium. Previously reported projections from HVo and NAo upon the magnocellular nucleus of the lobus parolfactorius (LPOm), and after LPOm onto the magnocellular nucleus of the dorsal thalamus (DMm; G.F. Striedter [1994] J. Comp. Neurol. 343:35-56), are confirmed. A specific projection from DMm onto NAom is also demonstrated; therefore, a recurrent pathway through the basal forebrain also exists in the budgerigar vocal system that is similar to the anterior forebrain circuit of oscine songbirds. Parallels between these circuits and mammalian basal ganglia-thalamo-cortical circuits are discussed. It is hypothesized that vocal control nuclei of the avian anterior neostriatum may perform a function similar to the primate supplemental motor area.

  9. Pain sensitivity following loss of cholinergic basal forebrain (CBF) neurons in the rat.

    PubMed

    Vierck, C J; Yezierski, R P; Wiley, R G

    2016-04-01

    Flexion/withdrawal reflexes are attenuated by spinal, intracerebroventricular (ICV) and systemic delivery of cholinergic agonists. In contrast, some affective reactions to pain are suppressed by systemic cholinergic antagonism. Attention to aversive stimulation can be impaired, as is classical conditioning of fear and anxiety to aversive stimuli and psychological activation of stress reactions that exacerbate pain. Thus, in contrast to the suppressive effects of cholinergic agonism on reflexes, pain sensitivity and affective reactions to pain could be attenuated by reduced cerebral cholinergic activation. This possibility was evaluated in the present study, using an operant test of escape from nociceptive thermal stimulation (10 °C and 44.5 °C) before and after destruction of basal forebrain cholinergic neurons. ICV injection of 192 IgG-saporin produced widespread loss of basal forebrain cholinergic innervation of the cerebral cortex and hippocampus. Post-injection, escape from thermal stimulation was decreased with no indication of recovery for upto 19 weeks. Also, the normal hyperalgesic effect of sound stress was absent after ICV 192-sap. Effects of cerebral cholinergic denervation or stress on nociceptive licking and guarding reflexes were not consistent with the effects on operant escape, highlighting the importance of evaluating pain sensitivity of laboratory animals with an operant behavioral test. These results reveal that basal forebrain cholinergic transmission participates in the cerebral processing of pain, which may be relevant to the pain sensitivity of patients with Alzheimer's disease who have prominent degeneration of basal forebrain cholinergic neurons. PMID:26812034

  10. Conserved Noncoding Sequences Regulate lhx5 Expression in the Zebrafish Forebrain

    PubMed Central

    Sun, Liu; Chen, Fengjiao; Peng, Gang

    2015-01-01

    The LIM homeobox family protein Lhx5 plays important roles in forebrain development in the vertebrates. The lhx5 gene exhibits complex temporal and spatial expression patterns during early development but its transcriptional regulation mechanisms are not well understood. Here, we have used transgenesis in zebrafish in order to define regulatory elements that drive lhx5 expression in the forebrain. Through comparative genomic analysis we identified 10 non-coding sequences conserved in five teleost species. We next examined the enhancer activities of these conserved non-coding sequences with Tol2 transposon mediated transgenesis. We found a proximately located enhancer gave rise to robust reporter EGFP expression in the forebrain regions. In addition, we identified an enhancer located at approximately 50 kb upstream of lhx5 coding region that is responsible for reporter gene expression in the hypothalamus. We also identify an enhancer located approximately 40 kb upstream of the lhx5 coding region that is required for expression in the prethalamus (ventral thalamus). Together our results suggest discrete enhancer elements control lhx5 expression in different regions of the forebrain. PMID:26147098

  11. Orexin receptor activity in the basal forebrain alters performance on an olfactory discrimination task.

    PubMed

    Piantadosi, Patrick T; Holmes, Ashley; Roberts, Bradley M; Bailey, Aileen M

    2015-01-12

    Cholinergic innervation of the prefrontal cortex is critical for various forms of cognition, although the efferent modulators contributing to acetylcholine (ACh) release are not well understood. The main source of cortical ACh, the basal forebrain, receives projections from lateral and perifornical hypothalamic neurons releasing the peptides orexin (orexin A; OxA, and orexin B; OxB), of which OxA is hypothesized to play a role in various cognitive functions. We sought to assess one such function known to be susceptible to basal forebrain cholinergic manipulation, olfactory discrimination acquisition, and reversal learning, in rats following intra-basal forebrain infusion of OxA or the orexin 1 receptor (OxR1) antagonist SB-334867. OxA administration facilitated, while OxR1 antagonism impaired performance on both the acquisition and reversal portions of the task. These data suggest that orexin acting in the basal forebrain may be important for cortical-dependant executive functions, possibly through the stimulation of cortical ACh release.

  12. [Method of Calculating the Distance Between the Classes of the Structural Components of the Forebrain Birds].

    PubMed

    Voronov, L N; Konstantinov, V Y

    2016-01-01

    The method of calculating the distance between the classes of the structural components of the brain of birds. Compared interclass distances of glia, neurons and neuroglial complexes in the forebrain hooded crow (Corvus cornix) (a bird with a highly rational activity) and common crossbill (Loxia curvirostra) (birds with a medium level of rational activity). PMID:27263281

  13. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    ERIC Educational Resources Information Center

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  14. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine

    PubMed Central

    Vu, Michael T.; Du, Guizhi; Bayliss, Douglas A.

    2015-01-01

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K+ (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K+ current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASKf/f mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30–50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30–50 Hz activity in ChAT-Cre:TASKf/f mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. SIGNIFICANCE STATEMENT Attentive states and cognitive function are associated with the generation of γ EEG activity

  15. A Small Motor Cortex Lesion Abolished Ocular Dominance Plasticity in the Adult Mouse Primary Visual Cortex and Impaired Experience-Dependent Visual Improvements.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Greifzu, Franziska; Löwel, Siegrid

    2015-01-01

    It was previously shown that a small lesion in the primary somatosensory cortex (S1) prevented both cortical plasticity and sensory learning in the adult mouse visual system: While 3-month-old control mice continued to show ocular dominance (OD) plasticity in their primary visual cortex (V1) after monocular deprivation (MD), age-matched mice with a small photothrombotically induced (PT) stroke lesion in S1, positioned at least 1 mm anterior to the anterior border of V1, no longer expressed OD-plasticity. In addition, in the S1-lesioned mice, neither the experience-dependent increase of the spatial frequency threshold ("visual acuity") nor of the contrast threshold ("contrast sensitivity") of the optomotor reflex through the open eye was present. To assess whether these plasticity impairments can also occur if a lesion is placed more distant from V1, we tested the effect of a PT-lesion in the secondary motor cortex (M2). We observed that mice with a small M2-lesion restricted to the superficial cortical layers no longer expressed an OD-shift towards the open eye after 7 days of MD in V1 of the lesioned hemisphere. Consistent with previous findings about the consequences of an S1-lesion, OD-plasticity in V1 of the nonlesioned hemisphere of the M2-lesioned mice was still present. In addition, the experience-dependent improvements of both visual acuity and contrast sensitivity of the open eye were severely reduced. In contrast, sham-lesioned mice displayed both an OD-shift and improvements of visual capabilities of their open eye. To summarize, our data indicate that even a very small lesion restricted to the superficial cortical layers and more than 3mm anterior to the anterior border of V1 compromised V1-plasticity and impaired learning-induced visual improvements in adult mice. Thus both plasticity phenomena cannot only depend on modality-specific and local nerve cell networks but are clearly influenced by long-range interactions even from distant brain regions.

  16. A Small Motor Cortex Lesion Abolished Ocular Dominance Plasticity in the Adult Mouse Primary Visual Cortex and Impaired Experience-Dependent Visual Improvements.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Greifzu, Franziska; Löwel, Siegrid

    2015-01-01

    It was previously shown that a small lesion in the primary somatosensory cortex (S1) prevented both cortical plasticity and sensory learning in the adult mouse visual system: While 3-month-old control mice continued to show ocular dominance (OD) plasticity in their primary visual cortex (V1) after monocular deprivation (MD), age-matched mice with a small photothrombotically induced (PT) stroke lesion in S1, positioned at least 1 mm anterior to the anterior border of V1, no longer expressed OD-plasticity. In addition, in the S1-lesioned mice, neither the experience-dependent increase of the spatial frequency threshold ("visual acuity") nor of the contrast threshold ("contrast sensitivity") of the optomotor reflex through the open eye was present. To assess whether these plasticity impairments can also occur if a lesion is placed more distant from V1, we tested the effect of a PT-lesion in the secondary motor cortex (M2). We observed that mice with a small M2-lesion restricted to the superficial cortical layers no longer expressed an OD-shift towards the open eye after 7 days of MD in V1 of the lesioned hemisphere. Consistent with previous findings about the consequences of an S1-lesion, OD-plasticity in V1 of the nonlesioned hemisphere of the M2-lesioned mice was still present. In addition, the experience-dependent improvements of both visual acuity and contrast sensitivity of the open eye were severely reduced. In contrast, sham-lesioned mice displayed both an OD-shift and improvements of visual capabilities of their open eye. To summarize, our data indicate that even a very small lesion restricted to the superficial cortical layers and more than 3mm anterior to the anterior border of V1 compromised V1-plasticity and impaired learning-induced visual improvements in adult mice. Thus both plasticity phenomena cannot only depend on modality-specific and local nerve cell networks but are clearly influenced by long-range interactions even from distant brain regions

  17. Effects of cyclophosphamide and acrolein in organoid cultures of mouse limb bud cells grown in the presence of adult rat hepatocytes.

    PubMed

    Ghaida, J; Merker, H J

    1992-01-01

    The effects were evaluated of cyclophosphamide (CPA) and its metabolite, acrolein, on chondrogenesis in organoid cultures of mouse limb bud mesenchymal cells co-cultured with non-enzymatically isolated adult rat hepatocytes. The studies were conducted with or without the simultaneous addition of 2-mercaptoethanesulphonic acid sodium (mesna) or glutathione (GSH). Alcian blue binding assay and light and electron microscopic techniques were used. Increasing concentrations of the two compounds (bioactivated CPA, 18-180 mum; acrolein, 50-500 mum) led to a dose-dependent inhibition of chondrogenesis associated with cellular dedifferentiation and/or cytotoxicity. Addition of mesna (1 mm) or GSH (1 mm) partially protected the cultures against CPA and acrolein. However, the protective effect depended on the dose of CPA or acrolein used. A higher protection was observed with mesna than with GSH, and the effect was more pronounced with acrolein than with CPA. The morphological findings suggested that CPA and acrolein acted by different mechanisms. Bioactivated CPA primarily inhibited the differentiation process, whereas acrolein exhibited a high cytotoxic activity affecting particularly monolayer cells that normally grow on the periphery of the cultures. These findings suggest that acrolein possesses a specific mode of action directed towards this type of cell. This could be explained by the specific shape and/or behaviour of the cells (i.e. cytoskeletal arrangement, proliferation rate, migration activity, intercellular communication pattern, etc.). The results demonstrated that the cell system used was suitable for the performance of cytotoxicity and teratogenicity studies such as those conducted with CPA and acrolein.

  18. Improved immunohistochemical detection of postsynaptically located PSD-95/SAP90 protein family by protease section pretreatment: a study in the adult mouse brain.

    PubMed

    Fukaya, M; Watanabe, M

    2000-10-30

    Postsynaptic density (PSD)-95, SAP102, and Chapsyn-110 are members of the PSD-95/SAP90 protein family, which interact with the C-terminus of N-methyl-D-aspartate (NMDA) receptor and shaker-type potassium channel subunits. Here we report that appropriate section pretreatment with pepsin has led to qualitative and quantitative changes in light microscopic immunohistochemical detection of the protein family. First, pepsin pretreatment lowered the concentration of affinity-purified primary antibodies, while it greatly increased the intensity of immunoreactions. Second, the resulting overall distributions of PSD-95, SAP102, and Chapsyn-110 in the adult mouse brain were consistent with their mRNA distributions. Third, instead of the reported patterns of somatodendritic labeling, tiny punctate staining in the neuropil became overwhelming. Fourth, many PSD-95-immunopositive puncta were apposed closely to synaptophysin-positive nerve terminals and overlapped with NMDA receptor subunits. By postembedding immunogold, the PSD-95 antibody was shown to label exclusively the postsynaptic density at asymmetrical synapses. Based on these results, we conclude that antibody access and binding to the postsynaptically located PSD-95/SAP90 protein family are hindered when conventional immunohistochemistry is adopted, and that pepsin pretreatment effectively unmasks the postsynaptic epitopes. On the other hand, PSD-95 in axon terminals of cerebellar basket cells, where high levels of potassium channels are present, was detectable irrespective of pepsin pretreatment, suggesting that PSD-95 antibody is readily accessible to the presynaptic epitopes. Consequently, the present immunohistochemical results have provided light microscopic evidence supporting the prevailing notion that the PSD-95/SAP90 protein family interacts with NMDA receptor subunits and potassium channel subunits. PMID:11027400

  19. Sensitivity of depression-like behavior to glucocorticoids and antidepressants is independent of forebrain glucocorticoid receptors

    PubMed Central

    Vincent, Melanie Y.; Hussain, Rifat J.; Zampi, Michael E.; Sheeran, Katherine; Solomon, Matia B.; Herman, James P.; Khan, Anum; Jacobson, Lauren

    2013-01-01

    The location of glucocorticoid receptors (GR) implicated in depression symptoms and antidepressant action remains unclear. Forebrain glucocorticoid receptor deletion on a C57B/6×129×CBA background (FBGRKO-T50) reportedly produces increased depression-like behavior and elevated glucocorticoids. We further hypothesized that forebrain GR deletion would reduce behavioral sensitivity to glucocorticoids and to antidepressants. We have tested this hypothesis in mice with calcium calmodulin kinase IIα-Cre-mediated forebrain GR deletion derived from a new founder on a pure C57BL/6 background (FBGRKO-T29-1). We measured immobility in forced swim or tail suspension tests after manipulating glucocorticoids or after dose response experiments with tricyclic or monoamine oxidase inhibitor antidepressants. Despite forebrain GR deletion that was at least as rapid and more extensive than reported in the mixed-strain FBGRKO-T50 mice (Boyle et al. 2005), and possibly because of their different founder, our FBGRKO-T29-1 mice did not exhibit increases in depression-like behavior or adrenocortical axis hormones. Nevertheless, FBGRKO-T29-1 mice were at least as sensitive as floxed GR controls to the depressive effects of glucocorticoids and the effects of two different classes of antidepressants. FBGRKO-T29-1 mice also unexpectedly exhibited increased mineralocorticoid receptor (MR) gene expression. Our results reinforce prior evidence that antidepressant action does not require forebrain GR, and suggest a correlation between the absence of depression-like phenotype and combined MR up-regulation and central amygdala GR deficiency. Our findings demonstrate that GR outside the areas targeted in FBGRKO-T29-1 mice are involved in the depressive effects of glucocorticoids, and leave open the possibility that these GR populations also contribute to antidepressant action. PMID:23727405

  20. Correlations between the degree and type of forebrain malformations and the simultaneous neuro-oncogenic properties of ethylnitrosourea after diaplacental exposure in rats, alone and in combination with X-irradiation

    SciTech Connect

    Schmahl, W.; Kriegel, H.

    1985-01-01

    Single and combined treatments were performed in rats on day 13 of gestation with either ENU or ENU subsequent to various X-irradiation doses between 0.5 and 1.5 Gy. At this time of gestation, developmental anomalies of the brain are still inducible by any of these treatments, in addition to neurocarcinogenic effects after ENU alone or in combination with X-irradiation. We looked for correlations between the degree of brain malformations still detectable in the adult animals and the simultaneous occurrence of brain tumors. These evaluations were based on a histopathological analysis regarding the type and degree of malformation residues, as well as the type and distribution pattern of the tumors (especially regarding gliomas) within the forebrain. Both after ENU and X-irradiation plus ENU-treatment, the occurrence of glioma in the offspring was positively correlated with the degree of brain dysplasia. This effect was not only restricted to the total glioma incidence but also confirmed by the higher glioma multiplicity in major dysplastic brains. Additionally, gliomas were preferentially located within the subependymal layer, which simultaneously was most severely affected by the teratogenic effects after prenatal treatment. Although forebrain dysplasia generally presents a significant predisposition for glioma inducibility, this oncogenic event is apparently strictly inversely related to a certain type of forebrain malformation, namely the occurrence of heterotopic neuronal nodules within the telencephalic roof. They emerge from rosettes, which are typical radiation lesions occurring only after doses above 1.0 Gy. In none of the forebrains which still revealed rosette-residues in later life could a simultaneous occurrence of gliomas be observed.

  1. Use of dual section mRNA in situ hybridisation/immunohistochemistry to clarify gene expression patterns during the early stages of nephron development in the embryo and in the mature nephron of the adult mouse kidney.

    PubMed

    Georgas, Kylie; Rumballe, Bree; Wilkinson, Lorine; Chiu, Han Sheng; Lesieur, Emmanuelle; Gilbert, Thierry; Little, Melissa H

    2008-11-01

    The kidney is the most complex organ within the urogenital system. The adult mouse kidney contains in excess of 8,000 mature nephrons, each of which can be subdivided into a renal corpuscle and 14 distinct tubular segments. The histological complexity of this organ can make the clarification of the site of gene expression by in situ hybridisation difficult. We have defined a panel of seven antibodies capable of identifying the six stages of early nephron development, the tubular nephron segments and the components of the renal corpuscle within the embryonic and adult mouse kidney. We have analysed in detail the protein expression of Wt1, Calb1 Aqp1, Aqp2 and Umod using these antibodies. We have then coupled immunohistochemistry with RNA in situ hybridisation in order to precisely identify the expression pattern of different genes, including Wnt4, Umod and Spp1. This technique will be invaluable for examining at high resolution, the structure of both the developing and mature nephron where standard in situ hybridisation and histological techniques are insufficient. The use of this technique will enhance the expression analyses of genes which may be involved in nephron formation and the function of the mature nephron in the mouse.

  2. A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia.

    PubMed

    England, Samantha J; Blanchard, Guy B; Mahadevan, L; Adams, Richard J

    2006-12-01

    Mechanisms for shaping and folding sheets of cells during development are poorly understood. An example is the complex reorganisation of the forebrain neural plate during neurulation, which must fold a sheet into a tube while evaginating two eyes from a single contiguous domain within the neural plate. We, for the first time, track these cell rearrangements to show that forebrain morphogenesis differs significantly from prior hypotheses. We postulate a new model for forebrain neurulation and demonstrate how mutations affecting two signalling pathways can generate cyclopic phenotypes by disrupting normal cell movements or introducing new erroneous behaviours.

  3. Development of functional thalamocortical synapses studied with current source-density analysis in whole forebrain slices in the rat.

    PubMed

    Molnár, Zoltán; Kurotani, Tohru; Higashi, Shuji; Yamamoto, Nobuhiko; Toyama, Keisuke

    2003-05-30

    We analysed the laminar distribution of transmembrane currents from embryonic (E) day 17 until adulthood after selective thalamic stimulation in slices of rat forebrain to study the development of functional thalamocortical and cortico-cortical connections. At E18 to birth a short-latency current sink was observed in the subplate and layer 6, which was decreased, but not fully abolished in a cobalt containing solution or after the application of glutamate receptor blockers (APV and DNQX). This indicated that embryonic thalamic axons were capable of conducting action potentials to the cortex and some of them had already formed functional synapses there. Between birth and P3, when thalamic axons were completing their upward growth, a sink gradually appeared more superficially in the dense cortical plate and synchronously, a current source aroused in layer 5. Both sinks and sources completely disappeared after blocking synaptic transmission. The adult-like distribution of CSDs became apparent after P7. The component in layer 6 cannot be blocked completely after this age suggesting antidromic activation. This study demonstrated that cells of the lowest layers of the cortex received functional thalamic input before birth and that thalamocortical axons formed synapses with more superficial cells as they grew into the cortical plate.

  4. Postnatal development of nestin positive neurons in rat basal forebrain: different onset and topography with choline acetyltransferase and parvalbumin expression.

    PubMed

    Guo, Kai-Hua; Li, Dong-Pei; Gu, Huai-Yu; Jie-Xu; Yao, Zhi-Bin

    2014-06-01

    Our previous studies identified a sub-population of cholinergic neurons which express nestin in the rostral part of the basal forebrain (BF) in normal adult rats. In the present study, the postnatal developmental patterns of nestin, choline acetyl transferase (ChAT) and parvalbumin (PV) positive neurons were explored by means of immunohistochemistry combined with immunofluorescence double label methods. Compared with early onset of ChAT expression (from P1) and delayed onset of PV expression (from P16), nestin positive activity was detected in the BF from P9 and co-expressed by parts of the ChAT positive neurons within the same region during the whole postnatal development process. However, ChAT and PV were not coexpressed by the neurons within the medial septum-diagonal band of Broca (MS-DBB) of BF. These results might imply a composite of separate development patterns displayed by different subpopulations of cholinergic neurons (nestin positive cholinergic neurons and nestin negative cholinergic neurons) within this region. Moreover, the topographic distribution of nestin, ChAT and PV positive neurons also showed different characteristics. In summary, our present study revealed a remarkable timing and topographic difference on the postnatal development of the nestin expression within the MS-DBB of BF compared with ChAT and PV expression. It is further suggested that nestin is re-expressed by cholinergic neurons in the BF after differentiation but not persisted from neuronal precursor cells. PMID:24657285

  5. Behavioral effects of basal forebrain cholinergic lesions in young adult and aging rats.

    PubMed

    Paban, Véronique; Chambon, Caroline; Jaffard, Magali; Alescio-Lautier, Béatrice

    2005-08-01

    The interactive effects of age and cholinergic damage were assessed behaviorally in young and middle-aged rats. Rats were lesioned at either 3 or 17 months of age by injection of 192 IgG-saporin immunotoxin into the medial septum and the nucleus basalis magnocellularis, and they were then tested on a range of behavioral tasks: a nonmatching-to-position task in a T-maze, an object-recognition task, an object-location task, and an open-field activity test. Depending on the task used, only an age or a lesion effect was observed, but there was no Age X Lesion interaction. Middle-aged and young rats responded to the cholinergic lesions in the same manner. These results show that in the middle-aged rats in which cholinergic transmission was affected, additional injury to the system was not always accompanied by major cognitive dysfunctions. PMID:16187821

  6. Development of glucocorticoid receptor regulation in the rat forebrain: Implications for adverse effects of glucocorticoids in preterm infants

    EPA Science Inventory

    Glucocorticoids are the consensus treatment to avoid respiratory distress in preterm infants but there is accumulating evidence that these agents evoke long-term neurobehavioral deficits. Earlier, we showed that the developing rat forebrain is far more sensitive to glucocorticoi...

  7. Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex.

    PubMed

    Kolisnyk, Benjamin; Al-Onaizi, Mohammed A; Hirata, Pedro H F; Guzman, Monica S; Nikolova, Simona; Barbash, Shahar; Soreq, Hermona; Bartha, Robert; Prado, Marco A M; Prado, Vania F

    2013-09-11

    One of the key brain regions in cognitive processing and executive function is the prefrontal cortex (PFC), which receives cholinergic input from basal forebrain cholinergic neurons. We evaluated the contribution of synaptically released acetylcholine (ACh) to executive function by genetically targeting the vesicular acetylcholine transporter (VAChT) in the mouse forebrain. Executive function was assessed using a pairwise visual discrimination paradigm and the 5-choice serial reaction time task (5-CSRT). In the pairwise test, VAChT-deficient mice were able to learn, but were impaired in reversal learning, suggesting that these mice present cognitive inflexibility. Interestingly, VAChT-targeted mice took longer to reach criteria in the 5-CSRT. Although their performance was indistinguishable from that of control mice during low attentional demand, increased attentional demand revealed striking deficits in VAChT-deleted mice. Galantamine, a cholinesterase inhibitor used in Alzheimer's disease, significantly improved the performance of control mice, but not of VAChT-deficient mice on the 5-CSRT. In vivo magnetic resonance spectroscopy showed altered levels of two neurochemical markers of neuronal function, taurine and lactate, suggesting altered PFC metabolism in VAChT-deficient mice. The PFC of these mice displayed a drastic reduction in the splicing factor heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1), whose cholinergic-mediated reduction was previously demonstrated in Alzheimer's disease. Consequently, several key hnRNPA2/B1 target transcripts involved in neuronal function present changes in alternative splicing in VAChT-deficient mice, including pyruvate kinase M, a key enzyme involved in lactate metabolism. We propose that VAChT-targeted mice can be used to model and to dissect the neurochemical basis of executive abnormalities. PMID:24027290

  8. Complex Neurological Phenotype in Mutant Mice Lacking Tsc2 in Excitatory Neurons of the Developing Forebrain123

    PubMed Central

    Crowell, Beth; Hwa Lee, Gum; Nikolaeva, Ina; Dal Pozzo, Valentina

    2015-01-01

    Abstract Mutations in the TSC1 and TSC2 genes cause tuberous sclerosis complex (TSC), a genetic disease often associated with epilepsy, intellectual disability, and autism, and characterized by the presence of anatomical malformations in the brain as well as tumors in other organs. The TSC1 and TSC2 proteins form a complex that inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling. Previous animal studies demonstrated that Tsc1 or Tsc2 loss of function in the developing brain affects the intrinsic development of neural progenitor cells, neurons, or glia. However, the interplay between different cellular elements during brain development was not previously investigated. In this study, we generated a novel mutant mouse line (NEX-Tsc2) in which the Tsc2 gene is deleted specifically in postmitotic excitatory neurons of the developing forebrain. Homozygous mutant mice failed to thrive and died prematurely, whereas heterozygous mice appeared normal. Mutant mice exhibited distinct neuroanatomical abnormalities, including malpositioning of selected neuronal populations, neuronal hypertrophy, and cortical astrogliosis. Intrinsic neuronal defects correlated with increased mTORC1 signaling, whereas astrogliosis did not result from altered intrinsic signaling, since these cells were not directly affected by the gene knockout strategy. All neuronal and non-neuronal abnormalities were suppressed by continuous postnatal treatment with the mTORC1 inhibitor RAD001. The data suggest that the loss of Tsc2 and mTORC1 signaling activation in excitatory neurons not only disrupts their intrinsic development, but also disrupts the development of cortical astrocytes, likely through the mTORC1-dependent expression of abnormal signaling proteins. This work thus provides new insights into cell-autonomous and non-cell-autonomous functions of Tsc2 in brain development. PMID:26693177

  9. Reduced Forebrain Serotonin Transmission is Causally Involved in the Development of Compulsive Cocaine Seeking in Rats

    PubMed Central

    Pelloux, Yann; Dilleen, Ruth; Economidou, Daina; Theobald, David; Everitt, Barry J

    2012-01-01

    Whereas the majority of cocaine users quit as they experience the negative consequences of drug use, some lose control over their drug taking and compulsively seek drugs. We report that 20% of rats compulsively seek cocaine despite intermittent negative outcomes after escalating their cocaine self-administration. This compulsive subgroup showed marked reductions in forebrain serotonin utilization; increasing serotonin transmission reduced their compulsive cocaine seeking. Depleting forebrain serotonin induced compulsive cocaine seeking in rats with a limited cocaine taking history; this was reversed by systemic treatment with a 5-hydroxytryptamine (5-HT2C) receptor agonist and mimicked by systemic treatment with a 5-HT2C receptor antagonist in intact animals. These results indicate the causal involvement of reduced serotoninergic transmission in the emergence of compulsive drug seeking after a long cocaine-taking history. PMID:22763621

  10. Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep.

    PubMed

    Lee, Maan Gee; Hassani, Oum K; Alonso, Angel; Jones, Barbara E

    2005-04-27

    It is known that acetylcholine can stimulate activation and promote plasticity in the cerebral cortex, yet it is not known how the cholinergic basal forebrain neurons, which release acetylcholine in the cortex, discharge in relation to natural cortical activity and sleep-wake states. By recording basal forebrain units in association with electroencephalographic activity across the sleep-wake cycle and labeling individual neurons with Neurobiotin for immunohistochemical identification, we show for the first time that cholinergic neurons discharge in bursts at maximal rates during active waking and paradoxical sleep, when gamma and theta electroencephalographic activity are maximal. They virtually cease firing during slow-wave sleep. Notably, their bursting discharge is synchronized with theta oscillations. Through their maximal firing and rhythmic theta discharge during active waking and paradoxical sleep, the cholinergic neurons can thus modulate the cortex to promote activation along with plasticity during these two states.

  11. Role of tissue plasminogen activator/plasmin cascade in delayed neuronal death after transient forebrain ischemia.

    PubMed

    Takahashi, Hiroshi; Nagai, Nobuo; Urano, Tetsumei

    We studied the possible involvement of the tissue plasminogen activator (t-PA)/plasmin system on both delayed neuronal death in the hippocampus and the associated enhancement of locomotor activity in rats, after transient forebrain ischemia induced by a four-vessel occlusion (FVO). Seven days after FVO, locomotor activity was abnormally increased and, after 10 days, pyramidal cells were degraded in the CA1 region of the hippocampus. FVO increased the t-PA antigen level and its activity in the hippocampus, which peaked at 4 h. Both the enhanced locomotor activity and the degradation of pyramidal cells were significantly suppressed by intracerebroventricular injection of aprotinin, a plasmin inhibitor, at 4 h but not during FVO. These results suggest the importance of the t-PA/plasmin cascade during the early pathological stages of delayed neuronal death in the hippocampus following transient forebrain ischemia.

  12. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats.

    PubMed

    Pelloux, Yann; Dilleen, Ruth; Economidou, Daina; Theobald, David; Everitt, Barry J

    2012-10-01

    Whereas the majority of cocaine users quit as they experience the negative consequences of drug use, some lose control over their drug taking and compulsively seek drugs. We report that 20% of rats compulsively seek cocaine despite intermittent negative outcomes after escalating their cocaine self-administration. This compulsive subgroup showed marked reductions in forebrain serotonin utilization; increasing serotonin transmission reduced their compulsive cocaine seeking. Depleting forebrain serotonin induced compulsive cocaine seeking in rats with a limited cocaine taking history; this was reversed by systemic treatment with a 5-hydroxytryptamine (5-HT2C) receptor agonist and mimicked by systemic treatment with a 5-HT2C receptor antagonist in intact animals. These results indicate the causal involvement of reduced serotoninergic transmission in the emergence of compulsive drug seeking after a long cocaine-taking history.

  13. Receptors for GRP/bombesin-like peptides in the rat forebrain

    SciTech Connect

    Wolf, S.S.; Moody, T.W.

    1985-01-01

    Binding sites in the rat forebrain were characterized using ( SVI-Tyr4)bombesin as a receptor probe. Pharmacology experiments indicate that gastrin releasing peptide (GRP) and the GRP fragments GRP as well as Ac-GRP inhibited radiolabeled (Tyr4)bombesin binding with high affinity. Biochemistry experiments indicated that heat, N-ethyl maleimide or trypsin greatly reduced radiolabeled (Tyr4)bombesin binding. Also, autoradiographic studies indicated that highest grain densities were present in the stria terminalis, periventricular and suprachiasmatic nucleus of the hypothalamus, dorsomedial and rhomboid thalamus, dentate gyrus, hippocampus and medial amygdaloid nucleus. The data suggest that CNS protein receptors, which are discretely distributed in the rat forebrain, may mediate the action of endogenous GRP/bombesin-like peptides.

  14. A specific form of cognitive rigidity following excitotoxic lesions of the basal forebrain in marmosets.

    PubMed

    Roberts, A C; Robbins, T W; Everitt, B J; Muir, J L

    1992-01-01

    The effects of N-methyl-D-aspartate-induced lesions of the basal forebrain were studied on performance of a series of visual discrimination tests that examined a range of cognitive functions in the marmoset. These included the ability to attend to the various dimensional properties of stimuli and to use just one of these properties in order to solve a discrimination (intra-dimensional shift); to switch attention from one dimension to another (extra-dimensional shift); to learn the reinforcement value of specific exemplars within a dimension (new learning); and to relearn their reinforcement value following reversal of the reward contingencies (serial reversals). Lesions of the basal forebrain did not impair the ability either to attend selectively to the dimensional properties of the stimuli or to switch attention from one dimension to the other. However, the lesion did affect various aspects of associative learning including a transient impairment of new learning and a marked disruption of serial reversal learning. The reversal deficit could be characterised as a tendency to perseverate on the previously correct stimulus and as a failure to to show the formation of a reversal learning set. In addition, the lesion prevented disruption of performance of a well-learned discrimination when novel exemplars from the irrelevant dimension were introduced (probe test). It is suggested that the functional effects of the basal forebrain lesion reflect impaired learning of stimulus-reward associations and behavioural rigidity. The finding, however, that there was no effect of the lesion on attentional set-shifting suggests that any loss of inhibitory control was specific to the level of stimulus-response or stimulus-reward associations, inhibitory control at the level of attentional selection remaining intact. The similarity of the effects of damage to the basal forebrain to those seen following damage to the orbitofrontal cortex and the amygdala are discussed in the context

  15. Extracellular signal-regulated kinase phosphorylation in forebrain neurones contributes to osmoregulatory mechanisms

    PubMed Central

    Dine, Julien; Ducourneau, Vincent R R; Fénelon, Valérie S; Fossat, Pascal; Amadio, Aurélie; Eder, Matthias; Israel, Jean-Marc; Oliet, Stéphane H R; Voisin, Daniel L

    2014-01-01

    Vasopressin secretion from the magnocellular neurosecretory cells (MNCs) is crucial for body fluid homeostasis. Osmotic regulation of MNC activity involves the concerted modulation of intrinsic mechanosensitive ion channels, taurine release from local astrocytes as well as excitatory inputs derived from osmosensitive forebrain regions. Extracellular signal-regulated protein kinases (ERK) are mitogen-activated protein kinases that transduce extracellular stimuli into intracellular post-translational and transcriptional responses, leading to changes in intrinsic neuronal properties and synaptic function. Here, we investigated whether ERK activation (i.e. phosphorylation) plays a role in the functioning of forebrain osmoregulatory networks. We found that within 10 min after intraperitoneal injections of hypertonic saline (3 m, 6 m) in rats, many phosphoERK-immunopositive neurones were observed in osmosensitive forebrain regions, including the MNC containing supraoptic nuclei. The intensity of ERK labelling was dose-dependent. Reciprocally, slow intragastric infusions of water that lower osmolality reduced basal ERK phosphorylation. In the supraoptic nucleus, ERK phosphorylation predominated in vasopressin neurones vs. oxytocin neurones and was absent from astrocytes. Western blot experiments confirmed that phosphoERK expression in the supraoptic nucleus was dose dependent. Intracerebroventricular administration of the ERK phosphorylation inhibitor U 0126 before a hyperosmotic challenge reduced the number of both phosphoERK-immunopositive neurones and Fos expressing neurones in osmosensitive forebrain regions. Blockade of ERK phosphorylation also reduced hypertonically induced depolarization and an increase in firing of the supraoptic MNCs recorded in vitro. It finally reduced hypertonically induced vasopressin release in the bloodstream. Altogether, these findings identify ERK phosphorylation as a new element contributing to the osmoregulatory mechanisms of

  16. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    SciTech Connect

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. )

    1990-10-12

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.

  17. Activation of Wnt/ß-catenin signaling in ESC promotes rostral forebrain differentiation in vitro.

    PubMed

    Takata, Nozomu; Sakakura, Eriko; Sasai, Yoshiki

    2016-03-01

    Wnt/ß-catenin signaling is crucial for maintenance of pluripotent state of embryonic stem cell (ESC). However, it is unclear how Wnt/ß-catenin signaling affects the differentiation ability of ESC, especially with regard to rostral forebrain cells. Here, using Rax, rostral forebrain marker, and Wnt/ß-catenin reporter lines, we report ratio of Rax(+) and Wnt responding tissue (Wnt(+)) patterns, which were affected by seeding number of ESC in three-dimensional culture system. Surprisingly, we found ß-catenin level and localization are heterogeneous in ESC colony by immunostaining and time-laps imaging of ß-catenin-mEGFP signals. Moreover, activation of Wnt signaling in ESC promoted expression level and nuclear localization of ß-catenin, and mRNA levels of Wnt antagonists, axin2 and dkk1, leading to upregulating Wnt/ß-catenin reporter in ESC state and Rax expression at differentiation culture day 7. Together, our results suggest that activation of Wnt signaling in ESC promotes the differentiation efficacy of rostral forebrain cells. Wnt-priming culture method may provide a useful tool for applications in the areas of basic science and molecular therapeutics for regenerative medicine.

  18. Spatiotemporal clustering of cell death in the avian forebrain proliferative zone.

    PubMed

    Charvet, Christine J; Striedter, Georg F

    2008-01-01

    The extent to which programmed cell death is the fate of proliferative, rather than post-mitotic, cells remains controversial, but a preponderance of evidence suggests that at least some cells within the brain's proliferative zone die during mammalian brain development. One major unresolved question is the extent to which cell death in the proliferative zone is spatiotemporally patterned. In order to answer this question we used the terminal dUTP nick end labeling (TUNEL) method to stain apoptotic cells in the forebrain of chicken embryos at relatively early stages of brain development (Hamburger-Hamilton stages 19-32). Our principal finding is that most of the TUNEL-positive cells within the brain's proliferative zone are concentrated into distinct clusters, whose location varies with developmental stage. At stage 19, many TUNEL+ cells are found within the basal synencephalon, just below where the forebrain's first neurons are located. At stages 24-26, numerous TUNEL+ cells are located within the preoptic area and along the optic stalk. After stage 26, TUNEL labeling is prominent in two telencephalic areas: the thin dorsomedial telencephalon and the thickest portions of the telencephalon's lateral walls (i.e. the dorsal ventricular ridge). Collectively, the observed pattern of TUNEL staining suggests that cell death in the proliferative zone plays a substantial role in shaping the forebrain. In addition, cell death in the proliferative zone may be related to cell cycle exit.

  19. Altered cholinergic function in the basal forebrain of girls with Rett syndrome.

    PubMed

    Wenk, G L; Hauss-Wegrzyniak, B

    1999-06-01

    Rett syndrome (RS) is a neurodevelopmental disorder that is predominant in females and is associated with cortical atrophy, stereotyped hand movements and severe mental deficiency. Previous studies have demonstrated a significant decline in number of choline acetyltransferase (ChAT)-containing neurons throughout the forebrain of RS girls. The loss of these ChAT-positive cells may be caused by a lack of nerve growth factor (NGF). In the current study, cortical levels of NGF were normal in RS girls as compared to age-and sex-matched controls. The number of neurons within the basal forebrain that express the 75 kDa (p75) low-affinity receptor for NGF was unchanged. In contrast, the number of ChAT-positive neurons was significantly decreased. The results suggest that normal amounts of NGF are available for binding to the p75 receptor and for retrograde transport to forebrain cholinergic cells, however, these neurons do not respond by producing the ChAT protein that is necessary for the production of the neurotransmitter acetylcholine.

  20. Localization and spatiotemporal expression of IDO following transient forebrain ischemia in gerbils.

    PubMed

    Taguchi, Ayako; Hara, Akira; Saito, Kuniaki; Hoshi, Masato; Niwa, Masayuki; Seishima, Mitsuru; Mori, Hideki

    2008-06-27

    Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the kynurenine pathway that converts L-tryptophan to L-kynurenine. Transient forebrain ischemia initiates a series of cellular events that lead to the delayed neuronal degeneration of several brain regions. The goal of this study was to determine the localization of IDO in gerbil brain, and analyze the spatiotemporal expression of IDO in a transient forebrain ischemic model. Expression of IDO in the normal gerbil brain was observed by using immunohistochemistry. Time-course of the expression of IDO following transient forebrain ischemic gerbils was examined by immunohistochemistry, combined with hematoxylin and eosin staining for morphological analysis, and in situ terminal dUTP-biotin nick end labeling of DNA fragments (TUNEL) method. In normal gerbils, IDO immunostaining was observed in thalamus, hypothalamus and amygdaloid nucleus. IDO expression was negative in the cingulate cortex, hippocampal CA1 region and parietal cortex. Following transient ischemia, we observed a time-dependent increase of IDO expression in CA1, cingulate cortex and hypothalamus. The peak of IDO expression in CA1 and cingulate cortex occurred at 48 h after ischemic insult and diminished by 2 weeks. TUNEL staining was observed only in the CA1 region at 72 and 96 h after transient ischemia. Thus, IDO protein is present in specific regions in gerbil brain, and dynamic changes of IDO expression was observed in some neurons following transient ischemia. PMID:18501338

  1. Forebrain neuropeptide regulation of pair association and behavior in cooperating cleaner fish.

    PubMed

    Cardoso, Sónia C; Grutter, Alexandra S; Paula, José R; André, Gonçalo I; Messias, João P; Gozdowska, Magdalena; Kulczykowska, Ewa; Soares, Marta C

    2015-06-01

    Animals establish privileged relationships with specific partners, which are treated differently from other conspecifics, and contribute to behavioral variation. However, there is limited information on the underlying physiological mechanisms involved in the establishment of these privileged ties and their relationship to individual cooperation levels. The Indo-Pacific bluestreak cleaner wrasse Labroides dimidiatus often forages in mixed-sex pairs when cleaning fish clients. Intra-couple conflicts often arise during a joint client inspection, which may alter the overall quality of cleaning service provided. Here we tested two hypotheses: a) whether intra-pair association (i.e. association index), measured with joint interspecific cleaning and intraspecific behavior, is correlated with neuroendocrine mechanisms involving forebrain neuropeptides arginine vasotocin (AVT) and isotocin (IT) and b) whether these neuropeptide level shifts relate to an individual's interspecific service quality. We found that partner support (number of cleaning interactions and tactile stimulation) received by male cleaners increased with association index. When cleaners inspected clients alone, cleaners' cheating decreased with association index for females but not males. AVT levels did not differ according to sex or association level. Forebrain IT levels increased with association index for males, whereas no relationship was found for females. Finally, cleaner cheating varied between sex and forebrain IT levels. Findings indicate that variation in pairs' relationships influences male and female cleaner fish differently and contributes to the variation of brain neuropeptide levels, which is linked to distinct cooperative outcomes. PMID:25802022

  2. Activity of basal forebrain neurons in the rat during motivated behaviors.

    PubMed

    Mink, J W; Sinnamon, H M; Adams, D B

    1983-04-01

    The activity of single neurons in the basal forebrain was recorded in the freely-moving rat with moveable fine-wire electrodes. Neural activity was observed while the water-deprived male rat was exposed to three different types of motivating stimuli that elicit locomotion in a running wheel: an estrous female rat; a drinking tube containing water; and grasping and lifting by the experimenter. The neural activity was also observed when the subject was presented with standardized sensory tests and during single pulse stimulation of other brain structures. A majority of the 76 neurons recorded in the forebrain changed their firing rate during orienting and/or locomotion in general (23 neurons) or during behavior related to only one of the specific motivational contexts: the conspecific female (4 neurons); water (7 neurons); or grasp by the experimenter (8 neurons). Whereas the neurons related to orienting and/or locomotion in general were scattered through various brain structures, those neurons related to specific motivational contexts were concentrated in specific areas: the sexually dimorphic nucleus of the medial preoptic area (conspecific female); lateral septum (water); and lateral preoptic area (water and grasp). The present results, although based on relatively few neurons, are consonant with results of research using other techniques. This indicates that analyses at the level of the single neuron promise to be useful for understanding the role of the basal forebrain in motivational systems.

  3. Genetically determined cholinergic deficiency in the forebrain of C57BL/6 mice.

    PubMed

    Bentivoglio, A R; Altavista, M C; Granata, R; Albanese, A

    1994-02-21

    This study demonstrates that a deficiency of forebrain cholinergic neurons occurs in C57BL/6 (C57) mice, a strain characterized by poor learning capabilities. The brains of 21-day-old and 18-week-old C57 and DBA/2 (DBA) mice were studied by means of acetylcholinesterase (AChE) histochemistry and of choline acetyltransferase (ChAT) immunocytochemistry. Computer-assisted image analysis was performed on sections through the medial septum, the diagonal band of Broca, the basal nucleus of Meynert and the neostriatum. As compared to the DBA strain, C57 mice had a reduced number of forebrain cholinergic neurons. This feature was present at the age of 21 days and persisted to 18 weeks. Between-strain variations in the density of neurons were more obvious in ChAT-stained material than in AChE-stained sections. These data show that C57 mice can be regarded as a genetic mutant, whose phenotype is characterized by a reduced number of forebrain cholinergic neurons and by cognitive abnormalities. C57 mice represent a valuable model for studying the influence of genetic factors on central nervous system cholinergic mechanisms and the effects of genetically determined cholinergic deficiency on behavior and learning.

  4. Forebrain neuropeptide regulation of pair association and behavior in cooperating cleaner fish.

    PubMed

    Cardoso, Sónia C; Grutter, Alexandra S; Paula, José R; André, Gonçalo I; Messias, João P; Gozdowska, Magdalena; Kulczykowska, Ewa; Soares, Marta C

    2015-06-01

    Animals establish privileged relationships with specific partners, which are treated differently from other conspecifics, and contribute to behavioral variation. However, there is limited information on the underlying physiological mechanisms involved in the establishment of these privileged ties and their relationship to individual cooperation levels. The Indo-Pacific bluestreak cleaner wrasse Labroides dimidiatus often forages in mixed-sex pairs when cleaning fish clients. Intra-couple conflicts often arise during a joint client inspection, which may alter the overall quality of cleaning service provided. Here we tested two hypotheses: a) whether intra-pair association (i.e. association index), measured with joint interspecific cleaning and intraspecific behavior, is correlated with neuroendocrine mechanisms involving forebrain neuropeptides arginine vasotocin (AVT) and isotocin (IT) and b) whether these neuropeptide level shifts relate to an individual's interspecific service quality. We found that partner support (number of cleaning interactions and tactile stimulation) received by male cleaners increased with association index. When cleaners inspected clients alone, cleaners' cheating decreased with association index for females but not males. AVT levels did not differ according to sex or association level. Forebrain IT levels increased with association index for males, whereas no relationship was found for females. Finally, cleaner cheating varied between sex and forebrain IT levels. Findings indicate that variation in pairs' relationships influences male and female cleaner fish differently and contributes to the variation of brain neuropeptide levels, which is linked to distinct cooperative outcomes.

  5. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions

    PubMed Central

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V.; Field, Bianca; Deutch, Ariel Y.

    2015-01-01

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DATIREScre mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. SIGNIFICANCE STATEMENT Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain

  6. Stepwise, non-adherent differentiation of human pluripotent stem cells to generate basal forebrain cholinergic neurons via hedgehog signaling.

    PubMed

    Crompton, Lucy A; Byrne, Meg L; Taylor, Hannah; Kerrigan, Talitha L; Bru-Mercier, Gilles; Badger, Jennifer L; Barbuti, Peter A; Jo, Jihoon; Tyler, Sue J; Allen, Shelley J; Kunath, Tilo; Cho, Kwangwook; Caldwell, Maeve A

    2013-11-01

    Basal forebrain cholinergic neurons (bfCNs) which provide innervation to the hippocampus and cortex, are required for memory and learning, and are primarily affected in Alzheimer's Disease (AD), resulting in related cognitive decline. Therefore generation of a source of bfCNs from human pluripotent stem cells (hPSCs) is crucial for in vitro disease modeling and development of novel AD therapies. In addition, for the advancement of regenerative approaches there is a requirement for an accurate developmental model to study the neurogenesis and survival of this population. Here we demonstrate the efficient production of bfCNs, using a novel embryoid body (EB) based non-adherent differentiation (NAdD) protocol. We establish a specific basal forebrain neural stem cell (NSC) phenotype via expression of the basal forebrain transcription factors NKX2.1 and LHX8, as well as the general forebrain marker FOXG1. We present evidence that this lineage is achieved via recapitulation of embryonic events, with induction of intrinsic hedgehog signaling, through the use of a 3D non-adherent differentiation system. This is the first example of hPSC-derived basal forebrain-like NSCs, which are scalable via self-renewal in prolonged culture. Furthermore upon terminal differentiation these basal forebrain-like NSCs generate high numbers of cholinergic neurons expressing the specific markers ChAT, VACht and ISL1. These hPSC-derived bfCNs possess characteristics that are crucial in a model to study AD related cholinergic neuronal loss in the basal forebrain. Examples are expression of the therapeutic target p75(NTR), the release of acetylcholine, and demonstration of a mature, and functional electrophysiological profile. In conclusion, this work provides a renewable source of human functional bfCNs applicable for studying AD specifically in the cholinergic system, and also provides a model of the key embryonic events in human bfCN development. PMID:24013066

  7. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    PubMed

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. PMID:27091299

  8. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    PubMed

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day.

  9. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation.

    PubMed

    Wallingford, J K; Deurveilher, S; Currie, R W; Fawcett, J P; Semba, K

    2014-09-26

    Chronic sleep restriction (CSR) has various negative consequences on cognitive performance and health. Using a rat model of CSR that uses alternating cycles of 3h of sleep deprivation (using slowly rotating activity wheels) and 1h of sleep opportunity continuously for 4 days ('3/1' protocol), we previously observed not only homeostatic but also allostatic (adaptive) sleep responses to CSR. In particular, non-rapid eye movement sleep (NREMS) electroencephalogram (EEG) delta power, an index of sleep intensity, increased initially and then declined gradually during CSR, with no rebound during a 2-day recovery period. To study underlying mechanisms of these allostatic responses, we examined the levels of brain-derived neurotrophic factor (BDNF), which is known to regulate NREMS EEG delta activity, during the same CSR protocol. Mature BDNF protein levels were measured in the frontal cortex and basal forebrain, two brain regions involved in sleep and EEG regulation, and the hippocampus, using Western blot analysis. Adult male Wistar rats were housed in motorized activity wheels, and underwent the 3/1 CSR protocol for 27 h, for 99 h, or for 99 h followed by 24h of recovery. Additional rats were housed in either locked wheels (locked wheel controls [LWCs]) or unlocked wheels that rats could rotate freely (wheel-running controls [WRCs]). BDNF levels did not differ between WRC and LWC groups. BDNF levels were increased, compared to the control levels, in all three brain regions after 27 h, and were increased less strongly after 99 h, of CSR. After 24h of recovery, BDNF levels were at the control levels. This time course of BDNF levels parallels the previously reported changes in NREMS delta power during the same CSR protocol. Changes in BDNF protein levels in the cortex and basal forebrain may be part of the molecular mechanisms underlying allostatic sleep responses to CSR.

  10. GABAergic and non-GABAergic thalamic, hypothalamic and basal forebrain projections to the ventral oral pontine reticular nucleus: their implication in REM sleep modulation.

    PubMed

    Rodrigo-Angulo, Margarita L; Heredero, Susana; Rodríguez-Veiga, Elisia; Reinoso-Suárez, Fernando

    2008-05-19

    The ventral part of the oral pontine reticular nucleus (vRPO) is a demonstrated site of brainstem REM-sleep generation and maintenance. The vRPO has reciprocal connections with structures that control other states of the sleep-wakefulness cycle, many situated in the basal forebrain and the diencephalon. Some of these connections utilize the inhibitory neurotransmitter GABA. The aim of the present work is to map the local origin of the basal forebrain and diencephalon projections to the vRPO whether GABAergic or non-GABAergic. A double-labelling technique combining vRPO injections of the neuronal tracer, cholera-toxin (CTB), with GAD-immunohistochemistry, was used for this purpose in adult cats. All of the numerous CTB-positive neurons in the reticular thalamic and dorsocaudal hypothalamic nuclei were double-labelled (CTB/GAD-positive) neurons. Approximately 15%, 14% and 16% of the CTB-positive neurons in the zona incerta and the dorsal and lateral hypothalamic areas are, respectively, CTB/GAD-positive neurons. However, only some double-labelled neurons were found in other hypothalamic nuclei with abundant CTB-positive neurons, such as the paraventricular nucleus, perifornical area and H1 Forel field. In addition, CTB-positive neurons were abundant in the central amygdaline nucleus, terminal stria bed nuclei, median preoptic nucleus, medial and lateral preoptic areas, dorsomedial and ventromedial hypothalamic nuclei, posterior hypothalamic area and periventricular thalamic nucleus. The GABAergic and non-GABAergic connections described here may be the morphological pillar through which these prosencephalic structures modulate, either by inhibiting or by exciting, the vRPO REM-sleep inducing neurons during the different sleep-wakefulness cycle states.

  11. Postnatal day 7 ethanol treatment causes persistent reductions in adult mouse brain volume and cortical neurons with sex specific effects on neurogenesis.

    PubMed

    Coleman, Leon G; Oguz, Ipek; Lee, Joohwi; Styner, Martin; Crews, Fulton T

    2012-09-01

    Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure (Ikonomidou et al., 2000). To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5 g/kg, s.c., 2 h apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV + IR) interneurons (18-33%) and reduced Cux1+IR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology.

  12. Effects of lithium and aripiprazole on brain stimulation reward and neuroplasticity markers in the limbic forebrain.

    PubMed

    Mavrikaki, Maria; Schintu, Nicoletta; Kastellakis, Andreas; Nomikos, George G; Svenningsson, Per; Panagis, George

    2014-04-01

    Bipolar disorder (BD) is a severe pathological condition with impaired reward-related processing. The present study was designed to assess the effects of two commonly used BD medications, the mood stabilizer lithium chloride (LiCl) and the atypical antipsychotic and antimanic agent aripiprazole, in an animal model of reward and motivation and on markers of neuroplasticity in the limbic forebrain in rats. We utilized intracranial self-simulation (ICSS) to assess the effects of acute and chronic administration of LiCl and aripiprazole on brain stimulation reward, and phosphorylation studies to determine their effects on specific cellular neuroplasticity markers, i.e., the phosphorylation of CREB and crucial phosphorylation sites on the GluA1 subunit of AMPA receptors and the NA1 and NA2B subunits of NMDA receptors, in the limbic forebrain. Chronic LiCl induced tolerance to the anhedonic effect of the drug observed after acute administration, while chronic aripiprazole induced a sustained anhedonic effect. These distinct behavioral responses might be related to differences in molecular markers of neuroplasticity. Accordingly, we demonstrated that chronic LiCl, but not aripiprazole, decreased phosphorylation of CREB at the Ser133 site and NA1 at the Ser896 site in the prefrontal cortex and GluA1 at the Ser831 site and NA2B at the Ser1303 site in the ventral striatum. The present study provides evidence for BD medication-evoked changes in reward and motivation processes and in specific markers of neuronal plasticity in the limbic forebrain, promoting the notion that these drugs may blunt dysregulated reward processes in BD by counteracting neuronal plasticity deficits.

  13. Forebrain neural patterns associated with sex differences in autonomic and cardiovascular function during baroreceptor unloading.

    PubMed

    Kimmerly, D S; Wong, S; Menon, R; Shoemaker, J K

    2007-02-01

    Generally, women demonstrate smaller autonomic and cardiovascular reactions to stress, compared with men. The mechanism of this sex-dependent difference is unknown, although reduced baroreflex sensitivity may be involved. Recently, we identified a cortical network associated with autonomic cardiovascular responses to baroreceptor unloading in men. The current investigation examined whether differences in the neural activity patterns within this network were related to sex-related physiological responses to lower body negative pressure (LBNP, 5, 15, and 35 mmHg). Forebrain activity in healthy men and women (n = 8 each) was measured using functional magnetic resonance imaging with blood oxygen level-dependent (BOLD) contrast. Stroke volume (SV), heart rate (HR), and muscle sympathetic nerve activity (MSNA) were collected on a separate day. Men had larger decreases in SV than women (P < 0.01) during 35 mmHg LBNP only. At 35 mmHg LBNP, HR increased more in males then females (9 +/- 1 beats/min vs. 4 +/- 1 beats/min, P < 0.05). Compared with women, increases in total MSNA were similar at 15 mmHg LBNP but greater during 35 mmHg LBNP in men [1,067 +/- 123 vs. 658 +/- 103 arbitrary units (au), P < 0.05]. BOLD signal changes (P < 0.005, uncorrected) were identified within discrete forebrain regions associated with these sex-specific HR and MSNA responses. Men had larger increases in BOLD signal within the right insula and dorsal anterior cingulate cortex than women. Furthermore, men demonstrated greater BOLD signal reductions in the right amygdala, left insula, ventral anterior cingulate, and ventral medial prefrontal cortex vs. women. The greater changes in forebrain activity in men vs. women may have contributed to the elevated HR and sympathetic responses observed in men during 35 mmHg LBNP. PMID:17272671

  14. Forebrain regions associated with postexercise differences in autonomic and cardiovascular function during baroreceptor unloading.

    PubMed

    Kimmerly, D S; Wong, S W; Salzer, D; Menon, R; Shoemaker, J K

    2007-07-01

    The cortical regions representing peripheral autonomic reactions in humans are poorly understood. This study examined whether changes in forebrain activity were associated with the altered physiological responses to lower body negative pressure (LBNP) following a single bout of dynamic exercise (POST-EX). We hypothesized that, compared with the nonexercised condition (NO-EX), POST-EX would elicit greater reductions in stroke volume (SV) and larger increases in heart rate (HR) and muscle sympathetic nerve activity (MSNA) during LBNP (5, 15, and 35 mmHg). Forebrain neural activity (n = 11) was measured using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. HR, SV, arterial blood pressure (ABP), and MSNA were collected separately. Compared with NO-EX, baseline ABP was reduced, whereas HR and total vascular conductance (TVC) were elevated in POST-EX (P < 0.05). In both conditions, 5 mmHg LBNP did not elicit a change (from baseline) in any physiological parameter. Compared with NO-EX, 35 mmHg LBNP-mediated decreases in SV and TVC produced greater increases in HR and MSNA during POST-EX (P < 0.05). The right posterior insula and dorsal anterior cingulate cortex demonstrated a larger decrease in BOLD at 5 mmHg LBNP but greater BOLD increase at 15 and 35 mmHg LBNP POST-EX vs. NO-EX (P < 0.005). Conversely, the thalamus and ventral medial prefrontal cortex displayed the opposite BOLD activity pattern (i.e., larger increase at 5 mmHg LBNP but greater decrease at 15 and 35 mmHg LBNP POST-EX vs. NO-EX). Our findings suggest that discrete forebrain regions may be involved with the generation of baroreflex-mediated sympathetic and cardiovascular responses elicited by moderate LBNP. PMID:17351074

  15. The cerebral metabolic effects of manipulating glutamatergic systems within the basal forebrain in conscious rats.

    PubMed

    Browne, S E; Muir, J L; Robbins, T W; Page, K J; Everitt, B J; McCulloch, J

    1998-02-01

    N-methyl-D-aspartate (NMDA) and non-NMDA receptor-mediated manipulations of the cortical cholinergic input arising from the basal forebrain differentially affect cognitive function. We used [14C]-2-deoxyglucose autoradiography in conscious rats to map the effects of excitatory amino acid agonist infusions into the nucleus basalis magnocellularis (NBM) on cerebral functional activity, as reflected by local rates of glucose utilization. Acute stimulation of NBM neurones by local infusion of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), 15 min before glucose use measurement, resulted in glucose use reductions in nine cortical regions innervated by NBM efferents including prefrontal, frontal, sensorimotor and cingulate cortices. NMDA infusions altered glucose use in two cortical areas. Both AMPA and NMDA markedly increased glucose use in the striatum and globus pallidus, with concomitant perturbations in striato-pallidal projection targets including the substantia nigra, entopeduncular nucleus, subthalamic nucleus and lateral habenular nucleus. In contrast, the GABAA agonist muscimol did not affect glucose use in the NBM or neocortical regions, but induced glucose use increases in several subcortical nuclei including the substantia nigra and entopeduncular nucleus. The delayed effects of excitotoxic lesions were assessed 3 weeks after basal forebrain infusions of AMPA, NMDA, ibotenate or quisqualate. Statistically significant glucose use changes only occurred in the hypothalamus after NMDA, and the NBM after ibotenate infusions, although reduced cortical metabolism was apparent following AMPA-induced lesions of the NBM. Results support a dissociation between the functional sequelae of NMDA and non-NMDA receptor-mediated events in the basal forebrain, and long-term compensatory functional adaptation following cortical denervation.

  16. Internal field strength measurements in chick forebrains at 50, 147, and 450 MHz.

    PubMed

    Weil, C M; Spiegel, R J; Joines, W T

    1984-01-01

    This report describes some experimental measurements of the internal field levels induced within isolated chick-forebrains irradiated at 50, 147, and 450 MHz, under essentially the same conditions as those used in the in vitro calcium-ion efflux experiments. Ratios of incident power at 50/147 MHz and 147/450 MHz that are needed to establish the same probe output are given and comparisons made with values predicted by different spherical models. Data predicted by the layered-sphere model were found to be in close agreement with measured values for the 50/147-MHz ratio. Agreement for the 147/450-MHz ratio was poorer.

  17. Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain.

    PubMed

    Kesby, James P; Cui, Xiaoying; Ko, Pauline; McGrath, John J; Burne, Thomas H J; Eyles, Darryl W

    2009-09-18

    There is growing evidence that low vitamin D impacts adversely on brain development. The current study investigated the impact of developmental vitamin D (DVD) deficiency on dopamine and serotonin metabolism in the neonatal rat brain. DVD-deficiency resulted in an altered dopaminergic metabolic profile in the forebrain, with a decrease in the conversion of dihydroxyphenylacetic acid (DOPAC) to homovanillic acid (HVA). Correspondingly, expression of the enzyme required for this conversion, catechol-O-methyl transferase (COMT), was decreased. These results suggest that DVD-deficiency influences dopamine turnover during development. PMID:19500655

  18. LRP2 is an auxiliary SHH receptor required to condition the forebrain ventral midline for inductive signals.

    PubMed

    Christ, Annabel; Christa, Anna; Kur, Esther; Lioubinski, Oleg; Bachmann, Sebastian; Willnow, Thomas E; Hammes, Annette

    2012-02-14

    Sonic hedgehog (SHH) is a regulator of forebrain development that acts through its receptor, patched 1. However, little is known about cellular mechanisms at neurulation, whereby SHH from the prechordal plate governs specification of the rostral diencephalon ventral midline (RDVM), a major forebrain organizer. We identified LRP2, a member of the LDL receptor gene family, as a component of the SHH signaling machinery in the RDVM. LRP2 acts as an apical SHH-binding protein that sequesters SHH in its target field and controls internalization and cellular trafficking of SHH/patched 1 complexes. Lack of LRP2 in mice and in cephalic explants results in failure to respond to SHH, despite functional expression of patched 1 and smoothened, whereas overexpression of LRP2 variants in cells increases SHH signaling capacity. Our data identify a critical role for LRP2 in SHH signaling and reveal the molecular mechanism underlying forebrain anomalies in mice and patients with Lrp2 defects.

  19. Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization.

    PubMed

    Bernstein, Hans-Gert; Bannier, Jana; Meyer-Lotz, Gabriela; Steiner, Johann; Keilhoff, Gerburg; Dobrowolny, Henrik; Walter, Martin; Bogerts, Bernhard

    2014-11-01

    Glutamine synthetase catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a pivotal role in glutamate and glutamine homoeostasis. Despite a plethora of studies on this enzyme, knowledge about the regional and cellular distribution of this enzyme in human brain is still fragmentary. Therefore, we mapped fourteen post-mortem brains of psychically healthy individuals for the distribution of the glutamine synthetase immunoreactive protein. It was found that glutamine synthetase immunoreactivity is expressed in multiple gray and white matter astrocytes, but also in oligodendrocytes, ependymal cells and certain neurons. Since a possible extra-astrocytic expression of glutamine synthetase is highly controversial, we paid special attention to its appearance in oligodendrocytes and neurons. By double immunolabeling of mouse brain slices and cultured mouse brain cells for glutamine synthetase and cell-type-specific markers we provide evidence that besides astrocytes subpopulations of oligodendrocytes, microglial cells and neurons express glutamine synthetase. Moreover, we show that glutamine synthetase-immunopositive neurons are not randomly distributed throughout human and mouse brain, but represent a subpopulation of nitrergic (i.e. neuronal nitric oxide synthase expressing) neurons. Possible functional implications of an extra-astrocytic localization of glutamine synthetase are discussed.

  20. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain

    PubMed Central

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-01

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development. PMID:26786896

  1. Long-term in vivo single-cell tracking reveals the switch of migration patterns in adult-born juxtaglomerular cells of the mouse olfactory bulb.

    PubMed

    Liang, Yajie; Li, Kaizhen; Riecken, Kristoffer; Maslyukov, Anatoliy; Gomez-Nicola, Diego; Kovalchuk, Yury; Fehse, Boris; Garaschuk, Olga

    2016-07-01

    The behavior of adult-born cells can be easily monitored in cell culture or in lower model organisms, but longitudinal observation of individual mammalian adult-born cells in their native microenvironment still proves to be a challenge. Here we have established an approach named optical cell positioning system for long-term in vivo single-cell tracking, which integrates red-green-blue cell labeling with repeated angiography. By combining this approach with in vivo two-photon imaging technique, we characterized the in vivo migration patterns of adult-born neurons in the olfactory bulb. In contrast to the traditional view of mere radial migration of adult-born cells within the bulb, we found that juxtaglomerular cells switch from radial migration to long distance lateral migration upon arrival in their destination layer. This unique long-distance lateral migration has characteristic temporal (stop-and-go) and spatial (migratory, unidirectional or multidirectional) patterns, with a clear cell age-dependent decrease in the migration speed. The active migration of adult-born cells coincides with the time period of initial fate determination and is likely to impact on the integration sites of adult-born cells, their odor responsiveness, as well as their survival rate.

  2. Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice.

    PubMed

    Ash, Jessica A; Velazquez, Ramon; Kelley, Christy M; Powers, Brian E; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J

    2014-10-01

    Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimer's disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) improves spatial mapping and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1g/kg choline chloride) or choline supplemented (5.0g/kg choline chloride) diet. Between 13 and 17months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial mapping followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing support for a functional relationship between these behavioral and morphometric effects of MCS for trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large.

  3. Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice.

    PubMed

    Ash, Jessica A; Velazquez, Ramon; Kelley, Christy M; Powers, Brian E; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J

    2014-10-01

    Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimer's disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) improves spatial mapping and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1g/kg choline chloride) or choline supplemented (5.0g/kg choline chloride) diet. Between 13 and 17months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial mapping followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing support for a functional relationship between these behavioral and morphometric effects of MCS for trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large. PMID:24932939

  4. Amyloid beta-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain.

    PubMed Central

    Pedersen, W A; Kloczewiak, M A; Blusztajn, J K

    1996-01-01

    The characteristic features of a brain with Alzheimer disease (AD) include the presence of neuritic plaques composed of amyloid beta-protein (Abeta) and reductions in the levels of cholinergic markers. Neurotoxic responses to Abeta have been reported in vivo and in vitro, suggesting that the cholinergic deficit in AD brain may be secondary to the degeneration of cholinergic neurons caused by Abeta. However, it remains to be determined if Abeta contributes to the cholinergic deficit in AD brain by nontoxic effects. We examined the effects of synthetic Abeta peptides on the cholinergic properties of a mouse cell line, SN56, derived from basal forebrain cholinergic neurons. Abeta 1-42 and Abeta 1-28 reduced the acetylcholine (AcCho) content of the cells in a concentration-dependent fashion, whereas Abeta 1-16 was inactive. Maximal reductions of 43% and 33% were observed after a 48-h treatment with 100 nM of Abeta 1-42 and 50 pM of Abeta 1-28, respectively. Neither Abeta 1-28 nor Abeta 1-42 at a concentration of 100 nM and a treatment period of 2 weeks was toxic to the cells. Treatment of the cells with Abeta 25-28 (48 h; 100 nM) significantly decreased AcCho levels, suggesting that the sequence GSNK (aa 25-28) is responsible for the AcCho-reducing effect of Abeta. The reductions in AcCho levels caused by Abeta 1-42 and Abeta 1-28 were accompanied by proportional decreases in choline acetyltransferase activity. In contrast, acetylcholinesterase activity was unaltered, indicating that Abeta specifically reduces the synthesis of AcCho in SN56 cells. The reductions in AcCho content caused by Abeta 1-42 could be prevented by a cotreatment with all-trans-retinoic acid (10 nM), a compound previously shown to increase choline acetyltransferase mRNA expression in SN56 cells. These results demonstrate a nontoxic, suppressive effect of Abeta on AcCho synthesis, an action that may contribute to the cholinergic deficit in AD brain. Images Fig. 3 Fig. 4 PMID:8755604

  5. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats

    PubMed Central

    Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-01-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning. PMID:27051340

  6. Beta-catenin-mediated cell-adhesion is vital for embryonic forebrain development.

    PubMed

    Junghans, Dirk; Hack, Iris; Frotscher, Michael; Taylor, Verdon; Kemler, Rolf

    2005-06-01

    Forming a complex structure such as the mammalian brain requires a complex interplay between cells and different signalling cascades during embryonic development. beta-catenin plays pivotal roles in these processes by mediating cadherin-based cell adhesion and Wnt signalling. We show for the first time that beta-catenin functions predominantly as a mediator of cell adhesion during early development of the mammalian telencephalon. Immunohistochemical analysis demonstrates that beta-catenin is localized, together with N-cadherin, to adhesion junctions at the apical lining of the neuroepithelium. The ablation of beta-catenin specifically from the forebrain leads to a disruption of apical adherens junctions and a breakdown of neuroepithelial structures. We show that beta-catenin-deficient neuroepithelial cells delaminate and undergo apoptosis. Newborn beta-catenin mutants lack the entire forebrain and anterior facial structures. Our data also indicate a lack of TCF/LEF-beta-catenin-dependent transcriptional activity in the telencephalon of Wnt reporter embryos. Together with the absence of nuclear beta-catenin, this finding suggests that canonical Wnt signalling is not active during early telencephalic development. In summary, we demonstrate that beta-catenin mediates cell-cell adhesion in the early telencephalon and is vital for maintaining the structural integrity of the neuroepithelium.

  7. Forebrain glutamatergic neurons mediate leptin action on depression-like behaviors and synaptic depression.

    PubMed

    Guo, Ming; Lu, Yuan; Garza, Jacob C; Li, Yuqing; Chua, Streamson C; Zhang, Wei; Lu, Bai; Lu, Xin-Yun

    2012-01-01

    The glutamatergic system has been implicated in the pathophysiology of depression and the mechanism of action of antidepressants. Leptin, an adipocyte-derived hormone, has antidepressant-like properties. However, the functional role of leptin receptor (Lepr) signaling in glutamatergic neurons remains to be elucidated. In this study, we generated conditional knockout mice in which the long form of Lepr was ablated selectively in glutamatergic neurons located in the forebrain structures, including the hippocampus and prefrontal cortex (Lepr cKO). Lepr cKO mice exhibit normal growth and body weight. Behavioral characterization of Lepr cKO mice reveals depression-like behavioral deficits, including anhedonia, behavioral despair, enhanced learned helplessness and social withdrawal, with no evident signs of anxiety. In addition, loss of Lepr in forebrain glutamatergic neurons facilitates NMDA-induced hippocampal long-term synaptic depression (LTD), whereas conventional LTD or long-term potentiation (LTP) was not affected. The facilitated LTD induction requires activation of the GluN2B subunit as it was completely blocked by a selective GluN2B antagonist. Moreover, Lepr cKO mice are highly sensitive to the antidepressant-like behavioral effects of the GluN2B antagonist but resistant to leptin. These results support important roles for Lepr signaling in glutamatergic neurons in regulating depression-related behaviors and modulating excitatory synaptic strength, suggesting a possible association between synaptic depression and behavioral manifestations of depression.

  8. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats.

    PubMed

    Dejanovic, Bratislav; Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-03-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning. PMID:27051340

  9. The Impact of Hippocampal Lesions on Trace Eyeblink Conditioning and Forebrain-Cerebellar Interactions

    PubMed Central

    Weiss, Craig; Disterhoft, John F.

    2015-01-01

    Twenty-five years ago Behavioral Neuroscience published a pivotal paper by Moyer, Deyo and Disterhoft (1990) that described the impaired acquisi