Science.gov

Sample records for adult mouse spermatogonial

  1. Id4 Marks Spermatogonial Stem Cells in the Mouse Testis

    PubMed Central

    Sun, Feng; Xu, Qing; Zhao, Danfeng; Degui Chen, Charlie

    2015-01-01

    Mammalian spermatogenesis is a classic adult stems cell–dependent process, supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs). However, the identification of SSCs and elucidation of their behaviors in undisturbed testis has long been a big challenge. Here, we generated a knock-in mouse model, Id4-2A-CreERT2-2A-tdTomato, which allowed us to mark Id4-expressing (Id4+) cells at different time points in situ and track their behaviors across distinct developmental stages during steady-state and regenerating spermatogenesis. We found that Id4+ cells continue to produce spermatogonia, spermatocytes and sperm in mouse testis, showing they are capable of self-renewal and have differentiation potential. Consistent with these findings, ablation of Id4+ cells in mice results in a loss of spermatogenesis. Furthermore, developmental fate mapping reveals that Id4+ SSCs originate from neonate Id4+ gonocytes. Therefore, our results indicate that Id4 marks spermatogonial stem cells in the mouse testis. PMID:26621350

  2. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal

    PubMed Central

    Oatley, Jon M.; Oatley, Melissa J.; Avarbock, Mary R.; Tobias, John W.; Brinster, Ralph L.

    2009-01-01

    Summary Self-renewal and differentiation of spermatogonial stem cells (SSCs) provide the foundation for testis homeostasis, yet mechanisms that control their functions in mammals are poorly defined. We used microarray transcript profiling to identify specific genes whose expressions are augmented in the SSC-enriched Thy1+ germ cell fraction of mouse pup testes. Comparisons of gene expression in the Thy1+ germ cell fraction with the Thy1-depleted testis cell population identified 202 genes that are expressed 10-fold or higher in Thy1+ cells. This database provided a mining tool to investigate specific characteristics of SSCs and identify novel mechanisms that potentially influence their functions. These analyses revealed that colony stimulating factor 1 receptor (Csf1r) gene expression is enriched in Thy1+ germ cells. Addition of recombinant colony stimulating factor 1 (Csf1), the specific ligand for Csf1r, to culture media significantly enhanced the self-renewal of SSCs in heterogeneous Thy1+ spermatogonial cultures over a 63-day period without affecting total germ cell expansion. In vivo, expression of Csf1 in both pre-pubertal and adult testes was localized to clusters of Leydig cells and select peritubular myoid cells. Collectively, these results identify Csf1 as an extrinsic stimulator of SSC self-renewal and implicate Leydig and myoid cells as contributors of the testicular stem cell niche in mammals. PMID:19270176

  3. Macrophages Contribute to the Spermatogonial Niche in the Adult Testis

    PubMed Central

    DeFalco, Tony; Potter, Sarah J.; Williams, Alyna V.; Waller, Brittain; Kan, Matthew J.; Capel, Blanche

    2015-01-01

    Summary The testis produces sperm throughout the male reproductive lifespan by balancing self-renewal and differentiation of spermatogonial stem cells (SSCs). Part of the SSC niche is thought to lie outside the seminiferous tubules of the testis; however, specific interstitial components of the niche that regulate spermatogonial divisions and differentiation remain undefined. We identified distinct populations of testicular macrophages, one of which lies on the surface of seminiferous tubules in close apposition to areas of tubules enriched for undifferentiated spermatogonia. These macrophages express spermatogonial proliferation- and differentiation-inducing factors, such as colony stimulating factor 1 (CSF1) and enzymes involved in retinoic acid (RA) biosynthesis. We show that transient depletion of macrophages leads to a disruption in spermatogonial differentiation. These findings reveal an unexpected role for macrophages in the spermatogonial niche in the testis, and raise the possibility that macrophages play previously unappreciated roles in stem/progenitor cell regulation in other tissues. PMID:26257171

  4. TAF4b is required for mouse spermatogonial stem cell development

    PubMed Central

    Lovasco, Lindsay A.; Gustafson, Eric A.; Seymour, Kimberly A.; de Rooij, Dirk G.; Freiman, Richard N.

    2014-01-01

    Long-term mammalian spermatogenesis requires proper development of spermatogonial stem cells (SSCs) that replenish the testis with germ cell progenitors during adult life. TAF4b is a gonadal-enriched component of the general transcription factor complex, TFIID, which is required for the maintenance of spermatogenesis in the mouse. Successful germ cell transplantation assays into adult TAF4b-deficient host testes suggested that TAF4b performs an essential germ cell autonomous function in SSC establishment and/or maintenance. To elucidate the SSC function of TAF4b, we characterized the initial gonocyte pool and rounds of spermatogenic differentiation in the context of the Taf4b-deficient mouse testis. Here we demonstrate a significant reduction in the late embryonic gonocyte pool and a deficient expansion of this pool soon after birth. Resulting from this reduction of germ cell progenitors is a developmental delay in meiosis initiation, as compared to age-matched controls. While GFRα1+ spermatogonia are appropriately present as Asingle and Apaired in wild type testes, TAF4b-deficient testes display an increased proportion of long and clustered chains of GFRα1+ cells. In the absence of TAF4b, seminiferous tubules in the adult testis either lack germ cells altogether or are found to have missing generations of spermatogenic progenitor cells. Together these data indicate that TAF4b-deficient spermatogenic progenitor cells display a tendency for differentiation at the expense of self-renewal and a renewing pool of SSCs fail to establish during the critical window of SSC development. PMID:25727968

  5. Petasites japonicus Stimulates the Proliferation of Mouse Spermatogonial Stem Cells.

    PubMed

    Kang, Hye-Ryun; Lee, Yong-An; Kim, Yong-Hee; Lee, Dong Gu; Kim, Bang-Jin; Kim, Ki-Jung; Kim, Byung-Gak; Oh, Myeong-Geun; Han, Chan Kyu; Lee, Sanghyun; Ryu, Buom-Yong

    2015-01-01

    Oriental natural plants have been used as medical herbs for the treatment of various diseases for over 2,000 years. In this study, we evaluated the effect of several natural plants on the preservation of male fertility by assessing the ability of plant extracts to stimulate spermatogonial stem cell (SSC) proliferation by using a serum-free culture method. In vitro assays showed that Petasites japonicus extracts, especially the butanol fraction, have a significant effect on germ cells proliferation including SSCs. The activity of SSCs cultured in the presence of the Petasites japonicus butanol fraction was confirmed by normal colony formation and spermatogenesis following germ cell transplantation of the treated SSCs. Our findings could lead to the discovery of novel factors that activate SSCs and could be useful for the development of technologies for the prevention of male infertility. PMID:26207817

  6. Nonrandom Germline Transmission of Mouse Spermatogonial Stem Cells.

    PubMed

    Kanatsu-Shinohara, Mito; Naoki, Honda; Shinohara, Takashi

    2016-08-01

    Genes are thought to be transmitted to offspring by random fertilization of a small number of oocytes with numerous spermatozoa. Here we analyzed the dynamics of male germline transmission by genetic marking and transplantation of spermatogonial stem cells (SSCs). We found that offspring deriving from a small number of specific SSCs appear within a limited time. Interestingly, the same SSC clones reappear later with an average functional lifespan of ∼124.4 days. Cyclic offspring production from SSCs was not caused by changes in SSC self-renewal activity because lineage-tracing analyses suggested that all SSCs actively proliferated. Selection appears to occur during the differentiating spermatogonia stage, when extensive apoptosis was observed. The pattern of germline transmission could be predicted using a mathematical model in which SSCs repeat cycles of transient spermatogenic burst and refractory periods. Thus, spermatogenesis is a regulated process whereby specific SSC clones are repeatedly recruited for fertilization with long-term cycles. PMID:27505415

  7. Petasites japonicus Stimulates the Proliferation of Mouse Spermatogonial Stem Cells

    PubMed Central

    Kim, Yong-Hee; Lee, Dong Gu; Kim, Bang-Jin; Kim, Ki-Jung; Kim, Byung-Gak; Oh, Myeong-Geun; Han, Chan Kyu; Lee, Sanghyun; Ryu, Buom-Yong

    2015-01-01

    Oriental natural plants have been used as medical herbs for the treatment of various diseases for over 2,000 years. In this study, we evaluated the effect of several natural plants on the preservation of male fertility by assessing the ability of plant extracts to stimulate spermatogonial stem cell (SSC) proliferation by using a serum-free culture method. In vitro assays showed that Petasites japonicus extracts, especially the butanol fraction, have a significant effect on germ cells proliferation including SSCs. The activity of SSCs cultured in the presence of the Petasites japonicus butanol fraction was confirmed by normal colony formation and spermatogenesis following germ cell transplantation of the treated SSCs. Our findings could lead to the discovery of novel factors that activate SSCs and could be useful for the development of technologies for the prevention of male infertility. PMID:26207817

  8. Benzo(a)pyrene Is Mutagenic in Mouse Spermatogonial Stem Cells and Dividing Spermatogonia.

    PubMed

    O'Brien, Jason M; Beal, Marc A; Yauk, Carole L; Marchetti, Francesco

    2016-08-01

    Although many environmental agents are established male germ cell mutagens, few are known to induce mutations in spermatogonial stem cells. Stem cell mutations are of great concern because they result in a permanent increase in the number of mutations carried in sperm. We investigated mutation induction during mouse spermatogenesis following exposure to benzo(a)pyrene (BaP). MutaMouse males were given 0, 12.5, 25, 50, or 100 mg/kg bw/day BaP for 28 days by oral gavage. Germ cells were collected from the cauda epididymis and seminiferous tubules 3 days after exposure and from cauda epididymis 42 and 70 days after exposure. This design enabled targeted investigation of effects on post-spermatogonia, dividing spermatogonia, and spermatogonial stem cells, respectively. BaP increased lacZ mutant frequency (MF) in cauda sperm after exposure of dividing spermatogonia (4.2-fold at highest dose, P < .01) and spermatogonial stem cells (2.1-fold at highest dose, P < .01). No significant increases in MF were detected in cauda sperm or seminiferous tubule cells collected 3 days post-exposure. Dose-response modelling suggested that the mutational response in male germ cells to BaP is sub-linear at low doses. Our results demonstrate that oral exposure to BaP causes spermatogonial stem cell mutations, that different phases of spermatogenesis exhibit varying sensitivities to BaP, with dividing spermatogonia representing a window of peak sensitivity, and that sampling spermatogenic cells from the seminiferous tubules at earlier time-points may underestimate germ cell mutagenicity. This information is critical to optimize the use of the international test guideline for transgenic rodent mutation assays for detecting germ cell mutagens. PMID:27208087

  9. Benzo(a)pyrene Is Mutagenic in Mouse Spermatogonial Stem Cells and Dividing Spermatogonia

    PubMed Central

    O’Brien, Jason M.; Beal, Marc A.; Yauk, Carole L.; Marchetti, Francesco

    2016-01-01

    Although many environmental agents are established male germ cell mutagens, few are known to induce mutations in spermatogonial stem cells. Stem cell mutations are of great concern because they result in a permanent increase in the number of mutations carried in sperm. We investigated mutation induction during mouse spermatogenesis following exposure to benzo(a)pyrene (BaP). MutaMouse males were given 0, 12.5, 25, 50, or 100 mg/kg bw/day BaP for 28 days by oral gavage. Germ cells were collected from the cauda epididymis and seminiferous tubules 3 days after exposure and from cauda epididymis 42 and 70 days after exposure. This design enabled targeted investigation of effects on post-spermatogonia, dividing spermatogonia, and spermatogonial stem cells, respectively. BaP increased lacZ mutant frequency (MF) in cauda sperm after exposure of dividing spermatogonia (4.2-fold at highest dose, P < .01) and spermatogonial stem cells (2.1-fold at highest dose, P < .01). No significant increases in MF were detected in cauda sperm or seminiferous tubule cells collected 3 days post-exposure. Dose-response modelling suggested that the mutational response in male germ cells to BaP is sub-linear at low doses. Our results demonstrate that oral exposure to BaP causes spermatogonial stem cell mutations, that different phases of spermatogenesis exhibit varying sensitivities to BaP, with dividing spermatogonia representing a window of peak sensitivity, and that sampling spermatogenic cells from the seminiferous tubules at earlier time-points may underestimate germ cell mutagenicity. This information is critical to optimize the use of the international test guideline for transgenic rodent mutation assays for detecting germ cell mutagens. PMID:27208087

  10. In vitro toxicity assay of cisplatin on mouse acute lymphoblastic leukaemia and spermatogonial stem cells.

    PubMed

    Shabani, R; Ashtari, K; Behnam, B; Izadyar, F; Asgari, H; Asghari Jafarabadi, M; Ashjari, M; Asadi, E; Koruji, M

    2016-06-01

    Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 μg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 μg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 μg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture. PMID:26428408

  11. RBE and genetic susceptibility of mouse and rat spermatogonial stem cells to protons, heavy charged particles and 1.5 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Vaglenov, A.; Fedorenko, B.; Kaltenboeck, B.

    The main purpose of the present study is to provide data on RBE and genetic susceptibility in the mouse and the rat when exposed to protons, HZE particles and neutrons. Genetic damage from exposure to 50 MeV and 9 GeV protons, 4 GeV/nucleon helium ions, 4 GeV/nucleon carbon ions and 1.5 MeV neutrons was studied in adult (CBA × C57Bl/6J) F1 mice. Damage from 9 GeV protons and 4 GeV helium ions was studied in adult Wistar rats. The incidence of reciprocal translocations (RT) induced in the spermatogonial stem cells of each species was recorded. RBE values were derived by comparing linear regression coefficients from dose-responses within the same dose-range for each of the radiation types tested and 60Co γ-rays or by means of a direct nonparametric method. RT yields measured after mouse and rat spermatogonial irradiation with protons, heavy charged particles and neutrons fit the linear model of the dose-response relationship. Relative to 60Co γ-rays, RBE values are as follows for mouse spermatogonia: 0.9 for 50 MeV protons; 1.3 for 9 GeV protons; 0.7 for 4 GeV helium ions; and 1.3 for 4 GeV carbon ions. For rat spermatogonia, values were: 1.7 for 9 GeV protons and 1.3 for helium ions. Compared to mice irradiated using the same experimental design, rats were more susceptible to high-LET radiations, with susceptibility assessed by genetic damage to their spermatogonial stem cells. The RBE of 1.5 MeV neutron is about 6.6.

  12. Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases

    PubMed Central

    Fanslow, Danielle A.; Wirt, Stacey E.; Barker, Jenny C.; Connelly, Jon P.; Porteus, Matthew H.; Dann, Christina Tenenhaus

    2014-01-01

    Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse “GS” (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro. PMID:25409432

  13. Establishment of a proteome profile and identification of molecular markers for mouse spermatogonial stem cells

    PubMed Central

    Zhou, Quan; Guo, Yueshuai; Zheng, Bo; Shao, Binbin; Jiang, Min; Wang, Gaigai; Zhou, Tao; Wang, Lei; Zhou, Zuomin; Guo, Xuejiang; Huang, Xiaoyan

    2015-01-01

    Spermatogonial stem cells (SSCs) are undifferentiated cells that are required to maintain spermatogenesis throughout the reproductive life of mammals. Although SSC transplantation and culture provide a powerful tool to identify the mechanisms regulating SSC function, the precise signalling mechanisms governing SSC self-renewal and specific surface markers for purifying SSCs remain to be clearly determined. In the present study, we established a steady SSC culture according to the method described by Shinohara's lab. Fertile progeny was produced after transplantation of cultured SSCs into infertile mouse testis, and the red fluorescence exhibited by the culture cell membranes was stably and continuously transmitted to the offspring. Next, via advanced mass spectrometry and an optimized proteomics platform, we constructed the proteome profile, with 682 proteins expressed in SSCs. Furthermore bioinformatics analysis showed that the list contained several known molecules that are regulated in SSCs. Several nucleoproteins and membrane proteins were chosen for further exploration using immunofluorescence and RT-PCR. The results showed that SALL1, EZH2, and RCOR2 are possibly involved in the self-renewal mechanism of SSCs. Furthermore, the results of tissue-specific expression analysis showed that Gpat2 and Pld6 were uniquely and highly expressed in mouse testes and cultured SSCs. The cellular localization of PLD6 was further explored and the results showed it was primarily expressed in the spermatogonial membrane of mouse testes and cultured SSCs. The proteins identified in this study form the basis for further exploring the molecular mechanism of self-renewal in SSCs and for identifying specific surface markers of SSCs. PMID:25352495

  14. Effects of GDNF and LIF on mouse spermatogonial stem cells proliferation in vitro.

    PubMed

    Wang, Peng; Suo, Li-Juan; Wang, Yan-Feng; Shang, Hua; Li, Guang-Xuan; Hu, Jian-Hong; Li, Qing-Wang

    2014-03-01

    Spermatogonial stem cells (SSCs) are the only type of cells that transmit genes to the subsequent generations. The proliferation, cultivation and identification of SSCs in vitro are critical to understanding of male infertility, genetic resources and conservation of endangered species. To investigate the effects of glial cell-derived neurotrophic factor (GDNF) and leukemia inhibitory factor (LIF) on the proliferation of mouse SSCs in vitro, supplement of GDNF and/or LIF were designed to culture SSCs. The testes of 6-8 d mouse were harvested and digested by two-step enzyme digestion method. The SSCs and Sertoli cells were separated by differential plating. Then the SSCs were identified by alkaline phosphatase staining, RT-PCR and indirect immunofluorescence cell analysis. The cellular proliferation capacity was measured by methyl thiazolyl tetrazolium assay. The results showed that addition of 20 and 40 ng/ml of GDNF could strongly promote growth of mouse SSCs (p < 0.05). There was no significant difference between LIF treatment groups and the control group in promoting proliferation of the mouse SSCs (p > 0.05). However, the combination of 20 ng/ml GDNF and 1,000 U/ml LIF could significantly enhance the invitro proliferation of mouse SSCs (p < 0.05), and the OD490 value was 0.696 at day 5 of culture when the density of SSCs was 5-10 × 10(4) cells/ml. PMID:23896701

  15. DMRT1 Is Required for Mouse Spermatogonial Stem Cell Maintenance and Replenishment.

    PubMed

    Zhang, Teng; Oatley, Jon; Bardwell, Vivian J; Zarkower, David

    2016-09-01

    Male mammals produce sperm for most of postnatal life and therefore require a robust germ line stem cell system, with precise balance between self-renewal and differentiation. Prior work established doublesex- and mab-3-related transcription factor 1 (Dmrt1) as a conserved transcriptional regulator of male sexual differentiation. Here we investigate the role of Dmrt1 in mouse spermatogonial stem cell (SSC) homeostasis. We find that Dmrt1 maintains SSCs during steady state spermatogenesis, where it regulates expression of Plzf, another transcription factor required for SSC maintenance. We also find that Dmrt1 is required for recovery of spermatogenesis after germ cell depletion. Committed progenitor cells expressing Ngn3 normally do not contribute to SSCs marked by the Id4-Gfp transgene, but do so when spermatogonia are chemically depleted using busulfan. Removal of Dmrt1 from Ngn3-positive germ cells blocks the replenishment of Id4-GFP-positive SSCs and recovery of spermatogenesis after busulfan treatment. Our data therefore reveal that Dmrt1 supports SSC maintenance in two ways: allowing SSCs to remain in the stem cell pool under normal conditions; and enabling progenitor cells to help restore the stem cell pool after germ cell depletion. PMID:27583450

  16. Differential gene expression in mouse spermatogonial stem cells and embryonic stem cells

    PubMed Central

    Bai, Yinshan; Feng, Meiying; Liu, Shanshan; Wei, Hengxi; Li, Li; Zhang, Xianwei; Shen, Chao; Zhang, Shouquan; Ma, Ningfang

    2016-01-01

    Mouse spermatogonial stem cells (mSSCs) may be reprogrammed to become pluripotent stem cells under in vitro culture conditions, due to epigenetic modifications, which are closely associated with the expression of transcription factors and epigenetic factors. Thus, this study was conducted to compare the gene expression of transcription factors and epigenetic factors in mSSCs and mouse embryonic stem cells (mESCs). Firstly, the freshly isolated mSSCs [mSSCs (f)] were enriched by magnetic-activated cell sorting with Thy1.2 (CD90.2) microbeads, and the typical morphological characteristics were maintained under in vitro culture conditions for over 5 months to form long-term propagated mSSCs [mSSCs (l)]. These mSSCs (l) expressed pluripotency-associated genes and were induced to differentiate into sperm. Our findings indicated that the mSSCs (l) expressed high levels of the transcription factors, Lin28 and Prmt5, and the epigenetic factors, Tet3, Parp1, Max, Tert and Trf1, in comparison with the mESCs, with the levels of Prmt5, Tet3, Parp1 and Tert significantly higher than those in the mESCs. There was no significant difference in Kdm2b expression between mSSCs (l) and mESCs. Furthermore, the gene expression of N-Myc, Dppa2, Tbx3, Nr5a2, Prmt5, Tet3, Parp1, Max, Tert and Trf1 in the mSSCs (l) was markedly higher in comparison to that in the mSSCs (f). Collectively, our results suggest that the mSSCs and the mESCs displayed differential gene expression profiles, and the mSSCs possessed the potential to acquire pluripotency based on the high expression of transcription factors and epigenetic factors. These data may provide novel insights into the reprogramming mechanism of mSSCs. PMID:27353491

  17. Mechanism of Wnt signaling induced down regulation of mrhl long non-coding RNA in mouse spermatogonial cells

    PubMed Central

    Akhade, Vijay Suresh; Dighe, Shrinivas Nivrutti; Kataruka, Shubhangini; Rao, Manchanahalli R. Satyanarayana

    2016-01-01

    Long non coding RNAs (lncRNAs) have emerged as important regulators of various biological processes. LncRNAs also behave as response elements or targets of signaling pathway(s) mediating cellular function. Wnt signaling is important in regulating mammalian spermatogenesis. Mrhl RNA negatively regulates canonical Wnt pathway and gets down regulated upon Wnt signaling activation in mouse spermatogonial cells. Also, mrhl RNA regulates expression of genes pertaining to Wnt pathway and spermatogenesis by binding to chromatin. In the present study, we delineate the detailed molecular mechanism of Wnt signaling induced mrhl RNA down regulation in mouse spermatogonial cells. Mrhl RNA has an independent transcription unit and our various experiments like Chromatin Immunoprecipitation (in cell line as well as mouse testis) and shRNA mediated down regulation convincingly show that β-catenin and TCF4, which are the key effector proteins of the Wnt signaling pathway are required for down regulation of mrhl RNA. We have identified Ctbp1 as the co-repressor and its occupancy on mrhl RNA promoter depends on both β-catenin and TCF4. Upon Wnt signaling activation, Ctbp1 mediated histone repression marks increase at the mrhl RNA promoter. We also demonstrate that Wnt signaling induced mrhl RNA down regulation results in an up regulation of various meiotic differentiation marker genes. PMID:26446991

  18. Mechanism of Wnt signaling induced down regulation of mrhl long non-coding RNA in mouse spermatogonial cells.

    PubMed

    Akhade, Vijay Suresh; Dighe, Shrinivas Nivrutti; Kataruka, Shubhangini; Rao, Manchanahalli R Satyanarayana

    2016-01-01

    Long non coding RNAs (lncRNAs) have emerged as important regulators of various biological processes. LncRNAs also behave as response elements or targets of signaling pathway(s) mediating cellular function. Wnt signaling is important in regulating mammalian spermatogenesis. Mrhl RNA negatively regulates canonical Wnt pathway and gets down regulated upon Wnt signaling activation in mouse spermatogonial cells. Also, mrhl RNA regulates expression of genes pertaining to Wnt pathway and spermatogenesis by binding to chromatin. In the present study, we delineate the detailed molecular mechanism of Wnt signaling induced mrhl RNA down regulation in mouse spermatogonial cells. Mrhl RNA has an independent transcription unit and our various experiments like Chromatin Immunoprecipitation (in cell line as well as mouse testis) and shRNA mediated down regulation convincingly show that β-catenin and TCF4, which are the key effector proteins of the Wnt signaling pathway are required for down regulation of mrhl RNA. We have identified Ctbp1 as the co-repressor and its occupancy on mrhl RNA promoter depends on both β-catenin and TCF4. Upon Wnt signaling activation, Ctbp1 mediated histone repression marks increase at the mrhl RNA promoter. We also demonstrate that Wnt signaling induced mrhl RNA down regulation results in an up regulation of various meiotic differentiation marker genes. PMID:26446991

  19. Differential gene expression in mouse spermatogonial stem cells and embryonic stem cells.

    PubMed

    Bai, Yinshan; Feng, Meiying; Liu, Shanshan; Wei, Hengxi; Li, Li; Zhang, Xianwei; Shen, Chao; Zhang, Shouquan; Ma, Ningfang

    2016-08-01

    Mouse spermatogonial stem cells (mSSCs) may be reprogrammed to become pluripotent stem cells under in vitro culture conditions, due to epigenetic modifications, which are closely associated with the expression of transcription factors and epigenetic factors. Thus, this study was conducted to compare the gene expression of transcription factors and epigenetic factors in mSSCs and mouse embryonic stem cells (mESCs). Firstly, the freshly isolated mSSCs [mSSCs (f)] were enriched by magnetic-activated cell sorting with Thy1.2 (CD90.2) microbeads, and the typical morphological characteristics were maintained under in vitro culture conditions for over 5 months to form long-term propagated mSSCs [mSSCs (l)]. These mSSCs (l) expressed pluripotency‑associated genes and were induced to differentiate into sperm. Our findings indicated that the mSSCs (l) expressed high levels of the transcription factors, Lin28 and Prmt5, and the epigenetic factors, Tet3, Parp1, Max, Tert and Trf1, in comparison with the mESCs, with the levels of Prmt5, Tet3, Parp1 and Tert significantly higher than those in the mESCs. There was no significant difference in Kdm2b expression between mSSCs (l) and mESCs. Furthermore, the gene expression of N-Myc, Dppa2, Tbx3, Nr5a2, Prmt5, Tet3, Parp1, Max, Tert and Trf1 in the mSSCs (l) was markedly higher in comparison to that in the mSSCs (f). Collectively, our results suggest that the mSSCs and the mESCs displayed differential gene expression profiles, and the mSSCs possessed the potential to acquire pluripotency based on the high expression of transcription factors and epigenetic factors. These data may provide novel insights into the reprogramming mechanism of mSSCs. PMID:27353491

  20. Genome wide chromatin occupancy of mrhl RNA and its role in gene regulation in mouse spermatogonial cells

    PubMed Central

    Akhade, Vijay Suresh; Arun, Gayatri; Donakonda, Sainitin; Satyanarayana Rao, Manchanahalli R

    2014-01-01

    Mrhl RNA is a nuclear lncRNA encoded in the mouse genome and negatively regulates Wnt signaling in spermatogonial cells through p68/Ddx5 RNA helicase. Mrhl RNA is present in the chromatin fraction of mouse spermatogonial Gc1-Spg cells and genome wide chromatin occupancy of mrhl RNA by ChOP (Chromatin oligo affinity precipitation) technique identified 1370 statistically significant genomic loci. Among these, genes at 37 genomic loci also showed altered expression pattern upon mrhl RNA down regulation which are referred to as GRPAM (Genes Regulated by Physical Association of Mrhl RNA). p68 interacted with mrhl RNA in chromatin at these GRPAM loci. p68 silencing drastically reduced mrhl RNA occupancy at 27 GRPAM loci and also perturbed the expression of GRPAM suggesting a role for p68 mediated mrhl RNA occupancy in regulating GRPAM expression. Wnt3a ligand treatment of Gc1-Spg cells down regulated mrhl RNA expression and also perturbed expression of these 27 GRPAM genes that included genes regulating Wnt signaling pathway and spermatogenesis, one of them being Sox8, a developmentally important transcription factor. We also identified interacting proteins of mrhl RNA associated chromatin fraction which included Pc4, a chromatin organizer protein and hnRNP A/B and hnRNP A2/B1 which have been shown to be associated with lincRNA-Cox2 function in gene regulation. Our findings in the Gc1-Spg cell line also correlate with the results from analysis of mouse testicular tissue which further highlights the in vivo physiological significance of mrhl RNA in the context of gene regulation during mammalian spermatogenesis. PMID:25584904

  1. Genome Editing in Mouse Spermatogonial Stem Cell Lines Using TALEN and Double-Nicking CRISPR/Cas9.

    PubMed

    Sato, Takuya; Sakuma, Tetsushi; Yokonishi, Tetsuhiro; Katagiri, Kumiko; Kamimura, Satoshi; Ogonuki, Narumi; Ogura, Atsuo; Yamamoto, Takashi; Ogawa, Takehiko

    2015-07-14

    Mouse spermatogonial stem cells (SSCs) can be cultured for multiplication and maintained for long periods while preserving their spermatogenic ability. Although the cultured SSCs, named germline stem (GS) cells, are targets of genome modification, this process remains technically difficult. In the present study, we tested TALEN and double-nicking CRISPR/Cas9 on GS cells, targeting Rosa26 and Stra8 loci as representative genes dispensable and indispensable in spermatogenesis, respectively. Harvested GS cell colonies showed a high targeting efficiency with both TALEN and CRISPR/Cas9. The Rosa26-targeted GS cells differentiated into fertility-competent sperm following transplantation. On the other hand, Stra8-targeted GS cells showed defective spermatogenesis following transplantation, confirming its prime role in the initiation of meiosis. TALEN and CRISPR/Cas9, when applied in GS cells, will be valuable tools in the study of spermatogenesis and for revealing the genetic mechanism of spermatogenic failure. PMID:26095606

  2. The viability of mouse spermatogonial germ cells on a novel scaffold, containing human serum albumin and calcium phosphate nanoparticles

    PubMed Central

    Yadegar, Mona; Hekmatimoghaddam, Seyed Hossein; Nezami Saridar, Saeide; Jebali, Ali

    2015-01-01

    Background: In spermatogenesis, spermatogonial cells differentiate to the haploid gametes. It has been shown that spermatogenesis can be done at in vitro condition. In vitro spermatogenesis may provide an open window to treat male infertility. Objective: The aim of this study was to evaluate the effects of a novel scaffold containing human serum albumin (HSA)/tri calcium phosphate nanoparticles (TCP NPs) on the mouse spermatogonial cell line (SCL). Materials and Methods: First, TCP NPs were synthesized by reaction of calcium nitrate and diammonium phosphate at pH 13. Then, serial concentrations of TCP NPs were separately added to 500 mg/mL HSA, and incubated in the 100oC water for 30 min. In the next step, each scaffold was cut (2×2mm), placed into sterile well of microplate, and then incubated for 1, 2, and 3 days at 37oC with mouse SCL. After incubation, the cytotoxicity of the scaffolds was evaluated by different tests including 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) assay, vital staining, and cell counting. On the other hand, the release of TCP NPs and HSA from the scaffolds was measured. Results: Based on microscopic observation, the size of cavities for all scaffolds was near 200-500 µm, and the size of TCP NPs was near 50-100 nm. All toxicity tests showed that the increase of TCP concentration in the scaffold did not affect mouse SCL. It means that the percentage of cell viability, LDH release, vital cells, and cell quantity was 85%, 105%, 90%, and 110%, respectively. But, the increase of incubation time led to increase of LDH release (up to 115%) and cell count (up to 115%). Also, little decrease of cell viability and vital cells was seen when incubation time was increased. Here, no release of TCP NPs and HSA was seen after increase of TCP concentration and incubation time. Conclusion: It can be concluded that the increase of TCP concentration in HSA/ TCP NPs scaffold does not lead to

  3. MicroRNA-224 regulates self-renewal of mouse spermatogonial stem cells via targeting DMRT1.

    PubMed

    Cui, Na; Hao, Guimin; Zhao, Zhiming; Wang, Feng; Cao, Jinfeng; Yang, Aimin

    2016-08-01

    MicroRNAs (miRs) play a key role in the control of gene expression in a wide array of tissue systems, where their functions include the regulation of self-renewal, cellular differentiation, proliferation and apoptosis. However, the function and mechanisms of individual miRs in regulating spermatogonial stem cell (SSC) homeostasis remain unclear. In the present study, we report for the first time that miR-224 is highly expressed in mouse SSCs. Functional assays using miRNA mimics and inhibitors reveal that miR-224 is essential for differentiation of SSCs. Mechanistically, miR-224 promotes differentiation of SSCs via targeting doublesex and Mab-3-related transcription factor 1 (DMRT1). Moreover, WNT/β-catenin signalling pathway is involved in miR-224-mediated regulation of SSCs self-renewal. We further demonstrate that miR-224 overexpression increases the expression of GFRα1 and PLZF, accompanied by the down-regulation of DMRT1 in mouse testes. Our findings provide novel insights into molecular mechanisms regulating differentiation of SSCs and may have important implications for regulating male reproduction. PMID:27099200

  4. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells

    PubMed Central

    Wu, Yuxuan; Zhou, Hai; Fan, Xiaoying; Zhang, Ying; Zhang, Man; Wang, Yinghua; Xie, Zhenfei; Bai, Meizhu; Yin, Qi; Liang, Dan; Tang, Wei; Liao, Jiaoyang; Zhou, Chikai; Liu, Wujuan; Zhu, Ping; Guo, Hongshan; Pan, Hong; Wu, Chunlian; Shi, Huijuan; Wu, Ligang; Tang, Fuchou; Li, Jinsong

    2015-01-01

    Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc−/−) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs. PMID:25475058

  5. Functional Differences between GDNF-Dependent and FGF2-Dependent Mouse Spermatogonial Stem Cell Self-Renewal

    PubMed Central

    Takashima, Seiji; Kanatsu-Shinohara, Mito; Tanaka, Takashi; Morimoto, Hiroko; Inoue, Kimiko; Ogonuki, Narumi; Jijiwa, Mayumi; Takahashi, Masahide; Ogura, Atsuo; Shinohara, Takashi

    2015-01-01

    Summary Spermatogonial stem cells (SSCs) are required for spermatogenesis. Earlier studies showed that glial cell line-derived neurotrophic factor (GDNF) was indispensable for SSC self-renewal by binding to the GFRA1/RET receptor. Mice with mutations in these molecules showed impaired spermatogenesis, which was attributed to SSC depletion. Here we show that SSCs undergo GDNF-independent self-renewal. A small number of spermatogonia formed colonies when testis fragments from a Ret mutant mouse strain were transplanted into heterologous recipients. Moreover, fibroblast growth factor 2 (FGF2) supplementation enabled in vitro SSC expansion without GDNF. Although GDNF-mediated self-renewal signaling required both AKT and MAP2K1/2, the latter was dispensable in FGF2-mediated self-renewal. FGF2-depleted testes exhibited increased levels of GDNF and were enriched for SSCs, suggesting that the balance between FGF2 and GDNF levels influences SSC self-renewal in vivo. Our results show that SSCs exhibit at least two modes of self-renewal and suggest complexity of SSC regulation in vivo. PMID:25684228

  6. Differential regulation of gene expression in mouse spermatogonial cells after blocking c-kit-SCF interaction with RNAi

    PubMed Central

    Sikarwar, Arun P; Rambabu, Murali K; Reddy, K V R

    2008-01-01

    c-Kit, the gene product of the W locus is a receptor tyrosine kinase that regulates the survival, growth and differentiation of spermatogonial cells (SGCs). Stem cell factor (SCF), the gene product of the steel (Sl) locus is the ligand for c-kit. Normal function of SGCs requires cross-talk between c-kit and SCF through which the receptor-ligand pair regulates the functions of SGCs. The implications of cross-talk between c-kit and SCF in regulating SGC function remains unclear due to the molecular complexity of this interaction. In the present study, we analyzed the interactions between c-kit and SCF in mouse primary SGCs after blocking the c-kit expression by c-kit siRNA and its effect on cell fate were determined using cDNA Expression Array and Real-time PCR. Immunofluorescence (IF) and western blot studies revealed that c-kit protein was detected in SGCs and knocked down to undetectable levels at 24 hr post transfection with 10 nM concentration of c-kit siRNA. We further demonstrated that expression of various genes involved in cell signaling, cell differentiation, apoptosis and cell cycle pathways was altered. SGC functions are affected by SCF signaling through c-kit receptor and this signaling appears to be important to maintain balance between cell proliferation and apoptosis along with the modulation of inflammatory responses of SGCs. To the best of our knowledge, this is the first report that identifies the putative molecular pathways in murine SGCs in response to specific blocking of c-kit-SCF interactions by siRNA. In conclusion, the present study may provide useful insights into siRNA function and hopefully aid in understanding the involvement of c-kit in the early events of SGC activities and spermatogenesis in mice. PMID:19771240

  7. Mammalian target of rapamycin complex 1 (mTORC1) Is required for mouse spermatogonial differentiation in vivo.

    PubMed

    Busada, Jonathan T; Niedenberger, Bryan A; Velte, Ellen K; Keiper, Brett D; Geyer, Christopher B

    2015-11-01

    Spermatogonial stem cells (SSCs) must balance self-renewal with production of transit-amplifying progenitors that differentiate in response to retinoic acid (RA) before entering meiosis. This self-renewal vs. differentiation spermatogonial fate decision is critical for maintaining tissue homeostasis, as imbalances cause spermatogenesis defects that can lead to human testicular cancer or infertility. A great deal of effort has been exerted to understand how the SSC population is maintained. In contrast, little is known about the essential program of differentiation initiated by retinoic acid (RA) that precedes meiosis, and the pathways and proteins involved are poorly defined. We recently reported a novel role for RA in stimulating the PI3/AKT/mTOR kinase signaling pathway to activate translation of repressed mRNAs such as Kit. Here, we examined the requirement for mTOR complex 1 (mTORC1) in mediating the RA signal to direct spermatogonial differentiation in the neonatal testis. We found that in vivo inhibition of mTORC1 by rapamycin blocked spermatogonial differentiation, which led to an accumulation of undifferentiated spermatogonia. In addition, rapamycin also blocked the RA-induced translational activation of mRNAs encoding KIT, SOHLH1, and SOHLH2 without affecting expression of STRA8. These findings highlight dual roles for RA in germ cell development - transcriptional activation of genes, and kinase signaling to stimulate translation of repressed messages required for spermatogonial differentiation. PMID:26254600

  8. mrhl RNA, a Long Noncoding RNA, Negatively Regulates Wnt Signaling through Its Protein Partner Ddx5/p68 in Mouse Spermatogonial Cells

    PubMed Central

    Arun, Gayatri; Akhade, Vijay Suresh; Donakonda, Sainitin

    2012-01-01

    Meiotic recombination hot spot locus (mrhl) RNA is a nuclear enriched long noncoding RNA encoded in the mouse genome and expressed in testis, liver, spleen, and kidney. mrhl RNA silencing in Gc1-Spg cells, derived from mouse spermatogonial cells, resulted in perturbation of expression of genes belonging to cell adhesion, cell signaling and development, and differentiation, among which many were of the Wnt signaling pathway. A weighted gene coexpression network generated nine coexpression modules, which included TCF4, a key transcription factor involved in Wnt signaling. Activation of Wnt signaling upon mrhl RNA downregulation was demonstrated by beta-catenin nuclear localization, beta-catenin–TCF4 interaction, occupancy of beta-catenin at the promoters of Wnt target genes, and TOP/FOP-luciferase assay. Northwestern blot and RNA pulldown experiments identified Ddx5/p68 as one of the interacting proteins of mrhl RNA. Downregulation of mrhl RNA resulted in the cytoplasmic translocation of tyrosine-phosphorylated p68. Concomitant downregulation of both mrhl RNA and p68 prevented the nuclear translocation of beta-catenin. mrhl RNA was downregulated on Wnt3a treatment in Gc1-Spg cells. This study shows that mrhl RNA plays a negative role in Wnt signaling in mouse spermatogonial cells through its interaction with p68. PMID:22665494

  9. Sublinear response in lacZ mutant frequency of Muta™ Mouse spermatogonial stem cells after low dose subchronic exposure to N-ethyl-N-nitrosourea.

    PubMed

    O'Brien, Jason M; Walker, Mike; Sivathayalan, Ahalya; Douglas, George R; Yauk, Carole L; Marchetti, Francesco

    2015-05-01

    The transgenic rodent mutation assay was used to compare the dose-response relationship of lacZ mutant frequency (MF) in spermatogonial stem cells exposed acutely or subchronically to N-ethyl-N-nitrosourea (ENU). Muta(™) Mouse males were exposed orally to 0, 25, 50, or 100 mg/kg ENU for acute exposures and 0, 1, 2, or 5 mg/(kg day) for 28-day subchronic exposures. LacZ MF was measured in sperm collected 70 days post-exposure to target spermatogonial stem cells. Dose-response data were fit to linear, quadratic, exponential, or power models. Acute exposure resulted in a dose-dependent increase in MF that was significant (P < 0.05) at all doses tested and was best described by a quadratic dose-response model that was linear in the low dose range. In contrast, similar total doses fragmented over a 28-day subchronic exposure only resulted in a significant increase in lacZ MF at the highest dose tested. Therefore, the subchronic no observable genotoxic effect level (NOGEL) was 2 mg/(kg day) (or 56 mg/kg total dose). The subchronic dose-response was best described by the exponential and power models, which were sublinear in the low dose range. Benchmark dose lower confidence limits (BMDLs) for acute and subchronic exposure were 3.0 and 1.0 mg/(kg day) (or 27.4 mg/kg total dose), respectively. These findings are supportive of a saturable DNA repair mechanism as the mutagenic mode of action for ENU in spermatogonia and imply that sufficiently low exposures would not cause appreciable genotoxic effects over background. This may have important implications for the quantitative risk assessment of germ cell mutagens. PMID:25598316

  10. Spermatogonial stem cells: progress and prospects

    PubMed Central

    Komeya, Mitsuru; Ogawa, Takehiko

    2015-01-01

    Twenty years ago, the transplantation of spermatogonial stem cells (SSCs) from a mouse to other recipient mice was shown to be feasible, which clearly demonstrated the functional identity of SSCs. Since then, several important new findings and other technical developments have followed, which included a new hypothesis on their cell kinetics and spermatogonial hierarchy in the testis, a culture method allowing their self-renewal and proliferation, a testis tissue organ culture method, which induced their complete differentiation up to sperm, and the in vitro induction of germ cells from embryonic stem cells and induced pluripotent stem cells. These advancements reinforced or advanced our understanding of this unique cell. Nonetheless, there are many unresolved questions in the study of spermatogonial stem cells and a long road remains until these cells can be used clinically in reproductive medicine. PMID:25994650

  11. Spermatogonial stem cells: Progress and prospects.

    PubMed

    Komeya, Mitsuru; Ogawa, Takehiko

    2015-01-01

    Twenty years ago, the transplantation of spermatogonial stem cells (SSCs) from a mouse to other recipient mice was shown to be feasible, which clearly demonstrated the functional identity of SSCs. Since then, several important new findings and other technical developments have followed, which included a new hypothesis on their cell kinetics and spermatogonial hierarchy in the testis, a culture method allowing their self-renewal and proliferation, a testis tissue organ culture method, which induced their complete differentiation up to sperm, and the in vitro induction of germ cells from embryonic stem cells and induced pluripotent stem cells. These advancements reinforced or advanced our understanding of this unique cell. Nonetheless, there are many unresolved questions in the study of spermatogonial stem cells and a long road remains until these cells can be used clinically in reproductive medicine. PMID:25994650

  12. A long non-coding RNA interacts with Gfra1 and maintains survival of mouse spermatogonial stem cells

    PubMed Central

    Li, L; Wang, M; Wang, M; Wu, X; Geng, L; Xue, Y; Wei, X; Jia, Y; Wu, X

    2016-01-01

    Spermatogonial stem cells (SSCs) are unique male germline stem cells that support spermatogenesis and male fertility. Long non-coding RNAs (lncRNA) have been identified as key regulators of stem cell fate; however, their role in SSCs has not been explored. Here, we report that a novel spermatogonia-specific lncRNA (lncRNA033862) is essential for the survival of murine SSCs. LncRNA033862 is expressed in early spermatogonia including SSC and was among 805 lncRNAs identified by global expression profiling as responsive to glial cell-derived neurotrophic factor (GDNF), a growth factor required for SSC self-renewal and survival. LncRNA033862 is an antisense transcript of the GDNF receptor alpha1 (Gfra1) that lacks protein coding potential and regulates Gfra1 expression levels by interacting with Gfra1 chromatin. Importantly, lncRNA033862 knockdown severely impairs SSC survival and their capacity to repopulate recipient testes in a transplantation assay. Collectively, our data provide the first evidence that long non-coding RNAs (lncRNAs) regulate SSC fate. PMID:26962690

  13. Alteration of protein prenylation promotes spermatogonial differentiation and exhausts spermatogonial stem cells in newborn mice

    PubMed Central

    Diao, Fan; Jiang, Chen; Wang, Xiu-Xing; Zhu, Rui-Lou; Wang, Qiang; Yao, Bing; Li, Chao-Jun

    2016-01-01

    Spermatogenesis in adulthood depends on the successful neonatal establishment of the spermatogonial stem cell (SSC) pool and gradual differentiation during puberty. The stage-dependent changes in protein prenylation in the seminiferous epithelium might be important during the first round of spermatogenesis before sexual maturation, but the mechanisms are unclear. We have previous found that altered prenylation in Sertoli cells induced spermatogonial apoptosis in the neonatal testis, resulting in adult infertility. Now we further explored the role of protein prenylation in germ cells, using a conditional deletion of geranylgeranyl diphosphate synthase (Ggpps) in embryonic stage and postmeiotic stage respectively. We observed infertility of Ggpps−/− Ddx4-Cre mice that displayed a Sertoli-cell-only syndrome phenotype, which resulted from abnormal spermatogonial differentiation and SSC depletion during the prepubertal stage. Analysis of morphological characteristics and cell-specific markers revealed that spermatogonial differentiation was enhanced from as early as the 7th postnatal day in the first round of spermatogenesis. Studies of the molecular mechanisms indicated that Ggpps deletion enhanced Rheb farnesylation, which subsequently activated mTORC1 and facilitated spermatogonial differentiation. In conclusion, the prenylation balance in germ cells is crucial for spermatogonial differentiation fate decision during the prepubertal stage, and the disruption of this process results in primary infertility. PMID:27374985

  14. IGF-1R signaling is essential for the proliferation of cultured mouse spermatogonial stem cells by promoting the G2/M progression of the cell cycle.

    PubMed

    Wang, Si; Wang, Xiuxia; Wu, Yujian; Han, Chunsheng

    2015-02-15

    Culture of mouse spermatogonial stem cells (mSSCs) contributes to understanding the mechanisms of mammalian spermatogenesis. Several key growth factors such as GDNF and FGF2 have been known to be essential for the proliferation of cultured mSSCs. However, additional factors regulating SSC proliferation remain to be identified. In this study, we report that IGF-1R signaling is required for the proliferation of cultured mSSCs by promoting the G2/M progression of the cell cycle. IGF-1 and its receptor IGF-1R are expressed in cultured mSSCs as well as in isolated Sertoli cells and interstitial cells. Blockage of IGF-1R signaling either by knockdown of IGF-1R or by the IGF-1R-specific inhibitor picropodophyllin (PPP) significantly reduced the proliferation of mSSCs, increased their apoptosis, and impaired their stem cell activity in an insulin-independent manner. PPP treatment of mSSCs blocked the G2/M progression. In contrast, both GDNF withdrawal and FGF2 signaling blockade decreased the entry of mSSCs into their S phases. Consistently, IGF-1 promoted the G2/M progression of thymidine-treated mSSCs, which were arrested at G1/S boundary synchronously; while GDNF and/or FGF2 stimulated their entry into the S phase. Moreover, IGF-1 activated the phosphorylation of AKT but not that of ERK1/2 in mSSCs. These results indicate that IGF-1R signaling stimulates the proliferation of mSSCs using a distinct mechanism from those by GDNF and FGF2, and will contribute to the establishment of a chemically defined culture system. PMID:25356638

  15. The Luteinizing Hormone-Testosterone Pathway Regulates Mouse Spermatogonial Stem Cell Self-Renewal by Suppressing WNT5A Expression in Sertoli Cells.

    PubMed

    Tanaka, Takashi; Kanatsu-Shinohara, Mito; Lei, Zhenmin; Rao, C V; Shinohara, Takashi

    2016-08-01

    Spermatogenesis originates from self-renewal of spermatogonial stem cells (SSCs). Previous studies have reported conflicting roles of gonadotropic pituitary hormones in SSC self-renewal. Here, we explored the role of hormonal regulation of SSCs using Fshb and Lhcgr knockout (KO) mice. Although follicle-stimulating hormone (FSH) is thought to promote self-renewal by glial cell line-derived neurotrophic factor (GDNF), no abnormalities were found in SSCs and their microenvironment. In contrast, SSCs were enriched in Lhcgr-deficient mice. Moreover, wild-type SSCs transplanted into Lhcgr-deficient mice showed enhanced self-renewal. Microarray analysis revealed that Lhcgr-deficient testes have enhanced WNT5A expression in Sertoli cells, which showed an immature phenotype. Since WNT5A was upregulated by anti-androgen treatment, testosterone produced by luteinizing hormone (LH) is required for Sertoli cell maturation. WNT5A promoted SSC activity both in vitro and in vivo. Therefore, FSH is not responsible for GDNF regulation, while LH negatively regulates SSC self-renewal by suppressing WNT5A via testosterone. PMID:27509137

  16. ETOPOSIDE INDUCES CHROMOSOMAL ABNORMALITIES IN SPERMATOCYTES AND SPERMATOGONIAL STEM CELLS

    SciTech Connect

    Marchetti, F; Pearson, F S; Bishop, J B; Wyrobek, A J

    2005-07-15

    Etoposide (ET) is a chemotherapeutic agent widely used in the treatment of leukemia, lymphomas and many solid tumors, such as testicular and ovarian cancers, that affect patients in their reproductive years. The purpose of the study was to use sperm FISH analyses to characterize the long-term effects of ET on male germ cells. We used a mouse model to characterize the induction of chromosomal aberrations (partial duplications and deletions) and whole chromosomal aneuploidies in sperm of mice treated with a clinical dose of ET. Semen samples were collected at 25 and 49 days after dosing to investigate the effects of ET on meiotic pachytene cells and spermatogonial stem-cells, respectively. ET treatment resulted in major increases in the frequencies of sperm carrying chromosomal aberrations in both meiotic pachytene (27- to 578-fold) and spermatogonial stem-cells (8- to 16-fold), but aneuploid sperm were induced only after treatment of meiotic cells (27-fold) with no persistent effects in stem cells. These results demonstrate that male meiotic germ cells are considerably more sensitive to ET than spermatogonial stem-cell and that increased frequencies of sperm with structural aberrations persist after spermatogonial stem-cell treatment. These findings predict that patients who undergo chemotherapy with ET may have transient elevations in the frequencies of aneuploid sperm, but more importantly, may have persistent elevations in the frequencies of sperm with chromosomal aberrations, placing them at higher risk for abnormal reproductive outcomes long after the end of their chemotherapy.

  17. Leydig cells contribute to the inhibition of spermatogonial differentiation after irradiation of the rat.

    PubMed

    Shetty, G; Zhou, W; Weng, C C Y; Shao, S H; Meistrich, M L

    2016-05-01

    Irradiation with 6 Gy produces a complete block of spermatogonial differentiation in LBNF1 rats that would be permanent without treatment. Subsequent suppression of gonadotropins and testosterone (T) restores differentiation to the spermatocyte stage; however, this process requires 6 weeks. We evaluated the role of Leydig cells (LCs) in maintenance of the block in spermatogonial differentiation after exposure to radiation by specifically eliminating functional LCs with ethane dimethane sulfonate (EDS). EDS (but not another alkylating agent), given at 10 weeks after irradiation, induced spermatogonial differentiation in 24% of seminiferous tubules 2 weeks later. However, differentiation became blocked again at 4 weeks as LCs recovered. When EDS was followed by treatment with GnRH antagonist and flutamide, sustained spermatogonial differentiation was induced in >70% of tubules within 2 weeks. When EDS was followed by GnRH antagonist plus exogenous T, which also inhibits LC recovery but restores follicle stimulating hormone (FSH) levels, the spermatogonial differentiation was again rapid but transient. These results confirm that the factors that block spermatogonial differentiation are indirectly regulated by T, and probably FSH, and that adult and possibly immature LCs contribute to the production of such inhibitory factors. We tested whether insulin-like 3 (INSL3), a LC-produced protein whose expression correlated with the block in spermatogonial differentiation, was indeed responsible for the block by injecting synthetic INSL3 into the testes and knocking down its expression in vivo with siRNA. Neither treatment had any effect on spermatogonial differentiation. The Leydig cell products that contribute to the inhibition of spermatogonial differentiation in irradiated rats remain to be elucidated. PMID:26991593

  18. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice

    PubMed Central

    Gholami, Mohammadreza; Saki, Ghasem; Hemadi, Masoud; Khodadadi, Ali; Mohammadi-asl, Javad

    2014-01-01

    Objective(s): Transplantation quality improvement and reduction of cellular damage are important goals that are now considered by researchers. Melatonin is secreted from the pineal gland and some organs such as testes. According to beneficial effects of melatonin (such as its antioxidant and antiapoptotic properties), researchers have proposed that the use of melatonin may improve transplantation quality. The aim of this study was to investigate the effects of melatonin on the spermatogonial stem cells transplantation in the azoospermic mice. Materials and Methods: The testes of the BALB/c mice pups (6-day-old) after vitrified-thawed, were digested with enzymes (collagenase, DNaseΙ, trypsin-EDTA) to disperse the cells. The SSCs, type A, were isolated from the rest of testicular cells by MACS. Spermatogonial stem cells were labeled with PKH26 fluorescent kit. Labeled spermatogonial stem cells were transplanted into the testes of infertile mice (busulfan 40 mg/kg). The mice died two months after transplantation and the efficiency of spermatogenesis was investigated. TNP2 and hematoxyline-eosin staining were used to detect the efficiency of cell transplantation. Results: TNP2 were detected in the samples that received melatonin and spermatogonial stem cells transplantation, simultaneously. TNP2 was not detectable in the transplant recipient mice that received placebo for 10 weeks (control group). According to hematoxyline-eosin staining, melatonin improved structure of testes. Conclusion: Administration of melatonin (20 mg/kg) simultaneously with transplantation of spermatogonial stem cells in azoospermia mouse testis increases the efficiency of transplantation and improves structural properties of the testes tissue. PMID:24711891

  19. Isolation and Characterization of Pluripotent Human Spermatogonial Stem Cell-Derived Cells

    PubMed Central

    Kossack, Nina; Meneses, Juanito; Shefi, Shai; Nguyen, Ha Nam; Chavez, Shawn; Nicholas, Cory; Gromoll, Joerg; Turek, Paul J; Reijo-Pera, Renee A

    2009-01-01

    Several reports have documented the derivation of pluripotent cells (multipotent germline stem cells) from spermatogonial stem cells obtained from the adult mouse testis. These spermatogonia-derived stem cells express embryonic stem cell markers and differentiate to the three primary germ layers, as well as the germline. Data indicate that derivation may involve reprogramming of endogenous spermatogonia in culture. Here, we report the derivation of human multipotent germline stem cells (hMGSCs) from a testis biopsy. The cells express distinct markers of pluripotency, form embryoid bodies that contain derivatives of all three germ layers, maintain a normal XY karyotype, are hypomethylated at the H19 locus, and express high levels of telomerase. Teratoma assays indicate the presence of human cells 8 weeks post-transplantation but limited teratoma formation. Thus, these data suggest the potential to derive pluripotent cells from human testis biopsies but indicate a need for novel strategies to optimize hMGSC culture conditions and reprogramming. PMID:18927477

  20. Bisphenol A at a low concentration boosts mouse spermatogonial cell proliferation by inducing the G protein-coupled receptor 30 expression

    SciTech Connect

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang; Zhu, Ben-Zhan

    2013-02-15

    Bisphenol A (BPA) is one of the most prevalent chemicals in daily-use materials, therefore, human exposure to BPA is ubiquitous. We found that low concentrations of BPA stimulate the spermatogonial GC-1 cells proliferation by G protein-coupled receptor 30 (GPR30)-mediated epidermal growth factor receptor (EGFR)-extracellular regulated kinase (ERK)-c-Fos pathway. However, through the same pathway GPR30 expression has been shown to be induced by EGF, an EGFR ligand. Thus, we want to know if low concentrations of BPA are able to induce the GPR30 expression and the possible mechanism(s) in GC-1 cells. By transient transfection with expression plasmids, 10{sup −9} M BPA significantly transactivates the Gpr30-5′-flanking region through activating the GPR30, cGMP-dependent protein kinase (PKG), estrogen receptor-α (ER-α), and EFGR-ERK pathways. Furthermore, an activator protein-1 (AP-1) site located within this region is found to be responsible for the transactivation of BPA. Expectedly, through the same pathways, BPA significantly induces the gene and protein expression of GPR30. c-Fos is further observed to be strongly recruited to the AP-1 site in a chromatin immunoprecipitation assay and its dysfunction on the AP-1 site markedly suppresses the expression of GPR30, p-ERK1/2, p-Ser118-ER-α and cell proliferation by BPA. Our results demonstrate that a low-concentration BPA induces GPR30 expression through the GPR30-EFGR-ERK-c-Fos, ER-α, and PKG pathways, presumably boosting the cells proliferation via a regulatory loop. The present study provides a novel insight into the potential role of GPR30 in the initiation and progression of male germ cell cancer induced by environmentally relevant BPA. - Highlights: ► Low concentrations of BPA activate the PKG and GPR30-EFGR-ERK-ER-α pathways. ► Low concentrations of BPA activate the AP-1 site of Gpr30-5′-flanking region. ► Low concentrations of BPA induce the expression of GPR30 gene and protein. ► Low

  1. FACS and MACS sorting strategies to isolate and enrich human spermatogonial stem cells

    PubMed Central

    Valli, Hanna; Sukhwani, Meena; Dovey, Serena L.; Peters, Karen A.; Donohue, Julia; Castro, Carlos A.; Chu, Tianjiao; Marshall, Gary R.; Orwig, Kyle E.

    2014-01-01

    Objective Determine the molecular characteristics of human spermatogonia and optimize methods to enrich spermatogonial stem cells (SSCs). Design Laboratory study using human tissues Setting Research institute Patient(s)/Animal(s) Normal adult human testicular tissue. Interventions Human testicular tissue was fixed or digested with enzymes to produce a cell suspension. Human testis cells were fractionated by FACS and MACS. Main Outcome Measure(s) Immunostaining for selected markers, human-to-nude mouse xenotransplantation assay. Results Immunohistochemistry co-staining revealed the relative expression patterns of SALL4, UTF1, ZBTB16, UCHL1 and ENO2 in human undifferentiated spermatogonia as well as the extent of overlap with the differentiation marker, KIT. Whole mount analyses revealed that human undifferentiated spermatogonia (UCHL1+) were typically arranged in clones of 1–4 cells while differentiated spermatogonia (KIT+) were typically arranged in clones of 8 or more cells. The ratio of undifferentiated to differentiated spermatogonia is greater in humans than in rodents. SSC colonizing activity was enriched in the THY1dim and ITGA6+ fractions of human testes sorted by FACS. ITGA6 was effective for sorting human SSCs by MACS; THY1 and EPCAM were not. Conclusions Human spermatogonial differentiation correlates with increased clone size and onset of KIT expression, similar to rodents. The undifferentiated to differentiated developmental dynamics in human spermatogonia is different than rodents. THY1, ITGA6 and EPCAM can be used to enrich human SSC colonizing activity by FACS, but only ITGA6 is amenable to high throughput sorting by MACS. PMID:24890267

  2. Restoring Fertility in Sterile Childhood Cancer Survivors by Autotransplanting Spermatogonial Stem Cells: Are We There Yet?

    PubMed Central

    Struijk, Robert B.; Mulder, Callista L.; van der Veen, Fulco; van Pelt, Ans M. M.; Repping, Sjoerd

    2013-01-01

    Current cancer treatment regimens do not only target tumor cells, but can also have devastating effects on the spermatogonial stem cell pool, resulting in a lack of functional gametes and hence sterility. In adult men, fertility can be preserved prior to cancer treatment by cryopreservation of ejaculated or surgically retrieved spermatozoa, but this is not an option for prepubertal boys since spermatogenesis does not commence until puberty. Cryopreservation of a testicular biopsy taken before initiation of cancer treatment, followed by in vitro propagation of spermatogonial stem cells and subsequent autotransplantation of these stem cells after cancer treatment, has been suggested as a way to preserve and restore fertility in childhood cancer survivors. This strategy, known as spermatogonial stem cell transplantation, has been successful in mice and other model systems, but has not yet been applied in humans. Although recent progress has brought clinical application of spermatogonial stem cell autotransplantation in closer range, there are still a number of important issues to address. In this paper, we describe the state of the art of spermatogonial stem cell transplantation and outline the hurdles that need to be overcome before clinical implementation. PMID:23509797

  3. Histomorphological Phenotyping of the Adult Mouse Brain.

    PubMed

    Mikhaleva, Anna; Kannan, Meghna; Wagner, Christel; Yalcin, Binnaz

    2016-01-01

    This article describes a series of standard operating procedures for morphological phenotyping of the mouse brain using basic histology. Many histological studies of the mouse brain use qualitative approaches based on what the human eye can detect. Consequently, some phenotypic information may be missed. Here we describe a quantitative approach for the assessment of brain morphology that is simple and robust. A total of 78 measurements are made throughout the brain at specific and well-defined regions, including the cortex, the hippocampus, and the cerebellum. Experimental design and timeline considerations, including strain background effects, the importance of sectioning quality, measurement variability, and efforts to correct human errors are discussed. © 2016 by John Wiley & Sons, Inc. PMID:27584555

  4. ATM localization and gene expression in the adult mouse eye

    PubMed Central

    Leemput, Julia; Masson, Christel; Bigot, Karine; Errachid, Abdelmounaim; Dansault, Anouk; Provost, Alexandra; Gadin, Stéphanie; Aoufouchi, Said; Menasche, Maurice

    2009-01-01

    Purpose High levels of metabolism and oxygen consumption in most adult murine ocular compartments, combined with exposure to light and ultraviolet (UV) radiation, are major sources of oxidative stress, causing DNA damage in ocular cells. Of all mammalian body cells, photoreceptor cells consume the largest amount of oxygen and generate the highest levels of oxidative damage. The accumulation of such damage throughout life is a major factor of aging tissues. Several multiprotein complexes have recently been identified as the major sensors and mediators involved in the maintenance of DNA integrity. The activity of these complexes initially seemed to be restricted to dividing cells, given their ultimate role in major cell cycle checkpoints. However, it was later established that they are also active in post-mitotic cells. Recent findings demonstrate that the DNA damage response (DDR) is essential for the development, maintenance, and normal functioning of the adult central nervous system. One major molecular factor in the DDR is the protein, ataxia telangiectasia mutated (ATM). It is required for the rapid induction of cellular responses to DNA double-strand breaks. These cytotoxic DNA lesions may be caused by oxidative damage. To understand how ATM prevents oxidative stress and participates in the maintenance of genomic integrity and cell viability of the adult retina, we determined the ATM expression patterns and studied its localization in the adult mouse eye. Methods Atm gene expression was analyzed by RT–PCR experiments and its localization by in situ hybridization on adult mouse ocular and cerebellar tissue sections. ATM protein expression was determined by western blot analysis of proteins homogenates extracted from several mouse tissues and its localization by immunohistochemistry experiments performed on adult mouse ocular and cerebellar tissue sections. In addition, subcellular localization was realized by confocal microscopy imaging of ocular tissue

  5. Eliminating malignant contamination from therapeutic human spermatogonial stem cells

    PubMed Central

    Dovey, Serena L.; Valli, Hanna; Hermann, Brian P.; Sukhwani, Meena; Donohue, Julia; Castro, Carlos A.; Chu, Tianjiao; Sanfilippo, Joseph S.; Orwig, Kyle E.

    2013-01-01

    Spermatogonial stem cell (SSC) transplantation has been shown to restore fertility in several species and may have application for treating some cases of male infertility (e.g., secondary to gonadotoxic therapy for cancer). To ensure safety of this fertility preservation strategy, methods are needed to isolate and enrich SSCs from human testis cell suspensions and also remove malignant contamination. We used flow cytometry to characterize cell surface antigen expression on human testicular cells and leukemic cells (MOLT-4 and TF-1a). We demonstrated via FACS that EpCAM is expressed by human spermatogonia but not MOLT-4 cells. In contrast, HLA-ABC and CD49e marked >95% of MOLT-4 cells but were not expressed on human spermatogonia. A multiparameter sort of MOLT-4–contaminated human testicular cell suspensions was performed to isolate EpCAM+/HLA-ABC–/CD49e– (putative spermatogonia) and EpCAM–/HLA-ABC+/CD49e+ (putative MOLT-4) cell fractions. The EpCAM+/HLA-ABC–/CD49e– fraction was enriched for spermatogonial colonizing activity and did not form tumors following human-to–nude mouse xenotransplantation. The EpCAM–/HLA-ABC+/CD49e+ fraction produced tumors following xenotransplantation. This approach could be generalized with slight modification to also remove contaminating TF-1a leukemia cells. Thus, FACS provides a method to isolate and enrich human spermatogonia and remove malignant contamination by exploiting differences in cell surface antigen expression. PMID:23549087

  6. A Comprehensive Atlas of the Adult Mouse Penis

    PubMed Central

    Phillips, Tiffany R.; Wright, David K.; Gradie, Paul E.; Johnston, Leigh A.; Pask, Andrew J.

    2016-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures. PMID:26112156

  7. Plasticity of spermatogonial stem cells.

    PubMed

    Cooke, Paul S; Simon, Liz; Nanjappa, Manjunatha K; Medrano, Theresa I; Berry, Suzanne E

    2015-01-01

    There have been significant breakthroughs over the past decade in the development and use of pluripotent stem cells as a potential source of cells for applications in regenerative medicine. It is likely that this methodology will begin to play an important role in human clinical medicine in the years to come. This review describes the plasticity of one type of pluripotent cell, spermatogonial stem cells (SSCs), and their potential therapeutic applications in regenerative medicine and male infertility. Normally, SSCs give rise to sperm when in the testis. However, both human and murine SSCs can give rise to cells with embryonic stem (ES) cell-like characteristics that can be directed to differentiate into tissues of all three embryonic germ layers when placed in an appropriate inductive microenvironment, which is in contrast to other postnatal stem cells. Previous studies have reported that SSCs expressed an intermediate pluripotent phenotype before differentiating into a specific cell type and that extended culture was necessary for this to occur. However, recent studies from our group using a tissue recombination model demonstrated that SSCs differentiated rapidly into another tissue, in this case, prostatic epithelium, without expression of pluripotent ES cell markers before differentiation. These results suggest that SSCs are capable of directly differentiating into other cell types without going through an intermediate ES cell-like stage. Because SSCs do not require reprogramming to achieve a pluripotent state, they are an attractive source of pluripotent cells for use in regenerative medicine. PMID:25677134

  8. Plasticity of spermatogonial stem cells

    PubMed Central

    Cooke, Paul S; Simon, Liz; Nanjappa, Manjunatha K; Medrano, Theresa I; Berry, Suzanne E

    2015-01-01

    There have been significant breakthroughs over the past decade in the development and use of pluripotent stem cells as a potential source of cells for applications in regenerative medicine. It is likely that this methodology will begin to play an important role in human clinical medicine in the years to come. This review describes the plasticity of one type of pluripotent cell, spermatogonial stem cells (SSCs), and their potential therapeutic applications in regenerative medicine and male infertility. Normally, SSCs give rise to sperm when in the testis. However, both human and murine SSCs can give rise to cells with embryonic stem (ES) cell-like characteristics that can be directed to differentiate into tissues of all three embryonic germ layers when placed in an appropriate inductive microenvironment, which is in contrast to other postnatal stem cells. Previous studies have reported that SSCs expressed an intermediate pluripotent phenotype before differentiating into a specific cell type and that extended culture was necessary for this to occur. However, recent studies from our group using a tissue recombination model demonstrated that SSCs differentiated rapidly into another tissue, in this case, prostatic epithelium, without expression of pluripotent ES cell markers before differentiation. These results suggest that SSCs are capable of directly differentiating into other cell types without going through an intermediate ES cell-like stage. Because SSCs do not require reprogramming to achieve a pluripotent state, they are an attractive source of pluripotent cells for use in regenerative medicine. PMID:25677134

  9. Radiosensitivity of testicular cells in the prepubertal mouse

    SciTech Connect

    Vergouwen, R.P.F.A.; Roepers-Gajadien, H.L.; Rooij, D.G. de; Eerdenburg, F.J.C.M. van; Huiskamp, R.; Bas, R.J.; Jong, F.H. de; Davids, J.A.G.

    1994-09-01

    The effects of total-body X-irradiation on the prepubertal testis of the CBA/P mouse have been studied. At either day 14 or day 29 post partum male mice were exposed to single doses of X-rays ranging from 15-6.0 Gy. At 1 week after irradiation the repopulation index method was used to study the radiosensitivity of the spermatogonial stem cells. A D{sub 0} value of 1.8 Gy was determined for the stem cells at day 14 post partum as well as for the stem cells at day 29 post partum, indicating that the radiosensitivity of the spermatogonial stem cells in the prepubertal mouse testis is already comparable to that observed in the adult mouse. One, 2 or 3 weeks after irradiation total cell number per testis of Sertoli cells, Leydig cells, mesenchymal cells, macrophages, myoid cells, lymphatic endothelial cells, endothelium and perivascular cells were determined using the disector method. The Sertoli cells and interstitial cell types appeared to be relatively radioresistant during the prepubertal period. No significant changes in plasma testosterone levels were found, indicating that there is no Leydig cell dysfunction after exposure to doses up to 6 Gy during the prepubertal period. Taken together, the radioresponse of the prepubertal mouse testis is comparable to that of the adult mouse testis. 38 refs., 6 figs., 1 tab.

  10. Prolactin Stimulates Precursor Cells in the Adult Mouse Hippocampus

    PubMed Central

    Walker, Tara L.; Vukovic, Jana; Koudijs, Margaretha M.; Blackmore, Daniel G.; Mackay, Eirinn W.; Sykes, Alex M.; Overall, Rupert W.; Hamlin, Adam S.; Bartlett, Perry F.

    2012-01-01

    In the search for ways to combat degenerative neurological disorders, neurogenesis-stimulating factors are proving to be a promising area of research. In this study, we show that the hormonal factor prolactin (PRL) can activate a pool of latent precursor cells in the adult mouse hippocampus. Using an in vitro neurosphere assay, we found that the addition of exogenous PRL to primary adult hippocampal cells resulted in an approximate 50% increase in neurosphere number. In addition, direct infusion of PRL into the adult dentate gyrus also resulted in a significant increase in neurosphere number. Together these data indicate that exogenous PRL can increase hippocampal precursor numbers both in vitro and in vivo. Conversely, PRL null mice showed a significant reduction (approximately 80%) in the number of hippocampal-derived neurospheres. Interestingly, no deficit in precursor proliferation was observed in vivo, indicating that in this situation other niche factors can compensate for a loss in PRL. The PRL loss resulted in learning and memory deficits in the PRL null mice, as indicated by significant deficits in the standard behavioral tests requiring input from the hippocampus. This behavioral deficit was rescued by direct infusion of recombinant PRL into the hippocampus, indicating that a lack of PRL in the adult mouse hippocampus can be correlated with impaired learning and memory. PMID:22973440

  11. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  12. Isolation, Culture, and Functional Characterization of Adult Mouse Cardiomyoctyes

    PubMed Central

    Graham, Evan Lee; Balla, Cristina; Franchino, Hannabeth; Melman, Yonathan

    2013-01-01

    The use of primary cardiomyocytes (CMs) in culture has provided a powerful complement to murine models of heart disease in advancing our understanding of heart disease. In particular, the ability to study ion homeostasis, ion channel function, cellular excitability and excitation-contraction coupling and their alterations in diseased conditions and by disease-causing mutations have led to significant insights into cardiac diseases. Furthermore, the lack of an adequate immortalized cell line to mimic adult CMs, and the limitations of neonatal CMs (which lack many of the structural and functional biomechanics characteristic of adult CMs) in culture have hampered our understanding of the complex interplay between signaling pathways, ion channels and contractile properties in the adult heart strengthening the importance of studying adult isolated cardiomyocytes. Here, we present methods for the isolation, culture, manipulation of gene expression by adenoviral-expressed proteins, and subsequent functional analysis of cardiomyocytes from the adult mouse. The use of these techniques will help to develop mechanistic insight into signaling pathways that regulate cellular excitability, Ca2+ dynamics and contractility and provide a much more physiologically relevant characterization of cardiovascular disease. PMID:24084584

  13. Mechanical Testing of Mouse Carotid Arteries: from Newborn to Adult

    PubMed Central

    Amin, Mazyar; Le, Victoria P.; Wagenseil, Jessica E.

    2012-01-01

    The large conducting arteries in vertebrates are composed of a specialized extracellular matrix designed to provide pulse dampening and reduce the work performed by the heart. The mix of matrix proteins determines the passive mechanical properties of the arterial wall1. When the matrix proteins are altered in development, aging, disease or injury, the arterial wall remodels, changing the mechanical properties and leading to subsequent cardiac adaptation2. In normal development, the remodeling leads to a functional cardiac and cardiovascular system optimized for the needs of the adult organism. In disease, the remodeling often leads to a negative feedback cycle that can cause cardiac failure and death. By quantifying passive arterial mechanical properties in development and disease, we can begin to understand the normal remodeling process to recreate it in tissue engineering and the pathological remodeling process to test disease treatments. Mice are useful models for studying passive arterial mechanics in development and disease. They have a relatively short lifespan (mature adults by 3 months and aged adults by 2 years), so developmental3 and aging studies4 can be carried out over a limited time course. The advances in mouse genetics provide numerous genotypes and phenotypes to study changes in arterial mechanics with disease progression5 and disease treatment6. Mice can also be manipulated experimentally to study the effects of changes in hemodynamic parameters on the arterial remodeling process7. One drawback of the mouse model, especially for examining young ages, is the size of the arteries. We describe a method for passive mechanical testing of carotid arteries from mice aged 3 days to adult (approximately 90 days). We adapt a commercial myograph system to mount the arteries and perform multiple pressure or axial stretch protocols on each specimen. We discuss suitable protocols for each age, the necessary measurements and provide example data. We also include

  14. Exploration and visualization of connectivity in the adult mouse brain.

    PubMed

    Feng, David; Lau, Chris; Ng, Lydia; Li, Yang; Kuan, Leonard; Sunkin, Susan M; Dang, Chinh; Hawrylycz, Michael

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. All data were aligned to a common template in 3D space to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. A suite of computational tools were developed to search and visualize the projection labeling experiments, available at http://connectivity.brain-map.org. We present three use cases illustrating how these publicly-available tools can be used to perform analyses of long range brain region connectivity. The use cases make extensive use of advanced visualization tools integrated with the atlas including projection density histograms, 3D computed anterograde and retrograde projection paths, and multi-specimen projection composites. These tools offer convenient access to detailed axonal projection information in the adult mouse brain and the ability to perform data analysis and visualization of projection fields and neuroanatomy in an integrated manner. PMID:25637033

  15. Differential Apoptosis Radiosensitivity of Neural Progenitors in Adult Mouse Hippocampus.

    PubMed

    Li, Yu-Qing; Cheng, Zoey; Wong, Shun

    2016-01-01

    Mammalian tissue-specific stem cells and progenitors demonstrate differential DNA damage response. Neural progenitors in dentate gyrus of the hippocampus are known to undergo apoptosis after irradiation. Using a mouse model of hippocampal neuronal development, we characterized the apoptosis sensitivity of the different neural progenitor subpopulations in adult mouse dentate gyrus after irradiation. Two different bromodeoxyuridine incorporation paradigms were used for cell fate mapping. We identified two apoptosis sensitive neural progenitor subpopulations after irradiation. The first represented non-proliferative and non-newborn neuroblasts and immature neurons that expressed doublecortin, calretinin or both. The second consisted of proliferative intermediate neural progenitors. The putative radial glia-like neural stem cells or type-1 cells, regardless of proliferation status, were apoptosis resistant after irradiation. There was no evidence of radiation-induced apoptosis in the absence of the Trp53 (p53) gene but absence of Cdkn1a (p21) did not alter the apoptotic response. Upregulation of nuclear p53 was observed in neuroblasts after irradiation. We conclude that adult hippocampal neural progenitors may demonstrate differential p53-dependent apoptosis sensitivity after irradiation. PMID:27331809

  16. Differential Apoptosis Radiosensitivity of Neural Progenitors in Adult Mouse Hippocampus

    PubMed Central

    Li, Yu-Qing; Cheng, Zoey; Wong, Shun

    2016-01-01

    Mammalian tissue-specific stem cells and progenitors demonstrate differential DNA damage response. Neural progenitors in dentate gyrus of the hippocampus are known to undergo apoptosis after irradiation. Using a mouse model of hippocampal neuronal development, we characterized the apoptosis sensitivity of the different neural progenitor subpopulations in adult mouse dentate gyrus after irradiation. Two different bromodeoxyuridine incorporation paradigms were used for cell fate mapping. We identified two apoptosis sensitive neural progenitor subpopulations after irradiation. The first represented non-proliferative and non-newborn neuroblasts and immature neurons that expressed doublecortin, calretinin or both. The second consisted of proliferative intermediate neural progenitors. The putative radial glia-like neural stem cells or type-1 cells, regardless of proliferation status, were apoptosis resistant after irradiation. There was no evidence of radiation-induced apoptosis in the absence of the Trp53 (p53) gene but absence of Cdkn1a (p21) did not alter the apoptotic response. Upregulation of nuclear p53 was observed in neuroblasts after irradiation. We conclude that adult hippocampal neural progenitors may demonstrate differential p53-dependent apoptosis sensitivity after irradiation. PMID:27331809

  17. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    PubMed Central

    Webb, Carol F.; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. PMID:26111446

  18. Transplantation of testicular tissue in alginate hydrogel loaded with VEGF nanoparticles improves spermatogonial recovery.

    PubMed

    Poels, Jonathan; Abou-Ghannam, Gaël; Decamps, Aline; Leyman, Mélanie; Rieux, Anne des; Wyns, Christine

    2016-07-28

    Transplantation of cryopreserved immature testicular tissue (ITT) is a promising strategy to restore fertility in young boys facing gonadotoxic treatments. However, up to now, limited spermatogonial recovery has been achieved in xenografting models used to evaluate the potential of cryopreserved tissue transplantation. When comparing avascular xenografts of cryopreserved and fresh human ITT into a mouse model, the number of spermatogonia was significantly reduced, regardless of the cryopreservation procedure used. To improve tissue engraftment, revascularization and hence spermatogonial survival, ITT was embedded in two types of hydrogel loaded with VEGF nanoparticles. Small pieces (±1mm(3)) of testicular tissue were grafted in NMRI mice as follows: grafted without encapsulation, grafted after encapsulation in fibrin, in alginate, in fibrin-VEGF-nanoparticle (NP) and in alginate-VEGF-NP. Non-grafted tissue served as control. After 5 and 21days of implantation, seminiferous tubule integrity, revascularization and spermatogonial recovery were evaluated by histology and immunohistochemistry. Seminiferous tubule integrity ranged from 13.3% to 39.6% and 42.7% to 68.7% on day 5 and day 21, respectively. Vascular density on day 5 was found to be higher in VEGF supplemented groups, regardless of the hydrogel used. Staining for phosphorylated VEGF receptor 2 and endothelial proliferation on day 5 was higher in all groups compared to non-grafted avascular controls. Spermatogonial recovery ranged between 14.8% and 27.3% on day 21 and was significantly higher in the alginate and alginate-VEGF-NP groups. The present study demonstrates the potential of alginate hydrogel loaded with nanoencapsulated growth factors to improve cryopreserved tissue engraftment. PMID:27189137

  19. Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development

    PubMed Central

    Chen, Liang-Yu; Willis, William D.; Eddy, Edward M.

    2016-01-01

    Spermatogonial stem cells (SSCs) are a subpopulation of undifferentiated spermatogonia located in a niche at the base of the seminiferous epithelium delimited by Sertoli cells and peritubular myoid (PM) cells. SSCs self-renew or differentiate into spermatogonia that proliferate to give rise to spermatocytes and maintain spermatogenesis. Glial cell line-derived neurotrophic factor (GDNF) is essential for this process. Sertoli cells produce GDNF and other growth factors and are commonly thought to be responsible for regulating SSC development, but limited attention has been paid to the role of PM cells in this process. A conditional knockout (cKO) of the androgen receptor gene in PM cells resulted in male infertility. We found that testosterone (T) induces GDNF expression in mouse PM cells in vitro and neonatal spermatogonia (including SSCs) co-cultured with T-treated PM cells were able to colonize testes of germ cell-depleted mice after transplantation. This strongly suggested that T-regulated production of GDNF by PM cells is required for spermatogonial development, but PM cells might produce other factors in vitro that are responsible. In this study, we tested the hypothesis that production of GDNF by PM cells is essential for spermatogonial development by generating mice with a cKO of the Gdnf gene in PM cells. The cKO males sired up to two litters but became infertile due to collapse of spermatogenesis and loss of undifferentiated spermatogonia. These studies show for the first time, to our knowledge, that the production of GDNF by PM cells is essential for undifferentiated spermatogonial cell development in vivo. PMID:26831079

  20. Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development.

    PubMed

    Chen, Liang-Yu; Willis, William D; Eddy, Edward M

    2016-02-16

    Spermatogonial stem cells (SSCs) are a subpopulation of undifferentiated spermatogonia located in a niche at the base of the seminiferous epithelium delimited by Sertoli cells and peritubular myoid (PM) cells. SSCs self-renew or differentiate into spermatogonia that proliferate to give rise to spermatocytes and maintain spermatogenesis. Glial cell line-derived neurotrophic factor (GDNF) is essential for this process. Sertoli cells produce GDNF and other growth factors and are commonly thought to be responsible for regulating SSC development, but limited attention has been paid to the role of PM cells in this process. A conditional knockout (cKO) of the androgen receptor gene in PM cells resulted in male infertility. We found that testosterone (T) induces GDNF expression in mouse PM cells in vitro and neonatal spermatogonia (including SSCs) co-cultured with T-treated PM cells were able to colonize testes of germ cell-depleted mice after transplantation. This strongly suggested that T-regulated production of GDNF by PM cells is required for spermatogonial development, but PM cells might produce other factors in vitro that are responsible. In this study, we tested the hypothesis that production of GDNF by PM cells is essential for spermatogonial development by generating mice with a cKO of the Gdnf gene in PM cells. The cKO males sired up to two litters but became infertile due to collapse of spermatogenesis and loss of undifferentiated spermatogonia. These studies show for the first time, to our knowledge, that the production of GDNF by PM cells is essential for undifferentiated spermatogonial cell development in vivo. PMID:26831079

  1. Exposure of the mouse perinatal testis to radiation leads to hypospermia at sexual maturity.

    PubMed

    Forand, A; Messiaen, S; Habert, R; Bernardino-Sgherri, J

    2009-03-01

    The first round of mouse spermatogenesis begins from 3 to 4 days after birth through differentiation of gonocytes into spermatogonial-stem cells and type A spermatogonia. Consequently, this step of differentiation may determine generation of the original population of stem cells and the fertility potential of the adult mouse. We aimed to determine the effect of perinatal exposure to ionizing radiation on the testis at the end of the first wave of spermatogenesis and at sexual maturity. Our results show that, radiation sensitivity of the testis substantially decreases from late foetal life to the end of the first week after birth. In addition, partial or full recovery from radiation induced testicular weight loss occurred between the first round of spermatogenesis and sexual maturity, and this was associated with the stimulation of spermatogonial proliferation. Exposure of mice at 17.5 days after conception or at 1 day after birth to gamma-rays decreased the sperm counts at sexual maturity, while exposure of 8 day-old mice had no effect. This suggests that irradiation of late foetal or early neonatal testes has a direct impact on the generation of the neonatal spermatogonial-stem cell pool. PMID:19109333

  2. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    SciTech Connect

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  3. An anatomic gene expression atlas of the adult mouse brain.

    PubMed

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M; Dang, Chinh; Bohland, Jason W; Bokil, Hemant; Mitra, Partha P; Puelles, Luis; Hohmann, John; Anderson, David J; Lein, Ed S; Jones, Allan R; Hawrylycz, Michael

    2009-03-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea). PMID:19219037

  4. Function of GATA Factors in the Adult Mouse Liver

    PubMed Central

    Zheng, Rena; Rebolledo-Jaramillo, Boris; Zong, Yiwei; Wang, Liqing; Russo, Pierre; Hancock, Wayne; Stanger, Ben Z.; Hardison, Ross C.; Blobel, Gerd A.

    2013-01-01

    GATA transcription factors and their Friend of Gata (FOG) cofactors control the development of diverse tissues. GATA4 and GATA6 are essential for the expansion of the embryonic liver bud, but their expression patterns and functions in the adult liver are unclear. We characterized the expression of GATA and FOG factors in whole mouse liver and purified hepatocytes. GATA4, GATA6, and FOG1 are the most prominently expressed family members in whole liver and hepatocytes. GATA4 chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) identified 4409 occupied sites, associated with genes enriched in ontologies related to liver function, including lipid and glucose metabolism. However, hepatocyte-specific excision of Gata4 had little impact on gross liver architecture and function, even under conditions of regenerative stress, and, despite the large number of GATA4 occupied genes, resulted in relatively few changes in gene expression. To address possible redundancy between GATA4 and GATA6, both factors were conditionally excised. Surprisingly, combined Gata4,6 loss did not exacerbate the phenotype resulting from Gata4 loss alone. This points to the presence of an unusually robust transcriptional network in adult hepatocytes that ensures the maintenance of liver function. PMID:24367609

  5. An improved isolation procedure for adult mouse cardiomyocytes.

    PubMed

    Pinz, Ilka; Zhu, Ming; Mende, Ulrike; Ingwall, Joanne S

    2011-09-01

    Isolated adult mouse cardiomyocytes are an important tool in cardiovascular research, but are challenging to prepare. Because the energy supply determines cell function and viability, we compared total creatine ([Cr]) and [ATP] in isolated cardiomyocytes with the intact mouse heart. Isolated myocytes suffered severe losses of Cr (-70%) and ATP (-53%). Myocytes were not able to replete [Cr] during a 5 h incubation period in medium supplemented with 1 mM Cr. In contrast, adding 20 mM Cr to the digestion buffers was sufficient to maintain normal [Cr]. Supplementing buffers with 5 mM of inosine (Ino) and adenosine (Ado) to prevent loss of cellular nucleosides partially protected against loss of ATP. To test whether maintaining [ATP] and [Cr] improves contractile function, myocytes were challenged by varying pacing rate from 0.5 to 10 Hz and by adding isoproterenol (Iso) at 5 and 10 Hz. All groups performed well up to 5 Hz, showing a positive cell shortening-frequency relationship; however, only 16% of myocytes isolated under standard conditions were able to sustain pacing with Iso challenge at 10 Hz. In contrast, 30-50% of the myocytes with normal Cr levels were able to contract and maintain low diastolic [Ca(2+)]. Cell yield also improved in Cr and the Cr/Ino/Ado-treated groups (85-90% vs. 70-75% rod shaped in untreated myocytes). These data suggest that viability and performance of isolated myocytes are improved when they are protected from the severe loss of Cr and ATP during the isolation, making them an even better research tool. PMID:21327944

  6. Effect of age on expression of spermatogonial markers in bovine testis and isolated cells.

    PubMed

    Giassetti, Mariana Ianello; Goissis, Marcelo Demarchi; Moreira, Pedro Vale; de Barros, Flavia Regina Oliveira; Assumpção, Mayra Elena Ortiz D'Ávila; Visintin, José Antônio

    2016-07-01

    Spermatogonial stem cells (SSC) are the most undifferentiated germ cell present in adult male testes and, it is responsible to maintain the spermatogenesis. Age has a negative effect over stem cell, but the aging effect on SSC is not elucidated for bovine. The present study aim to evaluate the effect of age on the expression of undifferentiated spermatogonial markers in testis and in enriched testicular cells from prepubertal calves and adult bulls. In this matter, testicular parenchyma from calves (3-5 months) (n=5) and bulls with 3 years of age (n=5) were minced and, isolated cells were obtained after two enzymatic digestions. Differential platting was performed for two hours onto BSA coated dish. Cell viability was assessed by Trypan Blue solution exclusion method and testicular cells enriched for SSC was evaluated by expression of specific molecular markers by qRT-PCR (POU5F1, GDNF, CXCR4, UCHL1, ST3GAL, SELP, ICAM1 and ITGA6) and flow cytometry (GFRA1, CXCR4 and ITGA6). CXCR4 and UCHL1 expression was evaluated in fixated testes by immunohistochemistry. We observed that age just affected the expression of selective genes [SELP (Fold Change=5.61; p=0.0023) and UCHL1 (Fold Change=4.98; p=0.0127)]. By flow cytometry, age affected only the proportion of ITGA6+ cells (P<0.001), which was higher in prepubertal calves when compared to adult bulls. In situ, we observed an effect of age on the number of UCHL1+ (p=0.0006) and CXCR4+ (p=0.0139) cells per seminiferous tubule. At conclusion, age affects gene expression and the population of cells expressing specific spermatogonial markers in the bovine testis. PMID:27180120

  7. Testicular Niche Required for Human Spermatogonial Stem Cell Expansion

    PubMed Central

    Smith, James F.; Yango, Pamela; Altman, Eran; Choudhry, Shweta; Poelzl, Andrea; Zamah, Alberuni M.; Rosen, Mitchell; Klatsky, Peter C.

    2014-01-01

    Prepubertal boys treated with high-dose chemotherapy do not have an established means of fertility preservation because no established in vitro technique exists to expand and mature purified spermatogonial stem cells (SSCs) to functional sperm in humans. In this study, we define and characterize the unique testicular cellular niche required for SSC expansion using testicular tissues from men with normal spermatogenesis. Highly purified SSCs and testicular somatic cells were isolated by fluorescence-activated cell sorting using SSEA-4 and THY1 as markers of SSCs and somatic cells. Cells were cultured on various established niches to assess their role in SSC expansion in a defined somatic cellular niche. Of all the niches examined, cells in the SSEA-4 population exclusively bound to adult testicular stromal cells, established colonies, and expanded. Further characterization of these testicular stromal cells revealed distinct mesenchymal markers and the ability to undergo differentiation along the mesenchymal lineage, supporting a testicular multipotent stromal cell origin. In vitro human SSC expansion requires a unique niche provided exclusively by testicular multipotent stromal cells with mesenchymal properties. These findings provide an important foundation for developing methods of inducing SSC growth and maturation in prepubertal testicular tissue, essential to enabling fertility preservation for these boys. PMID:25038247

  8. Reconstitution of spermatogenesis from frozen spermatogonial stem cells

    PubMed Central

    Avarbock, Mary R.; Brinster, Clayton J.; Brinster, Ralph L.

    2016-01-01

    Spermatozoa from a number of species can be cryopreserved and then subsequently used to fertilize eggs1. However, this technique has several limitations. First, the freezing protocol varies for each species and must be determined empirically, and for some species appropriate methods have not yet been identified1,2. Second, because these cells are fully differentiated, they will not undergo replication when thawed, and recombination of genetic information cannot occur. We now demonstrate, by using the recently developed spermatogonial transplantation technique3,4, that male germline stem cells can be successfully cryopreserved. Donor testis cells isolated from prepubertal or adult mice and frozen from 4 to 156 days at −196 °C were able to generate spermatogenesis in recipient seminiferous tubules. Relatively standard preservation techniques were used, suggesting that male germ cells from other species can also be stored for long periods. Because transplanted testis stem cells will ultimately undergo replication and meiotic recombination during spermatogenesis, one might consider these preserved male germ lines as biologically immortal. PMID:8640563

  9. Female Adult Mouse Cardiomyocytes Are Protected Against Oxidative Stress

    PubMed Central

    Wang, Fangfei; He, Quan; Sun, Ying; Dai, Xiangguo; Yang, Xiao-Ping

    2010-01-01

    Premenopausal women have less cardiovascular disease and lower cardiovascular morbidity and mortality than men the same age. Our previous studies showed that female mice have lower mortality and better preserved cardiac function after myocardial infarction. However, the precise cellular and molecular mechanisms responsible for such a sex difference are not well established. Using cultured adult mouse cardiomyocytes (ACMs), we tested the hypothesis that the survival advantage of females stems from activated estrogen receptors (ER) and Akt survival signaling pathways. ACMs were isolated from male and female C57BL/6J mice and treated with hydrogen peroxide (H2O2, 100 μM) for 30 min. Cell survival was indicated by rod ratio (rod shaped cells/total cells) and cell death by lactate dehydrogenase (LDH) release and positive staining of Annexin-V (AV+, a marker for apoptosis) and propidium iodide (PI+, a marker for necrosis). In response to H2O2, female ACMs exhibited a higher rod ratio, lower LDH release and fewer AV+ and PI+ cells compared to males. Phospho-Akt was greater in females both at baseline and after H2O2 stimulation. The downstream molecule of Akt, phosphor-GSK-3β (inactivation), was also higher while caspase-3 activity was lower in females in response to H2O2. Bcl-2 did not differ between genders. ERα was the dominant isoform in females, whereas ERβ was low but similar in both genders. Our findings demonstrate that female ACMs have a greater survival advantage when challenged with oxidative stress-induced cell death. This may be attributable to activation of Akt and inhibition of GSK-3β and caspase-3 through an ERα-mediated mechanism. PMID:20212261

  10. Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells

    PubMed Central

    Liu, Ying; Giannopoulou, Eugenia G.; Wen, Duancheng; Falciatori, Ilaria; Elemento, Olivier; Allis, C. David; Rafii, Shahin; Seandel, Marco

    2016-01-01

    Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming. PMID:27117588

  11. Fsh Stimulates Spermatogonial Proliferation and Differentiation in Zebrafish via Igf3.

    PubMed

    Nóbrega, Rafael Henrique; Morais, Roberto Daltro Vidal de Souza; Crespo, Diego; de Waal, Paul P; de França, Luiz Renato; Schulz, Rüdiger W; Bogerd, Jan

    2015-10-01

    Growth factors modulate germ line stem cell self-renewal and differentiation behavior. We investigate the effects of Igf3, a fish-specific member of the igf family. Fsh increased in a steroid-independent manner the number and mitotic index of single type A undifferentiated spermatogonia and of clones of type A differentiating spermatogonia in adult zebrafish testis. All 4 igf gene family members in zebrafish are expressed in the testis but in tissue culture only igf3 transcript levels increased in response to recombinant zebrafish Fsh. This occurred in a cAMP/protein kinase A-dependent manner, in line with the results of studies on the igf3 gene promoter. Igf3 protein was detected in Sertoli cells. Recombinant zebrafish Igf3 increased the mitotic index of type A undifferentiated and type A differentiating spermatogonia and up-regulated the expression of genes related to spermatogonial differentiation and entry into meiosis, but Igf3 did not modulate testicular androgen release. An Igf receptor inhibitor blocked these effects of Igf3. Importantly, the Igf receptor inhibitor also blocked Fsh-induced spermatogonial proliferation. We conclude that Fsh stimulated Sertoli cell production of Igf3, which promoted via Igf receptor signaling spermatogonial proliferation and differentiation and their entry into meiosis. Because previous work showed that Fsh also released spermatogonia from an inhibitory signal by down-regulating anti-Müllerian hormone and by stimulating androgen production, we can now present a model, in which Fsh orchestrates the activity of stimulatory (Igf3, androgens) and inhibitory (anti-Müllerian hormone) signals to promote spermatogenesis. PMID:26207345

  12. Spermatogonial stem cells, infertility and testicular cancer

    PubMed Central

    Singh, Shree Ram; Burnicka-Turek, Ozanna; Chauhan, Chhavi; Hou, Steven X

    2011-01-01

    Abstract The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers. PMID:21155977

  13. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    SciTech Connect

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  14. Localization of PPAR isotypes in the adult mouse and human brain

    PubMed Central

    Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B.; Mayfield, R. Dayne; Harris, R. Adron

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain. PMID:27283430

  15. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes.

    PubMed Central

    Overturf, K.; al-Dhalimy, M.; Ou, C. N.; Finegold, M.; Grompe, M.

    1997-01-01

    Previous work has shown that adult mouse hepatocytes can divide at least 18 times in vivo. To test whether this represents the upper limit of their regenerative capacity, we performed serial transplantation of hepatocytes in the fumarylacetoacetate hydrolase deficiency murine model of liver repopulation. Hepatocytes from adult donors were serially transplanted in limiting numbers six times and resulted in complete repopulation during each cycle. This corresponds to a minimal number of 69 cell doublings or a 7.3 x 10(20)-fold expansion. No evidence for abnormal liver function or altered hepatic architecture was found in repopulated animals. We conclude that a fraction of adult mouse hepatocytes have growth potential similar to that of hematopoietic stem cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9358753

  16. A comprehensive transcriptomic analysis of infant and adult mouse ovary.

    PubMed

    Pan, Linlin; Gong, Wei; Zhou, Yuanyuan; Li, Xiaonuan; Yu, Jun; Hu, Songnian

    2014-10-01

    Ovary development is a complex process involving numerous genes. A well-developed ovary is essential for females to keep fertility and reproduce offspring. In order to gain a better insight into the molecular mechanisms related to the process of mammalian ovary development, we performed a comparative transcriptomic analysis on ovaries isolated from infant and adult mice by using next-generation sequencing technology (SOLiD). We identified 15,454 and 16,646 transcriptionally active genes at the infant and adult stage, respectively. Among these genes, we also identified 7021 differentially expressed genes. Our analysis suggests that, in general, the adult ovary has a higher level of transcriptomic activity. However, it appears that genes related to primordial follicle development, such as those encoding Figla and Nobox, are more active in the infant ovary, whereas expression of genes vital for follicle development, such as Gdf9, Bmp4 and Bmp15, is upregulated in the adult. These data suggest a dynamic shift in gene expression during ovary development and it is apparent that these changes function to facilitate follicle maturation, when additional functional gene studies are considered. Furthermore, our investigation has also revealed several important functional pathways, such as apoptosis, MAPK and steroid biosynthesis, that appear to be much more active in the adult ovary compared to those of the infant. These findings will provide a solid foundation for future studies on ovary development in mice and other mammals and help to expand our understanding of the complex molecular and cellular events that occur during postnatal ovary development. PMID:25251848

  17. Mouse matriptase-2: identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues.

    PubMed Central

    Hooper, John D; Campagnolo, Luisa; Goodarzi, Goodarz; Truong, Tony N; Stuhlmann, Heidi; Quigley, James P

    2003-01-01

    We report the identification and characterization of mouse matriptase-2 (m-matriptase-2), an 811-amino-acid protein composed of an N-terminal cytoplasmic domain, a membrane-spanning domain, two CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains, three LDLR (low-density-lipoprotein receptor class A) domains and a C-terminal serine-protease domain. All m-matriptase-2 protein domain boundaries corresponded with intron/exon junctions of the encoding gene, which spans approx. 29 kb and comprises 18 exons. Matriptase-2 is highly conserved in human, mouse and rat, with the rat matriptase-2 gene ( r-maltriptase-2 ) predicted to encode transmembrane and soluble isoforms. Western-blot analysis indicated that m-matriptase-2 migrates close to its theoretical molecular mass of 91 kDa, and immunofluorescence analysis was consistent with the proposed surface membrane localization of this protein. Reverse-transcription PCR and in-situ -hybridization analysis indicated that m-matriptase-2 expression overlaps with the distribution of mouse hepsin (m-hepsin, a cell-surface serine protease identified in hepatoma cells) in adult tissues and during embryonic development. In adult tissues both are expressed at highest levels in liver, kidney and uterus. During embryogenesis m-matriptase-2 expression peaked between days 12.5 and 15.5. m-hepsin expression was biphasic, with peaks at day 7.5 to 8.5 and again between days 12.5 and 15.5. In situ hybridization of embryonic tissues indicated abundant expression of both m-matriptase-2 and m-hepsin in the developing liver and at lower levels in developing pharyngo-tympanic tubes. While m-hepsin was detected in the residual embryonic yolk sac and with lower intensity in lung, heart, gastrointestinal tract, developing kidney tubules and epithelium of the oral cavity, m-matriptase-2 was absent in these tissues, but strongly expressed within the nasal cavity by olfactory epithelial

  18. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org). PMID:22832508

  19. Cardiomyogenic potential of c-kit+ expressing cells derived from neonatal and adult mouse hearts

    PubMed Central

    Zaruba, Marc-Michael; Soonpaa, Mark; Reuter, Sean; Field, Loren J.

    2010-01-01

    Summary Background c-kit is a receptor tyrosine kinase family member expressed in hematopoietic stem cells. c-kit is also transiently expressed in cardiomyocyte precursors during development, and in a rare cell population in the normal adult heart. Here, the cardiomyogenic potential of c-kit+ cells isolated from normal neonatal, normal adult and infarcted adult mouse hearts was evaluated. Methods and Results Magnetic activated cell sorting (MACS) was used to prepare c-kit+ cells from the hearts of ACT-EGFP/MHC-nLAC double transgenic mice. These animals exhibit widespread enhanced green fluorescent protein (EGFP) expression and cardiomyocyte-restricted nuclear β-galactosidase activity, thus permitting simultaneous tracking of cell survival and differentiation. A subset of the c-kit+ cells from double transgenic neonatal hearts acquired a cardiomyogenic phenotype when co-cultured with fetal cardiomyocytes (2.4% of all EGFP+ cells screened), but not when cultured alone or when co-cultured with mouse fibroblasts (0.03% and 0.05% of the EGFP+ cells screened, respectively). In contrast, c-kit+ cells from normal adult double transgenic hearts failed to undergo cardiomyogenic differentiation when co-cultured with non-transgenic fetal cardiomyocytes (>18,000 EGFP+ cells screened) or when transplanted into normal or infarcted adult mouse hearts (14 EGFP+ grafts examined). A single c-kit+ cell from an infarcted double transgenic adult heart was observed to acquire a cardiomyogenic phenotype in co-culture (>37,000 EGFP+ cells screened). Conclusions These data suggest that the ability of cardiac-resident c-kit+ cells to acquire a cardiomyogenic phenotype is subject to temporal limitations, or alternatively that the cardiomyogenic population is lost. Elucidation of the underlying molecular basis may permit robust cardiomyogenic induction in adult-derived cardiac c-kit+ cells. PMID:20421520

  20. Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin.

    PubMed

    Golub, Justin S; Tong, Ling; Ngyuen, Tot B; Hume, Cliff R; Palmiter, Richard D; Rubel, Edwin W; Stone, Jennifer S

    2012-10-24

    We developed a transgenic mouse to permit conditional and selective ablation of hair cells in the adult mouse utricle by inserting the human diphtheria toxin receptor (DTR) gene into the Pou4f3 gene, which encodes a hair cell-specific transcription factor. In adult wild-type mice, administration of diphtheria toxin (DT) caused no significant hair cell loss. In adult Pou4f3(+/DTR) mice, DT treatment reduced hair cell numbers to 6% of normal by 14 days post-DT. Remaining hair cells were located primarily in the lateral extrastriola. Over time, hair cell numbers increased in these regions, reaching 17% of untreated Pou4f3(+/DTR) mice by 60 days post-DT. Replacement hair cells were morphologically distinct, with multiple cytoplasmic processes, and displayed evidence for active mechanotransduction channels and synapses characteristic of type II hair cells. Three lines of evidence suggest replacement hair cells were derived via direct (nonmitotic) transdifferentiation of supporting cells: new hair cells did not incorporate BrdU, supporting cells upregulated the pro-hair cell gene Atoh1, and supporting cell numbers decreased over time. This study introduces a new method for efficient conditional hair cell ablation in adult mouse utricles and demonstrates that hair cells are spontaneously regenerated in vivo in regions where there may be ongoing hair cell turnover. PMID:23100430

  1. Follicle stimulating hormone increases spermatogonial stem cell colonization during in vitro co-culture.

    PubMed

    Narenji Sani, Reza; Tajik, Parviz; Yousefi, Mohammad Hassan; Movahedin, Mansoureh; Qasemi-Panahi, Babak; Shafiei, Shiva; Ahmadi Hamedani, Mahmood

    2013-01-01

    The complex process of spermatogenesis is regulated by various factors. Studies on spermatogonial stem cells (SCCs) have provided very important tool to improve herd genetic and different field. 0.2 to 0.3 percent of total cells of seminiferous tubules is consist of spermatogonial stem cells. To investigate and biomanipulation of these cells, proliferation and viability rate of cells should be increased in vitro, at first. Follicle stimulating hormone (FSH) has been suggested to play a determinant role in the survival of germ cells in addition to increasing spermatogonial proliferation. In this study, the in vitro effects of FSH on spermatogonial cell colony formation were investigated. Sertoli and spermatogonial cells were isolated from 3-5 months old calves. The identity of the Sertoli cells and spermatogonial stem cells were confirmed through immunocytochemistry and colony morphology, respectively. Co-cultured Sertoli and spermatogonial cells were treated with FSH in different dose of 10, 20 and 40 IU mL(-1) FSH, before colony assay. Results indicated that, FSH increased in vitro colonization of spermatogonial cells in comparison with control group. In conclusion, using FSH provided proper bovine spermatogonial stem cell culture medium for in vitro study of these cells. PMID:25593684

  2. Follicle stimulating hormone increases spermatogonial stem cell colonization during in vitro co-culture

    PubMed Central

    Narenji Sani, Reza; Tajik, Parviz; Yousefi, Mohammad Hassan; Movahedin, Mansoureh; Qasemi-Panahi, Babak; Shafiei, Shiva; Ahmadi Hamedani, Mahmood

    2013-01-01

    The complex process of spermatogenesis is regulated by various factors. Studies on spermatogonial stem cells (SCCs) have provided very important tool to improve herd genetic and different field. 0.2 to 0.3 percent of total cells of seminiferous tubules is consist of spermatogonial stem cells. To investigate and biomanipulation of these cells, proliferation and viability rate of cells should be increased in vitro, at first. Follicle stimulating hormone (FSH) has been suggested to play a determinant role in the survival of germ cells in addition to increasing spermatogonial proliferation. In this study, the in vitro effects of FSH on spermatogonial cell colony formation were investigated. Sertoli and spermatogonial cells were isolated from 3-5 months old calves. The identity of the Sertoli cells and spermatogonial stem cells were confirmed through immunocytochemistry and colony morphology, respectively. Co-cultured Sertoli and spermatogonial cells were treated with FSH in different dose of 10, 20 and 40 IU mL-1 FSH, before colony assay. Results indicated that, FSH increased in vitro colonization of spermatogonial cells in comparison with control group. In conclusion, using FSH provided proper bovine spermatogonial stem cell culture medium for in vitro study of these cells. PMID:25593684

  3. Whole Mount Dissection and Immunofluorescence of the Adult Mouse Cochlea.

    PubMed

    Montgomery, Scott C; Cox, Brandon C

    2016-01-01

    The organ of Corti, housed in the cochlea of the inner ear, contains mechanosensory hair cells and surrounding supporting cells which are organized in a spiral shape and have a tonotopic gradient for sound detection. The mouse cochlea is approximately 6 mm long and often divided into three turns (apex, middle, and base) for analysis. To investigate cell loss, cell division, or mosaic gene expression, the whole mount or surface preparation of the cochlea is useful. This dissection method allows visualization of all cells within the organ of Corti when combined with immunostaining and confocal microscopy to image cells at different planes in the z-axis. Multiple optical cross-sections can also be obtained from these z-stack images. In addition, the whole mount dissection method can be used for scanning electron microscopy, although a different fixation method is needed. Here, we present a method to isolate the organ of Corti as three intact cochlear turns (apex, middle, and base). This method can be used for mice ranging from one week of age through adulthood and differs from the technique used for neonatal samples where calcification of the cochlea is incomplete. A slightly modified version can be used for dissection of the rat cochlea. We also demonstrate a procedure for immunostaining with fluorescently tagged antibodies. PMID:26779585

  4. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

    PubMed

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T; Sorensen, Staci A; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-02-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type-specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  5. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics

    PubMed Central

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-01-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  6. [CO-CULTURE OF BOAR SPERMATOGONIAL CELLS WITH SERTOLI CELLS].

    PubMed

    Savchenkova, I P; Vasil'eva, S A

    2016-01-01

    In the present study, we developed in vitro culture conditions using co-culture of boar spermatogonial cells with Sertoli cells. Testes from 60-day-old crossbred boar were used. A spermatogonia-enriched culture was achieved by enzymatic digestion method and purification by density gradient centrifugation using a discontinuous Percoll gradient and differentiated adherence technique. Lipid drops were detected in isolated Sertoli cells by Oil Red O staining. We have found that the cultivation of boar spermatogonia in the presence of Sertoli cells (up to 35 days) leads to their differentiation as well as in vivo in testis. Association of cells in groups, formation of chains and suspension clusters of the spermatogenic cells were observed on the 10th day. Spermatogonial cellular colonies were noted at the same time. These cellular colonies were analyzed for the expression of genes: Nanog and Plzf in RT PCR. The expression of the Nanog gene in the experimental cellular clones obtained by short-term culture of spermatogonial cells in the presence of Sertoli cells was 200 times higher than the expression of this gene in the freshly isolated spermatogonial cells expression was found in freshly isolated germ cells and in cellular clones derived in vitro. We have found that, in the case of longer cultivation of these cells on Sertoli cells, in vitro process of differentiation of germ cells and formation of single mobile boar spermatozoa occurs at 30-33 days. Cellular population is heterogeneous at this stage. Spermatogenic differentiation in vitro without Sertoli cells stays on the 7th day of cultivation. The results show that co-culture of boar spermatogonia-enriched cells with Sertoli cells can induce their differentiation into spermatozoa in vitro and facilitate obtaining of porcine germ cell culture. PMID:27228660

  7. Retinoic acid receptor beta2 and neurite outgrowth in the adult mouse spinal cord in vitro.

    PubMed

    Corcoran, Jonathan; So, Po-Lin; Barber, Robert D; Vincent, Karen J; Mazarakis, Nicholas D; Mitrophanous, Kyriacos A; Kingsman, Susan M; Maden, Malcolm

    2002-10-01

    Retinoic acid, acting through the nuclear retinoic acid receptor beta2 (RARbeta2), stimulates neurite outgrowth from peripheral nervous system tissue that has the capacity to regenerate neurites, namely, embryonic and adult dorsal root ganglia. Similarly, in central nervous system tissue that can regenerate, namely, embryonic mouse spinal cord, retinoic acid also stimulates neurite outgrowth and RARbeta2 is upregulated. By contrast, in the adult mouse spinal cord, which cannot regenerate, no such upregulation of RARbeta2 by retinoic acid is observed and no neurites are extended in vitro. To test our hypothesis that the upregulation of RARbeta2 is crucial to neurite regeneration, we have transduced adult mouse or rat spinal cord in vitro with a minimal equine infectious anaemia virus vector expressing RARbeta2. After transduction, prolific neurite outgrowth occurs. Outgrowth does not occur when the cord is transduced with a different isoform of RARbeta nor does it occur following treatment with nerve growth factor. These data demonstrate that RARbeta2 is involved in neurite outgrowth, at least in vitro, and that this gene may in the future be of some therapeutic use. PMID:12235288

  8. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes

    PubMed Central

    Nickerson, John M.; Goodman, Penny; Chrenek, Micah A.; Johnson, Christiana J.; Berglin, Lennart; Redmond, T. Michael.; Boatright, Jeffrey H.

    2013-01-01

    Subretinal injection offers one of the best ways to deliver many classes of drugs, reagents, cells and treatments to the photoreceptor, Müller, and retinal pigment epithelium (RPE) cells of the retina. Agents delivered to this space are placed within microns of the intended target cell, accumulating to high concentrations because there is no dilution due to transport processes or diffusion. Dilution in the interphotoreceptor space (IPS) is minimal because the IPS volume is only 10-20 microliters in the human eye and less than 1 microliter in the mouse eye. For gene delivery purposes, we wished to transfect the cells adjacent to the IPS in adult mouse eyes. Others transfect these cells in neonatal rats to study the development of the retina. In both neonates and adults, electroporation is found to be effective Here we describe the optimization of electroporation conditions for RPE cells in the adult mouse eye with naked plasmids. However, both techniques, subretinal injection and electroporation, present some technical challenges that require skill on the part of the surgeon to prevent untoward damage to the eye. Here we describe methods that we have used for the past ten years (1). PMID:22688698

  9. Isolation and Culture of Adult Mouse Cardiomyocytes for Cell Signaling and in vitro Cardiac Hypertrophy

    PubMed Central

    Li, Daxiang; Wu, Jian; Bai, Yan; Zhao, Xiaochen; Liu, Lijun

    2014-01-01

    Technological advances have made genetically modified mice, including transgenic and gene knockout mice, an essential tool in many research fields. Adult cardiomyocytes are widely accepted as a good model for cardiac cellular physiology and pathophysiology, as well as for pharmaceutical intervention. Genetically modified mice preclude the need for complicated cardiomyocyte infection processes to generate the desired genotype, which are inefficient due to cardiomyocytes’ terminal differentiation. Isolation and culture of high quantity and quality functional cardiomyocytes will dramatically benefit cardiovascular research and provide an important tool for cell signaling transduction research and drug development. Here, we describe a well-established method for isolation of adult mouse cardiomyocytes that can be implemented with little training. The mouse heart is excised and cannulated to an isolated heart system, then perfused with a calcium-free and high potassium buffer followed by type II collagenase digestion in Langendorff retrograde perfusion mode. This protocol yields a consistent result for the collection of functional adult mouse cardiomyocytes from a variety of genetically modified mice. PMID:24894542

  10. Stem cell niches in the adult mouse heart

    PubMed Central

    Urbanek, Konrad; Cesselli, Daniela; Rota, Marcello; Nascimbene, Angelo; De Angelis, Antonella; Hosoda, Toru; Bearzi, Claudia; Boni, Alessandro; Bolli, Roberto; Kajstura, Jan; Anversa, Piero; Leri, Annarosa

    2006-01-01

    Cardiac stem cells (CSCs) have been identified in the adult heart, but the microenvironment that protects the slow-cycling, undifferentiated, and self-renewing CSCs remains to be determined. We report that the myocardium possesses interstitial structures with the architectural organization of stem cell niches that harbor long-term BrdU-retaining cells. The recognition of long-term label-retaining cells provides functional evidence of resident CSCs in the myocardium, indicating that the heart is an organ regulated by a stem cell compartment. Cardiac niches contain CSCs and lineage-committed cells, which are connected to supporting cells represented by myocytes and fibroblasts. Connexins and cadherins form gap and adherens junctions at the interface of CSCs–lineage-committed cells and supporting cells. The undifferentiated state of CSCs is coupled with the expression of α4-integrin, which colocalizes with the α2-chain of laminin and fibronectin. CSCs divide symmetrically and asymmetrically, but asymmetric division predominates, and the replicating CSC gives rise to one daughter CSC and one daughter committed cell. By this mechanism of growth kinetics, the pool of primitive CSCs is preserved, and a myocyte progeny is generated together with endothelial and smooth muscle cells. Thus, CSCs regulate myocyte turnover that is heterogeneous across the heart, faster at the apex and atria, and slower at the base–midregion of the ventricle. PMID:16754876

  11. Phenotypic and Molecular Characterization of Domestic Cat (Felis catus) Spermatogonial Stem Cells.

    PubMed

    Powell, Robin H; Galiguis, Jason; Biancardi, Monica N; Pope, C Earle; Leibo, Stanley P; Wang, Guoshun; Gómez, Martha C

    2016-07-01

    In many mammalian species, surface markers have been used to obtain enriched populations of spermatogonial stem cells (SSCs) for assisted reproduction and other applications; however, little is known about the expression patterns of feline SSCs. In this study, we assessed expression of the SSC surface markers commonly used in other species, KIT, ITGA6, CD9, GFRalpha1, ADGRA3, and THY1, in addition to the less frequently used pluripotent markers TRA-1-60, TRA-1-81, SSEA-1, and SSEA-4 in SSCs of both prepubertal and adult domestic cats (Felis catus). To further characterize cat SSCs, we sorted cells using SSC-specific markers and evaluated the expression of the pluripotent transcription factors NANOG, POU5F1, and SOX2 and the proto-oncogene MYC within these populations. We concluded that SSC surface markers used in other mammalian species were not specific for identifying cat SSCs. However, the pluripotent markers we evaluated were more specific to cat spermatogonia, and the presence of SSEA-1 and SSEA-4 in fewer and primarily individual cells suggests that these two markers may be used for enrichment of cat SSCs. The expression of pluripotent transcription factors at mRNA level by single-stained cells positive for SSEA-4 and by dual-stained cells positive for both GFRalpha1 and SSEA-4 reflects the undifferentiated stage of cat SSCs. The absence of transcription factors in double-stained cells positive for only one marker implies the loss of the stem cell-like identity with the loss of either GFRalpha1 or SSEA-4. Further investigation is warranted to elucidate the biological characteristics of these spermatogonial subpopulations. PMID:27281702

  12. Rat spermatogenesis in mouse testis

    PubMed Central

    Clouthier, David E.; Avarbock, Mary R.; Maika, Shanna D.; Hammer, Robert E.

    2016-01-01

    Recently, transplantation of mouse donor spermatogonial stem cells from a fertile testis to an infertile recipient mouse testis was described1,2. The donor cells established spermatogenesis in the seminiferous tubules of the host, and normal spermatozoa were produced. In the most successful transplants, the recipient mice were fertile and sired up to 80 per cent of progeny from donor cells2. Here we examine the feasibility of transplanting spermatogonial stem cells from other species to the mouse seminiferous tubule to generate spermatogenesis. Marked testis cells from transgenic rats were transplanted to the testes of immunodeficient mice, and in all of 10 recipient mice (in 19 of 20 testes), rat spermatogenesis occurred. Epididymides of eight mice were examined, and the three from mice with the longest transplants (≥110 days) contained rat spermatozoa with normal morphology. The generation of rat spermatogenesis in mouse testes suggests that spermatogonial stem cells of many species could be transplanted, and opens the possibility of xenogeneic spermatogenesis for other species. PMID:8632797

  13. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  14. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS. PMID:27284195

  15. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  16. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation.

    PubMed

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  17. Histology and Ultrastructure of Transitional Changes in Skin Morphology in the Juvenile and Adult Four-Striped Mouse (Rhabdomys pumilio)

    PubMed Central

    Stewart, Eranée; Ajao, Moyosore Salihu

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin. PMID:24288469

  18. Kinetics and genomic profiling of adult human and mouse β-cell maturation.

    PubMed

    Szabat, Marta; Pourghaderi, Poya; Soukhatcheva, Galina; Verchere, C Bruce; Warnock, Garth L; Piret, James M; Johnson, James D

    2011-01-01

    Diabetes is a multifactorial metabolic disorder defined by the loss of functional pancreatic insulin-producing β-cells. The functional maturation and dedifferentiation of adult β-cells is central to diabetes pathogenesis and to β-cell replacement therapy for the treatment of diabetes. Despite its importance, the dynamics and mechanisms of adult β-cell maturation remain poorly understood. Using a novel Pdx1/Ins1 dual fluorescent reporter lentiviral vector, we previously found that individual adult human and mouse β-cells exist in at least two differentiation states distinguishable by the activation of the rat Ins1 promoter and performed the first real-time imaging of the maturation of individual cultured β-cells. Our previous study focused on transformed (MIN6) β-cells as a model to investigatethe kinetics of β-cell maturation. In the present study, we investigated the kinetics of the maturation process in primary human and mouse β-cells and performed gene expression profiling. Gene expression profiling of FACS purified immature Pdx1 (+) /Ins1 (low) cells and mature Pdx1 (high) /Ins1 (high ) cells from cultures of human islets, mouse islets and MIN6 cells revealed that Pdx1 (+) /Ins1 (low) cells are enriched for multiple genes associated with β-cell development/progenitor cells, proliferation, apoptosis, as well as genes coding for other islet cell hormones such as glucagon. We also demonstrated that the heterogeneity in β-cell maturation states previously observed in vitro, can also be found in vivo. Collectively, these experiments contribute to the understanding of maturation, dedifferentiation and plasticity of adult pancreatic β-cells. The results have significant implications for islet regeneration and for in vitro generation of functional β-cells to treat diabetes. PMID:21633187

  19. Sertoli Cells Maintain Leydig Cell Number and Peritubular Myoid Cell Activity in the Adult Mouse Testis

    PubMed Central

    Monteiro, Ana; Milne, Laura; Cruickshanks, Lyndsey; Jeffrey, Nathan; Guillou, Florian; Freeman, Tom C.; Mitchell, Rod T.; Smith, Lee B.

    2014-01-01

    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health. PMID:25144714

  20. Light Scattering Properties Vary across Different Regions of the Adult Mouse Brain

    PubMed Central

    Stubblefield, Elizabeth A.; Felsen, Gidon

    2013-01-01

    Recently developed optogenetic tools provide powerful approaches to optically excite or inhibit neural activity. In a typical in-vivo experiment, light is delivered to deep nuclei via an implanted optical fiber. Light intensity attenuates with increasing distance from the fiber tip, determining the volume of tissue in which optogenetic proteins can successfully be activated. However, whether and how this volume of effective light intensity varies as a function of brain region or wavelength has not been systematically studied. The goal of this study was to measure and compare how light scatters in different areas of the mouse brain. We delivered different wavelengths of light via optical fibers to acute slices of mouse brainstem, midbrain and forebrain tissue. We measured light intensity as a function of distance from the fiber tip, and used the data to model the spread of light in specific regions of the mouse brain. We found substantial differences in effective attenuation coefficients among different brain areas, which lead to substantial differences in light intensity demands for optogenetic experiments. The use of light of different wavelengths additionally changes how light illuminates a given brain area. We created a brain atlas of effective attenuation coefficients of the adult mouse brain, and integrated our data into an application that can be used to estimate light scattering as well as required light intensity for optogenetic manipulation within a given volume of tissue. PMID:23874433

  1. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation

    PubMed Central

    Korogod, Natalya; Petersen, Carl CH; Knott, Graham W

    2015-01-01

    Analysis of brain ultrastructure using electron microscopy typically relies on chemical fixation. However, this is known to cause significant tissue distortion including a reduction in the extracellular space. Cryo fixation is thought to give a truer representation of biological structures, and here we use rapid, high-pressure freezing on adult mouse neocortex to quantify the extent to which these two fixation methods differ in terms of their preservation of the different cellular compartments, and the arrangement of membranes at the synapse and around blood vessels. As well as preserving a physiological extracellular space, cryo fixation reveals larger numbers of docked synaptic vesicles, a smaller glial volume, and a less intimate glial coverage of synapses and blood vessels compared to chemical fixation. The ultrastructure of mouse neocortex therefore differs significantly comparing cryo and chemical fixation conditions. DOI: http://dx.doi.org/10.7554/eLife.05793.001 PMID:26259873

  2. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation.

    PubMed

    Korogod, Natalya; Petersen, Carl C H; Knott, Graham W

    2015-01-01

    Analysis of brain ultrastructure using electron microscopy typically relies on chemical fixation. However, this is known to cause significant tissue distortion including a reduction in the extracellular space. Cryo fixation is thought to give a truer representation of biological structures, and here we use rapid, high-pressure freezing on adult mouse neocortex to quantify the extent to which these two fixation methods differ in terms of their preservation of the different cellular compartments, and the arrangement of membranes at the synapse and around blood vessels. As well as preserving a physiological extracellular space, cryo fixation reveals larger numbers of docked synaptic vesicles, a smaller glial volume, and a less intimate glial coverage of synapses and blood vessels compared to chemical fixation. The ultrastructure of mouse neocortex therefore differs significantly comparing cryo and chemical fixation conditions. PMID:26259873

  3. ChIP-Seq analysis of the adult male mouse brain after developmental exposure to arsenic.

    PubMed

    Tyler, Christina R; Weber, Jessica A; Labrecque, Matthew; Hessinger, Justin M; Edwards, Jeremy S; Allan, Andrea M

    2015-12-01

    Exposure to the common environmental contaminant arsenic impacts the epigenetic landscape, including DNA methylation and histone modifications, of several cell types. Developmental arsenic exposure (DAE) increases acetylation and methylation of histone proteins and the protein expression of several chromatin-modifying enzymes in the dentate gyrus (DG) subregion of the adult male mouse brain [26]. To complement and support these data, ChIP-Seq analysis of DNA associated with trimethylation of histone 3 lysine 4 (H3K4me3) derived from the adult male DG after DAE was performed. DAE induced differential H3K4me3 enrichment on genes in pathways associated with cellular development and growth, cell death and survival, and neurological disorders, particularly as they relate to cancer, in the adult male brain. Comparison of H3K4me3 enrichment in controls revealed mechanisms that are potentially lacking in arsenic-exposed animals, including neurotransmission, neuronal growth and development, hormonal regulation, protein synthesis, and cellular homeostasis. New pathways impacted by arsenic include cytoskeleton organization, cell signaling, and potential disruption of immune function and warrant further investigation using this DAE paradigm in the mouse brain. PMID:26543888

  4. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    PubMed

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-01-01

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues. PMID:27103217

  5. Spermatogonial stem cell transplantation into Rhesus testes regenerates spermatogenesis producing functional sperm

    PubMed Central

    Hermann, Brian P.; Sukhwani, Meena; Winkler, Felicity; Pascarella, Julia N.; Peters, Karen A.; Sheng, Yi; Valli, Hanna; Rodriguez, Mario; Ezzelarab, Mohamed; Dargo, Gina; Peterson, Kim; Masterson, Keith; Ramsey, Cathy; Ward, Thea; Lienesch, Maura; Volk, Angie; Cooper, David K.; Thomson, Angus W.; Kiss, Joseph E.; Penedo, Maria Cecilia T.; Schatten, Gerald P.; Mitalipov, Shoukhrat; Orwig, Kyle E.

    2013-01-01

    Summary Spermatogonial stem cells (SSCs) maintain spermatogenesis throughout a man’s life and may have application for treating some cases of male infertility, including those caused by chemotherapy before puberty. We performed autologous and allogeneic SSC transplantations into the testes of 18 adult and 5 prepubertal recipient macaques that were rendered infertile with alkylating chemotherapy. After autologous transplant, the donor genotype from lentivirus-marked SSCs was evident in the ejaculated sperm of 9/12 adult and 3/5 prepubertal recipients after they reached maturity. Allogeneic transplant led to donor-recipient chimerism in sperm from 2/6 adult recipients. Ejaculated sperm from one recipient transplanted with allogeneic donor SSCs were injected into 85 rhesus oocytes via intracytoplasmic sperm injection. Eighty-one oocytes were fertilized, producing embryos ranging from 4-cell to blastocyst with donor paternal origin confirmed in 7/81 embryos. This demonstration of functional donor spermatogenesis following SSC transplantation in primates is an important milestone for informed clinical translation. PMID:23122294

  6. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    SciTech Connect

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  7. Human spermatogonial stem cells: a possible origin for spermatocytic seminoma

    PubMed Central

    Waheeb, Reham; Hofmann, Marie-Claude

    2011-01-01

    In mammals, spermatogenesis is maintained throughout life by a small subpopulation of type A spermatogonia called spermatogonial stem cells (SSCs). In rodents, SSCs, or Asingle spermatogonia, form the self-renewing population. SSCs can also divide into Apaired (Apr) spermatogonia that are predestined to differentiate. Apaired spermatogonia produce chains of Aaligned (Aal) spermatogonia that divide to form A1 to A4, then type B spermatogonia. Type B spermatogonia will divide into primary spermatocytes that undergo meiosis. In human, there are only two different types of A spermatogonia, the Adark and Apale spermatogonia. The Adark spermatogonia are considered reserve stem cells, whereas the Apale spermatogonia are the self-renewing stem cells. There is only one generation of type B spermatogonia before differentiation into spermatocytes, which makes human spermatogenesis less efficient than in rodents. Although the biology of human SSCs is not well known, a panel of phenotypic markers has recently emerged that is remarkably similar to the list of markers expressed in mice. One such marker, the orphan receptor GPR125, is a plasma membrane protein that can be used to isolate human SSCs. Human SSCs proliferate in culture in response to growth factors such as GDNF, which is essential for SSC self-renewal in mice and triggers the same signaling pathways in both species. Therefore, despite differences in the spermatogonial differentiation scheme, both species use the same genes and proteins to maintain the pool of self-renewing SSCs within their niche. Spermatocytic seminomas are mainly found in the testes of older men, and they rarely metastasize. It is believed that these tumors originate from a postnatal germ cell. Because these lesions can express markers specific for meiotic prophase, they might originate form a primary spermatocyte. However, morphological appearance and overall immunohistochemical profile of these tumors indicate that the cell of origin could also

  8. Regrowth of Serotonin Axons in the Adult Mouse Brain Following Injury.

    PubMed

    Jin, Yunju; Dougherty, Sarah E; Wood, Kevin; Sun, Landy; Cudmore, Robert H; Abdalla, Aya; Kannan, Geetha; Pletnikov, Mikhail; Hashemi, Parastoo; Linden, David J

    2016-08-17

    It is widely believed that damaged axons in the adult mammalian brain have little capacity to regrow, thereby impeding functional recovery after injury. Studies using fixed tissue have suggested that serotonin neurons might be a notable exception, but remain inconclusive. We have employed in vivo two-photon microscopy to produce time-lapse images of serotonin axons in the neocortex of the adult mouse. Serotonin axons undergo massive retrograde degeneration following amphetamine treatment and subsequent slow recovery of axonal density, which is dominated by new growth with little contribution from local sprouting. A stab injury that transects serotonin axons running in the neocortex is followed by local regression of cut serotonin axons and followed by regrowth from cut ends into and across the stab rift zone. Regrowing serotonin axons do not follow the pathways left by degenerated axons. The regrown axons release serotonin and their regrowth is correlated with recovery in behavioral tests. PMID:27499084

  9. Expression of Quaking RNA-Binding Protein in the Adult and Developing Mouse Retina

    PubMed Central

    Aono, Kentaro; Kawashima, Togo; Inoue, Kiyoshi; Ku, Li; Feng, Yue; Koike, Chieko

    2016-01-01

    Quaking (QKI), which belongs to the STAR family of KH domain-containing RNA-binding proteins, functions in pre-mRNA splicing, microRNA regulation, and formation of circular RNA. QKI plays critical roles in myelinogenesis in the central and peripheral nervous systems and has been implicated neuron-glia fate decision in the brain; however, neither the expression nor function of QKI in the neural retina is known. Here we report the expression of QKI RNA-binding protein in the developing and mature mouse retina. QKI was strongly expressed by Müller glial cells in both the developing and adult retina. Intriguingly, during development, QKI was expressed in early differentiating neurons, such as the horizontal and amacrine cells, and subsequently in later differentiating bipolar cells, but not in photoreceptors. Neuronal expression was uniformly weak in the adult. Among QKI isoforms (5, 6, and 7), QKI-5 was the predominantly expressed isoform in the adult retina. To study the function of QKI in the mouse retina, we examined quakingviable(qkv) mice, which have a dysmyelination phenotype that results from deficiency of QKI expression and reduced numbers of mature oligodendrocytes. In homozygous qkv mutant mice (qkv/qkv), the optic nerve expression levels of QKI-6 and 7, but not QKI-5 were reduced. In the retina of the mutant homozygote, QKI-5 levels were unchanged, and QKI-6 and 7 levels, already low, were also unaffected. We conclude that QKI is expressed in developing and adult Müller glia. QKI is additionally expressed in progenitors and in differentiating neurons during retinal development, but expression weakened or diminished during maturation. Among QKI isoforms, we found that QKI-5 predominated in the adult mouse retina. Since Müller glial cells are thought to share properties with retinal progenitor cells, our data suggest that QKI may contribute to maintaining retinal progenitors prior to differentiation into neurons. On the other hand, the expression of QKI in

  10. Distribution of EphA5 receptor protein in the developing and adult mouse nervous system

    PubMed Central

    Cooper, Margaret A.; Crockett, David P.; Nowakowski, Richard S.; Gale, Nicholas W.; Zhou, Renping

    2009-01-01

    The EphA5 receptor tyrosine kinase plays key roles in axon guidance during development. However, the presence of EphA5 protein in the nervous system has not been fully characterized. To better examine EphA5 localization, mutant mice, in which the EphA5 cytoplasmic domain was replaced with β-galactosidase, were analyzed for both temporal and regional changes in the distribution of EphA5 protein in the developing and adult nervous system. During embryonic development, high levels of EphA5 protein were found in the retina, olfactory bulb, cerebral neocortex, hippocampus, pretectum, tectum, cranial nerve nuclei, and the spinal cord. Variations in intensity were observed as development proceeded. Staining of pretectal nuclei, tectal nuclei, and other areas of the mesencephalon became more diffuse after maturity whereas the cerebral neocortex gained more robust intensity. In the adult, receptor protein continued to be detected in many areas including the olfactory nuclei, neocortex, piriform cortex, induseum griseum, hippocampus, thalamus, amygdala, hypothalamus and septum. In addition, EphA5 protein was found in the claustrum, stria terminalis, barrel cortex, striatal patches, and along discrete axon tracts within the corpus callosum of the adult. These observations suggest that EphA5 function is not limited to the developing mouse brain and may play a role in synaptic plasticity in the adult. PMID:19326470

  11. Sexually dimorphic effect of in vitro fertilization (IVF) on adult mouse fat and liver metabolomes.

    PubMed

    Feuer, Sky K; Donjacour, Annemarie; Simbulan, Rhodel K; Lin, Wingka; Liu, Xiaowei; Maltepe, Emin; Rinaudo, Paolo F

    2014-11-01

    The preimplantation embryo is particularly vulnerable to environmental perturbation, such that nutritional and in vitro stresses restricted exclusively to this stage may alter growth and affect long-term metabolic health. This is particularly relevant to the over 5 million children conceived by in vitro fertilization (IVF). We previously reported that even optimized IVF conditions reprogram mouse postnatal growth, fat deposition, and glucose homeostasis in a sexually dimorphic fashion. To more clearly interrogate the metabolic changes associated with IVF in adulthood, we used nontargeted mass spectrometry to globally profile adult IVF- and in vivo-conceived liver and gonadal adipose tissues. There was a sex- and tissue-specific effect of IVF on adult metabolite signatures indicative of metabolic reprogramming and oxidative stress and reflective of the observed phenotypes. Additionally, we observed a striking effect of IVF on adult sexual dimorphism. Male-female differences in metabolite concentration were exaggerated in hepatic IVF tissue and significantly reduced in IVF adipose tissue, with the majority of changes affecting amino acid and lipid metabolites. We also observed female-specific changes in markers of oxidative stress and adipogenesis, including reduced glutathione, cysteine glutathione disulfide, ophthalmate, urate, and corticosterone. In summary, embryo manipulation and early developmental experiences can affect adult patterns of sexual dimorphism and metabolic physiology. PMID:25211591

  12. Establishment of Leptin-Responsive Cell Lines from Adult Mouse Hypothalamus

    PubMed Central

    Iwakura, Hiroshi; Dote, Katsuko; Bando, Mika; Koyama, Hiroyuki; Hosoda, Kiminori; Kangawa, Kenji; Nakao, Kazuwa

    2016-01-01

    Leptin resistance is considered to be the primary cause of obesity. However, the cause of leptin resistance remains incompletely understood, and there is currently no cure for the leptin-resistant state. In order to identify novel drug-target molecules that could overcome leptin resistance, it would be useful to develop in vitro assay systems for evaluating leptin resistance. In this study, we established immortalized adult mouse hypothalamus—derived cell lines, termed adult mouse hypothalamus (AMH) cells, by developing transgenic mice in which SV40 Tag was overexpressed in chromogranin A—positive cells in a tamoxifen-dependent manner. In order to obtain leptin-responsive clones, we selected clones based on the phosphorylation levels of STAT3 induced by leptin. The selected clones were fairly responsive to leptin in terms of STAT3, ERK, and Akt phosphorylation and induction of c-Fos mRNA induction. Pretreatment with leptin, insulin, and palmitate attenuated the c-Fos mRNA response to leptin, suggesting that certain aspects of leptin resistance might be reconstituted in this cellular model. These cell lines are useful tools for understanding the molecular nature of the signal disturbance in the leptin-resistant state and for identifying potential target molecules for drugs that relieve leptin resistance, although they have drawbacks including de-differentiated nature and lack of long-time stability. PMID:26849804

  13. Caspase-Mediated Apoptosis in Sensory Neurons of Cultured Dorsal Root Ganglia in Adult Mouse

    PubMed Central

    Momeni, Hamid Reza; Soleimani Mehranjani, Malek; Shariatzadeh, Mohammad Ali; Haddadi, Mahnaz

    2013-01-01

    Objective: Sensory neurons in dorsal root ganglia (DRG) undergo apoptosis after peripheral nerve injury. The aim of this study was to investigate sensory neuron death and the mechanism involved in the death of these neurons in cultured DRG. Materials and Methods: In this experimental study, L5 DRG from adult mouse were dissected and incubated in culture medium for 24, 48, 72 and 96 hours. Freshly dissected and cultured DRG were then fixed and sectioned using a cryostat. Morphological and biochemical features of apoptosis were investigated using fluorescent staining (Propidium iodide and Hoechst 33342) and the terminal Deoxynucleotide transferase dUTP nick end labeling (TUNEL) method respectively. To study the role of caspases, general caspase inhibitor (Z-VAD.fmk, 100 μM) and immunohistochemistry for activated caspase-3 were used. Results: After 24, 48, 72 and 96 hours in culture, sensory neurons not only displayed morphological features of apoptosis but also they appeared TUNEL positive. The application of Z-VAD.fmk inhibited apoptosis in these neurons over the same time period. In addition, intense activated caspase-3 immunoreactivity was found both in the cytoplasm and the nuclei of these neurons after 24 and 48 hours. Conclusion: Results of the present study show caspase-dependent apoptosis in the sensory neurons of cultured DRG from adult mouse. PMID:24027661

  14. [Generation and application of pluripotent stem cells from spermatogonial stem cells].

    PubMed

    Zhang, Yan; Wu, Yingji

    2011-02-01

    Recent studies have confirmed that diverse adult tissue cells can be reprogrammed and induced to pluripotency, that is so-called induced pluripotent stem cells (iPS cells). But most of these dedifferentiated processes are induced by gene delivery with retroviral vectors. Some of the delivered genes are cancer causing. So, in current situation, these adult-derived embryonic stem-like cells cannot be used in clinical therapy to cure human diseases. Recently some articles that were published in the authoritative journals are receiving attentions. They show that, in mice and human, spermatogonial stem cells (SSCs) can be used for generating pluripotent stem cells without the exogenous genes and retroviruses, and they can also be used for autologous transplantation without ethical problems. These findings suggest that human SSCs may have considerable potential for cell-based, autologous organ regeneration therapy for various diseases. In this review, we describe and compare the methods that have been used to isolate, purificate and culture SSCs. We also describe the recent results in which SSCs can be transformed into pluripotent stem cells, and the pluripotent stem cells have potential applications in regenerative medicine and genetic medicine. PMID:21485215

  15. Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance

    PubMed Central

    Das, Joydeep; Kang, Min-Hee; Kim, Eunsu; Kwon, Deug-Nam; Choi, Yun-Jung; Kim, Jin-Hoi

    2015-01-01

    Hexavalent chromium [Cr(VI)], an environmental toxicant, causes severe male reproductive abnormalities. However, the actual mechanisms of toxicity are not clearly understood and have not been studied in detail. The present in vitro study aimed to investigate the mechanism of reproductive toxicity of Cr(VI) in male somatic cells (mouse TM3 Leydig cells and TM4 Sertoli cells) and spermatogonial stem cells (SSCs) because damage to or dysfunction of these cells can directly affect spermatogenesis, resulting in male infertility. Cr(VI) by inducing oxidative stress was cytotoxic to both male somatic cells and SSCs in a dose-dependent manner, and induced mitochondria-dependent apoptosis. Although the mechanism of Cr(VI)-induced cytotoxicity was similar in both somatic cells, the differences in sensitivity of TM3 and TM4 cells to Cr(VI) could be attributed, at least in part, to cell-specific regulation of P-AKT1, P-ERK1/2, and P-P53 proteins. Cr(VI) affected the differentiation and self-renewal mechanisms of SSCs, disrupted steroidogenesis in TM3 cells, while in TM4 cells, the expression of tight junction signaling and cell receptor molecules was affected as well as the secretory functions were impaired. In conclusion, our results show that Cr(VI) is cytotoxic and impairs the physiological functions of male somatic cells and SSCs. PMID:26355036

  16. Persistent DNA Damage in Spermatogonial Stem Cells After Fractionated Low-Dose Irradiation of Testicular Tissue

    SciTech Connect

    Grewenig, Angelika; Schuler, Nadine; Rübe, Claudia E.

    2015-08-01

    Purpose: Testicular spermatogenesis is extremely sensitive to radiation-induced damage, and even low scattered doses to testis from radiation therapy may pose reproductive risks with potential treatment-related infertility. Radiation-induced DNA double-strand breaks (DSBs) represent the greatest threat to the genomic integrity of spermatogonial stem cells (SSCs), which are essential to maintain spermatogenesis and prevent reproduction failure. Methods and Materials: During daily low-dose radiation with 100 mGy or 10 mGy, radiation-induced DSBs were monitored in mouse testis by quantifying 53 binding protein 1 (53BP-1) foci in SSCs within their stem cell niche. The accumulation of DSBs was correlated with proliferation, differentiation, and apoptosis of testicular germ cell populations. Results: Even very low doses of ionizing radiation arrested spermatogenesis, primarily by inducing apoptosis in spermatogonia. Eventual recovery of spermatogenesis depended on the survival of SSCs and their functional ability to proliferate and differentiate to provide adequate numbers of differentiating spermatogonia. Importantly, apoptosis-resistant SSCs resulted in increased 53BP-1 foci levels during, and even several months after, fractionated low-dose radiation, suggesting that surviving SSCs have accumulated an increased load of DNA damage. Conclusions: SSCs revealed elevated levels of DSBs for weeks after radiation, and if these DSBs persist through differentiation to spermatozoa, this may have severe consequences for the genomic integrity of the fertilizing sperm.

  17. D-Aspartate Induces Proliferative Pathways in Spermatogonial GC-1 Cells.

    PubMed

    Santillo, Alessandra; Falvo, Sara; Chieffi, Paolo; Di Fiore, Maria Maddalena; Senese, Rosalba; Chieffi Baccari, Gabriella

    2016-02-01

    D-aspartate (D-Asp) is an endogenous amino acid present in vertebrate tissues, with particularly high levels in the testis. In vivo studies indicate that D-Asp indirectly stimulates spermatogenesis through the hypothalamic-pituitary-gonadal axis. Moreover, in vitro studies have demonstrated that D-Asp up-regulates testosterone production in Leydig cells by enhancing expression of the steroidogenic acute regulatory protein. In this study, a cell line derived from immortalized type-B mouse spermatogonia retaining markers of mitotic germ cells (GC-1) was employed to explore more direct involvement of D-Asp in spermatogenesis. Activity and protein expression of markers of cell proliferation were determined at intervals during incubation in D-Asp-containing medium. D-Asp induced phosphorylation of ERK and Akt proteins, stimulated expression of PCNA and Aurora B, and enhanced mRNA synthesis and protein expression of P450 aromatase and protein expression of Estrogen Receptor β (ERβ). These results are the first demonstration of a direct effect of D-Asp on spermatogonial mitotic activity. Considering that spermatogonia express the NR1 subunit of the N-Methyl-D-Aspartic Acid receptor (NMDAR), we suggest that their response to D-Asp depends on NMDAR-mediated activation of the ERK and Akt pathways and is further enhanced by activation of the P450 aromatase/ERβ pathway. PMID:26189884

  18. Ectopic expression of single transcription factors directs differentiation of a medaka spermatogonial cell line.

    PubMed

    Thoma, Eva C; Wagner, Toni U; Weber, Isabell P; Herpin, Amaury; Fischer, Andreas; Schartl, Manfred

    2011-08-01

    The capability to form all cell types of the body is a unique feature of stem cells. However, many questions remain concerning the mechanisms regulating differentiation potential. The derivation of spermatogonial cell lines (SGs) from mouse and human, which can differentiate across germ-layer borders, suggested male germ cells as a potential stem cell source in addition to embryonic stem cells. Here, we present a differentiation system using an SG of the vertebrate model organism Oryzias latipes (medaka). We report differentiation of this cell line into 4 different ectodermal and mesodermal somatic cell types. In addition to differentiation into adipocytes by retinoic acid treatment, we demonstrate for the first time that directed differentiation of an SG can be induced by ectopic expression of single transcription factors, completely independent of culture conditions. Transient transfection with mitf-m, a transcription factor that has been shown to induce differentiation into melanocytes in medaka embryonic stem cells, resulted in the formation of the same cell type in spermatogonia. Similarly, the formation of neuron-like cells and matrix-depositing osteoblasts was induced by ectopic expression of mash1 and cbfa1, respectively. Interestingly, we found that the expression of all mentioned fate-inducing transcription factors leads to recapitulation of the temporal pattern of marker gene expression known from in vivo studies. PMID:21090990

  19. Testicular tissue cryopreservation and spermatogonial stem cell transplantation to restore fertility: from bench to bedside

    PubMed Central

    2014-01-01

    Male infertility management has made significant progress during the past three decades, especially after the introduction of intracytoplasmic sperm injection in 1992. However, many boys and men still suffer from primary testicular failure due to acquired or genetic causes. New and novel treatments are needed to address these issues. Spermatogenesis originates from spermatogonial stem cells (SSCs) that reside in the testis. Many of these men lack SSCs or have lost SSCs over time as a result of specific medical conditions or toxic exposures. Loss of SSCs is critical in prepubertal boys who suffer from cancer and are going through gonadotoxic cancer treatments, as there is no option of sperm cryopresrvation due to sexual immaturity. The development of SSC transplantation in a mouse model to repopulate spermatozoa in depleted testes has opened new avenues of research in other animal models, including non-human primates. Recent advances in cryopreservation and in vitro propagation of human SSCs offer promise for human SSC autotransplantation in the near future. Ongoing research is focusing on safety and technical issues of human SSC autotransplantation. This is the time to counsel parents and boys at risk of infertility on the possibility of cryopreserving and banking a small amount of testis tissue for potential future use in SSC transplantation. PMID:25157677

  20. Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells.

    PubMed

    He, Yanan; Chen, Xiaoli; Zhu, Huabin; Wang, Dong

    2015-12-01

    The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals. PMID:25749914

  1. Comparative study of spermatogonial survival after X-ray exposure, high LET (HZE) irradiation or spaceflight

    NASA Technical Reports Server (NTRS)

    Sapp, W. J.; Williams, C. S.; Williams, J. W.; Philpott, D. E.; Kato, K.; Miquel, J. M.; Serova, L.

    1992-01-01

    Spermatogonial cell loss has been observed in rats flown on Space Lab 3, Cosmos 1887, Cosmos 2044 and in mice following irradiation with X-ray or with HZE particle beams. Spermatogonial loss is determined by cell counting in maturation stage-6 seminferous tubules. With the exception of iron, laboratory irradiation experiments (with mice) revealed a similar pattern of spermatogonial loss proportional to the radiation dose at levels less than 0.1 Gy. Helium and argon irradiation resulted in a 5-percent loss of spermatogonia after only 0.01 Gy exposure. Significant spermatogonial loss (45 percent) occurred at this radiation level with iron particle beams. The loss of spermatogonia during each spaceflight was less than 10 percent when compared to control (nonflight) animals.

  2. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    PubMed Central

    Keighren, Margaret A.; Flockhart, Jean H.

    2016-01-01

    ABSTRACT The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues. PMID:27103217

  3. Localization and regulation of PML bodies in the adult mouse brain.

    PubMed

    Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M

    2016-06-01

    PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons. PMID:25956166

  4. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages.

    PubMed

    Seaberg, Raewyn M; Smukler, Simon R; Kieffer, Timothy J; Enikolopov, Grigori; Asghar, Zeenat; Wheeler, Michael B; Korbutt, Gregory; van der Kooy, Derek

    2004-09-01

    The clonal isolation of putative adult pancreatic precursors has been an elusive goal of researchers seeking to develop cell replacement strategies for diabetes. We report the clonal identification of multipotent precursor cells from the adult mouse pancreas. The application of a serum-free, colony-forming assay to pancreatic cells enabled the identification of precursors from pancreatic islet and ductal populations. These cells proliferate in vitro to form clonal colonies that coexpress neural and pancreatic precursor markers. Upon differentiation, individual clonal colonies produce distinct populations of neurons and glial cells, pancreatic endocrine beta-, alpha- and delta-cells, and pancreatic exocrine and stellate cells. Moreover, the newly generated beta-like cells demonstrate glucose-dependent Ca(2+) responsiveness and insulin release. Pancreas colonies do not express markers of embryonic stem cells, nor genes suggestive of mesodermal or neural crest origins. These cells represent a previously unidentified adult intrinsic pancreatic precursor population and are a promising candidate for cell-based therapeutic strategies. PMID:15322557

  5. Growth Arrest Specific 1 (GAS1) Is Abundantly Expressed in the Adult Mouse Central Nervous System

    PubMed Central

    Zarco, Natanael; Bautista, Elizabeth; Cuéllar, Manola; Vergara, Paula; Flores-Rodriguez, Paola; Aguilar-Roblero, Raúl

    2013-01-01

    Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS. PMID:23813868

  6. Abca7 deletion does not affect adult neurogenesis in the mouse

    PubMed Central

    Li, Hongyun; Karl, Tim; Garner, Brett

    2016-01-01

    ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) have identified ABCA7 single nucleotide polymorphisms (SNPs) that increase Alzheimer's disease (AD) risk, however, the mechanisms by which ABCA7 may control AD risk remain to be fully elucidated. Based on previous research suggesting that certain ABC transporters may play a role in the regulation of neurogenesis, we conducted a study of cell proliferation and neurogenic potential using cellular bromodeoxyuridine (BrdU) incorporation and doublecortin (DCX) immunostaining in adult Abca7 deficient mice and wild-type-like (WT) littermates. In the present study counting of BrdU-positive and DCX-positive cells in an established adult neurogenesis site in the dentate gyrus (DG) indicated there were no significant differences when WT and Abca7 deficient mice were compared. We also measured the area occupied by immunohistochemical staining for BrdU and DCX in the DG and the subventricular zone (SVZ) of the same mice and this confirmed that ABCA7 does not play a significant role in the regulation of cell proliferation or neurogenesis in the adult mouse. PMID:26792809

  7. Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse.

    PubMed

    Furube, Eriko; Morita, Mitsuhiro; Miyata, Seiji

    2015-11-01

    Although evidence has accumulated that neurogenesis and gliogenesis occur in the subventricular zone (SVZ) and subgranular zone (SGZ) of adult mammalian brains, recent studies indicate the presence of neural stem cells (NSCs) in adult brains, particularly the circumventricular regions. In the present study, we aimed to determine characterization of NSCs and their progenitor cells in the sensory circumventricular organs (CVOs), including organum vasculosum of the lamina terminalis, subfornical organ, and area postrema of adult mouse. There were two types of NSCs: tanycyte-like ependymal cells and astrocyte-like cells. Astrocyte-like NSCs proliferated slowly and oligodendrocyte progenitor cells (OPCs) and neural progenitor cells (NPCs) actively divided. Molecular marker protein expression of NSCs and their progenitor cells were similar to those reported in the SVZ and SGZ, except that astrocyte-like NSCs expressed S100β. These circumventricular NSCs possessed the capacity to give rise to oligodendrocytes and sparse numbers of neurons and astrocytes in the sensory CVOs and adjacent brain regions. The inhibition of vascular endothelial growth factor (VEGF) signaling by using a VEGF receptor-associated tyrosine kinase inhibitor AZD2171 largely suppressed basal proliferation of OPCs. A single systemic administration of lipopolysaccharide attenuated proliferation of OPCs and induced remarkable proliferation of microglia. The present study indicates that sensory circumventricular NSCs provide new neurons and glial cells in the sensory CVOs and adjacent brain regions. PMID:25994374

  8. Abca7 deletion does not affect adult neurogenesis in the mouse.

    PubMed

    Li, Hongyun; Karl, Tim; Garner, Brett

    2016-01-01

    ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) have identified ABCA7 single nucleotide polymorphisms (SNPs) that increase Alzheimer's disease (AD) risk, however, the mechanisms by which ABCA7 may control AD risk remain to be fully elucidated. Based on previous research suggesting that certain ABC transporters may play a role in the regulation of neurogenesis, we conducted a study of cell proliferation and neurogenic potential using cellular bromodeoxyuridine (BrdU) incorporation and doublecortin (DCX) immunostaining in adult Abca7 deficient mice and wild-type-like (WT) littermates. In the present study counting of BrdU-positive and DCX-positive cells in an established adult neurogenesis site in the dentate gyrus (DG) indicated there were no significant differences when WT and Abca7 deficient mice were compared. We also measured the area occupied by immunohistochemical staining for BrdU and DCX in the DG and the subventricular zone (SVZ) of the same mice and this confirmed that ABCA7 does not play a significant role in the regulation of cell proliferation or neurogenesis in the adult mouse. PMID:26792809

  9. Paracrine Wnt/β-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis

    PubMed Central

    Takase, Hinako M.; Nusse, Roeland

    2016-01-01

    Spermatogonial stem cells (SSCs) fuel the production of male germ cells but the mechanisms behind SSC self-renewal, proliferation, and differentiation are still poorly understood. Using the Wnt target gene Axin2 and genetic lineage-tracing experiments, we found that undifferentiated spermatogonia, comprising SSCs and transit amplifying progenitor cells, respond to Wnt/β-catenin signals. Genetic elimination of β-catenin indicates that Wnt/β-catenin signaling promotes the proliferation of these cells. Signaling is likely initiated by Wnt6, which is uniquely expressed by neighboring Sertoli cells, the only somatic cells in the seminiferous tubule that support germ cells and act as a niche for SSCs. Therefore, unlike other stem cell systems where Wnt/β-catenin signaling is implicated in self-renewal, the Wnt pathway in the testis specifically contributes to the proliferation of SSCs and progenitor cells. PMID:26929341

  10. A mouse model of adult-onset anaemia due to erythropoietin deficiency.

    PubMed

    Yamazaki, Shun; Souma, Tomokazu; Hirano, Ikuo; Pan, Xiaoqing; Minegishi, Naoko; Suzuki, Norio; Yamamoto, Masayuki

    2013-01-01

    Erythropoietin regulates erythropoiesis in a hypoxia-inducible manner. Here we generate inherited super-anaemic mice (ISAM) as a mouse model of adult-onset anaemia caused by erythropoietin deficiency. ISAM express erythropoietin in the liver but lack erythropoietin production in the kidney. Around weaning age, when the major erythropoietin-producing organ switches from the liver to the kidney, ISAM develop anaemia due to erythropoietin deficiency, which is curable by administration of recombinant erythropoietin. In ISAM severe chronic anaemia enhances transgenic green fluorescent protein and Cre expression driven by the complete erythropoietin-gene regulatory regions, which facilitates efficient labelling of renal erythropoietin-producing cells. We show that the majority of cortical and outer medullary fibroblasts have the innate potential to produce erythropoietin, and also reveal a new set of erythropoietin target genes. ISAM are a useful tool for the evaluation of erythropoiesis-stimulating agents and to trace the dynamics of erythropoietin-producing cells. PMID:23727690

  11. Brain-derived neurotrophic factor prevents dendritic retraction of adult mouse retinal ganglion cells.

    PubMed

    Binley, Kate E; Ng, Wai S; Barde, Yves-Alain; Song, Bing; Morgan, James E

    2016-08-01

    We used cultured adult mouse retinae as a model system to follow and quantify the retraction of dendrites using diolistic labelling of retinal ganglion cells (RGCs) following explantation. Cell death was monitored in parallel by nuclear staining as 'labelling' with RGC and apoptotic markers was inconsistent and exceedingly difficult to quantify reliably. Nuclear staining allowed us to delineate a lengthy time window during which dendrite retraction can be monitored in the absence of RGC death. The addition of brain-derived neurotrophic factor (BDNF) produced a marked reduction in dendritic degeneration, even when application was delayed for 3 days after retinal explantation. These results suggest that the delayed addition of trophic factors may be functionally beneficial before the loss of cell bodies in the course of conditions such as glaucoma. PMID:27285957

  12. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction

    PubMed Central

    Serrano, Rosa; Tejera, Agueda; Ayuso, Eduard; Jimenez, Veronica; Formentini, Ivan; Bobadilla, Maria; Mizrahi, Jacques; de Martino, Alba; Gomez, Gonzalo; Pisano, David; Mulero, Francisca; Wollert, Kai C.; Bosch, Fatima; Blasco, Maria A.

    2016-01-01

    Coronary heart disease is one of the main causes of death in the developed world, and treatment success remains modest, with high mortality rates within 1 year after myocardial infarction (MI). Thus, new therapeutic targets and effective treatments are necessary. Short telomeres are risk factors for age-associated diseases, including heart disease. Here we address the potential of telomerase (Tert) activation in prevention of heart failure after MI in adult mice. We use adeno-associated viruses for cardiac-specific Tert expression. We find that upon MI, hearts expressing Tert show attenuated cardiac dilation, improved ventricular function and smaller infarct scars concomitant with increased mouse survival by 17% compared with controls. Furthermore, Tert treatment results in elongated telomeres, increased numbers of Ki67 and pH3-positive cardiomyocytes and a gene expression switch towards a regeneration signature of neonatal mice. Our work suggests telomerase activation could be a therapeutic strategy to prevent heart failure after MI. PMID:25519492

  13. Isolation and Culture of Dental Epithelial Stem Cells from the Adult Mouse Incisor

    PubMed Central

    Chavez, Miquella G.; Hu, Jimmy; Seidel, Kerstin; Li, Chunying; Jheon, Andrew; Naveau, Adrien; Horst, Orapin; Klein, Ophir D.

    2014-01-01

    Understanding the cellular and molecular mechanisms that underlie tooth regeneration and renewal has become a topic of great interest1-4, and the mouse incisor provides a model for these processes. This remarkable organ grows continuously throughout the animal's life and generates all the necessary cell types from active pools of adult stem cells housed in the labial (toward the lip) and lingual (toward the tongue) cervical loop (CL) regions. Only the dental stem cells from the labial CL give rise to ameloblasts that generate enamel, the outer covering of teeth, on the labial surface. This asymmetric enamel formation allows abrasion at the incisor tip, and progenitors and stem cells in the proximal incisor ensure that the dental tissues are constantly replenished. The ability to isolate and grow these progenitor or stem cells in vitro allows their expansion and opens doors to numerous experiments not achievable in vivo, such as high throughput testing of potential stem cell regulatory factors. Here, we describe and demonstrate a reliable and consistent method to culture cells from the labial CL of the mouse incisor. PMID:24834972

  14. Hormonal regulation of epidermal growth factor and protease in the submandibular gland of the adult mouse.

    PubMed

    Gresik, E W; Schenkein, I; van der Noen, H; Barka, T

    1981-09-01

    The structure of the granular convoluted tubules of the mouse submandibular gland is influenced by androgens, adrenal steroids, and thyroid hormones. We wished to investigate the effects of variations in hormonal status on the quantitative and qualitative distribution of two secretory products of these tubules, epidermal growth factor (EGF) and protease. The effects of the thyroid and adrenal glands on EGF content and protease activity of the submandibular glands of adult female mice were studied by RIAs (EGF), enzyme assays (protease), and immunocytochemical methods. In animals rendered chronically hypothyroid by propylthiouracil (4 months) or in animals which were adrenalectomized and ovariectomized (3 weeks), protease activity and EGF levels were reduced by 81-97%. The administration of testosterone induced these polypeptides even in hypothyroid animals. Daily administration of L-T4 (T4; 1 micrograms/g BW) for 7 days increased EGF and protease activity 3.6-fold in intact mice and reversed the effect of hypothyroidism. EGF and protease were also induced by T4 in adrenalectomized and ovariectomized mice, although to a lesser degree than in intact animals. Immunocytochemical stainings of submandibular glands indicated that the number of granular convoluted tubule cells immunoreactive for EGF correlated with the levels of EGF determined by RIAs. With respect to immunostaining for protease, such a correlation was not observed. The data indicate multihormonal regulation of EGF and protease in the mouse submandibular gland. PMID:7021131

  15. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion.

    PubMed

    Miller, Michelle Erin; Rosten, Patty; Lemieux, Madeleine E; Lai, Courteney; Humphries, R Keith

    2016-01-01

    Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1's importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1's functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs) and implicate reactive oxygen species (ROS) as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA)26Sor(tm1(Cre/ERT)Nat)/J or B6.Cg-Tg(Mx1-Cre)1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1's role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation. PMID:26986211

  16. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion

    PubMed Central

    Miller, Michelle Erin; Rosten, Patty; Lemieux, Madeleine E.; Lai, Courteney; Humphries, R. Keith

    2016-01-01

    Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1’s importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1’s functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs) and implicate reactive oxygen species (ROS) as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA)26Sortm1(Cre/ERT)Nat/J or B6.Cg-Tg(Mx1-Cre)1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1’s role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation. PMID:26986211

  17. Generation of a novel mouse model that recapitulates early and adult onset glycogenosis type IV.

    PubMed

    Akman, H Orhan; Sheiko, Tatiana; Tay, Stacey K H; Finegold, Milton J; Dimauro, Salvatore; Craigen, William J

    2011-11-15

    Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by deficiency of the glycogen branching enzyme (GBE). The diagnostic feature of the disease is the accumulation of a poorly branched form of glycogen known as polyglucosan (PG). The disease is clinically heterogeneous, with variable tissue involvement and age of disease onset. Absence of enzyme activity is lethal in utero or in infancy affecting primarily muscle and liver. However, residual enzyme activity (5-20%) leads to juvenile or adult onset of a disorder that primarily affects muscle as well as central and peripheral nervous system. Here, we describe two mouse models of GSD IV that reflect this spectrum of disease. Homologous recombination was used to insert flippase recognition target recombination sites around exon 7 of the Gbe1 gene and a phosphoglycerate kinase-Neomycin cassette within intron 7, leading to a reduced synthesis of GBE. Mice bearing this mutation (Gbe1(neo/neo)) exhibit a phenotype similar to juvenile onset GSD IV, with wide spread accumulation of PG. Meanwhile, FLPe-mediated homozygous deletion of exon 7 completely eliminated GBE activity (Gbe1(-/-)), leading to a phenotype of lethal early onset GSD IV, with significant in utero accumulation of PG. Adult mice with residual GBE exhibit progressive neuromuscular dysfunction and die prematurely. Differently from muscle, PG in liver is a degradable source of glucose and readily depleted by fasting, emphasizing that there are structural and regulatory differences in glycogen metabolism among tissues. Both mouse models recapitulate typical histological and physiological features of two human variants of branching enzyme deficiency. PMID:21856731

  18. Spermatogonial Stem Cells Protein Identification in In Vitro Culture from Non-Obstructive Azoospermia Patient

    PubMed Central

    Abdul Wahab, Azantee Yazmie; Md. Isa, Muhammad Lokman; Ramli, Roszaman

    2016-01-01

    Background Spermatogonial stem cells (SSCs) are classifiedas a unique adult stem cells that have capability to propagate, differentiate, and transmit genetic information to the next generation. Studies on human SSCs may help resolve male infertility problems, especially in azoospermia patients. Therefore, this study aims to propagate SSCs in-vitro with a presence of growth factor and detect SSC-specific protein cell surface markers. Methods The sample was derived from non-obstructive azoospermic (NOA) patient. The disassociation of SSCs was done using trypsin. Specific cultures in serum-free media with added basic fibroblast growth factor (bFGF) were developed to support self-renewal division. This undifferentiated protocol was performed for 49 days. Cells were analysed on days 1, 7, 14, 21, and 49. Results Human SSCs began to aggregate and form colonies after 14 to 21 days in specific culture. Then, the cells were successful expanded and remained stable for a duration of 49 days. Four specifics markers were identified using immunofluorescence in SSCs on day 49: ITGα6, ITGβ CD9, and GFRα1. Conclusion This approach of using in vitro culture with additional growth factor is able to propagate SSCs from non-obstructive azoospermia patient via detection of protein cell surface markers. PMID:27418868

  19. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    SciTech Connect

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  20. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    PubMed

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes. PMID:26923756

  1. Notch2 is required for maintaining sustentacular cell function in the adult mouse main olfactory epithelium

    PubMed Central

    Rodriguez, Steve; Sickles, Heather M.; DeLeonardis, Chris; Alcaraz, Ana; Gridley, Thomas; Lin, David M.

    2008-01-01

    Notch receptors are expressed in neurons and glia in the adult nervous system, but why this expression persists is not well-understood. Here we examine the role of the Notch pathway in the postnatal mouse main olfactory system, and show evidence consistent with a model where Notch2 is required for maintaining sustentacular cell function. In the absence of Notch2, the laminar nature of these glial-like cells is disrupted. Hes1, Hey1, and Six1, which are downstream effectors of the Notch pathway, are down-regulated, and cytochrome P450 and Glutathione S-transferase (GST) expression by sustentacular cells is reduced. Functional levels of GST activity are also reduced. These disruptions are associated with increased olfactory sensory neuron degeneration. Surprisingly, expression of Notch3 is also down-regulated. This suggests the existence of a feedback loop where expression of Notch3 is initially independent of Notch2, but requires Notch2 for maintained expression. While the Notch pathway has previously been shown to be important for promoting gliogenesis during development, this is the first demonstration that the persistent expression of Notch receptors is required for maintaining glial function in adult. PMID:18155189

  2. Inhibition of Notch activity promotes nonmitotic regeneration of hair cells in the adult mouse utricles.

    PubMed

    Lin, Vincent; Golub, Justin S; Nguyen, Tot Bui; Hume, Clifford R; Oesterle, Elizabeth C; Stone, Jennifer S

    2011-10-26

    The capacity of adult mammals to regenerate sensory hair cells is not well defined. To explore early steps in this process, we examined reactivation of a transiently expressed developmental gene, Atoh1, in adult mouse utricles after neomycin-induced hair cell death in culture. Using an adenoviral reporter for Atoh1 enhancer, we found that Atoh1 transcription is activated in some hair cell progenitors (supporting cells) 3 d after neomycin treatment. By 18 d after neomycin, the number of cells with Atoh1 transcriptional activity increased significantly, but few cells acquired hair cell features (i.e., accumulated ATOH1 or myosin VIIa protein or developed stereocilia). Treatment with DAPT, an inhibitor of γ-secretase, reduced notch pathway activity, enhanced Atoh1 transcriptional activity, and dramatically increased the number of Atoh1-expressing cells with hair cell features, but only in the striolar/juxtastriolar region. Similar effects were seen with TAPI-1, an inhibitor of another enzyme required for notch activity (TACE). Division of supporting cells was rare in any control or DAPT-treated utricles. This study shows that mature mammals have a natural capacity to initiate vestibular hair cell regeneration and suggests that regional notch activity is a significant inhibitor of direct transdifferentiation of supporting cells into hair cells following damage. PMID:22031879

  3. Stroke Increases Neural Stem Cells and Angiogenesis in the Neurogenic Niche of the Adult Mouse

    PubMed Central

    Zhang, Rui Lan; Chopp, Michael; Roberts, Cynthia; Liu, Xianshuang; Wei, Min; Nejad-Davarani, Siamak P.; Wang, Xinli; Zhang, Zheng Gang

    2014-01-01

    The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ) neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP) positive neural stem cells that are in contact with the cerebrospinal fluid (CSF) via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction. PMID:25437857

  4. Temporal profiles of synaptic plasticity-related signals in adult mouse hippocampus with methotrexate treatment.

    PubMed

    Yang, Miyoung; Kim, Juhwan; Kim, Sung-Ho; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-07-25

    Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced hippocampal dysfunction are poorly understood. To evaluate temporal changes in synaptic plasticity-related signals, the expression and activity of N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, extracellular signal-regulated kinase 1/2, cAMP responsive element-binding protein, glutamate receptor 1, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor were examined in the hippocampi of adult C57BL/6 mice after methotrexate (40 mg/kg) intraperitoneal injection. Western blot analysis showed biphasic changes in synaptic plasticity-related signals in adult hippocampi following methotrexate treatment. N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, and glutamate receptor 1 were acutely activated during the early phase (1 day post-injection), while extracellular signal-regulated kinase 1/2 and cAMP responsive element-binding protein activation showed biphasic increases during the early (1 day post-injection) and late phases (7-14 days post-injection). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression increased significantly during the late phase (7-14 days post-injection). Therefore, methotrexate treatment affects synaptic plasticity-related signals in the adult mouse hippocampus, suggesting that changes in synaptic plasticity-related signals may be associated with neuronal survival and plasticity-related cellular remodeling. PMID:25657706

  5. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  6. Doublecortin (DCX) is not Essential for Survival and Differentiation of Newborn Neurons in the Adult Mouse Dentate Gyrus

    PubMed Central

    Dhaliwal, Jagroop; Xi, Yanwei; Bruel-Jungerman, Elodie; Germain, Johanne; Francis, Fiona; Lagace, Diane C.

    2016-01-01

    In the adult brain, expression of the microtubule-associated protein Doublecortin (DCX) is associated with neural progenitor cells (NPCs) that give rise to new neurons in the dentate gyrus. Many studies quantify the number of DCX-expressing cells as a proxy for the level of adult neurogenesis, yet no study has determined the effect of removing DCX from adult hippocampal NPCs. Here, we use a retroviral and inducible mouse transgenic approach to either knockdown or knockout DCX from adult NPCs in the dentate gyrus and examine how this affects cell survival and neuronal maturation. Our results demonstrate that shRNA-mediated knockdown of DCX or Cre-mediated recombination in floxed DCX mice does not alter hippocampal neurogenesis and does not change the neuronal fate of the NPCs. Together these findings show that the survival and maturation of adult-generated hippocampal neurons does not require DCX. PMID:26793044

  7. Characterization of spermatogonial markers in the mature testis of the dogfish (Scyliorhinus canicula L.).

    PubMed

    Bosseboeuf, Adrien; Gautier, Aude; Auvray, Pierrick; Mazan, Sylvie; Sourdaine, Pascal

    2014-01-01

    In dogfish, spermatogenesis progresses from a restricted germinative zone, which lines the dorsal testicular vessel. Single spermatogonia (A(s)), including the spermatogonial stem cells (SSCs), produce successively paired (A(p)), undifferentiated (A(u4) to A(u512)), and differentiated (A(d1) to A(d8)) spermatogonia and preleptotene (PL) spermatocytes through 13 mitoses. Dogfish spermatogonial subpopulations present classical morphological characteristics but cannot be distinguished on the basis of molecular markers. This characterization has been initiated in mammals despite the difficulty to separate each spermatogonial subpopulation. For instance, both glial cell-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger protein (PLZF) are markers of undifferentiated spermatogonia, whereas receptor tyrosine kinase C-kit is a marker of differentiated spermatogonia. The aim of this study is to characterize spermatogonial markers and to differentiate several spermatogonial subpopulations. Dogfish cDNA sequences have been identified and validated by phylogenetic analyses for gfrα1, plzf, pou2, as well as for high-mobility group box proteins 2 and 3 (hmgb2 and 3) and for mini-chromosome maintenance protein 6 (mcm6). We have used the anatomical advantage of the polarized dogfish testis to analyze the expression of those markers by RT-PCR and in situ hybridization. gfrα1, pou2, and plzf have been detected in the testicular germinative zone, suggesting that spermatogonial markers are relatively well conserved among vertebrates but with a less restricted expression for plzf. Moreover, hmgb3 and mcm6 have been identified as new markers of differentiated spermatogonia. Finally, this first molecular characterization of spermatogonial subpopulations in a chondrichthyan model will be useful for further studies on the SSC niche evolution. PMID:24123129

  8. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord

    PubMed Central

    Beaudet, Marie-Josée; Yang, Qiurui; Cadau, Sébastien; Blais, Mathieu; Bellenfant, Sabrina; Gros-Louis, François; Berthod, François

    2015-01-01

    Extraction of mouse spinal motor neurons from transgenic mouse embryos recapitulating some aspects of neurodegenerative diseases like amyotrophic lateral sclerosis has met with limited success. Furthermore, extraction and long-term culture of adult mouse spinal motor neurons and glia remain also challenging. We present here a protocol designed to extract and purify high yields of motor neurons and glia from individual spinal cords collected on embryos and adult (5-month-old) normal or transgenic mice. This method is based on mild digestion of tissue followed by gradient density separation allowing to obtain two millions motor neurons over 92% pure from one E14.5 single embryo and more than 30,000 from an adult mouse. These cells can be cultured more than 14 days in vitro at a density of 100,000 cells/cm2 to maintain optimal viability. Functional astrocytes and microglia and small gamma motor neurons can be purified at the same time. This protocol will be a powerful and reliable method to obtain motor neurons and glia to better understand mechanisms underlying spinal cord diseases. PMID:26577180

  9. Rhythmic Ganglion Cell Activity in Bleached and Blind Adult Mouse Retinas

    PubMed Central

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa – a degenerative disease which often leads to incurable blindness- the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor’s dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the

  10. Adult Plasticity in the Subcortical Auditory Pathway of the Maternal Mouse

    PubMed Central

    Miranda, Jason A.; Shepard, Kathryn N.; McClintock, Shannon K.; Liu, Robert C.

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system – motherhood – is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered. PMID:24992362

  11. Isolation and Identification of Prepubertal Buffalo (Bubalus bubalis) Spermatogonial Stem Cells.

    PubMed

    Feng, Wanyou; Chen, Shibei; Do, Dagiang; Liu, Qinyou; Deng, Yanfei; Lei, Xiaocan; Luo, Chan; Huang, Ben; Shi, Deshun

    2016-10-01

    Isolation and culture of spermatogonial stem cells (SSCs) are attractive for production of genetic modified offspring. In the present study, buffalo spermatogonial stem-like cells were isolated, cultured and expression pattern of different germ cell marker genes were determined. To recover spermatogonia, testes from age 3 to 7 months of buffalo were decapsulated, and seminiferous tubules were enzymatically dissociated. Two types of cells, immature sertoli cell and type A spermatogonia were observed in buffalo testes in this stage. Germ cell marker genes, OCT3/4 (Pou5f1), THY-1, c-kit, PGP9.5 (UCHL-1) and Dolichos biflorus agglutinin, were determined to be expressed both in mRNA and protein level by reverse transcription polymerase chain reaction and immunostaining in buffalo testes and buffalo spermatogonial stem-like cells, respectively. In the following, when the isolated buffalo buffalo spermatogonial stem-like cells were cultured in the medium supplemented 2.5% fetal bovine serum and 40 ng/mL glial cell-derived neurotrophic factor medium, SSCs proliferation efficiency and colony number were significantly improved than those of other groups (p<0.05). These findings may help in isolation and establishing long term in vitro culture system for buffalo spermatogonial stem-like cells, and accelerating the generation of genetic modified buffaloes. PMID:26954139

  12. Quantitative Expression Profile of Distinct Functional Regions in the Adult Mouse Brain

    PubMed Central

    Nagano, Mamoru; Uno, Kenichiro D.; Tsujino, Kaori; Hanashima, Carina; Shigeyoshi, Yasufumi; Ueda, Hiroki R.

    2011-01-01

    The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B*) project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/) for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems. PMID:21858037

  13. Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons.

    PubMed

    Jackson, Alan C; Kammouni, Wafa; Zherebitskaya, Elena; Fernyhough, Paul

    2010-05-01

    Rabies virus infection of dorsal root ganglia (DRG) was studied in vitro with cultured adult mouse DRG neurons. Recent in vivo studies of transgenic mice that express the yellow fluorescent protein indicate that neuronal process degeneration, involving both dendrites and axons, occurs in mice infected with the challenge virus standard (CVS) strain of rabies virus by footpad inoculation. Because of the similarities of the morphological changes in experimental rabies and in diabetic neuropathy and other diseases, we hypothesize that neuronal process degeneration occurs as a result of oxidative stress. DRG neurons were cultured from adult ICR mice. Two days after plating, they were infected with CVS. Immunostaining was evaluated with CVS- and mock-infected cultures for neuron specific beta-tubulin, rabies virus antigen, and amino acid adducts of 4-hydroxy-2-nonenal (4-HNE) (marker of lipid peroxidation and hence oxidative stress). Neuronal viability (by trypan blue exclusion), terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, and axonal growth were also assessed with the cultures. CVS infected 33 to 54% of cultured DRG neurons. Levels of neuronal viability and TUNEL staining were similar in CVS- and mock-infected DRG neurons. There were significantly more 4-HNE-labeled puncta at 2 and 3 days postinfection in CVS-infected cultures than in mock-infected cultures, and axonal outgrowth was reduced at these time points in CVS infection. Axonal swellings with 4-HNE-labeled puncta were also associated with aggregations of actively respiring mitochondria. We have found evidence that rabies virus infection in vitro causes axonal injury of DRG neurons through oxidative stress. Oxidative stress may be important in vivo in rabies and may explain previous observations of the degeneration of neuronal processes. PMID:20181692

  14. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease

    PubMed Central

    Ambade, Aditya; Satishchandran, Abhishek; Gyongyosi, Benedek; Lowe, Patrick; Szabo, Gyongyi

    2016-01-01

    AIM: To establish a mouse model of alcohol-driven hepatocellular carcinoma (HCC) that develops in livers with alcoholic liver disease (ALD). METHODS: Adult C57BL/6 male mice received multiple doses of chemical carcinogen diethyl nitrosamine (DEN) followed by 7 wk of 4% Lieber-DeCarli diet. Serum alanine aminotransferase (ALT), alpha fetoprotein (AFP) and liver Cyp2e1 were assessed. Expression of F4/80, CD68 for macrophages and Ly6G, MPO, E-selectin for neutrophils was measured. Macrophage polarization was determined by IL-1β/iNOS (M1) and Arg-1/IL-10/CD163/CD206 (M2) expression. Liver steatosis and fibrosis were measured by oil-red-O and Sirius red staining respectively. HCC development was monitored by magnetic resonance imaging, confirmed by histology. Cellular proliferation was assessed by proliferating cell nuclear antigen (PCNA). RESULTS: Alcohol-DEN mice showed higher ALTs than pair fed-DEN mice throughout the alcohol feeding without weight gain. Alcohol feeding resulted in increased ALT, liver steatosis and inflammation compared to pair-fed controls. Alcohol-DEN mice had reduced steatosis and increased fibrosis indicating advanced liver disease. Molecular characterization showed highest levels of both neutrophil and macrophage markers in alcohol-DEN livers. Importantly, M2 macrophages were predominantly higher in alcohol-DEN livers. Magnetic resonance imaging revealed increased numbers of intrahepatic cysts and liver histology confirmed the presence of early HCC in alcohol-DEN mice compared to all other groups. This correlated with increased serum alpha-fetoprotein, a marker of HCC, in alcohol-DEN mice. PCNA immunostaining revealed significantly increased hepatocyte proliferation in livers from alcohol-DEN compared to pair fed-DEN or alcohol-fed mice. CONCLUSION: We describe a new 12-wk HCC model in adult mice that develops in livers with alcoholic hepatitis and defines ALD as co-factor in HCC. PMID:27122661

  15. Isolation of high-purity myenteric plexus from adult human and mouse gastrointestinal tract

    PubMed Central

    Grundmann, David; Klotz, Markus; Rabe, Holger; Glanemann, Matthias; Schäfer, Karl-Herbert

    2015-01-01

    The enteric nervous system (ENS) orchestrates a broad range of important gastrointestinal functions such as intestinal motility and gastric secretion. The ENS can be affected by environmental factors, diet and disease. Changes due to these alterations are often hard to evaluate in detail when whole gut samples are used. Analyses based on pure ENS tissue can more effectively reflect the ongoing changes during pathological processes. Here, we present an optimized approach for the isolation of pure myenteric plexus (MP) from adult mouse and human. To do so, muscle tissue was individually digested with a purified collagenase. After incubation and a gentle mechanical disruption step, MP networks could be collected with anatomical integrity. These tissues could be stored and used either for immediate genomic, proteomic or in vitro approaches, and enteric neurospheres could be generated and differentiated. In a pilot experiment, the influence of bacterial lipopolysaccharide on human MP was analyzed using 2-dimensional gel electrophoresis. The method also allows investigation of factors that are secreted by myenteric tissue in vitro. The isolation of pure MP in large amounts allows new analytical approaches that can provide a new perspective in evaluating changes of the ENS in experimental models, human disease and aging. PMID:25791532

  16. Expression of slow skeletal TnI in adult mouse hearts confers metabolic protection to ischemia

    PubMed Central

    Pound, Kayla M.; Arteaga, Grace M.; Fasano, Mathew; Wilder, Tanganyika; Fischer, Susan K.; Warren, Chad M.; Wende, Adam R.; Farjah, Mariam; Abel, E. Dale; Solaro, R. John; Lewandowski, E. Douglas

    2011-01-01

    Changes in metabolic and myofilament phenotypes coincide in developing hearts. Posttranslational modification of sarcomere proteins influences contractility, affecting the energetic cost of contraction. However, metabolic adaptations to sarcomeric phenotypes are not well understood, particularly during pathophysiological stress. This study explored metabolic adaptations to expression of the fetal, slow skeletal muscle troponin I (ssTnI). Hearts expressing ssTnI exhibited no significant ATP loss during 5 minutes of global ischemia, while non-transgenic littermates (NTG) showed continual ATP loss. At 7 min ischemia TG-ssTnI hearts retained 80±12% of ATP vs. 49±6% in NTG (P<0.05). Hearts expressing ssTnI also had increased AMPK phosphorylation. The mechanism of ATP preservation was augmented glycolysis. Glycolytic end products (lactate and alanine) were 38% higher in TG-ssTnI than NTG at 2 min and 27% higher at 5 min. This additional glycolysis was supported exclusively by exogenous glucose, and not glycogen. Thus, expression of a fetal myofilament protein in adult mouse hearts induced elevated anaerobic ATP production during ischemia via metabolic adaptations consistent with the resistance to hypoxia of fetal hearts. The general findings hold important relevance to both our current understanding of the association between metabolic and contractile phenotypes and the potential for invoking cardioprotective mechanisms against ischemic stress. PMID:21640727

  17. MicroRNA Clusters in the Adult Mouse Heart: Age-Associated Changes

    PubMed Central

    Zhang, Xiaomin; Azhar, Gohar; Williams, Emmanuel D.; Rogers, Steven C.; Wei, Jeanne Y.

    2015-01-01

    The microRNAs and microRNA clusters have been implicated in normal cardiac development and also disease, including cardiac hypertrophy, cardiomyopathy, heart failure, and arrhythmias. Since a microRNA cluster has from two to dozens of microRNAs, the expression of a microRNA cluster could have a substantial impact on its target genes. In the present study, the configuration and distribution of microRNA clusters in the mouse genome were examined at various inter-microRNA distances. Three important microRNA clusters that are significantly impacted during adult cardiac aging, the miR-17-92, miR-106a-363, and miR-106b-25, were also examined in terms of their genomic location, RNA transcript character, sequence homology, and their relationship with the corresponding microRNA families. Multiple microRNAs derived from the three clusters potentially target various protein components of the cdc42-SRF signaling pathway, which regulates cytoskeleton dynamics associated with cardiac structure and function. The data indicate that aging impacted the expression of both guide and passenger strands of the microRNA clusters; nutrient stress also affected the expression of the three microRNA clusters. The miR-17-92, miR-106a-363, and miR-106b-25 clusters are likely to impact the Cdc42-SRF signaling pathway and thereby affect cardiac morphology and function during pathological conditions and the aging process. PMID:26221604

  18. Aryl Hydrocarbon Receptor Activity of Tryptophan Metabolites in Young Adult Mouse Colonocytes.

    PubMed

    Cheng, Yating; Jin, Un-Ho; Allred, Clint D; Jayaraman, Arul; Chapkin, Robert S; Safe, Stephen

    2015-10-01

    The tryptophan microbiota metabolites indole-3-acetate, indole-3-aldehyde, indole, and tryptamine are aryl hydrocarbon receptor (AhR) ligands, and in this study we investigated their AhR agonist and antagonist activities in nontransformed young adult mouse colonocyte (YAMC) cells. Using Cyp1a1 mRNA as an Ah-responsive end point, we observed that the tryptophan metabolites were weak AhR agonists and partial antagonists in YAMC cells, and the pattern of activity was different from that previously observed in CaCo2 colon cancer cells. However, expansion of the end points to other Ah-responsive genes including the Cyp1b1, the AhR repressor (Ahrr), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP-ribose) polymerase (TiParp) revealed a highly complex pattern of AhR agonist/antagonist activities that were both ligand- and gene-dependent. For example, the magnitude of induction of Cyp1b1 mRNA was similar for TCDD, tryptamine, and indole-3-acetate, whereas lower induction was observed for indole and indole-3-aldehyde was inactive. These results suggest that the tryptophan metabolites identified in microbiota are selective AhR modulators. PMID:25873348

  19. Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

    PubMed

    Paradells, Sara; Rocamonde, Brenda; Llinares, Cristina; Herranz-Pérez, Vicente; Jimenez, Misericordia; Garcia-Verdugo, Jose Manuel; Zipancic, Ivan; Soria, Jose Miguel; Garcia-Esparza, Ma Angeles

    2015-07-01

    Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5-bromo-2-deoxyuridine-positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose-dependent manner. PMID:25256750

  20. Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors

    PubMed Central

    Belgard, T. Grant; Montiel, Juan F.; Wang, Wei Zhi; García-Moreno, Fernando; Ponting, Chris P.; Molnár, Zoltán

    2013-01-01

    The thorniest problem in comparative neurobiology is the identification of the particular brain region of birds and reptiles that corresponds to the mammalian neocortex [Butler AB, Reiner A, Karten HJ (2011) Ann N Y Acad Sci 1225:14–27; Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Proc Natl Acad Sci USA 107(28):12676–12681]. We explored which genes are actively transcribed in the regions of controversial ancestry in a representative bird (chicken) and mammal (mouse) at adult stages. We conducted four analyses comparing the expression patterns of their 5,130 most highly expressed one-to-one orthologous genes that considered global patterns of expression specificity, strong gene markers, and coexpression networks. Our study demonstrates transcriptomic divergence, plausible convergence, and, in two exceptional cases, conservation between specialized avian and mammalian telencephalic regions. This large-scale study potentially resolves the complex relationship between developmental homology and functional characteristics on the molecular level and settles long-standing evolutionary debates. PMID:23878249

  1. Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors.

    PubMed

    Belgard, T Grant; Montiel, Juan F; Wang, Wei Zhi; García-Moreno, Fernando; Margulies, Elliott H; Ponting, Chris P; Molnár, Zoltán

    2013-08-01

    The thorniest problem in comparative neurobiology is the identification of the particular brain region of birds and reptiles that corresponds to the mammalian neocortex [Butler AB, Reiner A, Karten HJ (2011) Ann N Y Acad Sci 1225:14-27; Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Proc Natl Acad Sci USA 107(28):12676-12681]. We explored which genes are actively transcribed in the regions of controversial ancestry in a representative bird (chicken) and mammal (mouse) at adult stages. We conducted four analyses comparing the expression patterns of their 5,130 most highly expressed one-to-one orthologous genes that considered global patterns of expression specificity, strong gene markers, and coexpression networks. Our study demonstrates transcriptomic divergence, plausible convergence, and, in two exceptional cases, conservation between specialized avian and mammalian telencephalic regions. This large-scale study potentially resolves the complex relationship between developmental homology and functional characteristics on the molecular level and settles long-standing evolutionary debates. PMID:23878249

  2. Time-lapse imaging of neuroblast migration in acute slices of the adult mouse forebrain.

    PubMed

    Khlghatyan, Jivan; Saghatelyan, Armen

    2012-01-01

    the stationary and migratory phases is crucial for the unambiguous interpretation of results. We also performed multiple z-step acquisitions to monitor neuroblasts migration in 3D. Wide-field fluorescent imaging has been used extensively to visualize neuronal migration. Here, we describe detailed protocol for labeling neuroblasts, performing real-time video-imaging of neuroblast migration in acute slices of the adult mouse forebrain, and analyzing cell migration. While the described protocol exemplified the migration of neuroblasts in the adult RMS, it can also be used to follow cell migration in embryonic and early postnatal brains. PMID:23007608

  3. Biology and identity of fish spermatogonial stem cell.

    PubMed

    Lacerda, Samyra Maria dos Santos Nassif; Costa, Guilherme Mattos Jardim; de França, Luiz Renato

    2014-10-01

    Although present at relatively low number in the testis, spermatogonial stem cells (SSCs) are crucial for the establishment and maintenance of spermatogenesis in eukaryotes and, until recently, those cells were investigated in fish using morphological criteria. The isolation and characterization of these cells in fish have been so far limited by the lack of specific molecular markers, hampering the high SSCs biotechnological potential for aquaculture. However, some highly conserved vertebrate molecular markers, such as Gfra1 and Pou5f1/Oct4, are now available representing important candidates for studies evaluating the regulation of SSCs in fish and even functional investigations using germ cells transplantation. A technique already used to demonstrate that, different from mammals, fish germ stem cells (spermatogonia and oogonia) present high sexual plasticity that is determined by the somatic microenvironment. As relatively well established in mammals, and demonstrated in zebrafish and dogfish, this somatic environment is very important for the preferential location and regulation of SSCs. Importantly, a long-term in vitro culture system for SSCs has been now established for some fish species. Therefore, besides the aforementioned possibilities, such culture system would allow the development of strategies to in vitro investigate key regulatory and functional aspects of germline stem cells (ex: self-renewal and/or differentiation) or to amplify SSCs of rare, endangered, or commercially valuable fish species, representing an important tool for transgenesis and the development of new biotechnologies in fish production. PMID:24967950

  4. Generation of functional hepatocytes from human spermatogonial stem cells

    PubMed Central

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-01-01

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  5. Generation of functional hepatocytes from human spermatogonial stem cells.

    PubMed

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-02-23

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  6. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    PubMed

    Hickmott, Jack W; Chen, Chih-Yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  7. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina

    PubMed Central

    Hickmott, Jack W; Chen, Chih-yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  8. Dynamic expression of TrkB receptor protein on proliferating and maturing cells in the adult mouse dentate gyrus

    PubMed Central

    Donovan, Michael H.; Yamaguchi, Masahiro; Eisch, Amelia J.

    2008-01-01

    Brain-derived neurotrophic factor (BDNF) is implicated in regulation of adult hippocampal neurogenesis, presumably via its primary receptor, TrkB, but controversy exists about how BDNF affects neurogenesis (e.g. proliferation vs. survival/differentiation). This controversy arises, in part, due to the lack of information about if and when TrkB is expressed on adult neural precursors in vivo. Using multiple methods to analyze proliferating and maturing cells in the adult mouse subgranular zone (SGZ), we find that the proportion of proliferating cells that are TrkB-IR is low and it remains low for at least one week following BrdU labeling, but increases as neuroblasts mature. Use of the nestin-GFP transgenic mouse revealed the likelihood of being TrkB-IR increased with presumed maturity of the cell type. Stem-like cells, which rarely divide, were likely to express TrkB. However, early progenitors and late progenitors, which are still in the cell cycle had rare TrkB expression. Immature neuroblasts, however, were more likely to express TrkB, especially as their morphology became more mature. Taken together, these findings emphasize that expression of TrkB protein is closely linked to progression towards neuronal maturity. This provides evidence that maturing cells but not proliferating cells in the adult mouse SGZ have the molecular machinery necessary to respond directly to BDNF. Furthermore, these findings lay critical groundwork for further exploration of the role of BDNF-TrkB signaling in regulation of adult hippocampal neurogenesis. PMID:18240316

  9. Reduction of the spermatogonial population in rat testes flown on Space Lab-3

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Stevenson, J.; Corbett, R.; Sapp, W.; Williams, C.

    1985-01-01

    Quantization of the testicular spermatogonial population reduction in six rats is performed 12 hours after their return from seven days aboard Space Lab-3. The observed 7.1 percent organ weight loss, and 7.5 percent stage six spermatogonial cell population reduction in comparison with control rats correlate very well. Accurate dosimetry was not conducted on board, but radiation can not be considered the primary cause of the observed change. The decrease in protein kinase in the heart of these rats indicates that stress from adapting to weightlessness, the final jet flight, or other sources, is an important factor.

  10. Optimizing cryopreservation of human spermatogonial stem cells: comparing the effectiveness of testicular tissue and single cell suspension cryopreservation

    PubMed Central

    Yango, Pamela; Altman, Eran; Smith, James F.; Klatsky, Peter C.; Tran, Nam D.

    2015-01-01

    Objective To determine whether optimal human spermatogonial stem cell (SSC) cryopreservation is best achieved with testicular tissue or single cell suspension cryopreservation. This study compares the effectiveness between these two approaches by using testicular SSEA-4+ cells, a known population containing SSCs. Design In vitro human testicular tissues. Setting Academic research unit. Patients Adult testicular tissues (n = 4) collected from subjects with normal spermatogenesis and normal fetal testicular tissues (n = 3). Intervention(s) Testicular tissue vs. single cell suspension cryopreservation. Main Outcome Measures Cell viability, total cell recovery per milligram of tissue, as well as, viable and SSEA-4+ cell recovery. Results Single cell suspension cryopreservation yielded higher recovery of SSEA-4+ cells enriched in adult SSCs whereas fetal SSEA-4+ cell recovery was similar between testicular tissue and single cell suspension cryopreservation. Conclusions Adult and fetal human SSEA-4+ populations exhibited differential sensitivity to cryopreservation based on whether they were cryopreserved in situ as testicular tissues or as single cells. Thus, optimal preservation of human SSCs depends on the patient age, type of samples cryopreserved, and end points of therapeutic applications. PMID:25241367

  11. Spermatogonial stem cells in the testis of an endangered bovid: Indian black buck (Antilope cervicapra L.).

    PubMed

    Goel, Sandeep; Reddy, Niranjan; Mahla, Ranjeet Singh; Suman, Sanjay Kumar; Pawar, Rahul Mohanchandra

    2011-07-01

    Numerous wild bovids are facing threat of extinction owing to the loss of habitat and various other reasons. Spermatogonial stem cells (SSCs) represent the only germline stem cells in adult body that are capable of self-renewal and that can undergo differentiation to produce haploid germ cells. SSCs can, therefore, serve as a useful resource for preservation of germplasm of threatened and endangered mammals. The Indian black buck (Antilope cervicapra L.) is a small Indian antelope that is listed as endangered by the Indian Wildlife Protection Act, 1972. Immunohistochemical analysis of testes tissues of black buck revealed the presence of spermatogonia that were specifically stained by lectin-Dolichos biflorus agglutinin (DBA). The expression of pluripotent cell-specific markers, NANOG and stage-specific embryonic antigen-1 (SSEA-1), was detected in spermatogonia. Interestingly, the expression of POU5F1 (OCT3/4) was absent from spermatogonia, however, it was detected in differentiating cells such as spermatocytes and round spermatids but not in elongated spermatids. The expression of NANOG protein was also present in spermatocytes but absent in round and elongated spermatids. Using the testis transplantation assay, stem cell potential of black buck spermatogonia was confirmed as indicated by the presence of colonized DBA-stained cells in the basal membrane of seminiferous tubules of xenotransplanted mice testis. The findings from this study suggest the presence of SSCs in the testis of an endangered bovid for the first time and open new possibility to explore the use of SSCs in conservation. PMID:21719218

  12. Conservation of spermatogonial stem cell marker expression in undifferentiated felid spermatogonia.

    PubMed

    Vansandt, Lindsey M; Livesay, Janelle L; Dickson, Melissa Joy; Li, Lei; Pukazhenthi, Budhan S; Keefer, Carol L

    2016-09-01

    Spermatogonial stem cells (SSCs) are distinct in their ability to self-renew, transmit genetic information, and persist throughout the life of an individual. These characteristics make SSCs a useful tool for addressing diverse challenges such as efficient transgenic production in nonrodent, biomedical animal models, or preservation of the male genome for species in which survival of frozen-thawed sperm is low. A requisite first step to access this technology in felids is the establishment of molecular markers. This study was designed to evaluate, in the domestic cat (Felis catus), the expression both in situ and following enrichment in vitro of six genes (GFRA1, GPR125, ZBTB16, POU5F1, THY1, and UCHL1) that had been previously identified as SSC markers in other species. Antibodies for surface markers glial cell line-derived neurotrophic factor family receptor alpha 1, G protein-coupled receptor 125, and thymus cell antigen 1 could not be validated, whereas Western blot analysis of prepubertal, peripubertal, and adult cat testis confirmed protein expression for the intracellular markers ubiquitin carboxy-terminal hydrolase 1, zinc finger and BTB domain-containing protein 16, and POU domain, class 5, transcription factor 1. Colocalization of the markers by immunohistochemistry revealed that several cells within the subpopulation adjacent to the basement membrane of the seminiferous tubules and identified morphologically as spermatogonia, expressed all three intracellular markers. Studies performed on cheetah (Acinonyx jubatus) and Amur leopard (Panthera pardus orientalis) testis exhibited a conserved expression pattern in protein molecular weights, relative abundance, and localization of positive cells within the testis. The expression of the three intracellular SSC marker proteins in domestic and wild cat testes confirms conservation of these markers in felids. Enrichment of marker transcripts after differential plating was also observed. These markers will

  13. Hepatocyte nuclear factor 4α is required for cell differentiation and homeostasis in the adult mouse gastric epithelium.

    PubMed

    Moore, Benjamin D; Khurana, Shradha S; Huh, Won Jae; Mills, Jason C

    2016-08-01

    We have previously shown that the sequential transcription factors Xbp1→Mist1 (Bhlha15) govern the ultrastructural maturation of the secretory apparatus in enzyme-secreting zymogenic chief cells (ZCs) in the gastric unit. Here we sought to identify transcriptional regulators upstream of X-box binding protein 1 (XBP1) and MIST1. We used immunohistochemistry to characterize Hnf4α(flox/flox) adult mouse stomachs after tamoxifen-induced deletion of Hnf4α We used qRT-PCR, Western blotting, and chromatin immunoprecipitation to define the molecular interaction between hepatocyte nuclear factor 4 alpha (HNF4α) and Xbp1 in mouse stomach and human gastric cells. We show that HNF4α protein is expressed in pit (foveolar) cells, mucous neck cells, and zymogenic chief cells (ZCs) of the corpus gastric unit. Loss of HNF4α in adult mouse stomach led to reduced ZC size and ER content, phenocopying previously characterized effects of Xbp1 deletion. However, HNF4α(Δ/Δ) stomachs also exhibited additional phenotypes including increased proliferation in the isthmal stem cell zone and altered mucous neck cell migration, indicating a role of HNF4α in progenitor cells as well as in ZCs. HNF4α directly occupies the Xbp1 promoter locus in mouse stomach, and forced HNF4α expression increased abundance of XBP1 mRNA in human gastric cancer cells. Finally, as expected, loss of HNF4α caused decreased Xbp1 and Mist1 expression in mouse stomachs. We show that HNF4α regulates homeostatic proliferation in the gastric epithelium and is both necessary and sufficient for the upstream regulation of the Xbp1→Mist1 axis in maintenance of ZC secretory architecture. PMID:27340127

  14. Virus-Specific Immunity in Neonatal and Adult Mouse Rotavirus Infection

    PubMed Central

    Sheridan, J. F.; Eydelloth, R. S.; Vonderfecht, S. L.; Aurelian, L.

    1983-01-01

    Mouse rotavirus (epizootic diarrhea of infant mice) was used as a model to study the role of virus-specific immunity in infection and diarrheal disease. The distribution of viral antigen in intestinal tissues was determined by immunofluorescent staining with anti-simian rotavirus (SA-11) serum. The location and proportion of antigen-positive cells appeared to vary as a function of time postinfection and age of the animal at the time of infection. In animals infected at 1 and 7 days of age, antigen-positive cells (5 to 25%) were first detected (1 day postinfection) in the proximal segment of the small intestine, and infection progressed to the middle and distal segments. At 10 days postinfection, virus-infected cells were no longer observed in the proximal segment. In animals infected at 21 days of age (disease-free), a significantly lower proportion of cells were antigen positive (2 to 5%), and they were restricted to the middle and distal segments of the small intestine. Infection, defined according to the presence of virus and viral antigens in intestinal tissues and by seroconversion in the immunoglobulin M (IgM) isotype as determined by enzyme-linked immunosorbent assay with SA-11 antigen, was observed for all age groups (neonatal to adult), even in the presence of virus-specific serum or intestinal immunoglobulins. On the other hand, diarrheal disease was not detected in neonatal mice (1 to 3 days old) positive for passively acquired virus-specific intestinal IgG. The presence of virus-specific IgA in the intestinal tract at the time of infection did not protect from subsequent diarrheal disease. Virus-specific, cell-mediated immunity, determined by a delayed-type hypersensitivity response, did not develop in neonatal mice infected at 5 and 12 days of age. Reinfection of adult mice was associated with suppression of virus-specific delayed-type hypersensitivity and a significant decrease in the titers of the virus-specific serum IgG and IgA. Images PMID:6299952

  15. Hes3 expression in the adult mouse brain is regulated during demyelination and remyelination.

    PubMed

    Toutouna, Louiza; Nikolakopoulou, Polyxeni; Poser, Steven W; Masjkur, Jimmy; Arps-Forker, Carina; Troullinaki, Maria; Grossklaus, Sylvia; Bosak, Viktoria; Friedrich, Ulrike; Ziemssen, Tjalf; Bornstein, Stefan R; Chavakis, Triantafyllos; Androutsellis-Theotokis, Andreas

    2016-07-01

    Hes3 is a component of the STAT3-Ser/Hes3 Signaling Axis controlling the growth and survival of neural stem cells and other plastic cells. Pharmacological activation of this pathway promotes neuronal rescue and behavioral recovery in models of ischemic stroke and Parkinson's disease. Here we provide initial observations implicating Hes3 in the cuprizone model of demyelination and remyelination. We focus on the subpial motor cortex of mice because we detected high Hes3 expression. This area is of interest as it is impacted both in human demyelinating diseases and in the cuprizone model. We report that Hes3 expression is reduced at peak demyelination and is partially restored within 1 week after cuprizone withdrawal. This raises the possibility of Hes3 involvement in demyelination/remyelination that may warrant additional research. Supporting a possible role of Hes3 in the maintenance of oligodendrocyte markers, a Hes3 null mouse strain shows lower levels of myelin basic protein in undamaged adult mice, compared to wild-type controls. We also present a novel method for culturing the established oligodendrocyte progenitor cell line oli-neu in a manner that maintains Hes3 expression as well as its self-renewal and differentiation potential, offering an experimental tool to study Hes3. Based upon this approach, we identify a Janus kinase inhibitor and dbcAMP as powerful inducers of Hes3 gene expression. We provide a new biomarker and cell culture method that may be of interest in demyelination/remyelination research. PMID:27018293

  16. Selective expression of prion protein in peripheral tissues of the adult mouse.

    PubMed

    Ford, M J; Burton, L J; Morris, R J; Hall, S M

    2002-01-01

    The level of expression of normal cellular prion protein, PrP(c) (cellular prion protein), controls both the rate and the route of neuroinvasive infection, from peripheral entry portal to the CNS. Paradoxically, an overview of the distribution of PrP(c) within tissues outside the CNS is lacking. We have used novel antibodies that recognise cellular prion protein in glutaraldehyde-fixed tissue (in order to optimise immunohistochemical labelling of this conformationally labile protein), in combination with in situ hybridisation, to examine the expression of PrP(c) in peripheral tissues of the adult mouse. We found that although prion protein is expressed in many tissues, it is expressed at high levels only in discrete subpopulations of cells. Prominent amongst these are elements of the "hardwired neuroimmune network" that integrate the body's immune defence and neuroendocrine systems under CNS control. These prion protein-expressing elements include small diameter afferent nerves in the skin and the lamina propria of the aerodigestive tract, sympathetic ganglia and nerves, antigen presenting and processing cells (both follicular and non-follicular dendritic cells) and sub-populations of lymphocytes particularly in skin, gut- and bronchus-associated lymphoid tissues. Prion protein is also expressed in the parasympathetic and enteric nervous systems, in the dispersed neuroendocrine system, and in peripheral nervous system axons and their associated Schwann cells. This selective expression of cellular prion protein provides a variety of alternative routes for the propagation and transport of prion infection entering from peripheral sites, either naturally (via the aerodigestive tract or abraded skin) or experimentally (by intraperitoneal injection) to the brain. Key regulatory cells that express prion protein, and in particular enteroendocrine cells in the mucosal wall of the gut, and dendritic cells that convey pathogens from epithelial layers to secondary lymphoid

  17. Effect of Cyanotoxins on the Hypothalamic–Pituitary–Gonadal Axis in Male Adult Mouse

    PubMed Central

    Xu, Huajun

    2014-01-01

    Background Microcystins LR (MC-LR) are hepatotoxic cyanotoxins that have been shown to induce reproductive toxicity, and Hypothalamic–Pituitary–Gonadal Axis (HPG) is responsible for the control of reproductive functions. However, few studies have been performed to evaluate the effects of MC-LR on HPG axis. This study aimed to investigate the MC-LR-induced toxicity in the reproductive system of mouse and focus on the HPG axis. Methods Adult male C57BL/6 mice were exposed to various concentrations of MC-LR (0, 3.75, 7.50, 15.00 and 30.00 µg/kg body weight per day) for 1 to 14 days, and it was found that exposure to different concentrations of MC-LR significantly disturbed sperm production in the mice testes in a dose- and time-dependent manner. To elucidate the associated possible mechanisms, the serum levels of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were assessed. Meanwhile, PCR assays were employed to detect alterations in a series of genes involved in HPG axis, such as FSH, LH, gonadotropin-releasing hormone (GnRH) and their complement receptors. Furthermore, the effect of MC-LR on the viability and testosterone production of Leydig cells were tested in vitro. Results: MC-LR significantly impaired the spermatogenesis of mice possibly through the direct or indirect inhibition of GnRH synthesis at the hypothalamic level, which resulted in reduction of serum levels of LH that lead to suppression of testosterone production in the testis of mice. Conclusions MC-LR may be a GnRH toxin that would disrupt the reproductive system of mice. PMID:25375936

  18. Brief Isoflurane Anesthesia Produces Prominent Phosphoproteomic Changes in the Adult Mouse Hippocampus.

    PubMed

    Kohtala, Samuel; Theilmann, Wiebke; Suomi, Tomi; Wigren, Henna-Kaisa; Porkka-Heiskanen, Tarja; Elo, Laura L; Rokka, Anne; Rantamäki, Tomi

    2016-06-15

    Anesthetics are widely used in medical practice and experimental research, yet the neurobiological basis governing their effects remains obscure. We have here used quantitative phosphoproteomics to investigate the protein phosphorylation changes produced by a 30 min isoflurane anesthesia in the adult mouse hippocampus. Altogether 318 phosphorylation alterations in total of 237 proteins between sham and isoflurane anesthesia were identified. Many of the hit proteins represent primary pharmacological targets of anesthetics. However, findings also enlighten the role of several other proteins-implicated in various biological processes including neuronal excitability, brain energy homeostasis, synaptic plasticity and transmission, and microtubule function-as putative (secondary) targets of anesthetics. In particular, isoflurane increases glycogen synthase kinase-3β (GSK3β) phosphorylation at the inhibitory Ser(9) residue and regulates the phosphorylation of multiple proteins downstream and upstream of this promiscuous kinase that regulate diverse biological functions. Along with confirmatory Western blot data for GSK3β and p44/42-MAPK (mitogen-activated protein kinase; reduced phosphorylation of the activation loop), we observed increased phosphorylation of microtubule-associated protein 2 (MAP2) on residues (Thr(1620,1623)) that have been shown to render its dissociation from microtubules and alterations in microtubule stability. We further demonstrate that diverse anesthetics (sevoflurane, urethane, ketamine) produce essentially similar phosphorylation changes on GSK3β, p44/p42-MAPK, and MAP2 as observed with isoflurane. Altogether our study demonstrates the potential of quantitative phosphoproteomics to study the mechanisms of anesthetics (and other drugs) in the mammalian brain and reveals how already a relatively brief anesthesia produces pronounced phosphorylation changes in multiple proteins in the central nervous system. PMID:27074656

  19. Bergmann glia are patterned into topographic molecular zones in the developing and adult mouse cerebellum

    PubMed Central

    Reeber, Stacey L.; Arancillo, Marife K. V.; Sillitoe, Roy V.

    2015-01-01

    Cerebellar circuits are patterned into an array of topographic parasagittal domains called zones. Zones are best revealed by gene expression, circuit anatomy, and cellular degeneration patterns. Thus far, the study of zones has been focused heavily on how neurons are organized. Because of this, detailed neuronal patterning maps have been established for Purkinje cells, granule cells, Golgi cells, unipolar brush cells, and also for the terminal field organization of climbing fiber and mossy fiber afferents. In comparison, however, it remains poorly understood if glial cells are also organized into zones. We have identified an Npy-Gfp BAC transgenic mouse line (Tau-Sapphire Green fluorescent protein (Gfp) is under the control of the neuropeptide Y (Npy) gene regulatory elements) that can be used to label Bergmann glial cells with Golgi-like resolution. In these adult transgenic mice we found that Npy-Gfp expression was localized to Bergmann glia mainly in lobules VI/VII and IX/X. Using double immunofluorescence, we show that in these lobules, Npy-Gfp expression in the Bergmann glia overlaps with the pattern of the small heat shock protein HSP25, a Purkinje cell marker for zones located in lobules VI/VII and IX/X. Developmental analysis starting from the day of birth showed that HSP25 and Npy-Gfp expression follow a similar program of spatial and temporal patterning. However, loss of Npy signaling did not alter the patterning of Purkinje cell zones. We conclude that Bergmann glial cells are zonally organized and their patterns are restricted by boundaries that also confine cerebellar neurons into a topographic circuit map. PMID:24906823

  20. Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures

    PubMed Central

    Gelain, Fabrizio; Bottai, Daniele; Vescovi, Angleo; Zhang, Shuguang

    2006-01-01

    Biomedical researchers have become increasingly aware of the limitations of conventional 2-dimensional tissue cell culture systems, including coated Petri dishes, multi-well plates and slides, to fully address many critical issues in cell biology, cancer biology and neurobiology, such as the 3-D microenvironment, 3-D gradient diffusion, 3-D cell migration and 3-D cell-cell contact interactions. In order to fully understand how cells behave in the 3-D body, it is important to develop a well-controlled 3-D cell culture system where every single ingredient is known. Here we report the development of a 3-D cell culture system using a designer peptide nanofiber scaffold with mouse adult neural stem cells. We attached several functional motifs, including cell adhesion, differentiation and bone marrow homing motifs, to a self-assembling peptide RADA16 (Ac-RADARADARADARADA-COHN2). These functionalized peptides undergo self-assembly into a nanofiber structure similar to Matrigel. During cell culture, the cells were fully embedded in the 3-D environment of the scaffold. Two of the peptide scaffolds containing bone marrow homing motifs significantly enhanced the neural cell survival without extra soluble growth and neurotrophic factors to the routine cell culture media. In these designer scaffolds, the cell populations with β-Tubulin+, GFAP+ and Nestin+ markers are similar to those found in cell populations cultured on Matrigel. The gene expression profiling array experiments showed selective gene expression, possibly involved in neural stem cell adhesion and differentiation. Because the synthetic peptides are intrinsically pure and a number of desired function cellular motifs are easy to incorporate, these designer peptide nanofiber scaffolds provide a promising controlled 3-D culture system for diverse tissue cells, and are useful as well for general molecular and cell biology. PMID:17205123

  1. Reproducible expansion and characterization of mouse neural stem/progenitor cells in adherent cultures derived from the adult subventricular zone

    PubMed Central

    Theus, Michelle H.; Ricard, Jerome; Liebl, Daniel J.

    2012-01-01

    Endogenous neural stem/progenitor cells (NSPCs) residing in the subventricular zone (SVZ) of the adult mouse forebrain have been shown to enhance their neurogenic potential in response to CNS injury. Mechanisms involved in regulating adult neurogenesis under naïve or stressed conditions can be studied using a monolayer cell-culture system of the nestin-expressing NSPC lineage to analyze proliferation, survival and differentiation. Here, we describe a protocol for the expansion of NSPCs for studies aimed at understanding the functional role of NSPCs in maintaining adult neurogenic processes. In this unit, we outline in detail the procedures for: (1) isolation, maintenance and culture of the NSPC component of the SVZ niche from the lateral wall of the lateral ventricle; (2) characterization of NSPC functions by examining proliferation, survival and differentiation; and (3) efficient siRNA transfection methods in 96-well format. PMID:22415840

  2. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    PubMed

    Carreira, Vinicius S; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  3. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  4. Propagation of bovine spermatogonial stem cells in vitro.

    PubMed

    Aponte, Pedro M; Soda, Takeshi; Teerds, Katja J; Mizrak, S Canan; van de Kant, Henk J G; de Rooij, Dirk G

    2008-11-01

    The access to sufficient numbers of spermatogonial stem cells (SSCs) is a prerequisite for the study of their regulation and further biomanipulation. A specialized medium and several growth factors were tested to study the in vitro behavior of bovine type A spermatogonia, a cell population that includes the SSCs and can be specifically stained for the lectin Dolichos biflorus agglutinin. During short-term culture (2 weeks), colonies appeared, the morphology of which varied with the specific growth factor(s) added. Whenever the stem cell medium was used, round structures reminiscent of sectioned seminiferous tubules appeared in the core of the colonies. Remarkably, these round structures always contained type A spermatogonia. When leukemia inhibitory factor (LIF), epidermal growth factor (EGF), or fibroblast growth factor 2 (FGF2) were added, specific effects on the numbers and arrangement of somatic cells were observed. However, the number of type A spermatogonia was significantly higher in cultures to which glial cell line-derived neurotrophic factor (GDNF) was added and highest when GDNF, LIF, EGF, and FGF2 were all present. The latter suggests that a proper stimulation of the somatic cells is necessary for optimal stimulation of the germ cells in culture. Somatic cells present in the colonies included Sertoli cells, peritubular myoid cells, and a few Leydig cells. A transplantation experiment, using nude mice, showed the presence of SSCs among the cultured cells and in addition strongly suggested a more than 10 000-fold increase in the number of SSCs after 30 days of culture. These results demonstrate that bovine SSC self-renew in our specialized bovine culture system and that this system can be used for the propagation of these cells. PMID:18663014

  5. Comprehensive Analysis of Neonatal versus Adult Unilateral Decortication in a Mouse Model Using Behavioral, Neuroanatomical, and DNA Microarray Approaches

    PubMed Central

    Yoshikawa, Akira; Nakamachi, Tomoya; Shibato, Junko; Rakwal, Randeep; Shioda, Seiji

    2014-01-01

    Previously, studying the development, especially of corticospinal neurons, it was concluded that the main compensatory mechanism after unilateral brain injury in rat at the neonatal stage was due in part to non-lesioned ipsilateral corticospinal neurons that escaped selection by axonal elimination or neuronal apoptosis. However, previous results suggesting compensatory mechanism in neonate brain were not correlated with high functional recovery. Therefore, what is the difference among neonate and adult in the context of functional recovery and potential mechanism(s) therein? Here, we utilized a brain unilateral decortication mouse model and compared motor functional recovery mechanism post-neonatal brain hemisuction (NBH) with adult brain hemisuction (ABH). Three analyses were performed: (1) Quantitative behavioral analysis of forelimb movements using ladder walking test; (2) neuroanatomical retrograde tracing analysis of unlesioned side corticospinal neurons; and (3) differential global gene expressions profiling in unlesioned-side neocortex (rostral from bregma) in NBH and ABH on a 8 × 60 K mouse whole genome Agilent DNA chip. Behavioral data confirmed higher recovery ability in NBH over ABH is related to non-lesional frontal neocortex including rostral caudal forelimb area. A first inventory of differentially expressed genes genome-wide in the NBH and ABH mouse model is provided as a resource for the scientific community. PMID:25490135

  6. Effect of Antioxidants and Apoptosis Inhibitors on Cryopreservation of Murine Germ Cells Enriched for Spermatogonial Stem Cells

    PubMed Central

    Lee, Yong-An; Kim, Yong-Hee; Kim, Bang-Jin; Jung, Sang-Eun; Pang, Myeong-Geol; Ryu, Buom-Yong

    2016-01-01

    Spermatogonial stem cells (SSCs) are germline stem cells that serve as the foundation of spermatogenesis to maintain fertility throughout a male’s lifetime. To treat male infertility using stem cell banking systems and transplantation, it is important to be able to preserve SSCs for long periods of time. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using antioxidants and apoptosis inhibitors in freezing medium. No differences were observed compared to controls when SSCs were cryopreserved in the presence of apoptosis inhibitors by themselves. However, mouse germ cells cryopreserved in basal medium containing the antioxidant hypotaurine (14 mM) resulted in significantly greater proliferation potential and mitochondrial activity. Furthermore, treatment groups with combinations containing 200 mM trehalose and 14 mM hypotaurine showed higher proliferation rates compared to controls. In addition, several serum free conditions were evaluated for SSC cryopreservation. Treatment media containing 10% or 20% knockout serum replacement resulted in similar cryopreservation results compared to media containing FBS. SSC transplantation was also performed to confirm the functionality of SSCs frozen in 14 mM hypotaurine. Donor SSCs formed normal spermatogenic colonies and sperm in the recipient testis. These data indicate that inclusion of 14 mM hypotaurine in cryopreservation media is an effective way to efficiently cryopreserve germ cells enriched for SSCs and that knockout serum replacement can replace FBS in germ cell cryopreservation media. PMID:27548381

  7. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells

    PubMed Central

    Bermejo-Álvarez, P.; Ramos-Ibeas, P.; Park, K.E.; Powell, A. P.; Vansandt, L.; Derek, Bickhart; Ramirez, M. A.; Gutiérrez-Adán, A.; Telugu, B. P.

    2015-01-01

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. Currently, it is unclear whether artificial reprogramming induced by the expression of Yamanaka factors disrupts these marks and whether cell type of origin affects the dynamics of reprogramming. In this study, spermatogonial stem cells (SSC) that harbor paternalized imprinting marks, and fibroblasts were reprogrammed to iPSC (SSCiPSC and fiPSC). The SSCiPSC were able to form teratomas and generated chimeras with a higher skin chimerism than those derived from fiPSC. RNA-seq revealed extensive reprogramming at the transcriptional level with 8124 genes differentially expressed between SSC and SSCiPSC and only 490 between SSCiPSC and fiPSC. Likewise, reprogramming of SSC affected 26 of 41 imprinting gene clusters known in the mouse genome. A closer look at H19 ICR revealed complete erasure in SSCiPSC in contrast to fiPSC. Imprinting erasure in SSCiPSC was maintained even after in vivo differentiation into teratomas. Reprogramming of SSC from Tet1 and Tet2 double knockout mice however lacked demethylation of H19 ICR. These results suggest that imprinting erasure during reprogramming depends on the epigenetic landscape of the precursor cell and is mediated by TETs at the H19 locus. PMID:26328763

  8. Effect of Antioxidants and Apoptosis Inhibitors on Cryopreservation of Murine Germ Cells Enriched for Spermatogonial Stem Cells.

    PubMed

    Ha, Seung-Jung; Kim, Byung-Gak; Lee, Yong-An; Kim, Yong-Hee; Kim, Bang-Jin; Jung, Sang-Eun; Pang, Myeong-Geol; Ryu, Buom-Yong

    2016-01-01

    Spermatogonial stem cells (SSCs) are germline stem cells that serve as the foundation of spermatogenesis to maintain fertility throughout a male's lifetime. To treat male infertility using stem cell banking systems and transplantation, it is important to be able to preserve SSCs for long periods of time. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using antioxidants and apoptosis inhibitors in freezing medium. No differences were observed compared to controls when SSCs were cryopreserved in the presence of apoptosis inhibitors by themselves. However, mouse germ cells cryopreserved in basal medium containing the antioxidant hypotaurine (14 mM) resulted in significantly greater proliferation potential and mitochondrial activity. Furthermore, treatment groups with combinations containing 200 mM trehalose and 14 mM hypotaurine showed higher proliferation rates compared to controls. In addition, several serum free conditions were evaluated for SSC cryopreservation. Treatment media containing 10% or 20% knockout serum replacement resulted in similar cryopreservation results compared to media containing FBS. SSC transplantation was also performed to confirm the functionality of SSCs frozen in 14 mM hypotaurine. Donor SSCs formed normal spermatogenic colonies and sperm in the recipient testis. These data indicate that inclusion of 14 mM hypotaurine in cryopreservation media is an effective way to efficiently cryopreserve germ cells enriched for SSCs and that knockout serum replacement can replace FBS in germ cell cryopreservation media. PMID:27548381

  9. Determination phase at transition of gonocytes to spermatogonial stem cells improves establishment efficiency of spermatogonial stem cells in domestic cats

    PubMed Central

    TIPTANAVATTANA, Narong; RADTANAKATIKANON, Araya; HYTTEL, Poul; HOLM, Hanne; BURANAPRADITKUN, Supranee; SETTHAWONG, Piyathip; TECHAKUMPHU, Mongkol; THARASANIT, Theerawat

    2015-01-01

    The development of germ cells has not been entirely documented in the cat especially the transition phase of the gonocyte to the spermatogonial stem cell (G/SSC). The aims of study were to examine testicular development and to identify the G/SSC transition in order to isolate and culture SSCs in vitro. Testes were divided into 3 groups according to donor age (I, < 4 months; II, 4–6 months; and III, > 6 months). In Exp. 1, we studied testicular development by histology, transmission electron microscopy and immunohistochemistry. In Exp. 2, we determined the expression of GFRα-1, DDX-4 and c-kit and performed flow cytometry. The SSCs isolated from groups II and III were characterized by RT-PCR and TEM (Exp. 3). Chronological changes in the G/SSC transition were demonstrated. The size, morphology and ultrastructure of SSCs were distinguishable from those of gonocytes. The results demonstrated that group II contained the highest numbers of SSCs per seminiferous cord/tubule (17.66 ± 2.20%) and GFRα-1+ cells (14.89 ± 5.66%) compared with the other groups. The findings coincided with an increased efficiency of SSC derivation in group II compared with group III (74.33 ± 2.64% vs. 23.33 ± 2.23%). The colonies expressed mRNA for GFRA1, ZBTB16, RET and POU5F1. Our study found that the G/SSC transition occurs at 4–6 months of age. This period is useful for isolation and improves the establishment efficiency of cat SSCs in vitro. PMID:26411537

  10. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine.

    PubMed

    Al Alam, Denise; Danopoulos, Soula; Schall, Kathy; Sala, Frederic G; Almohazey, Dana; Fernandez, G Esteban; Georgia, Senta; Frey, Mark R; Ford, Henri R; Grikscheit, Tracy; Bellusci, Saverio

    2015-04-15

    Intestinal epithelial cell renewal relies on the right balance of epithelial cell migration, proliferation, differentiation, and apoptosis. Intestinal epithelial cells consist of absorptive and secretory lineage. The latter is comprised of goblet, Paneth, and enteroendocrine cells. Fibroblast growth factor 10 (FGF10) plays a central role in epithelial cell proliferation, survival, and differentiation in several organs. The expression pattern of FGF10 and its receptors in both human and mouse intestine and their role in small intestine have yet to be investigated. First, we analyzed the expression of FGF10, FGFR1, and FGFR2, in the human ileum and throughout the adult mouse small intestine. We found that FGF10, FGFR1b, and FGFR2b are expressed in the human ileum as well as in the mouse small intestine. We then used transgenic mouse models to overexpress Fgf10 and a soluble form of Fgfr2b, to study the impact of gain or loss of Fgf signaling in the adult small intestine. We demonstrated that overexpression of Fgf10 in vivo and in vitro induces goblet cell differentiation while decreasing Paneth cells. Moreover, FGF10 decreases stem cell markers such as Lgr5, Lrig1, Hopx, Ascl2, and Sox9. FGF10 inhibited Hes1 expression in vitro, suggesting that FGF10 induces goblet cell differentiation likely through the inhibition of Notch signaling. Interestingly, Fgf10 overexpression for 3 days in vivo and in vitro increased the number of Mmp7/Muc2 double-positive cells, suggesting that goblet cells replace Paneth cells. Further studies are needed to determine the mechanism by which Fgf10 alters cell differentiation in the small intestine. PMID:25721301

  11. Isolation and Assessment of Single Long-Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow.

    PubMed

    Kent, David G; Dykstra, Brad J; Eaves, Connie J

    2016-01-01

    Hematopoietic stem cells with long-term repopulating activity can now be routinely obtained at purities of 40% to 50% from suspensions of adult mouse bone marrow. Here we describe robust protocols for both their isolation as CD45(+) EPCR(+) CD150(+) CD48(-) (ESLAM) cells using multiparameter cell sorting and for tracking their clonal growth and differentiation activity in irradiated mice transplanted with single ESLAM cells. The simplicity of these procedures makes them attractive for characterizing the molecular and biological properties of individual hematopoietic stem cells with unprecedented power and precision. © 2016 by John Wiley & Sons, Inc. PMID:27532815

  12. Dose-response studies on the spermatogonial stem cells of the rhesus monkey (Macaca mulatta) after X irradiation

    SciTech Connect

    van Alphen, M.M.; van de Kant, H.J.; Davids, J.A.; Warmer, C.J.; Bootsma, A.L.; de Rooij, D.G. )

    1989-09-01

    Studies of the dose response of the spermatogonial stem cells in the rhesus monkey were performed at intervals of 130 and 160 days after graded doses of X irradiation. The D0 of the spermatogonial stem cells was established using the total numbers of the type A spermatogonia that were present at 130 and 160 days after irradiation and was found to be 1.07 Gy; the 95% confidence interval was 0.90-1.34 Gy.

  13. Blockage of VIP during mouse embryogenesis modifies adult behavior and results in permanent changes in brain chemistry.

    PubMed

    Hill, Joanna M; Hauser, Janet M; Sheppard, Lia M; Abebe, Daniel; Spivak-Pohis, Irit; Kushnir, Michal; Deitch, Iris; Gozes, Illana

    2007-01-01

    Vasoactive intestinal peptide (VIP) regulates growth and development during the early postimplantation period of mouse embryogenesis. Blockage of VIP with a VIP antagonist during this period results in growth restriction, microcephaly, and developmental delays. Similar treatment of neonatal rodents also causes developmental delays and impaired diurnal rhythms, and the adult brains of these animals exhibit neuronal dystrophy and increased VIP binding. These data suggest that blockage of VIP during the development of the nervous system can result in permanent changes to the brain. In the current study, pregnant mice were treated with a VIP antagonist during embryonic days 8 through 10. The adult male offspring were examined in tests of novelty, paired activity, and social recognition. Brain tissue was examined for several measures of chemistry and gene expression of VIP and related compounds. Glial cells from the cortex of treated newborn mice were plated with neurons and examined for VIP binding and their ability to enhance neuronal survival. Treated adult male mice exhibited increased anxiety-like behavior and deficits in social behavior. Brain tissue exhibited regionally specific changes in VIP chemistry and a trend toward increased gene expression of VIP and related compounds that reached statistical significance in the VIP receptor, VPAC-1, in the female cortex. When compared to control astrocytes, astrocytes from treated cerebral cortex produced further increases in neuronal survival with excess synaptic connections and reduced VIP binding. In conclusion, impaired VIP activity during mouse embryogenesis resulted in permanent changes to both adult brain chemistry/cell biology and behavior with aspects of autism-like social deficits. PMID:17726225

  14. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    PubMed Central

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  15. Chronic serotonin-norepinephrine reuptake transporter inhibition modifies basal respiratory output in adult mouse in vitro and in vivo

    PubMed Central

    Warren, Kelly A.; Solomon, Irene C.

    2012-01-01

    Respiratory disturbances are a common feature of panic disorder and present as breathing irregularity, hyperventilation, and increased sensitivity to carbon dioxide. Common therapeutic interventions, such as tricyclic (TCA) and selective serotonin reuptake inhibitor (SSRI) antidepressants, have been shown to ameliorate not only the psychological components of panic disorder but also the respiratory disturbances. These drugs are also prescribed for generalized anxiety and depressive disorders, neither of which are characterized by respiratory disturbances, and previous studies have demonstrated that TCAs and SSRIs exert effects on basal respiratory activity in animal models without panic disorder symptoms. Whether serotonin-norepinephrine reuptake inhibitors (SNRIs) have similar effects on respiratory activity remains to be determined. Therefore, the current study was designed to investigate the effects of chronic administration of the SNRI antidepressant venlafaxine (VHCL) on basal respiratory output. For these experiments, we recorded phrenic nerve discharge in an in vitro arterially-perfused adult mouse preparation and diaphragm electromyogram (EMG) activity in an in vivo urethane-anesthetized adult mouse preparation. We found that following 28-d VHCL administration, basal respiratory burst frequency was markedly reduced due to an increase in expiratory duration (TE), and the inspiratory duty cycle (TI/Ttot) was significantly shortened. In addition, post-inspiratory and spurious expiratory discharges were seen in vitro. Based on our observations, we suggest that drugs capable of simultaneously blocking both 5-HT and NE reuptake transporters have the potential to influence the respiratory control network in patients using SNRI therapy. PMID:22871263

  16. PPARγ mRNA in the adult mouse hypothalamus: distribution and regulation in response to dietary challenges

    PubMed Central

    Liu, Yang; Huang, Ying; Lee, Syann; Bookout, Angie L.; Castorena, Carlos M.; Wu, Hua; Gautron, Laurent

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that was originally identified as a regulator of peroxisome proliferation and adipocyte differentiation. Emerging evidence suggests that functional PPARγ signaling also occurs within the hypothalamus. However, the exact distribution and identities of PPARγ-expressing hypothalamic cells remains under debate. The present study systematically mapped PPARγ mRNA expression in the adult mouse brain using in situ hybridization histochemistry. PPARγ mRNA was found to be expressed at high levels outside the hypothalamus including the neocortex, the olfactory bulb, the organ of the vasculosum of the lamina terminalis (VOLT), and the subfornical organ. Within the hypothalamus, PPARγ was present at moderate levels in the suprachiasmatic nucleus (SCh) and the ependymal of the 3rd ventricle. In all examined feeding-related hypothalamic nuclei, PPARγ was expressed at very low levels that were close to the limit of detection. Using qPCR techniques, we demonstrated that PPARγ mRNA expression was upregulated in the SCh in response to fasting. Double in situ hybridization further demonstrated that PPARγ was primarily expressed in neurons rather than glia. Collectively, our observations provide a comprehensive map of PPARγ distribution in the intact adult mouse hypothalamus. PMID:26388745

  17. Targeted deletion of Vglut2 expression in the embryonal telencephalon promotes an anxiolytic phenotype of the adult mouse

    PubMed Central

    Nordenankar, Karin; Bergfors, Assar

    2015-01-01

    Background Anxiety is a natural emotion experienced by all individuals. However, when anxiety becomes excessive, it contributes to the substantial group of anxiety disorders that affect one in three people and thus are among the most common psychiatric disorders. Anxiolysis, the reduction of anxiety, is mediated via several large groups of therapeutical compounds, but the relief is often only temporary, and increased knowledge of the neurobiology underlying anxiety is needed in order to improve future therapies. Aim We previously demonstrated that mice lacking forebrain expression of the Vesicular glutamate transporter 2 (Vglut2) from adolescence showed a strong anxiolytic behaviour as adults. In the current study, we wished to analyse if removal of Vglut2 expression already from mid-gestation of the mouse embryo would give rise to similar anxiolysis in the adult mouse. Methods We produced transgenic mice lacking Vglut2 from mid-gestation and analysed their affective behaviour, including anxiety, when they had reached adulthood. Results The transgenic mice lacking Vglut2 expression from mid-gestation showed certain signs of anxiolytic behaviour, but this phenotype was not as prominent as when Vglut2 was removed during adolescence. Conclusion Our results suggest that both embryonal and adolescent forebrain expression of Vglut2 normally contributes to balancing the level of anxiety. As the neurobiological basis for anxiety is similar across species, our results in mice may help improve the current understanding of the neurocircuitry of anxiety, and hence anxiolysis, also in humans. PMID:25857802

  18. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons

    PubMed Central

    Wang, Zun-Yi; McDowell, Thomas; Wang, Peiqing; Alvarez, Roxanne; Gomez, Timothy; Bjorling, Dale E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100 ng/ml) for 30 minutes significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca2+ concentration). Pretreatment with the CB1 agonist ACEA (10 nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling. PMID:25088915

  19. A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast

    PubMed Central

    Anderson, Ryan; Maga, A. Murat

    2015-01-01

    High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine. PMID:26571123

  20. Genetic manipulation of adult-born hippocampal neurons rescues memory in a mouse model of Alzheimer's disease.

    PubMed

    Richetin, Kevin; Leclerc, Clémence; Toni, Nicolas; Gallopin, Thierry; Pech, Stéphane; Roybon, Laurent; Rampon, Claire

    2015-02-01

    In adult mammals, neural progenitors located in the dentate gyrus retain their ability to generate neurons and glia throughout lifetime. In rodents, increased production of new granule neurons is associated with improved memory capacities, while decreased hippocampal neurogenesis results in impaired memory performance in several memory tasks. In mouse models of Alzheimer's disease, neurogenesis is impaired and the granule neurons that are generated fail to integrate existing networks. Thus, enhancing neurogenesis should improve functional plasticity in the hippocampus and restore cognitive deficits in these mice. Here, we performed a screen of transcription factors that could potentially enhance adult hippocampal neurogenesis. We identified Neurod1 as a robust neuronal determinant with the capability to direct hippocampal progenitors towards an exclusive granule neuron fate. Importantly, Neurod1 also accelerated neuronal maturation and functional integration of new neurons during the period of their maturation when they contribute to memory processes. When tested in an APPxPS1 mouse model of Alzheimer's disease, directed expression of Neurod1 in cycling hippocampal progenitors conspicuously reduced dendritic spine density deficits on new hippocampal neurons, to the same level as that observed in healthy age-matched control animals. Remarkably, this population of highly connected new neurons was sufficient to restore spatial memory in these diseased mice. Collectively our findings demonstrate that endogenous neural stem cells of the diseased brain can be manipulated to become new neurons that could allow cognitive improvement. PMID:25518958

  1. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse

    SciTech Connect

    Lin Zhoumeng; Fisher, Jeffrey W.; Ross, Matthew K.; Filipov, Nikolay M.

    2011-02-15

    Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR and DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.

  2. MicroRNAs and Their Targets Are Differentially Regulated in Adult and Neonatal Mouse CD8+ T Cells.

    PubMed

    Wissink, Erin M; Smith, Norah L; Spektor, Roman; Rudd, Brian D; Grimson, Andrew

    2015-11-01

    Immunological memory, which protects organisms from re-infection, is a hallmark of the mammalian adaptive immune system and the underlying principle of vaccination. In early life, however, mice and other mammals are deficient at generating memory CD8+ T cells, which protect organisms from intracellular pathogens. The molecular basis that differentiates adult and neonatal CD8+ T cells is unknown. MicroRNAs (miRNAs) are both developmentally regulated and required for normal adult CD8+ T cell functions. We used next-generation sequencing to identify mouse miRNAs that are differentially regulated in adult and neonatal CD8+ T cells, which may contribute to the impaired development of neonatal memory cells. The miRNA profiles of adult and neonatal cells were surprisingly similar during infection; however, we observed large differences prior to infection. In particular, miR-29 and miR-130 have significant differential expression between adult and neonatal cells before infection. Importantly, using RNA-Seq, we detected reciprocal changes in expression of messenger RNA targets for both miR-29 and miR-130. Moreover, targets that we validated include Eomes and Tbx21, key genes that regulate the formation of memory CD8+ T cells. Notably, age-dependent changes in miR-29 and miR-130 are conserved in human CD8+ T cells, further suggesting that these developmental differences are biologically relevant. Together, these results demonstrate that miR-29 and miR-130 are likely important regulators of memory CD8+ T cell formation and suggest that neonatal cells are committed to a short-lived effector cell fate prior to infection. PMID:26416483

  3. MicroRNAs and Their Targets Are Differentially Regulated in Adult and Neonatal Mouse CD8+ T Cells

    PubMed Central

    Wissink, Erin M.; Smith, Norah L.; Spektor, Roman; Rudd, Brian D.; Grimson, Andrew

    2015-01-01

    Immunological memory, which protects organisms from re-infection, is a hallmark of the mammalian adaptive immune system and the underlying principle of vaccination. In early life, however, mice and other mammals are deficient at generating memory CD8+ T cells, which protect organisms from intracellular pathogens. The molecular basis that differentiates adult and neonatal CD8+ T cells is unknown. MicroRNAs (miRNAs) are both developmentally regulated and required for normal adult CD8+ T cell functions. We used next-generation sequencing to identify mouse miRNAs that are differentially regulated in adult and neonatal CD8+ T cells, which may contribute to the impaired development of neonatal memory cells. The miRNA profiles of adult and neonatal cells were surprisingly similar during infection; however, we observed large differences prior to infection. In particular, miR-29 and miR-130 have significant differential expression between adult and neonatal cells before infection. Importantly, using RNA-Seq, we detected reciprocal changes in expression of messenger RNA targets for both miR-29 and miR-130. Moreover, targets that we validated include Eomes and Tbx21, key genes that regulate the formation of memory CD8+ T cells. Notably, age-dependent changes in miR-29 and miR-130 are conserved in human CD8+ T cells, further suggesting that these developmental differences are biologically relevant. Together, these results demonstrate that miR-29 and miR-130 are likely important regulators of memory CD8+ T cell formation and suggest that neonatal cells are committed to a short-lived effector cell fate prior to infection. PMID:26416483

  4. Chronic hemodynamic unloading regulates the morphologic development of newborn mouse hearts transplanted into the ear of isogeneic adult mice.

    PubMed Central

    Rossi, M. A.

    1992-01-01

    The morphologic development of newborn mouse hearts transplanted into the pinna of the ears of isogeneic adult mice was assessed in comparison to in situ ventricular myocardium of recipients. The grafted hearts became vascularized from the auricular artery at the base of the ear, and although these preparations appeared not to be intrinsically innervated, most of them showed grossly visible pulsatile activity. Since they were not subjected to hemodynamic load due to working against a pressure gradient, this technique provided an interesting experimental model for studies on the growth of chronically unloaded tissue. The ultrastructure of the myocardium from neonatal mouse hearts, which were fixed immediately after dissection, revealed no differences in comparison to previously published observations. By 2 months, there was virtually no change in the myocardial cell size as compared with newborn mouse cardiac tissue. The heterotopic hearts showed a mature ultrastructural appearance, with parallel bands of myofibrils alternating with rows of mitochondria and differentiated intercalated discs comparable to in situ myocardium. The interstitial space was widened due to fibrous tissue, with activated fibroblasts and a few mononuclear cells. In contrast, by 6 months after transplantation, the heterotopic myocardium showed a dispersion of the measured cell diameter of myocytes, with atrophy of a certain population of cells and hypertrophy in others; nevertheless, the mean cell diameter was similar to that observed in 2-month grafts. The myocytes showed significant dissociation from each other in fibrous tissue and a cellular infiltrate composed predominantly of mononuclear cells, and greater variability of the parallel arrangement of cells. They often contained myofibrils coursing in different directions rather than in parallel. Normal-sized or predominantly atrophic degenerated myocytes, characterized by a wide variety of ultrastructural alterations, were present. By 12

  5. Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis

    PubMed Central

    Zhang, Hongyu; Siegel, Christopher T.; Shuai, Ling; Lai, Jiejuan; Zeng, Linli; Zhang, Yujun; Lai, Xiangdong; Bie, Ping; Bai, Lianhua

    2016-01-01

    NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2+ cells) that were isolated from healthy adult mouse liver by using a “Percoll-Plate-Wait” procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 106 cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2+ cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2+ cells may be novel adult liver progenitors that participate in liver regeneration. PMID:26905303

  6. Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis.

    PubMed

    Zhang, Hongyu; Siegel, Christopher T; Shuai, Ling; Lai, Jiejuan; Zeng, Linli; Zhang, Yujun; Lai, Xiangdong; Bie, Ping; Bai, Lianhua

    2016-01-01

    NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2(+) cells) that were isolated from healthy adult mouse liver by using a "Percoll-Plate-Wait" procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 10(6) cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2(+) cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2(+) cells may be novel adult liver progenitors that participate in liver regeneration. PMID:26905303

  7. Daily rhythms of core temperature and locomotor activity indicate different adaptive strategies to cold exposure in adult and aged mouse lemurs acclimated to a summer-like photoperiod.

    PubMed

    Terrien, Jeremy; Zizzari, Philippe; Epelbaum, Jacques; Perret, Martine; Aujard, Fabienne

    2009-07-01

    Daily variations in core temperature (Tc) within the normothermic range imply thermoregulatory processes that are essential for optimal function and survival. Higher susceptibility towards cold exposure in older animals suggests that these processes are disturbed with age. In the mouse lemur, a long-day breeder, we tested whether aging affected circadian rhythmicity of Tc, locomotor activity (LA), and energy balance under long-day conditions when exposed to cold. Adult (N = 7) and aged (N = 5) mouse lemurs acclimated to LD14/10 were exposed to 10-day periods at 25 and 12 degrees C. Tc and LA rhythms were recorded by telemetry, and caloric intake (CI), body mass changes, and plasma IGF-1 were measured. During exposure to 25 degrees C, both adult and aged mouse lemurs exhibited strong daily variations in Tc. Aged animals exhibited lower levels of nocturnal LA and nocturnal and diurnal Tc levels in comparison to adults. Body mass and IGF-1 levels remained unchanged with aging. Under cold exposure, torpor bout occurrence was never observed whatever the age category. Adult and aged mouse lemurs maintained their Tc in the normothermic range and a positive energy balance. All animals exhibited increase in CI and decrease in IGF-1 in response to cold. The decrease in IGF-1 was delayed in aged mouse lemurs compared to adults. Moreover, both adult and aged animals responded to cold exposure by increasing their diurnal LA compared to those under Ta = 25 degrees C. However, aged animals exhibited a strong decrease in nocturnal LA and Tc, whereas cold effects were only slight in adults. The temporal organization and amplitude of the daily phase of low Tc were particularly well preserved under cold exposure in both age groups. Sexually active mouse lemurs exposed to cold thus seemed to prevent torpor exhibition and temporal disorganization of daily rhythms of Tc, even during aging. However, although energy balance was not impaired with age in mouse lemurs after cold exposure

  8. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections.

    PubMed

    Cronan, Mark R; Rosenberg, Allison F; Oehlers, Stefan H; Saelens, Joseph W; Sisk, Dana M; Jurcic Smith, Kristen L; Lee, Sunhee; Tobin, David M

    2015-12-01

    Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ. PMID:26449262

  9. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections

    PubMed Central

    Cronan, Mark R.; Rosenberg, Allison F.; Oehlers, Stefan H.; Saelens, Joseph W.; Sisk, Dana M.; Jurcic Smith, Kristen L.; Lee, Sunhee; Tobin, David M.

    2015-01-01

    ABSTRACT Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ. PMID:26449262

  10. Modifications of perineuronal nets and remodelling of excitatory and inhibitory afferents during vestibular compensation in the adult mouse.

    PubMed

    Faralli, Alessio; Dagna, Federico; Albera, Andrea; Bekku, Yoko; Oohashi, Toshitaka; Albera, Roberto; Rossi, Ferdinando; Carulli, Daniela

    2016-07-01

    Perineuronal nets (PNNs) are aggregates of extracellular matrix molecules surrounding several types of neurons in the adult CNS, which contribute to stabilising neuronal connections. Interestingly, a reduction of PNN number and staining intensity has been observed in conditions associated with plasticity in the adult brain. However, it is not known whether spontaneous PNN changes are functional to plasticity and repair after injury. To address this issue, we investigated PNN expression in the vestibular nuclei of the adult mouse during vestibular compensation, namely the resolution of motor deficits resulting from a unilateral peripheral vestibular lesion. After unilateral labyrinthectomy, we found that PNN number and staining intensity were strongly attenuated in the lateral vestibular nucleus on both sides, in parallel with remodelling of excitatory and inhibitory afferents. Moreover, PNNs were completely restored when vestibular deficits of the mice were abated. Interestingly, in mice with genetically reduced PNNs, vestibular compensation was accelerated. Overall, these results strongly suggest that temporal tuning of PNN expression may be crucial for vestibular compensation. PMID:26264050

  11. Status epilepticus stimulates NDEL1 expression via the CREB/CRE pathway in the adult mouse brain.

    PubMed

    Choi, Yun-Sik; Lee, Boyoung; Hansen, Katelin F; Aten, Sydney; Horning, Paul; Wheaton, Kelin L; Impey, Soren; Hoyt, Kari R; Obrietan, Karl

    2016-09-01

    Nuclear distribution element-like 1 (NDEL1/NUDEL) is a mammalian homolog of the Aspergillus nidulans nuclear distribution molecule NudE. NDEL1 plays a critical role in neuronal migration, neurite outgrowth and neuronal positioning during brain development; however within the adult central nervous system, limited information is available regarding NDEL1 expression and functions. Here, the goal was to examine inducible NDEL1 expression in the adult mouse forebrain. Immunolabeling revealed NDEL1 within the forebrain, including the cortex and hippocampus, as well as the midbrain and hypothalamus. Expression was principally localized to perikarya. Using a combination of immunolabeling and RNA seq profiling, we detected a marked and long-lasting upregulation of NDEL1 expression within the hippocampus following a pilocarpine-evoked repetitive seizure paradigm. Chromatin immunoprecipitation (ChIP) analysis identified a cAMP response element-binding protein (CREB) binding site within the CpG island proximal to the NDEL1 gene, and in vivo transgenic repression of CREB led to a marked downregulation of seizure-evoked NDEL1 expression. Together these data indicate that NDEL1 is inducibly expressed in the adult nervous system, and that signaling via the CREB/CRE transcriptional pathway is likely involved. The role of NDEL1 in neuronal migration and neurite outgrowth during development raises the interesting prospect that inducible NDEL1 in the mature nervous system could contribute to the well-characterized structural and functional plasticity resulting from repetitive seizure activity. PMID:27298008

  12. Spermatogonial stem cells as a therapeutic alternative for fertility preservation of prepubertal boys

    PubMed Central

    Galuppo, Andrea Giannotti

    2015-01-01

    ABSTRACT Spermatogonial stem cells, which exist in the testicles since birth, are progenitors cells of male gametes. These cells are critical for the process of spermatogenesis, and not able to produce mature sperm cells before puberty due to their dependency of hormonal stimuli. This characteristic of the reproductive system limits the preservation of fertility only to males who are able to produce an ejaculate. This fact puts some light on the increase in survival rates of childhood cancer over the past decades because of improvements in the diagnosis and effective treatment in pediatric cancer patients. Therefore, we highlight one of the most important challenges concerning male fertility preservation that is the toxic effect of cancer therapy on reproductive function, especially the spermatogenesis. Currently, the experimental alternative for fertility preservation of prepubertal boys is the testicular tissue cryopreservationfor, for future isolation and spermatogonial stem cells transplantation, in order to restore the spermatogenesis. We present a brief review on isolation, characterization and culture conditions for the in vitro proliferation of spermatogonial stem cells, as well as the future perspectives as an alternative for fertility preservation in prepubertal boys. The possibility of restoring male fertility constitutes a research tool with an huge potential in basic and applied science. The development of these techniques may be a hope for the future of fertility preservation in cases that no other options exist, e.g, pediatric cancer patients. PMID:26761559

  13. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  14. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice.

    PubMed

    Huszar, Jessica M; Payne, Christopher J

    2013-01-01

    Impaired biogenesis of microRNAs disrupts spermatogenesis and leads to infertility in male mice. Spermatogonial differentiation is a key step in spermatogenesis, yet the mechanisms that control this event remain poorly defined. In this study, we discovered microRNA 146 (Mir146) to be highly regulated during spermatogonial differentiation, a process dependent on retinoic acid (RA) signaling. Mir146 transcript levels were diminished nearly 180-fold in differentiating spermatogonia when compared with undifferentiated spermatogonia. Luciferase assays revealed the direct binding of Mir146 to the 3' untranslated region of the mediator complex subunit 1 (Med1), a coregulator of retinoid receptors (RARs and RXRs). Overexpression of Mir146 in cultured undifferentiated spermatogonia reduced Med1 transcript levels, as well as those of differentiation marker kit oncogene (Kit). MED1 protein was also diminished. Conversely, inhibition of Mir146 increased the levels of Kit. When undifferentiated spermatogonia were exposed to RA, Mir146 was downregulated along with a marker for undifferentiated germ cells, zinc finger and BTB domain containing 16 (Zbtb16; Plzf); Kit was upregulated. Overexpression of Mir146 in RA-treated spermatogonia inhibited the upregulation of Kit, stimulated by retinoic acid gene 8 (Stra8), and spermatogenesis- and oogenesis-specific basic helix-loop-helix 2 (Sohlh2). Inhibition of Mir146 in RA-treated spermatogonia greatly enhanced the upregulation of these genes. We conclude that Mir146 modulates the effects of RA on spermatogonial differentiation. PMID:23221399

  15. MicroRNA 146 (Mir146) Modulates Spermatogonial Differentiation by Retinoic Acid in Mice1

    PubMed Central

    Huszar, Jessica M.; Payne, Christopher J.

    2012-01-01

    ABSTRACT Impaired biogenesis of microRNAs disrupts spermatogenesis and leads to infertility in male mice. Spermatogonial differentiation is a key step in spermatogenesis, yet the mechanisms that control this event remain poorly defined. In this study, we discovered microRNA 146 (Mir146) to be highly regulated during spermatogonial differentiation, a process dependent on retinoic acid (RA) signaling. Mir146 transcript levels were diminished nearly 180-fold in differentiating spermatogonia when compared with undifferentiated spermatogonia. Luciferase assays revealed the direct binding of Mir146 to the 3′ untranslated region of the mediator complex subunit 1 (Med1), a coregulator of retinoid receptors (RARs and RXRs). Overexpression of Mir146 in cultured undifferentiated spermatogonia reduced Med1 transcript levels, as well as those of differentiation marker kit oncogene (Kit). MED1 protein was also diminished. Conversely, inhibition of Mir146 increased the levels of Kit. When undifferentiated spermatogonia were exposed to RA, Mir146 was downregulated along with a marker for undifferentiated germ cells, zinc finger and BTB domain containing 16 (Zbtb16; Plzf); Kit was upregulated. Overexpression of Mir146 in RA-treated spermatogonia inhibited the upregulation of Kit, stimulated by retinoic acid gene 8 (Stra8), and spermatogenesis- and oogenesis-specific basic helix-loop-helix 2 (Sohlh2). Inhibition of Mir146 in RA-treated spermatogonia greatly enhanced the upregulation of these genes. We conclude that Mir146 modulates the effects of RA on spermatogonial differentiation. PMID:23221399

  16. Spermatogonial stem cells as a therapeutic alternative for fertility preservation of prepubertal boys.

    PubMed

    Galuppo, Andrea Giannotti

    2015-01-01

    Spermatogonial stem cells, which exist in the testicles since birth, are progenitors cells of male gametes. These cells are critical for the process of spermatogenesis, and not able to produce mature sperm cells before puberty due to their dependency of hormonal stimuli. This characteristic of the reproductive system limits the preservation of fertility only to males who are able to produce an ejaculate. This fact puts some light on the increase in survival rates of childhood cancer over the past decades because of improvements in the diagnosis and effective treatment in pediatric cancer patients. Therefore, we highlight one of the most important challenges concerning male fertility preservation that is the toxic effect of cancer therapy on reproductive function, especially the spermatogenesis. Currently, the experimental alternative for fertility preservation of prepubertal boys is the testicular tissue cryopreservationfor, for future isolation and spermatogonial stem cells transplantation, in order to restore the spermatogenesis. We present a brief review on isolation, characterization and culture conditions for the in vitro proliferation of spermatogonial stem cells, as well as the future perspectives as an alternative for fertility preservation in prepubertal boys. The possibility of restoring male fertility constitutes a research tool with an huge potential in basic and applied science. The development of these techniques may be a hope for the future of fertility preservation in cases that no other options exist, e.g, pediatric cancer patients. PMID:26761559

  17. Tri-ortho-cresyl phosphate induces autophagy of rat spermatogonial stem cells.

    PubMed

    Liu, Meng-Ling; Wang, Jing-Lei; Wei, Jie; Xu, Lin-Lin; Yu, Mei; Liu, Xiao-Mei; Ruan, Wen-Li; Chen, Jia-Xiang

    2015-02-01

    Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, plastic softeners, and flame retardants in industry and reported to have a deleterious effect on the male reproductive system in animals besides delayed neurotoxicity. Our preliminary results found that TOCP could disrupt the seminiferous epithelium in the testis and inhibit spermatogenesis, but the precise mechanism is yet to be elucidated. This study shows that TOCP inhibited viability of rat spermatogonial stem cells in a dose-dependent manner. TOCP could not lead to cell cycle arrest in the cells; the mRNA levels of p21, p27, p53, and cyclin D1 in the cells were also not affected by TOCP. Meanwhile, TOCP did not induce apoptosis of rat spermatogonial stem cells. After treatment with TOCP, however, both LC3-II and the ratio of LC3-II/LC3-I were markedly increased; autophagy proteins ATG5 and beclin 1 were also increased after treatment with TOCP, indicating that TOCP could induce autophagy in the cells. Ultrastructural observation under the transmission electron microscopy indicated that autophagic vesicles in the cytoplasm containing extensively degraded organelles such as mitochondria and endoplasmic reticulum increased significantly after the cells were treated with TOCP. In summary, we have shown that TOCP can inhibit viability of rat spermatogonial stem cells and induce autophagy of the cells, without affecting cell cycle and apoptosis. PMID:25385720

  18. Different tumours induced by benzo(a)pyrene and its 7,8-dihydrodiol injected into adult mouse salivary gland.

    PubMed Central

    Wigley, C. B.; Amos, J.; Brookes, P.

    1978-01-01

    A comparison has been made between the carcinogenic activities of benzo(a)pyrene and the proposed proximate carcinogen, benzo(a)pyrene 7,8-dihydrodiol, in the adult C57BL mouse submandibular salivary gland. In preliminary studies using a range of doses, the dihydrodiol was slightly less active than the parent hydrocarbon in this system. There was a difference in the type of tumour induced by the 2 compounds. Benzo(a)pyrene induced tumours of the salivary glands at the site of injection, whereas the dihydrodiol induced malignant lymphosarcomas, particularly of the thymus, which were often metastatic to other orgnas. Possible reasons for the different sites of action of the 2 compounds are discussed. PMID:580763

  19. RUNX1B Expression Is Highly Heterogeneous and Distinguishes Megakaryocytic and Erythroid Lineage Fate in Adult Mouse Hematopoiesis

    PubMed Central

    Draper, Julia E.; Sroczynska, Patrycja; Tsoulaki, Olga; Leong, Hui Sun; Fadlullah, Muhammad Z. H.; Miller, Crispin; Kouskoff, Valerie; Lacaud, Georges

    2016-01-01

    The Core Binding Factor (CBF) protein RUNX1 is a master regulator of definitive hematopoiesis, crucial for hematopoietic stem cell (HSC) emergence during ontogeny. RUNX1 also plays vital roles in adult mice, in regulating the correct specification of numerous blood lineages. Akin to the other mammalian Runx genes, Runx1 has two promoters P1 (distal) and P2 (proximal) which generate distinct protein isoforms. The activities and specific relevance of these two promoters in adult hematopoiesis remain to be fully elucidated. Utilizing a dual reporter mouse model we demonstrate that the distal P1 promoter is broadly active in adult hematopoietic stem and progenitor cell (HSPC) populations. By contrast the activity of the proximal P2 promoter is more restricted and its upregulation, in both the immature Lineage- Sca1high cKithigh (LSK) and bipotential Pre-Megakaryocytic/Erythroid Progenitor (PreMegE) populations, coincides with a loss of erythroid (Ery) specification. Accordingly the PreMegE population can be prospectively separated into “pro-erythroid” and “pro-megakaryocyte” populations based on Runx1 P2 activity. Comparative gene expression analyses between Runx1 P2+ and P2- populations indicated that levels of CD34 expression could substitute for P2 activity to distinguish these two cell populations in wild type (WT) bone marrow (BM). Prospective isolation of these two populations will enable the further investigation of molecular mechanisms involved in megakaryocytic/erythroid (Mk/Ery) cell fate decisions. Having characterized the extensive activity of P1, we utilized a P1-GFP homozygous mouse model to analyze the impact of the complete absence of Runx1 P1 expression in adult mice and observed strong defects in the T cell lineage. Finally, we investigated how the leukemic fusion protein AML1-ETO9a might influence Runx1 promoter usage. Short-term AML1-ETO9a induction in BM resulted in preferential P2 upregulation, suggesting its expression may be important to

  20. Mouse Models of Human T Lymphotropic Virus Type-1–Associated Adult T-Cell Leukemia/Lymphoma

    PubMed Central

    Zimmerman, B.; Niewiesk, S.; Lairmore, M. D.

    2011-01-01

    Human T-lymphotropic virus type-1 (HTLV-1), the first human retrovirus discovered, is the causative agent of adult T-cell leukemia/lymphoma (ATL) and a number of lymphocyte-mediated inflammatory conditions including HTLV-1–associated myelopathy/tropical spastic paraparesis. Development of animal models to study the pathogenesis of HTLV-1–associated diseases has been problematic. Mechanisms of early infection and cell-to-cell transmission can be studied in rabbits and nonhuman primates, but lesion development and reagents are limited in these species. The mouse provides a cost-effective, highly reproducible model in which to study factors related to lymphoma development and the preclinical efficacy of potential therapies against ATL. The ability to manipulate transgenic mice has provided important insight into viral genes responsible for lymphocyte transformation. Expansion of various strains of immunodeficient mice has accelerated the testing of drugs and targeted therapy against ATL. This review compares various mouse models to illustrate recent advances in the understanding of HTLV-1–associated ATL development and how improvements in these models are critical to the future development of targeted therapies against this aggressive T-cell lymphoma. PMID:20442421

  1. Genomic structure, promoter identification, and chromosomal mapping of a mouse nuclear orphan receptor expressed in embryos and adult testes

    SciTech Connect

    Lee, C.H.; Wei, Li-Na; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.

    1995-11-01

    We have isolated and characterized overlapping genomic clones containing the complete transcribed region of a newly isolated mouse cDNA encoding an orphan receptor expressed specifically in midgestation embryos and adult testis. This gene spans a distance of more than 50 kb and is organized into 13 exons. The transcription initiation site is located at the 158th nucleotide upstream from the translation initiation codon. All the exon/intron junction sequences follow the GT/AG rule. Based upon Northern blot analysis and the size of the transcribed region of the gene, its transcript was determined to be approximately 2.5 kb. Within approximately 500 hp upstream from the transcription initiation site, several immune response regulatory elements were identified but no TATA box was located. This gene was mapped to the distal region of mouse chromosome 10 and its locus has been designated Tr2-11. Immunohistochemical studies show that the Tr2-11 protein is present mainly in advanced germ cell populations of mature testes and that Tr2-11 gene expression is dramatically decreased in vitamin A-depleted animals. 23 refs., 7 figs.

  2. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  3. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer's disease

    PubMed Central

    Kim, Hye Yun; Kim, Hyunjin V.; Yoon, Jin H.; Kang, Bo Ram; Cho, Soo Min; Lee, Sejin; Kim, Ji Yoon; Kim, Joo Won; Cho, Yakdol; Woo, Jiwan; Kim, YoungSoo

    2014-01-01

    Alzheimer's disease (AD) is a lethal progressive neurological disorder affecting the memory. Recently, US Food and Drug Administration mitigated the standard for drug approval, allowing symptomatic drugs that only improve cognitive deficits to be allowed to accelerate on to clinical trials. Our study focuses on taurine, an endogenous amino acid found in high concentrations in humans. It has demonstrated neuroprotective properties against many forms of dementia. In this study, we assessed cognitively enhancing property of taurine in transgenic mouse model of AD. We orally administered taurine via drinking water to adult APP/PS1 transgenic mouse model for 6 weeks. Taurine treatment rescued cognitive deficits in APP/PS1 mice up to the age-matching wild-type mice in Y-maze and passive avoidance tests without modifying the behaviours of cognitively normal mice. In the cortex of APP/PS1 mice, taurine slightly decreased insoluble fraction of Aβ. While the exact mechanism of taurine in AD has not yet been ascertained, our results suggest that taurine can aid cognitive impairment and may inhibit Aβ-related damages. PMID:25502280

  4. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse.

    PubMed

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2016-03-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood-brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  5. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone

    PubMed Central

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  6. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone.

    PubMed

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  7. A comparison of the multiple oocyte maturation gene expression patterns between the newborn and adult mouse ovary

    PubMed Central

    Bahmanpour, Soghra; Talaei Khozani, Tahereh; Zarei fard, Nehleh; Jaberipour, Mansoureh; Hosseini, Ahmah; Esmaeilpour, Tahereh

    2013-01-01

    Background: The interaction between follicular cells and oocyte leads to a change in gene expression involved in oocyte maturation processes. Objective: The purpose of this study was to quantify the expression of more common genes involved in follicular growth and oocyte developmental competence. Materials and Methods: In this experimental study, the expression of genes was evaluated with qRT-PCR assay in female BALB/c mice pups at 3-day of pre-pubertal and 8 week old virgin adult ovaries. The tissue was prepared by H&E staining for normal morphological appearance. The data were calculated with the 2-∆Ct formula and assessed using non-parametric two-tailed Mann-Whitney test. The p<0.05 was considered as significant. Results: The data showed a significant increase in the level of Stra8 and GDF9 in adult compared with newborn mice ovaries (p=0.049). In contrast, a significant decrease in the level of Mvh, REC8, SCP1, SCP3, and ZP2 was observed in adult mice ovaries compared to those in the newborn mice ovaries (all p=0.049 except SCP1: p=0.046). There was no significant difference in the level of OCT4 and Cx37 expression between adult and newborn mice ovaries. Conclusion: The modifications in gene expression patterns coordinate the follicular developmental processes. Furthermore, the findings showed higher expression level of premeiotic gene (Stra8) and lower level of meiotic entry markers (SCP1, SCP3, and REC8) in juvenile than newborn mouse ovaries. This article extracted from Ph.D. thesis. (Nehleh Zarei fard) PMID:24639702

  8. The channel opening rate of adult- and fetal-type mouse muscle nicotinic receptors activated by acetylcholine

    PubMed Central

    Maconochie, David J; Steinbach, Joe Henry

    1998-01-01

    In this paper, we examine acetylcholine (ACh)-induced currents in quail fibroblast cell lines expressing either the fetal (Q-F18) or the adult (Q-A33) complement of nicotinic acetylcholine receptor subunits derived from mouse skeletal muscle. Pulses of ACh were applied to outside-out patches of cell membrane by means of a fast perfusion system, at concentrations from 100 nM to 10 mM. We obtained current records with intracellular potentials of -60 and +40 mV. The goal of this study was to estimate the channel opening rate.By fitting sums of exponentials to averaged responses, we estimated the rate of development of the current on the application of acetylcholine. The rate constant of the predominant exponential component (the on-rate) ranges over 3 orders of magnitude, from around 100 s−1 (fetal) at low concentrations of ACh to over 100 000 s−1 (fetal and adult) at the highest concentrations.We establish that our measurement of the on-rate is not limited by technical constraints, and can therefore be related to the rate constants of a kinetic scheme. Our observations are consistent with a model having a rate-limiting channel opening step with a forwards rate constant (β) of 80 000 s−1 on average for adult receptors and 60 000 s−1 for fetal receptors, and a minimum opening to closing ratio (β/α) of around 33 (adult) or 50 (fetal). The channel opening rate, β, varies from around 30 000 s−1 to well over 100 000 s−1 for different patches. The large variation cannot all be ascribed to errors of measurement, but indicates patch to patch variation. PMID:9481672

  9. Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells

    SciTech Connect

    Wu, Qiuling; Ma, Qi; Shehadeh, Lina A.; Wilson, Amber; Xia, Linghui; Yu, Hong; Webster, Keith A.

    2010-06-11

    Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressed in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.

  10. The Bulk of Autotaxin Activity Is Dispensable for Adult Mouse Life.

    PubMed

    Katsifa, Aggeliki; Kaffe, Eleanna; Nikolaidou-Katsaridou, Nefeli; Economides, Aris N; Newbigging, Susan; McKerlie, Colin; Aidinis, Vassilis

    2015-01-01

    Autotaxin (ATX, Enpp2) is a secreted lysophospholipase D catalysing the production of lysophosphatidic acid, a pleiotropic growth factor-like lysophospholipid. Increased ATX expression has been detected in a number of chronic inflammatory diseases and different types of cancer, while genetic interventions have proven a role for ATX in disease pathogenesis. Therefore, ATX has emerged as a potential drug target and a large number of ATX inhibitors have been developed exhibiting promising therapeutic potential. However, the embryonic lethality of ATX null mice and the ubiquitous expression of ATX and LPA receptors in adult life question the suitability of ATX as a drug target. Here we show that inducible, ubiquitous genetic deletion of ATX in adult mice, as well as long-term potent pharmacologic inhibition, are well tolerated, alleviating potential toxicity concerns of ATX therapeutic targeting. PMID:26569406

  11. The Bulk of Autotaxin Activity Is Dispensable for Adult Mouse Life

    PubMed Central

    Katsifa, Aggeliki; Kaffe, Eleanna; Nikolaidou-Katsaridou, Nefeli; Economides, Aris N.; Newbigging, Susan; McKerlie, Colin; Aidinis, Vassilis

    2015-01-01

    Autotaxin (ATX, Enpp2) is a secreted lysophospholipase D catalysing the production of lysophosphatidic acid, a pleiotropic growth factor-like lysophospholipid. Increased ATX expression has been detected in a number of chronic inflammatory diseases and different types of cancer, while genetic interventions have proven a role for ATX in disease pathogenesis. Therefore, ATX has emerged as a potential drug target and a large number of ATX inhibitors have been developed exhibiting promising therapeutic potential. However, the embryonic lethality of ATX null mice and the ubiquitous expression of ATX and LPA receptors in adult life question the suitability of ATX as a drug target. Here we show that inducible, ubiquitous genetic deletion of ATX in adult mice, as well as long-term potent pharmacologic inhibition, are well tolerated, alleviating potential toxicity concerns of ATX therapeutic targeting. PMID:26569406

  12. Roles of Wnt Signaling in the Neurogenic Niche of the Adult Mouse Ventricular-Subventricular Zone.

    PubMed

    Hirota, Yuki; Sawada, Masato; Huang, Shih-Hui; Ogino, Takashi; Ohata, Shinya; Kubo, Akiharu; Sawamoto, Kazunobu

    2016-02-01

    In many animal species, the production of new neurons (neurogenesis) occurs throughout life, in a specialized germinal region called the ventricular-subventricular zone (V-SVZ). In this region, neural stem cells undergo self-renewal and generate neural progenitor cells and new neurons. In the olfactory system, the new neurons migrate rostrally toward the olfactory bulb, where they differentiate into mature interneurons. V-SVZ-derived new neurons can also migrate toward sites of brain injury, where they contribute to neural regeneration. Recent studies indicate that two major branches of the Wnt signaling pathway, the Wnt/β-catenin and Wnt/planar cell polarity pathways, play essential roles in various facets of adult neurogenesis. Here, we review the Wnt signaling-mediated regulation of adult neurogenesis in the V-SVZ under physiological and pathological conditions. PMID:26572545

  13. Variable partial unilateral ureteral obstruction and its release in the neonatal and adult mouse.

    PubMed

    Thornhill, Barbara A; Chevalier, Robert L

    2012-01-01

    Obstructive nephropathy is the most important cause of renal failure in children. Unilateral ureteral obstruction (UUO) in the neonatal mouse provides a useful model to investigate the response of the developing kidney to urine flow obstruction. Creation of reversible variable partial UUO (compared to complete UUO) more closely approximates congenital lesions, and permits the study of recovery following release of the obstruction. Implementation of this technique requires the appropriate optical, surgical, and anesthetic equipment, as well as adaptations appropriate to the very small animals undergoing surgical procedures. Care of the pups must include minimizing trauma to delicate tissues, close monitoring of anesthesia and body temperature, and ensuring acceptance of the pups by the mother. It is important to document the severity and patency of the partial UUO by ureteral measurement and pelvic injection of India ink. Finally, removal of kidneys for histologic examination should be accomplished with gentle handling and processing. PMID:22639278

  14. DNA delivery in adult mouse eyes: An update with corneal endothelium outcomes

    PubMed Central

    Nickerson, John M.; Getz, Shannon E.; Sellers, Jana T.; Chrenek, Micah A.; Goodman, Penny; Bernal, Christiana J.; Boatright, Jeffrey H.

    2014-01-01

    Ocular injection (intravitreal, subretinal, or into the anterior space) is an efficient approach to deliver many classes of drugs, cells, and other treatments to various cell types of the eye. In particular, subretinal injection is efficient since delivered agents accumulate as there is no dilution due to transport processes or diffusion and because the volume of the interphotoreceptor space (IPS) is minimal (10–20 microliters in the human eye, less than 1 microliter in the mouse eye). We previously reported methods using subretinal injection and electroporation to deliver DNA to photoreceptor and retinal pigment epithelium (RPE) cells in retinas of live mice(1–3). Here we detail further optimization of that approach and additionally report its use in delivering DNA expression plasmids to the corneal endothelium. PMID:24510822

  15. Characterization and isolation of immature neurons of the adult mouse piriform cortex.

    PubMed

    Rubio, A; Belles, M; Belenguer, G; Vidueira, S; Fariñas, I; Nacher, J

    2016-07-01

    Physiological studies indicate that the piriform or primary olfactory cortex of adult mammals exhibits a high degree of synaptic plasticity. Interestingly, a subpopulation of cells in the layer II of the adult piriform cortex expresses neurodevelopmental markers, such as the polysialylated form of neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX). This study analyzes the nature, origin, and potential function of these poorly understood cells in mice. As previously described in rats, most of the PSA-NCAM expressing cells in layer II could be morphologically classified as tangled cells and only a small proportion of larger cells could be considered semilunar-pyramidal transitional neurons. Most were also immunoreactive for DCX, confirming their immature nature. In agreement with this, detection of PSA-NCAM combined with that of different cell lineage-specific antigens revealed that most PSA-NCAM positive cells did not co-express markers of glial cells or mature neurons. Their time of origin was evaluated by birthdating experiments with halogenated nucleosides performed at different developmental stages and in adulthood. We found that virtually all cells in this paleocortical region, including PSA-NCAM-positive cells, are born during fetal development. In addition, proliferation analyses in adult mice revealed that very few cells were cycling in layer II of the piriform cortex and that none of them was PSA-NCAM-positive. Moreover, we have established conditions to isolate and culture these immature neurons in the adult piriform cortex layer II. We find that although they can survive under certain conditions, they do not proliferate in vitro either. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 748-763, 2016. PMID:26487449

  16. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines.

    PubMed

    West, David B; Pasumarthi, Ravi K; Baridon, Brian; Djan, Esi; Trainor, Amanda; Griffey, Stephen M; Engelhard, Eric K; Rapp, Jared; Li, Bowen; de Jong, Pieter J; Lloyd, K C Kent

    2015-04-01

    Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼ 80% of mutants showed specific staining in one or more tissues, while ∼ 20% showed no specific staining, ∼ 13% had staining in only one tissue, and ∼ 25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼ 50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known. PMID:25591789

  17. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles.

    PubMed

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G; Flaws, Jodi A

    2016-02-15

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36μM) for 18-96h. Every 24h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96h, and the expression of cell cycle regulators at 18h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. PMID:26792615

  18. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines

    PubMed Central

    Pasumarthi, Ravi K.; Baridon, Brian; Djan, Esi; Trainor, Amanda; Griffey, Stephen M.; Engelhard, Eric K.; Rapp, Jared; Li, Bowen; de Jong, Pieter J.; Lloyd, K.C. Kent

    2015-01-01

    Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼80% of mutants showed specific staining in one or more tissues, while ∼20% showed no specific staining, ∼13% had staining in only one tissue, and ∼25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known. PMID:25591789

  19. Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin

    PubMed Central

    Collins, Charlotte A.; Jensen, Kim B.; MacRae, Elizabeth J.; Mansfield, William; Watt, Fiona M.

    2012-01-01

    Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells. PMID:22537489

  20. Adult neurogenesis and specific replacement of interneuron subtypes in the mouse main olfactory bulb

    PubMed Central

    Bagley, Joshua; LaRocca, Greg; Jimenez, Daniel A; Urban, Nathaniel N

    2007-01-01

    Background New neurons are generated in the adult brain from stem cells found in the subventricular zone (SVZ). These cells proliferate in the SVZ, generating neuroblasts which then migrate to the main olfactory bulb (MOB), ending their migration in the glomerular layer (GLL) and the granule cell layer (GCL) of the MOB. Neuronal populations in these layers undergo turnover throughout life, but whether all neuronal subtypes found in these areas are replaced and when neurons begin to express subtype-specific markers is not known. Results Here we use BrdU injections and immunohistochemistry against (calretinin, calbindin, N-copein, tyrosine hydroxylase and GABA) and show that adult-generated neurons express markers of all major subtypes of neurons in the GLL and GCL. Moreover, the fractions of new neurons that express subtype-specific markers at 40 and 75 days post BrdU injection are very similar to the fractions of all neurons expressing these markers. We also show that many neurons in the glomerular layer do not express NeuN, but are readily and specifically labeled by the fluorescent nissl stain Neurotrace. Conclusion The expression of neuronal subtype-specific markers by new neurons in the GLL and GCL changes rapidly during the period from 14–40 days after BrdU injection before reaching adult levels. This period may represent a critical window for cell fate specification similar to that observed for neuronal survival. PMID:17996088

  1. Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin.

    PubMed

    Collins, Charlotte A; Jensen, Kim B; MacRae, Elizabeth J; Mansfield, William; Watt, Fiona M

    2012-06-15

    Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells. PMID:22537489

  2. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding.

    PubMed

    Ito, Mayumi; Yang, Zaixin; Andl, Thomas; Cui, Chunhua; Kim, Noori; Millar, Sarah E; Cotsarelis, George

    2007-05-17

    The mammalian hair follicle is a complex 'mini-organ' thought to form only during development; loss of an adult follicle is considered permanent. However, the possibility that hair follicles develop de novo following wounding was raised in studies on rabbits, mice and even humans fifty years ago. Subsequently, these observations were generally discounted because definitive evidence for follicular neogenesis was not presented. Here we show that, after wounding, hair follicles form de novo in genetically normal adult mice. The regenerated hair follicles establish a stem cell population, express known molecular markers of follicle differentiation, produce a hair shaft and progress through all stages of the hair follicle cycle. Lineage analysis demonstrated that the nascent follicles arise from epithelial cells outside of the hair follicle stem cell niche, suggesting that epidermal cells in the wound assume a hair follicle stem cell phenotype. Inhibition of Wnt signalling after re-epithelialization completely abrogates this wounding-induced folliculogenesis, whereas overexpression of Wnt ligand in the epidermis increases the number of regenerated hair follicles. These remarkable regenerative capabilities of the adult support the notion that wounding induces an embryonic phenotype in skin, and that this provides a window for manipulation of hair follicle neogenesis by Wnt proteins. These findings suggest treatments for wounds, hair loss and other degenerative skin disorders. PMID:17507982

  3. Promotion of Cortical Neurogenesis from the Neural Stem Cells in the Adult Mouse Subcallosal Zone.

    PubMed

    Kim, Joo Yeon; Choi, Kyuhyun; Shaker, Mohammed R; Lee, Ju-Hyun; Lee, Boram; Lee, Eunsoo; Park, Jae-Yong; Lim, Mi-Sun; Park, Chang-Hwan; Shin, Ki Soon; Kim, Hyun; Geum, Dongho; Sun, Woong

    2016-04-01

    Neurogenesis occurs spontaneously in the subventricular zone (SVZ) of the lateral ventricle in adult rodent brain, but it has long been debated whether there is sufficient adult neurogenesis in human SVZ. Subcallosal zone (SCZ), a posterior continuum of SVZ closely associated with posterior regions of cortical white matter, has also been reported to contain adult neural stem cells (aNSCs) in both rodents and humans. However, little is known whether SCZ-derived aNSC (SCZ-aNSCs) can produce cortical neurons following brain injury. We found that SCZ-aNSCs exhibited limited neuronal differentiation potential in culture and after transplantation in mice. Neuroblasts derived from SCZ initially migrated toward injured cortex regions following brain injury, but later exhibited apoptosis. Overexpression of anti-apoptotic bcl-xL in the SCZ by retroviral infection rescued neuroblasts from cell death in the injured cortex, but neuronal maturation was still limited, resulting in atrophy. In combination with Bcl-xL, infusion of brain-derived neurotropic factor rescued atrophy, and importantly, a subset of such SCZ-aNSCs differentiated and attained morphological and physiological characteristics of mature, excitatory neurons. These results suggest that the combination of anti-apoptotic and neurotrophic factors might enable the use of aNSCs derived from the SCZ in cortical neurogenesis for neural replacement therapy. Stem Cells 2016;34:888-901. PMID:26701067

  4. Odour enrichment increases adult-born dopaminergic neurons in the mouse olfactory bulb.

    PubMed

    Bonzano, Sara; Bovetti, Serena; Fasolo, Aldo; Peretto, Paolo; De Marchis, Silvia

    2014-11-01

    The olfactory bulb (OB) is the first brain region involved in the processing of olfactory information. In adult mice, the OB is highly plastic, undergoing cellular/molecular dynamic changes that are modulated by sensory experience. Odour deprivation induces down-regulation of tyrosine hydroxylase (TH) expression in OB dopaminergic interneurons located in the glomerular layer (GL), resulting in decreased dopamine in the OB. Although the effect of sensory deprivation is well established, little is known about the influence of odour enrichment on dopaminergic cells. Here we report that prolonged odour enrichment on C57BL/6J strain mice selectively increases TH-immunopositive cells in the GL by nearly 20%. Following odour enrichment on TH-green fluorescent protein (GFP) transgenic mice, in which GFP identified both mature TH-positive cells and putative immature dopaminergic cells expressing TH mRNA but not TH protein, we found a similar 20% increase in GFP-expressing cells, with no changes in the ratio between TH-positive and TH-negative cells. These data suggest that enriched conditions induce an expansion in the whole dopaminergic lineage. Accordingly, by using 5-bromo-2-deoxyuridine injections to label adult-generated cells in the GL of TH-GFP mice, we found an increase in the percentage of 5-bromo-2-deoxyuridine-positive dopaminergic cells in enriched compared with control conditions, whereas no differences were found for calretinin- and calbindin-positive subtypes. Strikingly, the fraction of newborn cells among the dopaminergic population doubled in enriched conditions. On the whole, our results demonstrate that odour enrichment drives increased integration of adult-generated dopaminergic cells that could be critical to adapt the OB circuits to the environmental incoming information. PMID:25216299

  5. Characterizing Newly Repopulated Microglia in the Adult Mouse: Impacts on Animal Behavior, Cell Morphology, and Neuroinflammation

    PubMed Central

    Elmore, Monica R. P.; Lee, Rafael J.; West, Brian L.; Green, Kim N.

    2015-01-01

    Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the

  6. Expansion and long-term culture of human spermatogonial stem cells via the activation of SMAD3 and AKT pathways.

    PubMed

    Guo, Ying; Liu, Linhong; Sun, Min; Hai, Yanan; Li, Zheng; He, Zuping

    2015-08-01

    Spermatogonial stem cells (SSCs) can differentiate into spermatids, reflecting that they could be used in reproductive medicine for treating male infertility. SSCs are able to become embryonic stem-like cells with the potentials of differentiating into numerous cell types of the three germ layers and they can transdifferentiate to mature and functional cells of other lineages, highlighting significant applications of human SSCs for treating human diseases. However, human SSCs are very rare and a long-term culture system of human SSCs has not yet established. This aim of study was to isolate, identify and culture human SSCs for a long period. We isolated GPR125-positive spermatogonia with high purity and viability from adult human testicular tissues utilizing the two-step enzymatic digestion and magnetic-activated cell sorting with antibody against GPR125. These freshly isolated cells expressed a number of markers for SSCs, including GPR125, PLZF, GFRA1, RET, THY1, UCHL1 and MAGEA4, but not the hallmarks for spermatocytes and spermatozoa, e.g. SYCP1, SYCP3, PRM1, and TNP1. The isolated human SSCs could be cultured for two months with a significant increase of cell number with the defined medium containing growth factors and hydrogel. Notably, the expression of numerous SSC markers was maintained during the cultivation of human SSCs. Furthermore, SMAD3 and AKT phosphorylation was enhanced during the culture of human SSCs. Collectively, these results suggest that human SSCs can be cultivated for a long period and expanded whilst retaining an undifferentiated status via the activation of SMAD3 and AKT pathways. This study could provide sufficient cells of SSCs for their basic research and clinic applications in reproductive and regenerative medicine. PMID:26088866

  7. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes

    PubMed Central

    Wang, Xiaoyan; Chen, Tingfeng; Zhang, Yani; Li, Bichun; Xu, Qi; Song, Chengyi

    2015-01-01

    Spermatogonial stem cells (SSCs) renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like cells and adipocytes. SSCs and Sertoli cells were isolated from neonatal piglet testis by differential adhesion and SSCs were cultured on a feeder layer of Sertoli cells. Third-generation SSCs were induced to differentiate into neuron-like cells by addition of retinoic acid, β-mercaptoethanol, and 3-isobutyl-1-methylxanthine (IBMX) to the induction media and into adipocytes by the addition of hexadecadrol, insulin, and IBMX to the induction media. The differentiated cells were characterized by biochemical staining, qRT-PCR, and immunocytochemistry. The cells were positive for SSC markers, including alkaline phosphatase and SSC-specific genes, consistent with the cells being undifferentiated. The isolated SSCs survived on the Sertoli cells for 15 generations. Karyotyping confirmed that the chromosomal number of the SSCs were normal for pig (2n = 38, n = 19). Pig SSCs were successfully induced into neuron-like cells eight days after induction and into adipocytes 22 days after induction as determined by biochemical and immunocytochemical staining. qPCR results also support this conclusion. The nervous tissue markers genes, Nestin and β-tubulin, were expressed in the neuron-like cells and the adipocyte marker genes, PPARγ and C/EBPα, were expressed in the adipocytes. PMID:26556335

  8. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes.

    PubMed

    Wang, Xiaoyan; Chen, Tingfeng; Zhang, Yani; Li, Bichun; Xu, Qi; Song, Chengyi

    2015-01-01

    Spermatogonial stem cells (SSCs) renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like cells and adipocytes. SSCs and Sertoli cells were isolated from neonatal piglet testis by differential adhesion and SSCs were cultured on a feeder layer of Sertoli cells. Third-generation SSCs were induced to differentiate into neuron-like cells by addition of retinoic acid, β-mercaptoethanol, and 3-isobutyl-1-methylxanthine (IBMX) to the induction media and into adipocytes by the addition of hexadecadrol, insulin, and IBMX to the induction media. The differentiated cells were characterized by biochemical staining, qRT-PCR, and immunocytochemistry. The cells were positive for SSC markers, including alkaline phosphatase and SSC-specific genes, consistent with the cells being undifferentiated. The isolated SSCs survived on the Sertoli cells for 15 generations. Karyotyping confirmed that the chromosomal number of the SSCs were normal for pig (2n = 38, n = 19). Pig SSCs were successfully induced into neuron-like cells eight days after induction and into adipocytes 22 days after induction as determined by biochemical and immunocytochemical staining. qPCR results also support this conclusion. The nervous tissue markers genes, Nestin and β-tubulin, were expressed in the neuron-like cells and the adipocyte marker genes, PPARγ and C/EBPα, were expressed in the adipocytes. PMID:26556335

  9. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis

    PubMed Central

    Ferrón, S. R.; Radford, E. J.; Domingo-Muelas, A.; Kleine, I.; Ramme, A.; Gray, D.; Sandovici, I.; Constancia, M.; Ward, A.; Menheniott, T. R.; Ferguson-Smith, A. C.

    2015-01-01

    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis. PMID:26369386

  10. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9.

    PubMed

    Carroll, Kelli J; Makarewich, Catherine A; McAnally, John; Anderson, Douglas M; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-12

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart. PMID:26719419

  11. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis.

    PubMed

    Ferrón, S R; Radford, E J; Domingo-Muelas, A; Kleine, I; Ramme, A; Gray, D; Sandovici, I; Constancia, M; Ward, A; Menheniott, T R; Ferguson-Smith, A C

    2015-01-01

    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis. PMID:26369386

  12. Cre recombinase-regulated Endothelin1 transgenic mouse lines: novel tools for analysis of embryonic and adult disorders

    PubMed Central

    Tavares, Andre L.P.; Clouthier, David E.

    2015-01-01

    Endothelin-1 (EDN1) influences both craniofacial and cardiovascular development and a number of adult physiological conditions by binding to one or both of the known endothelin receptors, thus initiating multiple signaling cascades. Animal models containing both conventional and conditional loss of the Edn1 gene have been used to dissect EDN1 function in both embryos and adults. However, while transgenic Edn1 over-expression or targeted genomic insertion of Edn1 has been performed to understand how elevated levels of Edn1 result in or exacerbate disease states, an animal model in which Edn1 over-expression can be achieved in a spatiotemporal-specific manner has not been reported. Here we describe the creation of Edn1 conditional over-expression transgenic mouse lines in which the chicken β-actin promoter and an Edn1 cDNA are separated by a strong stop sequence flanked by loxP sites. In the presence of Cre, the stop cassette is removed, leading to Edn1 expression. Using the Wnt1-Cre strain, in which Cre expression is targeted to the Wnt1-expressing domain of the central nervous system (CNS) from which neural crest cells (NCCs) arise, we show that stable CBA-Edn1 transgenic lines with varying EDN1 protein levels develop defects in NCC-derived tissues of the face, though the severity differs between lines. We also show that Edn1 expression can be achieved in other embryonic tissues utilizing other Cre strains, with this expression also resulting in developmental defects. CBA-Edn1 transgenic mice will be useful in investigating diverse aspects of EDN1-mediated-development and disease, including understanding how NCCs achieve and maintain a positional and functional identity and how aberrant EDN1 levels can lead to multiple physiological changes and diseases. PMID:25725491

  13. Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse

    PubMed Central

    Zampieri, Alexandre; Champagne, Julien; Auzemery, Baptiste; Fuentes, Ivanna; Maurel, Benjamin; Bienvenu, Frédéric

    2015-01-01

    We present here a novel method for the semi-quantitative detection of low abundance proteins in solution that is both fast and simple. It is based on Homogenous Time Resolved Förster Resonance Energy Transfer (HTRF), between a lanthanide labeled donor antibody and a d2 or XL665 labeled acceptor antibody that are both raised against different epitopes of the same target. This novel approach we termed “Tandem-HTRF”, can specifically reveal rare polypeptides from only a few microliters of cellular lysate within one hour in a 384-well plate format. Using this sensitive approach, we observed surprisingly that the core cell cycle regulator Cyclin D1 is sustained in fully developed adult organs and harbors an unexpected expression pattern affected by environmental challenge. Thus our method, Tandem-HTRF offers a promising way to investigate subtle variations in the dynamics of sparse proteins from limited biological material. PMID:26503526

  14. Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring

    PubMed Central

    Sussman, Dafna; Germann, Jurgen; Henkelman, Mark

    2015-01-01

    Introduction The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood. Methods To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy. Results The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume. Conclusions These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood. PMID:25642385

  15. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer

    PubMed Central

    Ou, Jingxing; Vijayasarathy, Camasamudram; Ziccardi, Lucia; Chen, Shan; Zeng, Yong; Marangoni, Dario; Pope, Jodie G.; Bush, Ronald A.; Wu, Zhijian; Li, Wei; Sieving, Paul A.

    2015-01-01

    Strategies aimed at invoking synaptic plasticity have therapeutic potential for several neurological conditions. The human retinal synaptic disease X-linked retinoschisis (XLRS) is characterized by impaired visual signal transmission through the retina and progressive visual acuity loss, and mice lacking retinoschisin (RS1) recapitulate human disease. Here, we demonstrate that restoration of RS1 via retina-specific delivery of adeno-associated virus type 8-RS1 (AAV8-RS1) vector rescues molecular pathology at the photoreceptor–depolarizing bipolar cell (photoreceptor-DBC) synapse and restores function in adult Rs1-KO animals. Initial development of the photoreceptor-DBC synapse was normal in the Rs1-KO retina; however, the metabotropic glutamate receptor 6/transient receptor potential melastatin subfamily M member 1–signaling (mGluR6/TRPM1-signaling) cascade was not properly maintained. Specifically, the TRPM1 channel and G proteins Gαo, Gβ5, and RGS11 were progressively lost from postsynaptic DBC dendritic tips, whereas the mGluR6 receptor and RGS7 maintained proper synaptic position. This postsynaptic disruption differed from other murine night-blindness models with an electronegative electroretinogram response, which is also characteristic of murine and human XLRS disease. Upon AAV8-RS1 gene transfer to the retina of adult XLRS mice, TRPM1 and the signaling molecules returned to their proper dendritic tip location, and the DBC resting membrane potential was restored. These findings provide insight into the molecular plasticity of a critical synapse in the visual system and demonstrate potential therapeutic avenues for some diseases involving synaptic pathology. PMID:26098217

  16. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer.

    PubMed

    Ou, Jingxing; Vijayasarathy, Camasamudram; Ziccardi, Lucia; Chen, Shan; Zeng, Yong; Marangoni, Dario; Pope, Jodie G; Bush, Ronald A; Wu, Zhijian; Li, Wei; Sieving, Paul A

    2015-07-01

    Strategies aimed at invoking synaptic plasticity have therapeutic potential for several neurological conditions. The human retinal synaptic disease X-linked retinoschisis (XLRS) is characterized by impaired visual signal transmission through the retina and progressive visual acuity loss, and mice lacking retinoschisin (RS1) recapitulate human disease. Here, we demonstrate that restoration of RS1 via retina-specific delivery of adeno-associated virus type 8-RS1 (AAV8-RS1) vector rescues molecular pathology at the photoreceptor-depolarizing bipolar cell (photoreceptor-DBC) synapse and restores function in adult Rs1-KO animals. Initial development of the photoreceptor-DBC synapse was normal in the Rs1-KO retina; however, the metabotropic glutamate receptor 6/transient receptor potential melastatin subfamily M member 1-signaling (mGluR6/TRPM1-signaling) cascade was not properly maintained. Specifically, the TRPM1 channel and G proteins Gαo, Gβ5, and RGS11 were progressively lost from postsynaptic DBC dendritic tips, whereas the mGluR6 receptor and RGS7 maintained proper synaptic position. This postsynaptic disruption differed from other murine night-blindness models with an electronegative electroretinogram response, which is also characteristic of murine and human XLRS disease. Upon AAV8-RS1 gene transfer to the retina of adult XLRS mice, TRPM1 and the signaling molecules returned to their proper dendritic tip location, and the DBC resting membrane potential was restored. These findings provide insight into the molecular plasticity of a critical synapse in the visual system and demonstrate potential therapeutic avenues for some diseases involving synaptic pathology. PMID:26098217

  17. MRI signature in a novel mouse model of genetically induced adult oligodendrocyte cell death.

    PubMed

    Mueggler, Thomas; Pohl, Hartmut; Baltes, Christof; Riethmacher, Dieter; Suter, Ueli; Rudin, Markus

    2012-01-16

    Two general pathological processes contribute to multiple sclerosis (MS): acute inflammation and degeneration. While magnetic resonance imaging (MRI) is highly sensitive in detecting abnormalities related to acute inflammation both clinically and in animal models of experimental autoimmune encephalomyelitis (EAE), the correlation of these readouts with acute and future disabilities has been found rather weak. This illustrates the need for imaging techniques addressing neurodegenerative processes associated with MS. In the present work we evaluated the sensitivity of different MRI techniques (T(2) mapping, macrophage tracking based on labeling cells in vivo by ultrasmall particles of iron oxide (USPIO), diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI)) to detect histopathological changes in a novel animal model making use of intrinsic, temporally and spatially controlled triggering of oligodendrocyte cell death. This mouse model allows studying the MRI signature associated to neurodegenerative processes of MS in the absence of adaptive inflammatory components that appear to be foremost in the EAE models. Our results revealed pronounced T(2) hyperintensities in brain stem and cerebellar structures, which we attribute to structural alteration of white matter by pronounced vacuolation. Brain areas were found devoid of significant macrophage infiltration in line with the absence of a peripheral inflammatory response. The significant decrease in diffusion anisotropy derived from DTI measures in these structures is mainly caused by a pronounced decrease in diffusivity parallel to the fiber indicative of axonal damage. Triggering of oligodendrocyte ablation did not translate into a significant increase in radial diffusivity. Only minor decreases in MT ratio have been observed, which is attributed to inefficient removal of myelin debris. PMID:21945466

  18. Comparative Analysis of the Expression Profile of Wnk1 and Wnk1/Hsn2 Splice Variants in Developing and Adult Mouse Tissues

    PubMed Central

    Shekarabi, Masoud; Lafrenière, Ron G.; Gaudet, Rébecca; Laganière, Janet; Marcinkiewicz, Martin M.; Dion, Patrick A.; Rouleau, Guy A.

    2013-01-01

    The With No lysine (K) family of serine/threonine kinase (WNK) defines a small family of kinases with significant roles in ion homeostasis. WNK1 has been shown to have different isoforms due to what seems to be largely tissue specific splicing. Here, we used two distinct in situ hybridization riboprobes on developing and adult mouse tissues to make a comparative analysis of Wnk1 and its sensory associated splice isoform, Wnk1/Hsn2. The hybridization signals in developing mouse tissues, which were prepared at embryonic day e10.5 and e12.5, revealed a homogenous expression profile with both probes. At e15.5 and in the newborn mouse, the two probes revealed different expression profiles with prominent signals in nervous system tissues and also other tissues such as kidney, thymus and testis. In adult mouse tissues, the two expression profiles appeared even more restricted to the nervous tissues, kidney, thymus and testis, with no detectable signal in the other tissues. Throughout the nervous system, sensory tissues, as well as in Cornu Ammonis 1 (CA1), CA2 and CA3 areas of the hippocampus, were strongly labeled with both probes. Hybridization signals were also strongly detected in Schwann and supporting satellite cells. Our results show that the expression profiles of Wnk1 isoforms change during the development, and that the expression of the Wnk1 splice variant containing the Hsn2 exon is prominent during developing and in adult mouse tissues, suggesting its important role in the development and maintenance of the nervous system. PMID:23451271

  19. Enhanced Adult Neurogenesis Increases Brain Stiffness: In Vivo Magnetic Resonance Elastography in a Mouse Model of Dopamine Depletion

    PubMed Central

    Klein, Charlotte; Hain, Elisabeth G.; Braun, Juergen; Riek, Kerstin; Mueller, Susanne

    2014-01-01

    The mechanical network of the brain is a major contributor to neural health and has been recognized by in vivo magnetic resonance elastography (MRE) to be highly responsive to diseases. However, until now only brain softening was observed and no mechanism was known that reverses the common decrement of neural elasticity during aging or disease. We used MRE in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model for dopaminergic neurodegeneration as observed in Parkinson’s disease (PD) to study the mechanical response of the brain on adult hippocampal neurogenesis as a robust correlate of neuronal plasticity in healthy and injured brain. We observed a steep transient rise in elasticity within the hippocampal region of up to over 50% six days after MPTP treatment correlating with increased neuronal density in the dentate gyrus, which could not be detected in healthy controls. Our results provide the first indication that new neurons reactively generated following neurodegeneration substantially contribute to the mechanical scaffold of the brain. Diagnostic neuroimaging may thus target on regions of the brain displaying symptomatically elevated elasticity values for the detection of neuronal plasticity following neurodegeneration. PMID:24667730

  20. Expression Atlas of the Deubiquitinating Enzymes in the Adult Mouse Retina, Their Evolutionary Diversification and Phenotypic Roles

    PubMed Central

    Esquerdo, Mariona; Grau-Bové, Xavier; Garanto, Alejandro; Toulis, Vasileios; Garcia-Monclús, Sílvia; Millo, Erica; López-Iniesta, Ma José; Abad-Morales, Víctor; Ruiz-Trillo, Iñaki; Marfany, Gemma

    2016-01-01

    Ubiquitination is a relevant cell regulatory mechanism to determine protein fate and function. Most data has focused on the role of ubiquitin as a tag molecule to target substrates to proteasome degradation, and on its impact in the control of cell cycle, protein homeostasis and cancer. Only recently, systematic assays have pointed to the relevance of the ubiquitin pathway in the development and differentiation of tissues and organs, and its implication in hereditary diseases. Moreover, although the activity and composition of ubiquitin ligases has been largely addressed, the role of the deubiquitinating enzymes (DUBs) in specific tissues, such as the retina, remains mainly unknown. In this work, we undertook a systematic analysis of the transcriptional levels of DUB genes in the adult mouse retina by RT-qPCR and analyzed the expression pattern by in situ hybridization and fluorescent immunohistochemistry, thus providing a unique spatial reference map of retinal DUB expression. We also performed a systematic phylogenetic analysis to understand the origin and the presence/absence of DUB genes in the genomes of diverse animal taxa that represent most of the known animal diversity. The expression landscape obtained supports the potential subfunctionalization of paralogs in those families that expanded in vertebrates. Overall, our results constitute a reference framework for further characterization of the DUB roles in the retina and suggest new candidates for inherited retinal disorders. PMID:26934049

  1. Astrocytic adaptation during cerebral angiogenesis follows the new vessel formation induced through chronic hypoxia in adult mouse cortex

    NASA Astrophysics Data System (ADS)

    Masamoto, Kazuto; Kanno, Iwao

    2014-03-01

    We examined longitudinal changes of the neuro-glia-vascular unit during cerebral angiogenesis induced through chronic hypoxia in the adult mouse cortex. Tie2-GFP mice in which the vascular endothelial cells expressed green fluorescent proteins (GFP) were exposed to chronic hypoxia, while the spatiotemporal developments of the cortical capillary sprouts and the neighboring astrocytic remodeling were characterized with repeated two-photon microscopy. The capillary sprouts appeared at early phases of the hypoxia adaptation (1-2 weeks), while the morphological changes of the astrocytic soma and processes were not detected in this phase. In the later phases of the hypoxia adaptation (> 2 weeks), the capillary sprouts created a new connection with existing capillaries, and its neighboring astrocytes extended their processes to the newly-formed vessels. The findings show that morphological adaptation of the astrocytes follow the capillary development during the hypoxia adaptation, which indicate that the newly-formed vessels provoke cellular interactions with the neighboring astrocytes to strengthen the functional blood-brain barrier.

  2. An In Vitro Adult Mouse Muscle-nerve Preparation for Studying the Firing Properties of Muscle Afferents

    PubMed Central

    Franco, Joy A.; Kloefkorn, Heidi E.; Hochman, Shawn; Wilkinson, Katherine A.

    2014-01-01

    Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice. PMID:25285602

  3. Sexually Dimorphic Patterns of Episomal rAAV Genome Persistence in the Adult Mouse Liver and Correlation With Hepatocellular Proliferation

    PubMed Central

    Dane, Allison P; Cunningham, Sharon C; Graf, Nicole S; Alexander, Ian E

    2009-01-01

    Recombinant adeno-associated virus vectors (rAAVs) show exceptional promise for liver-targeted gene therapy, with phenotype correction in small and large animal disease models being reported with increasing frequency. Success in humans, however, remains a considerable challenge that demands greater understanding of host–vector interactions, notably those governing the efficiency of initial gene transfer and subsequent long-term persistence of gene expression. In this study, we examined long-term enhanced green fluorescent protein (eGFP) expression and vector genome persistence in the mouse liver after rAAV2/8-mediated gene transfer in early adulthood. Two intriguing findings emerged of considerable scientific and clinical interest. First, adult female and male mice showed distinctly different patterns of persistence of eGFP expression across the hepatic lobule after exhibiting similar patterns initially. Female mice retained a predominantly perivenous pattern of expression, whereas male mice underwent inversion of this pattern with preferential loss of perivenous expression and relative retention of periportal expression. Second, these changing patterns of expression correlated with sexually dimorphic patterns of genome persistence that appear linked both spatially and temporally to underlying hepatocellular proliferation. Observation of the equivalent phenomenon in man could have significant implications for the long-term therapeutic efficacy of rAAV-mediated gene transfer, particularly in the context of correction of liver functions showing metabolic zonation. PMID:19568224

  4. Selective depression of nociceptive responses of dorsal horn neurones by SNC 80 in a perfused hindquarter preparation of adult mouse.

    PubMed

    Cao, C Q; Hong, Y G; Dray, A; Perkins, M N

    2001-01-01

    -nociceptive dorsal horn neurones were not inhibited by SNC 80 at a dose of up to 10 microM (n=5). These data demonstrate that delta-opioid receptor modulate nociceptive, but not non-nociceptive, transmission in spinal dorsal horn neurones of the adult mouse. The potentiation of neuronal activity by HS 378 may reflect an autoregulatory role of the endogenous delta-opioid in nociceptive transmission in mouse. PMID:11731107

  5. Build a Better Mouse: Directly-Observed Issues in Computer Use for Adults with SMI

    PubMed Central

    Black, Anne C.; Serowik, Kristin L.; Schensul, Jean J.; Bowen, Anne M.; Rosen, Marc I.

    2014-01-01

    Integrating information technology into healthcare has the potential to bring treatment to hard-to-reach people. Individuals with serious mental illness (SMI), however, may derive limited benefit from these advances in care because of lack of computer ownership and experience. To date, conclusions about the computer skills and attitudes of adults with SMI have been based primarily on self-report. In the current study, 28 psychiatric outpatients with co-occurring cocaine use were interviewed about their computer use and opinions, and 25 were then directly observed using task analysis and think aloud methods as they navigated a multi-component health informational website. Participants reported low rates of computer ownership and use, and negative attitudes towards computers. Self-reported computer skills were higher than demonstrated in the task analysis. However, some participants spontaneously expressed more positive attitudes and greater computer self-efficacy after navigating the website. Implications for increasing access to computer-based health information are discussed. PMID:22711454

  6. Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain.

    PubMed

    Thompson, Lachlan H; Grealish, Shane; Kirik, Deniz; Björklund, Anders

    2009-08-01

    Transplants of fetal dopamine neurons can be used to restore dopamine neurotransmission in animal models of Parkinson's disease, as well as in patients with advanced Parkinson's disease. In these studies the cells are placed in the striatum rather than in the substantia nigra where they normally reside, which may limit their ability to achieve full restoration of motor function. Using a microtransplantation approach, which allows precise placement of small cell deposits directly into the host substantia nigra, and fetal donor cells that express green fluorescent protein under the control of the tyrosine hydroxylase promoter, we show that dopamine neuroblasts implanted into the substantia nigra of adult mice are capable of generating a new nigrostriatal pathway with an outgrowth pattern that matches the anatomy of the intrinsic system. This target-directed regrowth was closely aligned with the intrinsic striatonigral fibre projection and further enhanced by over-expression of glial cell line-derived neurotrophic factor in the striatal target. Results from testing of amphetamine-induced rotational behaviour suggest, moreover, that dopamine neurons implanted into the substantia nigra are also capable of integrating into the host circuitry at the functional level. PMID:19674082

  7. Impaired adult hippocampal neurogenesis and cognitive ability in a mouse model of intrastriatal hemorrhage.

    PubMed

    Yang, Yuan; Zhang, Meikui; Kang, Xiaoni; Jiang, Chen; Zhang, Huan; Wang, Pei; Li, Jingjing

    2015-07-10

    Thrombin released by hematoma is an important mediator of the secondary injury of intracerebral hemorrhage (ICH), however, the effect of thrombin on adult neurogenesis and cognitive ability remains elusive. In this study, intrastriatal injection of 0.05 U thrombin didn't affect the neurogenesis at the subgranular zone (SGZ), which was distal to the injection site. 0.1 U thrombin increased the 5-bromo-2-deoxyuridine(+) (BrdU(+), S-phase proliferating cells)/doublecortin(+) (DCX(+), immature neurons) double labelled neurons, but decreased BrdU(+)/NeuN(+) double labelled mature neurons. Higher doses of thrombin (1 U, 2 U, and 5 U) significantly decreased the BrdU(+)/DCX(+) and BrdU(+)/NeuN(+) double labelled cells. After 1 U thrombin injection, cell apoptosis was found at the dentate gyrus of hippocampus at 3-24 h, but not 5 d post-injury. Thrombin infusion (1 U) induced spatial memory deficits in Morris water maze test; whereas, hirudin, the thrombin antagonist, significantly reversed both neurogenesis loss and spatial learning and memory impairment. In conclusion, at least at short term (5 days) after striatum ICH, the effect of high dose of thrombin on neurogenesis of SGZ, and the spatial learning and memory ability, is detrimental. PMID:26021875

  8. Acute inflammation alters adult hippocampal neurogenesis in a multiple sclerosis mouse model.

    PubMed

    Giannakopoulou, A; Grigoriadis, N; Bekiari, C; Lourbopoulos, A; Dori, I; Tsingotjidou, A S; Michaloudi, H; Papadopoulos, G C

    2013-07-01

    Neural precursor cells (NPCs) located in the subgranular zone (SGZ) of the dentate gyrus (DG) give rise to thousands of new cells every day, mainly hippocampal neurons, which are integrated into existing neuronal circuits. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of inflammation is somewhat controversial. The present study demonstrates that the inflammatory environment prevailing in the brain of experimental autoimmune encephalomyelitis (EAE) mice enhances the proliferation of NPCs in SGZ of the dorsal DG and alters the proportion between radial glial cells and newborn neuroblasts. The injection protocol of the cell cycle marker bromodeoxyuridine and the immunohistochemical techniques that were employed revealed that the proliferation of NPCs is increased approximately twofold in the SGZ of the dorsal DG of EAE mice, at the acute phase of the disease. However, although EAE animals exhibited significant higher percentage of newborn radial-glia-like NPCs, the mean percentage of newborn neuroblasts rather was decreased, indicating that the robust NPCs proliferation is not followed by a proportional production of newborn neurons. Significant positive correlations were detected between the number of proliferating cells in the SGZ and the clinical score or degree of brain inflammation of diseased animals. Finally, enhanced neuroproliferation in the acute phase of EAE was not found to trigger compensatory apoptotic mechanisms. The possible causes of altered neurogenesis observed in this study emphasize the need to understand more precisely the mechanisms regulating adult neurogenesis under both normal and pathological conditions. PMID:23606574

  9. Build a better mouse: directly-observed issues in computer use for adults with SMI.

    PubMed

    Black, Anne C; Serowik, Kristin L; Schensul, Jean J; Bowen, Anne M; Rosen, Marc I

    2013-03-01

    Integrating information technology into healthcare has the potential to bring treatment to hard-to-reach people. Individuals with serious mental illness (SMI), however, may derive limited benefit from these advances in care because of lack of computer ownership and experience. To date, conclusions about the computer skills and attitudes of adults with SMI have been based primarily on self-report. In the current study, 28 psychiatric outpatients with co-occurring cocaine use were interviewed about their computer use and opinions, and 25 were then directly observed using task analysis and think aloud methods as they navigated a multi-component health informational website. Participants reported low rates of computer ownership and use, and negative attitudes towards computers. Self-reported computer skills were higher than demonstrated in the task analysis. However, some participants spontaneously expressed more positive attitudes and greater computer self-efficacy after navigating the website. Implications for increasing access to computer-based health information are discussed. PMID:22711454

  10. Effects of Extracellular Matrix Protein-derived Signaling on the Maintenance of the Undifferentiated State of Spermatogonial Stem Cells from Porcine Neonatal Testis.

    PubMed

    Park, Min Hee; Park, Ji Eun; Kim, Min Seong; Lee, Kwon Young; Hwang, Jae Yeon; Yun, Jung Im; Choi, Jung Hoon; Lee, Eunsong; Lee, Seung Tae

    2016-10-01

    In general, the seminiferous tubule basement membrane (STBM), comprising laminin, collagen IV, perlecan, and entactin, plays an important role in self-renewal and spermatogenesis of spermatogonial stem cells (SSCs) in the testis. However, among the diverse extracellular matrix (ECM) proteins constituting the STBM, the mechanism by which each regulates SSC fate has yet to be revealed. Accordingly, we investigated the effects of various ECM proteins on the maintenance of the undifferentiated state of SSCs in pigs. First, an extracellular signaling-free culture system was optimized, and alkaline phosphatase (AP) activity and transcriptional regulation of SSC-specific genes were analyzed in porcine SSCs (pSSCs) cultured for 1, 3, and 5 days on non-, laminin- and collagen IV-coated Petri dishes in the optimized culture system. The microenvironment consisting of glial cell-derived neurotrophic factor (GDNF)-supplemented mouse embryonic stem cell culture medium (mESCCM) (GDNF-mESCCM) demonstrated the highest efficiency in the maintenance of AP activity. Moreover, under the established extracellular signaling-free microenvironment, effective maintenance of AP activity and SSC-specific gene expression was detected in pSSCs experiencing laminin-derived signaling. From these results, we believe that laminin can serve as an extracellular niche factor required for the in vitro maintenance of undifferentiated pSSCs in the establishment of the pSSC culture system. PMID:26954208

  11. Response of olfactory axons to loss of synaptic targets in the adult mouse

    PubMed Central

    Ardiles, Yona; de la Puente, Rafael; Toledo, Rafael; Isgor, Ceylan; Guthrie, Kathleen

    2007-01-01

    Glomerular convergence has been proposed to rely on interactions between like olfactory axons, however topographic targeting is influenced by guidance molecules encountered in the olfactory bulb. Disruption of these cues during development misdirects sensory axons, however little is known about the role of bulb-derived signals in later life, as new axons arise during turnover of the olfactory sensory neuron (OSN) population. To evaluate the contribution of bulb neurons in maintaining topographic projections in adults, we ablated them with N-methyl-D-aspartate (NMDA) in P2-IRES-tauLacZ mice and examined how sensory axons responded to loss of their postsynaptic partners. NMDA lesion eliminated bulb neurons without damage to sensory axons or olfactory ensheathing glia. P2 axons contained within glomeruli at the time of lesion maintained convergence at these locations; there was no evidence of compensatory growth into the remnant tissue. Delayed apoptosis of OSNs in the target-deprived epithelium led to declines in P2 neuron number as well as the gradual atrophy, and in some cases complete loss, of P2 glomeruli in lesioned bulbs by three weeks. Increased cell proliferation in the epithelium partially restored the OSN population, and by eight weeks, new P2 axons distributed within diverse locations in the bulb remnant and within the anterior olfactory nucleus. Prior studies have suggested that initial development of olfactory topography does not rely on synapse formation with target neurons, however the present data demonstrate that continued maintenance of the sensory map requires the presence of sufficient numbers and/or types of available bulbar synaptic targets. PMID:17674970

  12. Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts.

    PubMed Central

    Irintchev, A; Langer, M; Zweyer, M; Theisen, R; Wernig, A

    1997-01-01

    1. Myoblasts from expanded primary cultures were implanted into cryodamaged soleus muscles of adult BALB/c mice. One to four months later isometric tension recordings were performed in vitro, and the male donor cells implanted into female hosts were traced on histological sections using a Y-chromosome-specific probe. The muscles were either mildly or severely cryodamaged, which led to reductions in tetanic muscle force to 33% (n = 9 muscles, 9 animals) and 70% (n = 11) of normal, respectively. Reduced forces resulted from deficits in regeneration of muscle tissue as judged from the reduced desmin-positive cross-sectional areas (34 and 66% of control, respectively). 2. Implantation of 10(6) myogenic cells into severely cryodamaged muscles more than doubled muscle tetanic force (to 70% of normal, n = 14), as well as specific force (to 66% of normal). Absolute and relative amount of desmin-positive muscle cross-sectional areas were significantly increased indicating improved microarchitecture and less fibrosis. Newly formed muscle tissue was fully innervated since the tetanic forces resulting from direct and indirect (nerve-evoked) stimulation were equal. Endplates were found on numerous Y-positive muscle fibres. 3. As judged from their position under basal laminae of muscle fibres and the expression of M-cadherin, donor-derived cells contributed to the pool of satellite cells on small- and large-diameter muscle fibres. 4. Myoblast implantation after mild cryodamage and in undamaged muscles had little or no functional or structural effects; in both preparations only a few Y-positive muscle nuclei were detected. It is concluded that myoblasts from expanded primary cultures-unlike permanent cell lines-significantly contribute to muscle regeneration only when previous muscle damage is extensive and loss of host satellite cells is severe. Images Figure 1 Figure 2 Figure 3 PMID:9161990

  13. Expression and Regulation of the Fkbp5 Gene in the Adult Mouse Brain

    PubMed Central

    Scharf, Sebastian H.; Liebl, Claudia; Binder, Elisabeth B.

    2011-01-01

    Background Chronic stress has been found to be a major risk factor for various human pathologies. Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, which is tightly regulated via, among others, the glucocorticoid receptor (GR). The activity of the GR is modulated by a variety of proteins, including the co-chaperone FK506 binding protein 51 (FKBP5). Although FKBP5 has been associated with risk for affective disorders and has been implicated in GR sensitivity, previous studies focused mainly on peripheral blood, while information about basal distribution and induction in the central nervous system are sparse. Methodology/Principal Findings In the present study, we describe the basal expression pattern of Fkbp5 mRNA in the brain of adult male mice and show the induction of Fkbp5 mRNA via dexamethasone treatment or different stress paradigms. We could show that Fkbp5 is often, but not exclusively, expressed in regions also known for GR expression, for example the hippocampus. Furthermore, we were able to induce Fkbp5 expression via dexamethasone in the CA1 and DG subregions of the hippocampus, the paraventricular nucleus (PVN) and the central amygdala (CeA). Increase of Fkbp5 mRNA was also found after restrained stress and 24 hours of food deprivation in the PVN and the CeA, while in the hippocampus only food deprivation caused an increase in Fkbp5 mRNA. Conclusions/Significance Interestingly, regions with a low basal expression showed higher increase in Fkbp5 mRNA following induction than regions with high basal expression, supporting the hypothesis that GR sensitivity is, at least partly, mediated via Fkbp5. In addition, this also supports the use of Fkbp5 gene expression as a marker for GR sensitivity. In summary, we were able to give an overview of the basal expression of fkbp5 mRNA as well as to extend the findings of induction of Fkbp5 and its regulatory influence on GR sensitivity from peripheral blood to the brain. PMID:21347384

  14. Retinoblastoma Protein (RB1) Controls Fate Determination in Stem Cells and Progenitors of the Mouse Male Germline1

    PubMed Central

    Yang, Qi-En; Gwost, Ivy; Oatley, Melissa J.; Oatley, Jon M.

    2013-01-01

    ABSTRACT Continual spermatogenesis is the cornerstone of male fertility and relies on the actions of an undifferentiated spermatogonial population comprised of stem cells and progenitors. A foundational spermatogonial stem cell (SSC) pool is established during postnatal development that serves as a self-renewing reservoir from which progenitor spermatogonia arise that transiently amplify in number before committing to terminal differentiation. At present, the underlying molecular mechanisms governing these actions are undefined. Using conditional mutant mouse models, we investigated whether function of the undifferentiated spermatogonial population during postnatal life is influenced by the tumor suppressor protein RB1. Spermatogenesis initiates in mice with conditional inactivation of Rb1 in prospermatogonial precursors, but the germline is progressively lost upon aging due to impaired renewal of the undifferentiated spermatogonial population. In contrast, continual spermatogenesis is sustained following Rb1 inactivation in progenitor spermatogonia, but some cells transform into a carcinoma in situ-like state. Furthermore, knockdown of Rb1 abundance within primary cultures of wild-type undifferentiated spermatogonia impairs maintenance of the SSC pool, and some cells are invasive of the basement membrane after transplant into recipient testes, indicating acquisition of tumorigenic properties. Collectively, these findings indicate that RB1 plays an essential role in establishment of a self-renewing SSC pool and commitment to the spermatogenic lineage within progenitor spermatogonia. PMID:24089198

  15. Correlation between expression of CatSper family and sperm profiles in the adult mouse testis following Iranian Kerack abuse.

    PubMed

    Amini, M; Shirinbayan, P; Behnam, B; Roghani, M; Farhoudian, A; Joghataei, M T; Koruji, M

    2014-05-01

    Illicit drug use can be an important cause of male infertility. The aim of this study was to investigate the effects of an Iranian illicit drug, Kerack, on sperm parameters, testicular structure and CatSper genes expression of mice. In this study, 25 male mice were divided into five groups consisting of control, sham and three experimental groups. All animal in experimental groups were addicted to Kerack for 7 days. These experimental groups include experimental I which was given Kerack at a dose of 5 mg/kg, experimental II, 35 mg/kg and experimental III, 70 mg/kg, intraperitoneally twice a day for a period of 35 days. Mice were then sacrificed and spermatozoas were removed from cauda epididymis and analyzed for count, motility, morphology (normal/abnormal) and viability. Right testes were removed, weighed and processed for light microscopic studies whereas left testes removed were subjected to total mRNA extraction for using in real-time PCR (RT-PCR). The results were analyzed by performing anova (Tukey's tests) and Pearson correlation coefficient. Sperm parameters and seminiferous epithelium thickness were decreased in experimental groups (dose-dependently) vs. sham and control groups (p < 0.05). RT-PCR results showed that CatSper 2, 3, 4 genes expressions were reduced with 35 and 70 mg/kg injected Kerack when compared with control testes (p ≤ 0.05). However, CatSper1 expression was only reduced with high dose injected Kerack (70 mg/kg) in comparison to control testes (p ≤ 0.05). This study shows the deleterious effects of Kerack used in Iran on testis structure and sperm parameters in general, and particularly sperm morphology in adult mouse. It could down-regulate the expression of CatSper genes, resulting in depression of sperm motility. PMID:24619711

  16. Oral Immunization with Cholera Toxin Provides Protection against Campylobacter jejuni in an Adult Mouse Intestinal Colonization Model

    PubMed Central

    Albert, M. John; Mustafa, Abu Salim; Islam, Anjum; Haridas, Shilpa

    2013-01-01

    ABSTRACT Immunity to Campylobacter jejuni, a major diarrheal pathogen, is largely Penner serotype specific. For broad protection, a vaccine should be based on a common antigen(s) present in all strains. In our previous study (M. J. Albert, S. Haridas, D. Steer, G. S. Dhaunsi, A. I. Smith, and B. Adler, Infect. Immun. 75:3070–3073, 2007), we demonstrated that antibody to cholera toxin (CT) cross-reacted with the major outer membrane proteins (MOMPs) of all Campylobacter jejuni strains tested. In the current study, we investigated whether immunization with CT protects against intestinal colonization by C. jejuni in an adult mouse model and whether the nontoxic subunit of CT (CT-B) is the portion mediating cross-reaction. Mice were orally immunized with CT and later challenged with C. jejuni strains (48, 75, and 111) of different serotypes. Control animals were immunized with phosphate-buffered saline. Fecal shedding of challenge organisms was studied daily for 9 days. Serum and fecal antibody responses were studied by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. The cross-reactivity of rabbit CT-B antibody to MOMP was studied by immunoblotting. The reactivity of 21 overlapping 30-mer oligopeptides (based on MOMP’s sequence) against rabbit CT antibody was tested by ELISA. Test animals produced antibodies to CT and MMP in serum and feces and showed resistance to colonization, the vaccine efficacies being 49% (for strain 48), 37% (for strain 75), and 34% (for strain 111) (P, ≤0.05 to ≤0.001). One peptide corresponding to a variable region of MOMP showed significant reactivity. CT-B antibody cross-reacted with MOMP. Since CT-B is a component of oral cholera vaccines, it might be possible to control C. jejuni diarrhea with these vaccines. PMID:23653448

  17. Early Social Enrichment Rescues Adult Behavioral and Brain Abnormalities in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-01-01

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases. PMID:25348604

  18. The transformation of synaptic to system plasticity in motor output from the sacral cord of the adult mouse.

    PubMed

    Jiang, Mingchen C; Elbasiouny, Sherif M; Collins, William F; Heckman, C J

    2015-09-01

    Synaptic plasticity is fundamental in shaping the output of neural networks. The transformation of synaptic plasticity at the cellular level into plasticity at the system level involves multiple factors, including behavior of local networks of interneurons. Here we investigate the synaptic to system transformation for plasticity in motor output in an in vitro preparation of the adult mouse spinal cord. System plasticity was assessed from compound action potentials (APs) in spinal ventral roots, which were generated simultaneously by the axons of many motoneurons (MNs). Synaptic plasticity was assessed from intracellular recordings of MNs. A computer model of the MN pool was used to identify the middle steps in the transformation from synaptic to system behavior. Two input systems that converge on the same MN pool were studied: one sensory and one descending. The two synaptic input systems generated very different motor outputs, with sensory stimulation consistently evoking short-term depression (STD) whereas descending stimulation had bimodal plasticity: STD at low frequencies but short-term facilitation (STF) at high frequencies. Intracellular and pharmacological studies revealed contributions from monosynaptic excitation and stimulus time-locked inhibition but also considerable asynchronous excitation sustained from local network activity. The computer simulations showed that STD in the monosynaptic excitatory input was the primary driver of the system STD in the sensory input whereas network excitation underlies the bimodal plasticity in the descending system. These results provide insight on the roles of plasticity in the monosynaptic and polysynaptic inputs converging on the same MN pool to overall motor plasticity. PMID:26203107

  19. Adult siRNA-induced knockdown of mGlu7 receptors reduces anxiety in the mouse.

    PubMed

    O'Connor, Richard M; Thakker, Deepak R; Schmutz, Markus; van der Putten, Herman; Hoyer, Daniel; Flor, Peter J; Cryan, John F

    2013-09-01

    Our knowledge regarding the molecular pathophysiology underlying anxiety disorders remains incomplete. Increasing evidence points to a role of glutamate in anxiety. The group III metabotropic glutamate receptors (mGlu4, mGlu6, mGlu7 and mGlu8 receptors) remain the least investigated glutamate receptor subtypes partially due to a delay in the development of specific pharmacological tools. Early work using knockout animals and pharmacological tools aimed at investigating the role of mGlu7 receptor in the pathophysiology of anxiety disorders has yielded exciting yet not always consistent results. To further investigate the role this receptor plays in anxiety-like behaviour, we knocked down mGlu7 receptor mRNA levels in the adult mouse brain using siRNA delivered via an osmotic minipump. This reduced anxiety-like behaviour in the light-dark box coupled with an attenuation of stress-induced hyperthermia (SIH) and a reduction of the acoustic startle response (ASRs) in the fear-potentiated startle paradigm (FPS). These effects on anxiety-like behaviour were independent of any impairment of locomotor activity and surprisingly, no behavioural changes were observed in the forced swim test (FST), which is in contrast to mGlu7 receptor knockout animals. Furthermore, the previously reported epilepsy-prone phenotype seen in mGlu7 receptor knockout animals was not observed following siRNA-induced knockdown of the receptor. These data suggest targeting mGlu7 receptors with selective antagonist drugs may be an effective and safe strategy for the treatment of anxiety disorders. PMID:23603202

  20. Spatiotemporally Regulated Ablation of Klf4 in Adult Mouse Corneal Epithelial Cells Results in Altered Epithelial Cell Identity and Disrupted Homeostasis

    PubMed Central

    Delp, Emili E.; Swamynathan, Sudha; Kao, Winston W.; Swamynathan, Shivalingappa K.

    2015-01-01

    Purpose. In previous studies, conditional disruption of Klf4 in the developing mouse ocular surface from embryonic day 10 resulted in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells, revealing the importance of Klf4 in ocular surface maturation. Here, we use spatiotemporally regulated ablation of Klf4 to investigate its functions in maintenance of adult corneal epithelial homeostasis. Methods. Expression of Cre was induced in ternary transgenic (Klf4LoxP/LoxP/Krt12rtTA/rtTA/Tet-O-Cre) mouse corneal epithelium by doxycycline administered through intraperitoneal injections and drinking water, to generate corneal epithelium–specific deletion of Klf4 (Klf4Δ/ΔCE). Corneal epithelial barrier function was tested by fluorescein staining. Expression of selected Klf4-target genes was determined by quantitative PCR (QPCR), immunoblotting, and immunofluorescent staining. Results. Klf4 was efficiently ablated within 5 days of doxycycline administration in adult Klf4Δ/ΔCE corneal epithelium. The Klf4Δ/ΔCE corneal epithelial barrier function was disrupted, and the basal cells were swollen and rounded after 15 days of doxycycline treatment. Increased numbers of cell layers and Ki67-positive proliferating cells suggested deregulated Klf4Δ/ΔCE corneal epithelial homeostasis. Expression of tight junction proteins ZO-1 and occludin, desmosomal Dsg and Dsp, basement membrane laminin-332, and corneal epithelial–specific keratin-12 was decreased, while that of matrix metalloproteinase Mmp9 and noncorneal keratin-17 increased, suggesting altered Klf4Δ/ΔCE corneal epithelial cell identity. Conclusions. Ablation of Klf4 in the adult mouse corneas resulted in the absence of characteristic corneal epithelial cell differentiation, disrupted barrier function, and squamous metaplasia, revealing that Klf4 is essential for maintenance of the adult corneal epithelial cell identity and homeostasis. PMID:26047041

  1. A new genus and species of demodecid mites from the tongue of a house mouse Mus musculus: description of adult and immature stages with data on parasitism.

    PubMed

    Izdebska, J N; Rolbiecki, L

    2016-06-01

    The study of the parasitofauna of the house mouse Mus musculus (Rodentia: Muridae) Linnaeus is particularly important owing to its multiple relationships with humans - as a cosmopolitan, synanthropic rodent, bred for pets, food for other animals or laboratory animal. This article proposes and describes a new genus and species of the parasitic mite based on adult and immature stages from the house mouse. Glossicodex musculi gen. n., sp. n. is a medium-sized demodecid mite (adult stages on average 199 µm in length) found in mouse tissue of the tongue. It is characterized by two large, hooked claws on each tarsus of the legs; the legs are relatively massive, consisting of large, non-overlapping segments. The palps consist of three slender, clearly separated, relatively narrow segments, wherein their coxal segments are also quite narrow and spaced. Also, segments of the palps of larva and nymphs are clearly isolated, and on the terminal segment, trident claws that resemble legs' claws can be found. On the ventral side, in immature stages, triangular scuta, topped with sclerotized spur, can be also observed. Glossicodex musculi was noted in 10.8% of mice with a mean infection intensity of 2.2 parasites per host. PMID:26991770

  2. Follistatin-like 5 is expressed in restricted areas of the adult mouse brain: Implications for its function in the olfactory system.

    PubMed

    Masuda, Tomoyuki; Sakuma, Chie; Nagaoka, Atsuko; Yamagishi, Toshiyuki; Ueda, Shuichi; Nagase, Takahiro; Yaginuma, Hiroyuki

    2014-02-01

    Follistatin-like 5 (Fstl5), a member of the follistatin family of genes, encodes a secretory glycoprotein. Previous studies revealed that other members of this family including Fstl1 and Fstl3 play an essential role in development, homeostasis, and congenital disorders. However, the in vivo function of Fstl5 is poorly understood. To gain insight into the function of Fstl5 in the mouse central nervous system, we examined the Fstl5 expression pattern in the adult mouse brain. The results of in situ hybridization analysis showed a highly restricted pattern of Fstl5, namely, with localization in the olfactory system, hippocampal CA3 area and granular cell layer of the cerebellum. Restricted expression in the olfactory system suggests a possible role for Fstl5 in maintaining odor perception. PMID:24588779

  3. Synthesis and cyto-genotoxicity evaluation of graphene on mice spermatogonial stem cells.

    PubMed

    Hashemi, Ehsan; Akhavan, Omid; Shamsara, Mehdi; Daliri, Morteza; Dashtizad, Mojtaba; Farmany, Abbas

    2016-10-01

    The present study analyzed the dose-dependent cyto- and genotoxicity of graphene oxide and reduced graphene oxide on spermatogonial stem cells (SSCs) for the first time. The results showed that graphene oxide significantly increased oxidative stress at concentrations of 100 and 400μg/ml, while low concentrations did not have a significant effect. In addition, according to the MTT assay, the cell number decreased in high-concentration (100 and 400μg/ml) graphene oxide-treated samples compared to untreated cells. However, a reduced graphene-treated sample demonstrated a significant increase in cell number. Moreover, microscopic analysis found high concentrations of graphene nanosheets in cell culture medium that reduced the number of colonies and colony forming cells. We conclude that a high concentration of graphene can be toxic to SSCs. However, such toxicity can be reduced by the surface modification of graphene nanomaterials. PMID:27451364

  4. [Fertility preservation in boys: spermatogonial stem cell transplantation and testicular grafting].

    PubMed

    Goossens, E; Tournaye, H

    2013-09-01

    Spermatogonial stem cells (SSC) are the founder cells of spermatogenesis and are responsible for the lifelong production of spermatozoa. The cryopreservation and transplantation of these cells has been proposed as a fertility preservation strategy for young boys at risk for stem cell loss, i.e. patients undergoing chemotherapy for cancer or as a conditioning treatment for bone marrow transplantation. To prevent lifelong sterility in boys, two fertility restoration strategies are being developed: the injection of SSC and the grafting of testicular tissue containing SSC. Depending on the disease of the patient one of these two approaches will be applicable. Grafting has the advantage that SSC can reside within their natural niche, preserving the interactions between germ cells and their supporting cells and may therefore be regarded as the first choice strategy. However, in cases where the risk for malignant contamination of the testicular tissue is real, e.g. leukemia, transplantation of SSC by injection is preferable over grafting. PMID:23972916

  5. Availability of subfertile transgenic rats expressing the c-myc gene as recipients for spermatogonial transplantation.

    PubMed

    Hirabayashi, Masumi; Yoshizawa, Yusuke; Kato, Megumi; Tsuchiya, Takashi; Nagao, Shizuko; Hochi, Shinichi

    2009-02-01

    The spermatogonial transplantation system was applied to evaluate stem cell kinetics and niche quality and to produce gene-modified animals using the stem cells after homologous recombination-based selection. This study was designed to determine whether the transplanted spermatogonia were able to proliferate and differentiate in male rats expressing the c-myc transgene under control of the human metallothionein IIA promoter (MT-myc Tg rats). Donor testicular cells were prepared from heterozygous chicken beta actin (CAG)/enhanced green fluorescent protein (EGFP)-transgenic rats (EGFP Tg rats) during the second week after birth and injected into the seminiferous tubules of the MT-myc Tg rats (line-A and -B; both subfertile) or rats pretreated with busulfan to remove endogenous spermatogonia. Three to four months after transplantation, cell colonies with EGFP fluorescence were detected in 36% (4/11), 40% (8/20), and 71% (5/7) of the transplanted testes in line-A MT-myc Tg rats, line-B MT-myc Tg rats, and busulfan-treated rats, respectively. No EGFP-positive colonies were detected when wild-type male rats were used as recipients (0/7; testis-basis). The histopathological and immunofluorescent examination of the serial sections from the transplanted testes showed normal spermatogenesis of the donor spermatogonia, but atrophy of the recipient seminiferous tubules. Microinsemination with round spermatids and mature spermatozoa derived from EGFP-positive testes in line-A rats resulted 26% (10/39 transferred) and 23% (11/48 transferred) full-term offspring, respectively. Thus, the MT-myc Tg male rats were suitable as potent recipients for spermatogonial transplantation without any chemical pretreatment to remove the endogenous spermatogonia. PMID:18830680

  6. Study of the potential spermatogonial stem cell compartment in dogfish testis, Scyliorhinus canicula L.

    PubMed

    Loppion, Geraldine; Crespel, Amélie; Martinez, Anne-Sophie; Auvray, Pierrïck; Sourdaine, Pascal

    2008-06-01

    In the lesser-spotted dogfish (Scyliorhinus canicula), spermatogenesis takes place within spermatocysts made up of Sertoli cells associated with stage-synchronized germ cells. As shown in testicular cross sections, cysts radiate in maturational order from the germinative area, where they are formed, to the opposite margin of the testis, where spermiation occurs. In the germinative zone, which is located in a specific area between the tunica albuginea of the testis and the dorsal testicular vessel, individual large spermatogonia are surrounded by elongated somatic cells. The aim of this study has been to define whether these spermatogonia share characteristics with spermatogonial stem cells described in vertebrate and non-vertebrate species. We have studied their ultrastructure and their mitotic activity by 5'-bromo-2'-deoxyuridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) immunodetection. Additionally, immunodetection of c-Kit receptor, a marker of differentiating spermatogonia in rodents, and of alpha- and beta-spectrins, as constituents of the spectrosome and the fusome, has been performed. Ultrastructurally, nuclei of stage I spermatogonia present the same mottled aspect in dogfish as undifferentiated spermatogonia nuclei in rodents. Moreover, intercellular bridges are not observed in dogfish spermatogonia, although they are present in stage II spermatogonia. BrdU and PCNA immunodetection underlines their low mitotic activity. The presence of a spectrosome-like structure, a cytological marker of the germline stem cells in Drosophila, has been observed. Our results constitute the first step in the study of spermatogonial stem cells and their niche in the dogfish. PMID:18340468

  7. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.

    PubMed

    Broutier, Laura; Andersson-Rolf, Amanda; Hindley, Christopher J; Boj, Sylvia F; Clevers, Hans; Koo, Bon-Kyoung; Huch, Meritxell

    2016-09-01

    Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol. PMID:27560176

  8. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    PubMed

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. PMID:26400395

  9. Spermatogonial Nature of the Germ Cell Component of Canine Testicular Mixed Germ Cell-Sex Cord Stromal Tumours.

    PubMed

    Mizukami, S; Murakami, T; Tanaka, T; Machida, N; Nomura, K; Yoshida, T; Shibutani, M

    2016-07-01

    The present study has characterized the germ cell component of canine testicular mixed germ cell-sex cord stromal tumours (MGSCTs) by examining the histological nature and histochemical and immunohistochemical features using gonocytic and spermatogonial cellular markers, c-Kit, placental alkaline phosphatase (PLAP), protein gene product 9.5 (PGP9.5), Sal-like protein 4 (SALL4), and the periodic acid-Schiff (PAS) reaction. Histologically, all 45 examples of MGSCTs were classified as spermatocytic seminomas (SSs) and Sertoli cell tumours in combination. The germ cell component of all MGSCTs was negative by PAS staining. Immunohistochemically, PLAP immunoreactivity was lacking in the germ cell component of all MGSCTs, which is not consistent with a gonocytic origin. The germ cell component was positive for PGP9.5 and SALL4 in all MGSCTs and positive for c-Kit in 53% of MGSCTs, which is consistent with the phenotype of spermatogonia. Furthermore, the germ cell component in 71% of MGSCTs had moderate immunoreactivity for SALL4, which is suggestive of a spermatogonial phenotype. Conversely, 29% of cases had a minor population of germ cells showing strong SALL4 immunoreactivity, suggesting a phenotype similar to prespermatogonia. The results suggest that the germ cell component of canine MGSCTs is morphologically classified as SS, with the majority of cases showing the spermatogonial phenotype and some cases containing a small population of prespermatogonia. PMID:27241073

  10. Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling

    PubMed Central

    Chen, Su-Ren; Tang, Ji-Xin; Cheng, Jin-Mei; Li, Jian; Jin, Cheng; Li, Xiao-Yu; Deng, Shou-Long; Zhang, Yan; Wang, Xiu-Xia; Liu, Yi-Xun

    2015-01-01

    Sertoli cells, the primary somatic cell in the seminiferous epithelium, provide the spermatogonial stem cell (SSC) microenvironment (niche) through physical support and the expression of paracrine factors. However, the regulatory mechanisms within the SSC niche, which is primarily controlled by Sertoli cells, remain largely unknown. GATA4 is a Sertoli cell marker, involved in genital ridge initiation, sex determination and differentiation during the embryonic stage. Here, we showed that neonatal mice with a targeted disruption of Gata4 in Sertoli cells (Gata4flox/flox; Amh-Cre; hereafter termed Gata4 cKO) displayed a loss of the establishment and maintenance of the SSC pool and apoptosis of both gonocyte-derived differentiating spermatogonia and meiotic spermatocytes. Thus, progressive germ cell depletion and a Sertoli-cell-only syndrome were observed as early as the first wave of murine spermatogenesis. Transplantation of germ cells from postnatal day 5 (P5) Gata4 cKO mice into KitW/W-v recipient seminiferous tubules restored spermatogenesis. In addition, microarray analyses of P5 Gata4 cKO mouse testes showed alterations in chemokine signaling factors, including Cxcl12, Ccl3, Cxcr4 (CXCL12 receptor), Ccr1 (CCL3 receptor), Ccl9, Xcl1 and Ccrl2. Deletion of Gata4 in Sertoli cells markedly attenuated Sertoli cell chemotaxis, which guides SSCs or prospermatogonia to the stem cell niche. Finally, we showed that GATA4 transcriptionally regulated Cxcl12 and Ccl9, and the addition of CXCL12 and CCL9 to an in vitro testis tissue culture system increased the number of PLZF+ undifferentiated spermatogonia within Gata4 cKO testes. Together, these results reveal a novel role for GATA4 in controlling the SSC niche via the transcriptional regulation of chemokine signaling shortly after birth. PMID:26473289

  11. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze

    PubMed Central

    Merritt, Jennifer; Rhodes, Justin S.

    2014-01-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316

  12. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

    PubMed

    Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko

    2015-02-01

    The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue. PMID:25481415

  13. HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse.

    PubMed

    Lim, Shu Ly; Qu, Zhi Peng; Kortschak, R Daniel; Lawrence, David M; Geoghegan, Joel; Hempfling, Anna-Lena; Bergmann, Martin; Goodnow, Christopher C; Ormandy, Christopher J; Wong, Lee; Mann, Jeff; Scott, Hamish S; Jamsai, Duangporn; Adelson, David L; O'Bryan, Moira K

    2015-10-01

    piRNAs are critical for transposable element (TE) repression and germ cell survival during the early phases of spermatogenesis, however, their role in adult germ cells and the relative importance of piRNA methylation is poorly defined in mammals. Using a mouse model of HEN methyltransferase 1 (HENMT1) loss-of-function, RNA-Seq and a range of RNA assays we show that HENMT1 is required for the 2' O-methylation of mammalian piRNAs. HENMT1 loss leads to piRNA instability, reduced piRNA bulk and length, and ultimately male sterility characterized by a germ cell arrest at the elongating germ cell phase of spermatogenesis. HENMT1 loss-of-function, and the concomitant loss of piRNAs, resulted in TE de-repression in adult meiotic and haploid germ cells, and the precocious, and selective, expression of many haploid-transcripts in meiotic cells. Precocious expression was associated with a more active chromatin state in meiotic cells, elevated levels of DNA damage and a catastrophic deregulation of the haploid germ cell gene expression. Collectively these results define a critical role for HENMT1 and piRNAs in the maintenance of TE repression in adult germ cells and setting the spermatogenic program. PMID:26496356

  14. HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse

    PubMed Central

    Lim, Shu Ly; Geoghegan, Joel; Hempfling, Anna-Lena; Bergmann, Martin; Goodnow, Christopher C.; Ormandy, Christopher J.; Wong, Lee; Mann, Jeff; Scott, Hamish S.; Jamsai, Duangporn; Adelson, David L.

    2015-01-01

    piRNAs are critical for transposable element (TE) repression and germ cell survival during the early phases of spermatogenesis, however, their role in adult germ cells and the relative importance of piRNA methylation is poorly defined in mammals. Using a mouse model of HEN methyltransferase 1 (HENMT1) loss-of-function, RNA-Seq and a range of RNA assays we show that HENMT1 is required for the 2’ O-methylation of mammalian piRNAs. HENMT1 loss leads to piRNA instability, reduced piRNA bulk and length, and ultimately male sterility characterized by a germ cell arrest at the elongating germ cell phase of spermatogenesis. HENMT1 loss-of-function, and the concomitant loss of piRNAs, resulted in TE de-repression in adult meiotic and haploid germ cells, and the precocious, and selective, expression of many haploid-transcripts in meiotic cells. Precocious expression was associated with a more active chromatin state in meiotic cells, elevated levels of DNA damage and a catastrophic deregulation of the haploid germ cell gene expression. Collectively these results define a critical role for HENMT1 and piRNAs in the maintenance of TE repression in adult germ cells and setting the spermatogenic program. PMID:26496356

  15. Characterization of Np95 expression in mouse brain from embryo to adult: A novel marker for proliferating neural stem/precursor cells

    PubMed Central

    Murao, Naoya; Matsuda, Taito; Noguchi, Hirofumi; Koseki, Haruhiko; Namihira, Masakazu; Nakashima, Kinichi

    2014-01-01

    Nuclear protein 95 KDa (Np95, also known as UHRF1 or ICBP90) plays an important role in maintaining DNA methylation of newly synthesized DNA strands by recruiting DNA methyltransferase 1 (DNMT1) during cell division. In addition, Np95 participates in chromatin remodeling by interacting with histone modification enzymes such as histone deacetylases. However, its expression pattern and function in the brain have not been analyzed extensively. We here investigated the expression pattern of Np95 in the mouse brain, from developmental to adult stages. In the fetal brain, Np95 is abundantly expressed at the midgestational stage, when a large number of neural stem/precursor cells (NS/PCs) exist. Interestingly, Np95 is expressed specifically in NS/PCs but not in differentiated cells such as neurons or glial cells. Furthermore, we demonstrate that Np95 is preferentially expressed in type 2a cells, which are highly proliferative NS/PCs in the dentate gyrus of the adult hippocampus. Moreover, the number of Np95-expressing cells increases in response to kainic acid administration or to voluntary running, which are known to enhance the proliferation of adult NS/PCs. These results suggest that Np95 participates in the process of proliferation and differentiation of NS/PCs, and that it should be a useful novel marker for proliferating NS/PCs, facilitating the analysis of the complex behavior of NS/PCs in the brain.

  16. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse.

    PubMed

    Tanaka, Masayuki; Yoneyama, Masanori; Shiba, Tatsuo; Yamaguchi, Taro; Ogita, Kiyokazu

    2016-07-01

    Thrombin-activated protease-activated receptor (PAR)-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs) derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP) SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs. PMID:27426918

  17. Long-term treatment with L-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson's disease.

    PubMed

    Chiu, W-H; Depboylu, C; Hermanns, G; Maurer, L; Windolph, A; Oertel, W H; Ries, V; Höglinger, G U

    2015-08-01

    Non-motor symptoms such as hyposmia and depression are often observed in Parkinson's disease (PD) and can precede the onset of motor symptoms for years. The underlying pathological alterations in the brain are not fully understood so far. Dysregulation of adult neurogenesis in the dentate gyrus of the hippocampus and the olfactory bulb has been recently suggested to be implicated in non-motor symptoms of PD. However, there is so far no direct evidence to support the relationship of non-motor symptoms and the modulation of adult neurogenesis following dopamine depletion and/or dopamine replacement. In this study, we investigated the long-term effects of l-DOPA and pramipexole, a dopamine agonist, in a mouse model of bilateral intranigral 6-OHDA lesion, in order to assess the impact of adult neurogenesis on non-motor behavior. We found that l-DOPA and pramipexole can normalize decreased neurogenesis in the hippocampal dentate gyrus and the periglomerular layer of the olfactory bulb caused by a 6-OHDA lesion. Interestingly, pramipexole showed an antidepressant and anxiolytic effect in the forced swim test and social interaction test. However, there was no significant change in learning and memory function after dopamine depletion and dopamine replacement, respectively. PMID:25839898

  18. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine.

    PubMed

    Aponte, Pedro Manuel

    2015-05-26

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications. PMID:26029339

  19. Signaling molecules and pathways regulating the fate of spermatogonial stem cells

    PubMed Central

    He, Zuping; Kokkinaki, Maria; Dym, Martin

    2009-01-01

    Spermatogenesis is the process that involves the division and differentiation of spermatogonial stem cells (SSCs) into mature spermatozoa. SSCs are a subpopulation of type A spermatogonia resting on the basement membrane in the mammalian testis. Self-renewal and differentiation of SSCs are the foundation of normal spermatogenesis, and thus a better understanding of molecular mechanisms and signaling pathways in the SSCs is of paramount importance for the regulation of spermatogenesis and may eventually lead to novel targets for male contraception as well as for gene therapy of male infertility and testicular cancer. Uncovering the molecular mechanisms is also of great interest to a better understanding of SSC aging and for developing novel therapeutic strategies for degenerative diseases in view of the recent work demonstrating the pluripotent potential of the SSC. Progress has recently been made in elucidating the signaling molecules and pathways that determine cell fate decisions of SSCs. In this review, we first address the morphological features, phenotypic characteristics, and the potential of SSCs. And then we focus on the recent advances in defining the key signaling molecules and crucial signaling pathways regulating self-renewal and differentiation of SSCs. The association of aberrant expression of signaling molecules and cascades with abnormal spermatogenesis and testicular cancer are also discussed. Finally we point out potential future directions to pursue in research on signaling pathways of SSCs. PMID:19263492

  20. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine

    PubMed Central

    Aponte, Pedro Manuel

    2015-01-01

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications. PMID:26029339

  1. Proteomic analysis of the spermatogonial stem cell compartment in dogfish Scyliorhinus canicula L.

    PubMed

    Loppion, Géraldine; Lavigne, Régis; Pineau, Charles; Auvray, Pierrïck; Sourdaine, Pascal

    2010-06-01

    In the dogfish (Scyliorhinus canicula L.) the testicular germinative zone (GZ), composed of large isolated spermatogonia surrounded by elongating pre-Sertoli cells, is located between the albuginea and the ventrolateral intratesticular vessel. During the spermatogenic wave, cysts radiate in maturational order forming distinct testicular zones. In this study, soluble proteins of the GZ and of the zone containing cysts with spermatocytes were separated by two-dimensional electrophoresis. Gel images were matched and then evaluated for GZ-specific proteins. From the1400 protein spots identified, 680 were found to be apparently specific to this zone. Using MALDI-TOF/TOF mass spectrometry, de novo sequences were obtained for 33 proteins out of the 169 selected for identification by mass spectrometry, but only 16 of these 169 proteins were identified. One of them, proteasome subunit alpha-6, was analyzed further by immunohistochemistry. This study demonstrates the utility of the dogfish as a model for proteome analysis of the spermatogonial stem cell niche, even if it remains restricted by the lack of genomic data available on Elasmobranchs. PMID:20435534

  2. In Vitro Ectopic Behavior of Porcine Spermatogonial Germ Cells and Testicular Somatic Cells.

    PubMed

    Lee, Kyung Hoon; Lee, Won Young; Do, Jung Tae; Park, Chan Kyu; Kim, Nam Hyung; Kim, Jin Hoi; Chung, Hak Jae; Kim, Dong Woon; Song, Hyuk

    2016-08-01

    Embryonic body-like colony formation is a unique pattern in male germ cell cultures, including spermatogonial stem cells. However, detailed information of the colony formation has not yet been sufficiently reported in male germ cell culture. To elucidate the formation of germ cell-derived colony (GDC), glial cell-derived neurotrophic factor receptor alpha-1 (GFRα-1)-positive pig germ cells were isolated using an immunomagnetic cell isolation method and labeled with red- or green-fluorescent dye. In GDC culture, red-fluorescent-labeled germ cells were evenly distributed in the wells from day 1 to 4, and they clustered together at the time of GDC formation on day 6. Interestingly, feeder cells migrated to the site of colony formation as spermatogonia carriers. Furthermore, when freshly prepared green-labeled GFRα-1-positive germ cells were added, mixed-fluorescent dye (red and green) colonies were observed. On bromodeoxyuridine (BrdU) treatment, 58% ± 3.13% of germ cells were positive to protein gene product 9.5 but negative to BrdU cells. Immunocytochemistry and reverse transcription-polymerase chain reaction results showed that cultured GDC cells were positive to stem cell- and pig germ cell-specific marker genes. In conclusion, in vitro formation of GDCs is mainly dependent on the aggregation of single germ cells as well as on the slow proliferation of germ cells. PMID:27328332

  3. Isolation, proliferation, and induction of Bama mini-pig spermatogonial stem cells in vitro.

    PubMed

    Zhao, H M; Yang, H; Luo, F H; Li, M X; Zhang, S; Yang, X G; Lu, Y Q; Lu, S S; Wu, Y J; Lu, K H

    2016-01-01

    Spermatogonial stem cells (SSCs), the unique seed cells of testes, can undergo meiosis and form spermatozoa, thus transmitting genetic information to offspring. Research concerning these cells explores the mechanism underlying spermatogenesis, making possible the induction of their differentiation into spermatozoa in vitro. SSCs have therefore attracted much interest among scientists. Although the proliferation of such cells in vitro has been demonstrated, we are unaware of any long-term laboratory culture of porcine SSCs. The objective of this study was to isolate, characterize, culture, and induce the differentiation of Bama mini-pig SSCs. SSCs were isolated using differential plating and cultured for over 100 days on an STO feeder cell layer without serum. Cell clusters appeared after three passages and continuously formed during subsequent cultivation. Staining showed that these clusters were positive for UCHL1 and CDH1, could be bound by Dolichos biflorus agglutinin, and that some cells expressed OCT4. Ultrastructure observations revealed SSCs in testis tissue to be round in shape, while those cultured in vitro were flat and bound together. Our attempts at inducing differentiation showed that SSCs cultured in vitro could undergo meiosis. In this study, we describe an effective culture system for Bama mini-pig SSCs capable of producing enough cells to establish a platform for further SSC research, such as genetic manipulation or exploration of the mechanism underlying spermatogenesis. PMID:27525927

  4. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations

    PubMed Central

    Kadakkuzha, Beena M.; Liu, Xin-An; McCrate, Jennifer; Shankar, Gautam; Rizzo, Valerio; Afinogenova, Alina; Young, Brandon; Fallahi, Mohammad; Carvalloza, Anthony C.; Raveendra, Bindu; Puthanveettil, Sathyanarayanan V.

    2015-01-01

    Despite the importance of the long non-coding RNAs (lncRNAs) in regulating biological functions, the expression profiles of lncRNAs in the sub-regions of the mammalian brain and neuronal populations remain largely uncharacterized. By analyzing RNASeq datasets, we demonstrate region specific enrichment of populations of lncRNAs and mRNAs in the mouse hippocampus and pre-frontal cortex (PFC), the two major regions of the brain involved in memory storage and neuropsychiatric disorders. We identified 2759 lncRNAs and 17,859 mRNAs in the hippocampus and 2561 lncRNAs and 17,464 mRNAs expressed in the PFC. The lncRNAs identified correspond to ~14% of the transcriptome of the hippocampus and PFC and ~70% of the lncRNAs annotated in the mouse genome (NCBIM37) and are localized along the chromosomes as varying numbers of clusters. Importantly, we also found that a few of the tested lncRNA-mRNA pairs that share a genomic locus display specific co-expression in a region-specific manner. Furthermore, we find that sub-regions of the brain and specific neuronal populations have characteristic lncRNA expression signatures. These results reveal an unexpected complexity of the lncRNA expression in the mouse brain. PMID:25798087

  5. On-Going Frontal Alpha Rhythms Are Dominant in Passive State and Desynchronize in Active State in Adult Gray Mouse Lemurs

    PubMed Central

    Rahman, Anisur; Lamberty, Yves; Bordet, Regis; Richardson, Jill C.; Forloni, Gianluigi; Drinkenburg, Wilhelmus; Lopez, Susanna; Aujard, Fabienne; Babiloni, Claudio; Pifferi, Fabien

    2015-01-01

    The gray mouse lemur (Microcebus murinus) is considered a useful primate model for translational research. In the framework of IMI PharmaCog project (Grant Agreement n°115009, www.pharmacog.org), we tested the hypothesis that spectral electroencephalographic (EEG) markers of motor and locomotor activity in gray mouse lemurs reflect typical movement-related desynchronization of alpha rhythms (about 8–12 Hz) in humans. To this aim, EEG (bipolar electrodes in frontal cortex) and electromyographic (EMG; bipolar electrodes sutured in neck muscles) data were recorded in 13 male adult (about 3 years) lemurs. Artifact-free EEG segments during active state (gross movements, exploratory movements or locomotor activity) and awake passive state (no sleep) were selected on the basis of instrumental measures of animal behavior, and were used as an input for EEG power density analysis. Results showed a clear peak of EEG power density at alpha range (7–9 Hz) during passive state. During active state, there was a reduction in alpha power density (8–12 Hz) and an increase of power density at slow frequencies (1–4 Hz). Relative EMG activity was related to EEG power density at 2–4 Hz (positive correlation) and at 8–12 Hz (negative correlation). These results suggest for the first time that the primate gray mouse lemurs and humans may share basic neurophysiologic mechanisms of synchronization of frontal alpha rhythms in awake passive state and their desynchronization during motor and locomotor activity. These EEG markers may be an ideal experimental model for translational basic (motor science) and applied (pharmacological and non-pharmacological interventions) research in Neurophysiology. PMID:26618512

  6. On-Going Frontal Alpha Rhythms Are Dominant in Passive State and Desynchronize in Active State in Adult Gray Mouse Lemurs.

    PubMed

    Infarinato, Francesco; Rahman, Anisur; Del Percio, Claudio; Lamberty, Yves; Bordet, Regis; Richardson, Jill C; Forloni, Gianluigi; Drinkenburg, Wilhelmus; Lopez, Susanna; Aujard, Fabienne; Babiloni, Claudio; Pifferi, Fabien

    2015-01-01

    The gray mouse lemur (Microcebus murinus) is considered a useful primate model for translational research. In the framework of IMI PharmaCog project (Grant Agreement n°115009, www.pharmacog.org), we tested the hypothesis that spectral electroencephalographic (EEG) markers of motor and locomotor activity in gray mouse lemurs reflect typical movement-related desynchronization of alpha rhythms (about 8-12 Hz) in humans. To this aim, EEG (bipolar electrodes in frontal cortex) and electromyographic (EMG; bipolar electrodes sutured in neck muscles) data were recorded in 13 male adult (about 3 years) lemurs. Artifact-free EEG segments during active state (gross movements, exploratory movements or locomotor activity) and awake passive state (no sleep) were selected on the basis of instrumental measures of animal behavior, and were used as an input for EEG power density analysis. Results showed a clear peak of EEG power density at alpha range (7-9 Hz) during passive state. During active state, there was a reduction in alpha power density (8-12 Hz) and an increase of power density at slow frequencies (1-4 Hz). Relative EMG activity was related to EEG power density at 2-4 Hz (positive correlation) and at 8-12 Hz (negative correlation). These results suggest for the first time that the primate gray mouse lemurs and humans may share basic neurophysiologic mechanisms of synchronization of frontal alpha rhythms in awake passive state and their desynchronization during motor and locomotor activity. These EEG markers may be an ideal experimental model for translational basic (motor science) and applied (pharmacological and non-pharmacological interventions) research in Neurophysiology. PMID:26618512

  7. Mouse adenovirus type 1 causes a fatal hemorrhagic encephalomyelitis in adult C57BL/6 but not BALB/c mice.

    PubMed Central

    Guida, J D; Fejer, G; Pirofski, L A; Brosnan, C F; Horwitz, M S

    1995-01-01

    Mouse adenovirus type 1 (MAV-1) produces a lethal disease in newborn or suckling mice characterized by infectious virus and viral lesions in multiple organs. Previous reports of MAV-1 infection of adult mice generally described serologic evidence of infection without morbidity or mortality. However, our current results demonstrate that MAV-1 causes a fatal illness in adult C57BL/6(B6) mice (50% lethal dose, [LD50], 10(3.0) PFU) but not in adult BALB/c mice at all of the doses tested (LD50, > or = 10(5.0) PFU). Adult (BALB/c x B6)F1 mice were intermediately susceptible (LD50, 10(4.5) PFU). Clinically, the sensitive B6 mice showed symptoms of acute central nervous system (CNS) disease, including tremors, seizures, ataxia, and paralysis. Light microscopic examination of CNS tissue from the B6 animals revealed petechial hemorrhages, edema, neovascularization, and mild inflammation in the brain and spinal cord. Analysis by electron microscopy showed evidence of inflammation, such as activated microglia, as well as swollen astrocytic endfeet and perivascular lipid deposition indicative of blood-brain barrier dysfunction. Outside of the CNS, the only significant pathological findings were foci of cytolysis in the splenic white pulp. Assessment of viral replication from multiple tissues was performed by using RNase protection assays with an antisense MAV-1 early region 1a probe. The greatest amounts of viral mRNA in MAV-1-infected B6 animals were located in the brain and spinal cord. Less viral message was detected in the spleen, lungs, and heart. No viral mRNA was detected in BALB/c mouse tissue, with the exception of low levels in the heart. Viral titers of organ tissues were also determined and were concordant with RNase protection findings on the brain and spinal cord but failed to demonstrate significant infectious virus in additional organs. Our experiments demonstrate that MAV-1 has a striking tropism for the CNS that is strain dependent, and this provides an

  8. Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment?

    PubMed

    Manuel, Marin; Heckman, C J

    2011-10-19

    Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation ("primary range") up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing ("subprimary range") that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units. PMID:22016552

  9. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells

    SciTech Connect

    Jung, Yoon Hee

    2010-03-10

    This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/W{sup v} mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.

  10. Systems Genetics Analysis of a Recombinant Inbred Mouse Cell Culture Panel Reveals Wnt Pathway Member Lrp6 as a Regulator of Adult Hippocampal Precursor Cell Proliferation.

    PubMed

    Kannan, Suresh; Nicola, Zeina; Overall, Rupert W; Ichwan, Muhammad; Ramírez-Rodríguez, Gerardo; N Grzyb, Anna; Patone, Giannino; Saar, Kathrin; Hübner, Norbert; Kempermann, Gerd

    2016-03-01

    In much animal research, genetic variation is rather avoided than used as a powerful tool to identify key regulatory genes in complex phenotypes. Adult hippocampal neurogenesis is one such highly complex polygenic trait, for which the understanding of the molecular basis is fragmented and incomplete, and for which novel genetic approaches are needed. In this study, we aimed at marrying the power of the BXD panel, a mouse genetic reference population, with the flexibility of a cell culture model of adult neural precursor proliferation and differentiation. We established adult-derived hippocampal precursor cell cultures from 20 strains of the BXD panel, including the parental strains C57BL/6J and DBA/2J. The rates of cell proliferation and neuronal differentiation were measured, and transcriptional profiles were obtained from proliferating cultures. Together with the published genotypes of all lines, these data allowed a novel systems genetics analysis combining quantitative trait locus analysis with transcript expression correlation at a cellular level to identify genes linked with the differences in proliferation. In a proof-of-principle analysis, we identified Lrp6, the gene encoding the coreceptor to Frizzled in the Wnt pathway, as a potential negative regulator of precursor proliferation. Overexpression and siRNA silencing confirmed the regulatory role of Lrp6. As well as adding to our knowledge of the pathway surrounding Wnt in adult hippocampal neurogenesis, this finding allows the new appreciation of a negative regulator within this system. In addition, the resource and associated methodology will allow the integration of regulatory mechanisms at a systems level. Stem Cells 2016;34:674-684. PMID:26840599

  11. Specific Distribution of the Autophagic Protein GABARAPL1/GEC1 in the Developing and Adult Mouse Brain and Identification of Neuronal Populations Expressing GABARAPL1/GEC1

    PubMed Central

    Le Grand, Jaclyn Nicole; Bon, Karine; Fraichard, Annick; Zhang, Jianhua; Jouvenot, Michèle; Risold, Pierre-Yves; Boyer-Guittaut, Michaël; Delage-Mourroux, Régis

    2013-01-01

    Macroautophagy is a highly conserved cellular degradation process, regulated by autophagy-related (atg) factors, in which a double membrane autophagosome engulfs cytoplasmic components to target them for degradation. In yeast, the Atg8 protein is indispensable for autophagosome formation. In mammals, this is complicated by the presence of six Atg8 homologues grouped into the GABARAP and MAP1LC3 subfamilies. Although these proteins share a high similarity, their transcript expression, regulation and protein interactions differ, suggesting they may display individual properties and specific functions. GABARAPL1/GEC1 is a member of the GABARAP subfamily and its mRNA is the most highly expressed Atg8 homologue in the central nervous system. Consequently, we performed an in depth study of GABARAPL1 distribution in the developing and adult murine brain. Our results show that GABARAPL1 brain expression is visible as early as embryonic day 11 and progressively increases to a maximum level in the adult. Immunohistochemical staining was detected in both fibers and immature neurons in embryos but was restrained to neurons in adult tissue. By E17, intense punctate-like structures were visible and these accumulated in cortical primary neurons treated with the autophagosome/lysosome fusion inhibitor Bafilomycin A1 (Baf A1), suggesting that they represent autophagosomes. Finally, GABARAPL1 expression was particularly intense in motoneurons in the embryo and in neurons involved in somatomotor and neuroendocrine functions in the adult, particularly in the substantia nigra pars compacta, a region affected in Parkinson's disease. Our study of cerebral GABARAPL1 protein expression provides insight into its role in the development and homeostasis of the mouse brain. PMID:23690988

  12. RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro.

    PubMed

    Soldati, Chiara; Caramanica, Pasquale; Burney, Matthew J; Toselli, Camilla; Bithell, Angela; Augusti-Tocco, Gabriella; Stanton, Lawrence W; Biagioni, Stefano; Buckley, Noel J; Cacci, Emanuele

    2015-08-01

    Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate. PMID:25691247

  13. Cocaine-induced loss of white matter proteins in the adult mouse nucleus accumbens is attenuated by administration of a β-lactam antibiotic during cocaine withdrawal.

    PubMed

    Kovalevich, Jane; Corley, Gladys; Yen, William; Rawls, Scott M; Langford, Dianne

    2012-12-01

    We report significantly decreased white matter protein levels in the nucleus accumbens in an adult mouse model of chronic cocaine abuse. Previous studies from human cocaine abuse patients show disruption of white matter and myelin loss, thus supporting our observations. Understanding the neuropathological mechanisms for white matter disruption in cocaine abuse patients is complicated by polydrug use and other comorbid factors, hindering the development of effective therapeutic strategies to ameliorate damage or compliment rehabilitation programs. In this context, our data further demonstrate that cocaine-induced loss of white matter proteins is absent in mice treated with the β-lactam antibiotic, ceftriaxone, during cocaine withdrawal. Other studies report that ceftriaxone, a glutamate transporter subtype-1 activator, is neuroprotective in murine models of multiple sclerosis, thereby demonstrating potential therapeutic properties for diseases with white matter loss. Cocaine-induced white matter abnormalities likely contribute to the cognitive, motor, and psychological deficits commonly afflicting cocaine abusers, yet the underlying mechanisms responsible for these changes remain unknown. Our observations describe an adult animal model for the study of cocaine-induced myelin loss for the first time, and highlight a potential pharmacological intervention to ameliorate cocaine-induced white matter loss. PMID:23031254

  14. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart

    PubMed Central

    Ylä-Herttuala, Seppo; Betsholtz, Christer; Andrae, Johanna

    2016-01-01

    Platelet-derived growth factors (PDGFs) are key regulators of mesenchymal cells in vertebrate development. To what extent PDGFs also exert beneficial homeostatic or reparative roles in adult organs, as opposed to adverse fibrogenic responses in pathology, are unclear. PDGF signaling plays critical roles during heart development, during which forced overexpression of PDGFs induces detrimental cardiac fibrosis; other studies have implicated PDGF signaling in post-infarct myocardial repair. Different PDGFs may exert different effects mediated through the two PDGF receptors (PDGFRα and PDGFRβ) in different cell types. Here, we assessed responses induced by five known PDGF isoforms in the adult mouse heart in the context of adenovirus vector-mediated inflammation. Our results show that different PDGFs have different, in some cases even opposing, effects. Strikingly, whereas the major PDGFRα agonists (PDGF-A and -C) decreased the amount of scar tissue and increased the numbers of PDGFRα-positive fibroblasts, PDGFRβ agonists either induced large scars with extensive inflammation (PDGF-B) or dampened the adenovirus-induced inflammation and produced a small and dense scar (PDGF-D). These results provide evidence for PDGF isoform-specific inflammation-modulating functions that may have therapeutic implications. They also illustrate a surprising complexity in the PDGF-mediated pathophysiological responses. PMID:27513343

  15. Cocaine-Induced Loss of White Matter Proteins in the Adult Mouse Nucleus Accumbens Is Attenuated by Administration of a β-Lactam Antibiotic during Cocaine Withdrawal

    PubMed Central

    Kovalevich, Jane; Corley, Gladys; Yen, William; Rawls, Scott M.; Langford, Dianne

    2013-01-01

    We report significantly decreased white matter protein levels in the nucleus accumbens in an adult mouse model of chronic cocaine abuse. Previous studies from human cocaine abuse patients show disruption of white matter and myelin loss, thus supporting our observations. Understanding the neuropathological mechanisms for white matter disruption in cocaine abuse patients is complicated by polydrug use and other comorbid factors, hindering the development of effective therapeutic strategies to ameliorate damage or compliment rehabilitation programs. In this context, our data further demonstrate that cocaine-induced loss of white matter proteins is absent in mice treated with the β-lactam antibiotic, ceftriaxone, during cocaine withdrawal. Other studies report that ceftriaxone, a glutamate transporter subtype-1 activator, is neuroprotective in murine models of multiple sclerosis, thereby demonstrating potential therapeutic properties for diseases with white matter loss. Cocaine-induced white matter abnormalities likely contribute to the cognitive, motor, and psychological deficits commonly afflicting cocaine abusers, yet the underlying mechanisms responsible for these changes remain unknown. Our observations describe an adult animal model for the study of cocaine-induced myelin loss for the first time, and highlight a potential pharmacological intervention to ameliorate cocaine-induced white matter loss. PMID:23031254

  16. Effects of maternal L-tryptophan depletion and corticosterone administration on neurobehavioral adjustments in mouse dams and their adolescent and adult daughters.

    PubMed

    Zoratto, Francesca; Berry, Alessandra; Anzidei, Francesca; Fiore, Marco; Alleva, Enrico; Laviola, Giovanni; Macrì, Simone

    2011-08-01

    Major depressive disorder (MDD), a pathology characterized by mood and neurovegetative disturbances, depends on a multi-factorial contribution of individual predisposition (e.g., diminished serotonergic transmission) and environmental factors (e.g., neonatal abuse or neglect). Despite its female-biased prevalence, MDD basic research has mainly focused on male rodents. Most of present models of depression are also devalued due to the fact that they typically address only one of the aforementioned pathogenetic factors. In this paper we first describe the basic principles behind mouse model development and evaluation and then articulate that current models of depression are intrinsically devalued due to poor construct and/or external validity. We then report a first attempt to overcome this limitation through the design of a mouse model in which the genetic and the environmental components of early risk factors for depression are mimicked together. Environmental stress is mimicked through the supplementation of corticosterone in the maternal drinking water while biological predisposition is mimicked through maternal access to an L-tryptophan (the serotonin precursor) deficient diet during the first week of lactation. CD1 dams and their offspring exposed to the L-tryptophan deficient diet (T) and to corticosterone (80mg/l; C) were compared to animal facility reared (AFR) subjects. T and C mice served as intermediate reference groups. Adolescent TC offspring, compared to AFR mice, showed decreased time spent floating in the forced-swim test and increased time spent in the open sectors of an elevated 0-maze. Adult TC offspring showed reduced preference for novelty, decreased breakpoints in the progressive ratio operant procedure and major alterations in central BDNF levels and altered HPA regulation. The route of administration and the possibility to control the independent variables predisposing to depressive-like symptoms disclose novel avenues towards the development

  17. Spermatogonial stem cells specific marker identification in channel catfish, Ictalurus punctatus and blue catfish, I. furcatus.

    PubMed

    Shang, Mei; Su, Baofeng; Lipke, Elizabeth A; Perera, Dayan A; Li, Chao; Qin, Zhenkui; Li, Yun; Dunn, David A; Cek, Sehriban; Peatman, Eric; Dunham, Rex A

    2015-12-01

    Testicular germ cells of channel catfish, Ictalurus punctatus, and blue catfish, I. furcatus were separated into four layers with Percoll density gradient centrifugation, containing different cell types (40% in the first layer were spermatogonial stem cells, SSCs). Expression of seventeen genes was analyzed for cells from different layers by real-time quantitative PCR. Pfkfb4, Urod, Plzf, Integrin6, IntegrinV, Thy1 and Cdh1 genes showed the same expression change pattern in both channel and blue catfish as these genes were down-regulated in the spermatocytes and even more so in spermatids. Plzf and Integrin6 had especially high expression in SSCs and can be used as SSCs specific markers. Sox2 gene was up-regulated in spermatocytes and even more highly up-regulated in spermatids, which indicated it could be a spermatid marker. In contrast to channel catfish, Id4, Smad5 and Prdm14 gene expressions were strongly down-regulated in spermatocyte cells, but up-regulated in spermatid cells in blue catfish. Smad5 gene was down-regulated in spermatocytes, but up-regulated in both spermatogonia and spermatids, allowing identification as a marker for spermatocytes in blue catfish. Oct4, Id4, Gfrα2, Pum2 and Prdm14 genes showed different expression patterns in the testicular germ cells of channel and blue catfish. This may be a partial explanation to the differing responses of channel catfish and blue catfish to induced spawning technologies. The SSCs specific markers can be used for further SSCs labeling, which can increase the SSCs sorting efficiency and be applied in various studies involving SSCs and other germ cells. PMID:26251285

  18. Paternal Age Effect Mutations and Selfish Spermatogonial Selection: Causes and Consequences for Human Disease

    PubMed Central

    Goriely, Anne; Wilkie, Andrew O.M.

    2012-01-01

    Advanced paternal age has been associated with an increased risk for spontaneous congenital disorders and common complex diseases (such as some cancers, schizophrenia, and autism), but the mechanisms that mediate this effect have been poorly understood. A small group of disorders, including Apert syndrome (caused by FGFR2 mutations), achondroplasia, and thanatophoric dysplasia (FGFR3), and Costello syndrome (HRAS), which we collectively term “paternal age effect” (PAE) disorders, provides a good model to study the biological and molecular basis of this phenomenon. Recent evidence from direct quantification of PAE mutations in sperm and testes suggests that the common factor in the paternal age effect lies in the dysregulation of spermatogonial cell behavior, an effect mediated molecularly through the growth factor receptor-RAS signal transduction pathway. The data show that PAE mutations, although arising rarely, are positively selected and expand clonally in normal testes through a process akin to oncogenesis. This clonal expansion, which is likely to take place in the testes of all men, leads to the relative enrichment of mutant sperm over time—explaining the observed paternal age effect associated with these disorders—and in rare cases to the formation of testicular tumors. As regulation of RAS and other mediators of cellular proliferation and survival is important in many different biological contexts, for example during tumorigenesis, organ homeostasis and neurogenesis, the consequences of selfish mutations that hijack this process within the testis are likely to extend far beyond congenital skeletal disorders to include complex diseases, such as neurocognitive disorders and cancer predisposition. PMID:22325359

  19. Protecting the heritable genome: DNA damage response mechanisms in spermatogonial stem cells.

    PubMed

    Rübe, Claudia E; Zhang, Sheng; Miebach, Nadine; Fricke, Andreas; Rübe, Christian

    2011-02-01

    Spermatogonial stem cells (SSCs) must maintain the integrity of their genome to prevent reproduction failure and limit the hereditary risk associated with transmission to the progeny. SSCs must therefore have robust response mechanisms to counteract the potentially deleterious effects of DNA damage, with DNA double-strand breaks (DSBs) representing the greatest threat to genomic integrity. Through in vivo analysis of the DNA damage response of SSCs within their physiological tissue context, we aimed to gain insights into the mechanisms by which SSCs preserve genome integrity. After whole-body irradiation of repair-proficient and repair-deficient (DNA-PK- and ATM-deficient) mice, the formation and rejoining of DSBs was analyzed in SSCs of testis compared with somatic cells of other tissues by enumerating γH2AX-, MDC1-, and 53BP1-foci. Caspase-3 and PARP-1 were used as markers for apoptotic cell death. Our results show that DNA damage response mechanisms in SSCs characterized by unique chromatin compositions are markedly different from those of somatic cells. In SSCs lacking compact heterochromatin, histone-associated signaling components of the DNA repair machinery are completely absent and radiation-induced DSBs are rejoined predominantly by DNA-PK-independent pathways, suggesting the existence of alternative repair mechanisms. As a complimentary mechanism characterized by low thresholds for ATM-dependent checkpoint activation, the differentiating progeny, but not the SSCs themselves, promote apoptosis in response to low levels of DNA damage. By evaluating SSCs within their stem cell niche, we show that DNA repair, cell-cycle checkpoints, and apoptosis function together to maintain the integrity of the heritable genome. PMID:21123119

  20. LncRNA analysis of mouse spermatogonial stem cells following glial cell-derived neurotrophic factor treatment

    PubMed Central

    Li, Lufan; Wang, Min; Wang, Mei; Wu, Xiaoxi; Geng, Lei; Xue, Yuanyuan; Wei, Xiang; Jia, Yuanyuan; Wu, Xin

    2015-01-01

    Spermatonial stem cells (SSCs) are the foundation of spermatogenesis. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with at least 200 bp in length, which play important roles in various biological processes. Growth factor glial cell line-derived neurotrophic factor (GDNF), secreted from testis niches, is critical for self-renewal of SSCs in vitro and in vivo. Using Illumina HiSeq™ 2000 high throughput sequencing, we found 55924 lncRNAs which were regulated by GDNF in SSCs in vitro; these included 21,929 known lncRNAs from NONCODE library (version 3.0) and 33,975 predicted lncRNAs which were identified using Coding Potential Calculator. Analyses of these data should provide new insights into regulated mechanism in SSC self-renewal and proliferation. The data have been deposited in the Gene Expression Omnibus (series GSE66998). PMID:26484267

  1. Age at which the long-cycling spermatogonial stem-cell population is established in the mouse

    SciTech Connect

    Oakberg, E.F.

    1981-01-01

    The long-cycling A/sub 5/ spermatogonia are the cells of primary importance in estimating the reproductive and genetic hazards of radiation, chemicals, and pollutants in mammals. This addresses the following questions: (1) when do the long-cycling cells appear; (2) are they present at birth; and (3) from which cells do they arise. (ACR)

  2. Loss of Sigma Factor RpoN Increases Intestinal Colonization of Vibrio parahaemolyticus in an Adult Mouse Model

    PubMed Central

    Whitaker, W. Brian; Richards, Gary P.

    2014-01-01

    Vibrio parahaemolyticus is the leading cause of bacterial seafood-borne gastroenteritis worldwide, yet little is known about how this pathogen colonizes the human intestine. The alternative sigma factor RpoN/sigma-54 is a global regulator that controls flagellar synthesis, as well as a wide range of nonflagellar genes. We constructed an in-frame deletion mutation in rpoN (VP2670) in V. parahaemolyticus RIMD2210633, a clinical serogroup O3:K6 isolate, and examined the effects in vivo using a streptomycin-treated mouse model of colonization. We confirmed that deletion of rpoN rendered V. parahaemolyticus nonmotile, and it caused reduced biofilm formation and an apparent defect in glutamine synthetase production. In in vivo competition assays between the rpoN mutant and a wild-type RIMD2210633 strain marked with the β-galactosidase gene lacZ (WBWlacZ), the mutant colonized significantly more proficiently. Intestinal persistence competition assays also demonstrated that the rpoN mutant had enhanced fitness and outcompeted WBWlacZ. Mutants defective in the polar flagellum biosynthesis FliAP sigma factor also outcompeted WBWlacZ but not to the same level as the rpoN mutant, which suggested that lack of motility is not the sole cause of the fitness effect. In an in vitro growth competition assay in mouse intestinal mucus, the rpoN mutant also outcompeted the wild type and exhibited faster doubling times when grown in mucus and on individual components of mucus. Genes in the pathways for the catabolism of mucus sugars also had significantly higher expression levels in a ΔrpoN mutant than in the wild type. These data suggest that in V. parahaemolyticus, RpoN plays an important role in carbon utilization regulation, which may significantly affect host colonization. PMID:24478070

  3. Gender and age related expression of Oct-6--a POU III domain transcription factor, in the adult mouse brain.

    PubMed

    Ilia, Maria; Sugiyama, Yuka; Price, Jack

    2003-06-26

    Oct-6 is a POU III domain transcription factor whose primary role is thought to be developmental. It is expressed in embryonic stem cells, Schwann cells, and in neuronal subpopulations during telencephalic development. Its best characterised role is in Schwann cells where it is thought to regulate myelin specific gene expression. Expression of Oct-6 was recently discovered in neurons in post-mortem human schizophrenic specimens while being undetectable in matched controls. This study of human tissue contrasted in a number of regards with earlier studies of rodent brain, and questioned what we can consider to be normal adult expression of this gene. In this study, we have investigated Oct-6 expression via in situ hybridisation and Western blot analysis in normal adult female mice of different ages. We show that both RNA and protein levels of Oct-6 expression are highly sustained in the adult and aging cerebellum, whereas they are attenuated in the telencephalon by PW30 (postnatal week 30). These observations suggest that Oct-6 expression takes place in a sex and age dependent way. PMID:12782346

  4. Suppression of c-Kit signaling induces adult neurogenesis in the mouse intestine after myenteric plexus ablation with benzalkonium chloride

    PubMed Central

    Tamada, Hiromi; Kiyama, Hiroshi

    2016-01-01

    Adult neurogenesis rarely occurs in the enteric nervous system (ENS). In this study, we demonstrated that, after intestinal myenteric plexus (MP) ablation with benzalkonium chloride (BAC), adult neurogenesis in the ENS was significantly induced in c-kit loss-of-function mutant mice (W/Wv). Almost all neurons and fibers in the MP disappeared after BAC treatment. However, 1 week after ablation, substantial penetration of nerve fibers from the non-damaged area was observed in the MP, longitudinal muscle and subserosal layers in both wildtype and W/Wv mice. Two weeks after BAC treatment, in addition to the penetrating fibers, a substantial number of ectopic neurons appeared in the subserosal and longitudinal muscle layers of W/Wv mice, whereas only a few ectopic neurons appeared in wildtype mice. Such ectopic neurons expressed either excitatory or inhibitory intrinsic motor neuron markers and formed ganglion-like structures, including glial cells, synaptic vesicles and basal lamina. Furthermore, oral administration of imatinib, an inhibitor of c-Kit and an anticancer agent for gastrointestinal stromal tumors, markedly induced appearance of ectopic neurons after BAC treatment, even in wildtype mice. These results suggest that adult neurogenesis in the ENS is negatively regulated by c-Kit signaling in vivo. PMID:27572504

  5. Low Current-driven Micro-electroporation Allows Efficient In Vivo Delivery of Nonviral DNA into the Adult Mouse Brain

    PubMed Central

    Vry, Jochen De; Martínez-Martínez, Pilar; Losen, Mario; Bode, Gerard H; Temel, Yasin; Steckler, Thomas; Steinbusch, Harry WM; Baets, Marc De; Prickaerts, Jos

    2010-01-01

    Viral gene transfer or transgenic animals are commonly used technologies to alter gene expression in the adult brain, although these approaches lack spatial specificity and are time consuming. We delivered plasmid DNA locally into the brain of adult C57BL/6 mice in vivo by voltage- and current-controlled electroporation. The low current-controlled delivery of unipolar square wave pulses of 125 µA with microstimulation electrodes at the injection site gave 16 times higher transfection rates than a voltage-controlled electroporation protocol with plate electrodes resulting in currents of about 400 mA. Transfection was restricted to the target region and no damage due to the electric pulses was found. Our current-controlled electroporation protocol indicated that the use of very low currents resulting in applied voltages within the physiological range of the membrane potential, allows efficient transfection of nonviral plasmid DNA. In conclusion, low current-controlled electroporation is an excellent approach for electroporation in the adult brain, i.e., gene function can be influenced locally at a high level with no mortality and minimal tissue damage. PMID:20389292

  6. Suppression of c-Kit signaling induces adult neurogenesis in the mouse intestine after myenteric plexus ablation with benzalkonium chloride.

    PubMed

    Tamada, Hiromi; Kiyama, Hiroshi

    2016-01-01

    Adult neurogenesis rarely occurs in the enteric nervous system (ENS). In this study, we demonstrated that, after intestinal myenteric plexus (MP) ablation with benzalkonium chloride (BAC), adult neurogenesis in the ENS was significantly induced in c-kit loss-of-function mutant mice (W/W(v)). Almost all neurons and fibers in the MP disappeared after BAC treatment. However, 1 week after ablation, substantial penetration of nerve fibers from the non-damaged area was observed in the MP, longitudinal muscle and subserosal layers in both wildtype and W/W(v) mice. Two weeks after BAC treatment, in addition to the penetrating fibers, a substantial number of ectopic neurons appeared in the subserosal and longitudinal muscle layers of W/W(v) mice, whereas only a few ectopic neurons appeared in wildtype mice. Such ectopic neurons expressed either excitatory or inhibitory intrinsic motor neuron markers and formed ganglion-like structures, including glial cells, synaptic vesicles and basal lamina. Furthermore, oral administration of imatinib, an inhibitor of c-Kit and an anticancer agent for gastrointestinal stromal tumors, markedly induced appearance of ectopic neurons after BAC treatment, even in wildtype mice. These results suggest that adult neurogenesis in the ENS is negatively regulated by c-Kit signaling in vivo. PMID:27572504

  7. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment

    PubMed Central

    Xu, J; Wan, P; Wang, M; Zhang, J; Gao, X; Hu, B; Han, J; Chen, L; Sun, K; Wu, J; Wu, X; Huang, X; Chen, J

    2015-01-01

    In mammals, spermatogonial stem cells (SSCs) arise from early germ cells called gonocytes, which are derived from primordial germ cells during embryogenesis and remain quiescent until birth. After birth, these germ cells migrate from the center of testicular cord, through Sertoli cells, and toward the basement membrane to form the SSC pool and establish the SSC niche architecture. However, molecular mechanisms underlying germ cell migration and niche establishment are largely unknown. Here, we show that the actin disassembly factor actin interacting protein 1 (AIP1) is required in both germ cells and Sertoli cells to regulate this process. Germ cell-specific or Sertoli cell-specific deletion of Aip1 gene each led to significant defects in germ cell migration after postnatal day 4 or 5, accompanied by elevated levels of actin filaments (F-actin) in the affected cells. Furthermore, our data demonstrated that interaction between germ cells and Sertoli cells, likely through E-cadherin-mediated cell adhesion, is critical for germ cells' migration toward the basement membrane. At last, Aip1 deletion in Sertoli cells decreased SSC self-renewal, increased spermatogonial differentiation, but did not affect the expression and secretion levels of growth factors, suggesting that the disruption of SSC function results from architectural changes in the postnatal niche. PMID:26181199

  8. Maintenance of potential spermatogonial stem cells in vitro by GDNF treatment in a chondrichthyan model (Scyliorhinus canicula L.).

    PubMed

    Gautier, Aude; Bosseboeuf, Adrien; Auvray, Pierrick; Sourdaine, Pascal

    2014-10-01

    Previous work in dogfish, Scyliorhinus canicula, has identified the testicular germinative area as the spermatogonial stem cell niche. In the present study, an in vitro co-culture system of spermatogonia and somatic cells from the germinative area was developed. Long-term maintenance of spermatogonia has been successful, and addition of GDNF has promoted the development of clones of spermatogonia expressing stem cell characteristics such as alkaline phosphatase activity and has allowed maintenance of self-renewal in spermatogonia for at least 5 mo under culture conditions, notably by decreasing cell apoptosis. Furthermore, clones of spermatogonia expressed the receptor of GDNF, GFRalpha1, which is consistent with the effect of GDNF on cells despite the lack of identification of a GDNF sequence in the dogfish's transcriptome. However, a sequence homologous to artemin has been identified, and in silico analysis supports the hypothesis that artemin could replace GDNF in the germinative area in dogfish. This study, as the first report on long-term in vitro maintenance of spermatogonia in a chondrichthyan species, suggests that the GFRalpha1 signaling function in self-renewal of spermatogonial stem cells is probably conserved in gnathostomes. PMID:25143357

  9. Lead induces similar gene expression changes in brains of gestationally exposed adult mice and in neurons differentiated from mouse embryonic stem cells.

    PubMed

    Sánchez-Martín, Francisco Javier; Fan, Yunxia; Lindquist, Diana M; Xia, Ying; Puga, Alvaro

    2013-01-01

    Exposure to environmental toxicants during embryonic life causes changes in the expression of developmental genes that may last for a lifetime and adversely affect the exposed individual. Developmental exposure to lead (Pb), an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder (ADHD). Long-term effects observed after early life exposure to Pb include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. To study the molecular changes due to Pb exposure during neurodevelopment, we exposed mice to Pb in utero and examined the expression of neural markers, neurotrophins, transcription factors and glutamate-related genes in hippocampus, cortex, and thalamus at postnatal day 60. We found that hippocampus was the area where gene expression changes due to Pb exposure were more pronounced. To recapitulate gestational Pb exposure in vitro, we differentiated mouse embryonic stem cells (ESC) into neurons and treated ESC-derived neurons with Pb for the length of the differentiation process. These neurons expressed the characteristic neuronal markers Tubb3, Syp, Gap43, Hud, Ngn1, Vglut1 (a marker of glutamatergic neurons), and all the glutamate receptor subunits, but not the glial marker Gafp. Importantly, several of the changes observed in Pb-exposed mouse brains in vivo were also observed in Pb-treated ESC-derived neurons, including those affecting expression of Ngn1, Bdnf exon IV, Grin1, Grin2D, Grik5, Gria4, and Grm6. We conclude that our ESC-derived model of toxicant exposure during neural differentiation promises to be a useful model to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents. PMID:24260418

  10. Lead Induces Similar Gene Expression Changes in Brains of Gestationally Exposed Adult Mice and in Neurons Differentiated from Mouse Embryonic Stem Cells

    PubMed Central

    Sánchez-Martín, Francisco Javier; Fan, Yunxia; Lindquist, Diana M.; Xia, Ying; Puga, Alvaro

    2013-01-01

    Exposure to environmental toxicants during embryonic life causes changes in the expression of developmental genes that may last for a lifetime and adversely affect the exposed individual. Developmental exposure to lead (Pb), an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder (ADHD). Long-term effects observed after early life exposure to Pb include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. To study the molecular changes due to Pb exposure during neurodevelopment, we exposed mice to Pb in utero and examined the expression of neural markers, neurotrophins, transcription factors and glutamate-related genes in hippocampus, cortex, and thalamus at postnatal day 60. We found that hippocampus was the area where gene expression changes due to Pb exposure were more pronounced. To recapitulate gestational Pb exposure in vitro, we differentiated mouse embryonic stem cells (ESC) into neurons and treated ESC-derived neurons with Pb for the length of the differentiation process. These neurons expressed the characteristic neuronal markers Tubb3, Syp, Gap43, Hud, Ngn1, Vglut1 (a marker of glutamatergic neurons), and all the glutamate receptor subunits, but not the glial marker Gafp. Importantly, several of the changes observed in Pb-exposed mouse brains in vivo were also observed in Pb-treated ESC-derived neurons, including those affecting expression of Ngn1, Bdnf exon IV, Grin1, Grin2D, Grik5, Gria4, and Grm6. We conclude that our ESC-derived model of toxicant exposure during neural differentiation promises to be a useful model to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents. PMID:24260418

  11. Expression of the calcium binding proteins Necab-1,-2 and -3 in the adult mouse hippocampus and dentate gyrus.

    PubMed

    Zimmermann, B; Girard, F; Mészàr, Z; Celio, M R

    2013-08-28

    The family of EF-hand calcium binding proteins is composed of more than 250 members. In search for other neuronal markers, we studied the expression pattern of Necab-1, -2 and -3 in the Ammons horn of adult mice at the gene- and protein levels using in-situ hybridization and immunohistochemistry. The genes for the three Necab's were expressed in specific, non-overlapping areas of the hippocampus. A minority of the Necab-positive interneurons were GABA-ergic, and they virtually never coexpressed one of the classical calcium binding proteins (calretinin, calbindin D-28k and parvalbumin). Necab's are promising new neuronal markers in the brain. PMID:23850650

  12. Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury.

    PubMed

    Brumovsky, P; Watanabe, M; Hökfelt, T

    2007-06-29

    The expression of two vesicular glutamate transporters (VGLUTs), VGLUT1 and VGLUT2, was studied with immunohistochemistry in lumbar dorsal root ganglia (DRGs), the lumbar spinal cord and the skin of the adult mouse. About 12% and 65% of the total number of DRG neuron profiles (NPs) expressed VGLUT1 and VGLUT2, respectively. VGLUT1-immunoreactive (IR) NPs were usually medium- to large-sized, in contrast to a majority of small- or medium-sized VGLUT2-IR NPs. Most VGLUT1-IR NPs did not coexpress calcitonin gene-related peptide (CGRP) or bound isolectin B4 (IB4). In contrast, approximately 31% and approximately 42% of the VGLUT2-IR DRG NPs were also CGRP-IR or bound IB4, respectively. Conversely, virtually all CGRP-IR and IB4-binding NPs coexpressed VGLUT2. Moderate colocalization between VGLUT1 and VGLUT2 was also observed. Sciatic nerve transection induced a decrease in the overall number of VGLUT1- and VGLUT2-IR NPs (both ipsi- and contralaterally) and, in addition, a parallel, unilateral increase of VGLUT2-like immunoreactivity (LI) in a subpopulation of mostly small NPs. In the dorsal horn of the spinal cord, strong VGLUT1-LI was detected, particularly in deep dorsal horn layers and in the ventral horns. VGLUT2-LI was abundant throughout the gray spinal matter, 'radiating' into/from the white matter. A unilateral dorsal rhizotomy reduced VGLUT1-LI, while apparently leaving unaffected the VGLUT2-LI. Transport through axons for both VGLUTs was confirmed by their accumulation after compression of the sciatic nerve or dorsal roots. In the hind paw skin, abundant VGLUT2-IR nerve fibers were observed, sometimes associated with Merkel cells. Lower numbers of VGLUT1-IR fibers were also detected in the skin. Some VGLUT1-IR and VGLUT2-IR fibers were associated with hair follicles. Based on these data and those by Morris et al. [Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and

  13. Genomic Recombination Leading to Decreased Virulence of Group B Streptococcus in a Mouse Model of Adult Invasive Disease.

    PubMed

    Teatero, Sarah; Lemire, Paul; Dewar, Ken; Wasserscheid, Jessica; Calzas, Cynthia; Mallo, Gustavo V; Li, Aimin; Athey, Taryn B T; Segura, Mariela; Fittipaldi, Nahuel

    2016-01-01

    Adult invasive disease caused by Group B Streptococcus (GBS) is increasing worldwide. Whole-genome sequencing (WGS) now permits rapid identification of recombination events, a phenomenon that occurs frequently in GBS. Using WGS, we described that strain NGBS375, a capsular serotype V GBS isolate of sequence type (ST)297, has an ST1 genomic background but has acquired approximately 300 kbp of genetic material likely from an ST17 strain. Here, we examined the virulence of this strain in an in vivo model of GBS adult invasive infection. The mosaic ST297 strain showed intermediate virulence, causing significantly less systemic infection and reduced mortality than a more virulent, serotype V ST1 isolate. Bacteremia induced by the ST297 strain was similar to that induced by a serotype III ST17 strain, which was the least virulent under the conditions tested. Yet, under normalized bacteremia levels, the in vivo intrinsic capacity to induce the production of pro-inflammatory cytokines was similar between the ST297 strain and the virulent ST1 strain. Thus, the diminished virulence of the mosaic strain may be due to reduced capacity to disseminate or multiply in blood during a systemic infection which could be mediated by regulatory factors contained in the recombined region. PMID:27527222

  14. Tissue inhibitor of metalloproteinases-2 is expressed in the interstitial matrix in adult mouse organs and during embryonic development.

    PubMed Central

    Blavier, L; DeClerck, Y A

    1997-01-01

    Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a member of a family of inhibitors of matrix-degrading metalloproteinases. A better insight into the role of this inhibitor during development and in organ function was obtained by examining the temporospatial expression of TIMP-2 in mice. Northern blot analysis indicated high levels of TIMP-2 mRNA in the lung, skin, reproductive organs, and brain. Lower levels of expression were found in all other organs with the exception of the liver and gastrointestinal tissue, which were negative of these tissues with complete absence of TIMP-2 mRNA in the epithelium. In the testis, TIMP-2 was present in the Leydig cells, and in the brain, it was expressed in pia matter and in neuronal tissues. TIMP-2 expression in the placenta increased during late gestation and was particularly abundant in spongiotrophoblasts In mouse embryo (day 10.5-18.5), TIMP-2 mRNA was abundant in mesenchymal tissues that surrounded developing epithelia and maturing skeleton. The pattern of expression significantly differs from that observed with TIMP-1 and TIMP-3, therefore, suggesting specific roles for each inhibitor during tissue remodeling and development. Images PMID:9285822

  15. In Vivo 4-Dimensional Tracking of Hematopoietic Stem and Progenitor Cells in Adult Mouse Calvarial Bone Marrow

    PubMed Central

    Scott, Mark K.; Akinduro, Olufolake; Lo Celso, Cristina

    2014-01-01

    Through a delicate balance between quiescence and proliferation, self renewal and production of differentiated progeny, hematopoietic stem cells (HSCs) maintain the turnover of all mature blood cell lineages. The coordination of the complex signals leading to specific HSC fates relies upon the interaction between HSCs and the intricate bone marrow microenvironment, which is still poorly understood[1-2]. We describe how by combining a newly developed specimen holder for stable animal positioning with multi-step confocal and two-photon in vivo imaging techniques, it is possible to obtain high-resolution 3D stacks containing HSPCs and their surrounding niches and to monitor them over time through multi-point time-lapse imaging. High definition imaging allows detecting ex vivo labeled hematopoietic stem and progenitor cells (HSPCs) residing within the bone marrow. Moreover, multi-point time-lapse 3D imaging, obtained with faster acquisition settings, provides accurate information about HSPC movement and the reciprocal interactions between HSPCs and stroma cells. Tracking of HSPCs in relation to GFP positive osteoblastic cells is shown as an exemplary application of this method. This technique can be utilized to track any appropriately labeled hematopoietic or stromal cell of interest within the mouse calvarium bone marrow space. PMID:25225854

  16. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells

    PubMed Central

    Zhang, Xi-Feng; Choi, Yun-Jung; Han, Jae Woong; Kim, Eunsu; Park, Jung Hyun; Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2015-01-01

    Background Silver nanoparticles (AgNPs) possess unique physical, chemical, and biological properties. AgNPs have been increasingly used as anticancer, antiangiogenic, and antibacterial agents for the treatment of bacterial infections in open wounds as well as in ointments, bandages, and wound dressings. The present study aimed to investigate the effects of two different sizes of AgNPs (10 nm and 20 nm) in male somatic Leydig (TM3) and Sertoli (TM4) cells and spermatogonial stem cells (SSCs). Methods Here, we demonstrate a green and simple method for the synthesis of AgNPs using Bacillus cereus culture supernatants. The synthesized AgNPs were characterized using ultraviolet and visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy (TEM). The toxicity of the synthesized AgNPs was evaluated by the effects on cell viability, metabolic activity, oxidative stress, apoptosis, and expression of genes encoding steroidogenic and tight junction proteins. Results AgNPs inhibited the viability and proliferation of TM3 and TM4 cells in a dose- and size-dependent manner by damaging cell membranes and inducing the generation of reactive oxygen species, which in turn affected SSC growth on TM3 and TM4 as feeder cells. Small AgNPs (10 nm) were more cytotoxic than medium-sized nanoparticles (20 nm). TEM revealed the presence of AgNPs in the cell cytoplasm and nucleus, and detected mitochondrial damage and enhanced formation of autosomes and autolysosomes in the AgNP-treated cells. Flow cytometry analysis using Annexin V/propidium iodide staining showed massive cell death by apoptosis or necrosis. Real-time polymerase chain reaction and western blot analyses indicated that in TM3 and TM4 cells, AgNPs activated the p53, p38, and pErk1/2 signaling pathways and significantly downregulated the expression of genes related to testosterone synthesis (TM3) and tight junctions (TM4). Furthermore, the exposure of TM3

  17. Comparison of Diverse Differential Plating Methods to Enrich Bovine Spermatogonial Cells.

    PubMed

    Giassetti, M I; Goissis, M D; de Barros, Fro; Bruno, A H; Assumpção, Meoa; Visintin, J A

    2016-02-01

    Spermatogonial stem cells (SSC) have important applications in domestic animal reproduction and advanced biotechnologies. Because differential plating is one of the most common methods used for SSC enrichment, the goal of this study was to compare three differential plating methods for the enrichment of bovine SSC. To achieve this goal, testicular parenchyma from pre-pubertal calves was minced and single cells were obtained after two enzymatic digestions. We compared three coating methods for differential plating: laminin (20 ng/ml), BSA (0.05 mg/ml) and PBS. Cells were incubated at 37°C, 5% CO2 in air for 15 min onto laminin-coated dishes or 2 h onto BSA- or PBS-coated dishes. Cell viability was assessed by trypan blue exclusion method. Recovered cells were analysed for the expression of SSC molecular markers by quantitative RT-PCR (GFRA1, CXCR4, ITGA6, THY1) and flow cytometry (GFRA1, CXCR4 and ITGA6). Cells at time 0, adherent cells on laminin and non-adherent cells from BSA and PBS groups had the same cell viability (p = 0.0655). GFRA1, CXCR4 and THY1 relative gene expression was higher (p = 0.0402, p = 0.0007, p = 0.0117, respectively) for non-adherent cells selected in PBS group. Flow cytometry analysis revealed that the presence of GFRA-positive (GFRA+) cells was higher in non-adherent cells from BSA and PBS groups (p < 0.001). However, laminin-adherent cells had higher number of ITGA6+ cells (p < 0.001) and lower presence of CXCR4+ cells (p = 0.0012). In conclusion, differential plating is an effective method for the enrichment of bovine undifferentiated spermatogonia and higher expression of SSC markers is obtained without laminin or BSA coating. PMID:26576932

  18. Effect of vitamin C on growth of caprine spermatogonial stem cells in vitro.

    PubMed

    Wang, Juhua; Cao, Hongguo; Xue, Xiuheng; Fan, Caiyun; Fang, Fugui; Zhou, Jie; Zhang, Yunhai; Zhang, Xiaorong

    2014-03-01

    The genetic manipulation of spermatogonial stem cells (SSCs) can be used for the production of transgenic animals in a wide range of species. However, this technology is limited by the absence of an ideal culture system in which SSCs can be maintained and proliferated, especially in domestic animals like the goat. The aim of this study therefore was to investigate whether the addition of vitamin C (Vc) in cell culture influences the growth of caprine SSCs. Various concentrations of Vc (0, 5, 10, 25, 40, and 50 μg/mL(-1)) were added to SSC culture media, and their effect on morphology and alkaline phosphatase activity was studied. The number of caprine SSC colonies and area covered by them were measured at 10 days of culture. The expression of various germ cell and somatic cell markers such as VASA, integrins, Oct-4, GATA-4, α-SMA, vimentin, and Thy-1 was studied to identify the proliferated cells using immunostaining analyses. Further, the intracellular reactive oxygen species (ROS) level was measured at the 3rd, 6th, and 9th day after culture, and expression of Bax, Bcl-2, and P53, factors involved in the regulation of apoptosis, were analyzed on the 7th day after culture using reverse transcription polymerase chain reaction and quantitative real-time polymerase chain reaction. The results showed that the SSCs formed compact colonies and had unclear borders in the different Vc-supplemented groups at 10 days, and there were no major morphologic differences between the groups. The number and area of colonies were both the highest in the 40 μg/mL(-1) Vc group. Differential expression of markers for germ cells, undifferentiated spermatogonia, and testis somatic cells was observed. Cultured germ cell clumps were found to have alkaline phosphatase activity regardless of the Vc dose. The number of Thy-1- and Oct-4-positive cells was the most in the 40 μg/mL(-1) Vc group. Moreover, the level of ROS was dependent on the Vc dose and culture time. The Vc dose 40

  19. Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome.

    PubMed

    Mardirossian, Sandrine; Rampon, Claire; Salvert, Denise; Fort, Patrice; Sarda, Nicole

    2009-12-01

    Angelman syndrome (AS) is a severe neurodevelopmental disorder characterized by mental retardation, seizures and sleep disturbances. It results from lack of the functional maternal allele of UBE3A gene. Ube3a maternal-deficient mice (Ube3a m-/p+), animal models for AS, are impaired in hippocampal-dependent learning tasks as compared with control (Ube3a m+/p+) mice. We first examined the basal expression of immediate early genes which expression is required for synaptic plasticity and memory formation. We found that basal expression of c-fos and Arc genes is reduced in the DG of Ube3a maternal deficient mice compared to their non-transgenic littermates. We then examined whether adult hippocampal neurogenesis, which likely serves as a mechanism toward brain plasticity, is altered in these transgenic mice. Neurogenesis occurs throughout life in mammalian dentate gyrus (DG) and recent findings suggest that newborn granule cells are involved in some forms of learning and memory. Whether maternal Ube3a deletion is detrimental on hippocampal neurogenesis is unclear. Herein, we show, using the mitotic marker Ki67, the birthdating marker 5-bromo-2'-dexoyuridine (BrdU) and the marker doublecortin (DCX) to respectively label cell proliferation, cell survival or young neuron production, that the Ube3a maternal deletion does not affect the proliferation nor the survival of newborn cells in the hippocampus. In contrast, using the postmitotic neuronal marker (NeuN), we show that Ube3a maternal deletion is associated with a lower fraction of BrdU+/NeuN+ newborn neurons among the population of surviving new cells in the hippocampus. Collectively, these findings suggest that some aspects of adult neurogenesis and plasticity are affected by Ube3a deletion and may contribute to the hippocampal dysfunction observed in AS mice. PMID:19782683

  20. No effect of running and laboratory housing on adult hippocampal neurogenesis in wild caught long-tailed wood mouse

    PubMed Central

    Hauser, Thomas; Klaus, Fabienne; Lipp, Hans-Peter; Amrein, Irmgard

    2009-01-01

    Background Studies of adult hippocampal neurogenesis (AHN) in laboratory rodents have raised hopes for therapeutic interventions in neurodegenerative diseases and mood disorders, as AHN can be modulated by physical exercise, stress and environmental changes in these animals. Since it is not known whether cell proliferation and neurogenesis in wild living mice can be experimentally changed, this study investigates the responsiveness of AHN to voluntary running and to environmental change in wild caught long-tailed wood mice (Apodemus sylvaticus). Results Statistical analyses show that running had no impact on cell proliferation (p = 0.44), neurogenesis (p = 0.94) or survival of newly born neurons (p = 0.58). Likewise, housing in the laboratory has no effect on AHN. In addition, interindividual differences in the level of neurogenesis are not related to interindividual differences of running wheel performance (rs = -0.09, p = 0.79). There is a correlation between the number of proliferating cells and the number of cells of neuronal lineage (rs = 0.63, p < 0.001) and the number of pyknotic cells (rs = 0.5, p = 0.009), respectively. Conclusion Plasticity of adult neurogenesis is an established feature in strains of house mice and brown rats. Here, we demonstrate that voluntary running and environmental changes which are effective in house mice and brown rats cannot influence AHN in long-tailed wood mice. This indicates that in wild long-tailed wood mice different regulatory mechanisms act on cell proliferation and neurogenesis. If this difference reflects a species-specific adaptation or a broader adaptive strategy to a natural vs. domestic environment is unknown. PMID:19419549

  1. NTPDase2 and Purinergic Signaling Control Progenitor Cell Proliferation in Neurogenic Niches of the Adult Mouse Brain

    PubMed Central

    Gampe, Kristine; Stefani, Jennifer; Hammer, Klaus; Brendel, Peter; Pötzsch, Alexandra; Enikolopov, Grigori; Enjyoji, Keiichi; Acker-Palmer, Amparo; Robson, Simon C.; Zimmermann, Herbert

    2014-01-01

    Nerve cells are continuously generated from stem cells in the adult mammalian subventricular zone (SVZ) and hippocampal dentate gyrus. We have previously noted that stem/progenitor cells in the SVZ and the subgranular layer (SGL) of the dentate gyrus express high levels of plasma membrane-bound nucleoside triphosphate diphosphohydrolase 2 (NTPDase2), an ectoenzyme that hydrolyzes extracellular nucleoside di- and triphosphates. We inferred that deletion of NTPDase2 would increase local extracellular nucleoside triphosphate concentrations perturbing purinergic signaling and boosting progenitor cell proliferation and neurogenesis. Using newly generated mice globally null for Entpd2, we demonstrate that NTPDase2 is the major ectonucleotidase in these progenitor cell rich areas. Using BrdU-labeling protocols, we have measured stem cell proliferation and determined long term survival of cell progeny under basal conditions. Brains of Entpd2 null mice revealed increased progenitor cell proliferation in both the SVZ and the SGL. However, this occurred without noteworthy alterations in long-term progeny survival. The hippocampal stem cell pool and the pool of the intermediate progenitor type-2 cells clearly expanded. However, substantive proportions of these proliferating cells were lost during expansion at around type-3 stage. Cell loss was paralleled by decreases in CREB phosphorylation in the doublecortin-positive progenitor cell population and by an increase in labeling for activated caspase-3 levels. We propose that NTPDase2 has functionality in scavenging mitogenic extracellular nucleoside triphosphates in neurogenic niches of the adult brain, thereby acting as a homeostatic regulator of nucleotide-mediated neural progenitor cell proliferation and expansion. PMID:25205248

  2. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex123

    PubMed Central

    Billeh, Yazan N.; Bernard, Amy; de Vivo, Luisa; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof

    2016-01-01

    Abstract Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25–P30, ≥50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  3. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex.

    PubMed

    Billeh, Yazan N; Rodriguez, Alexander V; Bellesi, Michele; Bernard, Amy; de Vivo, Luisa; Funk, Chadd M; Harris, Julie; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof; Cirelli, Chiara; Tononi, Giulio

    2016-01-01

    Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25-P30, ≥ 50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  4. Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight.

    PubMed

    Blackmore, Heather L; Niu, Youguo; Fernandez-Twinn, Denise S; Tarry-Adkins, Jane L; Giussani, Dino A; Ozanne, Susan E

    2014-10-01

    Obese pregnancies are not only associated with adverse consequences for the mother but also the long-term health of her child. Human studies have shown that individuals from obese mothers are at increased risk of premature death from cardiovascular disease (CVD), but are unable to define causality. This study aimed to determine causality using a mouse model of maternal diet-induced obesity. Obesity was induced in female C57BL/6 mice by feeding a diet rich in simple sugars and saturated fat 6 weeks prior to pregnancy and throughout pregnancy and lactation. Control females were fed laboratory chow. Male offspring from both groups were weaned onto chow and studied at 3, 5, 8, and 12 weeks of age for gross cardiac morphometry using stereology, cardiomyocyte cell area by histology, and cardiac fetal gene expression using qRT-PCR. Cardiac function was assessed by isolated Langendorff technology at 12 weeks of age and hearts were analyzed at the protein level for the expression of the β1 adrenergic receptor, muscarinic type-2 acetylcholine receptor, and proteins involved in cardiac contraction. Offspring from obese mothers develop pathologic cardiac hypertrophy associated with re-expression of cardiac fetal genes. By young adulthood these offspring developed severe systolic and diastolic dysfunction and cardiac sympathetic dominance. Importantly, cardiac dysfunction occurred in the absence of any change in corresponding body weight and despite the offspring eating a healthy low-fat diet. These findings provide a causal link to explain human observations relating maternal obesity with premature death from CVD in her offspring. PMID:25051449

  5. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult

    PubMed Central

    Zhang, Bin; Arun, Gayatri; Mao, Yuntao S.; Lazar, Zsolt; Hung, Gene; Bhattacharjee, Gourab; Xiao, Xiaokun; Booth, Carmen J.; Wu, Jie; Zhang, Chaolin; Spector, David L.

    2012-01-01

    SUMMARY Genome-wide studies have identified thousands of long noncoding RNAs (lncRNAs) lacking protein coding capacity. However, most lncRNAs are expressed at a very low level, and in most cases there is no genetic evidence to support their in vivo function. Malat1 (metastasis associated lung adenocarcinoma transcript 1) is among the most abundant and highly conserved lncRNAs, and it exhibits an uncommon 3′-end processing mechanism. In addition, its specific nuclear localization, developmental regulation, and dysregulation in cancer are suggestive of it having a critical biological function. We have characterized a Malat1 loss-of-function genetic model that indicates Malat1 is not essential for mouse pre- and post-natal development. Furthermore, depletion of Malat1 does not impact global gene expression, splicing factor level and phosphorylation status, or alternative pre-mRNA splicing. However, among a small number of genes that were dysregulated in adult Malat1 knockout mice, many were Malat1 neighboring genes, thus indicating a potential cis regulatory role of Malat1 gene transcription. PMID:22840402

  6. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur.

    PubMed

    Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne

    2015-08-01

    Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months' supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze. Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. PMID:26063461

  7. CONVECTION-ENHANCED DELIVERY AND SYSTEMIC MANNITOL INCREASE GENE PRODUCT DISTRIBUTION OF AAV VECTORS 5, 8, AND 9 AND INCREASE GENE PRODUCT IN THE ADULT MOUSE BRAIN

    PubMed Central

    Carty, Nikisha; Lee, Daniel; Dickey, Chad; Ceballos-Diaz, Carolina; Jansen-West, Karen; Golde, Todd E.; Gordon, Marcia N.; Morgan, Dave; Nash, Kevin

    2010-01-01

    The use of recombinant adeno-associated viral (rAAV) vectors as a means of gene delivery to the central nervous system has emerged as a potentially viable method for the treatment of several types of degenerative brain diseases. However, a limitation of typical intracranial injections into the adult brain parenchyma is the relatively restricted distribution of the delivered gene to large brain regions such as the cortex, presumably due to confined dispersion of the injected particles. Optimizing the administration techniques to maximize gene distribution and gene expression is an important step in developing gene therapy studies. Here, we have found additive increases in distribution when 3 methods to increase brain distribution of rAAV were combined. The convection enhanced delivery (CED) method with the step-design cannula was used to deliver rAAV vector serotypes 5, 8 and 9 encoding GFP into the hippocampus of the mouse brain. While the CED method improved distribution of all 3 serotypes, the combination of rAAV9 and CED was particularly effective. Systemic mannitol administration, which reduces intracranial pressure, also further expanded distribution of GFP expression, in particular, increased expression on the contralateral hippocampi. These data suggest that combining advanced injection techniques with newer rAAV serotypes greatly improves viral vector distribution, which could have significant benefits for implementation of gene therapy strategies. PMID:20951738

  8. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    PubMed Central

    Chater-Diehl, Eric J.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  9. Effects of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus, and characterization of immature neurons along the septotemporal axis.

    PubMed

    Mahar, Ian; MacIsaac, Angus; Kim, John Junghan; Qiang, Calvin; Davoli, Maria Antonietta; Turecki, Gustavo; Mechawar, Naguib

    2016-01-01

    Adult hippocampal neurogenesis is associated with learning and affective behavioural regulation. Its diverse functionality is segregated along the septotemporal axis from the dorsal to ventral hippocampus. However, features distinguishing immature neurons in these regions have yet to be characterized. Additionally, although we have shown that administration of the neurotrophic factor neuregulin-1 (NRG1) selectively increases proliferation and overall neurogenesis in the mouse ventral dentate gyrus (DG), likely through ErbB3, NRG1's effects on intermediate neurogenic stages in immature neurons are unknown. We examined whether NRG1 administration increases DG ErbB3 phosphorylation. We labeled adultborn cells using BrdU, then administered NRG1 to examine in vivo neurogenic effects on immature neurons with respect to cell survival, morphology, and synaptogenesis. We also characterized features of immature neurons along the septotemporal axis. We found that neurogenic effects of NRG1 are temporally and subregionally specific to proliferation in the ventral DG. Particular morphological features differentiate immature neurons in the dorsal and ventral DG, and cytogenesis differed between these regions. Finally, we identified synaptic heterogeneity surrounding the granule cell layer. These results indicate neurogenic involvement of NRG1-induced antidepressant-like behaviour is particularly associated with increased ventral DG cell proliferation, and identify novel distinctions between dorsal and ventral hippocampal neurogenic development. PMID:27469430

  10. Effects of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus, and characterization of immature neurons along the septotemporal axis

    PubMed Central

    Mahar, Ian; MacIsaac, Angus; Kim, John Junghan; Qiang, Calvin; Davoli, Maria Antonietta; Turecki, Gustavo; Mechawar, Naguib

    2016-01-01

    Adult hippocampal neurogenesis is associated with learning and affective behavioural regulation. Its diverse functionality is segregated along the septotemporal axis from the dorsal to ventral hippocampus. However, features distinguishing immature neurons in these regions have yet to be characterized. Additionally, although we have shown that administration of the neurotrophic factor neuregulin-1 (NRG1) selectively increases proliferation and overall neurogenesis in the mouse ventral dentate gyrus (DG), likely through ErbB3, NRG1’s effects on intermediate neurogenic stages in immature neurons are unknown. We examined whether NRG1 administration increases DG ErbB3 phosphorylation. We labeled adultborn cells using BrdU, then administered NRG1 to examine in vivo neurogenic effects on immature neurons with respect to cell survival, morphology, and synaptogenesis. We also characterized features of immature neurons along the septotemporal axis. We found that neurogenic effects of NRG1 are temporally and subregionally specific to proliferation in the ventral DG. Particular morphological features differentiate immature neurons in the dorsal and ventral DG, and cytogenesis differed between these regions. Finally, we identified synaptic heterogeneity surrounding the granule cell layer. These results indicate neurogenic involvement of NRG1-induced antidepressant-like behaviour is particularly associated with increased ventral DG cell proliferation, and identify novel distinctions between dorsal and ventral hippocampal neurogenic development. PMID:27469430

  11. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur

    PubMed Central

    Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne

    2015-01-01

    Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months’ supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze.jlr Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. PMID:26063461

  12. Genetic Labeling Reveals Novel Cellular Targets of Schizophrenia Susceptibility Gene: Distribution of GABA and Non-GABA ErbB4-Positive Cells in Adult Mouse Brain

    PubMed Central

    Bean, Jonathan C.; Lin, Thiri W.; Sathyamurthy, Anupama; Liu, Fang; Yin, Dong-Min; Xiong, Wen-Cheng

    2014-01-01

    Neuregulin 1 (NRG1) and its receptor ErbB4 are schizophrenia risk genes. NRG1-ErbB4 signaling plays a critical role in neural development and regulates neurotransmission and synaptic plasticity. Nevertheless, its cellular targets remain controversial. ErbB4 was thought to express in excitatory neurons, although recent studies disputed this view. Using mice that express a fluorescent protein under the promoter of the ErbB4 gene, we determined in what cells ErbB4 is expressed and their identity. ErbB4 was widely expressed in the mouse brain, being highest in amygdala and cortex. Almost all ErbB4-positive cells were GABAergic in cortex, hippocampus, basal ganglia, and most of amygdala in neonatal and adult mice, suggesting GABAergic transmission as a major target of NRG1-ErbB4 signaling in these regions. Non-GABAergic, ErbB4-positive cells were present in thalamus, hypothalamus, midbrain, and hindbrain. In particular, ErbB4 is expressed in serotoninergic neurons of raphe nuclei but not in norepinephrinergic neurons of the locus ceruleus. In hypothalamus, ErbB4 is present in neurons that express oxytocin. Finally, ErbB4 is expressed in a group of cells in the subcortical areas that are positive for S100 calcium binding protein β. These results identify novel cellular targets of NRG1-ErbB4 signaling. PMID:25274830

  13. Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model.

    PubMed

    Briot, Anaïs; Lacroix, Matthieu; Robin, Aurélie; Steinhoff, Martin; Deraison, Céline; Hovnanian, Alain

    2010-12-01

    Netherton syndrome (NS) is a severe genodermatosis characterized by abnormal scaling and constant atopic manifestations. NS is caused by mutations in SPINK5 (Serine Protease INhibitor Kazal-type 5), which encodes LEKTI (LymphoEpithelial Kazal Type-related Inhibitor). Lack of LEKTI causes stratum corneum detachment secondary to epidermal proteases hyperactivity. Whereas a skin barrier defect is generally regarded as a major cause for atopy, we previously identified a cell-autonomous signaling cascade that triggers pro-Th2 cytokine thymic stromal lymphopoietin (TSLP) production in LEKTI-deficient epidermis. This signaling is initiated by unrestricted kallikrein 5 (KLK5) activity, which directly activates proteinase-activated receptor 2 (PAR2)-mediated expression of TSLP and favors a cutaneous proallergic microenvironment independently of the environment and of the adaptive immune system. To further confirm these results in vivo, we generated Spink5/Par2 double knockout (DKO) mice. At embryonic day 19.5, these mice display a dramatic decrease in TSLP expression, although stratum corneum detachment persists, confirming the role of the KLK5-PAR2 cascade in TSLP-mediated early proallergic signaling. However, deletion of Par2 in adult DKO-grafted skin does not rescue the inflammatory phenotype probably resulting from stratum corneum detachment. We conclude that several mechanisms trigger and maintain the inflammatory phenotype in NS. These include skin barrier impairment, mechanical stress secondary to stratum corneum detachment, as well as protease-induced proinflammatory and proallergic pathways, including PAR2-mediated overexpression of TSLP. PMID:20703245

  14. Peri-conceptional obesogenic exposure induces sex-specific programming of disease susceptibilities in adult mouse offspring.

    PubMed

    Dahlhoff, M; Pfister, S; Blutke, A; Rozman, J; Klingenspor, M; Deutsch, M J; Rathkolb, B; Fink, B; Gimpfl, M; Hrabě de Angelis, M; Roscher, A A; Wolf, E; Ensenauer, R

    2014-02-01

    Vulnerability of the fetus upon maternal obesity can potentially occur during all developmental phases. We aimed at elaborating longer-term health outcomes of fetal overnutrition during the earliest stages of development. We utilized Naval Medical Research Institute (NMRI) mice to induce pre-conceptional and gestational obesity and followed offspring outcomes in the absence of any postnatal obesogenic influences. Male adult offspring developed overweight, insulin resistance, hyperleptinemia, hyperuricemia and hepatic steatosis; all these features were not observed in females. Instead, they showed impaired fasting glucose and a reduced fat mass and adipocyte size. Influences of the interaction of maternal diet∗sex concerned offspring genes involved in fatty liver disease, lipid droplet size regulation and fat mass expansion. These data suggest that a peri-conceptional obesogenic exposure is sufficient to shape offspring gene expression patterns and health outcomes in a sex- and organ-specific manner, indicating varying developmental vulnerabilities between sexes towards metabolic disease in response to maternal overnutrition. PMID:24275555

  15. Genes Involved in Post-Transcriptional Regulation Are Overrepresented in Stem/Progenitor Spermatogonia of Cryptorchid Mouse Testes

    PubMed Central

    Orwig, Kyle E.; Ryu, Buom-Yong; Master, Stephen R.; Phillips, Bart T.; Mack, Matthias; Avarbock, Mary R.; Chodosh, Lewis; Brinster, Ralph L.

    2014-01-01

    Gene expression and consequent biological activity of adult tissue stem cells are regulated by signals emanating from the local microenvironment (niche). To gain insights into the molecular regulation of spermatogonial stem cells (SSCs), gene expression was characterized from SSCs isolated from their cognate niches of cryptorchid (stem cell-enriched), wild-type, and busulfan-treated (stem cell-depleted) mouse testes. Quantitative assessment of stem cell activity in each testis model was determined using an in vivo functional assay and correlated with gene expression using Affymetrix MGU74Av2 microarrays and the ChipStat algorithm optimized to detect gene expression from rare cells in complex tissues. We identified 389 stem/progenitor spermatogonia candidate genes, which exhibited significant overlap with genes expressed by embryonic, hematopoietic, and neural stem cells; enriched spermatogonia; and cultured SSCs identified in previous studies. Candidate cell surface markers identified by the microarray may facilitate the isolation and enrichment of stem and/or progenitor spermatogonia. Flow cytometric analyses confirmed the expression of chemokine receptor 2 (Ccr2) and Cd14 on a subpopulation cryptorchid testis cells (α6-integrin+, side scatterlo) enriched for SSCs. These cell surface molecules may mark progenitor spermatogonia but not SSCs because Ccr2+ and Cd14+ fractions failed to produce spermatogenesis upon transplantation to recipient testes. Functional annotation of candidate genes and subsequent immunohistochemistry revealed that proteins involved in post-transcriptional regulation are overrepresented in cryptorchid testes that are enriched for SSCs. Comparative analyses indicated that this is a recurrent biological theme among stem cells. PMID:18203673

  16. Targeted Disruption of miR-17-92 Impairs Mouse Spermatogenesis by Activating mTOR Signaling Pathway

    PubMed Central

    Xie, Raoying; Lin, Xiaolin; Du, Tao; Xu, Kang; Shen, Hongfen; Wei, Fang; Hao, Weichao; Lin, Taoyan; Lin, Xia; Qin, Yujuan; Wang, Huiyan; Chen, Lin; Yang, Sheng; Yang, Jie; Rong, Xiaoxiang; Yao, Kaitai; Xiao, Dong; Jia, Junshuang; Sun, Yan

    2016-01-01

    Abstract The miR-17-92 cluster and its 6 different mature microRNAs, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a, play important roles in embryo development, immune system, kidney and heart development, adipose differentiation, aging, and tumorigenicity. Currently, increasing evidence indicates that some members of miR-17-92 cluster may be critical players in spermatogenesis, including miR-17, miR-18a, and miR-20a. However, the roles and underlying mechanisms of miR-17-92 in spermatogenesis remain largely unknown. Our results showed that the targeted disruption of miR-17-92 in the testes of adult mice resulted in severe testicular atrophy, empty seminiferous tubules, and depressed sperm production. This phenotype is partly because of the reduced number of spermatogonia and spermatogonial stem cells, and the significantly increased germ cell apoptosis in the testes of miR-17-92-deficient mice. In addition, overactivation of the mammalian target of rapamycin signaling pathway and upregulation of the pro-apoptotic protein Bim, Stat3, c-Kit, and Socs3 were also observed in miR-17-92-deficient mouse testes, which might be, at least partially if not all, responsible for the aforementioned phenotypic changes in mutant testes. Taken together, these findings suggest that miR-17-92 is essential for normal spermatogenesis in mice. PMID:26886608

  17. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    SciTech Connect

    Bredow, Sebastian . E-mail: sbredow@LRRI.org; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-06-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m{sup 3} for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease.

  18. Melatonin attenuates methamphetamine-induced inhibition of neurogenesis in the adult mouse hippocampus: An in vivo study.

    PubMed

    Singhakumar, Rachen; Boontem, Parichart; Ekthuwapranee, Kasima; Sotthibundhu, Areechun; Mukda, Sujira; Chetsawang, Banthit; Govitrapong, Piyarat

    2015-10-01

    Methamphetamine (METH), a highly addictive psychostimulant drug, is known to exert neurotoxic effects to the dopaminergic neural system. Long-term METH administration impairs brain functions such as cognition, learning and memory. Newly born neurons in the dentate gyrus of the hippocampus play an important role in spatial learning and memory. Previous in vitro studies have shown that METH inhibits cell proliferation and neurogenesis in the hippocampus. On the other hand, melatonin, a major indole secreted by the pineal gland, enhances neurogenesis in both the subventricular zone and dentate gyrus. In this study, adult C57BL/6 mice were used to study the beneficial effects of melatonin on METH-induced alterations in neurogenesis and post-synaptic proteins related to learning and memory functions in the hippocampus. The results showed that METH caused a decrease in neuronal phenotypes as determined by the expressions of nestin, doublecortin (DCX) and beta-III tubulin while causing an increase in glial fibrillary acidic protein (GFAP) expression. Moreover, METH inhibited mitogen-activated protein kinase (MAPK) signaling activity and altered expression of the N-methyl-d-aspartate (NMDA) receptor subunits NR2A and NR2B as well as calcium/calmodulin-dependent protein kinase II (CaMKII). These effects could be attenuated by melatonin pretreatment. In conclusion, melatonin prevented the METH-induced reduction in neurogenesis, increase in astrogliogenesis and alteration of NMDA receptor subunit expression. These findings may indicate the beneficial effects of melatonin on the impairment of learning and memory caused by METH. PMID:26366944

  19. Function-Triggering Antibodies to the Adhesion Molecule L1 Enhance Recovery after Injury of the Adult Mouse Femoral Nerve

    PubMed Central

    Guseva, Daria; Loers, Gabriele; Schachner, Melitta

    2014-01-01

    L1 is among the few adhesion molecules that favors repair after trauma in the adult central nervous system of vertebrates by promoting neuritogenesis and neuronal survival, among other beneficial features. In the peripheral nervous system, L1 is up-regulated in Schwann cells and regrowing axons after nerve damage, but the functional consequences of this expression remain unclear. Our previous study of L1-deficient mice in a femoral nerve injury model showed an unexpected improved functional recovery, attenuated motoneuronal cell death, and enhanced Schwann cell proliferation, being attributed to the persistent synthesis of neurotrophic factors. On the other hand, transgenic mice over-expressing L1 in neurons led to improved remyelination, but not improved functional recovery. The present study was undertaken to investigate whether the monoclonal L1 antibody 557 that triggers beneficial L1 functions in vitro would trigger these also in femoral nerve repair. We analyzed femoral nerve regeneration in C57BL/6J mice that received this antibody in a hydrogel filled conduit connecting the cut and sutured nerve before its bifurcation, leading to short-term release of antibody by diffusion. Video-based quantitative analysis of motor functions showed improved recovery when compared to mice treated with conduits containing PBS in the hydrogel scaffold, as a vehicle control. This improved recovery was associated with attenuated motoneuron loss, remyelination and improved precision of preferential motor reinnervation. We suggest that function-triggering L1 antibodies applied to the lesion site at the time of injury over a limited time period will not only be beneficial in peripheral, but also central nervous system regeneration. PMID:25393007

  20. Phenotypic characterization of a Csf1r haploinsufficient mouse model of adult-onset leukodystrophy with axonal spheroids and pigmented glia (ALSP).

    PubMed

    Chitu, Violeta; Gokhan, Solen; Gulinello, Maria; Branch, Craig A; Patil, Madhuvati; Basu, Ranu; Stoddart, Corrina; Mehler, Mark F; Stanley, E Richard

    2015-02-01

    Mutations in the colony stimulating factor-1 receptor (CSF1R) that abrogate the expression of the affected allele or lead to the expression of mutant receptor chains devoid of kinase activity have been identified in both familial and sporadic cases of ALSP. To determine the validity of the Csf1r heterozygous mouse as a model of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) we performed behavioral, radiologic, histopathologic, ultrastructural and cytokine expression studies of young and old Csf1r+/- and control Csf1r+/+ mice. Six to 8-month old Csf1r+/- mice exhibit cognitive deficits, and by 9-11 months develop sensorimotor deficits and in male mice, depression and anxiety-like behavior. MRIs of one year-old Csf1r+/- mice reveal lateral ventricle enlargement and thinning of the corpus callosum. Ultrastructural analysis of the corpus callosum uncovers dysmyelinated axons as well as neurodegeneration, evidenced by the presence of axonal spheroids. Histopathological examination of 11-week-old mice reveals increased axonal and myelin staining in the cortex, increase of neuronal cell density in layer V and increase of microglial cell densities throughout the brain, suggesting that early developmental changes contribute to disease. By 10-months of age, the neuronal cell density normalizes, oligodendrocyte precursor cells increase in layers II-III and V and microglial densities remain elevated without an increase in astrocytes. Also, the age-dependent increase in CSF-1R+ neurons in cortical layer V is reduced. Moreover, the expression of Csf2, Csf3, Il27 and Il6 family cytokines is increased, consistent with microglia-mediated inflammation. These results demonstrate that the inactivation of one Csf1r allele is sufficient to cause an ALSP-like disease in mice. The Csf1r+/- mouse is a model of ALSP that will allow the critical events for disease development to be determined and permit rapid evaluation of therapeutic approaches. Furthermore

  1. Phenotypic characterization of a Csf1r haploinsufficient mouse model of adult-onset leukodystrophy with axonal spheroids and pigmented glia (ALSP)

    PubMed Central

    Chitu, Violeta; Gokhan, Solen; Gulinello, Maria; Branch, Craig A.; Patil, Madhuvati; Basu, Ranu; Stoddart, Corrina; Mehler, Mark F.; Stanley, E. Richard

    2014-01-01

    Mutations in the colony stimulating factor-1 receptor (CSF1R) that abrogate the expression of the affected allele or lead to the expression of mutant receptor chains devoid of kinase activity have been identified in both familial and sporadic cases of ALSP. To determine the validity of the Csf1r heterozygous mouse as a model of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) we performed behavioral, radiologic, histopathologic, ultrastructural and cytokine expression studies of young and old Csf1r+/− and control Csf1r+/+ mice. Six to 8-month old Csf1r+/− mice exhibit cognitive deficits, and by 9-11 months develop sensorimotor deficits and in male mice, depression and anxiety-like behavior. MRIs of one year-old Csf1r+/− mice reveal lateral ventricle enlargement and thinning of the corpus callosum. Ultrastructural analysis of the corpus callosum uncovers dysmyelinated axons as well as neurodegeneration, evidenced by the presence of axonal spheroids. Histopathological examination of 11-week-old mice reveals increased axonal and myelin staining in the cortex, increase of neuronal cell density in layer V and increase of microglial cell densities throughout the brain, suggesting that early developmental changes contribute to disease. By 10-months of age, the neuronal cell density normalizes, oligodendrocyte precursor cells increase in layers II-III and V and microglial densities remain elevated without an increase in astrocytes. Also, the age-dependent increase in CSF-1R+ neurons in cortical layer V is reduced. Moreover, the expression of Csf2, Csf3, Il27 and Il6 family cytokines is increased, consistent with microglia-mediated inflammation. These results demonstrate that the inactivation of one Csf1r allele is sufficient to cause an ALSP-like disease in mice. The Csf1r+/− mouse is a model of ALSP that will allow the critical events for disease development to be determined and permit rapid evaluation of therapeutic approaches

  2. Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture

    PubMed Central

    Zheng, Y.; Thomas, A.; Schmidt, C.M.; Dann, C.T.

    2014-01-01

    STUDY QUESTION Can human spermatogonia be detected in long-term primary testicular cell cultures using validated, germ cell-specific markers of spermatogonia? SUMMARY ANSWER Germ cell-specific markers of spermatogonia/spermatogonial stem cells (SSCs) are detected in early (1–2 weeks) but not late (> 6 weeks) primary testicular cell cultures; somatic cell markers are detected in late primary testicular cell cultures. WHAT IS KNOWN ALREADY The development of conditions for human SSC culture is critically dependent on the ability to define cell types unequivocally and to quantify spermatogonia/SSCs. Growth by somatic cells presents a major challenge in the establishment of SSC cultures and therefore markers that define spermatogonia/SSCs, but are not also expressed by testicular somatic cells, are essential for accurate characterization of SSC cultures. STUDY DESIGN, SIZE, DURATION Testicular tissue from eight organ donors with normal spermatogenesis was used for assay validation and establishing primary testicular cell cultures. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunofluorescence analysis of normal human testicular tissue was used to validate antibodies (UTF1, SALL4, DAZL and VIM) and then the antibodies were used to demonstrate that primary testicular cells cultured in vitro for 1–2 weeks were composed of somatic cells and rare germ cells. Primary testicular cell cultures were further characterized by comparing to testicular somatic cell cultures using quantitative reverse transcriptase PCR (UTF1, FGFR3, ZBTB16, GPR125, DAZL, GATA4 and VIM) and flow cytometry (CD9 and SSEA4). MAIN RESULTS AND THE ROLE OF CHANCE UTF1, FGFR3, DAZL and ZBTB16 qRT–PCR and SSEA4 flow cytometry were validated for the sensitive, quantitative and specific detection of germ cells. In contrast, GPR125 mRNA and CD9 were found to be not specific to germ cells because they were also expressed in testicular somatic cell cultures. While the germ cell-specific markers were detected in

  3. A Small Motor Cortex Lesion Abolished Ocular Dominance Plasticity in the Adult Mouse Primary Visual Cortex and Impaired Experience-Dependent Visual Improvements

    PubMed Central

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Greifzu, Franziska; Löwel, Siegrid

    2015-01-01

    It was previously shown that a small lesion in the primary somatosensory cortex (S1) prevented both cortical plasticity and sensory learning in the adult mouse visual system: While 3-month-old control mice continued to show ocular dominance (OD) plasticity in their primary visual cortex (V1) after monocular deprivation (MD), age-matched mice with a small photothrombotically induced (PT) stroke lesion in S1, positioned at least 1 mm anterior to the anterior border of V1, no longer expressed OD-plasticity. In addition, in the S1-lesioned mice, neither the experience-dependent increase of the spatial frequency threshold (“visual acuity”) nor of the contrast threshold (“contrast sensitivity”) of the optomotor reflex through the open eye was present. To assess whether these plasticity impairments can also occur if a lesion is placed more distant from V1, we tested the effect of a PT-lesion in the secondary motor cortex (M2). We observed that mice with a small M2-lesion restricted to the superficial cortical layers no longer expressed an OD-shift towards the open eye after 7 days of MD in V1 of the lesioned hemisphere. Consistent with previous findings about the consequences of an S1-lesion, OD-plasticity in V1 of the nonlesioned hemisphere of the M2-lesioned mice was still present. In addition, the experience-dependent improvements of both visual acuity and contrast sensitivity of the open eye were severely reduced. In contrast, sham-lesioned mice displayed both an OD-shift and improvements of visual capabilities of their open eye. To summarize, our data indicate that even a very small lesion restricted to the superficial cortical layers and more than 3mm anterior to the anterior border of V1 compromised V1-plasticity and impaired learning-induced visual improvements in adult mice. Thus both plasticity phenomena cannot only depend on modality-specific and local nerve cell networks but are clearly influenced by long-range interactions even from distant brain

  4. Flow Cytometric Analysis of BrdU Incorporation as a High-Throughput Method for Measuring Adult Neurogenesis in the Mouse

    PubMed Central

    Balu, Darrick T.; Hodes, Georgia E.; Hill, Tiffany E.; Ho, Nancy; Rahman, Zia; Bender, Corey N.; Ring, Robert H.; Dwyer, Jason M.; Rosenzweig-Lipson, Sharon; Hughes, Zoe A.; Schechter, Lee E.; Lucki, Irwin

    2009-01-01

    Introduction The generation of new neurons occurs throughout adulthood in discrete brain regions, and may be regulated by neuropsychiatric diseases and therapeutic drug treatments. Most current methods that study this process measure the labeling of newborn cells by 5-bromo-2-deoxyuridine (BrdU) using immunohistochemical methods followed by the microscopic counting of BrdU positive cells. This method is time consuming and labor intensive, typically taking several weeks to analyze. Methods Therefore, we characterized a method to measure BrdU incorporation in the adult mouse hippocampus in vivo by using flow cytometry, which normally allows analysis of data within a single day. Results The present study compared multiple BrdU dosing and loading protocols to determine a dosing strategy that produced the best signal to noise ratio. BrdU incorporation was also compared across different brain regions. The method was sensitive to a number of experimental disease manipulations. Induction of type-1 diabetes and depletion of norepinephrine reduced hippocampal cell proliferation. In contrast, chronic administration of electroconvulsive shock, a somatic treatment for depression, as well as chronic treatment with the antidepressant fluoxetine elevated hippocampal cell proliferation. This increase in cell proliferation with fluoxetine was detected as early as 14 days into treatment. Moreover, comparing measures of cell proliferation obtained by immunohistochemical and flow cytometric methods within the same animals were convergent and significantly correlated to each other. Flow cytometry was also sufficiently sensitive to quantify the survival of newly born cells. Discussion These experiments validate the utility of flow cytometry in analyzing hippocampal cell proliferation and survival in a reliable and high-throughput fashion. The speedy analysis afforded by flow cytometry lends itself to be utilized in novel drug discovery and physiology. PMID:19121403

  5. Improved immunohistochemical detection of postsynaptically located PSD-95/SAP90 protein family by protease section pretreatment: a study in the adult mouse brain.

    PubMed

    Fukaya, M; Watanabe, M

    2000-10-30

    Postsynaptic density (PSD)-95, SAP102, and Chapsyn-110 are members of the PSD-95/SAP90 protein family, which interact with the C-terminus of N-methyl-D-aspartate (NMDA) receptor and shaker-type potassium channel subunits. Here we report that appropriate section pretreatment with pepsin has led to qualitative and quantitative changes in light microscopic immunohistochemical detection of the protein family. First, pepsin pretreatment lowered the concentration of affinity-purified primary antibodies, while it greatly increased the intensity of immunoreactions. Second, the resulting overall distributions of PSD-95, SAP102, and Chapsyn-110 in the adult mouse brain were consistent with their mRNA distributions. Third, instead of the reported patterns of somatodendritic labeling, tiny punctate staining in the neuropil became overwhelming. Fourth, many PSD-95-immunopositive puncta were apposed closely to synaptophysin-positive nerve terminals and overlapped with NMDA receptor subunits. By postembedding immunogold, the PSD-95 antibody was shown to label exclusively the postsynaptic density at asymmetrical synapses. Based on these results, we conclude that antibody access and binding to the postsynaptically located PSD-95/SAP90 protein family are hindered when conventional immunohistochemistry is adopted, and that pepsin pretreatment effectively unmasks the postsynaptic epitopes. On the other hand, PSD-95 in axon terminals of cerebellar basket cells, where high levels of potassium channels are present, was detectable irrespective of pepsin pretreatment, suggesting that PSD-95 antibody is readily accessible to the presynaptic epitopes. Consequently, the present immunohistochemical results have provided light microscopic evidence supporting the prevailing notion that the PSD-95/SAP90 protein family interacts with NMDA receptor subunits and potassium channel subunits. PMID:11027400

  6. Identification of novel mRNA transcripts of the nm23-M1 gene that are modulated during mouse embryo development and are differently expressed in adult murine tissues.

    PubMed

    Gervasi, F; Capozza, F; Bruno, T; Fanciulli, M; Lombardi, D

    1998-12-01

    The nm23-M1, a putative metastasis-suppressor gene, and its homologs are involved in development and differentiation. We have shown previously that in vitro neuronal cell proliferation and differentiation can be modulated by nm23-M1 expression levels. In the present study, by the yeast two-hybrid system, we have shown that, at the onset of mouse tissue differentiation, the Nm23-M1 protein forms either homodimers, or heterodimers with Nm23-M2. Furthermore, we have isolated two cDNA variants of the nm23-M1 gene in the 3'-untranslated region (UTR). The two variants related to novel mRNA transcripts that are modulated in mouse embryo and are differently expressed in adult murine tissues. PMID:9881672

  7. Derivation of Pluripotent Cells from Mouse SSCs Seems to Be Age Dependent

    PubMed Central

    Azizi, Hossein; Conrad, Sabine; Hinz, Ursula; Asgari, Behrouz; Nanus, Daniel; Peterziel, Heike; Hajizadeh Moghaddam, Akbar; Baharvand, Hossein; Skutella, Thomas

    2016-01-01

    Here, we aimed to answer important and fundamental questions in germ cell biology with special focus on the age of the male donor cells and the possibility to generate embryonic stem cell- (ESC-) like cells. While it is believed that spermatogonial stem cells (SSCs) and truly pluripotent ESC-like cells can be isolated from adult mice, it remained unknown if the spontaneous conversion of SSCs to ESC-like cells fails at some age. Similarly, there have been differences in the literature about the duration of cultures during which ESC-like cells may appear. We demonstrate the possibility to derive ESC-like cells from SSC cultures until they reach adolescence or up to 7 weeks of age, but we point out the impossibility to derive these cells from older, mature adult mice. The inability of real adult SSCs to shift to a pluripotent state coincides with a decline in expression of the core pluripotency genes Oct4, Nanog, and Sox2 in SSCs with age. At the same time genes of the spermatogonial differentiation pathway increase. The generated ESC-like cells were similar to ESCs and express pluripotency markers. In vitro they differentiate into all three germ lineages; they form complex teratomas after transplantation in SCID mice and produce chimeric mice. PMID:26664410

  8. Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis

    PubMed Central

    2011-01-01

    Background The inbred mouse strain BTBR T+ tf/J (BTBR) exhibits behavioral deficits that mimic the core deficits of autism. Neuroanatomically, the BTBR strain is also characterized by a complete absence of the corpus callosum. The goal of this study was to identify novel molecular and cellular changes in the BTBR mouse, focusing on neuronal, synaptic, glial and plasticity markers in the limbic system as a model for identifying putative molecular and cellular substrates associated with autistic behaviors. Methods Forebrains of 8 to 10-week-old male BTBR and age-matched C57Bl/6J control mice were evaluated by immunohistochemistry using free-floating and paraffin embedded sections. Twenty antibodies directed against antigens specific to neurons, synapses and glia were used. Nissl, Timm and acetylcholinesterase (AchE) stains were performed to assess cytoarchitecture, mossy fibers and cholinergic fiber density, respectively. In the hippocampus, quantitative stereological estimates for the mitotic marker bromodeoxyuridine (BrdU) were performed to determine hippocampal progenitor proliferation, survival and differentiation, and brain-derived neurotrophic factor (BDNF) mRNA was quantified by in situ hybridization. Quantitative image analysis was performed for NG2, doublecortin (DCX), NeuroD, GAD67 and Poly-Sialic Acid Neural Cell Adhesion Molecule (PSA-NCAM). Results In midline structures including the region of the absent corpus callosum of BTBR mice, the myelin markers 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP) were reduced, and the oligodendrocyte precursor NG2 was increased. MBP and CNPase were expressed in small ectopic white matter bundles within the cingulate cortex. Microglia and astrocytes showed no evidence of gliosis, yet orientations of glial fibers were altered in specific white-matter areas. In the hippocampus, evidence of reduced neurogenesis included significant reductions in the number of doublecortin, PSA-NCAM and

  9. A New and Fast Technique to Generate Offspring after Germ Cells Transplantation in Adult Fish: The Nile Tilapia (Oreochromis niloticus) Model

    PubMed Central

    Lacerda, Samyra M. S. N.; Batlouni, Sergio R.; Costa, Guilherme M. J.; Segatelli, Tânia M.; Quirino, Bruno R.; Queiroz, Bruno M.; Kalapothakis, Evanguedes; França, Luiz R.

    2010-01-01

    Background Germ cell transplantation results in fertile recipients and is the only available approach to functionally investigate the spermatogonial stem cell biology in mammals and probably in other vertebrates. In the current study, we describe a novel non-surgical methodology for efficient spermatogonial transplantation into the testes of adult tilapia (O. niloticus), in which endogenous spermatogenesis had been depleted with the cytostatic drug busulfan. Methodology/Principal Findings Using two different tilapia strains, the production of fertile spermatozoa with donor characteristics was demonstrated in adult recipient, which also sired progeny with the donor genotype. Also, after cryopreservation tilapia spermatogonial cells were able to differentiate to spermatozoa in the testes of recipient fishes. These findings indicate that injecting germ cells directly into adult testis facilitates and enable fast generation of donor spermatogenesis and offspring compared to previously described methods. Conclusion Therefore, a new suitable methodology for biotechnological investigations in aquaculture was established, with a high potential to improve the production of commercially valuable fish, generate transgenic animals and preserve endangered fish species. PMID:20505774

  10. Generation of In-vitro Spermatogonial Stem Cells following Genetic Manipulation of Primordial Germ-like Cells

    PubMed Central

    Mazaheri, Zohreh; Movahedin, Mansoureh; Rahbarizadeh, Fatemeh; Amanpour, Saied

    2012-01-01

    Research about potential use of stem cells for the development of germ line cells in vitro had been challenged. In the present study, we reported a novel protocol consisting of cocktail growth factor addition for germ cell differentiation followed by transfection. The cells were purificated based on the expression on the cell surface of a protein. This protein is not present in normal cells of mice and does not interfere with cellular function. This cell surface marker is efficiently recognized by monoclonal antibodies. Bone marrow mesenchymal stem cells derived primordial germ like cells were differentiated to spermatogonial stem like cells by inducer cocktail including Retinoic acid (RA)+Leukemia inhibitory factor (LIF)+Basic fibroblast growth factor (bFgF). Co-culture system was used as a feeder under differentiated cells. A 400 bp fragment of spermatogonia-specific Stra-8 locus was enough to direct gene expression to the germ line stem cells. Stra8-CD4HAglo construct was used for purification of premeiotic differentiated cells. Expression of pluripotency (Pou5F1, Nanog, c-Myc) and specific germ cell (Mvh, Piwil2, Stra-8) genes in each stage were analyzed. The purified cells expressed the known molecular markers of PGC-like cells such as Mvh, Piwil2 & Stra-8. The outcomes of qPCR showed that ratio pluripotency of genes expression in selective group significantly decreased (p≤0.05) in the initial differentiation process. This results showed that ratio of Pou5F1, Nanog, c-Myc, Mvh, Piwil2 & Stra-8 expression to purified PGC-like cells were 0.41, 0.204, 1.1, 0.003, 0.184 and 2.276, respectively. Treatment of cells with RA affected up regulation of Stra-8. Although, c-Myc gene as an oncogenic gene had significantly increased (p≤0.05) at the end of differentiation stage compared to initial phase of study, this level of expression could not be tumorgenic. qPCR results of the differentiation stage showed higher expression of Stra-8 in co-culture+ cocktail and co

  11. Efficient Generation of Hepatic Cells from Multipotent Adult Mouse Germ-Line Stem Cells Using an OP9 Co-Culture System

    PubMed Central

    Streckfuss-Bömeke, Katrin; Jende, Jörg; Cheng, I-Fen; Hasenfuss, Gerd

    2014-01-01

    Abstract On the basis of their self-renewal capacity and their ability to differentiate into derivatives of all three germ layers, germ line–derived multipotent adult stem cells (maGSCs) from mouse testis might serve as one of preferable sources for pluripotent stem cells in regenerative medicine. In our study, we aimed for an efficient hepatic differentiation protocol that is applicable for both maGSCs and embryonic stem cells (ESCs). We attempted to accomplish this goal by using a new established co-culture system with OP9 stroma cells for direct differentiation of maGSCs and ESCs into hepatic cells. We found that the hepatic differentiation of maGSCs was induced by the OP9 co-culture system in comparison to the gelatin culture. Furthermore, we showed that the combination of OP9 co-culture with activin A resulted in the increased expression of endodermal and early hepatic markers Gata4, Sox17, Foxa2, Hnf4, Afp, and Ttr compared to differentiated cells on gelatin or on OP9 alone. Moreover, the hepatic progenitors were capable of differentiating further into mature hepatic cells, demonstrated by the expression of liver-specific markers Aat, Alb, Tdo2, Krt18, Krt8, Krt19, Cps1, Sek, Cyp7a1, Otc, and Pah. A high percentage of maGSC-derived hepatic progenitors (51% AFP- and 61% DLK1-positive) and mature hepatic-like cells (26% ALB-positive) were achieved using this OP9 co-culture system. These generated hepatic cells successfully demonstrated in vitro functions associated with mature hepatocytes, including albumin and urea secretion, glycogen storage, and uptake of low-density lipoprotein. The established co-culture system for maGSCs into functional hepatic cells might serve as a suitable model to delineate the differentiation process for the generation of high numbers of mature hepatocytes in humans without genetic manipulations and make germ line–derived stem cells a potential autologous and alternative cell source for hepatic transplants in metabolic liver

  12. The distribution of two calcium binding proteins, calbindin D-28K and parvalbumin, in the entorhinal cortex of the adult mouse.

    PubMed

    Fujimaru, Y; Kosaka, T

    1996-03-01

    The immunohistochemical localization of two specific calcium binding proteins, parvalbumin (PV) and calbindin D-28K (CB), were examined in the entorhinal cortex (EC) of the adult mouse. The PV and CB immunoreactivities exhibited a conspicuous regional and laminar distribution in the EC. The overall immunostaining pattern of PV and CB appeared to be complementary in the EC, especially in the medial entorhinal area (MEA). In the dorsal MEA, although layer 2 showed intense PV and CB immunostaining, the PV immunoreactivity was denser in layers 3, 5 and 6a than in layers 4 and 6b, whereas the CB immunoreactivity was denser in layers 4 and 6b than in layers 3, 5 and 6a. Moreover, we recognized the dorsoventral gradation of the PV and CB staining that is, in the dorsal to ventral direction, the intensity of the PV immunostaining in layers 2, 3, 5 and 6a gradually decreased whereas that of the CB immunostaining in those layers gradually increased. In addition, a similar dorsoventral gradation was also observed in the number of PV immunoreactive (PV-IR) and CB-IR neurons in layer 3. In layer 2 of the MEA, the CB-IR neurons were clustered, while displaying a patch-like pattern which could not be recognized in either Nissl staining or PV staining. In contrast, layer 2 of the LEA was separated into two sublayers, the superficial sublayer 2a and the deeper sublayer 2b; both of these sublayers consisted of cell clusters recognized by Nissl staining. These sublayers showed a prominent difference in their CB immunoreactivity; the cells in the layer 2a clusters were CB negative, whereas the cells in the layer 2b clusters were CB-IR. Furthermore, we also recognized a particular region at the most medial part of the MEA, where layer 2 was different from the other portion of the MEA regarding CB immunoreactivity and the cells containing another calcium binding protein, calretinin, were clustered in layer 3. Both the adjacent section technique and the fluorescent double

  13. Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice

    PubMed Central

    Lee, Kyung Hoon; Lee, Won Young; Kim, Dong Hoon; Lee, Seung Hoon; Do, Jung Tae; Park, Chankyu; Kim, Jae Hwan; Choi, Young Suk; Song, Hyuk

    2016-01-01

    Belgian Malinois (BM), one of the excellent military dog breeds in South Korea, is usually castrated before sexual maturation. Therefore, the transfer of their genetic features to the next generation is difficult. To overcome this, testicular cells from 4-month-old BMs were frozen. Testicular cells were thawed after 3 months and cultured in StemPro-34 medium. Spermatogonial stem cell (SSC) characteristics were determined by the transplantation of the cultured germ cell-derived colonies (GDCs) into empty testes, containing only several endogenous SSCs and Sertoli cells, of immunodeficient mice, 4 weeks after busulfan treatment. Following the implantation, the transplanted cells localized in the basement membrane of the seminiferous tubules, and ultimately colonized the recipient testes. Xenotransplantation of GDCs together with testicular somatic cells conjugated with extracellular matrix (ECM), led to the formation of de novo seminiferous tubules. These seminiferous tubules were mostly composed of Sertoli cells. Some germ cells were localized in the basement membrane of seminiferous tubules. This study revealed that BM-derived SSCs, obtained from the castrated testes, might be a valuable tool for the transfer of BM genetic features to the next generation. PMID:26907750

  14. NF-YB Regulates Spermatogonial Stem Cell Self-Renewal and Proliferation in the Planarian Schmidtea mediterranea.

    PubMed

    Iyer, Harini; Collins, James J; Newmark, Phillip A

    2016-06-01

    Gametes are the source and carrier of genetic information, essential for the propagation of all sexually reproducing organisms. Male gametes are derived from a progenitor stem cell population called spermatogonial stem cells (SSCs). SSCs give rise to male gametes through the coordination of two essential processes: self-renewal to produce more SSCs, and differentiation to produce mature sperm. Disruption of this equilibrium can lead to excessive proliferation of SSCs, causing tumorigenesis, or can result in aberrant differentiation, leading to infertility. Little is known about how SSCs achieve the fine balance between self-renewal and differentiation, which is necessary for their remarkable output and developmental potential. To understand the mechanisms of SSC maintenance, we examine the planarian homolog of Nuclear Factor Y-B (NF-YB), which is required for the maintenance of early planarian male germ cells. Here, we demonstrate that NF-YB plays a role in the self-renewal and proliferation of planarian SSCs, but not in their specification or differentiation. Furthermore, we characterize members of the NF-Y complex in Schistosoma mansoni, a parasitic flatworm related to the free-living planarian. We find that the function of NF-YB in regulating male germ cell proliferation is conserved in schistosomes. This finding is especially significant because fecundity is the cause of pathogenesis of S. mansoni. Our findings can help elucidate the complex relationship between self-renewal and differentiation of SSCs, and may also have implications for understanding and controlling schistosomiasis. PMID:27304889

  15. NF-YB Regulates Spermatogonial Stem Cell Self-Renewal and Proliferation in the Planarian Schmidtea mediterranea

    PubMed Central

    Iyer, Harini; Collins, James J.; Newmark, Phillip A.

    2016-01-01

    Gametes are the source and carrier of genetic information, essential for the propagation of all sexually reproducing organisms. Male gametes are derived from a progenitor stem cell population called spermatogonial stem cells (SSCs). SSCs give rise to male gametes through the coordination of two essential processes: self-renewal to produce more SSCs, and differentiation to produce mature sperm. Disruption of this equilibrium can lead to excessive proliferation of SSCs, causing tumorigenesis, or can result in aberrant differentiation, leading to infertility. Little is known about how SSCs achieve the fine balance between self-renewal and differentiation, which is necessary for their remarkable output and developmental potential. To understand the mechanisms of SSC maintenance, we examine the planarian homolog of Nuclear Factor Y-B (NF-YB), which is required for the maintenance of early planarian male germ cells. Here, we demonstrate that NF-YB plays a role in the self-renewal and proliferation of planarian SSCs, but not in their specification or differentiation. Furthermore, we characterize members of the NF-Y complex in Schistosoma mansoni, a parasitic flatworm related to the free-living planarian. We find that the function of NF-YB in regulating male germ cell proliferation is conserved in schistosomes. This finding is especially significant because fecundity is the cause of pathogenesis of S. mansoni. Our findings can help elucidate the complex relationship between self-renewal and differentiation of SSCs, and may also have implications for understanding and controlling schistosomiasis. PMID:27304889

  16. The role of fibroblast growth factor receptor 2 (FGFR2) in differentiation of bovine spermatogonial stem cells (SCC)

    PubMed Central

    Akbarinejad, Vahid; Tajik, Parviz; Movahedin, Mansoureh; Youssefi, Reza

    2016-01-01

    The receptors 1 and 2 of fibroblast growth factor (FGFR1 and FGFR2, respectively) have been observed in all types of testicular cells. Culture on extracellular matrix (ECM) has been observed to lead to initiation of differentiation in spermatogonial stem cells (SSCs). The present study was carried out to investigate whether FGFR1 and FGFR2 play a role in SSCs differentiation. Following isolation, bovine testicular cells were cultured on ECM-coated or uncoated (control) plates for 12 days. The gene expression of THY1, cKIT, FGFR1 and FGFR2 was evaluated using quantitative real-time polymerase chain reaction (PCR). Results related to the gene expression of markers of with undifferentiated (THY1) and differentiated (cKIT) spermatogonia implicated stimulation of self-renewal and differentiation in cells cultured on ECM-coated and uncoated plates, respectively (p < 0.05). Concomitantly, the expression of FGFR2 increased during culture in the ECM group (p < 0.05), whereas it did not change in the control group (p > 0.05). As a result, the gene expression of FGFR2 was greater in the ECM than control group (p < 0.05). Nevertheless, FGFR1 expression did not change during culture in the control and ECM groups (p > 0.05). In conclusion, the present study revealed the potential role of FGFR2 in differentiation of SSCs during culture on ECM. PMID:27482360

  17. Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice.

    PubMed

    Lee, Kyung Hoon; Lee, Won Young; Kim, Dong Hoon; Lee, Seung Hoon; Do, Jung Tae; Park, Chankyu; Kim, Jae Hwan; Choi, Young Suk; Song, Hyuk

    2016-01-01

    Belgian Malinois (BM), one of the excellent military dog breeds in South Korea, is usually castrated before sexual maturation. Therefore, the transfer of their genetic features to the next generation is difficult. To overcome this, testicular cells from 4-month-old BMs were frozen. Testicular cells were thawed after 3 months and cultured in StemPro-34 medium. Spermatogonial stem cell (SSC) characteristics were determined by the transplantation of the cultured germ cell-derived colonies (GDCs) into empty testes, containing only several endogenous SSCs and Sertoli cells, of immunodeficient mice, 4 weeks after busulfan treatment. Following the implantation, the transplanted cells localized in the basement membrane of the seminiferous tubules, and ultimately colonized the recipient testes. Xenotransplantation of GDCs together with testicular somatic cells conjugated with extracellular matrix (ECM), led to the formation of de novo seminiferous tubules. These seminiferous tubules were mostly composed of Sertoli cells. Some germ cells were localized in the basement membrane of seminiferous tubules. This study revealed that BM-derived SSCs, obtained from the castrated testes, might be a valuable tool for the transfer of BM genetic features to the next generation. PMID:26907750

  18. The role of fibroblast growth factor receptor 2 (FGFR2) in differentiation of bovine spermatogonial stem cells (SCC).

    PubMed

    Akbarinejad, Vahid; Tajik, Parviz; Movahedin, Mansoureh; Youssefi, Reza

    2016-01-01

    The receptors 1 and 2 of fibroblast growth factor (FGFR1 and FGFR2, respectively) have been observed in all types of testicular cells. Culture on extracellular matrix (ECM) has been observed to lead to initiation of differentiation in spermatogonial stem cells (SSCs). The present study was carried out to investigate whether FGFR1 and FGFR2 play a role in SSCs differentiation. Following isolation, bovine testicular cells were cultured on ECM-coated or uncoated (control) plates for 12 days. The gene expression of THY1, cKIT, FGFR1 and FGFR2 was evaluated using quantitative real-time polymerase chain reaction (PCR). Results related to the gene expression of markers of with undifferentiated (THY1) and differentiated (cKIT) spermatogonia implicated stimulation of self-renewal and differentiation in cells cultured on ECM-coated and uncoated plates, respectively (p < 0.05). Concomitantly, the expression of FGFR2 increased during culture in the ECM group (p < 0.05), whereas it did not change in the control group (p > 0.05). As a result, the gene expression of FGFR2 was greater in the ECM than control group (p < 0.05). Nevertheless, FGFR1 expression did not change during culture in the control and ECM groups (p > 0.05). In conclusion, the present study revealed the potential role of FGFR2 in differentiation of SSCs during culture on ECM. PMID:27482360

  19. First evidence of molecular characterization of rohu carp Sox2 gene being expressed in proliferating spermatogonial cells.

    PubMed

    Patra, Swagat Kumar; Chakrapani, Vemulawada; Panda, Rudra Prasanna; Mohapatra, Chinmayee; Jayasankar, Pallipuram; Barman, Hirak Kumar

    2015-07-15

    Because little is known about the function of Sox2 (Sry-related box-2) in teleosts, the objective of this study was to clone and characterize Sox2 complementary DNA (cDNA) from the testis of Indian major carp, Labeo rohita (rohu). The full-length cDNA contained an open reading frame of 936 nucleotides bearing the typical structural features. Phylogenetically, Sox2 of L rohita was most closely related to freshwater counterparts than marine water. The sequence information of cDNA and genomic DNA together revealed that the Sox2 gene is encoded by an uninterrupted exon. Furthermore, comparative mRNA expression profile in various organs including proliferating spermatogonial stem cells (SSCs) suggested about the participatory role of Sox2 during fish male germ cell development and maintenance of stem cells. In support, we have also provided evidence that Sox2 protein is indeed present in rohu SSCs by Western blot analysis. The evolutionarily conserved high-mobility group box domain indicated its possible involvement in common networking pathways for stem cell maintenance and pluripotency between mammals and nonmammals. Our findings could be the first step toward the use of Sox2 as a potential biomarker for proliferating SSCs and understanding the transcriptional regulatory network involved during male germ cell development and maintenance in fish species. PMID:25913275

  20. Evaluation of the effects of cryopreservation on viability, proliferation and colony formation of human spermatogonial stem cells in vitro culture.

    PubMed

    Mirzapour, T; Movahedin, M; Tengku Ibrahim, T A; Haron, A W; Nowroozi, M R

    2013-02-01

    Proliferation of spermatogonial stem cells (SSCs) in vitro system is very important. It can enhance SSCs numbers for success of transplantation and treatment of infertility in cancer patients. In this study, testicular cells that obtained from azoospermia patients (n=8) by enzymatic digestion were cryopreserved at the beginning and after 2 weeks of culture. Then, frozen-thawed SSCs were co-cultured on fresh Sertoli cells (experimental group 1), and frozen-thawed Sertoli cells (experimental group 2) for another 3 weeks. In control group, fresh SSCs were co-cultured on fresh Sertoli cells. Viability rate after enzymatic digestion was 93.4%±5.0. Frozen-thawed testicular cells after 2 weeks of culture had a significantly (P<0.05) higher percentage of living cells compared to frozen-thawed testicular cells at the beginning of culture (59.2±7.05 and 46.3±8.40 respectively). The number of colonies in the experimental group 1 was significantly higher than experimental group 2 (19.6±2.8 and 8.33±1.5, respectively, P<0.05). The diameter of the colonies in the experimental group 1 was significantly higher than control and experimental group 2 (P<0.05) after 3 weeks of culture (269.7±52.1, 204.34±24.1 and 112.52±23.5 μm, respectively). Cryopreservation technique will raise the possibility of banking SSCs for men who have a cancer-related illness and waiting for radiotherapy and/or chemotherapy. PMID:22621173

  1. Effect of Removal of Spermatogonial Stem Cells (SSCs) from In Vitro Culture on Gene Expression of Niche Factors in Bovine

    PubMed Central

    Akbarinejad, Vahid; Tajik, Parviz; Movahedin, Mansoureh; Youssefi, Reza

    2016-01-01

    Background: Niche cells, regulating Spermatogonial Stem Cells (SSCs) fate are believed to have a reciprocal communication with SSCs. The present study was conducted to evaluate the effect of SSC elimination on the gene expression of Glial cell line-Derived Neurotrophic Factor (GDNF), Fibroblast Growth Factor 2 (FGF2) and Kit Ligand (KITLG), which are the main growth factors regulating SSCs development and secreted by niche cells, primarily Sertoli cells. Methods: Following isolation, bovine testicular cells were cultured for 12 days on extracellular matrix-coated plates. In the germ cell-removed group, the SSCs were removed from the in vitro culture using differential plating; however, in the control group, no intervention in the culture was performed. Colony formation of SSCs was evaluated using an inverted microscope. The gene expression of growth factors and spermatogonia markers were assessed using quantitative real time PCR. Results: SSCs colonies were developed in the control group but they were rarely observed in the germ cell-removed group; moreover, the expression of spermatogonia markers was detected in the control group while it was not observed in the germ cell-removed group, substantiating the success of SSCs removal. The expression of Gdnf and Fgf2 was greater in the germ cell-removed than control group (p<0.05), whereas the expression of Kitlg was lower in the germ cell-removed than control group (p< 0.05). Conclusion: In conclusion, the results revealed that niche cells respond to SSCs removal by upregulation of GDNF and FGF2, and downregulation of KITLG in order to stimulate self-renewal and arrest differentiation. PMID:27563426

  2. Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal

    PubMed Central

    Kanatsu-Shinohara, Mito; Onoyama, Ichiro; Nakayama, Keiichi I.; Shinohara, Takashi

    2014-01-01

    Spermatogonial stem cells (SSCs) undergo self-renewal divisions to support spermatogenesis throughout life. Although several positive regulators of SSC self-renewal have been discovered, little is known about the negative regulators. Here, we report that F-box and WD-40 domain protein 7 (FBXW7), a component of the Skp1-Cullin-F-box–type ubiquitin ligase, is a negative regulator of SSC self-renewal. FBXW7 is expressed in undifferentiated spermatogonia in a cell cycle-dependent manner. Although peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1), essential for spermatogenesis, is thought to destroy FBXW7, Pin1 depletion decreased FBXW7 expression. Spermatogonial transplantation showed that Fbxw7 overexpression compromised SSC activity whereas Fbxw7 deficiency enhanced SSC colonization and caused accumulation of undifferentiated spermatogonia, suggesting that the level of FBXW7 is critical for self-renewal and differentiation. Screening of putative FBXW7 targets revealed that Fbxw7 deficiency up-regulated myelocytomatosis oncogene (MYC) and cyclin E1 (CCNE1). Although depletion of Myc/Mycn or Ccne1/Ccne2 compromised SSC activity, overexpression of Myc, but not Ccne1, increased colonization of SSCs. These results suggest that FBXW7 regulates SSC self-renewal in a negative manner by degradation of MYC. PMID:24879440

  3. An Aminopeptidase in the Drosophila Testicular Niche Acts in Germline Stem Cell Maintenance and Spermatogonial Dedifferentiation.

    PubMed

    Lim, Cindy; Gandhi, Shiv; Biniossek, Martin L; Feng, Lijuan; Schilling, Oliver; Urban, Siniša; Chen, Xin

    2015-10-13

    Extrinsic cues from the niche are known to regulate adult stem cell self-renewal versus differentiation. Here, we report that an aminopeptidase Slamdance (Sda) acts in the Drosophila testicular niche to maintain germline stem cells (GSCs) and regulate progenitor germ cell dedifferentiation. Mutations in sda lead to dramatic testicular niche deterioration and stem cell loss. Recombinant Sda has specific aminopeptidase activity in vitro, and the in vivo function of Sda requires an intact aminopeptidase domain. Sda is required for accumulation of mature DE-cadherin, and overexpression of DE-cadherin rescues most sda mutant phenotypes, suggesting that DE-cadherin is an important target of Sda. Finally, Sda is both necessary and sufficient to promote dedifferentiation during aging and recovery from genetically manipulated depletion of GSCs. Together, our results suggest that a niche factor promotes both stem cell maintenance and progenitor cell dedifferentiation. PMID:26440886

  4. Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells.

    PubMed

    Laux, Alexis; Muller, Arnaud H; Miehe, Monique; Dirrig-Grosch, Sylvie; Deloulme, Jean Christophe; Delalande, François; Stuber, Denise; Sage, Dominique; Van Dorsselaer, Alain; Poisbeau, Pierrick; Aunis, Dominique; Goumon, Yannick

    2011-08-15

    Endogenous morphine, morphine-6-glucuronide, and codeine, which are structurally identical to vegetal alkaloids, can be synthesized by mammalian cells from dopamine. However, the role of brain endogenous morphine and its derivative compounds is a matter of debate, and knowledge about its distribution is lacking. In this study, by using a validated antibody, we describe a precise mapping of endogenous morphine-like compounds (morphine and/or its glucuronides and/or codeine) in the mouse brain. First, a mass spectrometry approach confirmed the presence of morphine and codeine in mouse brain, but also, of morphine-6-glucuronide and morphine-3-glucuronide representing two metabolites of morphine. Second, light microscopy allowed us to observe immunopositive cell somas and cytoplasmic processes throughout the mouse brain. Morphine-like immunoreactivity was present in various structures including the hippocampus, olfactory bulb, band of Broca, basal ganglia, and cerebellum. Third, by using confocal microscopy and immunofluroscence co-localization, we characterized cell types containing endogenous opiates. Interestingly, we observed that morphine-like immunoreactivity throughout the encephalon is mainly present in γ-aminobutyric acid (GABA)ergic neurons. Astrocytes were also labeled throughout the entire brain, in the cell body, in the cytoplasmic processes, and in astrocytic feet surrounding blood vessels. Finally, ultrastructural localization of morphine-like immunoreactivity was determined by electron microscopy and showed the presence of morphine-like label in presynaptic terminals in the cerebellum and postsynaptic terminals in the rest of the mouse brain. In conclusion, the presence of endogenous morphine-like compounds in brain regions not usually involved in pain modulation opens the exciting opportunity to extend the role and function of endogenous alkaloids far beyond their analgesic functions. PMID:21456021

  5. Long-term in vivo single-cell tracking reveals the switch of migration patterns in adult-born juxtaglomerular cells of the mouse olfactory bulb.

    PubMed

    Liang, Yajie; Li, Kaizhen; Riecken, Kristoffer; Maslyukov, Anatoliy; Gomez-Nicola, Diego; Kovalchuk, Yury; Fehse, Boris; Garaschuk, Olga

    2016-07-01

    The behavior of adult-born cells can be easily monitored in cell culture or in lower model organisms, but longitudinal observation of individual mammalian adult-born cells in their native microenvironment still proves to be a challenge. Here we have established an approach named optical cell positioning system for long-term in vivo single-cell tracking, which integrates red-green-blue cell labeling with repeated angiography. By combining this approach with in vivo two-photon imaging technique, we characterized the in vivo migration patterns of adult-born neurons in the olfactory bulb. In contrast to the traditional view of mere radial migration of adult-born cells within the bulb, we found that juxtaglomerular cells switch from radial migration to long distance lateral migration upon arrival in their destination layer. This unique long-distance lateral migration has characteristic temporal (stop-and-go) and spatial (migratory, unidirectional or multidirectional) patterns, with a clear cell age-dependent decrease in the migration speed. The active migration of adult-born cells coincides with the time period of initial fate determination and is likely to impact on the integration sites of adult-born cells, their odor responsiveness, as well as their survival rate. PMID:27174051

  6. 40 CFR 798.5195 - Mouse biochemical specific locus test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... weeks after exposure. Spermatogonial stem cells are studied thereafter. Repeated mating cycles should be... spermatogonial stem cells. (2) Examination of offspring—(i) Birth and weaning. Offspring shall be examined at... the reporting requirements as specified under 40 CFR part 792, subpart J, and paragraph (h) of...

  7. 40 CFR 798.5195 - Mouse biochemical specific locus test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... weeks after exposure. Spermatogonial stem cells are studied thereafter. Repeated mating cycles should be... spermatogonial stem cells. (2) Examination of offspring—(i) Birth and weaning. Offspring shall be examined at... the reporting requirements as specified under 40 CFR part 792, subpart J, and paragraph (h) of...

  8. 40 CFR 798.5195 - Mouse biochemical specific locus test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... weeks after exposure. Spermatogonial stem cells are studied thereafter. Repeated mating cycles should be... spermatogonial stem cells. (2) Examination of offspring—(i) Birth and weaning. Offspring shall be examined at... the reporting requirements as specified under 40 CFR part 792, subpart J, and paragraph (h) of...

  9. Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction.

    PubMed

    Yamauchi, Yasuhiro; Riel, Jonathan M; Ruthig, Victor A; Ortega, Eglė A; Mitchell, Michael J; Ward, Monika A

    2016-01-29

    The mammalian Y chromosome is considered a symbol of maleness, as it encodes a gene driving male sex determination, Sry, as well as a battery of other genes important for male reproduction. We previously demonstrated in the mouse that successful assisted reproduction can be achieved when the Y gene contribution is limited to only two genes, Sry and spermatogonial proliferation factor Eif2s3y. Here, we replaced Sry by transgenic activation of its downstream target Sox9, and Eif2s3y, by transgenic overexpression of its X chromosome-encoded homolog Eif2s3x. The resulting males with no Y chromosome genes produced haploid male gametes and sired offspring after assisted reproduction. Our findings support the existence of functional redundancy between the Y chromosome genes and their homologs encoded on other chromosomes. PMID:26823431

  10. Identification of Putative Biomarkers for the Early Stage of Porcine Spermatogonial Stem Cells Using Next-Generation Sequencing

    PubMed Central

    Lee, Won-Young; Do, Jeong Tae; Park, Chankyu; Kim, Jin Hoi; Chung, Hak-Jae; Kim, Kyung-Woon; Gil, Chang-Hyun; Kim, Nam-Hyung; Song, Hyuk

    2016-01-01

    To identify putative biomarkers of porcine spermatogonial stem cells (pSSCs), total RNA sequencing (RNA-seq) analysis was performed on 5- and 180-day-old porcine testes and on pSSC colonies that were established under low temperature culture conditions as reported previously. In total, 10,184 genes were selected using Cufflink software, followed by a logarithm and quantile normalization of the pairwise scatter plot. The correlation rates of pSSCs compared to 5- and 180-day-old testes were 0.869 and 0.529, respectively and that between 5- and 180-day-old testes was 0.580. Hierarchical clustering data revealed that gene expression patterns of pSSCs were similar to 5-day-old testis. By applying a differential expression filter of four fold or greater, 607 genes were identified between pSSCs and 5-day-old testis, and 2118 genes were identified between the 5- and 180-day-old testes. Among these differentially expressed genes, 293 genes were upregulated and 314 genes were downregulated in the 5-day-old testis compared to pSSCs, and 1106 genes were upregulated and 1012 genes were downregulated in the 180-day-old testis compared to the 5-day-old testis. The following genes upregulated in pSSCs compared to 5-day-old testes were selected for additional analysis: matrix metallopeptidase 9 (MMP9), matrix metallopeptidase 1 (MMP1), glutathione peroxidase 1 (GPX1), chemokine receptor 1 (CCR1), insulin-like growth factor binding protein 3 (IGFBP3), CD14, CD209, and Kruppel-like factor 9 (KLF9). Expression levels of these genes were evaluated in pSSCs and in 5- and 180-day-old porcine testes. In addition, immunohistochemistry analysis confirmed their germ cell-specific expression in 5- and 180-day-old testes. These finding may not only be useful in facilitating the enrichment and sorting of porcine spermatogonia, but may also be useful in the study of the early stages of spermatogenic meiosis. PMID:26800048

  11. Response of adult mouse uterus to early disruption of estrogen receptor-alpha signaling is influenced by Krüppel-like factor 9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inappropriate early exposure of the hormone-responsive uterus to estrogenic compounds is associated with increased risk for adult reproductive diseases including endometrial cancers. While the dysregulation of estrogen receptor-alpha (ESR1) signaling is a well-acknowledged early event in tumor initi...

  12. Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring.

    PubMed

    Petropoulos, Sophie; Matthews, Stephen G; Szyf, Moshe

    2014-02-01

    Synthetic glucocorticoids (sGCs) are commonly prescribed for the management of inflammatory and endocrine disorders. However, nothing is known regarding the effects of sGC on adult germline methylome and whether these effects can be transmitted to the next generation. We hypothesized that administration of sGC to adult male mice alters DNA methylation in mature sperm and modifies the transcription and methylation of steroid receptors in male F1 offspring. Adult C57BL/6 males (n = 10/group) were injected on five consecutive days with 1 mg/kg sGC (i.e., dexamethasone) or vehicle and euthanized 35 or 60 days after initial treatment or bred with control females (60 days postinitial treatment; n = 5/group). A significant increase in global non-CpG methylation was observed in F0 sperm 60 days following sGC treatment. In the hippocampus and kidney of Postnatal Day 50 (PND50) and PND240 male offspring derived from fathers exposed to sGC, significant differences in mineralocorticoid receptor (Nr3c2; Mr), estrogen alpha receptor (Nr3a1; Ers1), and glucocorticoid receptor (Nr3c1; Gr) expression were observed. Furthermore, significant demethylation in regulatory regions of Mr, Gr, and Esr1 was observed in the PND50 kidney derived from fathers exposed to sGC. This is the first demonstration that paternal pharmacological exposure to sGC can alter the expression and DNA methylation of nuclear steroid receptors in brain and somatic tissues of offspring. These findings provide proof of principle that adult male exposure to sGC can affect DNA methylation and gene expression in offspring, indicating the possibility that adult experiences that evoke increases in endogenous glucocorticoid (i.e., stress) might have similar effects. PMID:24451982

  13. Gestational and Lactational Exposure to Atrazine via the Drinking Water Causes Specific Behavioral Deficits and Selectively Alters Monoaminergic Systems in C57BL/6 Mouse Dams, Juvenile and Adult Offspring

    PubMed Central

    Krishna, Saritha; Ye, Xiaoqin; Filipov, Nikolay M.

    2014-01-01

    Atrazine (ATR) is one of the most frequently detected pesticides in the U.S. water supply. This study aimed to investigate neurobehavioral and neurochemical effects of ATR in C57BL/6 mouse offspring and dams exposed to a relatively low (3 mg/l, estimated intake 1.4 mg/kg/day) concentration of ATR via the drinking water (DW) from gestational day 6 to postnatal day (PND) 23. Behavioral tests included open field, pole, grip strength, novel object recognition (NOR), forced swim, and marble burying tests. Maternal weight gain and offspring (PND21, 35, and 70) body or brain weights were not affected by ATR. However, ATR-treated dams exhibited decreased NOR performance and a trend toward hyperactivity. Juvenile offspring (PND35) from ATR-exposed dams were hyperactive (both sexes), spent less time swimming (males), and buried more marbles (females). In adult offspring (PND70), the only behavioral change was a sex-specific (females) decreased NOR performance by ATR. Neurochemically, a trend toward increased striatal dopamine (DA) in dams and a significant increase in juvenile offspring (both sexes) was observed. Additionally, ATR exposure decreased perirhinal cortex serotonin in the adult female offspring. These results suggest that perinatal DW exposure to ATR targets the nigrostriatal DA pathway in dams and, especially, juvenile offspring, alters dams’ cognitive performance, induces sex-selective changes involving motor and emotional functions in juvenile offspring, and decreases cognitive ability of adult female offspring, with the latter possibly associated with altered perirhinal cortex serotonin homeostasis. Overall, ATR exposure during gestation and lactation may cause adverse nervous system effects to both offspring and dams. PMID:24913803

  14. SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes

    PubMed Central

    Park, Miree; Lee, Youngeun; Jang, Hoon; Lee, Ok-Hee; Park, Sung-Won; Kim, Jae-Hwan; Hong, Kwonho; Song, Hyuk; Park, Se-Pill; Park, Yun-Yong; Ko, Jung Jae; Choi, Youngsok

    2016-01-01

    Spermatogenesis- and oogenesis-specific helix-loop-helix transcription factor 2 (SOHLH2) is exclusively expressed in germ cells of the gonads. Previous studies show that SOHLH2 is critical for spermatogenesis in mouse. However, the regulatory mechanism of SOHLH2 during early spermatogenesis is poorly understood. In the present study, we analyzed the gene expression profile of the Sohlh2-deficient testis and examined the role of SOHLH2 during spermatogenesis. We found 513 genes increased in abundance, while 492 genes decreased in abundance in 14-day-old Sohlh2-deficient mouse testes compared to wildtype mice. Gene ontology analysis revealed that Sohlh2 disruption effects the relative abundance of various meiotic genes during early spermatogenesis, including Spo11, Dmc1, Msh4, Prdm9, Sycp1, Sycp2, Sycp3, Hormad1, and Hormad2. Western blot analysis and immunostaining showed that SYCP3, a component of synaptonemal complex, was significantly less abundant in Sohlh2-deficient spermatocytes. We observed a lack of synaptonemal complex formation during meiosis in Sohlh2-deficient spermatocytes. Furthermore, we found that SOHLH2 interacted with two E-boxes on the mouse Sycp1 promoter and Sycp1 promoter activity increased with ectopically expressed SOHLH2. Taken together, our data suggest that SOHLH2 is critical for the formation of synaptonemal complexes via its regulation of Sycp1 expression during mouse spermatogonial differentiation. PMID:26869299

  15. RNAi silencing of P/Q-type calcium channels in Purkinje neurons of adult mouse leads to episodic ataxia type 2.

    PubMed

    Salvi, Julie; Bertaso, Federica; Mausset-Bonnefont, Anne-Laure; Metz, Alexandra; Lemmers, Céline; Ango, Fabrice; Fagni, Laurent; Lory, Philippe; Mezghrani, Alexandre

    2014-08-01

    Episodic ataxia type-2 (EA2) is a dominantly inherited human neurological disorder caused by loss of function mutations in the CACNA1A gene, which encodes the CaV2.1 subunit of P/Q-type voltage-gated calcium channels. It remains however unknown whether the deficit of cerebellar CaV2.1 in adult is in direct link with the disease. To address this issue, we have used lentiviral based-vector RNA interference (RNAi) to knock-down CaV2.1 expression in the cerebellum of adult mice. We show that suppression of the P/Q-type channels in Purkinje neurons induced motor abnormalities, such as imbalance and ataxic gait. Interestingly, moderate channel suppression caused no basal ataxia, while β-adrenergic activation and exercise mimicked stress induced motor disorders. Moreover, stress-induced ataxia was stable, non-progressive and totally abolished by acetazolamide, a carbonic anhydrase inhibitor used to treat EA2. Altogether, these data reveal that P/Q-type channel suppression in adult mice supports the episodic status of EA2 disease. PMID:24768804

  16. Experiment K-6-16. Morphological examination of rat testes. The effect of Cosmos 1887 flight on spermatogonial population and testosterone level in rat testes

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Kato, K.; Stevenson, J.; Vasques, M.; Sapp, W.; Williams, C.; Popova, I. A.; Serova, L. V.

    1990-01-01

    Testes from rats flown on Cosmos 1887 for twelve and a half days were compared to basal control, synchronous control and vivarium maintained rats. When the mean weights of flight testes, normalized for weight/100 gms, were compared to the vivarium controls they were 6.7 percent lighter. Although the flight testes were lighter than the synchronous, the difference is not significant. Counts of spermatogonial cells from 5 animals in each group revealed a 4 percent decrease in flight compared to vivarium controls. In both cases the t-Test significance was less than 0.02. The serum testosterone levels of all animals (flight, synchronous and vivarium) were significantly below the basal controls.

  17. Antigenotoxic effect of Chamomilla recutita (L.) Rauschert essential oil in mouse spermatogonial cells, and determination of its antioxidant capacity in vitro.

    PubMed

    Hernández-Ceruelos, Alejandra; Madrigal-Santillán, Eduardo; Morales-González, José Antonio; Chamorro-Cevallos, Germán; Cassani-Galindo, Martha; Madrigal-Bujaidar, Eduardo

    2010-01-01

    Chamomilla recutita (L.) Rauschert (Asteraceae), popularly known as chamomile, is a plant used in traditional medicine for various therapeutic purposes. Chamomile essential oil (CEO) is particularly known to inhibit the genotoxic damage produced by mutagens in mice somatic cells. The aim of this research was to determine the inhibitory potential of CEO on the genotoxic damage produced by daunorubicin (DAU) in mice germ cells. We evaluated the effect of 5, 50, and 500 mg/kg of essential oil on the rate of sister chromatid exchange (SCE) induced in spermatogonia by 10 mg/kg of the mutagen. We found no genotoxicity of CEO, but detected an inhibition of SCE after the damage induced by DAU; from the lowest to the highest dose of CEO we found an inhibition of 47.5%, 61.9%, and 93.5%, respectively. As a possible mechanism of action, the antioxidant capacity of CEO was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging method and ferric thiocyanate assays. In the first test we observed a moderate scavenging potential of the oil; nevertheless, the second assay showed an antioxidant capacity similar to that observed with vitamin E. In conclusion, we found that CEO is an efficient chemoprotective agent against the damage induced by DAU in the precursor cells of the germinal line of mice, and that its antioxidant capacity may induce this effect. PMID:21152302

  18. Antigenotoxic Effect of Chamomilla recutita (L.) Rauschert Essential Oil in Mouse Spermatogonial Cells, and Determination of Its Antioxidant Capacity in Vitro

    PubMed Central

    Hernández-Ceruelos, Alejandra; Madrigal-Santillán, Eduardo; Morales-González, José Antonio; Chamorro-Cevallos, Germán; Cassani-Galindo, Martha; Madrigal-Bujaidar, Eduardo

    2010-01-01

    Chamomilla recutita (L.) Rauschert (Asteraceae), popularly known as chamomile, is a plant used in traditional medicine for various therapeutic purposes. Chamomile essential oil (CEO) is particularly known to inhibit the genotoxic damage produced by mutagens in mice somatic cells. The aim of this research was to determine the inhibitory potential of CEO on the genotoxic damage produced by daunorubicin (DAU) in mice germ cells. We evaluated the effect of 5, 50, and 500 mg/kg of essential oil on the rate of sister chromatid exchange (SCE) induced in spermatogonia by 10 mg/kg of the mutagen. We found no genotoxicity of CEO, but detected an inhibition of SCE after the damage induced by DAU; from the lowest to the highest dose of CEO we found an inhibition of 47.5%, 61.9%, and 93.5%, respectively. As a possible mechanism of action, the antioxidant capacity of CEO was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging method and ferric thiocyanate assays. In the first test we observed a moderate scavenging potential of the oil; nevertheless, the second assay showed an antioxidant capacity similar to that observed with vitamin E. In conclusion, we found that CEO is an efficient chemoprotective agent against the damage induced by DAU in the precursor cells of the germinal line of mice, and that its antioxidant capacity may induce this effect. PMID:21152302

  19. A neuroprotective role of the NMDA receptor subunit GluN3A (NR3A) in ischemic stroke of the adult mouse

    PubMed Central

    Wei, Zheng Z.; Chen, Dongdong; Gu, Xiaohuan; Wei, Ling

    2015-01-01

    GluN3A or NR3A is a developmentally regulated N-methyl-d-aspartate receptor (NMDAR) subunit, showing a unique inhibitory role that decreases NMDAR current and the receptor-mediated Ca2+ influx. In the neonatal brain, GluN3A is shown to associate with synaptic maturation and spine formation and plays a neuroprotective role. Its functional role in the adult brain, however, is largely unknown. We tested the hypothesis that, disrespecting the relatively lower expression level of GluN3A in the adult brain, this inhibitory NMDAR subunit shows a protective action against ischemia-induced brain injury. In littermate wild-type (WT) and GluN3A knockout (KO) mice, focal cerebral ischemia was induced by permanent occlusion of right distal branches of the middle cerebral artery (MCA) plus 10-min ligation of both common carotid arteries (CCAs). Twenty-four hours after focal cerebral ischemia, the infarction volume assessed using 2,3,5-triphenyltetrazolium chloride (TTC) staining was significantly larger in GluN3A KO mice compared with WT mice. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining demonstrated enhanced cell death in GluN3A KO mice. Moreover, the deletion of GluN3A hindered sensorimotor functional recovery after stroke. It is suggested that, although the expression level is relatively lower in the adult brain, GluN3A is still a noteworthy regulator in ischemia-induced excitotoxicity and brain injury. PMID:25652449

  20. Comparison of drug and cell-based delivery: engineered adult mesenchymal stem cells expressing soluble tumor necrosis factor receptor II prevent arthritis in mouse and rat animal models.

    PubMed

    Liu, Linda N; Wang, Gang; Hendricks, Kyle; Lee, Keunmyoung; Bohnlein, Ernst; Junker, Uwe; Mosca, Joseph D

    2013-05-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with unknown etiology where tumor necrosis factor-α (TNFα) plays a critical role. Etanercept, a recombinant fusion protein of human soluble tumor necrosis factor receptor II (hsTNFR) linked to the Fc portion of human IgG1, is used to treat RA based on the rationale that sTNFR binds TNFα and blocks TNFα-mediated inflammation. We compared hsTNFR protein delivery from genetically engineered human mesenchymal stem cells (hMSCs) with etanercept. Blocking TNFα-dependent intercellular adhesion molecule-1 expression on transduced hMSCs and inhibition of nitric oxide production from TNFα-treated bovine chondrocytes by conditioned culture media from transduced hMSCs demonstrated the functionality of the hsTNFR construction. Implanted hsTNFR-transduced mesenchymal stem cells (MSCs) reduced mouse serum circulating TNFα generated from either implanted TNFα-expressing cells or lipopolysaccharide induction more effectively than etanercept (TNFα, 100%; interleukin [IL]-1α, 90%; and IL-6, 60% within 6 hours), suggesting faster clearance of the soluble tumor necrosis factor receptor (sTNFR)-TNFα complex from the animals. In vivo efficacy of sTNFR-transduced MSCs was illustrated in two (immune-deficient and immune-competent) arthritic rodent models. In the antibody-induced arthritis BalbC/SCID mouse model, intramuscular injection of hsTNFR-transduced hMSCs reduced joint inflammation by 90% compared with untransduced hMSCs; in the collagen-induced arthritis Fischer rat model, both sTNFR-transduced rat MSCs and etanercept inhibited joint inflammation by 30%. In vitro chondrogenesis assays showed the ability of TNFα and IL1α, but not interferon γ, to inhibit hMSC differentiation to chondrocytes, illustrating an additional negative role for inflammatory cytokines in joint repair. The data support the utility of hMSCs as therapeutic gene delivery vehicles and their potential to be used in alleviating inflammation

  1. Cell Sorting of Neural Stem and Progenitor Cells from the Adult Mouse Subventricular Zone and Live-imaging of their Cell Cycle Dynamics.

    PubMed

    Daynac, Mathieu; Morizur, Lise; Kortulewski, Thierry; Gauthier, Laurent R; Ruat, Martial; Mouthon, Marc-André; Boussin, François D

    2015-01-01

    Neural stem cells (NSCs) in the subventricular zone of the lateral ventricles (SVZ) sustain olfactory neurogenesis throughout life in the mammalian brain. They successively generate transit amplifying cells (TACs) and neuroblasts that differentiate into neurons once they integrate the olfactory bulbs. Emerging fluorescent activated cell sorting (FACS) techniques have allowed the isolation of NSCs as well as their progeny and have started to shed light on gene regulatory networks in adult neurogenic niches. We report here a cell sorting technique that allows to follow and distinguish the cell cycle dynamics of the above-mentioned cell populations from the adult SVZ with a LeX/EGFR/CD24 triple staining. Isolated cells are then plated as adherent cells to explore in details their cell cycle progression by time-lapse video microscopy. To this end, we use transgenic Fluorescence Ubiquitination Cell Cycle Indicator (FUCCI) mice in which cells are red-fluorescent during G1 phase due to a G1 specific red-Cdt1 reporter. This method has recently revealed that proliferating NSCs progressively lengthen their G1 phase during aging, leading to neurogenesis impairment. This method is easily transposable to other systems and could be of great interest for the study of the cell cycle dynamics of brain cells in the context of brain pathologies. PMID:26436641

  2. The effect of in vivo hydrocortisone administration on the labelling index and size of chromaffin tissue in the postnatal and adult mouse.

    PubMed Central

    Monkhouse, W S

    1986-01-01

    Hydrocortisone administration in vivo to neonatal mice for seven days led to a significant increase in both the size and the labelling index of extra-adrenal chromaffin tissue (as represented by the para-aortic body) of 8 days old mice. In untreated animals at this age, the para-aortic body was in most cases too small to obtain a valid labelling index. In the para-aortic bodies of 14 days old, 21 days old and adult mice, the extra-adrenal chromaffin tissue was too dispersed to obtain values for either volumetric analysis or labelling indices, and hydrocortisone was without significant effect in promoting a hyperplastic response. In the postnatal adrenal medulla at all ages studied, hydrocortisone had no effect on the medullary size or on the labelling indices of either adrenaline- or noradrenaline-storing cells, although it led to a marked diminution of adrenocortical volume. The relative proportion of adrenaline-storing cells increased between the values for 8 days old animals and those for adults; this was unaffected by hydrocortisone. The cortico-medullary ratio remained unchanged from the eighth postnatal day onwards. The results are discussed and related to those of other workers. It is suggested that factors as yet unknown might modulate the response to corticosteroids of developing intra- and extra-adrenal chromaffin tissue. Images Fig. 1 Fig. 2 PMID:3693040

  3. Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain

    PubMed Central

    Pineda, Jose R; Daynac, Mathieu; Chicheportiche, Alexandra; Cebrian-Silla, Arantxa; Sii Felice, Karine; Garcia-Verdugo, Jose Manuel; Boussin, François D; Mouthon, Marc-André

    2013-01-01

    Neurogenesis decreases during aging and following cranial radiotherapy, causing a progressive cognitive decline that is currently untreatable. However, functional neural stem cells remained present in the subventricular zone of high dose-irradiated and aged mouse brains. We therefore investigated whether alterations in the neurogenic niches are perhaps responsible for the neurogenesis decline. This hypothesis was supported by the absence of proliferation of neural stem cells that were engrafted into the vascular niches of irradiated host brains. Moreover, we observed a marked increase in TGF-β1 production by endothelial cells in the stem cell niche in both middle-aged and irradiated mice. In co-cultures, irradiated brain endothelial cells induced the apoptosis of neural stem/progenitor cells via TGF-β/Smad3 signalling. Strikingly, the blockade of TGF-β signalling in vivo using a neutralizing antibody or the selective inhibitor SB-505124 significantly improved neurogenesis in aged and irradiated mice, prevented apoptosis and increased the proliferation of neural stem/progenitor cells. These findings suggest that anti-TGF-β-based therapy may be used for future interventions to prevent neurogenic collapse following radiotherapy or during aging. PMID:23526803

  4. Systemic Trans-splicing adeno-associated viral delivery efficiently transduces the heart of adult mdx mouse, a model for duchenne muscular dystrophy.

    PubMed

    Ghosh, Arkasubhra; Yue, Yongping; Shin, Jin-Hong; Duan, Dongsheng

    2009-11-01

    Trans-splicing adeno-associated viral (tsAAV) vectors hold great promise for delivering large therapeutic genes. One potential application is in the treatment of Duchenne muscular dystrophy (DMD). In this case, it is necessary to transduce whole body muscle. We demonstrated body-wide AAV-9 tsAAV transduction in normal neonatal mice. However, it was not clear whether such an approach would work in diseased mice. In this study we delivered the AAV-9 alkaline phosphatase (AP) tsAAV vector (3 x 10(12) vector genome particles per vector per mouse, tail vein injection) to 2-month-old mdx mice, the most widely used DMD model. Four months later, we observed widespread AP expression in the heart. It reached the same level as we have seen in normal neonatal puppy. Interestingly, myocardial transduction correlated with beta-myosin heavy chain expression but not with LamR, the putative AAV-9 receptor. AP expression was also detected in various skeletal muscles but at levels much lower than in normal newborn mice. Despite the existing inflammatory milieu, we did not see any appreciable increase in CD4(+) and CD8(+) T cells and macrophages in striated muscles after systemic tsAAV infection. In summary, our results have paved the way for tsAAV-mediated gene therapy for Duchenne cardiomyopathy. PMID:19627234

  5. Expression of the muscular dystrophy-associated caveolin-3(P104L) mutant in adult mouse skeletal muscle specifically alters the Ca(2+) channel function of the dihydropyridine receptor.

    PubMed

    Weiss, Norbert; Couchoux, Harold; Legrand, Claude; Berthier, Christine; Allard, Bruno; Jacquemond, Vincent

    2008-11-01

    Caveolins are plasma-membrane-associated proteins potentially involved in a variety of signalling pathways. Different mutations in CAV3, the gene encoding for the muscle-specific isoform caveolin-3 (Cav-3), lead to muscle diseases, but the underlying molecular mechanisms remain largely unknown. Here, we explored the functional consequences of a Cav-3 mutation (P104L) inducing the 1C type limb-girdle muscular dystrophy (LGMD 1C) in human on intracellular Ca(2+) regulation of adult skeletal muscle fibres. A YFP-tagged human Cav-3(P104L) mutant was expressed in vivo in muscle fibres from mouse. Western blot analysis revealed that expression of this mutant led to an approximately 80% drop of the level of endogenous Cav-3. The L-type Ca(2+) current density was found largely reduced in fibres expressing the Cav-3(P104L) mutant, with no change in the voltage dependence of activation and inactivation. Interestingly, the maximal density of intramembrane charge movement was unaltered in the Cav-3(P104L)-expressing fibres, suggesting no change in the total amount of functional voltage-sensing dihydropyridine receptors (DHPRs). Also, there was no obvious alteration in the properties of voltage-activated Ca(2+) transients in the Cav-3(P104L)-expressing fibres. Although the actual role of the Ca(2+) channel function of the DHPR is not clearly established in adult skeletal muscle, its specific alteration by the Cav-3(P104L) mutant suggests that it may be involved in the physiopathology of LGMD 1C. PMID:18509671

  6. Expression of the NMDA receptor subunit GluN3A (NR3A) in the olfactory system and its regulatory role on olfaction in the adult mouse.

    PubMed

    Lee, Jin Hwan; Wei, Ling; Deveau, Todd C; Gu, Xiaohuan; Yu, Shan Ping

    2016-07-01

    Glutamate is an excitatory neurotransmitter in the olfactory system and its N-methyl-D-aspartate-(NMDA) receptor subunits [GluN1 (NR1), GluN2A (NR2A), and GluN2B (NR2B)] are expressed at synapses in the olfactory bulb and olfactory epithelium. Thus, glutamatergic neurons and NMDA receptors play key roles in olfaction. GluN3A (NR3A) is a unique inhibitory subunit in the NMDA receptor complex; however, the expression and functional role of GluN3A in the olfactory bulb and epithelium remain unclear. The present study examined the expression patterns of GluN3A in the olfactory bulb and epithelium and explored its functional role in the olfactory system. Immunohistochemical and Western blot analyses revealed that GluN3A is abundantly expressed in different cellular layers of the olfactory bulb and epithelium of the adult wild type (WT) mice. In littermate GluN3A knockout (GluN3A(-/-); KO) mice, the expression of olfactory marker protein normally found in mature olfactory sensory neurons was significantly reduced in the olfactory bulb and epithelium. A butyl alcohol stimulus increased immediate-early gene c-Fos expression in the olfactory system of WT mice, while this response was absent in GluN3A KO mice. The level of phosphorylated Ca(2+)/calmodulin-dependent kinase II was significantly lower in GluN3A KO mice compared to WT mice. In buried food finding test, GluN3A mice took significantly longer time to find food compared to WT mice. Consistently, impaired odor distinguishing ability was seen in GluN3A KO mice. These findings suggest that GluN3A, expressed in the adult olfactory system, plays a significant regulatory role in olfactory development and functional activity. PMID:26334321

  7. Disruption of the ErbB signaling in adolescence increases striatal dopamine levels and affects learning and hedonic-like behavior in the adult mouse.

    PubMed

    Golani, Idit; Tadmor, Hagar; Buonanno, Andres; Kremer, Ilana; Shamir, Alon

    2014-11-01

    The ErbB signaling pathway has been genetically and functionally implicated in schizophrenia. Numerous findings support the dysregulation of Neuregulin (NRG) and epidermal growth factor (EGF) signaling in schizophrenia. However, it is unclear whether alterations of these pathways in the adult brain or during development are involved in the pathophysiology of schizophrenia. Herein we characterized the behavioral profile and molecular changes resulting from pharmacologically blocking the ErbB signaling pathway during a critical period in the development of decision making, planning, judgments, emotions, social cognition and cognitive skills, namely adolescence. We demonstrate that chronic administration of the pan-ErbB kinase inhibitor JNJ-28871063 (JNJ) to adolescent mice elevated striatal dopamine levels and reduced preference for sucrose without affecting locomotor activity and exploratory behavior. In adulthood, adolescent JNJ-treated mice continue to consume less sucrose and needed significantly more correct-response trials to reach the learning criterion during the discrimination phase of the T-maze reversal learning task than their saline-injected controls. In addition, JNJ mice exhibited deficit in reference memory but not in working memory as measured in the radial arm maze. Inhibition of the pathway during adolescence did not affect exploratory behavior and locomotor activity in the open field, social interaction, social memory, and reversal learning in adult mice. Our data suggest that alteration of ErbB signaling during adolescence resulted in changes in the dopaminergic systems that emerge in pathological learning and hedonic behavior in adulthood, and pinpoints the possible role of the pathway in the development of cognitive skills and motivated behavior. PMID:25451700

  8. Data on in vivo phenotypes of GFRα1-positive spermatogonia stimulated by interstitial GDNF signals in mouse testes.

    PubMed

    Uchida, Aya; Kanai, Yoshiakira

    2016-09-01

    This article contains the data related to the research article "in vivo dynamics of GFRα1-positive spermatogonia stimulated by GDNF signals using a bead transplantation assay" (Uchida et al., 2016) [1]. A novel transplantation assay of growth factor-soaked beads into the mammalian testicular interstitium was developed, in order to examine the effects of various soluble factors on in vivo dynamics of the spermatogonia including spermatogonial stem cells (SSC). Here we provide the image data of GFRα1-positive stem/progenitor spermatogonia in mouse seminiferous tubules near the beads soaked in GDNF (glial cell-derived neurotrophic factor), one of the SSC niche factors. The data provide various phenotypes of GFRα1-positive spermatogonia induced by bead-derived GDNF signals, which are useful to understand the active state of GFRα1-positive stem/progenitor spermatogonia in vivo. PMID:27547806

  9. Fibromodulin-deficiency alters temporospatial expression patterns of transforming growth factor-β ligands and receptors during adult mouse skin wound healing.

    PubMed

    Zheng, Zhong; Lee, Kevin S; Zhang, Xinli; Nguyen, Calvin; Hsu, Chingyun; Wang, Joyce Z; Rackohn, Todd Matthew; Enjamuri, Dwarak Reddy; Murphy, Maxwell; Ting, Kang; Soo, Chia

    2014-01-01

    Fibromodulin (FMOD) is a small leucine-rich proteoglycan required for scarless fetal cutaneous wound repair. Interestingly, increased FMOD levels have been correlated with decreased transforming growth factor (TGF)-β1 expression in multiple fetal and adult rodent models. Our previous studies demonstrated that FMOD-deficiency in adult animals results in delayed wound closure and increased scar size accompanied by loose package collagen fiber networks with increased fibril diameter. In addition, we found that FMOD modulates in vitro expression and activities of TGF-β ligands in an isoform-specific manner. In this study, temporospatial expression profiles of TGF-β ligands and receptors in FMOD-null and wild-type (WT) mice were compared by immunohistochemical staining and quantitative reverse transcriptase-polymerase chain reaction using a full-thickness, primary intention wound closure model. During the inflammatory stage, elevated inflammatory infiltration accompanied by increased type I TGF-β receptor levels in individual inflammatory cells was observed in FMOD-null wounds. This increased inflammation was correlated with accelerated epithelial migration during the proliferative stage. On the other hand, significantly more robust expression of TGF-β3 and TGF-β receptors in FMOD-null wounds during the proliferative stage was associated with delayed dermal cell migration and proliferation, which led to postponed granulation tissue formation and wound closure and increased scar size. Compared with WT controls, expression of TGF-β ligands and receptors by FMOD-null dermal cells was markedly reduced during the remodeling stage, which may have contributed to the declined collagen synthesis capability and unordinary collagen architecture. Taken together, this study demonstrates that a single missing gene, FMOD, leads to conspicuous alternations in TGF-β ligand and receptor expression at all stages of wound repair in various cell types. Therefore, FMOD critically

  10. The Impact of Long-Term Exposure to Space Environment on Adult Mammalian Organisms: A Study on Mouse Thyroid and Testis

    PubMed Central

    Masini, Maria Angela; Albi, Elisabetta; Barmo, Cristina; Bonfiglio, Tommaso; Bruni, Lara; Canesi, Laura; Cataldi, Samuela; Curcio, Francesco; D'Amora, Marta; Ferri, Ivana; Goto, Katsumasa; Kawano, Fuminori; Lazzarini, Remo; Loreti, Elisabetta; Nakai, Naoya; Ohira, Takashi; Ohira, Yoshinobu; Palmero, Silvio; Prato, Paola; Ricci, Franco; Scarabelli, Linda; Shibaguchi, Tsubasa; Spelat, Renza; Strollo, Felice; Ambesi-Impiombato, Francesco Saverio

    2012-01-01

    Hormonal changes in humans during spaceflight have been demonstrated but the underlying mechanisms are still unknown. To clarify this point thyroid and testis/epididymis, both regulated by anterior pituitary gland, have been analyzed on long-term space-exposed male C57BL/10 mice, either wild type or pleiotrophin transgenic, overexpressing osteoblast stimulating factor-1. Glands were submitted to morphological and functional analysis. In thyroids, volumetric ratios between thyrocytes and colloid were measured. cAMP production in 10−7M and 10−8M thyrotropin-treated samples was studied. Thyrotropin receptor and caveolin-1 were quantitized by immunoblotting and localized by immunofluorescence. In space-exposed animals, both basal and thyrotropin-stimulated cAMP production were always higher. Also, the structure of thyroid follicles appeared more organized, while thyrotropin receptor and caveolin-1 were overexpressed. Unlike the control samples, in the space samples thyrotropin receptor and caveolin-1 were both observed at the intracellular junctions, suggesting their interaction in specific cell membrane microdomains. In testes, immunofluorescent reaction for 3β- steroid dehydrogenase was performed and the relative expressions of hormone receptors and interleukin-1β were quantified by RT-PCR. Epididymal sperm number was counted. In space-exposed animals, the presence of 3β and 17β steroid dehydrogenase was reduced. Also, the expression of androgen and follicle stimulating hormone receptors increased while lutenizing hormone receptor levels were not affected. The interleukin 1 β expression was upregulated. The tubular architecture was altered and the sperm cell number was significantly reduced in spaceflight mouse epididymis (approx. −90% vs. laboratory and ground controls), indicating that the space environment may lead to degenerative changes in seminiferous tubules. Space-induced changes of structure and function of thyroid and testis/epididymis could be

  11. Distinct purinergic signaling pathways in prepubescent mouse spermatogonia.

    PubMed

    Fleck, David; Mundt, Nadine; Bruentgens, Felicitas; Geilenkirchen, Petra; Machado, Patricia A; Veitinger, Thomas; Veitinger, Sophie; Lipartowski, Susanne M; Engelhardt, Corinna H; Oldiges, Marco; Spehr, Jennifer; Spehr, Marc

    2016-09-01

    Spermatogenesis ranks among the most complex, yet least understood, developmental processes. The physiological principles that control male germ cell development in mammals are notoriously difficult to unravel, given the intricate anatomy and complex endo- and paracrinology of the testis. Accordingly, we lack a conceptual understanding of the basic signaling mechanisms within the testis, which control the seminiferous epithelial cycle and thus govern spermatogenesis. Here, we address paracrine signal transduction in undifferentiated male germ cells from an electrophysiological perspective. We identify distinct purinergic signaling pathways in prepubescent mouse spermatogonia, both in vitro and in situ. ATP-a dynamic, widespread, and evolutionary conserved mediator of cell to cell communication in various developmental contexts-activates at least two different spermatogonial purinoceptor isoforms. Both receptors operate within nonoverlapping stimulus concentration ranges, display distinct response kinetics and, in the juvenile seminiferous cord, are uniquely expressed in spermatogonia. We further find that spermatogonia express Ca(2+)-activated large-conductance K(+) channels that appear to function as a safeguard against prolonged ATP-dependent depolarization. Quantitative purine measurements additionally suggest testicular ATP-induced ATP release, a mechanism that could increase the paracrine radius of initially localized signaling events. Moreover, we establish a novel seminiferous tubule slice preparation that allows targeted electrophysiological recordings from identified testicular cell types in an intact epithelial environment. This unique approach not only confirms our in vitro findings, but also supports the notion of purinergic signaling during the early stages of spermatogenesis. PMID:27574293

  12. Cell Autonomous and Nonautonomous Function of CUL4B in Mouse Spermatogenesis.

    PubMed

    Yin, Yan; Liu, Liren; Yang, Chenyi; Lin, Congxing; Veith, George Michael; Wang, Caihong; Sutovsky, Peter; Zhou, Pengbo; Ma, Liang

    2016-03-25

    CUL4B ubiquitin ligase belongs to the cullin-RING ubiquitin ligase family. Although sharing many sequence and structural similarities, CUL4B plays distinct roles in spermatogenesis from its homologous protein CUL4A. We previously reported that genetic ablation ofCul4ain mice led to male infertility because of aberrant meiotic progression. In the present study, we generated Cul4bgerm cell-specific conditional knock-out (Cul4b(Vasa)),as well asCul4bglobal knock-out (Cul4b(Sox2)) mouse, to investigate its roles in spermatogenesis. Germ cell-specific deletion of Cul4bled to male infertility, despite normal testicular morphology and comparable numbers of spermatozoa. Notably, significantly impaired sperm mobility caused by reduced mitochondrial activity and glycolysis level were observed in the majority of the mutant spermatozoa, manifested by low, if any, sperm ATP production. Furthermore,Cul4b(Vasa)spermatozoa exhibited defective arrangement of axonemal microtubules and flagella outer dense fibers. Our mass spectrometry analysis identified INSL6 as a novel CUL4B substrate in male germ cells, evidenced by its direct polyubiquination and degradation by CUL4B E3 ligase. Nevertheless,Cul4bglobal knock-out males lost their germ cells in an age-dependent manner, implying failure of maintaining the spermatogonial stem cell niche in somatic cells. Taken together, our results show that CUL4B is indispensable to spermatogenesis, and it functions cell autonomously in male germ cells to ensure spermatozoa motility, whereas it functions non-cell-autonomously in somatic cells to maintain spermatogonial stemness. Thus, CUL4B links two distinct spermatogenetic processes to a single E3 ligase, highlighting the significance of ubiquitin modification during spermatogenesis. PMID:26846852

  13. Lineage tracing in the adult mouse corneal epithelium supports the limbal epithelial stem cell hypothesis with intermittent periods of stem cell quiescence☆

    PubMed Central

    Dorà, Natalie J.; Hill, Robert E.; Collinson, J. Martin; West, John D.

    2015-01-01

    The limbal epithelial stem cell (LESC) hypothesis proposes that LESCs in the corneal limbus maintain the corneal epithelium both during normal homeostasis and wound repair. The alternative corneal epithelial stem cell (CESC) hypothesis proposes that LESCs are only involved in wound repair and CESCs in the corneal epithelium itself maintain the corneal epithelium during normal homeostasis. We used tamoxifen-inducible, CreER-loxP lineage tracing to distinguish between these hypotheses. Clones of labelled cells were induced in adult CAGG-CreER;R26R-LacZ reporter mice and their distributions analysed after different chase periods. Short-lived clones, derived from labelled transient amplifying cells, were shed during the chase period and long-lived clones, derived from stem cells, expanded. At 6 weeks, labelled clones appeared at the periphery, extended centripetally as radial stripes and a few reached the centre by 14 weeks. Stripe numbers depended on the age of tamoxifen treatment. Stripes varied in length, some were discontinuous, few reached the centre and almost half had one end at the limbus. Similar stripes extended across the cornea in CAGG-CreER;R26R-mT/mG reporter mice. The distributions of labelled clones are inconsistent with the CESC hypothesis and support the LESC hypothesis if LESCs cycle between phases of activity and quiescence, each lasting several weeks. PMID:26554513

  14. Cell attachment to frozen sections of injured adult mouse brain: effects of tenascin antibody and lectin perturbation of wound-related extracellular matrix molecules.

    PubMed

    Laywell, E D; Friedman, P; Harrington, K; Robertson, J T; Steindler, D A

    1996-06-01

    Previous studies describing the use of cryoculture methods have focused on the efficacy of the method for studying neuron attachment and neurite outgrowth on intact sections of nerve, and rodent and even human brain. The cryoculture method has shown promise for determining the presence of cell attachment- and neurite-growth-inhibiting molecules in such specimens, and some studies have also attempted to neutralize such molecules with antibodies to myelin inhibitory proteins, nerve growth factor, or factors present in conditioned media that may counteract the repulsiveness of some of these molecules preserved in sections of, for example, myelinated nerves or adult brain white matter. The present study describes the novel use of lesioned central nervous system cryocultures as substrates for investigating the attachment of embryonic neurons and PC12 cells. In addition to demonstrating the use of this novel scar substrate to extend previous 'scar-in-a-dish' models (David et al. (1990) Neuron, 5:463-469; Rudge and Silver (1990) J. Neurosci., 10: 3594-3603; Rudge et al. (1989) Exp. Neurol., 103: 1-16), the present study also describes antibody and lectin perturbations of putative inhibitory molecules that result in an enhanced attachment of cells to cryosection cultures of brain and spinal cord wounds. PMID:8835793

  15. 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis in cultured adult mouse cortical neurons under oxidative conditions

    PubMed Central

    Leon, Julio; Sakumi, Kunihiko; Castillo, Erika; Sheng, Zijing; Oka, Sugako; Nakabeppu, Yusaku

    2016-01-01

    Oxidative stress and mitochondrial dysfunction are implicated in aging-related neurodegenerative disorders. 8-Oxoguanine (8-oxoG), a common oxidised base lesion, is often highly accumulated in brains from patients with neurodegenerative disorders. MTH1 hydrolyses 8-oxo-2′-deoxyguanosine triphosphate (8-oxo-dGTP) to 8-oxo-dGMP and pyrophosphate in nucleotide pools, while OGG1 excises 8-oxoG paired with cytosine in DNA, thereby minimising the accumulation of 8-oxoG in DNA. Mth1/Ogg1-double knockout (TO-DKO) mice are highly susceptible to neurodegeneration under oxidative conditions and show increased accumulation of 8-oxoG in mitochondrial DNA (mtDNA) in neurons, suggesting that 8-oxoG accumulation in mtDNA causes mitochondrial dysfunction. Here, we evaluated the contribution of MTH1 and OGG1 to the prevention of mitochondrial dysfunction during neuritogenesis in vitro. We isolated cortical neurons from adult wild-type and TO-DKO mice and maintained them with or without antioxidants for 2 to 5 days and then examined neuritogenesis. In the presence of antioxidants, both TO-DKO and wild-type neurons exhibited efficient neurite extension and arborisation. However, in the absence of antioxidants, the accumulation of 8-oxoG in mtDNA of TO-DKO neurons was increased resulting in mitochondrial dysfunction. Cells also exhibited poor neurite outgrowth with decreased complexity of neuritic arborisation, indicating that MTH1 and OGG1 are essential for neuritogenesis under oxidative conditions. PMID:26912170

  16. Distinct effects of pramipexole on the proliferation of adult mouse sub-ventricular zone-derived cells and the appearance of a neuronal phenotype.

    PubMed

    Merlo, Sara; Canonico, Pier Luigi; Sortino, Maria Angela

    2011-05-01

    Pramipexole (PPX) is a dopamine agonist with an 8-fold higher affinity for D3 than D2 receptor, whose efficacy in the treatment of Parkinson's disease is based on dopamine agonistic activity. PPX has also been recently shown to be endowed with neuroprotective activity and neurogenic potential. The aim of this study was a more detailed characterization of PPX-induced neurogenesis. Both D2 and D3 receptors are expressed in floating and differentiated neurospheres obtained from the sub-ventricular zone (SVZ) of adult mice. Treatment of secondary neurospheres with 10 μM PPX causes a marked induction of cell proliferation, assessed by enhanced cell number and S phase population at cell cycle analysis. Stimulation of proliferation by PPX is still detectable in plated neurospheres before the onset of migration and differentiation, as by enhanced BrdU incorporation. This effect is sensitive to the selective D3 dopamine receptor antagonist U99194A, as well as to sulpiride. A 24 h treatment with PPX does not modify the morphology of neurosphere-derived cells, but causes an increase of glial fibrillary acidic protein (GFAP)-positive cells, an effect sensitive to both D2 and D3 antagonism. Differentiation toward the neuronal lineage is increased by PPX as shown by enhancement of the cell population positive to the early neuronal marker doublecortin (DCX) at 24 h and the mature neuronal marker microtubule associated protein (MAP2) at 72 h. This effect is not modified by treatment with U99194A and is mimicked by BDNF. Accordingly, PPX increases BDNF release with a mechanism involving D2 but not D3 receptors. PMID:21272591

  17. Effects of different concentration and duration time of isoflurane on acute and long-term neurocognitve function of young adult C57BL/6 mouse

    PubMed Central

    Liu, Jianhui; Wang, Peijun; Zhang, Xiaoqing; Zhang, Wei; Gu, Guojun

    2014-01-01

    Postoperative cognitive dysfunction (POCD) is a decline in cognitive performance after a surgery with anaesthesia. The exact reasons of surgery and/or anaesthesia resulting in POCD are unclear. The aim of this study is to investigate the effects of different concentration and duration time of isoflurane anaesthesia on cognitive performance and cellular mechanisms involved in learning and memory function. In present work, young adult male C57BL/6 mice (age: 8 weeks) were anaesthetized by different concentration isoflurane in 100% oxygen for different duration time (Mice in group I1 received 0.7% isoflurane 0.5 h, mice in I2 received 0.7% isoflurane 2 h, mice in I3 received 1.4% isoflurane 2 h, and mice in I4 received 1.4% isoflurane 4 h). Non-anaesthetized mice served as control group (I0). Spatial learning was assessed at 10 days post-anesthesia in Morris water maze (MWM). Hippocampal protein expressions of activated caspase 3, NMDA receptor subunit NR2B, and extracellular-signal regulated kinase (ERK) 1/2 were evaluated 24 hours and 2 weeks post anesthesia. Protein expression of activated caspase3 was detected acute elevated in I3 (24 h post-anesthesia) and acute and long-term elevated in I4 (24 hours and 2 weeks post-anesthesia). There was no significant difference between I1, I2 and control group. Protein expressions of NR2B showed an acute and long-term increasement in I1 and I2, decreasement in I4, and an acute decline, then returned to normal in I3 compared to control group. The ratio of phosopho-ERK1/2 to total-ERK showed an acute increasement in I1 and I2, then came to normal 2 weeks post anesthesia compared to control group, meanwhile, we detected an acute and long-term decline in I3 and I4. In MWM test, mice in I1 and I2 showed cognitive improvement, mice in I3 showed similar to control group, while mice in I4 demonstrated cognitive impairment, which were approximately corresponding to the changes of protein expression of NR2B and activation of ERK1

  18. Immunization with a Double-Mutant (R192G/L211A) of the Heat-Labile Enterotoxin of Escherichia coli Offers Partial Protection against Campylobacter jejuni in an Adult Mouse Intestinal Colonization Model.

    PubMed

    Albert, M John; Haridas, Shilpa; Ebenezer, Mathew; Raghupathy, Raj; Khan, Islam

    2015-01-01

    We have previously shown that antibodies to cholera toxin (CT) reacted with the major outer membrane proteins (MOMPs) from Campylobacter jejuni strains on Western blot. Further, oral immunization with CT significantly protected against challenge with C. jejuni in an adult mouse colonization model of infection. CT and the heat-labile enterotoxin (LT) of enterotoxigenic Escherichia coli are structurally and functionally related. LT and its mutants including the double-mutant LT (R192G/L211A) (dmLT), are powerful mucosal adjuvants. Unlike LT which is reactogenic, dmLT has been shown to be safe for human use. In the current study, we determined whether rabbit anti-dmLT antibodies reacted with MOMPs from C. jejuni strains and whether immunization with dmLT would afford protection against C. jejuni. On Western blot, the MOMPs from C. jejuni 48 (Penner serotype O:19), C. jejuni 75 (O:3) and C. jejuni 111 (O:1,44) were probed with rabbit antibodies to dmLT or LT-E112K (a non-toxic LT mutant), which showed a lack of reaction. Adult BALB/c mice were orally immunized with dmLT and orally challenged with C. jejuni 48 or 111. Protection from colonization with the challenge bacteria was studied by enumerating Campylobacter colonies in feces daily for 9 days. Vaccination produced robust serum and stool antibody responses to dmLT and no antibody responses to C. jejuni MOMP. Vaccinated mice showed reduced colonization and excretion of both challenge strains compared to control mice. However, the differences were not statistically significant. The protective efficacy of the dmLT vaccine varied from 9.1% to 54.5%. The lack of cross-reaction between the MOMP and dmLT suggests that protection is not mediated by cross-reacting antibodies, but may be due to activation of innate immunity. As dmLT is safe for humans, it could be incorporated into a C. jejuni vaccine to enhance its efficacy. PMID:26540197

  19. Immunization with a Double-Mutant (R192G/L211A) of the Heat-Labile Enterotoxin of Escherichia coli Offers Partial Protection against Campylobacter jejuni in an Adult Mouse Intestinal Colonization Model

    PubMed Central

    Albert, M. John; Haridas, Shilpa; Ebenezer, Mathew; Raghupathy, Raj; Khan, Islam

    2015-01-01

    We have previously shown that antibodies to cholera toxin (CT) reacted with the major outer membrane proteins (MOMPs) from Campylobacter jejuni strains on Western blot. Further, oral immunization with CT significantly protected against challenge with C. jejuni in an adult mouse colonization model of infection. CT and the heat-labile enterotoxin (LT) of enterotoxigenic Escherichia coli are structurally and functionally related. LT and its mutants including the double-mutant LT (R192G/L211A) (dmLT), are powerful mucosal adjuvants. Unlike LT which is reactogenic, dmLT has been shown to be safe for human use. In the current study, we determined whether rabbit anti-dmLT antibodies reacted with MOMPs from C. jejuni strains and whether immunization with dmLT would afford protection against C. jejuni. On Western blot, the MOMPs from C. jejuni 48 (Penner serotype O:19), C. jejuni 75 (O:3) and C. jejuni 111 (O:1,44) were probed with rabbit antibodies to dmLT or LT-E112K (a non-toxic LT mutant), which showed a lack of reaction. Adult BALB/c mice were orally immunized with dmLT and orally challenged with C. jejuni 48 or 111. Protection from colonization with the challenge bacteria was studied by enumerating Campylobacter colonies in feces daily for 9 days. Vaccination produced robust serum and stool antibody responses to dmLT and no antibody responses to C. jejuni MOMP. Vaccinated mice showed reduced colonization and excretion of both challenge strains compared to control mice. However, the differences were not statistically significant. The protective efficacy of the dmLT vaccine varied from 9.1% to 54.5%. The lack of cross-reaction between the MOMP and dmLT suggests that protection is not mediated by cross-reacting antibodies, but may be due to activation of innate immunity. As dmLT is safe for humans, it could be incorporated into a C. jejuni vaccine to enhance its efficacy. PMID:26540197

  20. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APP{sub swe}/PS1{sub {Delta}E9} transgenic mouse model of Alzheimer's disease

    SciTech Connect

    Tang, Jun; Song, Min; Wang, Yanyan; Fan, Xiaotang; Xu, Haiwei; Bai, Yun

    2009-07-31

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP{sub swe}/PS1{sub {Delta}E9} mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP{sub swe}/PS1{sub {Delta}E9} transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.

  1. Efficient Conversion of Spermatogonial Stem Cells to Phenotypic and Functional Dopaminergic Neurons via the PI3K/Akt and P21/Smurf2/Nolz1 Pathway.

    PubMed

    Yang, Hao; Liu, Yang; Hai, Yanan; Guo, Ying; Yang, Shi; Li, Zheng; Gao, Wei-Qiang; He, Zuping

    2015-12-01

    Parkinson's disease (PD) is a common neurodegenerative syndrome characterized by loss of midbrain dopaminergic (DA) neurons. Generation of functional dopaminergic (DA) neurons is of unusual significance for treating Parkinson's disease (PD). However, direct conversion of spermatogonial stem cells (SSCs) to functional DA neurons without being reprogrammed to a pluripotent status has not been achieved. Here, we report an efficient approach to obtain morphological, phenotypic, and functional DA neurons from SSCs using a specific combination of olfactory ensheathing cell-conditioned medium (OECCM) and several defined growth factors (DGF). By following the current protocol, direct conversion of SSCs (both SSC line and primary SSCs) to neural cells and DA neurons was demonstrated by expression of numerous phenotypic genes and proteins for neural cells, as well as cell morphological features. More significantly, SSCs-derived DA neurons acquired neuronal functional properties such as synapse formation, electrophysiology activity, and dopamine secretion. Furthermore, PI3K/Akt pathway and p21/Nolz1 cascades were activated whereas Smurf2 was inactivated, leading to cell cycle exit during the conversion of SSCs into DA neurons. Collectively, this study could provide sufficient neural cells from SSCs for applications in the treatment of PD and offers novel insights into mechanisms underlying neural system development from the line of germ cells. PMID:25373443

  2. Immunizing adult female mice with a TcpA-A2-CTB chimera provides a high level of protection for their pups in the infant mouse model of cholera.

    PubMed

    Price, Gregory A; Holmes, Randall K

    2014-12-01

    Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT) and the toxin-coregulated pilus (TCP). CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA) is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB) to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an effective multivalent

  3. Multimodal, multidimensional models of mouse brain.

    PubMed

    Mackenzie-Graham, Allan J; Lee, Erh-Fang; Dinov, Ivo D; Yuan, Heng; Jacobs, Russell E; Toga, Arthur W

    2007-01-01

    Naturally occurring mutants and genetically manipulated strains of mice are widely used to model a variety of human diseases. Atlases are an invaluable aid in understanding the impact of such manipulations by providing a standard for comparison and to facilitate the integration of anatomic, genetic, and physiologic observations from multiple subjects and experiments. We have developed digital atlases of the C57BL/6J mouse brain (adult and neonate) as comprehensive frameworks for storing and accessing the myriad types of information about the mouse brain. Along with raw and annotated images, these contain database management systems and a set of tools for comparing information from different techniques and different animals. Each atlas establishes a canonical representation of the mouse brain and provides the tools for the manipulation and analysis of new data. We describe both these atlases and discuss how they may be put to use in organizing and analyzing data from mouse models of epilepsy. PMID:17767578

  4. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  5. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  6. Mouse autosomal homolog of DAZ, a candidate male sterility gene in humans, is expressed in male germ cells before and after puberty

    SciTech Connect

    Reijo, R.; Seligman, J.; Jaffe, T.

    1996-07-15

    Deletion of the Azoospermia Factor (AZF) region of the human Y chromosome results in spermatogenic failure. While the identity of the critical missing gene has yet to be established, a strong candidate is the putative RNA-binding protein DAZ (Deleted in Azoospermia). Here we describe the mouse homolog of DAZ. Unlike human DAZ, which is Y-linked, in mouse the Dazh (DAZ homolog) gene maps to chromosome 17. Nonetheless, the predicted amino acid sequences of the gene products are quite similar, especially in their RNP/RRM (putative RNA-binding) domains, and both genes are transcribed predominantly in testes; the mouse gene is transcribed at a lower level in ovaries. Dazh transcripts were not detected in testes of mice that lack germ cells. In testes of wildtype mice, Dazh transcription is detectable 1 day after birth (when the only germ cells are prospermatogonia), increases steadily as spermatogonial stem cells appear, plateaus as the first wave of spermatogenic cells enters meiosis (10 days after birth), and is sustained at this level thereafter. This unique pattern of expression suggests the Dazh participates in differentiation, proliferation, or maintenance of germ cell founder populations before, during, and after the pubertal onset of spermatogenesis. Such functions could readily account for the diverse spermatogenic defects observed in human males with AZF deletion. 29 refs., 4 figs.

  7. Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models

    PubMed Central

    González, Raquel; Dobrinski, Ina

    2015-01-01

    Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals. PMID:25991701

  8. Retinoic Acid Is Sufficient for the In Vitro Induction of Mouse Spermatocytes.

    PubMed

    Wang, Si; Wang, Xiuxia; Ma, Longfei; Lin, Xiwen; Zhang, Daoqin; Li, Zhen; Wu, Yujian; Zheng, Chunwei; Feng, Xue; Liao, Shangying; Feng, Yanmin; Chen, Jian; Hu, Xiangjing; Wang, Min; Han, Chunsheng

    2016-07-12

    Meiosis is the key step in gametogenesis. However, the mechanism of mammalian meiosis remains poorly understood due to the lack of an in vitro model. Here, we report that retinoic acid (RA) is sufficient for inducing leptotene/zygotene spermatocytes from cultured mouse spermatogonial stem cells. Multiple genes regulated by RA were identified by RNA sequencing. RA in combination with pup Sertoli cell co-culture resulted in a higher induction efficiency of 28%. Comparisons in the transcriptomic profiles of the induced spermatogenic cells and the isolated ones revealed the progressive induction of the germ cells. Using this model, we showed that Stra8, Agpat3, Fam57a, Wdr91, and Sox30 contributed to the proliferation and meiosis initiation differentially. In conclusion, we have efficiently generated spermatocytes using an RA/pup Sertoli cell-based in vitro model and provided proof-of-concept evidence for its application in identifying genes involved in mammalian meiosis. PMID:27346680

  9. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  10. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells.

    PubMed

    Bahadorani, M; Hosseini, S M; Abedi, P; Abbasi, H; Nasr-Esfahani, M H

    2015-01-01

    Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p < 0.05). In contrast, the size of colonies developed in GDNF + EGF + LIF culture condition was significantly higher than the other groups (p < 0.05). Immunocytochemical stationing for specific biomarkers of somatic cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p < 0.05). Additionally, goat SSCs developed in the latter culture condition could colonize within the seminiferous tubules of the germ-cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells. PMID:26154310

  11. Replacement of Diseased Mouse Liver by Hepatic Cell Transplantation

    NASA Astrophysics Data System (ADS)

    Rhim, Jonathan A.; Sandgren, Eric P.; Degen, Jay L.; Palmiter, Richard D.; Brinster, Ralph L.

    1994-02-01

    Adult liver has the unusual ability to fully regenerate after injury. Although regeneration is accomplished by the division of mature hepatocytes, the replicative potential of these cells is unknown. Here, the replicative capacity of adult liver cells and their medical usefulness as donor cells for transplantation were investigated by transfer of adult mouse liver cells into transgenic mice that display an endogenous defect in hepatic growth potential and function. The transplanted liver cell populations replaced up to 80 percent of the diseased recipient liver. These findings demonstrate the enormous growth potential of adult hepatocytes, indicating the feasibility of liver cell transplantation as a method to replace lost or diseased hepatic parenchyma.

  12. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary

    PubMed Central

    Parvari, Soraya; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz

    2015-01-01

    Introduction An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. Material and methods A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Results Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. Conclusions The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies. PMID:26170863

  13. The MOUSE Squad

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  14. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  15. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  16. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex

    PubMed Central

    Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604

  17. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex.

    PubMed

    Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604

  18. Somatic Cell Nuclear Transfer in the Mouse

    NASA Astrophysics Data System (ADS)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  19. Somatic cell nuclear transfer in the mouse.

    PubMed

    Kishigami, Satoshi; Wakayama, Teruhiko

    2009-01-01

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since "Dolly," the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories. PMID:19085136

  20. Absence of testicular protection by a gonadotropin-releasing hormone analogue against cyclophosphamide-induced testicular cytotoxicity in the mouse.

    PubMed

    da Cunha, M F; Meistrich, M L; Nader, S

    1987-02-15

    Protection of testicular integrity against damage from cyclophosphamide (CY) by simultaneous treatment with a gonadotropin-releasing hormone (GnRH) analogue was reported in BALB/c mice (L.M. Glode et al., Lancet, 1: 1132-1134, 1981). This approach has been used as the basis for clinical trials in various treatment centers (D. H. Johnson et al., Blood, 65:832-836, 1985) in an attempt to prevent iatrogenic sterility in males. This study aims at duplicating the original findings and obtaining quantitative data on spermatogonial killing by CY, and possible protection by GnRH, of differentiating and stem cell spermatogonia. Mice were treated with 23 daily injections of 0.4 micrograms D-leucine-6 GnRH, and with 200 mg/kg CY on Days 8, 15, and 22. Three additional groups of mice received phosphate-buffered saline and bovine serum albumin only, GnRH only, and CY only. Animals were killed at 29 days after the last injection to determine the number of late spermatids in testicular homogenates, and at 56 days for histological measurement of the ratio of elongated spermatids to Sertoli cells in the tubules. The twenty-ninth day assay was a measure of damage to differentiating spermatogonia, whose killing results in temporary sterility. The fifty-sixth day point assay assessed damage to stem spermatogonia, whose killing results in long-term or permanent sterility. Sperm counts at 29 days were identical in saline-treated control mice and GnRH-treated mice; no sperm were present in the CY-treated mice, both with and without GnRH. Thus, killing of differentiating spermatogonia by CY is not prevented by GnRH treatment. Similarly, counts of spermatids at 56 days showed no difference between saline- and GnRH-treated groups; a reduction to approximately 40% of control counts was observed equally with CY and CY plus GnRH treatments. Since GnRH treatment did not alter spermatogonial kinetics in BALB/c mice, it is not surprising that it did not protect against CY-induced damage. Thus

  1. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  2. FancJ (Brip1) loss-of-function allele results in spermatogonial cell depletion during embryogenesis and altered processing of crossover sites during meiotic prophase I in mice.

    PubMed

    Sun, Xianfei; Brieño-Enríquez, Miguel A; Cornelius, Alyssa; Modzelewski, Andrew J; Maley, Tyler T; Campbell-Peterson, Kadeine M; Holloway, J Kim; Cohen, Paula E

    2016-06-01

    Fancj, the gene associated with Fanconi anemia (FA) Complementation Group J, encodes a DNA helicase involved in homologous recombination repair and the cellular response to replication stress. FANCJ functions in part through its interaction with key DNA repair proteins, including MutL homolog-1 (MLH1), Breast Cancer Associated gene-1 (BRCA1), and Bloom syndrome helicase (BLM). All three of these proteins are involved in a variety of events that ensure genome stability, including the events of DNA double strand break (DSB) repair during prophase I of meiosis. Meiotic DSBs are repaired through homologous recombination resulting in non-crossovers (NCO) or crossovers (CO). The frequency and placement of COs are stringently regulated to ensure that each chromosome receives at least one CO event, and that longer chromosomes receive at least one additional CO, thus facilitating the accurate segregation of homologous chromosomes at the first meiotic division. In the present study, we investigated the role of Fancj during prophase I using a gene trap mutant allele. Fancj (GT/GT) mutants are fertile, but their testes are very much smaller than wild-type littermates, predominantly as a result of impeded spermatogonial proliferation and mildly increased apoptosis during testis development in the fetus. This defect in spermatogonial proliferation is consistent with mutations in other FA genes. During prophase I, early events of synapsis and DSB induction/repair appear mostly normal in Fancj (GT/GT) males, and the FANCJ-interacting protein BRCA1 assembles normally on meiotic chromosome cores. However, MLH1 focus frequency is increased in Fancj (GT/GT) males, indicative of increased DSB repair via CO, and is concomitant with increased chiasmata at diakinesis. This increase in COs in the absence of FANCJ is associated with increased localization of BLM helicase protein, indicating that BLM may facilitate the increased rate of crossing over in Fancj (GT/GT) males. Taken together

  3. Effects of simulated microgravity on mouse Sertoli cells in culture

    NASA Astrophysics Data System (ADS)

    Angela, Masini Maria; Prato, Paola; Linda, Scarabelli; Lanza, Cristina; Palmero, Silvio; Pointis, Georges; Ricci, Franco; Strollo, Felice

    With the advent of space flights questions concerning the effects of microgravity (0xG) on hu-man reproduction physiology have got priority Spermatogenesis is a complex, highly ordered process of cell division and differentiation by which spermatogonial cells give rise to mature spermatozoa. Sertoli cells play a crucial role in the development of germ cells and the regulation of spermatogenesis. In this study the influence of 0xG on Sertoli cells was evaluated. A Sertoli cell line from mouse testis (42GPA9) was analyzed for cytoskeletal (using the 3D reconstruction generated from a stack of confocal images) and SHBG changes by immunohistochemistry, for antioxidant agents by RT-PCR and for culture medium lactate concentrations by wet chemistry. Cells were cultured for 6, 24 and 48 hrs on a three-dimensional Random Positioning Machine (3D-RPM); static controls (1xG) were positioned on the supporting frame. At the end of each experiment, cultured cells were either fixed in paraformaldehyde or RNA-extracted or used for culture medium lactate measurements as needed. At 0xG Sertoli cytoskeleton got disorganized, microtubules fragmented and SHBG undetectable already after 24 hrs, with alterations wors-ening further until 48 hrs; various antioxidant systems (SOD, GST, PARP, MTs) appreciably increased during the first 24 hrs but significantly decreased at 48 hrs. No changes occurred in 1xG samples. At least initially, 0xG seems to perturb antioxidant protection strategies allowing the testes to support sperm production, thus generating an aging-like state of oxidative stress. Lactate production at 0xG slightly decreased only after 24 hrs. Further experiments need to be carried out in space to investigate upon steroidogenesis and germ cell differentiation within the testis, to rule out eventually pending male infertility consequences, which would be a problem nowadays, when life expectancy increases and male fertility might become a social issue often extending into 60 years

  4. Adult Compacts.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This bulletin focuses on adult compacts, three-way agreements among employers, potential employees, and trainers to provide the right kind of quality training to meet the employers' requirements. Part 1 is an executive summary of a report of the Adult Compacts Project, which studied three adult compacts in Birmingham and Loughborough, England, and…

  5. In situ localization of male germ cell-associated kinase (mak) mRNA in adult mouse testis: specific expression in germ cells at stages around meiotic cell division.

    PubMed

    Koji, T; Jinno, A; Matsushime, H; Shibuya, M; Nakane, P K

    1992-12-01

    Biochemical analysis of the male germ cell-associated kinase (mak) gene, which was isolated recently by using weak cross-hybridization with the v-ros tyrosine kinase gene, revealed that the gene was highly expressed in mammalian testicular germ cells, but not in ovarian cells. In order to identify the cells which express the mak gene in more detail, we localized mak mRNA in frozen sections of mouse testis by non-radioactive in situ hybridization. In this study, we utilized thymine-thymine (T-T) dimerized mak cDNA as a haptenic, non-radioactive probe, and the signal was detected enzyme-immunohistochemically by using an anti-T-T antibody. As a result, mak mRNA was localized intensely in late pachytene (stage X) and diplotene (stage XI) spermatocytes, and faintly in dividing spermatocytes (stage XII) and early round spermatids (stage I-II), suggesting that the gene may play an important role in the phase around meiotic cell division, but not throughout the entire meiosis. PMID:1473268

  6. The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4.

    PubMed

    Somanna, Naveen K; Valente, Anthony J; Krenz, Maike; Fay, William P; Delafontaine, Patrice; Chandrasekar, Bysani

    2016-05-01

    Both oxidative stress and inflammation contribute to chronic hypertension-induced myocardial fibrosis and adverse cardiac remodeling. Here we investigated whether angiotensin (Ang)-II-induced fibroblast proliferation and migration are NADPH oxidase (Nox) 4/ROS and IL-18 dependent. Our results show that the potent induction of mouse cardiac fibroblast (CF) proliferation and migration by Ang-II is markedly attenuated by Nox4 knockdown and the Nox inhibitor DPI. Further, Nox4 knockdown and DPI pre-treatment attenuated Ang-II-induced IL-18, IL-18Rα and collagen expression, and MMP9 and LOX activation. While neutralization of IL-18 blunted Ang-II-induced CF proliferation and migration, knockdown of MMP9 attenuated CF migration. The antioxidant NAC and the cell-permeable SOD mimetics Tempol, MnTBAP, and MnTMPyP attenuated oxidative stress and inhibited CF proliferation and migration. The Nox1/Nox4 dual inhibitor GKT137831 also blunted Ang-II-induced H2 O2 production and CF proliferation and migration. Further, AT1 bound Nox4, and Ang-II enhanced their physical association. Notably, GKT137831 attenuated the AT1/Nox4 interaction. These results indicate that Ang-II induces CF proliferation and migration in part via Nox4/ROS-dependent IL-18 induction and MMP9 activation, and may involve AT1/Nox4 physical association. Thus, either (i) neutralizing IL-18, (ii) blocking AT1/Nox4 interaction or (iii) use of the Nox1/Nox4 inhibitor GKT137831 may have therapeutic potential in chronic hypertension-induced adverse cardiac remodeling. PMID:26445208

  7. Mouse model of intracerebellar haemorrhage.

    PubMed

    Tijjani Salihu, Abubakar; Muthuraju, Sangu; Aziz Mohamed Yusoff, Abdul; Ahmad, Farizan; Zulkifli Mustafa, Mohd; Jaafar, Hasnan; Idris, Zamzuri; Rahman Izaini Ghani, Abdul; Malin Abdullah, Jafri

    2016-10-01

    The present study aimed to investigate the behavior and neuronal morphological changes in the perihaemorrhagic tissue of the mouse intracerebellar haemorrhage experimental model. Adult male Swiss albino mice were stereotactically infused with collagenase type VII (0.4U/μl of saline) unilaterally in to the cerebellum, following anaesthesia. Motor deficits were assessed using open field and composite score for evaluating the mouse model of cerebellar ataxia at 1, 3, 7, 14 and 21 days after collagenase infusion. The animals were sacrificed at the same time interval for evaluation of perihaematomal neuronal degeneration using haematoxylin and eosin staining and Annexin V-FITC/Propidium iodide assay. At the end of the study, it was found that infusion of 0.4U collagenase produces significant locomotor and ataxic deficit in the mice especially within the first week post surgery, and that this gradually improved within three weeks. Neuronal degeneration evident by cytoplasmic shrinkage and nuclear pyknosis was observed at the perihaematomal area after one day; especially at 3 and 7 days post haemorrhage. By 21 days, both the haematoma and degenerating neurons in the perihaematomal area were phagocytosed and the remaining neuronal cells around the scar tissue appeared normal. Moreover, Annexin-V/propidium iodide-positive cells were observed at the perihaematomal area at 3 and 7 days implying that the neurons likely die via apoptosis. It was concluded that a population of potentially salvageable neurons exist in the perihaematomal area after cerebellar haemorrhage throughout a wide time window that could be amenable to treatment. PMID:27327104

  8. Does soaking temperature during controlled slow freezing of pre-pubertal mouse testes influence course of in vitro spermatogenesis?

    PubMed

    Arkoun, Brahim; Dumont, Ludovic; Milazzo, Jean-Pierre; Rondanino, Christine; Bironneau, Amandine; Wils, Julien; Rives, Nathalie

    2016-06-01

    The banking of testicular tissue before highly gonadotoxic treatment is a prerequisite for the preservation of fertility in pre-pubertal boys not yet producing sperm. The aim of the current study is to evaluate the impact of a soaking temperature performed at -7 °C, -8 °C or -9 °C on the ability of frozen-thawed mouse spermatogonial stem cells (SSCs) to generate haploid germ cells after in vitro maturation. Testes of 6.5-day-old post-partum CD-1 mice were cryopreserved by using a controlled slow freezing protocol with soaking at -7 °C, -8 °C or -9 °C. Frozen-thawed pre-pubertal testicular tissues were cultured in vitro on agarose gel for 30 days. Histological evaluations were performed and flagellated late spermatids were counted after mechanical dissection of the cultured tissues. The differentiation of frozen SSCs into elongated spermatids was more efficient after treatment at -9 °C than at -7 °C and -8 °C. After dissection, flagellated late spermatids were observed by using Shorr staining. The number of flagellated late spermatids was significantly decreased after slow freezing when compared with a fresh tissue control. Therefore, the soaking temperature during slow freezing of pre-pubertal mouse testicular tissue might positively influence the course of in vitro spermatogenesis. Our slow freezing protocol with a soaking temperature at -9 °C was the optimal condition in terms of the achievement of in vitro spermatogenesis with a higher production of elongated spermatids, although the effectiveness of the maturation process was reduced compared with the fresh tissue control. PMID:26714728

  9. Germline recombination in a novel Cre transgenic line, Prl3b1-Cre mouse.

    PubMed

    Al-Soudy, Al-Sayed; Nakanishi, Tsuyoshi; Mizuno, Seiya; Hasegawa, Yoshikazu; Shawki, Hossam H; Katoh, Megumi C; Basha, Walaa A; Ibrahim, Abdelaziz E; El-Shemy, Hany A; Iseki, Hiroyoshi; Yoshiki, Atsushi; Hiromori, Youhei; Nagase, Hisamitsu; Takahashi, Satoru; Oishi, Hisashi; Sugiyama, Fumihiro

    2016-07-01

    Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells differentiate into spermatozoa. To better understand the molecular mechanisms of the process, the Cre/loxP system has been widely utilized for conditional gene knockout in mice. In this study, we generated a transgenic mouse line that expresses Cre recombinase under the control of the 2.5 kbp of the Prolactin family 3, subfamily b, member 1 (Prl3b1) gene promoter (Prl3b1-cre). Prl3b1 was initially reported to code for placental lactogen 2 (PL-2) protein in placenta along with increased expression toward the end of pregnancy. PL-2 was found to be expressed in germ cells in the testis, especially in spermatocytes. To analyze the specificity and efficiency of Cre recombinase activity in Prl3b1-cre mice, the mice were mated with reporter R26GRR mice, which express GFP ubiquitously before and tdsRed exclusively after Cre recombination. The systemic examination of Prl3b1-cre;R26GRR mice revealed that tdsRed-positive cells were detected only in the testis and epididymis. Fluorescence imaging of Prl3b1-cre;R26GRR testes suggested that Cre-mediated recombination took place in the germ cells with approximately 74% efficiency determined by in vitro fertilization. In conclusion, our results suggest that the Prl3b1-cre mice line provides a unique resource to understand testicular germ-cell development. genesis 54:389-397, 2016. © 2016 Wiley Periodicals, Inc. PMID:27124574

  10. Urinary tract infection - adults

    MedlinePlus

    Bladder infection - adults; UTI - adults; Cystitis - bacterial - adults; Pyelonephritis - adults; Kidney infection - adults ... to the hospital if you: Are an older adult Have kidney stones or changes in the anatomy ...

  11. Colonization, mouse-style

    PubMed Central

    2010-01-01

    Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice. See research article: http://www.biomedcentral.com/1471-2148/10/325 PMID:20977781

  12. MOUSE UNCERTAINTY ANALYSIS SYSTEM

    EPA Science Inventory

    The original MOUSE (Modular Oriented Uncertainty System) system was designed to deal with the problem of uncertainties in Environmental engineering calculations, such as a set of engineering cost or risk analysis equations. t was especially intended for use by individuals with li...

  13. Mouse models for core binding factor leukemia.

    PubMed

    Chin, D W L; Watanabe-Okochi, N; Wang, C Q; Tergaonkar, V; Osato, M

    2015-10-01

    RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models. PMID:26165235

  14. The Mouse That Soared

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a st