Science.gov

Sample records for adult multipotent cells

  1. Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process

    PubMed Central

    LoGuidice, Amanda; Houlihan, Alison; Deans, Robert

    2016-01-01

    Multipotent adult progenitor cells are a recently described population of stem cells derived from the bone marrow stroma. Research has demonstrated the potential of multipotent adult progenitor cells for treating ischemic injury and cardiovascular repair; however, understanding of multipotent adult progenitor cells in orthopedic applications remains limited. In this study, we evaluate the osteogenic and angiogenic capacity of multipotent adult progenitor cells, both in vitro and loaded onto demineralized bone matrix in vivo, with comparison to mesenchymal stem cells, as the current standard. When compared to mesenchymal stem cells, multipotent adult progenitor cells exhibited a more robust angiogenic protein release profile in vitro and developed more extensive vasculature within 2 weeks in vivo. The establishment of this vascular network is critical to the ossification process, as it allows nutrient exchange and provides an influx of osteoprogenitor cells to the wound site. In vitro assays confirmed the multipotency of multipotent adult progenitor cells along mesodermal lineages and demonstrated the enhanced expression of alkaline phosphatase and production of calcium-containing mineral deposits by multipotent adult progenitor cells, necessary precursors for osteogenesis. In combination with a demineralized bone matrix scaffold, multipotent adult progenitor cells demonstrated enhanced revascularization and new bone formation in vivo in an orthotopic defect model when compared to mesenchymal stem cells on demineralized bone matrix or demineralized bone matrix–only control groups. The potent combination of angiogenic and osteogenic properties provided by multipotent adult progenitor cells appears to create a synergistic amplification of the bone healing process. Our results indicate that multipotent adult progenitor cells have the potential to better promote tissue regeneration and healing and to be a functional cell source for use in orthopedic applications

  2. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  3. Retentive multipotency of adult dorsal root ganglia stem cells.

    PubMed

    Singh, Rabindra P; Cheng, Ying-Hua; Nelson, Paul; Zhou, Feng C

    2009-01-01

    Preservation of neural stem cells (NSCs) in the adult peripheral nervous system (PNS) has recently been confirmed. However, it is not clear whether peripheral NSCs possess predestined, bona fide phenotypes or a response to innate developmental cues. In this study, we first demonstrated the longevity, multipotency, and high fidelity of sensory features of postmigrating adult dorsal root ganglia (aDRG) stem cells. Derived from aDRG and after 4-5 years in culture without dissociating, the aDRG NSCs were found capable of proliferation, expressing neuroepithelial, neuronal, and glial markers. Remarkably, these aDRG NSCs expressed sensory neuronal markers vesicular glutamate transporter 2 (VGluT2--glutamate terminals), transient receptor potential vanilloid 1 (TrpV1--capsaicin sensitive), phosphorylated 200 kDa neurofilaments (pNF200--capsaicin insensitive, myelinated), and the serotonin transporter (5-HTT), which normally is transiently expressed in developing DRG. Furthermore, in response to neurotrophins, the aDRG NSCs enhanced TrpV1 expression upon exposure to nerve growth factor (NGF), but not to brain-derived neurotrophic factor (BDNF). On the contrary, BDNF increased the expression of NeuN. Third, the characterization of aDRG NSCs was demonstrated by transplantation of red fluorescent-expressing aDRG NSCs into injured spinal cord. These cells expressed nestin, Hu, and beta-III-tubulin (immature neuronal markers), GFAP (astrocyte marker) as well as sensory neural marker TrpV1 (capsaicin sensitive) and pNF200 (mature, capsaicin insensitive, myelinated). Our results demonstrated that the postmigrating neural crest adult DRG stem cells not only preserved their multipotency but also were retentive in sensory potency despite the age and long-term ex vivo status.

  4. Multipotent Stem Cell and Reproduction.

    PubMed

    Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi

    2016-01-01

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.

  5. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons?

    PubMed

    Liao, Song-Yan; Tse, Hung-Fat

    2013-12-24

    Heart failure after myocardial infarction is the leading cause of mortality and morbidity worldwide. Existing medical and interventional therapies can only reduce the loss of cardiomyocytes during myocardial infarction but are unable to replenish the permanent loss of cardiomyocytes after the insult, which contributes to progressive pathological left ventricular remodeling and progressive heart failure. As a result, cell-based therapies using multipotent (adult) stem cells and pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) have been explored as potential therapeutic approaches to restore cardiac function in heart failure. Nevertheless, the optimal cell type with the best therapeutic efficacy and safety for heart regeneration is still unknown. In this review, the potential pros and cons of different types of multipotent (adult) stem cells and pluripotent stem cells that have been investigated in preclinical and clinical studies are reviewed, and the future perspective of stem cell-based therapy for heart regeneration is discussed.

  6. Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues

    PubMed Central

    Shen, Jie-fei; Sugawara, Atsunori; Yamashita, Joe; Ogura, Hideo; Sato, Soh

    2011-01-01

    When adipose-derived stem cells (ASCs) are retrieved from the stromal vascular portion of adipose tissue, a large amount of mature adipocytes are often discarded. However, by modified ceiling culture technique based on their buoyancy, mature adipocytes can be easily isolated from the adipose cell suspension and dedifferentiated into lipid-free fibroblast-like cells, named dedifferentiated fat (DFAT) cells. DFAT cells re-establish active proliferation ability and undertake multipotent capacities. Compared with ASCs and other adult stem cells, DFAT cells showed unique advantages in their abundance, isolation and homogeneity. In this concise review, the establishment and culture methods of DFAT cells are introduced and the current profiles of their cellular nature are summarized. Under proper induction culture in vitro or environment in vivo, DFAT cells could demonstrate adipogenic, osteogenic, chondrogenic and myogenic potentials. In angiogenic conditions, DFAT cells could exhibit perivascular characteristics and elicit neovascularization. Our preliminary findings also suggested the pericyte phenotype underlying such cell lineage, which supported a novel interpretation about the common origin of mesenchymal stem cells and tissue-specific stem cells within blood vessel walls. Current research on DFAT cells indicated that this alternative source of adult multipotent cells has great potential in tissue engineering and regenerative medicine. PMID:21789960

  7. Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues.

    PubMed

    Shen, Jie-fei; Sugawara, Atsunori; Yamashita, Joe; Ogura, Hideo; Sato, Soh

    2011-07-01

    When adipose-derived stem cells (ASCs) are retrieved from the stromal vascular portion of adipose tissue, a large amount of mature adipocytes are often discarded. However, by modified ceiling culture technique based on their buoyancy, mature adipocytes can be easily isolated from the adipose cell suspension and dedifferentiated into lipid-free fibroblast-like cells, named dedifferentiated fat (DFAT) cells. DFAT cells re-establish active proliferation ability and undertake multipotent capacities. Compared with ASCs and other adult stem cells, DFAT cells showed unique advantages in their abundance, isolation and homogeneity. In this concise review, the establishment and culture methods of DFAT cells are introduced and the current profiles of their cellular nature are summarized. Under proper induction culture in vitro or environment in vivo, DFAT cells could demonstrate adipogenic, osteogenic, chondrogenic and myogenic potentials. In angiogenic conditions, DFAT cells could exhibit perivascular characteristics and elicit neovascularization. Our preliminary findings also suggested the pericyte phenotype underlying such cell lineage, which supported a novel interpretation about the common origin of mesenchymal stem cells and tissue-specific stem cells within blood vessel walls. Current research on DFAT cells indicated that this alternative source of adult multipotent cells has great potential in tissue engineering and regenerative medicine.

  8. Multipotent Adult Progenitor Cells from Bone Marrow Differentiate into Chondrocyte-Like Cells.

    PubMed

    Yu, Lele; Weng, Yimin; Shui, Xiaolong; Fang, Wenlai; Zhang, Erge; Pan, Jun

    2015-07-01

    Cartilage tissue engineering has great potential for treating chondral and osteochondral injuries. Efficient seed cells are the key to cartilage tissue engineering. Multipotent adult progenitor cells (MAPCs) have greater differentiation ability than other bone-marrow stem cells, and thus may be candidate seed cells. We attempted to differentiate MAPCs into chondrocyte-like cells to evaluate their suitability as seed cells for cartilage tissue engineering. Toluidine blue and Alcian blue staining suggested that glycosaminoglycan was expressed in differentiated cells. Immunofluorostaining indicated that differentiated human MAPCs (hMAPCs) expressed collagen II. Based on these results, we concluded that bone-marrow-derived hMAPCs could differentiate into chondrocyte-like cells in vitro.

  9. Adult Vascular Wall Resident Multipotent Vascular Stem Cells, Matrix Metalloproteinases, and Arterial Aneurysms

    PubMed Central

    Amato, Bruno; Compagna, Rita; Amato, Maurizio; Grande, Raffaele; Butrico, Lucia; Rossi, Alessio; Naso, Agostino; Ruggiero, Michele; de Franciscis, Stefano

    2015-01-01

    Evidences have shown the presence of multipotent stem cells (SCs) at sites of arterial aneurysms: they can differentiate into smooth muscle cells (SMCs) and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is thought to be a pivotal mechanism in aneurysm formation. The factors and signaling pathways involved in regulating wall resident SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and arterial aneurysms. PMID:25866513

  10. Identification of multipotent stem cells from adult dog periodontal ligament.

    PubMed

    Wang, Wen-Jun; Zhao, Yu-Ming; Lin, Bi-Chen; Yang, Jie; Ge, Li-Hong

    2012-08-01

    Periodontal diseases, which are characterized by destruction of the connective tissues responsible for restraining the teeth within the jaw, are the main cause of tooth loss. Periodontal regeneration mediated by human periodontal ligament stem cells (hPDLSCs) may offer an alternative strategy for the treatment of periodontal disease. Dogs are a widely used large-animal model for the study of periodontal-disease progression, tissue regeneration, and dental implants, but little attention has been paid to the identification of the cells involved in this species. This study aimed to characterize stem cells isolated from canine periodontal ligament (cPDLSCs). The cPDLSCs, like hPDLSCs, showed clonogenic capability and expressed the mesenchymal stem cell markers STRO-1, CD146, and CD105, but not CD34. After induction of osteogenesis, cPDLSCs showed calcium accumulation in vitro. Moreover, cPDLSCs also showed both adipogenic and chondrogenic potential. Compared with cell-free controls, more cementum/periodontal ligament-like structures were observed in CB-17/SCID mice into which cPDLSCs had been transplanted. These results suggest that cPDLSCs are clonogenic, highly proliferative, and have multidifferentiation potential, and that they could be used as a new cellular therapeutic approach to facilitate successful and more predictable regeneration of periodontal tissue using a canine model of periodontal disease.

  11. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells

    PubMed Central

    Schwartz, Robert E.; Reyes, Morayma; Koodie, Lisa; Jiang, Yuehua; Blackstad, Mark; Lund, Troy; Lenvik, Todd; Johnson, Sandra; Hu, Wei-Shou; Verfaillie, Catherine M.

    2002-01-01

    We have derived from normal human, mouse, and rat postnatal bone marrow primitive, multipotent adult progenitor cells (MAPCs) that can differentiate into most mesodermal cells and neuroectodermal cells in vitro and into all embryonic lineages in vivo. Here, we show that MAPCs can also differentiate into hepatocyte-like cells in vitro. Human, mouse, and rat MAPCs, cultured on Matrigel with FGF-4 and HGF, differentiated into epithelioid cells that expressed hepatocyte nuclear factor-3β (HNF-3β), GATA4, cytokeratin 19 (CK19), transthyretin, and α-fetoprotein by day 7, and expressed CK18, HNF-4, and HNF-1α on days 14–28. Virtually all human, as well as a majority of rodent cells stained positive for albumin and CK18 on day 21; 5% (rodent) to 25% (human) cells were binucleated by day 21. These cells also acquired functional characteristics of hepatocytes: they secreted urea and albumin, had phenobarbital-inducible cytochrome p450, could take up LDL, and stored glycogen. MAPCs, which can be expanded in vitro and maintained in an undifferentiated state for more than 100 population doublings, can thus differentiate into cells with morphological, phenotypic, and functional characteristics of hepatocytes. MAPCs may therefore be an ideal cell for in vivo therapies for liver disorders or for use in bioartificial liver devices. PMID:12021244

  12. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells.

    PubMed

    Li, Tianqing; Lewallen, Michelle; Chen, Shuyi; Yu, Wei; Zhang, Nian; Xie, Ting

    2013-06-01

    Various stem cell types have been tested for their potential application in treating photoreceptor degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Only embryonic stem cells (ESCs) have so far been shown to generate functional photoreceptor cells restoring light response of photoreceptor-deficient mice, but there is still some concern of tumor formation. In this study, we have successfully cultured Nestin(+)Sox2(+)Pax6(+) multipotent retinal stem cells (RSCs) from the adult mouse retina, which are capable of producing functional photoreceptor cells that restore the light response of photoreceptor-deficient rd1 mutant mice following transplantation. After they have been expanded for over 35 passages in the presence of FGF and EGF, the cultured RSCs still maintain stable proliferation and differentiation potential. Under proper differentiation conditions, they can differentiate into all the major retinal cell types found in the adult retina. More importantly, they can efficiently differentiate into photoreceptor cells under optimized differentiation conditions. Following transplantation into the subretinal space of slowly degenerating rd7 mutant eyes, RSC-derived photoreceptor cells integrate into the retina, morphologically resembling endogenous photoreceptors and forming synapases with resident retinal neurons. When transplanted into eyes of photoreceptor-deficient rd1 mutant mice, a RP model, RSC-derived photoreceptors can partially restore light response, indicating that those RSC-derived photoreceptors are functional. Finally, there is no evidence for tumor formation in the photoreceptor-transplanted eyes. Therefore, this study has demonstrated that RSCs isolated from the adult retina have the potential of producing functional photoreceptor cells that can potentially restore lost vision caused by loss of photoreceptor cells in RP and AMD.

  13. Multipotent Stem Cell and Current Application.

    PubMed

    Sobhani, Aligholi; Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sargolzaei Aval, Fereydoon

    2017-01-01

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. Multipotent Stem cells have been applying in treatment of different disorders such as spinal cord injury, bone fracture, autoimmune diseases, rheumatoid arthritis, hematopoietic defects, and fertility preservation.

  14. Dissection of the Human Multipotent Adult Progenitor Cell Secretome by Proteomic Analysis

    PubMed Central

    van't Hof, Wouter; Newell, Laura F.; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Raber, Amy; Bogaerts, Annelies; Pinxteren, Jef; Deans, Robert J.; Maziarz, Richard T.

    2013-01-01

    Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in acute graft versus host disease clinical trials with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Our previous studies documented that MAPCs secrete factors that play a role in regulating T-cell activity. Here we expand our studies using a proteomics approach to characterize and quantify MAPC secretome components secreted over 72 hours in vitro under steady-state conditions and in the presence of the inflammatory triggers interferon-γ and lipopolysaccharide, or a tolerogenic CD74 ligand, RTL1000. MAPCs differentially responded to each of the tested stimuli, secreting molecules that regulate the biological activity of the extracellular matrix (ECM), including proteins that make up the ECM itself, proteins that regulate its construction/deconstruction, and proteins that serve to attach and detach growth factors from ECM components for redistribution upon appropriate stimulation. MAPCs secreted a wide array of proteases, some detectable in their zymogen forms. MAPCs also secreted protease inhibitors that would regulate protease activity. MAPCs secreted chemokines and cytokines that could provide molecular guidance cues to various cell types, including neutrophils, macrophages, and T cells. In addition, MAPCs secreted factors involved in maintenance of a homeostatic environment, regulating such diverse programs as innate immunity, angiogenesis/angiostasis, targeted delivery of growth factors, and the matrix-metalloprotease cascade. PMID:23981727

  15. Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury

    PubMed Central

    DePaul, Marc A.; Palmer, Marc; Lang, Bradley T.; Cutrone, Rochelle; Tran, Amanda P.; Madalena, Kathryn M.; Bogaerts, Annelies; Hamilton, Jason A.; Deans, Robert J.; Mays, Robert W.; Busch, Sarah A.; Silver, Jerry

    2015-01-01

    Following spinal cord injury (SCI), immune-mediated secondary processes exacerbate the extent of permanent neurological deficits. We investigated the capacity of adult bone marrow-derived stem cells, which exhibit immunomodulatory properties, to alter inflammation and promote recovery following SCI. In vitro, we show that human multipotent adult progenitor cells (MAPCs) have the ability to modulate macrophage activation, and prior exposure to MAPC secreted factors can reduce macrophage-mediated axonal dieback of dystrophic axons. Using a contusion model of SCI, we found that intravenous delivery of MAPCs one day, but not immediately, after SCI significantly improves urinary and locomotor recovery, which was associated with marked spinal cord tissue sparing. Intravenous MAPCs altered the immune response in the spinal cord and periphery, however biodistribution studies revealed that no MAPCs were found in the cord and instead preferentially homed to the spleen. Our results demonstrate that MAPCs exert their primary effects in the periphery and provide strong support for the use of these cells in acute human contusive SCI. PMID:26582249

  16. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells.

    PubMed

    Chen, Pei-Min; Yen, Men-Luh; Liu, Ko-Jiunn; Sytwu, Huey-Kang; Yen, B-Linju

    2011-07-18

    In recent years, a large number of studies have contributed to our understanding of the immunomodulatory mechanisms used by multipotent mesenchymal stem cells (MSCs). Initially isolated from the bone marrow (BM), MSCs have been found in many tissues but the strong immunomodulatory properties are best studied in BM MSCs. The immunomodulatory effects of BM MSCs are wide, extending to T lymphocytes and dendritic cells, and are therapeutically useful for treatment of immune-related diseases including graft-versus-host disease as well as possibly autoimmune diseases. However, BM MSCs are very rare cells and require an invasive procedure for procurement. Recently, MSCs have also been found in fetal-stage embryo-proper and extra-embryonic tissues, and these human fetal MSCs (F-MSCs) have a higher proliferative profile, and are capable of multilineage differentiation as well as exert strong immunomodulatory effects. As such, these F-MSCs can be viewed as alternative sources of MSCs. We review here the current understanding of the mechanisms behind the immunomodulatory properties of BM MSCs and F-MSCs. An increase in our understanding of MSC suppressor mechanisms will offer insights for prevalent clinical use of these versatile adult stem cells in the near future.

  17. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    PubMed Central

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  18. Solution-Phase Crosstalk and Regulatory Interactions Between Multipotent Adult Progenitor Cells and Peripheral Blood Mononuclear Cells

    PubMed Central

    van’t Hof, Wouter; Reddy, Ashok P.; Wilmarth, Phillip A.; David, Larry L.; Raber, Amy; Bogaerts, Annelies; Timmerman, Lien; Pinxteren, Jef; Roobrouck, Valerie D.; Deans, Robert J.; Maziarz, Richard T.

    2015-01-01

    Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in clinical trials for acute graft versus host disease with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Anti-CD3/anti-CD28 (3/28) activation of T cells within the peripheral blood mononuclear cell (PBMC) compartment was performed in the presence or absence of MAPCs. Liquid chromatography-coupled tandem mass spectrometry was used to characterize the differential secretion of proteins, and transcriptional profiling was used to monitor mRNA expression changes in both cell populations. Overall, 239 secreted and/or ectodomain-shed proteins were detected in the secretomes of PBMCs and MAPCs. In addition, 3/28 activation of PBMCs induced differential expression of 2,925 genes, and 22% of these transcripts were differentially expressed on exposure to MAPCs in Transwell. MAPCs exposed to 3/28-activated PBMCs showed differential expression of 1,247 MAPC genes. Crosstalk was demonstrated by reciprocal transcriptional regulation. Secretome proteins and transcriptional signatures were used to predict molecular activities by which MAPCs could dampen local and systemic inflammatory responses. These data support the hypothesis that MAPCs block PBMC proliferation via cell cycle arrest coupled to metabolic stress in the form of tryptophan depletion, resulting in GCN2 kinase activation, downstream signaling, and inhibition of cyclin D1 translation. These data also provide a plausible explanation for the immune privilege reported with administration of donor MAPCs. Although most components of the major histocompatibility complex class II antigen presentation pathway were markedly transcriptionally upregulated, cell surface expression of human leukocyte antigen-DR is minimal on MAPCs exposed to 3/28-activated PBMCs. Significance This study documents experiments quantifying solution

  19. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands

    SciTech Connect

    Kishi, Teruki; Takao, Tukasa; Fujita, Kiyohide; Taniguchi, Hideki . E-mail: rtanigu@med.yokohama-cu.ac.jp

    2006-02-10

    Salivary gland stem/progenitor cells are thought to be present in intercalated ductal cells, but the fact is unclear. In this study, we sought to clarify if stem/progenitor cells are present in submandibular glands using colony assay, which is one of the stem cell assay methods. Using a low-density culture of submandibular gland cells of neonatal rats, we developed a novel culture system that promotes single cell colony formation. Average doubling time for the colony-forming cells was 24.7 (SD = {+-}7.02) h, indicating high proliferative potency. When epidermal growth factor (EGF) and hepatocyte growth factor (HGF) were added to the medium, the number of clonal colonies increased greater than those cultured without growth factors (13.2 {+-} 4.18 vs. 4.5 {+-} 1.73). The RT-PCR and immunostaining demonstrated expressing acinar, ductal, and myoepithelial cell lineage markers. This study demonstrated the presence of the salivary gland stem/progenitor cells that are highly proliferative and multipotent in salivary glands.

  20. Adult vascular smooth muscle cells in culture express neural stem cell markers typical of resident multipotent vascular stem cells.

    PubMed

    Kennedy, Eimear; Mooney, Ciaran J; Hakimjavadi, Roya; Fitzpatrick, Emma; Guha, Shaunta; Collins, Laura E; Loscher, Christine E; Morrow, David; Redmond, Eileen M; Cahill, Paul A

    2014-10-01

    Differentiation of resident multipotent vascular stem cells (MVSCs) or de-differentiation of vascular smooth muscle cells (vSMCs) might be responsible for the SMC phenotype that plays a major role in vascular diseases such as arteriosclerosis and restenosis. We examined vSMCs from three different species (rat, murine and bovine) to establish whether they exhibit neural stem cell characteristics typical of MVSCs. We determined their SMC differentiation, neural stem cell marker expression and multipotency following induction in vitro by using immunocytochemistry, confocal microscopy, fluorescence-activated cell sorting analysis and quantitative real-time polymerase chain reaction. MVSCs isolated from rat aortic explants, enzymatically dispersed rat SMCs and rat bone-marrow-derived mesenchymal stem cells served as controls. Murine carotid artery lysates and primary rat aortic vSMCs were both myosin-heavy-chain-positive but weakly expressed the neural crest stem cell marker, Sox10. Each vSMC line examined expressed SMC differentiation markers (smooth muscle α-actin, myosin heavy chain and calponin), neural crest stem cell markers (Sox10(+), Sox17(+)) and a glia marker (S100β(+)). Serum deprivation significantly increased calponin and myosin heavy chain expression and decreased stem cell marker expression, when compared with serum-rich conditions. vSMCs did not differentiate to adipocytes or osteoblasts following adipogenic or osteogenic inductive stimulation, respectively, or respond to transforming growth factor-β1 or Notch following γ-secretase inhibition. Thus, vascular SMCs in culture express neural stem cell markers typical of MVSCs, concomitant with SMC differentiation markers, but do not retain their multipotency. The ultimate origin of these cells might have important implications for their use in investigations of vascular proliferative disease in vitro.

  1. Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures

    PubMed Central

    Jazedje, Tatiana; Perin, Paulo M; Czeresnia, Carlos E; Maluf, Mariangela; Halpern, Silvio; Secco, Mariane; Bueno, Daniela F; Vieira, Natassia M; Zucconi, Eder; Zatz, Mayana

    2009-01-01

    Background The possibility of using stem cells for regenerative medicine has opened a new field of investigation. The search for sources to obtain multipotent stem cells from discarded tissues or through non-invasive procedures is of great interest. It has been shown that mesenchymal stem cells (MSCs) obtained from umbilical cords, dental pulp and adipose tissue, which are all biological discards, are able to differentiate into muscle, fat, bone and cartilage cell lineages. The aim of this study was to isolate, expand, characterize and assess the differentiation potential of MSCs from human fallopian tubes (hFTs). Methods Lineages of hFTs were expanded, had their karyotype analyzed, were characterized by flow cytometry and underwent in vitro adipogenic, chondrogenic, osteogenic, and myogenic differentiation. Results Here we show for the first time that hFTs, which are discarded after some gynecological procedures, are a rich additional source of MSCs, which we designated as human tube MSCs (htMSCs). Conclusion Human tube MSCs can be easily isolated, expanded in vitro, present a mesenchymal profile and are able to differentiate into muscle, fat, cartilage and bone in vitro. PMID:19538712

  2. Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells.

    PubMed

    Stöckl, Sabine; Bauer, Richard J; Bosserhoff, Anja K; Göttl, Claudia; Grifka, Joachim; Grässel, Susanne

    2013-07-01

    Sox9 is a key transcription factor in early chondrogenesis with distinct roles in differentiation processes and during embryonic development. Here, we report that Sox9 modulates cell survival and contributes to the commitment of mesenchymal stem cells (MSC) to adipogenic or osteogenic differentiation lineages. We found that the Sox9 activity level affects the expression of the key transcription factor in adipogenic differentiation, C/EBPβ, and that cyclin D1 mediates the expression of the osteogenic marker osteocalcin in undifferentiated adult bone-marrow-derived rat MSC. Introducing a stable Sox9 knockdown into undifferentiated rat MSC resulted in a marked decrease in proliferation rate and an increase in apoptotic activity. This was linked to a profound upregulation of p21 and cyclin D1 gene and protein expression accompanied by an induction of caspase 3/7 activity and an inhibition of Bcl-2. We observed that Sox9 silencing provoked a delayed S-phase progression and an increased nuclear localization of p21. The protein stability of cyclin D1 was induced in the absence of Sox9 presumably as a function of altered p38 signalling. In addition, the major transcription factor for adipogenic differentiation, C/EBPβ, was repressed after silencing Sox9. The nearly complete absence of C/EBPβ protein as a result of increased destabilization of the C/EBPβ mRNA and the impact on osteocalcin gene expression and protein synthesis, suggests that a delicate balance of Sox9 level is not only imperative for proper chondrogenic differentiation of progenitor cells, but also affects the adipogenic and probably osteogenic differentiation pathways of MSC. Our results identified Sox9 as an important link between differentiation, proliferation and apoptosis in undifferentiated adult rat mesenchymal stem cells, emphasizing the importance of the delicate balance of a precisely regulated Sox9 activity in MSC not only for proper skeletal development during embryogenesis but probably also

  3. Isolation of multipotent neural stem/progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse

    PubMed Central

    Guo, Weixiang; Patzlaff, Natalie E.; Jobe, Emily M.; Zhao, Xinyu

    2013-01-01

    In adult mammals, the subventricular zone of the lateral ventricles (SVZ) and the subgranular zone of the dentate gyrus (DG) demonstrate ongoing neurogenesis, and multipotent neural stem/progenitor cells (NSCs) in these two regions exhibit different intrinsic properties. However, investigation of the mechanisms underlying such differences has been limited by a lack of efficient methods for isolating NSCs, particularly from the adult DG. Here we describe a protocol that enables us to isolate self-renewing and multipotent NSCs from the SVZ and the DG of the same adult mouse. The protocol involves the microdissection of the SVZ and DG from one adult mouse brain, isolation of NSCs from specific regions, and cultivation of NSCs in vitro. The entire procedure takes 2 to 3 hours. Since only one mouse is needed for each cell isolation procedure, this protocol will be particularly useful for studies with limited availability of mice, such as mice that contain multiple genetic modifications. PMID:23080272

  4. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells

    SciTech Connect

    Jung, Yoon Hee

    2010-03-10

    This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/W{sup v} mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.

  5. Modeling sarcomagenesis using multipotent mesenchymal stem cells

    PubMed Central

    Rodriguez, Rene; Rubio, Ruth; Menendez, Pablo

    2012-01-01

    Because of their unique properties, multipotent mesenchymal stem cells (MSCs) represent one of the most promising adult stem cells being used worldwide in a wide array of clinical applications. Overall, compelling evidence supports the long-term safety of ex vivo expanded human MSCs, which do not seem to transform spontaneously. However, experimental data reveal a link between MSCs and cancer, and MSCs have been reported to inhibit or promote tumor growth depending on yet undefined conditions. Interestingly, solid evidence based on transgenic mice and genetic intervention of MSCs has placed these cells as the most likely cell of origin for certain sarcomas. This research area is being increasingly explored to develop accurate MSC-based models of sarcomagenesis, which will be undoubtedly valuable in providing a better understanding about the etiology and pathogenesis of mesenchymal cancer, eventually leading to the development of more specific therapies directed against the sarcoma-initiating cell. Unfortunately, still little is known about the mechanisms underlying MSC transformation and further studies are required to develop bona fide sarcoma models based on human MSCs. Here, we comprehensively review the existing MSC-based models of sarcoma and discuss the most common mechanisms leading to tumoral transformation of MSCs and sarcomagenesis. PMID:21931359

  6. The Tumorigenicity of Multipotent Adult Germline Stem Cells Transplanted into the Heart Is Affected by Natural Killer Cells and by Cyclosporine A Independent of Its Immunosuppressive Effects

    PubMed Central

    Hübscher, Daniela; Kaiser, Diana; Elsner, Leslie; Monecke, Sebastian; Dressel, Ralf; Guan, Kaomei

    2017-01-01

    Transplantation of stem cells represents an upcoming therapy for many degenerative diseases. For clinical use, transplantation of pluripotent stem cell-derived cells should lead to integration of functional grafts without immune rejection or teratoma formation. Our previous studies showed that the risk of teratoma formation is highly influenced by the immune system of the recipients. In this study, we have observed a higher teratoma formation rate when undifferentiated so-called multipotent adult germline stem cells (maGSCs) were transplanted into the heart of T, B, and natural killer (NK) cell-deficient RAG2−/−γc−/− mice than in RAG2−/− mice, which still have NK cells. Notably, in both strains, the teratoma formation rate was significantly reduced by the immunosuppressive drug cyclosporine A (CsA). Thus, CsA had a profound effect on teratoma formation independent of its immunosuppressive effects. The transplantation into RAG2−/− mice led to an activation of NK cells, which reached the maximum 14 days after transplantation and was not affected by CsA. The in vivo-activated NK cells efficiently killed YAC-1 and also maGSC target cells. This NK cell activation was confirmed in C57BL/6 wild-type mice whether treated with CsA or not. Sham operations in wild-type mice indicated that the inflammatory response to open heart surgery rather than the transplantation of maGSCs activated the NK cell system. An activation of NK cells during the transplantation of stem cell-derived in vitro differentiated grafts might be clinically beneficial by reducing the risk of teratoma formation by residual pluripotent cells. PMID:28220117

  7. Multipotent glia-like stem cells mediate stress adaptation.

    PubMed

    Rubin de Celis, Maria F; Garcia-Martin, Ruben; Wittig, Dierk; Valencia, Gabriela D; Enikolopov, Grigori; Funk, Richard H; Chavakis, Triantafyllos; Bornstein, Stefan R; Androutsellis-Theotokis, Andreas; Ehrhart-Bornstein, Monika

    2015-06-01

    The neural crest-derived adrenal medulla is closely related to the sympathetic nervous system; however, unlike neural tissue, it is characterized by high plasticity which suggests the involvement of stem cells. Here, we show that a defined pool of glia-like nestin-expressing progenitor cells in the adult adrenal medulla contributes to this plasticity. These glia-like cells have features of adrenomedullary sustentacular cells, are multipotent, and are able to differentiate into chromaffin cells and neurons. The adrenal is central to the body's response to stress making its proper adaptation critical to maintaining homeostasis. Our results from stress experiments in vivo show the activation and differentiation of these progenitors into new chromaffin cells. In summary, we demonstrate the involvement of a new glia-like multipotent stem cell population in adrenal tissue adaptation. Our data also suggest the contribution of stem and progenitor cells in the adaptation of neuroendocrine tissue function in general.

  8. Fate restriction and multipotency in retinal stem cells.

    PubMed

    Centanin, Lázaro; Hoeckendorf, Burkhard; Wittbrodt, Joachim

    2011-12-02

    Stem cells have the capacity to both self-renew and generate postmitotic cells. Long-term tracking of individual clones in their natural environment constitutes the ultimate way to validate postembryonic stem cells. We identify retinal stem cells (RSCs) using the spatiotemporal organization of the fish retina and follow the complete offspring of a single cell during the postnatal life. RSCs generate two tissues of the adult fish retina, the neural retina (NR) and the retinal-pigmented epithelium (RPE). Despite their common embryonic origin and tight coordination during continuous organ growth, we prove that NR and RPE are maintained by dedicated RSCs that contribute in a fate-restricted manner to either one or the other tissue. We show that in the NR, RSCs are multipotent and generate all neuron types and glia. The clonal origin of these different cell types from a multipotent NSC has far-reaching implications for cell type and tissue homeostasis.

  9. Confetti clarifies controversy: neural crest stem cells are multipotent.

    PubMed

    Bronner, Marianne

    2015-03-05

    Neural crest precursors generate diverse cell lineages during development, which have been proposed to arise either from multipotent precursor cells or pools of heterogeneous, restricted progenitors. Now in Cell Stem Cell, Baggiolini et al. (2015) perform rigorous in vivo lineage tracing to show that individual neural crest precursors are multipotent.

  10. CONCISE REVIEW Micro RNA Expression in Multipotent Mesenchymal Stromal Cells

    PubMed Central

    Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Multipotent mesenchymal stromal cells (MSC) isolated from various adult tissue sources have the capacity to self-renew and to differentiate into multiple lineages. Both of these processes are tightly regulated by genetic and epigenetic mechanisms. Emerging evidence indicates that the class of single-stranded non-coding RNAs known as “microRNAs” also plays a critical role in this process. First described in nematodes and plants, microRNAs have been shown to modulate major regulatory mechanisms in eukaryotic cells involved in a broad array of cellular functions. Studies with various types of embryonic as well as adult stem cells indicate an intricate network of microRNAs regulating key transcription factors and other genes which in turn determine cell fate. In addition, expression of unique microRNAs in specific cell types serves as a useful diagnostic marker to define a particular cell type. MicroRNAs are also found to be regulated by extracellular signaling pathways that are important for differentiation into specific tissues, suggesting that they play a role in specifying tissue identity. In this review we describe the importance of microRNAs in stem cells focusing on our current understanding of microRNAs in MSC and their derivatives. PMID:17991914

  11. Effect of hydrocortisone on multipotent human mesenchymal stromal cells.

    PubMed

    Shipunova, N N; Petinati, N A; Drize, N I

    2013-05-01

    We studied the effect of natural glucocorticosteroid hydrocortisone on total cell production, cloning efficiency, and expression of genes important for the function of mesenchymal stromal cells. Addition of hydrocortisone to the culture medium reduces the total cell yield by 2 times and significantly increased cloning efficiency by 2-3 times; this effect was more pronounced in multipotent mesenchymal stromal cells obtained from female donors. Hydrocortisone had no effect on the expression of immunomodulatory factors produced by multipotent mesenchymal stromal cells. Hydrocortisone inhibits the expression of bone differentiation markers, increases the expression of the early adipocyte differentiation marker at the beginning of culturing, and dramatically stimulates the expression of the late adipocyte differentiation marker throughout the culturing period. The findings suggest that hydrocortisone activates multipotent mesenchymal stromal cells.

  12. The newt reprograms mature RPE cells into a unique multipotent state for retinal regeneration

    PubMed Central

    Islam, Md. Rafiqul; Nakamura, Kenta; Casco-Robles, Martin Miguel; Kunahong, Ailidana; Inami, Wataru; Toyama, Fubito; Maruo, Fumiaki; Chiba, Chikafumi

    2014-01-01

    The reprogramming of retinal pigment epithelium (RPE) cells in the adult newt immediately after retinal injury is an area of active research for the study of retinal disorders and regeneration. We demonstrate here that unlike embryonic/larval retinal regeneration, adult newt RPE cells are not directly reprogrammed into retinal stem/progenitor cells; instead, they are programmed into a unique state of multipotency that is similar to the early optic vesicle (embryo) but preserves certain adult characteristics. These cells then differentiate into two populations from which the prospective-neural retina and -RPE layers are formed with the correct polarity. Furthermore, our findings provide insight into the similarity between these unique multipotent cells in newts and those implicated in retinal disorders, such as proliferative vitreoretinopathy, in humans. These findings provide a foundation for biomedical approaches that aim to induce retinal self-regeneration for the treatment of RPE-mediated retinal disorders. PMID:25116407

  13. Characteristics and multipotency of equine dedifferentiated fat cells.

    PubMed

    Murata, Daiki; Yamasaki, Atsushi; Matsuzaki, Shouta; Sunaga, Takafumi; Fujiki, Makoto; Tokunaga, Satoshi; Misumi, Kazuhiro

    2016-01-01

    Dedifferentiated fat (DFAT) cells have been shown to be multipotent, similar to mesenchymal stem cells (MSCs). In this study, we aimed to establish and characterize equine DFAT cells. Equine adipocytes were ceiling cultured, and then dedifferentiated into DFAT cells by the seventh day of culture. The number of DFAT cells was increased to over 10 million by the fourth passage. Flow cytometry of DFAT cells showed that the cells were strongly positive for CD44, CD90, and major histocompatibility complex (MHC) class I; moderately positive for CD11a/18, CD105, and MHC class II; and negative for CD34 and CD45. Moreover, DFAT cells were positive for the expression of sex determining region Y-box 2 as a marker of multipotency. Finally, we found that DFAT cells could differentiate into osteogenic, chondrogenic, and adipogenic lineages under specific nutrient conditions. Thus, DFAT cells could have clinical applications in tissue regeneration, similar to MSCs derived from adipose tissue.

  14. Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets

    PubMed Central

    Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland

    2014-01-01

    Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms. PMID:24903657

  15. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    PubMed Central

    Liu, Quanwen; Shen, Yi; Chen, Jiarong; Ding, Jie; Tang, Zihua; Zhang, Cui; Chen, Jianling; Li, Liang; Chen, Ping; Wang, Jinfu

    2016-01-01

    In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment. PMID:27057177

  16. Multipotent Stem Cells in Cardiac Regeneration

    PubMed Central

    Karra, Ravi; Wu, Sean M.

    2008-01-01

    Summary The potential for stem cells to ameliorate or cure heart diseases has galvanized a cadre of cardiovascular translational and clinical scientists to take a “first-in-man” approach using autologous stem cells from a variety of tissues. However, recent clinical trial data show that when these cells are given by intracoronary infusion or direct myocardial injection, limited improvement in heart function occurs with no evidence of cardiomyogenesis. These studies illustrate the great need to understand the logic of cell-lineage commitment and the principles of cardiac differentiation. Recent identification of stem/progenitor cells of embryological origin with intrinsic competence to differentiate into multiple lineages within the heart offers new possibilities for cardiac regeneration. When combined with developments in nuclear reprogramming and provided that tumor risks and other challenges of embryonic cell transplantation can be overcome, the prospect of achieving autologous, cardiomyogenic, stem cell-based therapy may be within reach. PMID:18307403

  17. Characteristics and multipotency of equine dedifferentiated fat cells

    PubMed Central

    MURATA, Daiki; YAMASAKI, Atsushi; MATSUZAKI, Shouta; SUNAGA, Takafumi; FUJIKI, Makoto; TOKUNAGA, Satoshi; MISUMI, Kazuhiro

    2016-01-01

    ABSTRACT Dedifferentiated fat (DFAT) cells have been shown to be multipotent, similar to mesenchymal stem cells (MSCs). In this study, we aimed to establish and characterize equine DFAT cells. Equine adipocytes were ceiling cultured, and then dedifferentiated into DFAT cells by the seventh day of culture. The number of DFAT cells was increased to over 10 million by the fourth passage. Flow cytometry of DFAT cells showed that the cells were strongly positive for CD44, CD90, and major histocompatibility complex (MHC) class I; moderately positive for CD11a/18, CD105, and MHC class II; and negative for CD34 and CD45. Moreover, DFAT cells were positive for the expression of sex determining region Y-box 2 as a marker of multipotency. Finally, we found that DFAT cells could differentiate into osteogenic, chondrogenic, and adipogenic lineages under specific nutrient conditions. Thus, DFAT cells could have clinical applications in tissue regeneration, similar to MSCs derived from adipose tissue. PMID:27330399

  18. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration.

    PubMed

    Bobkova, N V; Poltavtseva, R A; Samokhin, A N; Sukhikh, G T

    2013-11-01

    Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.

  19. [VEGF gene expression in transfected human multipotent stromal cells].

    PubMed

    Smirnikhina, S A; Lavrov, A V; Bochkov, N P

    2011-01-01

    Dynamics of VEGF gene expression in transfected multipotent stromal cells from adipose tissue was examined using electroporation and lipofection. Differences in the potency and dynamics of plasmid elimination (up to day 9) between cell cultures were observed. All cultures were divided into fast and slow plasmid-eliminating ones. Interculture differences in VEGF expression were detected. The possibility of a 5-6-fold increase of VEGF expression was shown. There were no differences in transfection potency, plasmid elimination dynamics, and VEGF expression after transfection by both nonviral methods.

  20. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells.

    PubMed

    Boddupally, Keerthi; Wang, Guangfang; Chen, Yibu; Kobielak, Agnieszka

    2016-03-01

    It has been suggested that multipotent stem cells with neural crest (NC) origin persist into adulthood in oral mucosa. However their exact localization and role in normal homeostasis is unknown. In this study, we discovered that Lgr5 is expressed in NC cells during embryonic development, which give rise to the dormant stem cells in the adult tongue and oral mucosa. Those Lgr5 positive oral stromal stem cells display properties of NC stem cells including clonal growth and multipotent differentiation. RNA sequencing revealed that adult Lgr5+ oral stromal stem cells express high number of neural crest related markers like Sox9, Twist1, Snai1, Myc, Ets1, Crabp1, Epha2, and Itgb1. Using lineage-tracing experiments, we show that these cells persist more than a year in the ventral tongue and some areas of the oral mucosa and give rise to stromal progeny. In vivo transplantation demonstrated that these cells reconstitute the stroma. Our studies show for the first time that Lgr5 is expressed in the NC cells at embryonic day 9.5 (E9.5) and is maintained during embryonic development and postnataly in the stroma of the ventral tongue, and some areas of the oral mucosa and that Lgr5+ cells participate in the maintenance of the stroma.

  1. The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes.

    PubMed

    Kou, Liang; Lu, Xiao-Wen; Wu, Min-Ke; Wang, Hang; Zhang, Yu-Jiao; Sato, Soh; Shen, Jie-Fei

    2014-02-21

    Dedifferentiated fat (DFAT) cells derived from mature adipocytes have been considered to be a homogeneous group of multipotent cells, which present to be an alternative source of adult stem cells for regenerative medicine. However, many aspects of the cellular nature about DFAT cells remained unclarified. This study aimed to elucidate the basic characteristics of DFAT cells underlying their functions and differentiation potentials. By modified ceiling culture technique, DFAT cells were converted from human mature adipocytes from the human buccal fat pads. Flow cytometry analysis revealed that those derived cells were a homogeneous population of CD13(+) CD29(+) CD105(+) CD44(+) CD31(-) CD34(-) CD309(-) α-SMA(-) cells. DFAT cells in this study demonstrated tissue-specific differentiation properties with strong adipogenic but much weaker osteogenic capacity. Neither did they express endothelial markers under angiogenic induction.

  2. Isolation of Multipotent Mesenchymal Stromal Cells from Cryopreserved Human Umbilical Cord Tissue.

    PubMed

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2016-02-01

    Umbilical cord stroma is an easily available, convenient, and promising source of multipotent mesenchymal stromal cells for regenerative medicine. Cryogenic storage of umbilical cord tissue provides more possibilities for further isolation of multipotent mesenchymal stromal cells for autologous transplantation or scientific purposes. Here we developed a protocol for preparation of the whole umbilical cord tissue for cryogenic storage that in combination with the previously described modified method of isolation of multipotent mesenchymal stromal cells allowed us to isolate cells with high proliferative potential, typical phenotype, and preserved differentiation potencies.

  3. Induced multipotency in adult keratinocytes through down-regulation of ΔNp63 or DGCR8.

    PubMed

    Chakravarti, Deepavali; Su, Xiaohua; Cho, Min Soon; Bui, Ngoc Hoang Bao; Coarfa, Cristian; Venkatanarayan, Avinashnarayan; Benham, Ashley L; Flores González, Ramón E; Alana, Jennifer; Xiao, Weimin; Leung, Marco L; Vin, Harina; Chan, Io Long; Aquino, Arianexys; Müller, Nicole; Wang, Hongran; Cooney, Austin J; Parker-Thornburg, Jan; Tsai, Kenneth Y; Gunaratne, Preethi H; Flores, Elsa R

    2014-02-04

    The roles of microRNAs (miRNAs) and the miRNA processing machinery in the regulation of stem cell biology are not well understood. Here, we show that the p53 family member and p63 isoform, ΔNp63, is a transcriptional activator of a cofactor critical for miRNA processing (DGCR8). This regulation gives rise to a unique miRNA signature resulting in reprogramming cells to multipotency. Strikingly, ΔNp63(-/-) epidermal cells display profound defects in terminal differentiation and express a subset of markers and miRNAs present in embryonic stem cells and fibroblasts induced to pluripotency using Yamanaka factors. Moreover, ΔNp63(-/-) epidermal cells transduced with an inducible DGCR8 plasmid can differentiate into multiple cell fates in vitro and in vivo. We found that human primary keratinocytes depleted of ΔNp63 or DGCR8 can be reprogrammed in 6 d and express a unique miRNA and gene expression signature that is similar but not identical to human induced pluripotent stem cells. Our data reveal a role for ΔNp63 in the transcriptional regulation of DGCR8 to reprogram adult somatic cells into multipotent stem cells.

  4. NG2-glia as multipotent neural stem cells – fact or fantasy?

    PubMed Central

    Richardson, William D; Young, Kaylene M; Tripathi, Richa B; McKenzie, Ian

    2011-01-01

    Summary Cycling glial precursors - “NG2-glia” - are abundant in the developing and mature central nervous system (CNS). During development they generate oligodendrocytes. In culture, they can revert to a multipotent state, suggesting that they might have latent stem cell potential that could be harnessed to treat neurodegenerative disease. This hope has been subdued recently by a series of fate mapping studies that cast NG2-glia as dedicated oligodendrocyte precursors in the healthy adult CNS - though rare neuron production in the piriform cortex remains a possibility. Following CNS damage, the repertoire of NG2-glia expands to include Schwann cells and possibly astrocytes – but so far not neurons. This confirms the central role of NG2-glia in myelin repair. The realization that oligodendrocyte generation continues throughout normal adulthood has seeded the idea that myelin genesis might also be involved in neural plasticity. We review these developments, highlighting areas of current interest, contention and speculation. PMID:21609823

  5. In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells

    PubMed Central

    2012-01-01

    Background Multipotent stem cells have been successfully isolated from various tissues and are currently utilized for tissue-engineering and cell-based therapies. Among the many sources, skin has recently emerged as an attractive source for multipotent cells because of its abundance. Recent literature showed that skin stromal cells (SSCs) possess mesoderm lineage differentiation potential; however, the endothelial differentiation and angiogenic potential of SSC remains elusive. In our study, SSCs were isolated from human neonatal foreskin (hNFSSCs) and adult dermal skin (hADSSCs) using explants cultures and were compared with bone marrow (hMSC-TERT) and adipose tissue-derived mesenchymal stem cells (hADMSCs) for their potential differentiation into osteoblasts, adipocytes, and endothelial cells. Results Concordant with previous studies, both MSCs and SSCs showed similar morphology, surface protein expression, and were able to differentiate into osteoblasts and adipocytes. Using an endothelial induction culture system combined with an in vitro matrigel angiogenesis assay, hNFSSCs and hADSSCs exhibited the highest tube-forming capability, which was similar to those formed by human umbilical vein endothelial cells (HUVEC), with hNFSSCs forming the most tightly packed, longest, and largest diameter tubules among the three cell types. CD146 was highly expressed on hNFSSCs and HUVEC followed by hADSSCs, and hMSC-TERT, while its expression was almost absent on hADMSCs. Similarly, higher vascular density (based on the expression of CD31, CD34, vWF, CD146 and SMA) was observed in neonatal skin, followed by adult dermal skin and adipose tissue. Thus, our preliminary data indicated a plausible relationship between vascular densities, and the expression of CD146 on multipotent cells derived from those tissues. Conclusions Our data is the first to demonstrate that human dermal skin stromal cells can be differentiated into endothelial lineage. Hence, SSCs represents a novel

  6. Accumulation of Multipotent Progenitor Cells on Polymethylpentene Membranes During Extracorporeal Membrane Oxygenation.

    PubMed

    Lehle, Karla; Friedl, Lucas; Wilm, Julius; Philipp, Alois; Müller, Thomas; Lubnow, Matthias; Schmid, Christof

    2016-06-01

    Multipotent progenitor cells were mobilized during pediatric extracorporeal membrane oxygenation (ECMO). We hypothesize that these cells also adhered onto polymethylpentene (PMP) fibers within the membrane oxygenator (MO) during adult ECMO support. Mononuclear cells were removed from the surface of explanted PMP-MOs (n = 16). Endothelial-like outgrowth and mesenchymal-like cells were characterized by flow cytometric analysis using different surface markers. Spindle-shaped attaching cells were identified early, but without proliferative activity. After long-term cultivation palisading type or cobblestone-type outgrowth cells with high proliferative activity appeared and were characterized as (i) leukocytoid CD45+/CD31+ (CD133+/VEGFR-II+/CD90+/CD14+/CD146dim/CD105dim); (ii) endothelial-like CD45-/CD31+ (VEGF-RII+/CD146+/CD105+/CD133-/CD14-/CD90-); and (iii) mesenchymal-like cells CD45-/CD31- (CD105+/CD90+/CD133dim/VEGFR-II-/CD146-/CD14-). The distribution of the cell populations depended on the MO and cultivation time. Endothelial-like cells formed capillary-like structures and did uptake Dil-acetylated low-density lipoprotein. Endothelial- and mesenchymal-like cells adhered on the surface of PMP-MOs. Further research is needed to identify the clinical relevance of these cells.

  7. Multipotent epithelial cells in the process of regeneration and asexual reproduction in colonial tunicates.

    PubMed

    Kawamura, Kazuo; Sugino, Yasuo; Sunanaga, Takeshi; Fujiwara, Shigeki

    2008-01-01

    The cellular and molecular features of multipotent epithelial cells during regeneration and asexual reproduction in colonial tunicates are described in the present study. The epicardium has been regarded as the endodermal tissue-forming epithelium in the order Enterogona, because only body fragments having the epicardium exhibit the regenerative potential. Epicardial cells in Polycitor proliferus have two peculiar features; they always accompany coelomic undifferentiated cells, and they contain various kinds of organelles in the cytoplasm. During strobilation a large amount of organelles are discarded in the lumen, and then, each tissue-forming cell takes an undifferentiated configuration. Septum cells in the stolon are also multipotent in Enterogona. Free cells with a similar configuration to the septum inhabit the hemocoel. They may provide a pool for epithelial septum cells. At the distal tip of the stolon, septum cells are columnar in shape and apparently undifferentiated. They are the precursor of the stolonial bud. In Pleurogona, the atrial epithelium of endodermal origin is multipotent. In Polyandrocarpa misakiensis, it consists of pigmented squamous cells. The cells have ultrastructurally fine granules in the cytoplasm. During budding, coelomic cells with similar morphology become associated with the atrial epithelium. Then, cells of organ placodes undergo dedifferentiation, enter a cell division cycle, and commence morphogenesis. Retinoic acid-related molecules are involved in this dedifferentiation process of multipotent cells. We conclude that in colonial tunicates two systems support the flexibility of tissue remodeling during regeneration and asexual reproduction; dedifferentiation of epithelial cells and epithelial transformation of coelomic free cells.

  8. Exclusive multipotency and preferential asymmetric divisions in post-embryonic neural stem cells of the fish retina.

    PubMed

    Centanin, Lázaro; Ander, Janina-J; Hoeckendorf, Burkhard; Lust, Katharina; Kellner, Tanja; Kraemer, Isabel; Urbany, Cedric; Hasel, Eva; Harris, William A; Simons, Benjamin D; Wittbrodt, Joachim

    2014-09-01

    The potency of post-embryonic stem cells can only be addressed in the living organism, by labeling single cells after embryonic development and following their descendants. Recently, transplantation experiments involving permanently labeled cells revealed multipotent neural stem cells (NSCs) of embryonic origin in the medaka retina. To analyze whether NSC potency is affected by developmental progression, as reported for the mammalian brain, we developed an inducible toolkit for clonal labeling and non-invasive fate tracking. We used this toolkit to address post-embryonic stem cells in different tissues and to functionally differentiate transient progenitor cells from permanent, bona fide stem cells in the retina. Using temporally controlled clonal induction, we showed that post-embryonic retinal NSCs are exclusively multipotent and give rise to the complete spectrum of cell types in the neural retina. Intriguingly, and in contrast to any other vertebrate stem cell system described so far, long-term analysis of clones indicates a preferential mode of asymmetric cell division. Moreover, following the behavior of clones before and after external stimuli, such as injuries, shows that NSCs in the retina maintained the preference for asymmetric cell division during regenerative responses. We present a comprehensive analysis of individual post-embryonic NSCs in their physiological environment and establish the teleost retina as an ideal model for studying adult stem cell biology at single cell resolution.

  9. [Inner ear cell therapy for hereditary deafness with multipotent stem cells].

    PubMed

    Kamiya, Kazusaku; Ikeda, Katsuhisa

    2011-12-01

    Congenital deafness affects about 1 in 1000 children and the half of them have genetic background such as connexin26 gene mutation. The strategy to rescue such hereditary deafness has not been developed yet. Inner ear cell therapy for hereditary deafness has been studied using some laboratory animals and multipotent stem cells, although the successful reports for the hearing recovery accompanied with supplementation of the normal functional cells followed by tissue repair and recovery of the cellular/molecular functions have been still few. To succeed in hearing recovery by inner ear cell therapy, appropriate cell type, surgical approach and the stem cell homing system to the niche are thought to be required.

  10. [Effect of extracellular matrix components on adhesion of bone marrow multipotent mesenchymal stromal cells to polytetrafluoroethylene].

    PubMed

    Karpenko, A A; Rozanova, I A; Poveshchenko, O V; Lykov, A P; Bondarenko, N A; Kim, I I; Nikonorova, Iu V; Podkhvatilina, N A; Sergeevichev, D S; Popova, I V; Konenkov, V I

    2015-01-01

    Search for new bioengineering materials for creation of small-diameter vascular grafts is currently a priority task. One of the promising trends of creating tissue engineering constructions is coating the internal layer of implants made of polytetrafluoroethylene (PTFE) with autologous mesenchymal multipotent stromal cells. In the study we assessed the ability of separate components of the extracellular matrix such as fibronectin, type I collagen and type IV collagen to influence adhesion, proliferation and morphology of mesenchymal multipotent stromal cells being cultured on PTFE. Bone marrow multipotent stromal cells taken from second-passage Wistar rats in the amount of 106 per 1 cm2 were applied onto PTFE. We used the following variants of preliminary treatment of the material prior to seeding: fibronectin with type I collagen, fibronectin with type IV collagen, fibronectin with a mixture of type I and IV collagens, as well as a control group without coating. After six weeks of cell growth on PTFE patches the samples were subjected to fixation in 10% formalin followed by haematoxylin-eosin stain and morphometric assessment of adhered cells by calculation using the software AxioVision (Carl Zeiss), assessing the number of cells, area of the cellular monolayer, dimensions and ratios of the area of separate cells and the area of cellular nuclei. The maximal area of the monolayer from mesenchymal multipotent stromal cells on the PTFE surface was revealed while culturing with a mixture of fibronectin and type I and IV collagens. Cell colonization density while treatment of the synthetic material with mixtures of fibronectin with type I collagen, type IV collagen and type I and IV collagens demonstrated the results exceeding the parameters of the control specimen 5-, 2.5- and 7-fold, respectively. Hence, extracellular matrix components considerably increase enhance adhesion of cells to PTFE, as well as improve formation of a monolayer from mesenchymal multipotent

  11. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    PubMed Central

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  12. Methods for derivation of multipotent neural crest cells derived from human pluripotent stem cells

    PubMed Central

    Avery, John; Dalton, Stephen

    2016-01-01

    Summary Multipotent, neural crest cells (NCCs) produce a wide-range of cell types during embryonic development. This includes melanocytes, peripheral neurons, smooth muscle cells, osteocytes, chondrocytes and adipocytes. The protocol described here allows for highly-efficient differentiation of human pluripotent stem cells to a neural crest fate within 15 days. This is accomplished under feeder-free conditions, using chemically defined medium supplemented with two small molecule inhibitors that block glycogen synthase kinase 3 (GSK3) and bone morphogenic protein (BMP) signaling. This technology is well-suited as a platform to understand in greater detail the pathogenesis of human disease associated with impaired neural crest development/migration. PMID:25986498

  13. Heterogeneity of multipotent mesenchymal stromal cells: from stromal cells to stem cells and vice versa.

    PubMed

    Dominici, Massimo; Paolucci, Paolo; Conte, Pierfranco; Horwitz, Edwin M

    2009-05-15

    Discovered more than 40 years ago, the biological features of multipotent mesenchymal stromal cells (MSC) were progressively compared first with hematopoietic stem cells (HSC) and, more recently, with embryonic stem cells (ESC). Although these comparisons have been crucial in helping to clarify their nature, there is now a robust amount of data indicating that MSC in vitro represent an independent and heterogeneous group of progenitors with distinct self-renewal properties and established differentiation potentials. However, research developments both in humans and animals have progressively revealed the limits that MSC may face in vivo. To recognize these issues and challenge MSC stemness may seem to be a step backward. Nevertheless, it might also represent the beginning of a phase in which the introduction of novel preclinical approaches could provide better characterization and standardization of the in vivo factors influencing cell engraftment and survival, allowing a more successful impact of mesenchymal progenitors in several clinical settings.

  14. Single Cell Clones Purified from Human Parotid Glands Display Features of Multipotent Epitheliomesenchymal Stem Cells

    PubMed Central

    Yi, TacGhee; Lee, Songyi; Choi, Nahyun; Shin, Hyun-Soo; Kim, Junghee; Lim, Jae-Yol

    2016-01-01

    A better understanding of the biology of tissue-resident stem cell populations is essential to development of therapeutic strategies for regeneration of damaged tissue. Here, we describe the isolation of glandular stem cells (GSCs) from a small biopsy specimen from human parotid glands. Single colony-forming unit-derived clonal cells were isolated through a modified subfractionation culture method, and their stem cell properties were examined. The isolated clonal cells exhibited both epithelial and mesenchymal stem cell (MSC)-like features, including differentiation potential and marker expression. The cells transiently displayed salivary progenitor phenotypes during salivary epithelial differentiation, suggesting that they may be putative multipotent GSCs rather than progenitor cells. Both epithelial and mesenchymal-expressing putative GSCs, LGR5+CD90+ cells, were found in vivo, mostly in inter-secretory units of human salivary glands. Following in vivo transplantation into irradiated salivary glands of mice, these cells were found to be engrafted around the secretory complexes, where they contributed to restoration of radiation-induced salivary hypofunction. These results showed that multipotent epitheliomesenchymal GSCs are present in glandular mesenchyme, and that isolation of homogenous GSC clones from human salivary glands may promote the precise understanding of biological function of bona fide GSCs, enabling their therapeutic application for salivary gland regeneration. PMID:27824146

  15. Optimized Protocol for Isolation of Multipotent Mesenchymal Stromal Cells from Human Umbilical Cord.

    PubMed

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2015-11-01

    Extraembryonic tissues, in particular, umbilical cord stroma are promising sources of multipotent mesenchymal stromal cells for regenerative medicine. In recent years, methods for isolation of mesenchymal stromal cells from different compartments of the umbilical cords based on enzymatic disaggregation of the tissue or on tissue explants have been proposed. Here we propose a protocol of isolation of multipotent mesenchymal stromal cells from the whole umbilical cord that combines the advantages of each approach and ensures sufficient cell yield for further experimental and clinical applications. A combination of short-term incubation of tissue fragments on cold collagenase solution followed by their culturing in the form of explants significantly increased the yield of cells with high proliferative activity, typical pluripotent mesenchymal stromal cell phenotype, and preserved differentiation capacity.

  16. Functional Multipotency of Stem Cells: A Conceptual Review of Neurotrophic Factor-Based Evidence and Its Role in Translational Research

    PubMed Central

    Teng, Yang D; Yu, Dou; Ropper, Alexander E; Li, Jianxue; Kabatas, Serdar; Wakeman, Dustin R; Wang, Junmei; Sullivan, Maryrose P; Redmond, D. Eugene; Langer, Robert; Snyder, Evan Y; Sidman, Richard L

    2011-01-01

    We here propose an updated concept of stem cells (SCs), with an emphasis on neural stem cells (NSCs). The conventional view, which has touched principally on the essential property of lineage multipotency (e.g., the ability of NSCs to differentiate into all neural cells), should be broadened to include the emerging recognition of biofunctional multipotency of SCs to mediate systemic homeostasis, evidenced in NSCs in particular by the secretion of neurotrophic factors. Under this new conceptual context and taking the NSC as a leading example, one may begin to appreciate and seek the “logic” behind the wide range of molecular tactics the NSC appears to serve at successive developmental stages as it integrates into and prepares, modifies, and guides the surrounding CNS micro- and macro-environment towards the formation and self-maintenance of a functioning adult nervous system. We suggest that embracing this view of the “multipotency” of the SCs is pivotal for correctly, efficiently, and optimally exploiting stem cell biology for therapeutic applications, including reconstitution of a dysfunctional CNS. PMID:22654717

  17. Thrombomucin, a Novel Cell Surface Protein that Defines Thrombocytes and Multipotent Hematopoietic Progenitors

    PubMed Central

    McNagny, Kelly M.; Pettersson, Inger; Rossi, Fabio; Flamme, Ingo; Shevchenko, Andrej; Mann, Matthias; Graf, Thomas

    1997-01-01

    MEP21 is an avian antigen specifically expressed on the surface of Myb-Ets–transformed multipotent hematopoietic precursors (MEPs) and of normal thrombocytes. Using nanoelectrospray tandem mass spectrometry, we have sequenced and subsequently cloned the MEP21 cDNA and named the gene thrombomucin as it encodes a 571–amino acid protein with an extracellular domain typical of the mucin family of proteoglycans. Thrombomucin is distantly related to CD34, the best characterized and most used human hematopoietic stem cell marker. It is also highly homologous in its transmembrane/intracellular domain to podocalyxinlike protein–1, a rabbit cell surface glycoprotein of kidney podocytes. Single cell analysis of yolk sac cells from 3-d-old chick embryos revealed that thrombomucin is expressed on the surface of both lineage-restricted and multipotent progenitors. In the bone marrow, thrombomucin is also expressed on mono- and multipotent progenitors, showing an overlapping but distinct expression pattern from that of the receptor-type stem cell marker c-kit. These observations strengthen the notion that the Myb-Ets oncoprotein can induce the proliferation of thrombomucin-positive hematopoietic progenitors that have retained the capacity to differentiate along multiple lineages. They also suggest that thrombomucin and CD34 form a family of stem cell–specific proteins with possibly overlapping functions in early hematopoietic progenitors. PMID:9298993

  18. HIV–1 Infects Multipotent Progenitor Cells Causing Cell Death and Establishing Latent Cellular Reservoirs

    PubMed Central

    Carter, Christoph C.; Onafuwa–Nuga, Adewunmi; McNamara, Lucy A.; Riddell, James; Bixby, Dale; Savona, Michael R.; Collins, Kathleen L.

    2010-01-01

    HIV causes a chronic infection characterized by depletion of CD4+ T lymphocytes and development of opportunistic infections. Despite drugs that inhibit viral spread, HIV has been difficult to cure because of uncharacterized reservoirs of infected cells that are resistant to highly active antiretroviral therapy and the immune response. Here we used CD34+ cells from infected people as well as in vitro studies of wild type HIV to demonstrate infection and killing of CD34+ multipotent hematopoietic progenitor cells (HPCs). In some HPCs, we detected latent infection that stably persisted in cell culture until viral gene expression was activated by differentiation factors. A novel reporter HIV that directly detects latently infected cells in vitro confirmed the presence of distinct populations of active and latently infected HPCs. These findings have important implications for understanding HIV bone marrow pathology and the mechanisms by which HIV causes persistent infection. PMID:20208541

  19. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage.

    PubMed

    Tamaki, Tetsuro; Okada, Yoshinori; Uchiyama, Yoshiyasu; Tono, Kayoko; Masuda, Maki; Wada, Mika; Hoshi, Akio; Ishikawa, Tetsuya; Akatsuka, Akira

    2007-09-01

    The differentiation potential of skeletal muscle-derived stem cells (MDSCs) after in vitro culture and in vivo transplantation has been extensively studied. However, the clonal multipotency of MDSCs has yet to be fully determined. Here, we show that single skeletal muscle-derived CD34-/CD45- (skeletal muscle-derived double negative [Sk-DN]) cells exhibit clonal multipotency that can give rise to myogenic, vasculogenic, and neural cell lineages after in vivo single cell-derived single sphere implantation and in vitro clonal single cell culture. Muscles from green fluorescent protein (GFP) transgenic mice were enzymatically dissociated and sorted based on CD34 and CD45. Sk-DN cells were clone-sorted into a 96-well plate and were cultured in collagen-based medium with basic fibroblast growth factor and epidermal growth factor for 14 days. Individual colony-forming units (CFUs) were then transplanted directly into severely damaged muscle together with 1 x 10(5) competitive carrier Sk-DN cells obtained from wild-type mice muscle expanded for 5 days under the same culture conditions using 35-mm culture dishes. Four weeks after transplantation, implanted GFP+ cells demonstrated differentiation into endothelial, vascular smooth muscle, skeletal muscle, and neural cell (Schwann cell) lineages. This multipotency was also confirmed by expression of mRNA markers for myogenic (MyoD, myf5), neural (Musashi-1, Nestin, neural cell adhesion molecule-1, peripheral myelin protein-22, Nucleostemin), and vascular (alpha-smooth muscle actin, smoothelin, vascular endothelial-cadherin, tyrosine kinase-endothelial) stem cells by clonal (single-cell derived) single-sphere reverse transcription-polymerase chain reaction. Approximately 70% of clonal CFUs exhibited expression of all three cell lineages. These findings support the notion that Sk-DN cells are a useful tool for damaged muscle-related tissue reconstitution by synchronized vasculogenesis, myogenesis, and neurogenesis.

  20. [Reorganization of actin cytoskeleton in the initial stage of transendothelial migration of bone marrow multipotent mesenchymal stromal cells].

    PubMed

    Aleksandrova, S A; Pinaev, G P

    2014-01-01

    The analysis of actin cytoskeleton reorganization in rat bone marrow multipotent mesenchymal stromal cells after one hour adhesion to a monolayer of endothelial cell line EA.hy 926 allowed us to identify three types of cells interacting with the endothelial cells. Approximately half of multipotent mesenchymal stromal cells retained a rounded shape, most of them contained large round actin aggregates, had irregular borders and contacted with the surface of the endothelial cells by microvilli or protrusions similar to small lamellae. Almost all other cells were surrounded by narrow lamellae along the entire perimeter. In addition, a small amount.of elongated flattened cells that contacting with endothelial cells by means of focal contacts was observed. Microenvironmental factors such as proinflammatory cytokine tumor necrosis factor α or plasma proteins affected the ratio of stromal cell types, with different types of organization of the actin cytoskeleton in multipotent mesenchymal stromal cells population.

  1. Isolation and Characterization of Multipotent Mesenchymal Stem Cells Adhering to Adipocytes in Canine Bone Marrow.

    PubMed

    Lin, Hsing-Yi; Fujita, Naoki; Endo, Kentaro; Morita, Maresuke; Takeda, Tae; Nakagawa, Takayuki; Nishimura, Ryohei

    2017-03-15

    The ceiling culture method has been used to isolate mature adipocytes from adipose tissue that can be dedifferentiated into fibroblastic cells, also known as dedifferentiated fat (DFAT) cells that self-renew and are multipotent, with much higher homogeneity and colony-forming efficiency than those of adipose tissue-derived mesenchymal stem cells. We cultured adipocytes from canine bone marrow using this technique, with the expectation of obtaining DFAT cells. However, contrary to our expectations, continuous monitoring of ceiling cultures by time-lapse microscopy revealed many small cells adhering to adipocytes that proliferated rapidly into cells with a fibroblastic morphology and without any dedifferentiation from adipocytes. We named these cells bone marrow peri-adipocyte cells (BM-PACs) and demonstrated the multipotent properties of BM-PACs compared to that of conventionally cultured canine bone marrow mesenchymal stem cells (BMMSCs). BM-PACs showed significantly greater clonogenicity and proliferation ability than BMMSCs. An in vitro trilineage differentiation assay revealed that BM-PACs possess adipogenic, osteogenic, and chondrogenic capacities superior to those of BMMSCs. Flow cytometric analysis revealed that the expression of CD73, which plays an important role in cell growth and differentiation, was significantly higher in BM-PACs than in BMMSCs. These results indicate that canine BM-PACs have stem cell characteristics that are superior to those of BMMSCs, and that these mesenchymal stem cells (MSCs) appear to be a feasible source for cell-based therapies in dogs.

  2. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    PubMed

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E; Barlow, Linda A

    2015-05-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  3. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates

    PubMed Central

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E.; Barlow, Linda A.

    2015-01-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells. PMID:26020789

  4. Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes.

    PubMed

    Jumabay, Medet; Abdmaulen, Raushan; Urs, Sumithra; Heydarkhan-Hagvall, Sepideh; Chazenbalk, Gregorio D; Jordan, Maria C; Roos, Kenneth P; Yao, Yucheng; Boström, Kristina I

    2012-12-01

    White mature adipocytes give rise to multipotent cells, so-called de-differentiated fat (DFAT) cells, when losing their fat in culture. The objective of this study was to examine the ability of DFAT cells to give rise to endothelial cells (ECs) in vitro and vivo. We demonstrate that mouse and human DFAT cells, derived from adipose tissue and lipospirate, respectively, initially lack expression of CD34, CD31, CD146, CD45 and pericyte markers, distinguishing them from progenitor cells previously identified in adipose stroma. The DFAT cells spontaneously differentiate into vascular ECs in vitro, as determined by real-time PCR, fluorescence activated cell sorting, immunostaining, and formation of tube structures. Treatment with bone morphogenetic protein (BMP)4 and BMP9, important in regulating angiogenesis, significantly enhances the EC differentiation. Furthermore, adipocyte-derived cells from Green Fluorescent Protein-transgenic mice were detected in the vasculature of infarcted myocardium up to 6 weeks after ligation of the left anterior descending artery in mice. We conclude that adipocyte-derived multipotent cells are able to spontaneously give rise to ECs, a process that is promoted by BMPs and may be important in cardiovascular regeneration and in physiological and pathological changes in fat and other tissues.

  5. Endothelial Differentiation in Multipotent Cells Derived from Mouse and Human White Mature Adipocytes

    PubMed Central

    Jumabay, Medet; Abdmaulen, Raushan; Urs, Sumithra; Heydarkhan-Hagvall, Sepideh; Chazenbalk, Gregorio D.; Jordan, Maria C.; Roos, Kenneth P.; Yao, Yucheng; Boström, Kristina I.

    2012-01-01

    White mature adipocytes give rise to multipotent cells, so-called de-differentiated fat (DFAT) cells, when losing their fat in culture. The objective of this study was to examine the ability of DFAT cells to give rise to endothelial cells (ECs) in vitro and vivo. We demonstrate that mouse and human DFAT cells, derived from adipose tissue and lipospirate, respectively, initially lack expression of CD34, CD31, CD146, CD45 and pericyte markers, distinguishing them from progenitor cells previously identified in adipose stroma. The DFAT cells spontaneously differentiate into vascular ECs in vitro, as determined by real-time PCR, fluorescence activated cell sorting, immunostaining, and formation of tube structures. Treatment with bone morphogenetic protein (BMP)4 and BMP9, important in regulating angiogenesis, significantly enhance the EC differentiation. Furthermore, adipocyte-derived cells from Green Fluorescent Protein-transgenic mice were detected in the vasculature of infarcted myocardium up to 6 weeks after ligation of the left anterior descending artery in mice. We conclude that adipocyte-derived multipotent cells are able to spontaneously give rise to ECs, a process that is promoted by BMPs and may be important in cardiovascular regeneration and in physiological and pathological changes in fat and other tissues. PMID:22999861

  6. Reversible Commitment to Differentiation by Human Multipotent Stromal Cells (MSCs) in Single-Cell Derived Colonies

    PubMed Central

    Ylöstalo, Joni; Bazhanov, Nikolay; Prockop, Darwin J

    2008-01-01

    Objective Human multipotent stromal cells (MSCs) readily form single-cell derived colonies when plated at clonal densities. However, the colonies are heterogeneous since the cells from a colony form new colonies that vary in size and differentiation potential when re-plated at clonal densities. The experiments here tested the hypothesis that the cells in the inner regions of colonies are partially differentiated but the differentiation is reversible. Materials and Methods Cells were separately isolated from the dense inner regions (IN) and less dense outer regions (OUT) of single-cell derived colonies. The cells were then compared by assays of their transcriptomes and proteins, and for clonogenicity and differentiation. Results The IN cells expressed fewer cell-cycle genes and higher levels of genes for extracellular matrix than the OUT cells. When transferred to differentiation medium, differentiation of the colonies occurred primarily in the IN regions. However, the IN cells were indistinguishable from OUT cells when re-plated at clonal densities and assayed for rates of propagation and clonogenicity. Also, the colonies formed by IN cells were similar to colonies formed by OUT cells in that they had distinct IN and OUT regions. Cultures of IN and OUT cells remained indistinguishable through multiple passages (30-75 population doublings), and both cells formed colonies that were looser and less dense as they were expanded. Conclusions The results demonstrated that the cells in the inner region of single-derived colonies are partially differentiated but the differentiation can be reversed by re-plating the cells at clonal densities. PMID:18619725

  7. Generation of Multipotent Foregut Stem Cells from Human Pluripotent Stem Cells

    PubMed Central

    Hannan, Nicholas R.F.; Fordham, Robert P.; Syed, Yasir A.; Moignard, Victoria; Berry, Andrew; Bautista, Ruben; Hanley, Neil A.; Jensen, Kim B.; Vallier, Ludovic

    2013-01-01

    Summary Human pluripotent stem cells (hPSCs) could provide an infinite source of clinically relevant cells with potential applications in regenerative medicine. However, hPSC lines vary in their capacity to generate specialized cells, and the development of universal protocols for the production of tissue-specific cells remains a major challenge. Here, we have addressed this limitation for the endodermal lineage by developing a defined culture system to expand and differentiate human foregut stem cells (hFSCs) derived from hPSCs. hFSCs can self-renew while maintaining their capacity to differentiate into pancreatic and hepatic cells. Furthermore, near-homogenous populations of hFSCs can be obtained from hPSC lines which are normally refractory to endodermal differentiation. Therefore, hFSCs provide a unique approach to bypass variability between pluripotent lines in order to obtain a sustainable source of multipotent endoderm stem cells for basic studies and to produce a diversity of endodermal derivatives with a clinical value. PMID:24319665

  8. The early postnatal nonhuman primate neocortex contains self-renewing multipotent neural progenitor cells.

    PubMed

    Homman-Ludiye, Jihane; Merson, Tobias D; Bourne, James A

    2012-01-01

    The postnatal neocortex has traditionally been considered a non-neurogenic region, under non-pathological conditions. A few studies suggest, however, that a small subpopulation of neural cells born during postnatal life can differentiate into neurons that take up residence within the neocortex, implying that postnatal neurogenesis could occur in this region, albeit at a low level. Evidence to support this hypothesis remains controversial while the source of putative neural progenitors responsible for generating new neurons in the postnatal neocortex is unknown. Here we report the identification of self-renewing multipotent neural progenitor cells (NPCs) derived from the postnatal day 14 (PD14) marmoset monkey primary visual cortex (V1, striate cortex). While neuronal maturation within V1 is well advanced by PD14, we observed cells throughout this region that co-expressed Sox2 and Ki67, defining a population of resident proliferating progenitor cells. When cultured at low density in the presence of epidermal growth factor (EGF) and/or fibroblast growth factor 2 (FGF-2), dissociated V1 tissue gave rise to multipotent neurospheres that exhibited the ability to differentiate into neurons, oligodendrocytes and astrocytes. While the capacity to generate neurones and oligodendrocytes was not observed beyond the third passage, astrocyte-restricted neurospheres could be maintained for up to 6 passages. This study provides the first direct evidence for the existence of multipotent NPCs within the postnatal neocortex of the nonhuman primate. The potential contribution of neocortical NPCs to neural repair following injury raises exciting new possibilities for the field of regenerative medicine.

  9. The Use of Technetium-99m for Intravital Tracing of Transplanted Multipotent Stromal Cells.

    PubMed

    Silachev, D N; Kondakov, A K; Znamenskii, I A; Kurashvili, Yu B; Abolenskaya, A V; Antipkin, N R; Danilina, T I; Manskikh, V N; Gulyaev, M V; Pirogov, Yu A; Plotnikov, E Yu; Zorov, D B; Sukhikh, G T

    2016-11-01

    We studied the possibility of in vivo tracing of multipotent mesenchymal stromal cells labeled with a radiophermaceutic preparation based on metastable isotope Technetium-99m and injected to rats with modeled traumatic brain injury. Accumulation of labeled cells occurred primarily in the liver and lungs. The cells distribution in internal organs greatly varied depending on the administration route. Cell injection into the carotid artery led to their significant accumulation in the damaged brain hemisphere, while intravenous injection was followed by diffuse cell distribution in all brain structures. Scintigraphy data were confirmed by magnetic resonance imaging and histological staining of cells. Visualization of stem cells labeled with Technetium-99m-based preparation by scintigraphy is an objective and highly informative method allowing real-time in vivo cell tracing in the body.

  10. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population.

    PubMed

    Morrison, Jamie I; Lööf, Sara; He, Pingping; Simon, András

    2006-01-30

    In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.

  11. T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system

    PubMed Central

    Kutleša, Snježana; Zayas, Jennifer; Valle, Alexandra; Levy, Robert B.; Jurecic, Roland

    2011-01-01

    Objective Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. Materials and Methods EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. Results The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Tα, RAG-1, and T-cell receptor – Vβ genes; and 3) produced interferon-γ in response to T-cell receptor stimulation. Conclusions These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation. PMID:19447159

  12. PAD4 regulates proliferation of multipotent haematopoietic cells by controlling c-myc expression

    PubMed Central

    Nakashima, Katsuhiko; Arai, Satoko; Suzuki, Akari; Nariai, Yuko; Urano, Takeshi; Nakayama, Manabu; Ohara, Osamu; Yamamura, Ken-ichi; Yamamoto, Kazuhiko; Miyazaki, Toru

    2013-01-01

    Peptidylarginine deiminase 4 (PAD4) functions as a transcriptional coregulator by catalyzing the conversion of histone H3 arginine residues to citrulline residues. Although the high level of PAD4 expression in bone marrow cells suggests its involvement in haematopoiesis, its precise contribution remains unclear. Here we show that PAD4, which is highly expressed in lineage− Sca-1+ c-Kit+ (LSK) cells of mouse bone marrow compared with other progenitor cells, controls c-myc expression by catalyzing the citrullination of histone H3 on its promoter. Furthermore, PAD4 is associated with lymphoid enhancer-binding factor 1 and histone deacetylase 1 at the upstream region of the c-myc gene. Supporting these findings, LSK cells, especially multipotent progenitors, in PAD4-deficient mice show increased proliferation in a cell-autonomous fashion compared with those in wild-type mice. Together, our results strongly suggest that PAD4 regulates the proliferation of multipotent progenitors in the bone marrow by controlling c-myc expression. PMID:23673621

  13. Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells

    PubMed Central

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines. PMID:22471939

  14. Yolk Sac Mesenchymal Progenitor Cells from New World Mice (Necromys lasiurus) with Multipotent Differential Potential

    PubMed Central

    Favaron, Phelipe Oliveira; Mess, Andrea; Will, Sônia Elisabete; Maiorka, Paulo César; de Oliveira, Moacir Franco; Miglino, Maria Angelica

    2014-01-01

    Fetal membranes are abundant, ethically acceptable and readily accessible sources of stem cells. In particular, the yolk sac is a source of cell lineages that do not express MHCs and are mainly free from immunological incompatibles when transferred to a recipient. Although data are available especially for hematopoietic stem cells in mice and human, whereas other cell types and species are dramatically underrepresented. Here we studied the nature and differentiation potential of yolk sac derived mesenchymal stem cells from a New World mouse, Necromys lasiurus. Explants from mid-gestation were cultured in DMEM-High glucose medium with 10% defined fetal bovine serum. The cells were characterized by standard methods including immunophenotyping by fluorescence and flow cytometry, growth and differentiation potential and tumorigenicity assays. The first adherent cells were observed after 7 days of cell culture and included small, elongated fibroblast-like cells (92.13%) and large, round epithelial-like cells with centrally located nuclei (6.5%). Only the fibroblast-like cells survived the first passages. They were positive to markers for mesenchymal stem cells (Stro-1, CD90, CD105, CD73) and pluripotency (Oct3/4, Nanog) as well as precursors of hematopoietic stem cells (CD117). In differentiation assays, they were classified as a multipotent lineage, because they differentiated into osteogenic, adipogenic, and chondrogenic lineages and, finally, they did not develop tumors. In conclusion, mesenchymal progenitor cells with multipotent differentiation potential and sufficient growth and proliferation abilities were able to be obtained from Necromys yolk sacs, therefore, we inferred that these cells may be promising for a wide range of applications in regenerative medicine. PMID:24918429

  15. Human Umbilical Cord Blood Serum: Effective Substitute of Fetal Bovine Serum for Culturing of Human Multipotent Mesenchymal Stromal Cells.

    PubMed

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    Optimal conditions for culturing of multipotent mesenchymal stromal cells in the presence of pooled umbilical cord blood serum were determined. It was found that umbilical cord blood serum in a concentration range of 1-10% effectively supported high viability and proliferative activity of cells with unaltered phenotype and preserved multilineage differentiation capacity. The proposed approach allows avoiding the use of xenogenic animal sera for culturing of multipotent mesenchymal stromal cells and creates prerequisites for designing and manufacturing safe cellular and/or acellular products for medical purposes.

  16. Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells.

    PubMed

    Nitta, Masahiro; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Masuda, Maki; Akatsuka, Akira; Hoshi, Akio; Usui, Yukio; Terachi, Toshiro

    2010-05-15

    BACKGROUND.: Postoperative neurogenic bladder dysfunction is a major complication of radical hysterectomy for cervical cancer and is mainly caused by unavoidable damage to the bladder branch of the pelvic plexus (BBPP) associated with colateral blood vessels. Thus, we attempted to reconstitute disrupted BBPP and blood vessels using skeletal muscle-derived multipotent stem cells that show synchronized reconstitution capacity of vascular, muscular, and peripheral nervous systems. METHODS.: Under pentobarbital anesthesia, intravesical pressure by electrical stimulation of BBPP was measured as bladder function. The distal portion of BBPP with blood vessels was then cut unilaterally (experimental neurogenic bladder model). Measurements were performed before, immediately after, and at 4 weeks after transplantation as functional recovery. Stem cells were obtained from the right soleus and gastrocnemius muscles after enzymatic digestion and cell sorting as CD34/45 (Sk-34) and CD34/45 (Sk-DN). Suspended cells were autografted around the damaged region, whereas medium alone and CD45 cells were transplanted as control groups. To determine the morphological contribution of the transplanted cells, stem cells obtained from green fluorescent protein transgenic mouse muscles were transplanted into a nude rat model and were examined by immunohistochemistry and immunoelectron microscopy. RESULTS.: At 4 weeks after surgery, the transplantation group showed significantly higher functional recovery ( approximately 80%) than the two controls ( approximately 28% and 24%). The transplanted cells showed an incorporation into the damaged peripheral nerves and blood vessels after differentiation into Schwann cells, perineurial cells, vascular smooth muscle cells, pericytes, and fibroblasts around the bladder. CONCLUSION.: Transplantation of multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of damaged BBPP.

  17. A conserved germline multipotency program

    PubMed Central

    Juliano, Celina E.; Swartz, S. Zachary; Wessel, Gary M.

    2010-01-01

    The germline of multicellular animals is segregated from somatic tissues, which is an essential developmental process for the next generation. Although certain ecdysozoans and chordates segregate their germline during embryogenesis, animals from other taxa segregate their germline after embryogenesis from multipotent progenitor cells. An overlapping set of genes, including vasa, nanos and piwi, operate in both multipotent precursors and in the germline. As we propose here, this conservation implies the existence of an underlying germline multipotency program in these cell types that has a previously underappreciated and conserved function in maintaining multipotency. PMID:21098563

  18. Multipotent mesenchymal stromal cells: A promising strategy to manage alcoholic liver disease.

    PubMed

    Ezquer, Fernando; Bruna, Flavia; Calligaris, Sebastián; Conget, Paulette; Ezquer, Marcelo

    2016-01-07

    Chronic alcohol consumption is a major cause of liver disease. The term alcoholic liver disease (ALD) refers to a spectrum of mild to severe disorders including steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. With limited therapeutic options, stem cell therapy offers significant potential for these patients. In this article, we review the pathophysiologic features of ALD and the therapeutic mechanisms of multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), based on their potential to differentiate into hepatocytes, their immunomodulatory properties, their potential to promote residual hepatocyte regeneration, and their capacity to inhibit hepatic stellate cells. The perfect match between ALD pathogenesis and MSC therapeutic mechanisms, together with encouraging, available preclinical data, allow us to support the notion that MSC transplantation is a promising therapeutic strategy to manage ALD onset and progression.

  19. Multipotent mesenchymal stromal cells: A promising strategy to manage alcoholic liver disease

    PubMed Central

    Ezquer, Fernando; Bruna, Flavia; Calligaris, Sebastián; Conget, Paulette; Ezquer, Marcelo

    2016-01-01

    Chronic alcohol consumption is a major cause of liver disease. The term alcoholic liver disease (ALD) refers to a spectrum of mild to severe disorders including steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. With limited therapeutic options, stem cell therapy offers significant potential for these patients. In this article, we review the pathophysiologic features of ALD and the therapeutic mechanisms of multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), based on their potential to differentiate into hepatocytes, their immunomodulatory properties, their potential to promote residual hepatocyte regeneration, and their capacity to inhibit hepatic stellate cells. The perfect match between ALD pathogenesis and MSC therapeutic mechanisms, together with encouraging, available preclinical data, allow us to support the notion that MSC transplantation is a promising therapeutic strategy to manage ALD onset and progression. PMID:26755858

  20. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    SciTech Connect

    Ono, Hiromasa; Oki, Yoshinao; Bono, Hidemasa; Kano, Koichiro

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  1. Fast isolation and expansion of multipotent cells from adipose tissue based on chitosan-selected primary culture.

    PubMed

    Huang, Guo-Shiang; Tseng, Ting-Chen; Dai, Niann-Tzyy; Fu, Keng-Yen; Dai, Lien-Guo; Hsu, Shan-Hui

    2015-10-01

    Adipose-derived adult stem cells (ASCs) have gained much attention because of their multipotency and easy access. Here we describe a novel chitosan-based selection (CS) system instead of the conventional plastic adherence (PA) to obtain the primary ASCs. The minimal amount of adipose tissue for consistent isolation of ASCs is reduced from 10 mL to 5 mL. The selection is based on the specific interaction between cells and chitosan materials, which separate ASCs by forming spheroids during primary culture. The primary culture period was reduced from 4 days to one day and more ASCs (ten-fold expansion) were achieved in a week. The average duration for obtaining 1 × 10(7) cells takes about seven days from 5 mL of adipose tissue, compared to 14 days using the conventional PA method from 10 mL of adipose tissue. The replicative senescence of CS-ASCs is not evident until the fifteenth passage (vs. eighth for the PA-ASCs). The obtained ASCs (CS-ASCs) have less doubling time for the same passage of cells and show greater stemness than those obtained from the conventional PA method (PA-ASCs). Moreover, CS-ASCs undergo trilineage differentiation more effectively than PA-ASCs. The greater differentiation potential of CS-ASCs may be associated with the enrichment and maintenance of CD271 positive cells by chitosan selection of primary culture.

  2. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells

    PubMed Central

    Chandrakanthan, Vashe; Yeola, Avani; Kwan, Jair C.; Oliver, Rema A.; Qiao, Qiao; Kang, Young Chan; Zarzour, Peter; Beck, Dominik; Boelen, Lies; Unnikrishnan, Ashwin; Villanueva, Jeanette E.; Nunez, Andrea C.; Knezevic, Kathy; Palu, Cintia; Nasrallah, Rabab; Carnell, Michael; Macmillan, Alex; Whan, Renee; Yu, Yan; Hardy, Philip; Grey, Shane T.; Gladbach, Amadeus; Delerue, Fabien; Ittner, Lars; Mobbs, Ralph; Walkley, Carl R.; Purton, Louise E.; Ward, Robyn L.; Wong, Jason W. H.; Hesson, Luke B.; Walsh, William; Pimanda, John E.

    2016-01-01

    Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor–AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration. PMID:27044077

  3. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes.

    PubMed

    Ono, Hiromasa; Oki, Yoshinao; Bono, Hidemasa; Kano, Koichiro

    2011-04-15

    Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  4. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    SciTech Connect

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook; Kim, Sun Kyung; Jang, In Keun; Eom, Young-woo; Park, Joon Seong; Kim, Hugh C.; Song, Kye Yong; Park, Soon Cheol; Lim, Hwan Sub; Kim, Young Jin . E-mail: jin@lifecord.co.kr

    2007-06-29

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types, including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.

  5. Roles of chromatin remodelers in maintenance mechanisms of multipotency of mouse trunk neural crest cells in the formation of neural crest-derived stem cells.

    PubMed

    Fujita, Kyohei; Ogawa, Ryuhei; Kawawaki, Syunsaku; Ito, Kazuo

    2014-08-01

    We analyzed roles of two chromatin remodelers, Chromodomain Helicase DNA-binding protein 7 (CHD7) and SWItch/Sucrose NonFermentable-B (SWI/SNF-B), and Bone Morphogenetic Protein (BMP)/Wnt signaling in the maintenance of the multipotency of mouse trunk neural crest cells, leading to the formation of mouse neural crest-derived stem cells (mouse NCSCs). CHD7 was expressed in the undifferentiated neural crest cells and in the dorsal root ganglia (DRG) and sciatic nerve, typical tissues containing NCSCs. BMP/Wnt signaling stimulated the expression of CHD7 and participated in maintaining the multipotency of neural crest cells. Furthermore, the promotion of CHD7 expression maintained the multipotency of these cells. The inhibition of CHD7 and SWI/SNF-B expression significantly suppressed the maintenance of the multipotency of these cells. In addition, BMP/Wnt treatment promoted CHD7 expression and caused the increase of the percentage of multipotent cells in DRG. Thus, the present data suggest that the chromatin remodelers as well as BMP/Wnt signaling play essential roles in the maintenance of the multipotency of mouse trunk neural crest cells and in the formation of mouse NCSCs.

  6. The role of antioxidation and immunomodulation in postnatal multipotent stem cell-mediated cardiac repair.

    PubMed

    Saparov, Arman; Chen, Chien-Wen; Beckman, Sarah A; Wang, Yadong; Huard, Johnny

    2013-08-06

    Oxidative stress and inflammation play major roles in the pathogenesis of coronary heart disease including myocardial infarction (MI). The pathological progression following MI is very complex and involves a number of cell populations including cells localized within the heart, as well as cells recruited from the circulation and other tissues that participate in inflammatory and reparative processes. These cells, with their secretory factors, have pleiotropic effects that depend on the stage of inflammation and regeneration. Excessive inflammation leads to enlargement of the infarction site, pathological remodeling and eventually, heart dysfunction. Stem cell therapy represents a unique and innovative approach to ameliorate oxidative stress and inflammation caused by ischemic heart disease. Consequently, it is crucial to understand the crosstalk between stem cells and other cells involved in post-MI cardiac tissue repair, especially immune cells, in order to harness the beneficial effects of the immune response following MI and further improve stem cell-mediated cardiac regeneration. This paper reviews the recent findings on the role of antioxidation and immunomodulation in postnatal multipotent stem cell-mediated cardiac repair following ischemic heart disease, particularly acute MI and focuses specifically on mesenchymal, muscle and blood-vessel-derived stem cells due to their antioxidant and immunomodulatory properties.

  7. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells

    PubMed Central

    Prescott, Hilary M. A.; Manning, Craig; Gardner, Aaron; Ritchie, William A.; Pizzi, Romain; Girling, Simon; Valentine, Iain; Wang, Chengdong; Jahoda, Colin A. B.

    2015-01-01

    Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP) cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D) skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca); red panda (Ailurus fulgens); and Asiatic lion (Panthera leo persica). m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF) cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of sample numbers

  8. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells.

    PubMed

    Prescott, Hilary M A; Manning, Craig; Gardner, Aaron; Ritchie, William A; Pizzi, Romain; Girling, Simon; Valentine, Iain; Wang, Chengdong; Jahoda, Colin A B

    2015-01-01

    Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP) cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D) skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca); red panda (Ailurus fulgens); and Asiatic lion (Panthera leo persica). m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF) cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of sample numbers

  9. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency

    PubMed Central

    Chuah, Yon Jin; Koh, Yi Ting; Lim, Kaiyang; Menon, Nishanth V.; Wu, Yingnan; Kang, Yuejun

    2015-01-01

    Polydimethylsiloxane (PDMS) has been extensively exploited to study stem cell physiology in the field of mechanobiology and microfluidic chips due to their transparency, low cost and ease of fabrication. However, its intrinsic high hydrophobicity renders a surface incompatible for prolonged cell adhesion and proliferation. Plasma-treated or protein-coated PDMS shows some improvement but these strategies are often short-lived with either cell aggregates formation or cell sheet dissociation. Recently, chemical functionalization of PDMS surfaces has proved to be able to stabilize long-term culture but the chemicals and procedures involved are not user- and eco-friendly. Herein, we aim to tailor greener and biocompatible PDMS surfaces by developing a one-step bio-inspired polydopamine coating strategy to stabilize long-term bone marrow stromal cell culture on PDMS substrates. Characterization of the polydopamine-coated PDMS surfaces has revealed changes in surface wettability and presence of hydroxyl and secondary amines as compared to uncoated surfaces. These changes in PDMS surface profile contribute to the stability in BMSCs adhesion, proliferation and multipotency. This simple methodology can significantly enhance the biocompatibility of PDMS-based microfluidic devices for long-term cell analysis or mechanobiological studies. PMID:26647719

  10. Ultrastructural features of human adipose-derived multipotent mesenchymal stromal cells.

    PubMed

    Manea, Claudiu Marius; Rusu, Mugurel Constantin; Constantin, Daniel; Mănoiu, Valentina Mariana; Moldovan, Lucia; Jianu, Adelina Maria

    2014-01-01

    Multipotent mesenchymal stromal cells (MMSCs) are plastic-adherent cells with a well-established phenotype. Equine, but not human, adipose MMSCs have been characterized ultrastructurally. The purpose of our study was to evaluate ultrastructurally the adipose-derived human MMSCs. Cell cultures were prepared from human lipoaspirate. The flow cytometry evaluation of surface markers of cultured cells confirmed the expected profile of MMSCs, that were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. We examined these human adipose-derived MMSCs in transmission electron microscopy (TEM) by Epon en-face embedding the fixed MMSCs. The main ultrastructural features of MMSCs were the extremely rich content of endosomal/vesicular elements, long mitochondria, dilated RER (rough endoplasmic reticulum) cisternae, and abundant intermediate filaments and microtubules. We found two types of MMSCS prolongations: (a) thick processes, with opposite, vesicular and filaments-rich, sides and (b) slender processes (pseudopodes and filopodes), with occasional proximal dilated segments housing mitochondria, vesicles and secretory granules. These TEM features of MMSCs characterized an in vitro cell population and could use to distinguish between different cell types in culture.

  11. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells.

    PubMed

    Rawlins, Emma L; Clark, Cheryl P; Xue, Yan; Hogan, Brigid L M

    2009-11-01

    The conducting airways (bronchi and bronchioles) and peripheral gas exchange (alveolar) regions of the mammalian lung are generated by a process of branching morphogenesis. Evidence suggests that during embryonic development, the undifferentiated epithelial progenitors are located at the distal tips of the branching epithelium. To test this hypothesis, we used an Id2-CreER(T2) knock-in mouse strain to lineage trace the distal epithelial tip cells during either the pseudoglandular or canalicular phases of development. During the pseudoglandular stage, the tip cells both self-renew and contribute descendents to all epithelial cell lineages, including neuroendocrine cells. In addition, individual Id2(+) tip cells can self-renew and contribute descendents to both the bronchiolar and alveolar compartments. By contrast, during the later canalicular stage, the distal epithelial tip cells only contribute descendents to the alveoli. Taken together, this evidence supports a model in which the distal tip of the developing lung contains a multipotent epithelial population, the fate of which changes during development.

  12. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells.

    PubMed

    Hirata, Naoya; Yamada, Shigeru; Asanagi, Miki; Sekino, Yuko; Kanda, Yasunari

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  13. Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine.

    PubMed

    Jaing, Tang-Her

    2014-01-01

    It is conservatively estimated that one in three individuals in the US might benefit from regenerative medicine therapy. However, the relation of embryonic stem cells (ESCs) to human blastocysts always stirs ethical, political, moral, and emotional debate over their use in research. Thus, for the reasonably foreseeable future, the march of regenerative medicine to the clinic will depend upon the development of non-ESC therapies. Current sources of non-ESCs easily available in large numbers can be found in the bone marrow, adipose tissue, and umbilical cord blood (UCB). UCB provides an immune-compatible source of stem cells for regenerative medicine. Owing to inconsistent results, it is certainly an important and clinically relevant question whether UCB will prove to be therapeutically effective. This review will show that UCB contains multiple populations of multipotent stem cells, capable of giving rise to hematopoietic, epithelial, endothelial, and neural tissues both in vitro and in vivo. Here we raise the possibility that due to unique immunological properties of both the stem cell and non-stem cell components of cord blood, it may be possible to utilize allogeneic cells for regenerative applications without needing to influence or compromise the recipient immune system.

  14. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    SciTech Connect

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  15. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    SciTech Connect

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin {alpha}2{beta}1{sup hi} and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 {mu}g/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.

  16. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    PubMed Central

    Di Liddo, Rosa; Aguiari, Paola; Barbon, Silvia; Bertalot, Thomas; Mandoli, Amit; Tasso, Alessia; Schrenk, Sandra; Iop, Laura; Gandaglia, Alessandro; Parnigotto, Pier Paolo; Conconi, Maria Teresa; Gerosa, Gino

    2016-01-01

    Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary evaluation of heart valve prosthetic functionality. PMID:27789941

  17. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.

    PubMed

    Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic

    2015-07-15

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.

  18. Human placental multipotent mesenchymal stromal cells modulate placenta angiogenesis through Slit2-Robo signaling.

    PubMed

    Chen, Cheng-Yi; Tsai, Chin-Han; Chen, Chia-Yu; Wu, Yi-Hsin; Chen, Chie-Pein

    2016-03-03

    The objective of this study was to investigate whether human placental multipotent mesenchymal stromal cell (hPMSC)-derived Slit2 and endothelial cell Roundabout (Robo) receptors are involved in placental angiogenesis. The hPMSC-conditioned medium and human umbilical vein endothelial cells were studied for Slit2 and Robo receptor expression by immunoassay and RT-PCR. The effect of the conditioned medium of hPMSCs with or without Slit2 depletion on endothelial cells was investigated by in vitro angiogenesis using growth factor-reduced Matrigel. hPMSCs express Slit2 and both Robo1 and Robo4 are present in human umbilical vein endothelial cells. Human umbilical vein endothelial cells do not express Robo2 and Robo3. The hPMSC-conditioned medium and Slit2 recombinant protein significantly inhibit the endothelial cell migration, but not by the hPMSC-conditioned medium with Slit2 depletion. The hPMSC-conditioned medium and Slit2 significantly enhance endothelial tube formation with increased cumulated tube length, polygonal network number and vessel branching point number compared to endothelial cells alone. The tube formation is inhibited by the depletion of Slit2 from the conditioned medium, or following the expression of Robo1, Robo4, and both receptor knockdown using small interfering RNA. Furthermore, co-immunoprecipitation reveals Slit2 binds to Robo1 and Robo4. Robo1 interacts and forms a heterodimeric complex with Robo4. These results suggest the implication of both Robo receptors with Slit2 signaling, which is involved in endothelial cell angiogenesis. Slit2 in the conditioned medium of hPMSCs has functional effect on endothelial cells and may play a role in placental angiogenesis.

  19. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation.

    PubMed

    Cui, Kairong; Zang, Chongzhi; Roh, Tae-Young; Schones, Dustin E; Childs, Richard W; Peng, Weiqun; Zhao, Keji

    2009-01-09

    Histone modifications have been implicated in stem cell maintenance and differentiation. We have analyzed genome-wide changes in gene expression and histone modifications during differentiation of multipotent human primary hematopoietic stem cells/progenitor cells (HSCs/HPCs) into erythrocyte precursors. Our data indicate that H3K4me1, H3K9me1, and H3K27me1 associate with enhancers of differentiation genes prior to their activation and correlate with basal expression, suggesting that these monomethylations are involved in the maintenance of activation potential required for differentiation. In addition, although the majority of genes associated with both H3K4me3 and H3K27me3 in HSCs/HPCs become silent and lose H3K4me3 after differentiation, those that lose H3K27me3 and become activated after differentiation are associated with increased levels of H2A.Z, H3K4me1, H3K9me1, H4K20me1, and RNA polymerase II in HSCs/HPCs. Thus, our data suggest that gene expression changes during differentiation are programmed by chromatin modifications present at the HSC/HPC stage and provide a resource for enhancer and promoter identification.

  20. Purification and long-term expansion of multipotent endothelial-like cells with potential cardiovascular regeneration.

    PubMed

    Marchal, Juan A; Picón, Manuel; Perán, Macarena; Bueno, Clara; Jiménez-Navarro, Manuel; Carrillo, Esmeralda; Boulaiz, Houria; Rodríguez, Noela; Álvarez, Pablo; Menendez, Pablo; de Teresa, Eduardo; Aránega, Antonia

    2012-03-01

    Endothelial progenitor cells (EPC) represent a relatively rare cell population, and expansion of sufficient cell numbers remains a challenge. Nevertheless, human adipose-derived stem cells (hASC) can be easily isolated and possess the ability to differentiate into endothelial cells. Here, we propose the isolation and characterization of multipotent endothelial-like cells (ME-LC) with the capacity to maintain their vascular progenitor properties for long periods. hASC were isolated from lipoaspirates and cultured through distinct consecutive culture stages for 2 months to enrich ME-LC: first in Dulbecco's modified Eagle's medium-fetal bovine serum (stage I), followed by a stage of culture in absent of fetal bovine serum (stage II), a culture in SFO3 medium (stage III), and, finally, the culture of ME-LC into collagen IV-coated flasks in endothelial growth medium (EGM-2) (stage IV). ME-LC display increased expression levels of endothelial and hematopoietic lineage markers (CD45, KDR, and CXCR4) and EPC markers (CD34 and CD133), whereas the expression of CD31 was barely detectable. Reverse transcription (RT)-polymerase chain reaction assays showed expression of genes involved in early stages of EPC differentiation and decreased expression of genes associated to differentiated EPC (TIE-2, DLL4, and FLT-1). ME-LC formed capillary-like structures when grown on Matrigel, secreted increased levels of stromal cell-derived factor-1 (SDF-1), and showed the ability to migrate attracted by SDF-1, vascular endothelial growth factor, and hematopoietic growth factor cytokines. Importantly, ME-LC retained the capacity to differentiate into cardiomyocyte-like cells. We present a simplified and efficient method to generate large numbers of autologous ME-LC from lipoaspirates-derived hASC, opening up potential cell-based therapies for cardiovascular regenerative medicine.

  1. Gene markers of cellular aging in human multipotent stromal cells in culture

    PubMed Central

    2014-01-01

    Introduction Human multipotent stromal cells (MSCs) isolated from bone marrow or other tissue sources have great potential to treat a wide range of injuries and disorders in the field of regenerative medicine and tissue engineering. In particular, MSCs have inherent characteristics to suppress the immune system and are being studied in clinical studies to prevent graft-versus-host disease. MSCs can be expanded in vitro and have potential for differentiation into multiple cell lineages. However, the impact of cell passaging on gene expression and function of the cells has not been determined. Methods Commercially available human MSCs derived from bone marrow from six different donors, grown under identical culture conditions and harvested at cell passages 3, 5, and 7, were analyzed with gene-expression profiling by using microarray technology. Results The phenotype of these cells did not change as reported previously; however, a statistical analysis revealed a set of 78 significant genes that were distinguishable in expression between passages 3 and 7. None of these significant genes corresponded to the markers established by the International Society for Cellular Therapy (ISCT) for MSC identification. When the significant gene lists were analyzed through pathway analysis, these genes were involved in the top-scoring networks of cellular growth and proliferation and cellular development. A meta-analysis of the literature for significant genes revealed that the MSCs seem to be undergoing differentiation into a senescent cell type when cultured extensively. Consistent with the differences in gene expression at passage 3 and 7, MSCs exhibited a significantly greater potential for cell division at passage 3 in comparison to passage 7. Conclusions Our results identified specific gene markers that distinguish aging MSCs grown in cell culture. Confirmatory studies are needed to correlate these molecular markers with biologic attributes that may facilitate the development

  2. Comparison of nestin-expressing multipotent stem cells in the tongue fungiform papilla and vibrissa hair follicle.

    PubMed

    Mii, Sumiyuki; Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2014-06-01

    We have previously reported that hair follicles contain multipotent stem cells, which express nestin and participate in follicle growth at anagen as well as in the extension of the follicle sensory nerve. The nestin-driven green fluorescent protein (ND-GFP) transgenic mouse labels all nestin-expressing cells with GFP. The hair follicle nestin-GFP cells can differentiate into neurons, Schwann cells, and other cell types. In this study, we describe nestin-expressing multipotent stem cells in the fungiform papilla in the tongue. The nestin-expressing multipotent stem cells in the fungiform papilla are located around a peripheral sensory nerve immediately below the taste bud and co-express the neural crest cell marker p75(NTR) . The fungiform papilla cells formed spheres in suspension culture in DMEM-F12 medium supplemented with basic fibroblast growth factor (bFGF). The spheres consisted of nestin-expressing cells that co-expressed the neural crest marker p75(NTR) and which developed expression of the stem cell marker CD34. P75(NTR), CD34 and nestin co-expression suggested that nestin-expressing cells comprising the fungiform papilla spheres were in a relatively undifferentiated state. The nestin-expressing cells of these spheres acquired the following markers: β III tubulin typical of nerve cells; GFAP typical of glial cells; K15 typical of keratinocytes; and smooth-muscle antigen (SMA), after transfer to RPMI 1640 medium with 10% fetal bovine serum (FBS), suggesting they differentiated into multiple cell types. The results of the current study indicate nestin-expressing fungiform papilla cells and the nestin-expressing hair follicle stem cells have common features of cell morphology and ability to differentiate into multiple cell types, suggesting their remarkable similarity.

  3. The cultivation of human multipotent mesenchymal stromal cells in clinical grade medium for bone tissue engineering.

    PubMed

    Pytlík, Robert; Stehlík, David; Soukup, Tomás; Kalbácová, Marie; Rypácek, Frantisek; Trc, Tomás; Mulinková, Katarína; Michnová, Petra; Kideryová, Linda; Zivný, Jan; Klener, Pavel; Veselá, Romana; Trnený, Marek; Klener, Pavel

    2009-07-01

    Clinical application of human multipotent mesenchymal stromal cells (hMSCs) requires their expansion to be safe and rapid. We aimed to develop an expansion protocol which would avoid xenogeneic proteins, including fetal calf serum (FCS), and which would shorten the cultivation time and avoid multiple passaging. First, we have compared research-grade alpha-MEM medium with clinical grade CellGro for Hematopoietic Cells' Medium. When FCS was used for supplementation and non-adherent cells were discarded, both media were comparable. Both media were comparable also when pooled human serum (hS) was used instead of FCS, but the numbers of hMSCs were lower when non-adherent cells were discarded. However, significantly more hMSCs were obtained both in alpha-MEM and in CellGro supplemented with hS when the non-adherent cells were left in the culture. Furthermore, addition of recombinant cytokines and other supplements (EGF, PDGF-BB, M-CSF, FGF-2, dexamethasone, insulin and ascorbic acid) to the CellGro co-culture system with hS led to 40-fold increase of hMSCs' yield after two weeks of cultivation compared to alpha-MEM with FCS. The hMSCs expanded in the described co-culture system retain their osteogenic, adipogenic and chondrogenic differentiation potential in vitro and produce bone-like mineralized tissue when propagated on 3D polylactide scaffolds in immunodeficient mice. Our protocol thus allows for very effective one-step, xenogeneic protein-free expansion of hMSCs, which can be easily transferred into good manufacturing practice (GMP) conditions for large-scale, clinical-grade production of hMSCs for purposes of tissue engineering.

  4. Adrenomedullary progenitor cells: Isolation and characterization of a multi-potent progenitor cell population.

    PubMed

    Vukicevic, Vladimir; Rubin de Celis, Maria Fernandez; Pellegata, Natalia S; Bornstein, Stefan R; Androutsellis-Theotokis, Andreas; Ehrhart-Bornstein, Monika

    2015-06-15

    The adrenal is a highly plastic organ with the ability to adjust to physiological needs by adapting hormone production but also by generating and regenerating both adrenocortical and adrenomedullary tissue. It is now apparent that many adult tissues maintain stem and progenitor cells that contribute to their maintenance and adaptation. Research from the last years has proven the existence of stem and progenitor cells also in the adult adrenal medulla throughout life. These cells maintain some neural crest properties and have the potential to differentiate to the endocrine and neural lineages. In this article, we discuss the evidence for the existence of adrenomedullary multi potent progenitor cells, their isolation and characterization, their differentiation potential as well as their clinical potential in transplantation therapies but also in pathophysiology.

  5. The role of RhoA kinase inhibition in human placenta-derived multipotent cells on neural phenotype and cell survival.

    PubMed

    Wang, Chih-Hsiang; Wu, Chia-Ching; Hsu, Shan-Hui; Liou, Jun-Yang; Li, Yu-Wei; Wu, Kenneth K; Lai, Yiu-Kay; Yen, B Linju

    2013-04-01

    Current advances in stem cell biology have brought much hope for therapy of neuro-degenerative diseases. However, neural stem cells (NSCs) are rare adult stem cells, and the use of non-NSCs requires efficient and high-yielding lineage-specific differentiation prior to transplantation for efficacy. We report on the efficient differentiation of placental-derived multipotent cells (PDMCs) into a neural phenotype with use of Y-27632, a clinically compliant small molecular inhibitor of Rho kinase (ROCK) which is a major mediator of cytoskeleton dynamics. Y-27632 does not induce differentiation of PDMC toward the mesodermal lineages of adipogenesis and osteogenesis, but rather a neural-like morphology, with rapid development of cell extensions and processes within 24 h. Compared with conventional neurogenic differentiation agents, Y-27632 induces a higher percentage of neural-like cells in PDMCs without arresting proliferation or cell cycle dynamics. Y-27632-treated PDMCs express several neural lineage genes at the RNA and protein level, including nestin, MAP2, and GFAP. The effect of the ROCK inhibitor is cell-specific to PDMCs, and is mainly mediated through the ROCK2 isoform and its downstream target, myosin II. Our data suggest that ROCK inhibition and cytoskeletal rearrangement may allow for induction of a neural phenotype in PDMCs without compromising cell survival.

  6. Secreted proteome of the murine multipotent hematopoietic progenitor cell line DKmix.

    PubMed

    Luecke, Nina; Templin, Christian; Muetzelburg, Marika Victoria; Neumann, Detlef; Just, Ingo; Pich, Andreas

    2010-03-15

    Administration of the multipotent hematopoietic progenitor cell (HPC) line DKmix improved cardiac function after myocardial infarction and accelerated dermal wound healing due to paracrine mechanisms. The aim of this study was to analyse the secreted proteins of DKmix cells in order to identify the responsible paracrine factors and assess their relevance to the wide spectrum of therapeutic effects. A mass spectrometry (MS)-based approach was used to identify secreted proteins of DKmix cells. Serum free culture supernatants of DKmix-conditioned medium were collected and the proteins present were separated, digested by trypsin and the resulting peptides were then analyzed by matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) MS. Overall 95 different proteins were identified. Among them, secretory proteins galectin-3 and gelsolin were identified. These proteins are known to stimulate cell migration and influence wound healing and cardiac remodelling. The remaining proteins originate from intracellular compartments like cytoplasm (69%), nucleus (12%), mitochondria (4%), and cytoplasmic membrane (3%) indicating permeable or leaky DKmix cells in the conditioned medium. Additionally, a sandwich immunoassay was used to detect and quantify cytokines and chemokines. Interleukin-6 (IL-6), interleukin-13 (IL-13), monocyte-chemoattractant protein-1 (MCP-1), monocyte-chemoattractant protein-3 (MCP-3), monocyte-chemoattractant protein-1alpha (MIP-1alpha) and monocyte-chemoattractant protein-1beta (MIP-1beta) were detected in low concentrations. This study identified a subset of proteins present in the DKmix-conditioned medium that act as paracrine modulators of tissue repair. Moreover, it suggests that DKmix-derived conditioned medium might have therapeutic potency by promoting tissue regeneration.

  7. Toward Brain Tumor Gene Therapy Using Multipotent Mesenchymal Stromal Cell Vectors

    PubMed Central

    Bexell, Daniel; Scheding, Stefan; Bengzon, Johan

    2010-01-01

    Gene therapy of solid cancers has been severely restricted by the limited distribution of vectors within tumors. However, cellular vectors have emerged as an effective migratory system for gene delivery to invasive cancers. Implanted and injected multipotent mesenchymal stromal cells (MSCs) have shown tropism for several types of primary tumors and metastases. This capacity of MSCs forms the basis for their use as a gene vector system in neoplasms. Here, we review the tumor-directed migratory potential of MSCs, mechanisms of the migration, and the choice of therapeutic transgenes, with a focus on malignant gliomas as a model system for invasive and highly vascularized tumors. We examine recent findings demonstrating that MSCs share many characteristics with pericytes and that implanted MSCs localize primarily to perivascular niches within tumors, which might have therapeutic implications. The use of MSC vectors in cancer gene therapy raises concerns, however, including a possible MSC contribution to tumor stroma and vasculature, MSC-mediated antitumor immune suppression, and the potential malignant transformation of cultured MSCs. Nonetheless, we highlight the novel prospects of MSC-based tumor therapy, which appears to be a promising approach. PMID:20407426

  8. Molecular Characterization of Prospectively Isolated Multipotent Mesenchymal Progenitors Provides New Insight into the Cellular Identity of Mesenchymal Stem Cells in Mouse Bone Marrow

    PubMed Central

    Badaloni, Aurora; Chiara, Francesca; Stjernberg, Jenny; Polisetti, Naresh; Nihlberg, Kristian; Consalez, G. Giacomo; Sigvardsson, Mikael

    2013-01-01

    Despite great progress in the identification of mesenchymal stem cells (MSCs) from bone marrow (BM), our knowledge of their in vivo cellular identity remains limited. We report here that cells expressing the transcription factor Ebf2 in adult BM display characteristics of MSCs. The Ebf2+ cells are highly clonal and physiologically quiescent. In vivo lineage-tracing experiments, single cell clone transplantations, and in vitro differentiation assays revealed their self-renewal and multilineage differentiation capacity. Gene expression analysis of the freshly sorted Ebf2+ cells demonstrated the expression of genes previously reported to be associated with MSCs and the coexpression of multiple lineage-associated genes at the single-cell level. Thus, Ebf2 expression is not restricted to committed osteoblast progenitor cells but rather marks a multipotent mesenchymal progenitor cell population in adult mouse BM. These cells do not appear to completely overlap the previously reported MSC populations. These findings provide new insights into the in vivo cellular identity and molecular properties of BM mesenchymal stem and progenitor cells. PMID:23184664

  9. Radioelectric asymmetric conveyed fields and human adipose-derived stem cells obtained with a nonenzymatic method and device: a novel approach to multipotency.

    PubMed

    Maioli, Margherita; Rinaldi, Salvatore; Santaniello, Sara; Castagna, Alessandro; Pigliaru, Gianfranco; Delitala, Alessandro; Bianchi, Francesca; Tremolada, Carlo; Fontani, Vania; Ventura, Carlo

    2014-01-01

    Human adipose-derived stem cells (hASCs) have been recently proposed as a suitable tool for regenerative therapies for their simple isolation procedure and high proliferative capability in culture. Although hASCs can be committed into different lineages in vitro, the differentiation is a low-yield and often incomplete process. We have recently developed a novel nonenzymatic method and device, named Lipogems, to obtain a fat tissue derivative highly enriched in pericytes/mesenchymal stem cells by mild mechanical forces from human lipoaspirates. When compared to enzymatically dissociated cells, Lipogems-derived hASCs exhibited enhanced transcription of vasculogenic genes in response to provasculogenic molecules, suggesting that these cells may be amenable for further optimization of their multipotency. Here we exposed Lipogems-derived hASCs to a radioelectric asymmetric conveyer (REAC), an innovative device asymmetrically conveying radioelectric fields, affording both enhanced differentiating profiles in mouse embryonic stem cells and efficient direct multilineage reprogramming in human skin fibroblasts. We show that specific REAC exposure remarkably enhanced the transcription of prodynorphin, GATA-4, Nkx-2.5, VEGF, HGF, vWF, neurogenin-1, and myoD, indicating the commitment toward cardiac, vascular, neuronal, and skeletal muscle lineages, as inferred by the overexpression of a program of targeted marker proteins. REAC exposure also finely tuned the expression of stemness-related genes, including NANOG, SOX-2, and OCT-4. Noteworthy, the REAC-induced responses were fashioned at a significantly higher extent in Lipogems-derived than in enzymatically dissociated hASCs. Therefore, REAC-mediated interplay between radioelectric asymmetrically conveyed fields and Lipogems-derived hASCs appears to involve the generation of an ideal "milieu" to optimize multipotency expression from human adult stem cells in view of potential improvement of future cell therapy efforts.

  10. Image-guided intrathymic injection of multipotent stem cells supports lifelong T-cell immunity and facilitates targeted immunotherapy.

    PubMed

    Tuckett, Andrea Z; Thornton, Raymond H; Shono, Yusuke; Smith, Odette M; Levy, Emily R; Kreines, Fabiana M; van den Brink, Marcel R M; Zakrzewski, Johannes L

    2014-05-01

    T-cell deficiency related to disease, medical treatment, or aging represents a major clinical challenge and is associated with significant morbidity and mortality in cancer and bone marrow transplantation recipients. This study describes several innovative and clinically relevant strategies to manipulate thymic function based on an interventional radiology technique for intrathymic injection of cells or drugs. We show that intrathymic injection of multipotent hematopoietic stem/progenitor cells into irradiated syngeneic or allogeneic young or aged recipients resulted in efficient and long-lasting generation of functional donor T cells. Persistence of intrathymic donor cells was associated with intrathymic presence of cells resembling long-term hematopoietic stem cells, suggesting a self-renewal capacity of the intrathymically injected cells. Furthermore, our approach enabled the induction of long-term antigen-specific T-cell-mediated antitumor immunity following intrathymic injection of progenitor cells harboring a transgenic T-cell receptor gene. The intrathymic injection of interleukin-7 prior to irradiation conferred radioprotection. In addition, thymopoiesis of aged mice improved with a single intrathymic administration of low-dose keratinocyte growth factor, an effect that was sustained even in the setting of radiation-induced injury. Taken together, we established a preclinical framework for the development of novel clinical protocols to establish lifelong antigen-specific T-cell immunity.

  11. Multipotent nestin-positive stem cells reside in the stroma of human eccrine and apocrine sweat glands and can be propagated robustly in vitro.

    PubMed

    Nagel, Sabine; Rohr, Franziska; Weber, Caroline; Kier, Janina; Siemers, Frank; Kruse, Charli; Danner, Sandra; Brandenburger, Matthias; Matthiessen, Anna Emilia

    2013-01-01

    Human skin harbours multiple different stem cell populations. In contrast to the relatively well-characterized niches of epidermal and hair follicle stem cells, the localization and niches of stem cells in other human skin compartments are as yet insufficiently investigated. Previously, we had shown in a pilot study that human sweat gland stroma contains Nestin-positive stem cells. Isolated sweat gland stroma-derived stem cells (SGSCs) proliferated in vitro and expressed Nestin in 80% of the cells. In this study, we were able to determine the precise localization of Nestin-positive cells in both eccrine and apocrine sweat glands of human axillary skin. We established a reproducible isolation procedure and characterized the spontaneous, long-lasting multipotent differentiation capacity of SGSCs. Thereby, a pronounced ectodermal differentiation was observed. Moreover, the secretion of prominent cytokines demonstrated the immunological potential of SGSCs. The comparison to human adult epidermal stem cells (EpiSCs) and bone marrow stem cells (BMSCs) revealed differences in protein expression and differentiation capacity. Furthermore, we found a coexpression of the stem cell markers Nestin and Iα6 within SGSCs and human sweat gland stroma. In conclusion the initial results of the pilot study were confirmed, indicating that human sweat glands are a new source of unique stem cells with multilineage differentiation potential, high proliferation capacity and remarkable self renewal. With regard to the easy accessibility of skin tissue biopsies, an autologous application of SGSCs in clinical therapies appears promising.

  12. Hair follicle: a novel source of multipotent stem cells for tissue engineering and regenerative medicine.

    PubMed

    Mistriotis, Panagiotis; Andreadis, Stelios T

    2013-08-01

    The adult body harbors powerful reservoirs of stem cells that enable tissue regeneration under homeostatic conditions or in response to disease or injury. The hair follicle (HF) is a readily accessible mini organ within the skin and contains stem cells from diverse developmental origins that were shown to have surprisingly broad differentiation potential. In this review, we discuss the biology of the HF with particular emphasis on the various stem cell populations residing within the tissue. We summarize the existing knowledge on putative HF stem cell markers, the differentiation potential, and technologies to isolate and expand distinct stem cell populations. We also discuss the potential of HF stem cells for drug and gene delivery, tissue engineering, and regenerative medicine. We propose that the abundance of stem cells with broad differentiation potential and the ease of accessibility makes the HF an ideal source of stem cells for gene and cell therapies.

  13. Chronic activation of pattern recognition receptors suppresses brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes.

    PubMed

    Bae, Jiyoung; Chen, Jiangang; Zhao, Ling

    2015-06-01

    Brown adipose tissue (BAT) holds promise to combat obesity through energy-spending, non-shivering thermogenesis. Understanding of regulation of BAT development can lead to novel strategies to increase BAT mass and function for obesity treatment and prevention. Here, we report the effects of chronic activation of PRR on brown adipogenesis of multipotent mesodermal stem C3H10T1/2 cells and immortalized brown pre-adipocytes from the classical interscapular BAT of mice. Activation of NOD1, TLR4, or TLR2 by their respective synthetic ligand suppressed brown marker gene expression and lipid accumulation during differentiation of brown-like adipocytes of C3H10T1/2. Activation of the PRR only during the commitment was sufficient to suppress the differentiation. PRR activation suppressed PGC-1α mRNA, but induced PRDM16 mRNA at the commitment. Consistently, PRR activation suppressed the differentiation of immortalized brown pre-adipocytes. Activation of PRR induced NF-κB activation in both cells, which correlated with their abilities to suppress PPARγ transactivation, a critical event for brown adipogenesis. Taken together, our results demonstrate that chronic PRR activation suppressed brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes, possibly through suppression of PPARγ transactivation. The results suggest that anti- inflammatory therapies targeting PRRs may be beneficial for the BAT development.

  14. The Osteogenic Properties of Multipotent Mesenchymal Stromal Cells in Cultures on TiO2 Sol-Gel-Derived Biomaterial

    PubMed Central

    Marycz, Krzysztof; Śmieszek, Agnieszka; Grzesiak, Jakub; Siudzińska, Anna; Marędziak, Monika; Donesz-Sikorska, Anna; Krzak, Justyna

    2015-01-01

    The biocompatibility of the bone implants is a crucial factor determining the successful tissue regeneration. The aim of this work was to compare cellular behavior and osteogenic properties of rat adipose-derived multipotent stromal cells (ASCs) and bone marrow multipotent stromal cells (BMSCs) cultured on metallic substrate covered with TiO2 sol-gel-derived nanolayer. The morphology, proliferation rate, and osteogenic differentiation potential of both ASCs and BMSCs propagated on the biomaterials were examined. The potential for osteogenic differentiation of ASCs and BMSCs was determined based on the presence of specific markers of osteogenesis, that is, alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCL). Additionally, the concentration of calcium and phosphorus in extracellular matrix was determined using energy-dispersive X-ray spectroscopy (SEM-EDX). Obtained results showed that TiO2 layer influenced proliferation activity of ASCs, which manifested by shortening of population doubling time and increase of OPN secretion. However, characteristic features of cells morphology and growth pattern of cultures prompted us to conclude that ultrathin TiO2 layer might also enhance osteodifferentiation of BMSCs. Therefore in our opinion, both populations of MSCs should be used for biological evaluation of biomaterials compatibility, such results may enhance the area of investigations related to regenerative medicine. PMID:25710015

  15. The administration of multipotent stromal cells at precancerous stage precludes tumor growth and epithelial dedifferentiation of oral squamous cell carcinoma.

    PubMed

    Bruna, Flavia; Arango-Rodríguez, Martha; Plaza, Anita; Espinoza, Iris; Conget, Paulette

    2017-01-01

    Multipotent stromal cells (MSCs) are envisioned as a powerful therapeutic tool. As they home into tumors, secrete trophic and vasculogenic factors, and suppress immune response their role in carcinogenesis is a matter of controversy. Worldwide oral squamous cell carcinoma (OSCC) is the fifth most common epithelial cancer. Our aim was to determine whether MSC administration at precancerous stage modifies the natural progression of OSCC. OSCC was induced in Syrian hamsters by topical application of DMBA in the buccal pouch. At papilloma stage, the vehicle or 3×10(6) allogenic bone marrow-derived MSCs were locally administered. Four weeks later, the lesions were studied according to: volume, stratification (histology), proliferation (Ki-67), apoptosis (Caspase 3 cleaved), vasculature (ASMA), inflammation (Leukocyte infiltrate), differentiation (CK1 and CK4) and gene expression profile (mRNA). Tumors found in individuals that received MSCs were smaller than those presented in the vehicle group (87±80 versus 54±62mm(3), p<0.05). The rate of proliferation was two times lower and the apoptosis was 2.5 times higher in lesions treated with MSCs than in untreated ones. While the laters presented dedifferentiated cells, the former maintained differentiated cells (cytokeratin and gene expression profile similar to normal tissue). Thus, MSC administration at papilloma stage precludes tumor growth and epithelial dedifferentiation of OSCC.

  16. Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development.

    PubMed

    Viktorin, Gudrun; Riebli, Nadia; Popkova, Anna; Giangrande, Angela; Reichert, Heinrich

    2011-08-15

    The neural stem cells that give rise to the neural lineages of the brain can generate their progeny directly or through transit amplifying intermediate neural progenitor cells (INPs). The INP-producing neural stem cells in Drosophila are called type II neuroblasts, and their neural progeny innervate the central complex, a prominent integrative brain center. Here we use genetic lineage tracing and clonal analysis to show that the INPs of these type II neuroblast lineages give rise to glial cells as well as neurons during postembryonic brain development. Our data indicate that two main types of INP lineages are generated, namely mixed neuronal/glial lineages and neuronal lineages. Genetic loss-of-function and gain-of-function experiments show that the gcm gene is necessary and sufficient for gliogenesis in these lineages. The INP-derived glial cells, like the INP-derived neuronal cells, make major contributions to the central complex. In postembryonic development, these INP-derived glial cells surround the entire developing central complex neuropile, and once the major compartments of the central complex are formed, they also delimit each of these compartments. During this process, the number of these glial cells in the central complex is increased markedly through local proliferation based on glial cell mitosis. Taken together, these findings uncover a novel and complex form of neurogliogenesis in Drosophila involving transit amplifying intermediate progenitors. Moreover, they indicate that type II neuroblasts are remarkably multipotent neural stem cells that can generate both the neuronal and the glial progeny that make major contributions to one and the same complex brain structure.

  17. Persistence of human parvovirus B19 in multipotent mesenchymal stromal cells expressing the erythrocyte P antigen: implications for transplantation.

    PubMed

    Sundin, Mikael; Lindblom, Anna; Orvell, Claes; Barrett, A John; Sundberg, Berit; Watz, Emma; Wikman, Agneta; Broliden, Kristina; Le Blanc, Katarina

    2008-10-01

    Multipotent mesenchymal stromal cells (MSCs) are used to improve the outcome of hematopoietic stem cell transplantation (HCST) and in regenerative medicine. MSCs may harbor persistent viruses that may compromise their clinical benefit, however. Retrospectively screened, 1 of 20 MSCs from healthy donors contained parvovirus B19 (B19) DNA. MSCs express the B19 receptor (P antigen/globoside) and a co-receptor (Ku 80) and can transmit B19 to bone marrow cells in vitro, suggesting that the virus can persist in the marrow stroma of healthy individuals. Two patients undergoing HSCT received the B19-positive MSCs as treatment for graft-versus-host disease; neither developed viremia nor symptomatic B19 infection. These findings demonstrate for the first time that persistent B19 in MSCs can infect hematopoietic stem cells and underscore the importance of monitoring B19 transmission by MSC products.

  18. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment

    SciTech Connect

    Iso, Yoshitaka; Spees, Jeffrey L.; E-mail: Jeffrey.Spees@uvm.edu; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J. . E-mail: dprocko@tulane.edu

    2007-03-16

    The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion.

  19. Multipotent Differentiation of Human Dental Pulp Stem Cells: a Literature Review.

    PubMed

    Nuti, N; Corallo, C; Chan, B M F; Ferrari, M; Gerami-Naini, B

    2016-10-01

    The advent of regenerative medicine has brought us the opportunity to regenerate, modify and restore human organs function. Stem cells, a key resource in regenerative medicine, are defined as clonogenic, self-renewing, progenitor cells that can generate into one or more specialized cell types. Stem cells have been classified into three main groups: embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult/postnatal stem cells (ASCs). The present review focused the attention on ASCs, which have been identified in many perioral tissues such as dental pulp, periodontal ligament, follicle, gingival, alveolar bone and papilla. Human dental pulp stem cells (hDPSCs) are ectodermal-derived stem cells, originating from migrating neural crest cells and possess mesenchymal stem cell properties. During last decade, hDPSCs have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and ability to differentiate in several cell phenotypes. In this review, we have carefully described the potential of hDPSCs to differentiate into odontoblasts, osteocytes/osteoblasts, adipocytes, chondrocytes and neural cells.

  20. Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA.

    PubMed

    Lui, Kathy O; Zangi, Lior; Silva, Eduardo A; Bu, Lei; Sahara, Makoto; Li, Ronald A; Mooney, David J; Chien, Kenneth R

    2013-10-01

    Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart.

  1. Putative intermediates in the nerve cell differentiation pathway in hydra have properties of multipotent stem cells

    SciTech Connect

    Holstein, T.W.; David, C.N. )

    1990-12-01

    We have investigated the properties of nerve cell precursors in hydra by analyzing the differentiation and proliferation capacity of interstitial cells in the peduncle of Hydra oligactis, which is a region of active nerve cell differentiation. Our results indicate that about 50% of the interstitial cells in the peduncle can grow rapidly and also give rise to nematocyte precursors when transplanted into a gastric environment. If these cells were committed nerve cell precursors, one would not expect them to differentiate into nematocytes nor to proliferate apparently without limit. Therefore we conclude that cycling interstitial cells in peduncles are not intermediates in the nerve cell differentiation pathway but are stem cells. The remaining interstitial cells in the peduncle are in G1 and have the properties of committed nerve cell precursors. Thus, the interstitial cell population in the peduncle contains both stem cells and noncycling nerve precursors. The presence of stem cells in this region makes it likely that these cells are the immediate targets of signals which give rise to nerve cells.

  2. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    SciTech Connect

    Santamaria-Martinez, Albert; Barquinero, Jordi; Barbosa-Desongles, Anna; Hurtado, Antoni; Pinos, Tomas; Seoane, Joan; Poupon, Marie-France; Morote, Joan; Reventos, Jaume; Munell, Francina

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  3. ZBTB16 as a Downstream Target Gene of Osterix Regulates Osteoblastogenesis of Human Multipotent Mesenchymal Stromal Cells

    PubMed Central

    Onizuka, Satoru; Park, Sung‐Joon; Nakai, Kenta; Yamato, Masayuki; Izumi, Yuichi

    2016-01-01

    ABSTRACT Human multipotent mesenchymal stromal cells (hMSCs) possess the ability to differentiate into osteoblasts, and they can be utilized as a source for bone regenerative therapy. Osteoinductive pretreatment, which induces the osteoblastic differentiation of hMSCs in vitro, has been widely used for bone tissue engineering prior to cell transplantation. However, the molecular basis of osteoblastic differentiation induced by osteoinductive medium (OIM) is still unknown. Therefore, we used a next‐generation sequencer to investigate the changes in gene expression during the osteoblastic differentiation of hMSCs. The hMSCs used in this study possessed both multipotency and self‐renewal ability. Whole‐transcriptome analysis revealed that the expression of zinc finger and BTB domain containing 16 (ZBTB16) was significantly increased during the osteoblastogenesis of hMSCs. ZBTB16 mRNA and protein expression was enhanced by culturing the hMSCs with OIM. Small interfering RNA (siRNA)‐mediated gene silencing of ZBTB16 decreased the activity of alkaline phosphatase (ALP); the expression of osteogenic genes, such as osteocalcin (OCN) and bone sialoprotein (BSP), and the mineralized nodule formation induced by OIM. siRNA‐mediated gene silencing of Osterix (Osx), which is known as an essential regulator of osteoblastic differentiation, markedly downregulated the expression of ZBTB16. In addition, chromatin immunoprecipitation (ChIP) assays showed that Osx associated with the ZBTB16 promoter region containing the GC‐rich canonical Sp1 sequence, which is the specific Osx binding site. These findings suggest that ZBTB16 acts as a downstream transcriptional regulator of Osx and can be useful as a late marker of osteoblastic differentiation. J. Cell. Biochem. 117: 2423–2434, 2016. © 2016 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc. PMID:27335174

  4. Myocardial Ischemic Subject’s Thymus Fat: A Novel Source of Multipotent Stromal Cells

    PubMed Central

    Salas, Julián; Lhamyani, Said; Gentile, Adriana-Mariel; Sarria García, Esteban; Hmadcha, Abdelkrim; Zayed, Hatem; Vega-Rioja, Antonio; Tinahones, Francisco J.; El Bekay, Rajaa

    2015-01-01

    Objective Adipose Tissue Stromal Cells (ASCs) have important clinical applications in the regenerative medicine, cell replacement and gene therapies. Subcutaneous Adipose Tissue (SAT) is the most common source of these cells. The adult human thymus degenerates into adipose tissue (TAT). However, it has never been studied before as a source of stem cells. Material and Methods We performed a comparative characterization of TAT-ASCs and SAT-ASCs from myocardial ischemic subjects (n = 32) according to the age of the subjects. Results TAT-ASCs and SAT-ASCs showed similar features regarding their adherence, morphology and in their capacity to form CFU-F. Moreover, they have the capacity to differentiate into osteocyte and adipocyte lineages; and they present a surface marker profile corresponding with stem cells derived from AT; CD73+CD90+CD105+CD14-CD19-CD45-HLA-DR. Interestingly, and in opposition to SAT-ASCs, TAT-ASCs have CD14+CD34+CD133+CD45- cells. Moreover, TAT-ASCs from elderly subjects showed higher adipogenic and osteogenic capacities compared to middle aged subjects, indicating that, rather than impairing; aging seems to increase adipogenic and osteogenic capacities of TAT-ASCs. Conclusions This study describes the human TAT as a source of mesenchymal stem cells, which may have an enormous potential for regenerative medicine. PMID:26657132

  5. Adult stem cells: hopes and hypes of regenerative medicine.

    PubMed

    Dulak, Józef; Szade, Krzysztof; Szade, Agata; Nowak, Witold; Józkowicz, Alicja

    2015-01-01

    Stem cells are self-renewing cells that can differentiate into specialized cell type(s). Pluripotent stem cells, i.e. embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) differentiate into cells of all three embryonic lineages. Multipotent stem cells, like hematopoietic stem cells (HSC), can develop into multiple specialized cells in a specific tissue. Unipotent cells differentiate only into one cell type, like e.g. satellite cells of skeletal muscle. There are many examples of successful clinical applications of stem cells. Over million patients worldwide have benefited from bone marrow transplantations performed for treatment of leukemias, anemias or immunodeficiencies. Skin stem cells are used to heal severe burns, while limbal stem cells can regenerate the damaged cornea. Pluripotent stem cells, especially the patient-specific iPSC, have a tremendous therapeutic potential, but their clinical application will require overcoming numerous drawbacks. Therefore, the use of adult stem cells, which are multipotent or unipotent, can be at present a more achievable strategy. Noteworthy, some studies ascribed particular adult stem cells as pluripotent. However, despite efforts, the postulated pluripotency of such events like "spore-like cells", "very small embryonic-like stem cells" or "multipotent adult progenitor cells" have not been confirmed in stringent independent studies. Also plasticity of the bone marrow-derived cells which were suggested to differentiate e.g. into cardiomyocytes, has not been positively verified, and their therapeutic effect, if observed, results rather from the paracrine activity. Here we discuss the examples of recent studies on adult stem cells in the light of current understanding of stem cell biology.

  6. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    PubMed

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

  7. Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity.

    PubMed

    Rappa, Germana; Mercapide, Javier; Lorico, Aurelio

    2012-06-01

    Breast cancer progression involves cancer cell heterogeneity, with generation of invasive/metastatic breast cancer cells within populations of nonmetastatic cells of the primary tumor. Sequential genetic mutations, epithelial-to-mesenchymal transition, interaction with local stroma, and formation of hybrids between cancer cells and normal bone marrow-derived cells have been advocated as tumor progression mechanisms. We report herein the spontaneous in vitro formation of heterotypic hybrids between human bone marrow-derived multipotent stromal cells (MSCs) and two different breast carcinoma cell lines, MDA-MB-231 (MDA) and MA11. Hybrids showed predominantly mesenchymal morphological characteristics, mixed gene expression profiles, and increased DNA ploidy. Both MA11 and MDA hybrids were tumorigenic in immunodeficient mice, and some MDA hybrids had an increased metastatic capacity. Both in culture and as xenografts, hybrids underwent DNA ploidy reduction and morphological reversal to breast carcinoma-like morphological characteristics, while maintaining a mixed breast cancer-mesenchymal expression profile. Analysis of coding single-nucleotide polymorphisms by RNA sequencing revealed genetic contributions from both parental partners to hybrid tumors and metastasis. Because MSCs migrate and localize to breast carcinoma, our findings indicate that formation of MSC-breast cancer cell hybrids is a potential mechanism of the generation of invasive/metastatic breast cancer cells. Our findings reconcile the fusion theory of cancer progression with the common observation that breast cancer metastases are generally aneuploid, but not tetraploid, and are histopathologically similar to the primary neoplasm.

  8. Multipotent stromal cells derived from common marmoset Callithrix jacchus within alginate 3D environment: Effect of cryopreservation procedures.

    PubMed

    Gryshkov, Oleksandr; Hofmann, Nicola; Lauterboeck, Lothar; Pogozhykh, Denys; Mueller, Thomas; Glasmacher, Birgit

    2015-08-01

    Multipotent stromal cells derived from the common marmoset monkey Callithrix jacchus (cjMSCs) possess high phylogenetic similarity to humans, with a great potential for preclinical studies in the field of regenerative medicine. Safe and effective long-term storage of cells is of great significance to clinical and research applications. Encapsulation of such cell types within alginate beads that can mimic an extra-cellular matrix and provide a supportive environment for cells during cryopreservation, has several advantages over freezing of cells in suspension. In this study we have analysed the effect of dimethyl sulfoxide (Me2SO, 2.5-10%, v/v) and pre-freeze loading time of alginate encapsulated cjMSCs in Me2SO (0-45 min) on the viability and metabolic activity of the cells after freezing using a slow cooling rate (-1°C/min). It was found that these parameters affect the stability and homogeneity of alginate beads after thawing. Moreover, the cjMSCs can be frozen in alginate beads with lower Me2SO concentration of 7.5% after 30 min of loading, while retaining high cryopreservation outcome. We demonstrated the maximum viability, membrane integrity and metabolic activity of the cells under optimized, less cytotoxic conditions. The results of this study are another step forward towards the application of cryopreservation for the long-term storage and subsequent applications of transplants in cell-based therapies.

  9. Isolation of Multipotent Nestin-Expressing Stem Cells Derived from the Epidermis of Elderly Humans and TAT-VHL Peptide-Mediated Neuronal Differentiation of These Cells

    PubMed Central

    Kanno, Hiroshi; Kubo, Atsuhiko; Yoshizumi, Tetsuya; Mikami, Taro; Maegawa, Jiro

    2013-01-01

    A specialized population of cells residing in the hair follicle is quiescent but shows pluripotency for differentiating into epithelial-mesenchymal lineage cells. Therefore, such cells are hoped to be useful as implantable donor cells for regenerative therapy. Recently, it was reported that intracellular delivery of TAT-VHL peptide induces neuronal differentiation of skin-derived precursors. In the present study, we successfully isolated multipotent stem cells derived from the epidermis of elderly humans, characterized these cells as being capable of sphere formation and strong expression of nestin, fibronectin, and CD34 but not of keratin 15, and identified the niche of these cells as being the outer root sheath of the hair follicles. In addition, we showed that TAT-VHL peptide induced their neuronal differentiation in vitro, and confirmed by fluorescence immunohistochemistry the neuronal differentiation of such peptide-treated cells implanted into rodent brains. These multipotent nestin-expressing stem cells derived from human epidermis are easily accessible and should be useful as donor cells for neuronal regenerative cell therapy. PMID:23644888

  10. Effect of subcutaneous treatment with human umbilical cord blood-derived multipotent stem cells on peripheral neuropathic pain in rats

    PubMed Central

    Lee, Min Ju; Yoon, Tae Gyoon; Kang, Moonkyu

    2017-01-01

    In this study, we aim to determine the in vivo effect of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) on neuropathic pain, using three, principal peripheral neuropathic pain models. Four weeks after hUCB-MSC transplantation, we observed significant antinociceptive effect in hUCB-MSC–transplanted rats compared to that in the vehicle-treated control. Spinal cord cells positive for c-fos, CGRP, p-ERK, p-p 38, MMP-9 and MMP 2 were significantly decreased in only CCI model of hUCB-MSCs-grafted rats, while spinal cord cells positive for CGRP, p-ERK and MMP-2 significantly decreased in SNL model of hUCB-MSCs-grafted rats and spinal cord cells positive for CGRP and MMP-2 significantly decreased in SNI model of hUCB-MSCs-grafted rats, compared to the control 4 weeks or 8weeks after transplantation (p<0.05). However, cells positive for TIMP-2, an endogenous tissue inhibitor of MMP-2, were significantly increased in SNL and SNI models of hUCB-MSCs-grafted rats. Taken together, subcutaneous injection of hUCB-MSCs may have an antinociceptive effect via modulation of pain signaling during pain signal processing within the nervous system, especially for CCI model. Thus, subcutaneous administration of hUCB-MSCs might be beneficial for improving those patients suffering from neuropathic pain by decreasing neuropathic pain activation factors, while increasing neuropathic pain inhibition factor. PMID:28280408

  11. Ascl3 marks adult progenitor cells of the mouse salivary gland

    PubMed Central

    Rugel-Stahl, Anastasia; Elliot, Marilyn; Ovitt, Catherine E.

    2012-01-01

    The Ascl3 transcription factor marks a subset of salivary gland duct cells present in the three major salivary glands of the mouse. In vivo, these cells generate both duct and secretory acinar cell descendants. Here, we have analyzed whether Ascl3-expressing cells retain this multipotent lineage potential in adult glands. Cells isolated from mouse salivary glands were cultured in vitro as non-adherent spheres. Lineage tracing of the Ascl3-expressing cells within the spheres demonstrates that Ascl3+ cells isolated from adult glands remain multipotent, generating both duct and acinar cell types in vitro. Furthermore, we demonstrate that the progenitor cells characterized by Keratin 5 expression are an independent population from Ascl3+ progenitor cells. We conclude that the Ascl3+ cells are intermediate lineage-restricted progenitor cells of the adult salivary glands. PMID:22370009

  12. Th17 Pathway As a Target for Multipotent Stromal Cell Therapy in Dogs: Implications for Translational Research

    PubMed Central

    Kol, A.; Walker, N. J.; Nordstrom, M.; Borjesson, D. L.

    2016-01-01

    Detrimental Th17 driven inflammatory and autoimmune disease such as Crohn’s disease, graft versus host disease and multiple sclerosis remain a significant cause of morbidity and mortality worldwide. Multipotent stromal/stem cell (MSC) inhibit Th17 polarization and activation in vitro and in rodent models. As such, MSC based therapeutic approaches are being investigated as novel therapeutic approaches to treat Th17 driven diseases in humans. The significance of naturally occurring diseases in dogs is increasingly recognized as a realistic platform to conduct pre-clinical testing of novel therapeutics. Full characterization of Th17 cells in dogs has not been completed. We have developed and validated a flow-cytometric method to detect Th17 cells in canine blood. We further demonstrate that Th17 and other IL17 producing cells are present in tissues of dogs with naturally occurring chronic inflammatory diseases. Finally, we have determined the kinetics of a canine specific Th17 polarization in vitro and demonstrate that canine MSC inhibit Th17 polarization in vitro, in a PGE2 independent mechanism. Our findings provide fundamental research tools and suggest that naturally occurring diseases in dogs, such as inflammatory bowel disease, may be harnessed to translate novel MSC based therapeutic strategies that target the Th17 pathway. PMID:26872054

  13. Influence of Factors of Cryopreservation and Hypothermic Storage on Survival and Functional Parameters of Multipotent Stromal Cells of Placental Origin

    PubMed Central

    Pogozhykh, Olena; Mueller, Thomas; Prokopyuk, Olga

    2015-01-01

    Human placenta is a highly perspective source of multipotent stromal cells (MSCs) both for the purposes of patient specific auto-banking and allogeneic application in regenerative medicine. Implementation of new GMP standards into clinical practice enforces the search for relevant methods of cryopreservation and short-term hypothermic storage of placental MSCs. In this paper we analyze the effect of different temperature regimes and individual components of cryoprotective media on viability, metabolic and culture properties of placental MSCs. We demonstrate (I) the possibility of short-term hypothermic storage of these cells; (II) determine DMSO and propanediol as the most appropriate cryoprotective agents; (III) show the possibility of application of volume expanders (plasma substituting solutions based on dextran or polyvinylpyrrolidone); (IV) reveal the priority of ionic composition over the serum content in cryopreservation media; (V) determine a cooling rate of 1°C/min down to -40°C followed by immersion into liquid nitrogen as the optimal cryopreservation regime for this type of cells. This study demonstrates perspectives for creation of new defined cryopreservation methods towards GMP standards. PMID:26431528

  14. The human Smoothened inhibitor PF-04449913 induces exit from quiescence and loss of multipotent Drosophila hematopoietic progenitor cells

    PubMed Central

    Giangrande, Angela; Martinelli, Giovanni; Guadagnuolo, Viviana; Simonetti, Giorgia; Perini, Giovanni; Bernardoni, Roberto

    2016-01-01

    The efficient treatment of hematological malignancies as Acute Myeloid Leukemia, myelofibrosis and Chronic Myeloid Leukemia, requires the elimination of cancer-initiating cells and the prevention of disease relapse through targeting pathways that stimulate generation and maintenance of these cells. In mammals, inhibition of Smoothened, the key mediator of the Hedgehog signaling pathway, reduces Chronic Myeloid Leukemia progression and propagation. These findings make Smo a candidate target to inhibit maintenance of leukemia-initiating cells. In Drosophila melanogaster the same pathway maintains the hematopoietic precursor cells of the lymph gland, the hematopoietic organ that develops in the larva. Using Drosophila as an in vivo model, we investigated the mode of action of PF-04449913, a small-molecule inhibitor of the human Smo protein. Drosophila larvae fed with PF-04449913 showed traits of altered hematopoietic homeostasis. These include the development of melanotic nodules, increase of circulating hemocytes, the size increase of the lymph gland and accelerated differentiation of blood cells likely due to the exit of multi-potent precursors from quiescence. Importantly, the Smo inhibition can lead to the complete loss of hematopoietic precursors. We conclude that PF-04449913 inhibits Drosophila Smo blocking the Hh signaling pathway and causing the loss of hematopoietic precursor cells. Interestingly, this is the effect expected in patients treated with PF-04449913: number decrease of cancer initiating cells in the bone marrow to reduce the risk of leukemia relapse. Altogether our results indicate that Drosophila comprises a model system for the in vivo study of molecules that target evolutionary conserved pathways implicated in human hematological malignancies. PMID:27486815

  15. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells

    PubMed Central

    Coffelt, Seth B.; Marini, Frank C.; Watson, Keri; Zwezdaryk, Kevin J.; Dembinski, Jennifer L.; LaMarca, Heather L.; Tomchuck, Suzanne L.; zu Bentrup, Kerstin Honer; Danka, Elizabeth S.; Henkle, Sarah L.; Scandurro, Aline B.

    2009-01-01

    Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers. Although there is evidence to support a pro-tumorigenic role for LL-37, the function of the peptide in tumors remains unclear. Here, we demonstrate that neutralization of LL-37 in vivo significantly reduces the engraftment of MSCs into ovarian tumor xenografts, resulting in inhibition of tumor growth as well as disruption of the fibrovascular network. Migration and invasion experiments conducted in vitro indicated that the LL-37-mediated migration of MSCs to tumors likely occurs through formyl peptide receptor like-1. To assess the response of MSCs to the LL-37-rich tumor microenvironment, conditioned medium from LL-37-treated MSCs was assessed and found to contain increased levels of several cytokines and pro-angiogenic factors compared with controls, including IL-1 receptor antagonist, IL-6, IL-10, CCL5, VEGF, and matrix metalloproteinase-2. Similarly, Matrigel mixed with LL-37, MSCs, or the combination of the two resulted in a significant number of vascular channels in nude mice. These data indicate that LL-37 facilitates ovarian tumor progression through recruitment of progenitor cell populations to serve as pro-angiogenic factor-expressing tumor stromal cells. PMID:19234121

  16. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells.

    PubMed

    Coffelt, Seth B; Marini, Frank C; Watson, Keri; Zwezdaryk, Kevin J; Dembinski, Jennifer L; LaMarca, Heather L; Tomchuck, Suzanne L; Honer zu Bentrup, Kerstin; Danka, Elizabeth S; Henkle, Sarah L; Scandurro, Aline B

    2009-03-10

    Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers. Although there is evidence to support a pro-tumorigenic role for LL-37, the function of the peptide in tumors remains unclear. Here, we demonstrate that neutralization of LL-37 in vivo significantly reduces the engraftment of MSCs into ovarian tumor xenografts, resulting in inhibition of tumor growth as well as disruption of the fibrovascular network. Migration and invasion experiments conducted in vitro indicated that the LL-37-mediated migration of MSCs to tumors likely occurs through formyl peptide receptor like-1. To assess the response of MSCs to the LL-37-rich tumor microenvironment, conditioned medium from LL-37-treated MSCs was assessed and found to contain increased levels of several cytokines and pro-angiogenic factors compared with controls, including IL-1 receptor antagonist, IL-6, IL-10, CCL5, VEGF, and matrix metalloproteinase-2. Similarly, Matrigel mixed with LL-37, MSCs, or the combination of the two resulted in a significant number of vascular channels in nude mice. These data indicate that LL-37 facilitates ovarian tumor progression through recruitment of progenitor cell populations to serve as pro-angiogenic factor-expressing tumor stromal cells.

  17. Cochlear epithelial of dog fetuses: a new source of multipotent stem cells.

    PubMed

    Santos, Ana Carolina M; Borghesi, Jéssica; Mario, Lara Carolina; Anunciação, Adriana Raquel A; Mess, Andrea Maria; Carreira, Ana Claudia O; Favaron, Phelipe O; Miglino, Maria Angélica

    2017-02-01

    Hearing loss caused by the damage of cochlea sensory cells or neurons is a common human disease, but also affects dogs and other animals. To test their progenitor nature as potential value for future therapies, we characterized cells derived from the cochlear epithelium in dog fetuses. In total, 8 fetuses of 35-40 days of gestation, derived from castration campaigns, were investigated. Cells were analysed by the MTT colorimetric assay and in regard to cell cycle, differentiation capacities, immunophenotypes and qPCR analysis. In culture, cells had a fibroblast-like morphology. Phenotypic immunocharacterization showed positive staining for mesenchymal stem cell and pluripotency markers and were negative for hematopoietic cell markers. Cells possessed differentiation capacity for the three main cell lineages: osteogenic, adipogenic and chondrogenic, altogether indicating their nature as mesenchymal stem cells. Thus, cells derived from fetal cochlear tissues indeed may provide valuable sources of progenitor cells for cell therapy of canine deafness and other diseases.

  18. In vitro analysis of multipotent mesenchymal stromal cells as potential cellular therapeutics in neurometabolic diseases in pediatric patients.

    PubMed

    Müller, Ingo; Kustermann-Kuhn, Birgit; Holzwarth, Christina; Isensee, Gesa; Vaegler, Martin; Harzer, Klaus; Krägeloh-Mann, Ingeborg; Handgretinger, Rupert; Bruchelt, Gernot

    2006-10-01

    Multipotent mesenchymal stromal cells (MSCs) play an important role in stromal support for hematopoietic stem cells, immune modulation, and tissue regeneration. We investigated their potential as cellular therapeutic tools in neurometabolic diseases as a growing number of affected children undergo to bone marrow transplantation. MSCs were isolated from bone marrow aspirates and expanded ex vivo under various culture conditions. MSCs under optimal good medical practice (GMP)-conform culture conditions showed the typical morphology, immunophenotype, and plasticity. Biochemically, the activities of beta-hexosaminidase A, total beta-hexosaminidase, arylsulfatase A (ASA), and beta-galactosidase measured in MSCs were comparable to those in fibroblasts of healthy donors. These four enzymes were interesting for their expression in MSCs, as each of them is defective, respectively, in well-known neurometabolic diseases. We found that MSCs released significant amounts of ASA into the media. In coculture experiments, fibroblasts from patients with metachromatic leukodystrophy, who are deficient for ASA, took up a substantial amount of ASA that was released into the media from MSCs. Mannose-6-phosphate (M6P) inhibited this uptake, which was in accordance with the M6P receptor-mediated uptake of lysosomal enzymes. Taken together, we show that MSCs produce appreciable amounts of lysosomal enzyme activities, making these cells first-choice candidates for providing metabolic correction when given to enzyme-deficient patients. With the example of ASA, it was also shown that an enzyme secreted from MSCs is taken up by enzyme-deficient patient fibroblasts. Given the plasticity of MSCs, these cells represent an interesting add-on option for cellular therapy in children undergoing bone marrow transplantation for lysosomal storage diseases and other neurometabolic diseases.

  19. Endovenous administration of bone-marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice.

    PubMed

    Ezquer, Fernando; Ezquer, Marcelo; Simon, Valeska; Pardo, Fabian; Yañez, Alejandro; Carpio, Daniel; Conget, Paulette

    2009-11-01

    Twenty-five to 40% of diabetic patients develop diabetic nephropathy, a clinical syndrome that comprises renal failure and increased risk of cardiovascular disease. It represents the major cause of chronic kidney disease and is associated with premature morbimortality of diabetic patients. Multipotent mesenchymal stromal cells (MSC) contribute to the regeneration of several organs, including acutely injured kidney. We sought to evaluate if MSC protect kidney function and structure when endovenously administered to mice with severe diabetes. A month after nonimmunologic diabetes induction by streptozotocin injection, C57BL/6 mice presented hyperglycemia, glycosuria, hypoinsulinemia, massive beta-pancreatic islet destruction, low albuminuria, but not renal histopathologic changes (DM mice). At this stage, one group of animals received the vehicle (untreated) and other group received 2 doses of 0.5 x 10(6) MSC/each (MSC-treated). Untreated DM mice gradually increased urinary albumin excretion and 4 months after diabetes onset, they reached values 15 times higher than normal animals. In contrast, MSC-treated DM mice maintained basal levels of albuminuria. Untreated DM mice had marked glomerular and tubular histopathologic changes (sclerosis, mesangial expansion, tubular dilatation, proteins cylinders, podocytes lost). However, MSC-treated mice showed only slight tubular dilatation. Observed renoprotection was not associated with an improvement in endocrine pancreas function in this animal model, because MSC-treated DM mice remained hyperglycemic and hypoinsulinemic, and maintained few remnant beta-pancreatic islets throughout the study period. To study MSC biodistribution, cells were isolated from isogenic mice that constitutively express GFP (MSC(GFP)) and endovenously administered to DM mice. Although at very low levels, donor cells were found in kidney of DM mice 3 month after transplantation. Presented preclinical results support MSC administration as a cell

  20. Contrasting Roles for C/EBPα and Notch in Irradiation-Induced Multipotent Hematopoietic Progenitor Cell Defects

    PubMed Central

    Fleenor, Courtney Jo; Rozhok, Andrii Ivan; Zaberezhnyy, Vadym; Mathew, Divij; Kim, Jihye; Tan, Aik-Choon; Bernstein, Irwin David; DeGregori, James

    2014-01-01

    Ionizing radiation (IR) is associated with reduced hematopoietic function and increased risk of hematopoietic malignancies, although the mechanisms behind these relationships remain poorly understood. Both effects of IR have been commonly attributed to the direct induction of DNA mutations, but evidence supporting these hypotheses is largely lacking. Here we demonstrate that IR causes long-term, somatically heritable, cell-intrinsic reductions in hematopoietic stem cell (HSC) and multipotent hematopoietic progenitor cell (mHPC) self-renewal that are mediated by C/EBPα and reversed by Notch. mHPC from previously irradiated (>9 weeks prior), homeostatically restored mice exhibit gene expression profiles consistent with their precocious differentiation phenotype, including decreased expression of HSC-specific genes and increased expression of myeloid program genes (including C/EBPα). These gene expression changes are reversed by ligand-mediated activation of Notch. Loss of C/EBPα expression is selected for within previously irradiated HSC and mHPC pools, and is associated with reversal of IR-dependent precocious differentiation and restoration of self-renewal. Remarkably, restoration of mHPC self-renewal by ligand-mediated activation of Notch prevents selection for C/EBPα loss of function in previously irradiated mHPC pools. We propose that environmental insults prompt HSC to initiate a program limiting their self-renewal, leading to loss of the damaged HSC from the pool while allowing this HSC to temporarily contribute to differentiated cell pools. This “programmed mediocrity” is advantageous for the sporadic genotoxic insults animals have evolved to deal with, but becomes tumor promoting when the entire HSC compartment is damaged, such as during total body irradiation, by increasing selective pressure for adaptive oncogenic mutations. PMID:25546133

  1. Combination of the multipotent mesenchymal stromal cell transplantation with administration of temozolomide increases survival of rats with experimental glioblastoma.

    PubMed

    Bryukhovetskiy, Igor; Bryukhovetsky, Andrei; Khotimchenko, Yuri; Mischenko, Polina; Tolok, Elena; Khotimchenko, Rodion

    2015-08-01

    Glioblastoma multiforme (GM) is an aggressive malignant tumor of the brain. The standard treatment of GM is surgical resection with consequent radio- and chemotherapy with temozolomide. The prognosis is unfavorable, with a survival time of 12-14 months. The phenomenon of targeted migration to the tumor in the brain opens novel possibilities for the treatment of GM. Multipotent mesenchymal stromal cells (MMSCs) are a cell type with anti-carcinogenic properties and can be used to optimize GM therapy. The aim of the present study was to investigate the effects of MMSC transplantation in the chemotherapy of a rat model of C6 glioma. A total of 130 animals were divided into a control group, a temozolomide group, MMSCs group and temozolomide + MMSCs group. The experiment was performed over 70 days, and a combination of molecular biology, surgical and neuroimaging techniques, as well as histological and physiological examinations was used. Tumor size was smallest in the temozolomide (115.76 ± 16.25 mm(3)) and in temozolomide + MMSCs (114.74 ± 5.54 mm(3)) groups, which was significantly smaller than the neoplastic node size in the control group (202.09 ± 39.72 mm(3)) (P<0.05). The animals in the temozolomide + MMSCs group showed significantly higher survival rates in comparison with those in the control and temozolomide groups. The MMSCs migrated from the site of implantation to the neoplastic focus and interacted with glioma cells; however, the mechanism requires further research. In conclusion, MMSC transplantation combined with temozolomide treatment significantly extended the survival of experimental animals in comparison with those treated with temozolomide only.

  2. Transplantation of multipotent Isl1+ cardiac progenitor cells preserves infarcted heart function in mice

    PubMed Central

    Li, Yunpeng; Tian, Shuo; Lei, Ienglam; Liu, Liu; Ma, Peter; Wang, Zhong

    2017-01-01

    Cell-based cardiac therapy is a promising therapeutic strategy to restore heart function after myocardial infarction (MI). However, the cell type selection and ensuing effects remain controversial. Here, we intramyocardially injected Isl1+ cardiac progenitor cells (CPCs) derived from EGFP/luciferase double-tagged mouse embryonic stem (dt-mES) cells with vehicle (fibrin gel) or phosphate-buffered saline (PBS) into the infarcted area in nude mice to assess the contribution of CPCs to the recovery of cardiac function post-MI. Our results showed that Isl1+ CPCs differentiated normally into three cardiac lineages (cardiomyocytes (CMs), endothelial cells and smooth muscle cells) both on cell culture plates and in fibrin gel. Cell retention was significantly increased when the transplanted cells were injected with vehicle. Importantly, 28 days after injection, CPCs were observed to differentiate into CMs within the infarcted area. Moreover, numerous CD31+ endothelial cells derived from endogenous revascularization and differentiation of the injected CPCs were detected. SMMHC-, Ki67- and CX-43-positive cells were identified in the injected CPC population, further demonstrating the proliferation, differentiation and integration of the transplanted CPCs in host cells. Furthermore, animal hearts injected with CPCs showed increased angiogenesis, decreased infarct size, and improved heart function. In conclusion, our studies showed that Isl1+ CPCs, when combined with a suitable vehicle, can produce notable therapeutic effects in the infarcted heart, suggesting that CPCs might be an ideal cell source for cardiac therapy. PMID:28386378

  3. Transplantation of multipotent Isl1+ cardiac progenitor cells preserves infarcted heart function in mice.

    PubMed

    Li, Yunpeng; Tian, Shuo; Lei, Ienglam; Liu, Liu; Ma, Peter; Wang, Zhong

    2017-01-01

    Cell-based cardiac therapy is a promising therapeutic strategy to restore heart function after myocardial infarction (MI). However, the cell type selection and ensuing effects remain controversial. Here, we intramyocardially injected Isl1+ cardiac progenitor cells (CPCs) derived from EGFP/luciferase double-tagged mouse embryonic stem (dt-mES) cells with vehicle (fibrin gel) or phosphate-buffered saline (PBS) into the infarcted area in nude mice to assess the contribution of CPCs to the recovery of cardiac function post-MI. Our results showed that Isl1+ CPCs differentiated normally into three cardiac lineages (cardiomyocytes (CMs), endothelial cells and smooth muscle cells) both on cell culture plates and in fibrin gel. Cell retention was significantly increased when the transplanted cells were injected with vehicle. Importantly, 28 days after injection, CPCs were observed to differentiate into CMs within the infarcted area. Moreover, numerous CD31+ endothelial cells derived from endogenous revascularization and differentiation of the injected CPCs were detected. SMMHC-, Ki67- and CX-43-positive cells were identified in the injected CPC population, further demonstrating the proliferation, differentiation and integration of the transplanted CPCs in host cells. Furthermore, animal hearts injected with CPCs showed increased angiogenesis, decreased infarct size, and improved heart function. In conclusion, our studies showed that Isl1+ CPCs, when combined with a suitable vehicle, can produce notable therapeutic effects in the infarcted heart, suggesting that CPCs might be an ideal cell source for cardiac therapy.

  4. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD4+ T helper 2 (TH2) cells secrete interleukin (IL)4, IL5 and IL13, and are required for immunity to gastrointestinal helminth infections. However, TH2 cells also promote chronic inflammation associated with asthma and allergic disorders. The non-haematopoietic-cell-derived cytokines thymic stromal...

  5. Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells.

    PubMed

    Yang, Jinjuan; Liu, Hao; Wang, Kunfu; Li, Lu; Yuan, Hongyi; Liu, Xueting; Liu, Yingjie; Guan, Weijun

    2017-03-02

    Skeletal muscle has a huge regenerative potential for postnatal muscle growth and repair, which mainly depends on a kind of muscle progenitor cell population, called satellite cell. Nowadays, the majority of satellite cells were obtained from human, mouse, rat and other animals but rarely from pig. In this article, the porcine skeletal muscle satellite cells were isolated and cultured in vitro. The expression of surface markers of satellite cells was detected by immunofluorescence and RT-PCR assays. The differentiation capacity was assessed by inducing satellite cells into adipocytes, myoblasts and osteoblasts. The results showed that satellite cells isolated from porcine tibialis anterior were subcultured up to 12 passages and were positive for Pax7, Myod, c-Met, desmin, PCNA and NANOG but were negative for Myogenin. Satellite cells were also induced to differentiate into adipocytes, osteoblasts and myoblasts, respectively. These findings indicated that porcine satellite cells possess similar biological characteristics of stem cells, which may provide theoretical basis and experimental evidence for potential therapeutic application in the treatment of dystrophic muscle and other muscle injuries.

  6. Functional Multipotency of Stem Cells: What Do We Need from Them in the Heart?

    PubMed Central

    Díez Villanueva, Pablo; Sanz-Ruiz, Ricardo; Núñez García, Alberto; Fernández Santos, María Eugenia; Sánchez, Pedro L.; Fernández-Avilés, Francisco

    2012-01-01

    After more than ten years of human research in the field of cardiac regenerative medicine, application of stem cells in different phases of ischemic heart disease has come to age. Randomized clinical trials have demonstrated that stem cell therapy can improve cardiac recovery after the acute phase of myocardial ischemia and in patients with chronic ischemic heart disease, and several efficacy phase III trials with clinical endpoints are on their way. Nevertheless, a complete knowledge on the mechanisms of action of stem cells still remains elusive. Of the three main mechanisms by which stem cells could exert their benefit, paracrine signaling from the administered cells and stimulation of endogenous repair are nowadays the most plausible ones. However, in this review we will define and discuss the concept of stem cell potency and differentiation, will examine the evidence available, and will depict future directions of research. PMID:22966237

  7. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus.

    PubMed Central

    Godin, I; Dieterlen-Lièvre, F; Cumano, A

    1995-01-01

    We show by an in vitro approach that multipotent hemopoietic cells can be detected in the body of the mouse embryo between the stages of 10-25 somites (8.5-9.5 days of gestation)--i.e., prior to liver colonization (28-32 pairs of somites). Interestingly, hemopoietic cells appear in parallel in this location, the paraaortic splanchnopleura, and in the yolk sac, where they represent a new generation by reference to the primitive hemopoietic stem cells. Lymphoid cell clones, which could differentiate into mature B cells, were obtained from yolk sac and paraaortic splanchnopleura cell preparations but not from other tissues of the embryonic body. These B-cell precursors were first detected around the stage of 10 somites; thereafter, their initial minute numbers increased in parallel in the yolk sac and the paraaortic splanchnopleura, suggesting that their emergence in the two sites was simultaneous. By single cell manipulation, we show that these precursors can generate B and T lymphocytes and myeloid cells; these precursors can thus be defined as multipotent hemopoietic cells. Images Fig. 1 Fig. 4 PMID:7846049

  8. OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs)

    SciTech Connect

    Seo, Kwang-Won; Lee, Sae-Rom; Bhandari, Dilli Ram; Roh, Kyoung-Hwan; Park, Sang-Bum; So, Ah-Young; Jung, Ji-Won; Seo, Min-Soo; Kang, Soo-Kyung; Lee, Yong-Soon; Kang, Kyung-Sun

    2009-06-19

    The OCT4A gene, a POU homeodomain transcription factor, has been shown to be expressed in embryonic stem cells (ESC) as well as hUCB-MSCs. In this study, the roles played by OCT4A in hUCB-MSCs were determined by stably inhibiting OCT4A with lenti-viral vector-based small hairpin RNA (shRNA). A decreased rate of cell proliferation was observed in OCT4-inhibited hUCB-MSCs. Down-regulation of CCNA2 expression in OCT4-inhibited hUCB-MSCs was confirmed by RT-PCR and real-time RT-PCR analysis in three genetically independent hUCB-MSC clones. Adipogenic differentiation was also suppressed in OCT4-inhibited hUCB-MSCs. The up-regulation of DTX1 and down-regulation of HDAC1, 2, and 4 expressions may be related to this differentiation deformity. The expression of other transcription factors, including SOX2, REX1 and c-MYC, was also affected by OCT4 inhibition in hUCB-MSCs. In conclusion, these finding suggest that OCT4A performs functionally conserved roles in hUCB-MSCs, making its expression biologically important for ex vivo culture of hUCB-MSCs.

  9. Isolation, Characterization, and Multipotent Differentiation of Mesenchymal Stem Cells Derived from Meniscal Debris

    PubMed Central

    Fu, Weili; Xie, Xing; Li, Qi; Chen, Gang; Zhang, Chenghao; Tang, Xin

    2016-01-01

    This study aimed to culture and characterize mesenchymal stem cells derived from meniscal debris. Cells in meniscal debris from patients with meniscal injury were isolated by enzymatic digestion, cultured in vitro to the third passage, and analyzed by light microscopy to observe morphology and growth. Third-passage cultures were also analyzed for immunophenotype and ability to differentiate into osteogenic, adipogenic, and chondrogenic lineages. After 4-5 days in culture, cells showed a long fusiform shape and adhered to the plastic walls. After 10–12 days, cell clusters and colonies were observed. Third-passage cells showed uniform morphology and good proliferation. They expressed CD44, CD90, and CD105 but were negative for CD34 and CD45. Cultures induced to differentiate via osteogenesis became positive for Alizarin Red staining as well as alkaline phosphatase activity. Cultures induced to undergo adipogenesis were positive for Oil Red O staining. Cultures induced to undergo chondrogenesis were positive for staining with Toluidine Blue, Alcian Blue, and type II collagen immunohistochemistry, indicating cartilage-specific matrix. These results indicate that the cells we cultured from meniscal debris are mesenchymal stem cells capable of differentiating along three lineages. These stem cells may be valuable source for meniscal regeneration. PMID:28044083

  10. Various methods for isolation of multipotent human periodontal ligament cells for regenerative medicine.

    PubMed

    Tran, Ha Le Bao; Doan, Vu Nguyen; Le, Huong Thi Ngoc; Ngo, Lan Thi Quynh

    2014-08-01

    Periodontal ligament (PDL) is a specialized connective tissue that connects cementum and alveolar bone to maintain and support the teeth in situ and preserve tissue homeostasis. Recent studies have revealed the existence of stem cells in human dental tissues including periodontal ligament that play an important role, not only in the maintenance of the periodontium but also in promoting periodontal regeneration. In this study, human periodontal ligament cells (hPDLCs) were isolated by outgrowth and enzymatic dissociation methods. Expression of surface markers on PDLCs as human mesenchymal stem cells (MSCs) was identified by flow cytometry. In addition, proliferation and differentiation capacity of cultured cells to osteoblasts, adipocytes were evaluated. As a result, we successfully cultured cells from the human periodontal ligament tissues. PDLCs express mesenchymal stem cell (MSC) markers such as CD44, CD73, and CD90 and do not express CD34, CD45, and HLA-DR. PDLCs also possess the multipotential to differentiate into various types of cells, such as osteoblast and adipocytes, in vitro. Therefore, these cells have high potential to serve as materials for tissue engineering, especially dental tissue engineering.

  11. Differential propagation of stroma and cancer stem cells dictates tumorigenesis and multipotency

    PubMed Central

    Behnan, J; Stangeland, B; Hosainey, S A M; Joel, M; Olsen, T K; Micci, F; Glover, J C; Isakson, P; Brinchmann, J E

    2017-01-01

    Glioblastoma Multiforme (GBM) is characterized by high cancer cell heterogeneity and the presence of a complex tumor microenvironment. Those factors are a key obstacle for the treatment of this tumor type. To model the disease in mice, the current strategy is to grow GBM cells in serum-free non-adherent condition, which maintains their tumor-initiating potential. However, the so-generated tumors are histologically different from the one of origin. In this work, we performed high-throughput marker expression analysis and investigated the tumorigenicity of GBM cells enriched under different culture conditions. We identified a marker panel that distinguished tumorigenic sphere cultures from non-tumorigenic serum cultures (high CD56, SOX2, SOX9, and low CD105, CD248, αSMA). Contrary to previous work, we found that ‘mixed cell cultures' grown in serum conditions are tumorigenic and express cancer stem cell (CSC) markers. As well, 1% serum plus bFGF and TGF-α preserved the tumorigenicity of sphere cultures and induced epithelial-to-mesenchymal transition gene expression. Furthermore, we identified 12 genes that could replace the 840 genes of The Cancer Genome Atlas (TCGA) used for GBM-subtyping. Our data suggest that the tumorigenicity of GBM cultures depend on cell culture strategies that retain CSCs in culture rather than the presence of serum in the cell culture medium. PMID:27345406

  12. Monoclonal antibodies targeting non-small cell lung cancer stem-like cells by multipotent cancer stem cell monoclonal antibody library.

    PubMed

    Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang

    2017-02-01

    Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.

  13. Investigation of multipotent postnatal stem cells from human maxillary sinus membrane

    PubMed Central

    Guo, JunBing; Weng, JunQuan; Rong, Qiong; Zhang, Xing; Zhu, ShuangXi; Huang, DaiYing; Li, Xiang; Chen, Song Ling

    2015-01-01

    Maxillary sinus membrane (MSM) elevation is a common surgical technique for increasing bone height in the posterior maxilla prior to dental implant placement. However, the biological nature of bone regeneration in MSM remains largely unidentified. In this study, MSM tissue was obtained from 16 individuals during orthognathic surgery and used to isolate MSM stem cells (MSMSCs) by single-colony selection and STRO-1 cell sorting. The cell characteristics in terms of colony-forming ability, cell surface antigens, multi-differentiation potential and in vivo implantation were all evaluated. It was found that MSMSCs were of mesenchymal origin and positive for mesenchymal stem cell (MSC) markers such as STRO-1, CD146, CD29 and CD44; furthermore, under defined culture conditions, MSMSCs were able to form mineral deposits and differentiate into adipocytes and chondrocytes. When transplanted into immunocompromised rodents, MSMSCs showed the capacity to generate bone-like tissue and, importantly, maintain their MSC characteristics after in vivo implantation. These findings provide cellular and molecular evidence that MSM contains stem cells that show functional potential in bone regeneration for dental implant. PMID:26119339

  14. Real-time confocal imaging of trafficking of nestin-expressing multipotent stem cells in mouse whiskers in long-term 3-D histoculture.

    PubMed

    Duong, Jennifer; Mii, Sumiyuki; Uchugonova, Aisada; Liu, Fang; Moossa, A R; Hoffman, Robert M

    2012-05-01

    We have previously demonstrated that nestin-expressing multipotent hair follicle stem cells are located above the hair follicle bulge and can differentiate into neurons and other cell types in vitro. The nestin-expressing hair follicle stem cells promoted the recovery of pre-existing axons when they were transplanted to the severed sciatic nerve or injured spinal cord. We have also previously demonstrated that the whisker hair follicle contains nestin-expressing stem cells in the dermal papilla (DP) as well as in the bulge area (BA), but that their origin is in the BA. In the present study, we established the technique of long-term Gelfoam® histoculture of whiskers isolated from transgenic mice in which nestin drives green fluorescent protein (ND-GFP). Confocal imaging was used to monitor ND-GFP-expressing stem cells trafficking in real time between the BA and DP to determine the fate of the stem cells. It was observed over a 2-week period that the stem cells trafficked from the BA toward the DP area and extensively grew out onto Gelfoam® forming nerve-like structures. This new method of long-term histoculture of whiskers from ND-GFP mice will enable the extensive study of the behavior of nestin-expressing multipotent stem cells of the hair follicle.

  15. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    SciTech Connect

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji; Gong, Yaoqin; Shao, Changshun

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  16. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells

    PubMed Central

    Lu, Shun; Wang, Jing; Ye, Jixing; Zou, Yulong; Zhu, Yunxiao; Wei, Qiang; Wang, Xin; Tang, Shengli; Liu, Hao; Fan, Jiaming; Zhang, Fugui; Farina, Evan M; Mohammed, Maryam M; Song, Dongzhe; Liao, Junyi; Huang, Jiayi; Guo, Dan; Lu, Minpeng; Liu, Feng; Liu, Jianxiang; Li, Li; Ma, Chao; Hu, Xue; Lee, Michael J; Reid, Russell R; Ameer, Guillermo A; Zhou, Dongsheng; He, Tongchuan

    2016-01-01

    Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and technically challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteogenic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies for MAD-based bone tissue engineering. PMID:27725853

  17. Pluripotent and Multipotent Stem Cells Display Distinct Hypoxic miRNA Expression Profiles

    PubMed Central

    Agrawal, Rahul; Dale, Tina P.; Al-Zubaidi, Mohammed A.; Benny Malgulwar, Prit; Forsyth, Nicholas R.; Kulshreshtha, Ritu

    2016-01-01

    MicroRNAs are reported to have a crucial role in the regulation of self-renewal and differentiation of stem cells. Hypoxia has been identified as a key biophysical element of the stem cell culture milieu however, the link between hypoxia and miRNA expression in stem cells remains poorly understood. We therefore explored miRNA expression in hypoxic human embryonic and mesenchymal stem cells (hESCs and hMSCs). A total of 50 and 76 miRNAs were differentially regulated by hypoxia (2% O2) in hESCs and hMSCs, respectively, with a negligible overlap of only three miRNAs. We found coordinate regulation of precursor and mature miRNAs under hypoxia suggesting their regulation mainly at transcriptional level. Hypoxia response elements were located upstream of 97% of upregulated hypoxia regulated miRNAs (HRMs) suggesting hypoxia-inducible-factor (HIF) driven transcription. HIF binding to the candidate cis-elements of specific miRNAs under hypoxia was confirmed by Chromatin immunoprecipitation coupled with qPCR. Role analysis of a subset of upregulated HRMs identified linkage to reported inhibition of differentiation while a downregulated subset of HRMs had a putative role in the promotion of differentiation. MiRNA-target prediction correlation with published hypoxic hESC and hMSC gene expression profiles revealed HRM target genes enriched in the cytokine:cytokine receptor, HIF signalling and pathways in cancer. Overall, our study reveals, novel and distinct hypoxia-driven miRNA signatures in hESCs and hMSCs with the potential for application in optimised culture and differentiation models for both therapeutic application and improved understanding of stem cell biology. PMID:27783707

  18. Infantile Hemangioma Originates From A Dysregulated But Not Fully Transformed Multipotent Stem Cell

    PubMed Central

    Harbi, Shaghayegh; Wang, Rong; Gregory, Michael; Hanson, Nicole; Kobylarz, Keith; Ryan, Kamilah; Deng, Yan; Lopez, Peter; Chiriboga, Luis; Mignatti, Paolo

    2016-01-01

    Infantile hemangioma (IH) is the most common tumor of infancy. Its cellular origin and biological signals for uncontrolled growth are poorly understood, and specific pharmacological treatment is unavailable. To understand the process of hemangioma-genesis we characterized the progenitor hemangioma-derived stem cell (HemSC) and its lineage and non-lineage derivatives. For this purpose we performed a high-throughput (HT) phenotypic and gene expression analysis of HemSCs, and analyzed HemSC-derived tumorspheres. We found that IH is characterized by high expression of genes involved in vasculogenesis, angiogenesis, tumorigenesis and associated signaling pathways. These results show that IH derives from a dysregulated stem cell that remains in an immature, arrested stage of development. The potential biomarkers we identified can afford the development of diagnostic tools and precision-medicine therapies to “rewire” or redirect cellular transitions at an early stage, such as signaling pathways or immune response modifiers. PMID:27786256

  19. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure

    NASA Astrophysics Data System (ADS)

    Urbanek, Konrad; Torella, Daniele; Sheikh, Farooq; de Angelis, Antonella; Nurzynska, Daria; Silvestri, Furio; Beltrami, C. Alberto; Bussani, Rossana; Beltrami, Antonio P.; Quaini, Federico; Bolli, Roberto; Leri, Annarosa; Kajstura, Jan; Anversa, Piero

    2005-06-01

    In this study, we tested whether the human heart possesses a cardiac stem cell (CSC) pool that promotes regeneration after infarction. For this purpose, CSC growth and senescence were measured in 20 hearts with acute infarcts, 20 hearts with end-stage postinfarction cardiomyopathy, and 12 control hearts. CSC number increased markedly in acute and, to a lesser extent, in chronic infarcts. CSC growth correlated with the increase in telomerase-competent dividing CSCs from 1.5% in controls to 28% in acute infarcts and 14% in chronic infarcts. The CSC mitotic index increased 29-fold in acute and 14-fold in chronic infarcts. CSCs committed to the myocyte, smooth muscle, and endothelial cell lineages increased 85-fold in acute infarcts and 25-fold in chronic infarcts. However, p16INK4a-p53-positive senescent CSCs also increased and were 10%, 18%, and 40% in controls, acute infarcts, and chronic infarcts, respectively. Old CSCs had short telomeres and apoptosis involved 0.3%, 3.8%, and 9.6% of CSCs in controls, acute infarcts, and chronic infarcts, respectively. These variables reduced the number of functionally competent CSCs from 26,000/cm3 of viable myocardium in acute to 7,000/cm3 in chronic infarcts, respectively. In seven acute infarcts, foci of spontaneous myocardial regeneration that did not involve cell fusion were identified. In conclusion, the human heart possesses a CSC compartment, and CSC activation occurs in response to ischemic injury. The loss of functionally competent CSCs in chronic ischemic cardiomyopathy may underlie the progressive functional deterioration and the onset of terminal failure. cardiac progenitor cells | human heart | myocardial infarction

  20. Prospective isolation of late development multipotent precursors whose migration is promoted by EGFR.

    PubMed

    Ciccolini, Francesca; Mandl, Claudia; Hölzl-Wenig, Gabriele; Kehlenbach, Angelika; Hellwig, Andrea

    2005-08-01

    A simple procedure to isolate neural stem cells would greatly facilitate direct studies of their properties. Here, we exploited the increase in EGF receptor (EGFR) levels, that occurs in late development stem cells or in younger precursors upon exposure to FGF-2, to isolate cells expressing high levels of EGFR (EGFR(high)) from the developing and the adult brain. Independently of age and region of isolation, EGFR(high) cells were highly enriched in multipotent precursors and displayed similar antigenic characteristics, with the exception of GFAP and Lex/SSEA-1 that were mainly expressed in adult EGFR(high) cells. EGFR levels did not correlate with neurogenic potential, indicating that the increase in EGFR expression does not directly affect differentiation. Instead, in the brain, many EGFR(high) precursors showed tangential orientation and, whether isolated from the cortex or striatum, EGFR(high) precursors displayed characteristics of cells originating from the ventral GZ such as expression Dlx and Mash-1 and the ability to generate GABAergic neurons and oligodendrocytes. Moreover, migration of EGFR(high) cells on telencephalic slices required EGFR activity. Thus, the developmentally regulated increase in EGFR levels may affect tangential migration of multipotent precursors. In addition, it can be used as a marker to effectively isolate telencephalic multipotent precursors from embryonic and adult tissue.

  1. Platelet-derived growth factor receptor-alpha positive cardiac progenitor cells derived from multipotent germline stem cells are capable of cardiomyogenesis in vitro and in vivo.

    PubMed

    Kim, Bang-Jin; Kim, Yong-Hee; Lee, Yong-An; Jung, Sang-Eun; Hong, Yeong Ho; Lee, Eun-Ju; Kim, Byung-Gak; Hwang, Seongsoo; Do, Jeong Tae; Pang, Myung-Geol; Ryu, Buom-Yong

    2017-03-31

    Cardiac cell therapy has the potential to revolutionize treatment of heart diseases, but its success hinders on the development of a stem cell therapy capable of efficiently producing functionally differentiated cardiomyocytes. A key to unlocking the therapeutic application of stem cells lies in understanding the molecular mechanisms that govern the differentiation process. Here we report that a population of platelet-derived growth factor receptor alpha (PDGFRA) cells derived from mouse multipotent germline stem cells (mGSCs) were capable of undergoing cardiomyogenesis in vitro. Cells derived in vitro from PDGFRA positive mGSCs express significantly higher levels of cardiac marker proteins compared to PDGFRA negative mGSCs. Using Pdgfra shRNAs to investigate the dependence of Pdgfra on cardiomyocyte differentiation, we observed that Pdgfra silencing inhibited cardiac differentiation. In a rat myocardial infarction (MI) model, transplantation of a PDGFRAenriched cell population into the rat heart readily underwent functional differentiation into cardiomyocytes and reduced areas of fibrosis associated with MI injury. Together, these results suggest that mGSCs may provide a unique source of cardiac stem/progenitor cells for future regenerative therapy of damaged heart tissue.

  2. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    PubMed

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  3. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction.

    PubMed

    Lodie, Tracey A; Blickarz, Courtney E; Devarakonda, Tara J; He, Chufa; Dash, Ajeeta B; Clarke, Jennifer; Gleneck, Kristen; Shihabuddin, Lamya; Tubo, Ross

    2002-10-01

    Adult human bone marrow-derived stem cells, having the ability to differentiate into cells of multiple lineages, have been isolated and propagated by varied protocols, including positive (CD105(+))/negative (CD45(-)GlyA(-)) selection with immunomagnetic beads, or direct plating into selective culture media. Each substratum-adherent cell population was subjected to a systematic analysis of their cell surface markers and differentiation potential. In the initial stages of culture, each cell population proliferated slowly, reaching confluence in 10-14 days. Adherent cells proliferated at similar rates whether cultured in serum-free medium supplemented with basic fibroblast growth factor, medium containing 2% fetal bovine serum (FBS) supplemented with epidermal growth factor and platelet-derived growth factor, or medium containing 10% FBS alone. Cell surface marker analysis revealed that more than 95% of the cells were positive for CD105/endoglin, a putative mesenchymal stem cell marker, and negative for CD34, CD31, and CD133, markers of hematopoietic, endothelial, and neural stem cells, respectively, regardless of cell isolation and propagation method. CD44 expression was variable, apparently dependent on serum concentration. Functional similarity of the stem cell populations was also observed, with each different cell population expressing the cell type-specific markers beta-tubulin, type II collagen, and desmin, and demonstrating endothelial tube formation when cultured under conditions favoring neural, cartilage, muscle, and endothelial cell differentiation, respectively. On the basis of these data, adult human bone marrow-derived stem cells cultured in adherent monolayer are virtually indistinguishable, both physically and functionally, regardless of the method of isolation or proliferative expansion.

  4. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    PubMed Central

    Wodewotzky, T.I.; Lima-Neto, J.F.; Pereira-Júnior, O.C.M.; Sudano, M.J.; Lima, S.A.F.; Bersano, P.R.O.; Yoshioka, S.A.; Landim-Alvarenga, F.C.

    2012-01-01

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium. PMID:22983182

  5. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration.

    PubMed

    Wodewotzky, T I; Lima-Neto, J F; Pereira-Júnior, O C M; Sudano, M J; Lima, S A F; Bersano, P R O; Yoshioka, S A; Landim-Alvarenga, F C

    2012-12-01

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  6. Isolation and cultivation of stem cells from adult mouse testes.

    PubMed

    Guan, Kaomei; Wolf, Frieder; Becker, Alexander; Engel, Wolfgang; Nayernia, Karim; Hasenfuss, Gerd

    2009-01-01

    The successful isolation and cultivation of spermatogonial stem cells (SSCs) as well as induction of SSCs into pluripotent stem cells will allow us to study their biological characteristics and their applications in therapeutic approaches. Here we provide step-by-step procedures on the basis of previous work in our laboratory for: the isolation of testicular cells from adolescent mice by a modified enzymatic procedure; the enrichment of undifferentiated spermatogonia by laminin selection or genetic selection using Stra8-EGFP (enhanced green fluorescent protein) transgenic mice; the cultivation and conversion of undifferentiated spermatogonia into embryonic stem-like cells, so-called multipotent adult germline stem cells (maGSCs); and characterization of these cells. Normally, it will take about 16 weeks to obtain stable maGSC lines starting from the isolation of testicular cells.

  7. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity

    PubMed Central

    Maltabe, Violetta A.; Barka, Eleonora; Kontonika, Marianthi; Florou, Dimitra; Kouvara-Pritsouli, Maria; Roumpi, Maria; Agathopoulos, Simeon; Kolettis, Theofilos M.

    2016-01-01

    Embryonic Stem (ES) or induced Pluripotent Stem (iPS) cells are important sources for cardiomyocyte generation, targeted for regenerative therapies. Several in vitro protocols are currently utilized for their differentiation, but the value of cell-based approaches remains unclear. Here, we characterized a cardiovascular progenitor population derived during ES differentiation, after selection based on VE-cadherin promoter (Pvec) activity. ESCs were genetically modified with an episomal vector, allowing the expression of puromycin resistance gene, under Pvec activity. Puromycin-surviving cells displayed cardiac and endothelial progenitor cells characteristics. Expansion and self-renewal of this cardiac and endothelial dual-progenitor population (CEDP) were achieved by Wnt/β-catenin pathway activation. CEDPs express early cardiac developmental stage-specific markers but not markers of differentiated cardiomyocytes. Similarly, CEDPs express endothelial markers. However, CEDPs can undergo differentiation predominantly to cTnT+ (~47%) and VE-cadherin+ (~28%) cells. Transplantation of CEDPs in the left heart ventricle of adult rats showed that CEDPs-derived cells survive and differentiate in vivo for at least 14 days after transplantation. A novel, dual-progenitor population was isolated during ESCs differentiation, based on Pvec activity. This lineage can self-renew, permitting its maintenance as a source of cardiovascular progenitor cells and constitutes a useful source for regenerative approaches. PMID:28101109

  8. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    EPA Science Inventory

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  9. Adult stem cells in neural repair: Current options, limitations and perspectives.

    PubMed

    Mariano, Eric Domingos; Teixeira, Manoel Jacobsen; Marie, Suely Kazue Nagahashi; Lepski, Guilherme

    2015-03-26

    Stem cells represent a promising step for the future of regenerative medicine. As they are able to differentiate into any cell type, tissue or organ, these cells are great candidates for treatments against the worst diseases that defy doctors and researchers around the world. Stem cells can be divided into three main groups: (1) embryonic stem cells; (2) fetal stem cells; and (3) adult stem cells. In terms of their capacity for proliferation, stem cells are also classified as totipotent, pluripotent or multipotent. Adult stem cells, also known as somatic cells, are found in various regions of the adult organism, such as bone marrow, skin, eyes, viscera and brain. They can differentiate into unipotent cells of the residing tissue, generally for the purpose of repair. These cells represent an excellent choice in regenerative medicine, every patient can be a donor of adult stem cells to provide a more customized and efficient therapy against various diseases, in other words, they allow the opportunity of autologous transplantation. But in order to start clinical trials and achieve great results, we need to understand how these cells interact with the host tissue, how they can manipulate or be manipulated by the microenvironment where they will be transplanted and for how long they can maintain their multipotent state to provide a full regeneration.

  10. Multipotent Caudal Neural Progenitors Derived from Human Pluripotent Stem Cells That Give Rise to Lineages of the Central and Peripheral Nervous System

    PubMed Central

    Hasegawa, Kouichi; Menheniott, Trevelyan; Rollo, Ben; Zhang, Dongcheng; Hough, Shelley; Alshawaf, Abdullah; Febbraro, Fabia; Ighaniyan, Samiramis; Leung, Jessie; Elliott, David A.; Newgreen, Donald F.; Pera, Martin F.

    2015-01-01

    Abstract The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3β and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named “caudal neural progenitors” (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube. Stem Cells 2015;33:1759–1770 PMID:25753817

  11. Multipotent caudal neural progenitors derived from human pluripotent stem cells that give rise to lineages of the central and peripheral nervous system.

    PubMed

    Denham, Mark; Hasegawa, Kouichi; Menheniott, Trevelyan; Rollo, Ben; Zhang, Dongcheng; Hough, Shelley; Alshawaf, Abdullah; Febbraro, Fabia; Ighaniyan, Samiramis; Leung, Jessie; Elliott, David A; Newgreen, Donald F; Pera, Martin F; Dottori, Mirella

    2015-06-01

    The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3β and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named "caudal neural progenitors" (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube.

  12. Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency

    PubMed Central

    Frank, Viktoria; Kaufmann, Stefan; Wright, Rebecca; Horn, Patrick; Yoshikawa, Hiroshi Y.; Wuchter, Patrick; Madsen, Jeppe; Lewis, Andrew L.; Armes, Steven P.; Ho, Anthony D.; Tanaka, Motomu

    2016-01-01

    Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover, we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90% without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days. Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem cells to a specific lineage. PMID:27080570

  13. Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency

    NASA Astrophysics Data System (ADS)

    Frank, Viktoria; Kaufmann, Stefan; Wright, Rebecca; Horn, Patrick; Yoshikawa, Hiroshi Y.; Wuchter, Patrick; Madsen, Jeppe; Lewis, Andrew L.; Armes, Steven P.; Ho, Anthony D.; Tanaka, Motomu

    2016-04-01

    Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover, we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90% without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days. Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem cells to a specific lineage.

  14. Zinc finger factor 521 enhances adipogenic differentiation of mouse multipotent cells and human bone marrow mesenchymal stem cells.

    PubMed

    Tseng, Kuo-Yun; Lin, Shankung

    2015-06-20

    Previously, we found that ZNF521 expression was up-regulated with advancing age in human bone marrow mesenchymal stem cells (bmMSCs). Here, we investigated the regulatory role of ZNF521 in the differentiation of mouse C3H10T1/2 cells and human bmMSCs. Our data show that ZNF521 overexpression repressed osteoblastic differentiation of C3H10T1/2 cells, accompanied by a decrease in Runx2 expression and an increase in PPARγ2 expression. In contrast, ZNF521 overexpression enhanced adipogenic differentiation of C3H10T1/2 cells, concomitant with increased expression of PPARγ2, aP2, adiponectin and C/EBPδ. Chromatin immunoprecipitation followed by quantitative PCR analyses and luciferase reporter assays suggested that ZNF521 overexpression enhances PPARγ2 expression at the transcriptional level. The enhancing effect of ZNF521 overexpression on the adipogenic differentiation of C3H10T1/2 cells was also observed ex vivo. Finally, similar to those noted in C3H10T1/2 cells, ZNF521 overexpression in human bmMSCs was found to promote adipogenic differentiation in vitro and ex vivo, but repressed osteoblastic differentiation in vitro. ZNF521 knockdown significantly repressed adipogenic differentiation in vitro and ex vivo, but promoted osteoblastic differentiation in vitro. We propose that ZNF521 can function as a repressor of osteoblastic differentiation of bmMSCs while promoting adipogenesis, and that elevated ZNF521 expression might play a role in the age-related bone loss.

  15. Human cord blood-derived multipotent stem cells (CB-SCs) treated with all-trans-retinoic acid (ATRA) give rise to dopamine neurons.

    PubMed

    Li, Xiaohong; Li, Heng; Bi, Jianfen; Chen, Yana; Jain, Sumit; Zhao, Yong

    2012-03-02

    Parkinson's disease (PD) results from the chronic degeneration of dopaminergic neurons. A replacement for these neurons has the potential to provide a clinical cure and/or lasting treatment for symptoms of the disease. Human cord blood-derived multipotent stem cells (CB-SCs) display embryonic stem cell characteristics, including multi-potential differentiation. To explore their therapeutic potential in PD, we examined whether CB-SCs could be induced to differentiate into dopamine neurons in the presence of all-trans retinoic acid (ATRA). Prior to treatment, CB-SCs expressed mRNA and protein for the key dopaminergic transcription factors Nurr1, Wnt1, and En1. Following treatment with 10 μM ATRA for 12 days, CB-SCs displayed elongated neuronal-like morphologies. Immunocytochemistry revealed that 48 ± 11% of ATRA-treated cells were positive for tyrosine hydroxylase (TH), and 36 ± 9% of cells were positive for dopamine transporter (DAT). In contrast, control CB-SCs (culture medium only) expressed only background levels of TH and DAT. Finally, ATRA-treated CB-SCs challenged with potassium released increased levels of dopamine compared to control. These data demonstrate that ATRA induces differentiation of CB-SCs into dopaminergic neurons. This finding may lead to the development of an alternative approach to stem cell therapy for Parkinson's disease.

  16. Catalog of gene expression in adult neural stem cells and their in vivo microenvironment

    SciTech Connect

    Williams, Cecilia; Wirta, Valtteri; Meletis, Konstantinos; Wikstroem, Lilian; Carlsson, Leif; Frisen, Jonas; Lundeberg, Joakim . E-mail: joakim.lundeberg@biotech.kth.se

    2006-06-10

    Stem cells generally reside in a stem cell microenvironment, where cues for self-renewal and differentiation are present. However, the genetic program underlying stem cell proliferation and multipotency is poorly understood. Transcriptome analysis of stem cells and their in vivo microenvironment is one way of uncovering the unique stemness properties and provides a framework for the elucidation of stem cell function. Here, we characterize the gene expression profile of the in vivo neural stem cell microenvironment in the lateral ventricle wall of adult mouse brain and of in vitro proliferating neural stem cells. We have also analyzed an Lhx2-expressing hematopoietic-stem-cell-like cell line in order to define the transcriptome of a well-characterized and pure cell population with stem cell characteristics. We report the generation, assembly and annotation of 50,792 high-quality 5'-end expressed sequence tag sequences. We further describe a shared expression of 1065 transcripts by all three stem cell libraries and a large overlap with previously published gene expression signatures for neural stem/progenitor cells and other multipotent stem cells. The sequences and cDNA clones obtained within this framework provide a comprehensive resource for the analysis of genes in adult stem cells that can accelerate future stem cell research.

  17. Concise Review: Are Stimulated Somatic Cells Truly Reprogrammed into an ES/iPS-Like Pluripotent State? Better Understanding by Ischemia-Induced Multipotent Stem Cells in a Mouse Model of Cerebral Infarction

    PubMed Central

    Nakagomi, Takayuki; Nakano-Doi, Akiko; Narita, Aya; Matsuyama, Tomohiro

    2015-01-01

    Following the discovery of pluripotent stem (PS) cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells, there has been a great hope that injured tissues can be repaired by transplantation of ES/iPS-derived various specific types of cells such as neural stem cells (NSCs). Although PS cells can be induced by ectopic expression of Yamanaka's factors, it is known that several stimuli such as ischemia/hypoxia can increase the stemness of somatic cells via reprogramming. This suggests that endogenous somatic cells acquire stemness during natural regenerative processes following injury. In this study, we describe whether somatic cells are converted into pluripotent stem cells by pathological stimuli without ectopic expression of reprogramming factors based on the findings of ischemia-induced multipotent stem cells in a mouse model of cerebral infarction. PMID:25945100

  18. Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad.

    PubMed

    Carroll, S F; Buckley, C T; Kelly, D J

    2014-06-27

    The objective of this study was to investigate how joint specific biomechanical loading influences the functional development and phenotypic stability of cartilage grafts engineered in vitro using stem/progenitor cells isolated from different source tissues. Porcine bone marrow derived multipotent stromal cells (BMSCs) and infrapatellar fat pad derived multipotent stromal cells (FPSCs) were seeded in agarose hydrogels and cultured in chondrogenic medium, while simultaneously subjected to 10MPa of cyclic hydrostatic pressure (HP). To mimic the endochondral phenotype observed in vivo with cartilaginous tissues engineered using BMSCs, the culture media was additionally supplemented with hypertrophic factors, while the loss of phenotype observed in vivo with FPSCs was induced by withdrawing transforming growth factor (TGF)-β3 from the media. The application of HP was found to enhance the functional development of cartilaginous tissues engineered using both BMSCs and FPSCs. In addition, HP was found to suppress calcification of tissues engineered using BMSCs cultured in chondrogenic conditions and acted to maintain a chondrogenic phenotype in cartilaginous grafts engineered using FPSCs. The results of this study point to the importance of in vivo specific mechanical cues for determining the terminal phenotype of chondrogenically primed multipotent stromal cells. Furthermore, demonstrating that stem or progenitor cells will appropriately differentiate in response to such biophysical cues might also be considered as an additional functional assay for evaluating their therapeutic potential.

  19. Immunosuppressive effects of multipotent mesenchymal stromal cells on graft-versus-host disease in rats following allogeneic bone marrow transplantation.

    PubMed

    Nevruz, Oral; Avcu, Ferit; Ural, A Uğur; Pekel, Aysel; Dirican, Bahar; Safalı, Mükerrem; Akdağ, Elvin; Beyzadeoğlu, Murat; Ide, Tayfun; Sengül, Ali

    2013-09-01

    Amaç: Graft versus host hastalığı (GVHH) , başarılı bir kemik iliği nakli için önemli bir engel oluşturmaktadır. Multipotent mezenşimal stromal hücrelerin (MSH) immünsupresif etkileri, in vivo ve in vitro olarak gösterilmiş olmakla birlikte, GVHH’ nı önleme yönünde klinik uygulamalarda bulunmaktadır . Gereç ve Yöntemler: Bu çalışmanın amacı ratlarda kemik iliği nakli sonrası oluşturulan GVHH’nı önleme ve tedavi etmede MSH nin etkinliğinin incelenmesidir. Bu amaçla 49 Sprague Dawley cinsi rat rastegele 4 çalışma, 3 kontrol grubuna ayrılmış ve gruplara MSH de içeren farklı GVHH önleyici tedaviler uygulanmıştır. Kemik iliği nakli sonrası GVHH skorlaması ve yaşama süreleri incelenmiştir. Bulgular: Tüm ışınlanmış ve önleyici tedavi verilmemiş ratlar ölmüştür. MSH nin önleyici uygulamaları, standart GVHD önleyici tedavileri kadar etkin bulunmuştur. MSH uygulamaları, GVHH nın gözlemsel ve histolojik bulgularını ve CD4+/CD8+ oranını azaltmaktadır.Ayrıca MSH uygulanan gruplarda CD25+ T hücrelerinin in vivo oranıda daha yüksek olup, Allojeneik kemik iliği nakli sonrası standart GVHH tedavisi uygulananlara göre plazma İnterlökin-2 seviyesinin daha yüksek olarak saptanmıştır. Sonuç: Bulgularımız MSH uygulamasının, GVHH nın hem önlenme hem de tedavi edilmesinde etkin olduğunu göstermiştir. Ancak bu bulguların geniş ölçekli çalışmalarla desteklenmesi gerekmektedir.

  20. The effect of the bioactive sphingolipids S1P and C1P on multipotent stromal cells--new opportunities in regenerative medicine.

    PubMed

    Marycz, Krzysztof; Śmieszek, Agnieszka; Jeleń, Marta; Chrząstek, Klaudia; Grzesiak, Jakub; Meissner, Justyna

    2015-09-01

    Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) belong to a family of bioactive sphingolipids that act as important extracellular signaling molecules and chemoattractants. This study investigated the influence of S1P and C1P on the morphology, proliferation activity and osteogenic properties of rat multipotent stromal cells derived from bone marrow (BMSCs) and subcutaneous adipose tissue (ASCs). We show that S1P and C1P can influence mesenchymal stem cells (MSCs), each in a different manner. S1P stimulation promoted the formation of cellular aggregates of BMSCs and ASCs, while C1P had an effect on the regular growth pattern and expanded intercellular connections, thereby increasing the proliferative activity. Although osteogenic differentiation of MSCs was enhanced by the addition of S1P, the effectiveness of osteoblast differentiation was more evident in BMSCs, particularly when biochemical and molecular marker levels were considered. The results of the functional osteogenic differentiation assay, which includes an evaluation of the efficiency of extracellular matrix mineralization (SEM-EDX), revealed the formation of numerous mineral aggregates in BMSC cultures stimulated with S1P. Our data demonstrated that in an appropriate combination, the bioactive sphingolipids S1P and C1P may find wide application in regenerative medicine, particularly in bone regeneration with the use of MSCs.

  1. In Vitro and In Vivo Effects of Metformin on Osteopontin Expression in Mice Adipose-Derived Multipotent Stromal Cells and Adipose Tissue

    PubMed Central

    Basińska, Katarzyna; Chrząstek, Klaudia; Marycz, Krzysztof

    2015-01-01

    Metformin is applied not only as antidiabetic drug, but also in the treatment of obesity or as antiaging drug. The first part of the research discussed the effect of metformin at concentrations of 1 mM, 5 mM, and 10 mM on the morphology, ultrastructure, and proliferation potential of mice adipose-derived multipotent mesenchymal stromal cells (ASCs) in vitro. Additionally, we determined the influence of metformin on mice adipose tissue metabolism. This study has shown for the first time that metformin inhibits the proliferative potential of ASCs in vitro in a dose- and time-dependent manner. In addition, we have found a significant correlation between the activity of ASCs and osteopontin at the mRNA and protein level. Furthermore, we have demonstrated that 5 mM and 10 mM metformin have cytotoxic effect on ASCs, causing severe morphological, ultrastructural, and apoptotic changes. The reduced level of OPN in the adipose tissue of metformin-treated animals strongly correlated with the lower expression of Ki67 and CD105 and increased caspase-3. The metformin influenced also circulating levels of OPN, which is what was found with systemic and local action of metformin. The results are a valuable source of information regarding the in vitro effect of metformin on adipose-derived stem cells. PMID:26064989

  2. Mesenchymal stem cells from the outer ear: a novel adult stem cell model system for the study of adipogenesis.

    PubMed

    Rim, Jong-Seop; Mynatt, Randall L; Gawronska-Kozak, Barbara

    2005-07-01

    Adipocytes arise from multipotent stem cells of mesodermal origin, which also give rise to the muscle, bone, and cartilage lineages. However, signals and early molecular events that commit multipotent stem cells into the adipocyte lineage are not well established mainly due to lack of an adequate model system. We have identified a novel source of adult stem cells from the external murine ears referred to here as an ear mesenchymal stem cells (EMSC). EMSC have been isolated from several standard and mutant strains of mice. They are self-renewing, clonogenic, and multipotent, since they give rise to osteocytes, chondrocytes, and adipocytes. The in vitro characterization of EMSC indicates very facile adipogenic differentiation. Morphological, histochemical, and molecular analysis after the induction of differentiation showed that EMSC maintain adipogenic potentials up to fifth passage. A comparison of EMSC to the stromal-vascular (S-V) fraction of fat depots, under identical culture conditions (isobutyl-methylxanthine, dexamethasone, and insulin), revealed much more robust and consistent adipogenesis in EMSC than in the S-V fraction. In summary, we show that EMSC can provide a novel, easily obtainable, primary culture model for the study of adipogenesis.

  3. Increasing tPA Activity in Astrocytes Induced by Multipotent Mesenchymal Stromal Cells Facilitate Neurite Outgrowth after Stroke in the Mouse

    PubMed Central

    Xin, Hongqi; Li, Yi; Shen, Li Hong; Liu, Xianshuang; Wang, Xinli; Zhang, Jing; Pourabdollah-Nejad D, Siamak; Zhang, Chunling; Zhang, Li; Jiang, Hao; Zhang, Zheng Gang; Chopp, Michael

    2010-01-01

    We demonstrate that tissue plasminogen activator (tPA) and its inhibitors contribute to neurite outgrowth in the central nervous system (CNS) after treatment of stroke with multipotent mesenchymal stromal cells (MSCs). In vivo, administration of MSCs to mice subjected to middle cerebral artery occlusion (MCAo) significantly increased activation of tPA and downregulated PAI-1 levels in the ischemic boundary zone (IBZ) compared with control PBS treated mice, concurrently with increases of myelinated axons and synaptophysin. In vitro, MSCs significantly increased tPA levels and concomitantly reduced plasminogen activator inhibitor 1 (PAI-1) expression in astrocytes under normal and oxygen and glucose deprivation (OGD) conditions. ELISA analysis of conditioned medium revealed that MSCs stimulated astrocytes to secrete tPA. When primary cortical neurons were cultured in the conditioned medium from MSC co-cultured astrocytes, these neurons exhibited a significant increase in neurite outgrowth compared to conditioned medium from astrocytes alone. Blockage of tPA with a neutralizing antibody or knock-down of tPA with siRNA significantly attenuated the effect of the conditioned medium on neurite outgrowth. Addition of recombinant human tPA into cortical neuronal cultures also substantially enhanced neurite outgrowth. Collectively, these in vivo and in vitro data suggest that the MSC mediated increased activation of tPA in astrocytes promotes neurite outgrowth after stroke. PMID:20140248

  4. Development and characterization of a clinically compliant xeno-free culture medium in good manufacturing practice for human multipotent mesenchymal stem cells.

    PubMed

    Chase, Lucas G; Yang, Sufang; Zachar, Vladimir; Yang, Zheng; Lakshmipathy, Uma; Bradford, Jolene; Boucher, Shayne E; Vemuri, Mohan C

    2012-10-01

    Human multipotent mesenchymal stem cell (MSC) therapies are currently being tested in clinical trials for Crohn's disease, multiple sclerosis, graft-versus-host disease, type 1 diabetes, bone fractures, cartilage damage, and cardiac diseases. Despite remarkable progress in clinical trials, most applications still use traditional culture media containing fetal bovine serum or serum-free media that contain serum albumin, insulin, and transferrin. The ill-defined and variable nature of traditional culture media remains a challenge and has created a need for better defined xeno-free culture media to meet the regulatory and long-term safety requirements for cell-based therapies. We developed and tested a serum-free and xeno-free culture medium (SFM-XF) using human bone marrow- and adipose-derived MSCs by investigating primary cell isolation, multiple passage expansion, mesoderm differentiation, cellular phenotype, and gene expression analysis, which are critical for complying with translation to cell therapy. Human MSCs expanded in SFM-XF showed continual propagation, with an expected phenotype and differentiation potential to adipogenic, chondrogenic, and osteogenic lineages similar to that of MSCs expanded in traditional serum-containing culture medium (SCM). To monitor global gene expression, the transcriptomes of bone marrow-derived MSCs expanded in SFM-XF and SCM were compared, revealing relatively similar expression profiles. In addition, the SFM-XF supported the isolation and propagation of human MSCs from primary human marrow aspirates, ensuring that these methods and reagents are compatible for translation to therapy. The SFM-XF culture system allows better expansion and multipotentiality of MSCs and serves as a preferred alternative to serum-containing media for the production of large scale, functionally competent MSCs for future clinical applications.

  5. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model

    PubMed Central

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Abstract Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest

  6. Human Placenta-Derived Multipotent Cells (hPDMCs) Modulate Cardiac Injury: From Bench to Small and Large Animal Myocardial Ischemia Studies.

    PubMed

    Liu, Yuan-Hung; Peng, Kai-Yen; Chiu, Yu-Wei; Ho, Yi-Lwun; Wang, Yao-Horng; Shun, Chia-Tung; Huang, Shih-Yun; Lin, Yi-Shuan; de Vries, Antoine A F; Pijnappels, Daniël A; Lee, Nan-Ting; Yen, B Linju; Yen, Men-Luh

    2015-01-01

    Cardiovascular disease is the leading cause of death globally, and stem cell therapy remains one of the most promising strategies for regeneration or repair of the damaged heart. We report that human placenta-derived multipotent cells (hPDMCs) can modulate cardiac injury in small and large animal models of myocardial ischemia (MI) and elucidate the mechanisms involved. We found that hPDMCs can undergo in vitro cardiomyogenic differentiation when cocultured with mouse neonatal cardiomyocytes. Moreover, hPDMCs exert strong proangiogenic responses in vitro toward human endothelial cells mediated by secretion of hepatocyte growth factor, growth-regulated oncogene-α, and interleukin-8. To test the in vivo relevance of these results, small and large animal models of acute MI were induced in mice and minipigs, respectively, by permanent left anterior descending (LAD) artery ligation, followed by hPDMC or culture medium-only implantation with follow-up for up to 8 weeks. Transplantation of hPDMCs into mouse heart post-acute MI induction improved left ventricular function, with significantly enhanced vascularity in the cell-treated group. Furthermore, in minipigs post-acute MI induction, hPDMC transplantation significantly improved myocardial contractility compared to the control group (p = 0.016) at 8 weeks postinjury. In addition, tissue analysis confirmed that hPDMC transplantation induced increased vascularity, cardiomyogenic differentiation, and antiapoptotic effects. Our findings offer evidence that hPDMCs can modulate cardiac injury in both small and large animal models, possibly through proangiogenesis, cardiomyogenesis, and suppression of cardiomyocyte apoptosis. Our study offers mechanistic insights and preclinical evidence on using hPDMCs as a therapeutic strategy to treat severe cardiovascular diseases.

  7. Bisphenol A Diglycidyl Ether Induces Adipogenic Differentiation of Multipotent Stromal Stem Cells through a Peroxisome Proliferator–Activated Receptor Gamma-Independent Mechanism

    PubMed Central

    Chamorro-García, Raquel; Kirchner, Séverine; Li, Xia; Janesick, Amanda; Casey, Stephanie C.; Chow, Connie

    2012-01-01

    Background: Bisphenol A (BPA) and bisphenol A diglycidyl ether (BADGE), used in manufacturing coatings and resins, leach from packaging materials into food. Numerous studies suggested that BPA and BADGE may have adverse effects on human health, including the possibility that exposure to such chemicals can be superimposed on traditional risk factors to initiate or exacerbate the development of obesity. BPA is a suspected obesogen, whereas BADGE, described as a peroxisome proliferator–activated receptor gamma (PPARγ) antagonist, could reduce weight gain. Objectives: We sought to test the adipogenic effects of BADGE in a biologically relevant cell culture model. Methods: We used multipotent mesenchymal stromal stem cells (MSCs) to study the adipogenic capacity of BADGE and BPA and evaluated their effects on adipogenesis, osteogenesis, gene expression, and nuclear receptor activation. Discussion: BADGE induced adipogenesis in human and mouse MSCs, as well as in mouse 3T3-L1 preadipocytes. In contrast, BPA failed to promote adipogenesis in MSCs, but induced adipogenesis in 3T3-L1 cells. BADGE exposure elicited an adipogenic gene expression profile, and its ability to induce adipogenesis and the expression of adipogenic genes was not blocked by known PPARγ antagonists. Neither BADGE nor BPA activated or antagonized retinoid “X” receptor (RXR) or PPARγ in transient transfection assays. Conclusions: BADGE can induce adipogenic differentiation in both MSCs and in preadipocytes at low nanomolar concentrations comparable to those that have been observed in limited human biomonitoring. BADGE probably acts through a mechanism that is downstream of, or parallel to, PPARγ. PMID:22763116

  8. Toll-Like Receptor 3 and Suppressor of Cytokine Signaling Proteins Regulate CXCR4 and CXCR7 Expression in Bone Marrow-Derived Human Multipotent Stromal Cells

    PubMed Central

    Tomchuck, Suzanne L.; Henkle, Sarah L.; Coffelt, Seth B.; Betancourt, Aline M.

    2012-01-01

    Background The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to “danger” signals – by-products of damaged, infected or inflamed tissues – via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated by TLRs in hMSC. Methodology/Principal Findings We demonstrate that TLR3 stimulation activates a Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 1 pathway, and increases expression of suppressor of cytokine signaling (SOCS) 1 and SOCS3 in hMSC. Our studies suggest that each of these SOCS plays a distinct role in negatively regulating TLR3 and JAK/STAT signaling. TLR3-mediated interferon regulatory factor 1 (IRF1) expression was inhibited by SOCS3 overexpression in hMSC while SOCS1 overexpression reduced STAT1 activation. Furthermore, our study is the first to demonstrate that when TLR3 is activated in hMSC, expression of CXCR4 and CXCR7 is downregulated. SOCS3 overexpression inhibited internalization of both CXCR4 and CXCR7 following TLR3 stimulation. In contrast, SOCS1 overexpression only inhibited CXCR7 internalization. Conclusion/Significance These results demonstrate that SOCS1 and SOCS3 each play a functionally distinct role in modulating TLR3, JAK/STAT, and CXCR4/CXCR7 signaling in hMSC and shed further light on the way hMSC respond to danger signals. PMID:22745793

  9. Brief Report: Elastin Microfibril Interface 1 and Integrin-Linked Protein Kinase Are Novel Markers of Islet Regenerative Function in Human Multipotent Mesenchymal Stromal Cells.

    PubMed

    Lavoie, Jessie R; Creskey, Marybeth M; Muradia, Gauri; Bell, Gillian I; Sherman, Stephen E; Gao, Jun; Stewart, Duncan J; Cyr, Terry D; Hess, David A; Rosu-Myles, Michael

    2016-08-01

    Multipotent mesenchymal stromal cell (MSC) transplantation is proposed as a novel therapy for treating diabetes by promoting the regeneration of damaged islets. The clinical promise of such treatments may be hampered by a high degree of donor-related variability in MSC function and a lack of standards for comparing potency. Here, we set out to identify markers of cultured human MSCs directly associated with islet regenerative function. Stromal cultures from nine separate bone marrow donors were demonstrated to have differing capacities to reduce hyperglycemia in the NOD/SCID streptozotocin-induced diabetic model. Regenerative (R) and non-regenerative (NR) MSC cultures were directly compared using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics. A total of 1,410 proteins were quantified resulting in the identification of 612 upregulated proteins and 275 downregulated proteins by ± 1.2-fold in R-MSC cultures. Elastin microfibril interface 1 (EMILIN-1), integrin-linked protein kinase (ILK), and hepatoma-derived growth factor (HDGF) were differentially expressed in R-MSCs, and Ingenuity Pathway Analyses revealed each candidate as known regulators of integrin signaling. Western blot validation of EMILIN-1, ILK, and HDGF not only showed significantly higher abundance levels in R-MSCs, as compared with NR-MSCs, but also correlated with passage-induced loss of islet-regenerative potential. Generalized estimating equation modeling was applied to examine the association between each marker and blood glucose reduction. Both EMILIN-1 and ILK were significantly associated with blood glucose lowering function in vivo. Our study is the first to identify EMILIN-1 and ILK as prospective markers of islet regenerative function in human MSCs. Stem Cells 2016;34:2249-2255.

  10. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review.

    PubMed

    Wang, Peng-Yuan; Thissen, Helmut; Kingshott, Peter

    2016-11-01

    The ability to control the interactions of stem cells with synthetic surfaces is proving to be effective and essential for the quality of passaged stem cells and ultimately the success of regenerative medicine. The stem cell niche is crucial for stem cell self-renewal and differentiation. Thus, mimicking the stem cell niche, and here in particular the extracellular matrix (ECM), in vitro is an important goal for the expansion of stem cells and their applications. Here, surface nanotopographies and surface-immobilised biosignals have been identified as major factors that control stem cell responses. The development of tailored surfaces having an optimum nanotopography and displaying suitable biosignals is proposed to be essential for future stem cell culture, cell therapy and regenerative medicine applications. While early research in the field has been restricted by the limited availability of micro- and nanofabrication techniques, new approaches involving the use of advanced fabrication and surface immobilisation methods are starting to emerge. In addition, new cell types such as induced pluripotent stem cells (iPSCs) have become available in the last decade, but have not been fully understood. This review summarises significant advances in the area and focuses on the approaches that are aimed at controlling the behavior of human stem cells including maintenance of their self-renewal ability and improvement of their lineage commitment using nanotopographies and biosignals. More specifically, we discuss developments in biointerface science that are an important driving force for new biomedical materials and advances in bioengineering aiming at improving stem cell culture protocols and 3D scaffolds for clinical applications. Cellular responses revolve around the interplay between the surface properties of the cell culture substrate and the biomolecular composition of the cell culture medium. Determination of the precise role played by each factor, as well as the

  11. Isolation, molecular characterization, and in vitro differentiation of bovine Wharton jelly-derived multipotent mesenchymal cells.

    PubMed

    Lange-Consiglio, Anna; Perrini, Claudia; Bertero, Alessia; Esposti, Paola; Cremonesi, Fausto; Vincenti, Leila

    2017-02-01

    Extrafetal tissues are a noncontroversial and inexhaustible source of mesenchymal stem cells that can be harvested noninvasively at low cost. In the veterinary field, as in man, stem cells derived from extrafetal tissues express plasticity, reduced immunogenicity, and have high anti-inflammatory potential making them promising candidates for treatment of many diseases. Umbilical cord mesenchymal cells have been isolated and characterized in different species and have recently been investigated as potential candidates in regenerative medicine. In this study, cells derived from bovine Wharton jelly (WJ) were isolated for the first time by enzymatic methods, frozen/thawed, cultivated for at least 10 passages, and characterized. Wharton jelly-derived cells readily attached to plastic culture dishes displaying typical fibroblast-like morphology and, although their proliferative capacity decreased to the seventh passage, these cells showed a mean doubling time of 34.55 ± 6.33 hours and a mean frequency of one colony-forming unit fibroblast like for every 221.68 plated cells. The results of molecular biology studies and flow cytometry analyses revealed that WJ-derived cells showed the typical antigen profile of mesenchymal stem cells and were positive for CD29, CD44, CD105, CD166, Oct-4, and c-Myc. They were negative for CD34 and CD14. Remarkably, WJ-derived cells showed differentiation ability. After culture in induced media, WJ-derived cells were able to differentiate into osteogenic, adipogenic, chondrogenic, and neurogenic lines as shown by positive staining and expression of specific markers. On polymerase chain reaction analysis, these cells were negative for MHC-II and positive for MHC-I, thus reinforcing the role of extrafetal tissue as an allogenic source for bovine cell-based therapies. These results provide evidence that bovine WJ-derived cells may have the potential to differentiate to repair damaged tissues and reinforce the importance of extrafetal

  12. Isolation and characterization of Wharton’s jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system

    PubMed Central

    2012-01-01

    Background The possibility for isolating bovine mesenchymal multipotent cells (MSCs) from fetal adnexa is an interesting prospect because of the potential for these cells to be used for biotechnological applications. Bone marrow and adipose tissue are the most common sources of MSCs derived from adult animals. However, little knowledge exists about the characteristics of these progenitors cells in the bovine species. Traditionally most cell cultures are developed in two dimensional (2D) environments. In mammalian tissue, cells connect not only to each other, but also support structures called the extracellular matrix (ECM). The three-dimensional (3D) cultures may play a potential role in cell biotechnology, especially in tissue therapy. In this study, bovine-derived umbilical cord Wharton’s jelly (UC-WJ) cells were isolated, characterized and maintained under 3D-free serum condition as an alternative of stem cell source for future cell banking. Results Bovine-derived UC-WJ cells, collected individually from 5 different umbilical cords sources, were successfully cultured under serum-free conditions and were capable to support 60 consecutive passages using commercial Stemline® mesenchymal stem cells expansion medium. Moreover, the UC-WJ cells were differentiated into osteocytes, chondrocytes, adipocytes and neural-like cells and cultured separately. Additionally, the genes that are considered important embryonic, POU5F1 and ITSN1, and mesenchymal cell markers, CD105+, CD29+, CD73+ and CD90+ in MSCs were also expressed in five bovine-derived UC-WJ cultures. Morphology of proliferating cells typically appeared fibroblast-like spindle shape presenting the same viability and number. These characteristics were not affected during passages. There were 60 chromosomes at the metaphase, with acrocentric morphology and intense telomerase activity. Moreover, the proliferative capacity of T cells in response to a mitogen stimulus was suppressed when bovine-derived UC-WJ cells

  13. Reduction by strontium of the bone marrow adiposity in mice and repression of the adipogenic commitment of multipotent C3H10T1/2 cells.

    PubMed

    Fournier, C; Perrier, A; Thomas, M; Laroche, N; Dumas, V; Rattner, A; Vico, L; Guignandon, A

    2012-02-01

    Multipotent mesenchymal cells (MMCs) differentiate into osteoblasts or adipocytes through RUNX2 and PPARγ2, respectively. Strontium ranelate has been shown to promote osteoblastogenesis and prevent adipogenesis in long-term experiments using MMCs. The present study involved in-vitro and in-vivo investigations of whether Sr might first be an inhibitor of adipogenesis, thus explaining late osteoblastogenesis. It was established in vivo that Sr reduces adipogenesis in mice treated only for 3 weeks with a 6 mmol/kg/day dose of Sr while the trabecular bone volume is increased. In order to decipher molecular mechanisms during inhibition of adipogenesis, we used murine MMCs C3H10T1/2 cultured under adipogenic conditions (AD) and treated Sr of a concentration up to 3 mM. It was shown that early on (day 1), Sr dose-dependently reduced PPARγ2 and CEBPα mRNA without affecting the RUNX2 gene expression whereas it repressed ALP mRNA. Later (day 5), PPARγ2 and CEBPα mRNA remained inhibited by Sr, preventing adipocyte lipid accumulation, while Runx2 and ALP mRNA were increased. Moreover, under the mentioned conditions, Sr was able to quickly induce the Cyclin D1 gene expression, proliferation and fibronectin fibrillogenesis, both involved in the inhibition of adipogenesis. The inhibition of the ERK pathway by U0126 blunted the Sr-induced PPARγ2 repression while restoring the lipid accumulation. These results demonstrated that Sr was capable of rapidly reducing adipogenesis by a selective PPARγ2 repression that can be explained by its ability to promote MMC proliferation.

  14. The regulatory role of c-MYC on HDAC2 and PcG expression in human multipotent stem cells.

    PubMed

    Bhandari, Dilli Ram; Seo, Kwang-Won; Jung, Ji-Won; Kim, Hyung-Sik; Yang, Se-Ran; Kang, Kyung-Sun

    2011-07-01

    Myelocytomatosis oncogene (c-MYC) is a well-known nuclear oncoprotein having multiple functions in cell proliferation, apoptosis and cellular transformation. Chromosomal modification is also important to the differentiation and growth of stem cells. Histone deacethylase (HDAC) and polycomb group (PcG) family genes are well-known chromosomal modification genes. The aim of this study was to elucidate the role of c-MYC in the expression of chromosomal modification via the HDAC family genes in human mesenchymal stem cells (hMSCs). To achieve this goal, c-MYC expression was modified by gene knockdown and overexpression via lentivirus vector. Using the modified c-MYC expression, our study was focused on cell proliferation, differentiation and cell cycle. Furthermore, the relationship of c-MYC with HDAC2 and PcG genes was also examined. The cell proliferation and differentiation were checked and shown to be dramatically decreased in c-MYC knocked-down human umbilical cord blood-derived MSCs, whereas they were increased in c-MYC overexpressing cells. Similarly, RT-PCR and Western blotting results revealed that HDAC2 expression was decreased in c-MYC knocked-down and increased in c-MYC overexpressing hMSCs. Database indicates presence of c-MYC binding motif in HDAC2 promoter region, which was confirmed by chromatin immunoprecipitation assay. The influence of c-MYC and HDAC2 on PcG expression was confirmed. This might indicate the regulatory role of c-MYC over HDAC2 and PcG genes. c-MYCs' regulatory role over HDAC2 was also confirmed in human adipose tissue-derived MSCs and bone-marrow derived MSCs. From this finding, it can be concluded that c-MYC plays a vital role in cell proliferation and differentiation via chromosomal modification.

  15. Efficient Generation of Multipotent Mesenchymal Stem Cells from Umbilical Cord Blood in Stroma-Free Liquid Culture

    PubMed Central

    van den Broek, Maries; Nuvolone, Mario; Dannenmann, Stefanie; Stieger, Bruno; Rapold, Reto; Konrad, Daniel; Rubin, Arnold; Bertino, Joseph R.; Aguzzi, Adriano; Heikenwalder, Mathias; Knuth, Alexander K.

    2010-01-01

    Background Haematopoiesis is sustained by haematopoietic (HSC) and mesenchymal stem cells (MSC). HSC are the precursors for blood cells, whereas marrow, stroma, bone, cartilage, muscle and connective tissues derive from MSC. The generation of MSC from umbilical cord blood (UCB) is possible, but with low and unpredictable success. Here we describe a novel, robust stroma-free dual cell culture system for long-term expansion of primitive UCB-derived MSC. Methods and Findings UCB-derived mononuclear cells (MNC) or selected CD34+ cells were grown in liquid culture in the presence of serum and cytokines. Out of 32 different culture conditions that have been tested for the efficient expansion of HSC, we identified one condition (DMEM, pooled human AB serum, Flt-3 ligand, SCF, MGDF and IL-6; further denoted as D7) which, besides supporting HSC expansion, successfully enabled long-term expansion of stromal/MSC from 8 out of 8 UCB units (5 MNC-derived and 3 CD34+ selected cells). Expanded MSC displayed a fibroblast-like morphology, expressed several stromal/MSC-related antigens (CD105, CD73, CD29, CD44, CD133 and Nestin) but were negative for haematopoietic cell markers (CD45, CD34 and CD14). MSC stemness phenotype and their differentiation capacity in vitro before and after high dilution were preserved throughout long-term culture. Even at passage 24 cells remained Nestin+, CD133+ and >95% were positive for CD105, CD73, CD29 and CD44 with the capacity to differentiate into mesodermal lineages. Similarly we show that UCB derived MSC express pluripotency stem cell markers despite differences in cell confluency and culture passages. Further, we generated MSC from peripheral blood (PB) MNC of 8 healthy volunteers. In all cases, the resulting MSC expressed MSC-related antigens and showed the capacity to form CFU-F colonies. Conclusions This novel stroma-free liquid culture overcomes the existing limitation in obtaining MSC from UCB and PB enabling so far unmet therapeutic

  16. Postnatal stem/progenitor cells derived from the dental pulp of adult chimpanzee

    PubMed Central

    Cheng, Pei-Hsun; Snyder, Brooke; Fillos, Dimitri; Ibegbu, Chris C; Huang, Anderson Hsien-Cheng; Chan, Anthony WS

    2008-01-01

    Background Chimpanzee dental pulp stem/stromal cells (ChDPSCs) are very similar to human bone marrow derived mesenchymal stem/stromal cells (hBMSCs) as demonstrated by the expression pattern of cell surface markers and their multipotent differentiation capability. Results ChDPSCs were isolated from an incisor and a canine of a forty-seven year old female chimpanzee. A homogenous population of ChDPSCs was established in early culture at a high proliferation rate and verified by the expression pattern of thirteen cell surface markers. The ChDPSCs are multipotent and were capable of differentiating into osteogenic, adipogenic and chondrogenic lineages under appropriate in vitro culture conditions. ChDPSCs also express stem cell (Sox-2, Nanog, Rex-1, Oct-4) and osteogenic (Osteonectin, osteocalcin, osteopontin) markers, which is comparable to reported results of rhesus monkey BMSCs (rBMSCs), hBMSCs and hDPSCs. Although ChDPSCs vigorously proliferated during the initial phase and gradually decreased in subsequent passages, the telomere length indicated that telomerase activity was not significantly reduced. Conclusion These results demonstrate that ChDPSCs can be efficiently isolated from post-mortem teeth of adult chimpanzees and are multipotent. Due to the almost identical genome composition of humans and chimpanzees, there is an emergent need for defining the new role of chimpanzee modeling in comparative medicine. Teeth are easy to recover at necropsy and easy to preserve prior to the retrieval of dental pulp for stem/stromal cells isolation. Therefore, the establishment of ChDPSCs would preserve and maximize the applications of such a unique and invaluable animal model, and could advance the understanding of cellular functions and differentiation control of adult stem cells in higher primates. PMID:18430234

  17. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    SciTech Connect

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  18. An Exploratory Clinical Trial for Idiopathic Osteonecrosis of Femoral Head by Cultured Autologous Multipotent Mesenchymal Stromal Cells Augmented with Vascularized Bone Grafts

    PubMed Central

    Aoyama, Tomoki; Goto, Koji; Kakinoki, Ryosuke; Ikeguchi, Ryosuke; Ueda, Michiko; Kasai, Yasunari; Maekawa, Taira; Tada, Harue; Teramukai, Satoshi; Nakamura, Takashi

    2014-01-01

    Idiopathic osteonecrosis of femoral head (ION) is a painful disorder that progresses to collapse of the femoral head and destruction of the hip joint. Although its precise pathology remains unknown, the loss of blood supply causing the loss of living bone-forming cells is a hallmark of the pathophysiology of osteonecrosis. Transplantation of multipotent mesenchymal stromal cells (MSCs) is a promising tool for regenerating the musculoskeletal system. The aim of the present study was to assess the safety and efficacy of transplantation of cultured autologous bone marrow-derived MSCs mixed with β-tricalcium phosphate (β-TCP) in combination with vascularized bone grafts for the treatment of advanced stage ION in a clinical trial. Ten patients with stage 3 ION were enrolled in this study. Autologous bone marrow-derived MSCs were cultured with autologous serum, and cells (0.5–1.0×108) were transplanted after mixing with β-TCP granules in combination with vascularized iliac bone grafts. Patients were assessed 24 months after treatment. The primary and secondary endpoints were progression of the radiological stage and changes in bone volume at the femoral head, and clinical score, respectively. Nine of ten patients completed the protocol, seven of whom remained at stage 3, and the remaining two cases progressed to stage 4. The average bone volume increased from 56.5±8.5 cm3 to 57.7±10.6 cm3. The average clinical score according to the Japan Orthopaedic Association improved from 65.6±25.5 points to 87.9±19.0 points. One severe adverse event was observed, which was not related to the clinical trial. Although the efficacy of cell transplantation was still to be determined, all procedures were successfully performed and some young patients with extensive necrotic lesions with pain demonstrated good bone regeneration with amelioration of symptoms. Further improvements in our method using MSCs and the proper selection of patients will open a new approach for the

  19. Repression of p53-target gene Bbc3/PUMA by MYSM1 is essential for the survival of hematopoietic multipotent progenitors and contributes to stem cell maintenance

    PubMed Central

    Belle, J I; Petrov, J C; Langlais, D; Robert, F; Cencic, R; Shen, S; Pelletier, J; Gros, P; Nijnik, A

    2016-01-01

    p53 is a central mediator of cellular stress responses, and its precise regulation is essential for the normal progression of hematopoiesis. MYSM1 is an epigenetic regulator essential for the maintenance of hematopoietic stem cell (HSC) function, hematopoietic progenitor survival, and lymphocyte development. We recently demonstrated that all developmental and hematopoietic phenotypes of Mysm1 deficiency are p53-mediated and rescued in the Mysm1−/−p53−/− mouse model. However, the mechanisms triggering p53 activation in Mysm1−/− HSPCs, and the pathways downstream of p53 driving different aspects of the Mysm1−/− phenotype remain unknown. Here we show the transcriptional activation of p53 stress responses in Mysm1−/− HSPCs. Mechanistically, we find that the MYSM1 protein associates with p53 and colocalizes to promoters of classical p53-target genes Bbc3/PUMA (p53 upregulated modulator of apoptosis) and Cdkn1a/p21. Furthermore, it antagonizes their p53-driven expression by modulating local histone modifications (H3K27ac and H3K4me3) and p53 recruitment. Using double-knockout mouse models, we establish that PUMA, but not p21, is an important mediator of p53-driven Mysm1−/− hematopoietic dysfunction. Specifically, Mysm1−/−Puma−/− mice show full rescue of multipotent progenitor (MPP) viability, partial rescue of HSC quiescence and function, but persistent lymphopenia. Through transcriptome analysis of Mysm1−/−Puma−/− MPPs, we demonstrate strong upregulation of other p53-induced mediators of apoptosis and cell-cycle arrest. The full viability of Mysm1−/−Puma−/− MPPs, despite strong upregulation of many other pro-apoptotic mediators, establishes PUMA as the essential non-redundant effector of p53-induced MPP apoptosis. Furthermore, we identify potential mediators of p53-dependent but PUMA-independent Mysm1−/−hematopoietic deficiency phenotypes. Overall, our study provides novel insight into the cell-type-specific roles of p

  20. Repression of p53-target gene Bbc3/PUMA by MYSM1 is essential for the survival of hematopoietic multipotent progenitors and contributes to stem cell maintenance.

    PubMed

    Belle, J I; Petrov, J C; Langlais, D; Robert, F; Cencic, R; Shen, S; Pelletier, J; Gros, P; Nijnik, A

    2016-05-01

    p53 is a central mediator of cellular stress responses, and its precise regulation is essential for the normal progression of hematopoiesis. MYSM1 is an epigenetic regulator essential for the maintenance of hematopoietic stem cell (HSC) function, hematopoietic progenitor survival, and lymphocyte development. We recently demonstrated that all developmental and hematopoietic phenotypes of Mysm1 deficiency are p53-mediated and rescued in the Mysm1(-/-)p53(-/-) mouse model. However, the mechanisms triggering p53 activation in Mysm1(-/-) HSPCs, and the pathways downstream of p53 driving different aspects of the Mysm1(-/-) phenotype remain unknown. Here we show the transcriptional activation of p53 stress responses in Mysm1(-/-) HSPCs. Mechanistically, we find that the MYSM1 protein associates with p53 and colocalizes to promoters of classical p53-target genes Bbc3/PUMA (p53 upregulated modulator of apoptosis) and Cdkn1a/p21. Furthermore, it antagonizes their p53-driven expression by modulating local histone modifications (H3K27ac and H3K4me3) and p53 recruitment. Using double-knockout mouse models, we establish that PUMA, but not p21, is an important mediator of p53-driven Mysm1(-/-) hematopoietic dysfunction. Specifically, Mysm1(-/-)Puma(-/-) mice show full rescue of multipotent progenitor (MPP) viability, partial rescue of HSC quiescence and function, but persistent lymphopenia. Through transcriptome analysis of Mysm1(-/-)Puma(-/-) MPPs, we demonstrate strong upregulation of other p53-induced mediators of apoptosis and cell-cycle arrest. The full viability of Mysm1(-/-)Puma(-/-) MPPs, despite strong upregulation of many other pro-apoptotic mediators, establishes PUMA as the essential non-redundant effector of p53-induced MPP apoptosis. Furthermore, we identify potential mediators of p53-dependent but PUMA-independent Mysm1(-/-)hematopoietic deficiency phenotypes. Overall, our study provides novel insight into the cell-type-specific roles of p53 and its downstream

  1. Multipotent pancreas progenitors: Inconclusive but pivotal topic

    PubMed Central

    Jiang, Fang-Xu; Morahan, Grant

    2015-01-01

    The establishment of multipotent pancreas progenitors (MPP) should have a significant impact not only on the ontology of the pancreas, but also for the translational research of glucose-responding endocrine β-cells. Deficiency of the latter may lead to the pandemic type 1 or type 2 diabetes mellitus, a metabolic disorder. An ideal treatment of which would potentially be the replacement of destroyed or failed β-cells, by restoring function of endogenous pancreatic endocrine cells or by transplantation of donor islets or in vitro generated insulin-secreting cells. Thus, considerable research efforts have been devoted to identify MPP candidates in the pre- and post-natal pancreas for the endogenous neogenesis or regeneration of endocrine insulin-secreting cells. In order to advance this inconclusive but critical field, we here review the emerging concepts, recent literature and newest developments of potential MPP and propose measures that would assist its forward progression. PMID:26730269

  2. Inhibitory role of reactive oxygen species in the differentiation of multipotent vascular stem cells into vascular smooth muscle cells in rats: a novel aspect of traditional culture of rat aortic smooth muscle cells.

    PubMed

    Song, Haibo; Wang, Hui; Wu, Weiwei; Qi, Lei; Shao, Lei; Wang, Fang; Lai, Yimu; Leach, Desiree; Mathis, Bryan; Janicki, Joseph S; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2015-10-01

    Proliferative or synthetic vascular smooth muscle cells (VSMCs) are widely accepted to be mainly derived from the dedifferentiation or phenotypic modulation of mature contractile VSMCs, i.e., a phenotype switch from a normally quiescent and contractile type into a proliferative or synthetic form. However, this theory has been challenged by recent evidence that synthetic VSMCs predominantly originate instead from media-derived multipotent vascular stem cells (MVSCs). To test these hypotheses further, we re-examine whether the conventional rat aortic SMC (RASMC) culture involves the VSMC differentiation of MVSCs or the dedifferentiation of mature VSMCs and the potential mechanism for controlling the synthetic phenotype of RASMCs. We enzymatically isolated RASMCs and cultured the cells in both a regular growth medium (RGM) and a stem cell growth medium (SCGM). Regardless of culture conditions, only a small portion of freshly isolated RASMCs attaches, survives and grows slowly during the first 7 days of primary culture, while expressing both SMC- and MVSC-specific markers. RGM-cultured cells undergo a process of synthetic SMC differentiation, whereas SCGM-cultured cells can be differentiated into not only synthetic SMCs but also other somatic cells. Notably, compared with the RGM-cultured differentiated RASMCs, the SCGM-cultured undifferentiated cells exhibit the phenotype of MVSCs and generate greater amounts of reactive oxygen species (ROS) that act as a negative regulator of differentiation into synthetic VSMCs. Knockdown of phospholipase A2, group 7 (Pla2g7) suppresses ROS formation in the MVSCs while enhancing SMC differentiation of MVSCs. These results suggest that cultured synthetic VSMCs can be derived from the SMC differentiation of MVSCs with ROS as a negative regulator.

  3. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells

    PubMed Central

    Veraitch, Ophelia; Mabuchi, Yo; Matsuzaki, Yumi; Sasaki, Takashi; Okuno, Hironobu; Tsukashima, Aki; Amagai, Masayuki; Okano, Hideyuki; Ohyama, Manabu

    2017-01-01

    The dermal papilla (DP) is a specialised mesenchymal component of the hair follicle (HF) that plays key roles in HF morphogenesis and regeneration. Current technical difficulties in preparing trichogenic human DP cells could be overcome by the use of highly proliferative and plastic human induced pluripotent stem cells (hiPSCs). In this study, hiPSCs were differentiated into induced mesenchymal cells (iMCs) with a bone marrow stromal cell phenotype. A highly proliferative and plastic LNGFR(+)THY-1(+) subset of iMCs was subsequently programmed using retinoic acid and DP cell activating culture medium to acquire DP properties. The resultant cells (induced DP-substituting cells [iDPSCs]) exhibited up-regulated DP markers, interacted with human keratinocytes to up-regulate HF related genes, and when co-grafted with human keratinocytes in vivo gave rise to fibre structures with a hair cuticle-like coat resembling the hair shaft, as confirmed by scanning electron microscope analysis. Furthermore, iDPSCs responded to the clinically used hair growth reagent, minoxidil sulfate, to up-regulate DP genes, further supporting that they were capable of, at least in part, reproducing DP properties. Thus, LNGFR(+)THY-1(+) iMCs may provide material for HF bioengineering and drug screening for hair diseases. PMID:28220862

  4. Neural stem cells: an overview.

    PubMed

    Parati, E A; Pozzi, S; Ottolina, A; Onofrj, M; Bez, A; Pagano, S F

    2004-01-01

    Multipotent stem cells are present in the majority of mammalian tissues where they are a renewable source of specialized cells. According to the several biological portions from which multipotent stem cells can be derived, they are characterized as a) embryonic stem cells (ESCs) isolated from the pluripotent inner-cell mass of the pre-implantation blastocyste-stage embryo; b) multipotent fetal stem cells (FSCs) from aborted fetuses; and c) adult stem cells (ASCs) localized in small zones of several organs known as "niche" where a subset of tissue cells and extracellular substrates can indefinitely house one or more stem cells and control their self-renewal and progeny production in vivo. ECSs have an high self-renewing capacity, plasticity and pluripotency over the years. Pluripotency is a property that makes a stem cell able to give rise to all cell type found in the embryo and adult animals.

  5. Human Myocardial Pericytes: Multipotent Mesodermal Precursors Exhibiting Cardiac Specificity

    PubMed Central

    Chen, William C.W.; Baily, James E.; Corselli, Mirko; Diaz, Mary; Sun, Bin; Xiang, Guosheng; Gray, Gillian A.; Huard, Johnny; Péault, Bruno

    2015-01-01

    Perivascular mesenchymal precursor cells (i.e. pericytes) reside in skeletal muscle where they contribute to myofiber regeneration; however, the existence of similar microvessel-associated regenerative precursor cells in cardiac muscle has not yet been documented. We tested whether microvascular pericytes within human myocardium exhibit phenotypes and multipotency similar to their anatomically and developmentally distinct counterparts. Fetal and adult human heart pericytes (hHPs) express canonical pericyte markers in situ, including CD146, NG2, PDGFRβ, PDGFRα, αSMA, and SM-MHC, but not CD117, CD133 and desmin, nor endothelial cell (EC) markers. hHPs were prospectively purified to homogeneity from ventricular myocardium by flow cytometry, based on a combination of positive- (CD146) and negative-selection (CD34, CD45, CD56, and CD117) cell lineage markers. Purified hHPs expanded in vitro were phenotypically similar to human skeletal muscle-derived pericytes (hSkMPs). hHPs express MSC markers in situ and exhibited osteo- chondro-, and adipogenic potentials but, importantly, no ability for skeletal myogenesis, diverging from pericytes of all other origins. hHPs supported network formation with/without ECs in Matrigel cultures; hHPs further stimulated angiogenic responses under hypoxia, markedly different from hSkMPs. The cardiomyogenic potential of hHPs was examined following 5-azacytidine treatment and neonatal cardiomyocyte co-culture in vitro, and intramyocardial transplantation in vivo. Results indicated cardiomyocytic differentiation in a small fraction of hHPs. In conclusion, human myocardial pericytes share certain phenotypic and developmental similarities with their skeletal muscle homologs, yet exhibit different antigenic, myogenic, and angiogenic properties. This is the first example of an anatomical restriction in the developmental potential of pericytes as native mesenchymal stem cells. PMID:25336400

  6. Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM.

    PubMed

    Ng, Chee Ping; Sharif, Abdul Rahim Mohamed; Heath, Daniel E; Chow, John W; Zhang, Claire B Y; Chan-Park, Mary B; Hammond, Paula T; Chan, Jerry K Y; Griffith, Linda G

    2014-04-01

    Large-scale expansion of highly functional adult human mesenchymal stem cells (aMSCs) remains technologically challenging as aMSCs lose self renewal capacity and multipotency during traditional long-term culture and their quality/quantity declines with donor age and disease. Identification of culture conditions enabling prolonged expansion and rejuvenation would have dramatic impact in regenerative medicine. aMSC-derived decellularized extracellular matrix (ECM) has been shown to provide such microenvironment which promotes MSC self renewal and "stemness". Since previous studies have demonstrated superior proliferation and osteogenic potential of human fetal MSCs (fMSCs), we hypothesize that their ECM may promote expansion of clinically relevant aMSCs. We demonstrated that aMSCs were more proliferative (∼ 1.6 ×) on fMSC-derived ECM than aMSC-derived ECMs and traditional tissue culture wares (TCPS). These aMSCs were smaller and more uniform in size (median ± interquartile range: 15.5 ± 4.1 μm versus 17.2 ± 5.0 μm and 15.5 ± 4.1 μm for aMSC ECM and TCPS respectively), exhibited the necessary biomarker signatures, and stained positive for osteogenic, adipogenic and chondrogenic expressions; indications that they maintained multipotency during culture. Furthermore, fMSC ECM improved the proliferation (∼ 2.2 ×), size (19.6 ± 11.9 μm vs 30.2 ± 14.5 μm) and differentiation potential in late-passaged aMSCs compared to TCPS. In conclusion, we have established fMSC ECM as a promising cell culture platform for ex vivo expansion of aMSCs.

  7. Differentiation and characteristics of undifferentiated mesenchymal stem cells originating from adult premolar periodontal ligaments

    PubMed Central

    Kwon, Dae-Woo; Im, Insook; Kim, Yong-Deok; Hwang, Dae-Seok; Holliday, L Shannon; Donatelli, Richard E; Son, Woo-Sung; Jun, Eun-Sook

    2012-01-01

    Objective The purpose of this study was to investigate the isolation and characterization of multipotent human periodontal ligament (PDL) stem cells and to assess their ability to differentiate into bone, cartilage, and adipose tissue. Methods PDL stem cells were isolated from 7 extracted human premolar teeth. Human PDL cells were expanded in culture, stained using anti-CD29, -CD34, -CD44, and -STRO-1 antibodies, and sorted by fluorescent activated cell sorting (FACS). Gingival fibroblasts (GFs) served as a positive control. PDL stem cells and GFs were cultured using standard conditions conducive for osteogenic, chondrogenic, or adipogenic differentiation. Results An average of 152.8 ± 27.6 colony-forming units was present at day 7 in cultures of PDL stem cells. At day 4, PDL stem cells exhibited a significant increase in proliferation (p < 0.05), reaching nearly double the proliferation rate of GFs. About 5.6 ± 4.5% of cells in human PDL tissues were strongly STRO-1-positive. In osteogenic cultures, calcium nodules were observed by day 21 in PDL stem cells, which showed more intense calcium staining than GF cultures. In adipogenic cultures, both cell populations showed positive Oil Red O staining by day 21. Additionally, in chondrogenic cultures, PDL stem cells expressed collagen type II by day 21. Conclusions The PDL contains multipotent stem cells that have the potential to differentiate into osteoblasts, chondrocytes, and adipocytes. This adult PDL stem cell population can be utilized as potential sources of PDL in tissue engineering applications. PMID:23323245

  8. In Vitro Differentiation of Embryonic and Adult Stem Cells into Hepatocytes: State of the Art

    PubMed Central

    Snykers, Sarah; De Kock, Joery; Rogiers, Vera; Vanhaecke, Tamara

    2009-01-01

    Stem cells are a unique source of self-renewing cells within the human body. Before the end of the last millennium, adult stem cells, in contrast to their embryonic counterparts, were considered to be lineage-restricted cells or incapable of crossing lineage boundaries. However, the unique breakthrough of muscle and liver regeneration by adult bone marrow stem cells at the end of the 1990s ended this long-standing paradigm. Since then, the number of articles reporting the existence of multipotent stem cells in skin, neuronal tissue, adipose tissue, and bone marrow has escalated, giving rise, both in vivo and in vitro, to cell types other than their tissue of origin. The phenomenon of fate reprogrammation and phenotypic diversification remains, though, an enigmatic and rare process. Understanding how to control both proliferation and differentiation of stem cells and their progeny is a challenge in many fields, going from preclinical drug discovery and development to clinical therapy. In this review, we focus on current strategies to differentiate embryonic, mesenchymal(-like), and liver stem/progenitor cells into hepatocytes in vitro. Special attention is paid to intracellular and extracellular signaling, genetic modification, and cell-cell and cell-matrix interactions. In addition, some recommendations are proposed to standardize, optimize, and enrich the in vitro production of hepatocyte-like cells out of stem/progenitor cells. PMID:19056906

  9. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    SciTech Connect

    Ren, Zhenhua; Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin; Chen, Zhiguo; Zhang, Y. Alex

    2011-12-10

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: Black-Right-Pointing-Pointer Spontaneous transformation of cynomolgus monkey MSCs in vitro. Black-Right-Pointing-Pointer Transformed mesenchymal cells lack multipotency. Black-Right-Pointing-Pointer Transformed mesenchymal cells are highly tumorigenic. Black-Right-Pointing-Pointer Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  10. Adult bone marrow-derived stem cells for organ regeneration and repair.

    PubMed

    Tögel, Florian; Westenfelder, Christof

    2007-12-01

    Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine.

  11. Adult stem cell therapy: dream or reality?

    PubMed

    Moraleda, Jose M; Blanquer, Miguel; Bleda, Patricia; Iniesta, Paqui; Ruiz, Francisco; Bonilla, Sonia; Cabanes, Carmen; Tabares, Lucía; Martinez, Salvador

    2006-12-01

    Adult stem cells may be an invaluable source of plastic cells for tissue regeneration. The bone marrow contains different subpopulations of adult stem cells easily accessible for transplantation. However the therapeutic value of adult stem cell is a question of debate in the scientific community. We have investigated the potential benefits of adult hematopoietic stem cell transplantation in animal models of demyelinating and motor neuron diseases. Our results suggest that transplantation of HSC have direct and indirect neuroregenerative and neuroprotective effects.

  12. [Adult Langerhans cell histiocytosis].

    PubMed

    de Menthon, Mathilde; Meignin, Véronique; Mahr, Alfred; Tazi, Abdellatif

    2017-01-01

    Langerhans cell histiocytosis (LCH) is a rare disease affecting both genders and can occur at any age. It often evolves through successive flares, and its severity varies from benign forms that don't require treatment to life threatening disease. Some patients have important functional impairment with psychological and social consequences and prolonged disability. LCH may affect only one organ, with uni- or multifocal involvement or be multisystem disease involving multiple organs. The organs most frequently involved are bones, lung, skin and the endocrinal system. Pulmonary LCH is strongly related to smoking. Some patients have mixed histocytosis combining LCH and other histiocytic disorders. The diagnosis relies on the histological study of tissues samples, and shows tissue infiltration with large cell with pale cytoplasm and reniform nucleus, staining for CD1a and Langerin (CD207) on immunohistochemistry. The BRAF(V600E) mutation is observed in tissue samples in approximately half of patients and the activation of the RAS-RAF-MEK-ERK pathway has been shown to be constantly activated in LCH lesions, regardless the BRAF status. These findings represent an important forward step in the understanding of the physiopathology of the disease. Treatment must be adapted to the severity of the disease and goes from conservative observation to systemic chemotherapy. Therapies targeting the RAS-RAF-MEK-ERK pathway are promising treatments for progressive disease.

  13. Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation.

    PubMed

    Nakano, Ichiro; Paucar, Andres A; Bajpai, Ruchi; Dougherty, Joseph D; Zewail, Amani; Kelly, Theresa K; Kim, Kevin J; Ou, Jing; Groszer, Matthias; Imura, Tetsuya; Freije, William A; Nelson, Stanley F; Sofroniew, Michael V; Wu, Hong; Liu, Xin; Terskikh, Alexey V; Geschwind, Daniel H; Kornblum, Harley I

    2005-08-01

    Maternal embryonic leucine zipper kinase (MELK) was previously identified in a screen for genes enriched in neural progenitors. Here, we demonstrate expression of MELK by progenitors in developing and adult brain and that MELK serves as a marker for self-renewing multipotent neural progenitors (MNPs) in cultures derived from the developing forebrain and in transgenic mice. Overexpression of MELK enhances (whereas knockdown diminishes) the ability to generate neurospheres from MNPs, indicating a function in self-renewal. MELK down-regulation disrupts the production of neurogenic MNP from glial fibrillary acidic protein (GFAP)-positive progenitors in vitro. MELK expression in MNP is cell cycle regulated and inhibition of MELK expression down-regulates the expression of B-myb, which is shown to also mediate MNP proliferation. These findings indicate that MELK is necessary for proliferation of embryonic and postnatal MNP and suggest that it regulates the transition from GFAP-expressing progenitors to rapid amplifying progenitors in the postnatal brain.

  14. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.

    PubMed

    Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh

    2014-06-01

    Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.

  15. New multipotent tetracyclic tacrines with neuroprotective activity.

    PubMed

    Marco-Contelles, José; León, Rafael; de los Ríos, Cristóbal; García, Antonio G; López, Manuela G; Villarroya, Mercedes

    2006-12-15

    The synthesis and the biological evaluation (neuroprotection, voltage dependent calcium channel blockade, AChE/BuChE inhibitory activity and propidium binding) of new multipotent tetracyclic tacrine analogues (5-13) are described. Compounds 7, 8 and 11 showed a significant neuroprotective effect on neuroblastoma cells subjected to Ca(2+) overload or free radical induced toxicity. These compounds are modest AChE inhibitors [the best inhibitor (11) is 50-fold less potent than tacrine], but proved to be very selective, as for most of them no BuChE inhibition was observed. In addition, the propidium displacement experiments showed that these compounds bind AChE to the peripheral anionic site (PAS) of AChE and, consequently, are potential agents that can prevent the aggregation of beta-amyloid. Overall, compound 8 is a modest and selective AChE inhibitor, but an efficient neuroprotective agent against 70mM K(+) and 60microM H(2)O(2). Based on these results, some of these molecules can be considered as lead candidates for the further development of anti-Alzheimer drugs.

  16. Molecular events in the cell types of the olfactory epithelium during adult neurogenesis

    PubMed Central

    2013-01-01

    Background Adult neurogenesis, fundamental for cellular homeostasis in the mammalian olfactory epithelium, requires major shifts in gene expression to produce mature olfactory sensory neurons (OSNs) from multipotent progenitor cells. To understand these dynamic events requires identifying not only the genes involved but also the cell types that express each gene. Only then can the interrelationships of the encoded proteins reveal the sequences of molecular events that control the plasticity of the adult olfactory epithelium. Results Of 4,057 differentially abundant mRNAs at 5 days after lesion-induced OSN replacement in adult mice, 2,334 were decreased mRNAs expressed by mature OSNs. Of the 1,723 increased mRNAs, many were expressed by cell types other than OSNs and encoded proteins involved in cell proliferation and transcriptional regulation, consistent with increased basal cell proliferation. Others encoded fatty acid metabolism and lysosomal proteins expressed by infiltrating macrophages that help scavenge debris from the apoptosis of mature OSNs. The mRNAs of immature OSNs behaved dichotomously, increasing if they supported early events in OSN differentiation (axon initiation, vesicular trafficking, cytoskeletal organization and focal adhesions) but decreasing if they supported homeostatic processes that carry over into mature OSNs (energy production, axon maintenance and protein catabolism). The complexity of shifts in gene expression responsible for converting basal cells into neurons was evident in the increased abundance of 203 transcriptional regulators expressed by basal cells and immature OSNs. Conclusions Many of the molecular changes evoked during adult neurogenesis can now be ascribed to specific cellular events in the OSN cell lineage, thereby defining new stages in the development of these neurons. Most notably, the patterns of gene expression in immature OSNs changed in a characteristic fashion as these neurons differentiated. Initial patterns

  17. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation

    PubMed Central

    Goodings, Charnise; Smith, Elizabeth; Mathias, Elizabeth; Elliott, Natalina; Cleveland, Susan M.; Tripathi, Rati M.; Layer, Justin H.; Chen, Xi; Guo, Yan; Shyr, Yu; Hamid, Rizwan; Du, Yang; Davé, Utpal P.

    2015-01-01

    Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis. PMID:25968920

  18. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  19. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Grebenjuk, Vladislav; Diehl-Seifert, Bärbel; Mailänder, Volker; Steffen, Renate; Schloßmacher, Ute; Müller, Werner E G

    2014-02-21

    The two marine inorganic polymers, biosilica (BS), enzymatically synthesized from ortho-silicate, and polyphosphate (polyP), a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC), mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts) or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation). Both biosilica and polyP, applied as Ca²⁺ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2) and alkaline phosphatase (ALP) in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that alginate

  20. The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of Human Multipotent Stromal Cells: Potential Application in 3D Printing and Distraction Osteogenesis

    PubMed Central

    Wang, Xiaohong; Schröder, Heinz C.; Grebenjuk, Vladislav; Diehl-Seifert, Bärbel; Mailänder, Volker; Steffen, Renate; Schloßmacher, Ute; Müller, Werner E. G.

    2014-01-01

    The two marine inorganic polymers, biosilica (BS), enzymatically synthesized from ortho-silicate, and polyphosphate (polyP), a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC), mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts) or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation). Both biosilica and polyP, applied as Ca2+ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2) and alkaline phosphatase (ALP) in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that alginate

  1. Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of "germline genes" with stemness.

    PubMed

    Alié, Alexandre; Leclère, Lucas; Jager, Muriel; Dayraud, Cyrielle; Chang, Patrick; Le Guyader, Hervé; Quéinnec, Eric; Manuel, Michaël

    2011-02-01

    Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny.

  2. In Vivo Dedifferentiation of Adult Adipose Cells

    PubMed Central

    Lu, Feng; Dong, Ziqing; Chang, Qiang; Gao, Jianhua

    2015-01-01

    Introduction Adipocytes can dedifferentiate into fibroblast-like cells in vitro and thereby acquire proliferation and multipotent capacities to participate in the repair of various organs and tissues. Whether dedifferentiation occurs under physiological or pathological conditions in vivo is unknown. Methods A tissue expander was placed under the inguinal fat pads of rats and gradually expanded by injection of water. Samples were collected at various time points, and morphological, histological, cytological, ultrastructural, and gene expression analyses were conducted. In a separate experiment, purified green fluorescent protein+ adipocytes were transplanted into C57 mice and collected at various time points. The transplanted adipocytes were assessed by bioluminescence imaging and whole-mount staining. Results The expanded fat pad was obviously thinner than the untreated fat pad on the opposite side. It was also tougher in texture and with more blood vessels attached. Hematoxylin and eosin staining and transmission electron microscopy indicated there were fewer monolocular adipocytes in the expanded fat pad and the morphology of these cells was altered, most notably their lipid content was discarded. Immunohistochemistry showed that the expanded fat pad contained an increased number of proliferative cells, which may have been derived from adipocytes. Following removal of the tissue expander, many small adipocytes were observed. Bioluminescence imaging suggested that some adipocytes survived when transplanted into an ischemic-hypoxic environment. Whole-mount staining revealed that surviving adipocytes underwent a process similar to adipocyte dedifferentiation in vitro. Monolocular adipocytes became multilocular adipocytes and then fibroblast-like cells. Conclusions Mature adipocytes may be able to dedifferentiate in vivo, and this may be an adipose tissue self-repair mechanism. The capacity of adipocytes to dedifferentiate into stem cell-like cells may also have a

  3. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells.

    PubMed

    Barker, Nick; Clevers, Hans

    2010-05-01

    Molecular markers are used to characterize and track adult stem cells. Colon cancer research has led to the identification of 2 related receptors, leucine-rich repeat-containing, G-protein-coupled receptors (Lgr)5 and Lgr6, that are expressed by small populations of cells in a variety of adult organs. Genetic mouse models have allowed the visualization, isolation, and genetic marking of Lgr5(+ve) and Lgr6(+ve) cells and provided evidence that they are stem cells. The Lgr5(+ve) cells were found to occupy locations not commonly associated with stem cells in the stomach, small intestine, colon, and hair follicles. A multipotent population of skin stem cells express Lgr6. Single Lgr5(+ve) stem cells from the small intestine and the stomach can be cultured into long-lived organoids. Further studies of these markers might reveal adult stem cell populations in additional tissues. Identification of the ligands for Lgr5 and 6 will help elucidate stem cell functions and modes of intracellular signaling.

  4. Stem cell maintenance by manipulating signaling pathways: past, current and future

    PubMed Central

    Chen, Xi; Ye, Shoudong; Ying, Qi-Long

    2015-01-01

    Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways. [BMB Reports 2015; 48(12): 668-676] PMID:26497581

  5. Regulation of human umbilical cord blood-derived multi-potent stem cells by autogenic osteoclast-based niche-like structure

    SciTech Connect

    Sun, Bo; Jeong, Yun-Hyeok; Jung, Ji-Won; Seo, Kwangwon; Lee, Yong-Soon ||; Kang, Kyung-Sun ||. E-mail: kangpub@snu.ac.kr

    2007-05-25

    Stem cell niches provide the micro-environment for the development of stem cells. Under our culturing regimen, a kind of osteoclast-centralized structure supports the proliferation of MSCs, derived from human cord blood, once they reside on osteoclasts. MSCs in this structure expressed Oct4 which is a marker of embryonic stem cells. Floating daughter cells of MSCs colony showed abilities to differentiate into osteocyte, adipocyte, and neuronal progenitor cells. Compared with the easy senescence of MSCs without this niche-like structure in vitro, these results suggested that osteoclasts might play an important role the development and maintenance of Umbilical cord blood (UCB)-derived MSCs and might provide a means to expand UCB-MSCs in vitro, more easily, through a stem cell niche-like structure.

  6. Multipotent Mesenchymal Stromal Stem Cell Expansion by Plating Whole Bone Marrow at a Low Cellular Density: A More Advantageous Method for Clinical Use

    PubMed Central

    Mareschi, Katia; Rustichelli, Deborah; Calabrese, Roberto; Gunetti, Monica; Sanavio, Fiorella; Castiglia, Sara; Risso, Alessandra; Ferrero, Ivana; Tarella, Corrado; Fagioli, Franca

    2012-01-01

    Mesenchymal stem cells (MSCs) are a promising source for cell therapy due to their pluripotency and immunomodulant proprieties. As the identification of “optimal” conditions is important to identify a standard procedure for clinical use. Percoll, Ficoll and whole bone marrow directly plated were tested from the same sample as separation methods. The cells were seeded at the following densities: 100 000, 10 000, 1000, 100, 10 cells/cm2. After reaching confluence, the cells were detached, pooled and re-plated at 1000, 500, 100, and 10 cells/cm2. Statistical analyses were performed. Cumulative Population Doublings (PD) did not show significant differences for the separation methods and seeding densities but only for the plating density. Some small quantity samples plated in T25 flasks at plating densities of 10 and 100 cells/cm2 did not produce any expansion. However, directly plated whole bone marrow resulted in a more advantageous method in terms of CFU-F number, cellular growth and minimal manipulation. No differences were observed in terms of gross morphology, differentiation potential or immunophenotype. These data suggest that plating whole bone marrow at a low cellular density may represent a good procedure for MSC expansion for clinical use. PMID:23715383

  7. Selection of multipotent stem cells during morphogenesis of small intestinal crypts of Lieberkuhn is perturbed by stimulation of Lef-1/beta-catenin signaling.

    PubMed

    Wong, Melissa H; Huelsken, Joerg; Birchmeier, Walter; Gordon, Jeffrey I

    2002-05-03

    Studies of chimeric mice have disclosed that the stem cell hierarchy in the small intestinal epithelium is established during formation of its proliferative units (crypts of Lieberkühn). This process involves a selection among several multipotential progenitors so that ultimately only one survives to supply descendants to the fully formed crypt. In this report, we examine the hypothesis that the level of beta-catenin (beta-cat)-mediated signaling is an important factor regulating this stem cell selection. In the canonical Wnt signaling pathway, beta-catenin can partner with Lef-1/Tcf high mobility group (HMG) box transcription factors to control gene expression. Both Lef-1 and Tcf-4 mRNAs are produced in the fetal mouse small intestine. Tcf-4 expression is sustained, whereas Lef-1 levels fall as crypt formation is completed during the first two postnatal weeks. A Tcf-4 gene knockout is known to block intestinal epithelial proliferation in late fetal life. Therefore, to test the hypothesis, we enhanced beta-catenin signaling in a chimeric mouse model in which the stem cell selection could be monitored. A fusion protein containing the HMG box domain of Lef-1 linked to the trans-activation domain of beta-catenin (Lef-1/beta-cat) was constructed to promote direct stimulation of signaling without being retained in the cytoplasm through interactions with E-cadherin and Apc/Axin. Lef-1/beta-cat was expressed in 129/Sv embryonic stem cell-derived small intestinal epithelial progenitors present in developing B6-ROSA26<-->129/Sv chimeras. Lef-1/beta-cat stimulated expression of a known beta-catenin target (E-cadherin), suppressed expression of Apc and Axin, and induced apoptosis in 129/Sv but not in neighboring B6-ROSA26 epithelial cells. This apoptotic response was not associated with any detectable changes in cell division within the Lef-1/beta-cat-expressing epithelium. By the time crypt development was completed, all 129/Sv epithelial cells were lost. These results

  8. In Vivo Tumorigenesis Was Observed after Injection of In Vitro Expanded Neural Crest Stem Cells Isolated from Adult Bone Marrow

    PubMed Central

    Neirinckx, Virginie; Hennuy, Benoit; Swingland, James T.; Laudet, Emerence; Sommer, Lukas; Shakova, Olga; Bours, Vincent; Rogister, Bernard

    2012-01-01

    Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC) as mixed populations of cells including mesenchymal (MSC) and neural crest stem cells (NCSC). Here, we report the transformation of NCSC into tumorigenic cells, after in vitro long-term passaging. Indeed, the characterization of 6 neural crest-derived clones revealed the presence of one tumorigenic clone. Transcriptomic analyses of this clone highlighted, among others, numerous cell cycle checkpoint modifications and chromosome 11q down-regulation (suggesting a deletion of chromosome 11q) compared with the other clones. Moreover, unsupervised analysis such as a dendrogram generated after agglomerative hierarchical clustering comparing several transcriptomic data showed important similarities between the tumorigenic neural crest-derived clone and mammary tumor cell lines. Altogether, it appeared that NCSC isolated from adult bone marrow represents a potential danger for cellular therapy, and consequently, we recommend that phenotypic, functional and genetic assays should be performed on bone marrow mesenchymal and neural crest stem cells before in vivo use, to demonstrate whether their biological properties, after ex vivo expansion, remain suitable for clinical application. PMID:23071568

  9. Effect on Multipotency and Phenotypic Transition of Unrestricted Somatic Stem Cells from Human Umbilical Cord Blood after Treatment with Epigenetic Agents

    PubMed Central

    2016-01-01

    The epigenetic mechanism of DNA methylation is of central importance for cellular differentiation processes. Unrestricted somatic stem cells (USSCs) from human umbilical cord blood, which have a broad differentiation spectrum, reside in an uncommitted epigenetic state with partial methylation of the regulatory region of the gene coding for the pluripotency master regulator OCT4. Thus we hypothesized that further opening of this “poised” epigenetic state could broaden the differentiation potential of USSCs. Here we document that USSCs drastically change their phenotype after treatment by a new elaborated cultivation protocol which utilizes the DNA hypomethylating compound 5′-aza-2-deoxycytidine (5-Aza-CdR) and the histone deacetylase inhibitor trichostatin A (TSA). This treatment leads to a new stable, spheroid-forming cell type which we have named SpheUSSC. These cells can be stably propagated over at least 150 cell divisions, express OCT4, retain the potential to undergo osteogenic differentiation, and have additionally acquired the ability to uniformly differentiate into adipocytes, unlike the source USSC population. Here we describe our treatment protocol and provide evidence that it induces a dedifferentiation step and concomitantly the acquisition of an extended differentiation capability of the new SpheUSSC type. PMID:26788071

  10. Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity

    PubMed Central

    Ulloa-Montoya, Fernando; Kidder, Benjamin L; Pauwelyn, Karen A; Chase, Lucas G; Luttun, Aernout; Crabbe, Annelies; Geraerts, Martine; Sharov, Alexei A; Piao, Yulan; Ko, Minoru SH; Hu, Wei-Shou; Verfaillie, Catherine M

    2007-01-01

    Background Recently, several populations of postnatal stem cells, such as multipotent adult progenitor cells (MAPCs), have been described that have broader differentiation ability than classical adult stem cells. Here we compare the transcriptome of pluripotent embryonic stem cells (ESCs), MAPCs, and lineage-restricted mesenchymal stem cells (MSCs) to determine their relationship. Results Applying principal component analysis, non-negative matrix factorization and k-means clustering algorithms to the gene-expression data, we identified a unique gene-expression profile for MAPCs. Apart from the ESC-specific transcription factor Oct4 and other ESC transcripts, some of them associated with maintaining ESC pluripotency, MAPCs also express transcripts characteristic of early endoderm and mesoderm. MAPCs do not, however, express Nanog or Sox2, two other key transcription factors involved in maintaining ESC properties. This unique molecular signature was seen irrespective of the microarray platform used and was very similar for both mouse and rat MAPCs. As MSC-like cells isolated under MAPC conditions are virtually identical to MSCs, and MSCs cultured in MAPC conditions do not upregulate MAPC-expressed transcripts, the MAPC signature is cell-type specific and not merely the result of differing culture conditions. Conclusion Multivariate analysis techniques clustered stem cells on the basis of their expressed gene profile, and the genes determining this clustering reflected the stem cells' differentiation potential in vitro. This comparative transcriptome analysis should significantly aid the isolation and culture of MAPCs and MAPC-like cells, and form the basis for studies to gain insights into genes that confer on these cells their greater developmental potency. PMID:17683608

  11. Naïve adult stem cells from patients with Hutchinson-Gilford progeria syndrome express low levels of progerin in vivo.

    PubMed

    Wenzel, Vera; Roedl, Daniela; Gabriel, Diana; Gordon, Leslie B; Herlyn, Meenhard; Schneider, Reinhard; Ring, Johannes; Djabali, Karima

    2012-06-15

    Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare disorder characterized by segmental accelerated aging and early death from coronary artery disease or stroke. Nearly 90% of HGPS sufferers carry a G608G mutation within exon 11 of LMNA, producing a truncated form of prelamin A, referred to as "progerin". Here, we report the isolation of naïve multipotent skin-derived precursor (SKP) cells from dermal fibroblast cultures from HGPS donors. These cells form spheres and express the neural crest marker, nestin, in addition to the multipotent markers, OCT4, Sox2, Nanog and TG30; these cells can self-renew and differentiate into smooth muscle cells (SMCs) and fibroblasts. The SMCs derived from the HGPS-SKPs accumulate nuclear progerin with increasing passages. A subset of the HGPS-naïve SKPs express progerin in vitro and in situ in HGPS skin sections. This is the first in vivo evidence that progerin is produced in adult stem cells, and implies that this protein could induce stem cells exhaustion as a mechanism contributing to aging. Our study provides a basis on which to explore therapeutic applications for HGPS stem cells and opens avenues for investigating the pathogenesis of other genetic diseases.

  12. New insights for pelvic radiation disease treatment: Multipotent stromal cell is a promise mainstay treatment for the restoration of abdominopelvic severe chronic damages induced by radiotherapy

    PubMed Central

    Chapel, Alain; Francois, Sabine; Douay, Luc; Benderitter, Marc; Voswinkel, Jan

    2013-01-01

    Radiotherapy may induce irreversible damage on healthy tissues surrounding the tumor. It has been reported that the majority of patients receiving pelvic radiation therapy show early or late tissue reactions of graded severity as radiotherapy affects not only the targeted tumor cells but also the surrounding healthy tissues. The late adverse effects of pelvic radiotherapy concern 5% to 10% of them, which could be life threatening. However, a clear medical consensus concerning the clinical management of such healthy tissue sequelae does not exist. Although no pharmacologic interventions have yet been proven to efficiently mitigate radiotherapy severe side effects, few preclinical researches show the potential of combined and sequential pharmacological treatments to prevent the onset of tissue damage. Our group has demonstrated in preclinical animal models that systemic mesenchymal stromal cell (MSC) injection is a promising approach for the medical management of gastrointestinal disorder after irradiation. We have shown that MSCs migrate to damaged tissues and restore gut functions after irradiation. We carefully studied side effects of stem cell injection for further application in patients. We have shown that clinical status of four patients suffering from severe pelvic side effects resulting from an over-dosage was improved following MSC injection in a compationnal situation. PMID:24179599

  13. [Critical bone defects elimination by bioengineering construction upon non-resorbable polymeric base with the use of autogenic multipotent stromal cells from adipose tissue].

    PubMed

    Kulakov, A A; Grigor'ian, A S; Kiselev, E V; Khamraev, T K; Filonov, M R; Gatiev, A B

    2010-01-01

    On 8 rabbits with experimentally produced critical defects of calvarium plastics of the defects was performed by bioengineering constructions based upon porous polytetrafluoroethylene with multifunctional nanostructured non-resorbable cover Ti-C-Ca-P-O-N and autogenic stromal cells from adipose tissue (the main group -4 rabbits). In the reference group (4 rabbits) the defects were repaired by abiologic implants. At the terms of 3 and 6 months in the main group under implants the formation of the full value bone regenerate was seen in the region of calvarium defects. In the reference group in the bone defects the regenerate from rough fibrose connective tissue was formed.

  14. Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo

    PubMed Central

    Marycz, Krzysztof; Tomaszewski, Krzysztof A.; Kornicka, Katarzyna; Henry, Brandon Michael; Wroński, Sebastian; Tarasiuk, Jacek; Maredziak, Monika

    2016-01-01

    Due to its pleiotropic effects, the commonly used drug metformin has gained renewed interest among medical researchers. While metformin is mainly used for the treatment of diabetes, recent studies suggest that it may have further application in anticancer and antiaging therapies. In this study, we investigated the proliferative potential, accumulation of oxidative stress factors, and osteogenic and adipogenic differentiation potential of mouse adipose-derived stem cells (MuASCs) isolated from mice treated with metformin for 8 weeks. Moreover, we investigated the influence of metformin supplementation on mice bone density and bone element composition. The ASCs isolated from mice who were treated with metformin for 8 weeks showed highest proliferative potential, generated a robust net of cytoskeletal projections, had reduced expression of markers associated with cellular senescence, and decreased amount of reactive oxygen species in comparison to control group. Furthermore, we demonstrated that these cells possessed greatest osteogenic differentiation potential, while their adipogenic differentiation ability was reduced. We also demonstrated that metformin supplementation increases bone density in vivo. Our result stands as a valuable source of data regarding the in vivo influence of metformin on ASCs and bone density and supports a role for metformin in regenerative medicine. PMID:27195075

  15. Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo.

    PubMed

    Marycz, Krzysztof; Tomaszewski, Krzysztof A; Kornicka, Katarzyna; Henry, Brandon Michael; Wroński, Sebastian; Tarasiuk, Jacek; Maredziak, Monika

    2016-01-01

    Due to its pleiotropic effects, the commonly used drug metformin has gained renewed interest among medical researchers. While metformin is mainly used for the treatment of diabetes, recent studies suggest that it may have further application in anticancer and antiaging therapies. In this study, we investigated the proliferative potential, accumulation of oxidative stress factors, and osteogenic and adipogenic differentiation potential of mouse adipose-derived stem cells (MuASCs) isolated from mice treated with metformin for 8 weeks. Moreover, we investigated the influence of metformin supplementation on mice bone density and bone element composition. The ASCs isolated from mice who were treated with metformin for 8 weeks showed highest proliferative potential, generated a robust net of cytoskeletal projections, had reduced expression of markers associated with cellular senescence, and decreased amount of reactive oxygen species in comparison to control group. Furthermore, we demonstrated that these cells possessed greatest osteogenic differentiation potential, while their adipogenic differentiation ability was reduced. We also demonstrated that metformin supplementation increases bone density in vivo. Our result stands as a valuable source of data regarding the in vivo influence of metformin on ASCs and bone density and supports a role for metformin in regenerative medicine.

  16. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    SciTech Connect

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  17. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  18. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressed multipotent mesenchymal stromal cells

    PubMed Central

    Xin, Hongqi; Wang, Fengjie; Li, Yanfeng; Lu, Qing-e; Cheung, Wing Lee; Zhang, Yi; Zhang, Zheng Gang; Chopp, Michael

    2016-01-01

    We previously demonstrated that multipotent mesenchymal stromal cells (MSCs) with overexpressed microRNA 133b (miR-133b) significantly improve functional recovery in rats subjected to middle cerebral artery occlusion (MCAO) compared with naive MSCs, and that exosomes generated from naive MSCs mediate the therapeutic benefits of MSC therapy for stroke. Here, we investigated whether exosomes isolated from miR-133b-overexpressed MSCs (Ex-miR-133b+) exert amplified therapeutic effects. Rats subjected to 2 hours (h) of MCAO were intra-arterially injected with Ex-miR-133b+, exosomes from MSCs infected by blank vector (Ex-Con), or phosphate-buffered solution (PBS), and were sacrificed 28 days post MCAO. Compared with the PBS treatment, both exosome treatment groups exhibited significant improvement of functional recovery. Ex-miR-133b+ treatment significantly increased functional improvement, and neurite remodeling/brain plasticity in the ischemic boundary area compared with the Ex-Con treatment. Treatment with Ex-miR-133b+ also significantly increased brain exosome content compared with Ex-Con treatment. To elucidate mechanisms underlying the enhanced therapeutic effects of Ex-miR-133b+, astrocytes cultured under oxygen and glucose deprived (OGD) conditions were incubated with exosomes harvested from naïve MSCs (Ex-Naive), miR-133b down-regulated MSCs (Ex-miR-133b−) and Ex-miR-133b+. Compared with the Ex-Naive treatment, Ex-miR-133b+ significantly increased exosomes released by OGD astrocytes, whereas Ex-miR-133b− significantly decreased the release. Also, exosomes harvested from OGD astrocytes treated with Ex-miR-133b+ significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons compared with the exosomes from OGD astrocytes subjected to Ex-Con. Our data suggest that exosomes harvested from miR-133b-overexpressed MSCs improve neural plasticity and functional recovery after stroke with a contribution from a stimulated secondary

  19. Wnt Signaling Regulates Airway Epithelial Stem Cells in Adult Murine Submucosal Glands.

    PubMed

    Lynch, Thomas J; Anderson, Preston J; Xie, Weiliang; Crooke, Adrianne K; Liu, Xiaoming; Tyler, Scott R; Luo, Meihui; Kusner, David M; Zhang, Yulong; Neff, Traci; Burnette, Daniel C; Walters, Katherine S; Goodheart, Michael J; Parekh, Kalpaj R; Engelhardt, John F

    2016-06-24

    Wnt signaling is required for lineage commitment of glandular stem cells (SCs) during tracheal submucosal gland (SMG) morphogenesis from the surface airway epithelium (SAE). Whether similar Wnt-dependent processes coordinate SC expansion in adult SMGs following airway injury remains unknown. We found that two Wnt-reporters in mice (BAT-gal and TCF/Lef:H2B-GFP) are coexpressed in actively cycling SCs of primordial glandular placodes and in a small subset of adult SMG progenitor cells that enter the cell cycle 24 hours following airway injury. At homeostasis, these Wnt reporters showed nonoverlapping cellular patterns of expression in the SAE and SMGs. Following tracheal injury, proliferation was accompanied by dynamic changes in Wnt-reporter activity and the analysis of 56 Wnt-related signaling genes revealed unique temporal changes in expression within proximal (gland-containing) and distal (gland-free) portions of the trachea. Wnt stimulation in vivo and in vitro promoted epithelial proliferation in both SMGs and the SAE. Interestingly, slowly cycling nucleotide label-retaining cells (LRCs) of SMGs were spatially positioned near clusters of BAT-gal positive serous tubules. Isolation and culture of tet-inducible H2B-GFP LRCs demonstrated that SMG LRCs were more proliferative than SAE LRCs and culture expanded SMG-derived progenitor cells outcompeted SAE-derived progenitors in regeneration of tracheal xenograft epithelium using a clonal analysis competition assay. SMG-derived progenitors were also multipotent for cell types in the SAE and formed gland-like structures in xenografts. These studies demonstrate the importance of Wnt signals in modulating SC phenotypes within tracheal niches and provide new insight into phenotypic differences of SMG and SAE SCs. Stem Cells 2016.

  20. Differentiated human stem cells resemble fetal, not adult, β cells.

    PubMed

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  1. Gastrointestinal stem cell up-to-date.

    PubMed

    Pirvulet, V

    2015-01-01

    Cellular and tissue regeneration in the gastrointestinal tract depends on stem cells with properties of self-renewal, clonogenicity, and multipotency. Progress in stem cell research and the identification of potential gastric, intestinal, colonic stem cells new markers and the signaling pathways provide hope for the use of stem cells in regenerative medicine and treatments for disease. This review provides an overview of the different types of stem cells, focusing on tissue-restricted adult stem cells.

  2. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  3. The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis

    PubMed Central

    Gao, Jie; Buckley, Shannon M; Cimmino, Luisa; Guillamot, Maria; Strikoudis, Alexandros; Cang, Yong; Goff, Stephen P; Aifantis, Iannis

    2015-01-01

    Little is known on post-transcriptional regulation of adult and embryonic stem cell maintenance and differentiation. Here we characterize the role of Ddb1, a component of the CUL4-DDB1 ubiquitin ligase complex. Ddb1 is highly expressed in multipotent hematopoietic progenitors and its deletion leads to abrogation of both adult and fetal hematopoiesis, targeting specifically transiently amplifying progenitor subsets. However, Ddb1 deletion in non-dividing lymphocytes has no discernible phenotypes. Ddb1 silencing activates Trp53 pathway and leads to significant effects on cell cycle progression and rapid apoptosis. The abrogation of hematopoietic progenitor cells can be partially rescued by simultaneous deletion of Trp53. Conversely, depletion of DDB1 in embryonic stem cell (ESC) leads to differentiation albeit negative effects on cell cycle and apoptosis. Mass spectrometry reveals differing protein interactions between DDB1 and distinct DCAFs, the substrate recognizing components of the E3 complex, between cell types. Our studies identify CUL4-DDB1 complex as a novel post-translational regulator of stem and progenitor maintenance and differentiation. DOI: http://dx.doi.org/10.7554/eLife.07539.001 PMID:26613412

  4. Derivation of multipotent progenitors from human circulating CD14+ monocytes.

    PubMed

    Seta, Noriyuki; Kuwana, Masataka

    2010-07-01

    Circulating CD14(+) monocytes are originated from hematopoietic stem cells in the bone marrow and believed to be committed precursors for phagocytes, such as macrophages. Recently, we have reported a primitive cell population termed monocyte-derived multipotential cells (MOMCs), which has a fibroblast-like morphology in culture and a unique phenotype positive for CD14, CD45, CD34, and type I collagen. MOMCs are derived from circulating CD14(+) monocytes, but circulating precursors for MOMCs still remain undetermined. Comparative analysis of gene expression profiles of MOMCs and other monocyte-derived cells has revealed that embryonic stem cell markers, Nanog and Oct-4, are specifically expressed by MOMCs. In vitro generation of MOMCs requires binding to fibronectin and exposure to soluble factors derived from activated platelets. MOMCs contain progenitors with capacity to differentiate into a variety of nonphagocytes, including bone, cartilage, fat, skeletal and cardiac muscle, neuron, and endothelium, indicating that circulating monocytes are more multipotent than previously thought. In addition, MOMCs are capable of promoting ex vivo expansion of human hematopoietic progenitor cells through direct cell-to-cell contact and secretion of a variety of hematopoietic growth factors. These findings obtained from the research on MOMCs indicate that CD14(+) monocytes in circulation are involved in a variety of physiologic functions other than innate and acquired immune responses, such as repair and regeneration of the damaged tissue.

  5. Characterization of a Unique Cell Population Marked by Transgene Expression in the Adult Cochlea of Nestin-CreERT2/tdTomato-Reporter Mice

    PubMed Central

    Chow, Cynthia L.; Guo, Weixiang; Trivedi, Parul; Zhao, Xinyu; Gubbels, Samuel P.

    2015-01-01

    Hair cells in the adult mammalian cochlea cannot spontaneously regenerate after damage resulting in the permanency of hearing loss. Stem cells have been found to be present in the cochlea of young rodents; however, there has been little evidence for their existence into adulthood. We used nestin-CreERT2/tdTomato-reporter mice to trace the lineage of putative nestin-expressing cells and their progeny in the cochleae of adult mice. Nestin, an intermediate filament found in neural progenitor cells during early development and adulthood, is regarded as a multi-potent and neural stem cell marker. Other investigators have reported its presence in postnatal and young adult rodents; however, there are discrepancies amongst these reports. Using lineage tracing, we documented a robust population of tdTomato-expressing cells and evaluated these cells at a series of adult time points. Upon activation of the nestin promoter, tdTomato was observed just below and medial to the inner hair cell layer. All cells co-localized with the stem cell and cochlear-supporting-cell marker Sox2 as well as the supporting cell and Schwann cell marker Sox10; however, they did not co-localize with the Schwann cell marker Krox20, spiral ganglion marker NF200, or GFAP-expressing supporting cell marker. The cellular identity of this unique population of tdTomato-expressing cells in the adult cochlea of nestin-CreERT2/tdTomato mice remains unclear however these cells may represent a type of supporting cell on the neural aspect of the inner hair cell layer. PMID:25611038

  6. Tissue-specific mutation accumulation in human adult stem cells during life

    NASA Astrophysics Data System (ADS)

    Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben

    2016-10-01

    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.

  7. Translational research of adult stem cell therapy.

    PubMed

    Suzuki, Gen

    2015-11-26

    Congestive heart failure (CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  8. The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine.

    PubMed

    Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2010-12-01

    Multipotent adult stem cells have many potential therapeutic applications. Our recent findings suggest that hair follicles are a promising source of easily accessible multipotent stem cells. Stem cells in the hair follicle area express the neural stem cell marker nestin, suggesting that hair-follicle stem cells and neural stem cells have common features. Nestin-expressing hair follicle stem cells can form neurons and other cell types, and thus adult hair follicle stem cells could have important therapeutic applications, particularly for neurologic diseases. Transplanted hair follicle stem cells promote the functional recovery of injured peripheral nerve and spinal cord. Recent findings suggest that direct transplantation of hair-follicle stem cells without culture can promote nerve repair, which makes them potentially clinically practical. Human hair follicle stem cells as well as mouse hair follicle stem cells promote nerve repair and can be applied to test the hypothesis that human hair follicle stem cells can provide a readily available source of neurologically therapeutic stem cells. The use of hair follicle stem cells for nerve regeneration overcomes critical problems of embryonic stem cells or induced pluripotent stem cells in that the hair follicle stem cells are multipotent, readily accessible, non-oncogenic, and are not associated with ethical issues.

  9. Tumorigenic Potential of Olfactory Bulb-Derived Human Adult Neural Stem Cells Associates with Activation of TERT and NOTCH1

    PubMed Central

    Ricci-Vitiani, Lucia; Cenciarelli, Carlo; Petrucci, Giovanna; Milazzo, Luisa; Montano, Nicola; Tabolacci, Elisabetta; Maira, Giulio; Larocca, Luigi M.; Pallini, Roberto

    2009-01-01

    Background Multipotent neural stem cells (NSCs) have been isolated from neurogenic regions of the adult brain. Reportedly, these cells can be expanded in vitro under prolonged mitogen stimulation without propensity to transform. However, the constitutive activation of the cellular machinery required to bypass apoptosis and senescence places these cells at risk for malignant transformation. Methodology/Principal Findings Using serum-free medium supplemented with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), we established clonally derived NS/progenitor cell (NS/PC) cultures from the olfactory bulb (OB) of five adult patients. The NS/PC cultures obtained from one OB specimen lost growth factor dependence and neuronal differentiation at early passage. These cells developed glioblastoma tumors upon xenografting in immunosuppressed mice. The remaining NS/PC cultures were propagated either as floating neurospheres or as adherent monolayers with mainteinance of growth factor dependence and multipotentiality at late passage. These cells were engrafted onto the CNS of immunosuppressed rodents. Overall, the grafted NS/PCs homed in the host parenchyma showing ramified morphology and neuronal marker expression. However, a group of animals transplanted with NS/PCs obtained from an adherent culture developed fast growing tumors histologically resembling neuroesthesioblastoma. Cytogenetic and molecular analyses showed that the NS/PC undergo chromosomal changes with repeated in vitro passages under mitogen stimulation, and that up-regulation of hTERT and NOTCH1 associates with in vivo tumorigenicity. Conclusions/Significance Using culturing techniques described in current literature, NS/PCs arise from the OB of adult patients which in vivo either integrate in the CNS parenchyma showing neuron-like features or initiate tumor formation. Extensive xenografting studies on each human derived NS cell line appear mandatory before any use of these cells in the

  10. [Application prospect of adult stem cells in male infertility].

    PubMed

    Yang, Rui-Feng; Xiong, Cheng-Liang

    2013-05-01

    The study on stem cells is a hot field in biomedical science in recent years, and has furthered from laboratory to clinical application. Stem cells, according to their developmental stage and differential properties, can be divided into embryonic stem cells, induced PS cells and adult stem cells, among which, adult stem cells have already been applied to the clinical treatment of many systemic diseases. Currently, the study of spermatogonial stem cells and adult stem cells is in the front of the basic researches on the treatment of male infertility, but the time has not yet arrived for their clinical application. This paper outlines the application prospect of adult stem cells in male infertility.

  11. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain.

    PubMed

    Hemmer, Kathrin; Zhang, Mingyue; van Wüllen, Thea; Sakalem, Marna; Tapia, Natalia; Baumuratov, Aidos; Kaltschmidt, Christian; Kaltschmidt, Barbara; Schöler, Hans R; Zhang, Weiqi; Schwamborn, Jens C

    2014-09-09

    Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]). iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC) technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications.

  12. Toward an ideal animal model to trace donor cell fates after stem cell therapy: production of stably labeled multipotent mesenchymal stem cells from bone marrow of transgenic pigs harboring enhanced green fluorescence protein gene.

    PubMed

    Hsiao, F S H; Lian, W S; Lin, S P; Lin, C J; Lin, Y S; Cheng, E C H; Liu, C W; Cheng, C C; Cheng, P H; Ding, S T; Lee, K H; Kuo, T F; Cheng, C F; Cheng, W T K; Wu, S C

    2011-11-01

    The discovery of postnatal mesenchymal stem cells (MSC) with their general multipotentiality has fueled much interest in the development of cell-based therapies. Proper identification of transplanted MSC is crucial for evaluating donor cell distribution, differentiation, and migration. Lack of an efficient marker of transplanted MSC has precluded our understanding of MSC-related regenerative studies, especially in large animal models such as pigs. In the present study, we produced transgenic pigs harboring an enhanced green fluorescent protein (EGFP) gene. The pigs provide a reliable and reproducible source for obtaining stable EGFP-labeled MSC, which is very useful for donor cell tracking after transplantation. The undifferentiated EGFP-tagged MSC expressed a greater quantity of EGFP while maintaining MSC multipotentiality. These cells exhibited homogeneous surface epitopes and possessed classic trilineage differentiation potential into osteogenic, adipogenic, and chondrogenic lineages, with robust EGFP expression maintained in all differentiated progeny. Injection of donor MSC can dramatically increase the thickness of infarcted myocardium and improve cardiac function in mice. Moreover, the MSC, with their strong EGFP expression, can be easily distinguished from the background autofluorescence in myocardial infarcts. We demonstrated an efficient, effective, and easy way to identify MSC after long-term culture and transplantation. With the transgenic model, we were able to obtain stem or progenitor cells in earlier passages compared with the transfection of traceable markers into established MSC. Because the integration site of the transgene was the same for all cells, we lessened the potential for positional effects and the heterogeneity of the stem cells. The EGFP-transgenic pigs may serve as useful biomedical and agricultural models of somatic stem cell biology.

  13. Adult tissue sources for new β cells.

    PubMed

    Nichols, Robert J; New, Connie; Annes, Justin P

    2014-04-01

    The diabetes pandemic incurs extraordinary public health and financial costs that are projected to expand for the foreseeable future. Consequently, the development of definitive therapies for diabetes is a priority. Currently, a wide spectrum of therapeutic strategies-from implantable insulin delivery devices to transplantation-based cell replacement therapy, to β-cell regeneration-focus on replacing the lost insulin-producing capacity of individuals with diabetes. Among these, β-cell regeneration remains promising but heretofore unproved. Indeed, recent experimental work has uncovered surprising biology that underscores the potential therapeutic benefit of β-cell regeneration. These studies have elucidated a variety of sources for the endogenous production of new β cells from existing cells. First, β cells, long thought to be postmitotic, have demonstrated the potential for regenerative capacity. Second, the presence of pancreatic facultative endocrine progenitor cells has been established. Third, the malleability of cellular identity has availed the possibility of generating β cells from other differentiated cell types. Here, we review the exciting developments surrounding endogenous sources of β-cell production and consider the potential of realizing a regenerative therapy for diabetes from adult tissues.

  14. Generation of pluripotent stem cells from adult human testis.

    PubMed

    Conrad, Sabine; Renninger, Markus; Hennenlotter, Jörg; Wiesner, Tina; Just, Lothar; Bonin, Michael; Aicher, Wilhelm; Bühring, Hans-Jörg; Mattheus, Ulrich; Mack, Andreas; Wagner, Hans-Joachim; Minger, Stephen; Matzkies, Matthias; Reppel, Michael; Hescheler, Jürgen; Sievert, Karl-Dietrich; Stenzl, Arnulf; Skutella, Thomas

    2008-11-20

    Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.

  15. Adult Bone Marrow Neural Crest Stem Cells and Mesenchymal Stem Cells Are Not Able to Replace Lost Neurons in Acute MPTP-Lesioned Mice

    PubMed Central

    Neirinckx, Virginie; Marquet, Alice; Coste, Cécile

    2013-01-01

    Adult bone marrow stroma contains multipotent stem cells (BMSC) that are a mixed population of mesenchymal and neural-crest derived stem cells. Both cells are endowed with in vitro multi-lineage differentiation abilities, then constituting an attractive and easy-available source of material for cell therapy in neurological disorders. Whereas the in vivo integration and differentiation of BMSC in neurons into the central nervous system is currently matter of debate, we report here that once injected into the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, pure populations of either bone marrow neural crest stem cells (NCSC) or mesenchymal stem cells (MSC) survived only transiently into the lesioned brain. Moreover, they do not migrate through the brain tissue, neither modify their initial phenotype, while no recovery of the dopaminergic system integrity was observed. Consequently, we tend to conclude that MSC/NCSC are not able to replace lost neurons in acute MPTP-lesioned dopaminergic system through a suitable integration and/or differentiation process. Altogether with recent data, it appears that neuroprotective, neurotrophic and anti-inflammatory features characterizing BMSC are of greater interest as regards CNS lesions management. PMID:23741377

  16. Dogs cloned from adult somatic cells.

    PubMed

    Lee, Byeong Chun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hossein, M Shamim; Shamim, M Hossein; Kim, Jung Ju; Kang, Sung Keun; Schatten, Gerald; Hwang, Woo Suk

    2005-08-04

    Several mammals--including sheep, mice, cows, goats, pigs, rabbits, cats, a mule, a horse and a litter of three rats--have been cloned by transfer of a nucleus from a somatic cell into an egg cell (oocyte) that has had its nucleus removed. This technology has not so far been successful in dogs because of the difficulty of maturing canine oocytes in vitro. Here we describe the cloning of two Afghan hounds by nuclear transfer from adult skin cells into oocytes that had matured in vivo. Together with detailed sequence information generated by the canine-genome project, the ability to clone dogs by somatic-cell nuclear transfer should help to determine genetic and environmental contributions to the diverse biological and behavioural traits associated with the many different canine breeds.

  17. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  18. Isolation and Culture of Adult Zebrafish Brain-derived Neurospheres

    PubMed Central

    Lopez-Ramirez, Miguel A.; Calvo, Charles-Félix; Ristori, Emma; Thomas, Jean-Léon; Nicoli, Stefania

    2016-01-01

    The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish. PMID:26967835

  19. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    PubMed

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  20. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics

    PubMed Central

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-01-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  1. Molecular Hallmarks of Adult T Cell Leukemia

    PubMed Central

    Yamagishi, Makoto; Watanabe, Toshiki

    2012-01-01

    The molecular hallmarks of adult T cell leukemia (ATL) comprise outstanding deregulations of signaling pathways that control the cell cycle, resistance to apoptosis, and proliferation of leukemic cells, all of which have been identified by early excellent studies. Nevertheless, we are now confronted the therapeutic difficulties of ATL that is a most aggressive T cell leukemia/lymphoma. Using next-generation strategies, emerging molecular characteristics such as specific surface markers and an additional catalog of signals affecting the fate of leukemic cells have been added to the molecular hallmarks that constitute an organizing principle for rationalizing the complexities of ATL. Although human T cell leukemia virus type 1 is undoubtedly involved in ATL leukemogenesis, most leukemic cells do not express the viral protein Tax. Instead, cellular gene expression changes dominate homeostasis disorders of infected cells and characteristics of ATL. In this review, we summarize the state of the art of ATL molecular pathology, which supports the biological properties of leukemic cells. In addition, we discuss the recent discovery of two molecular hallmarks of potential generality; an abnormal microRNA pattern and epigenetic reprogramming, which strongly involve the imbalance of the molecular network of lymphocytes. Global analyses of ATL have revealed the functional impact of crosstalk between multifunctional pathways. Clinical and biological studies on signaling inhibitory agents have also revealed novel oncogenic drivers that can be targeted in future. ATL cells, by deregulation of such pathways and their interconnections, may become masters of their own destinies. Recognizing and understanding of the widespread molecular applicability of these concepts will increasingly affect the development of novel strategies for treating ATL. PMID:23060864

  2. Isolation and Characterization of Pluripotent Human Spermatogonial Stem Cell-Derived Cells

    PubMed Central

    Kossack, Nina; Meneses, Juanito; Shefi, Shai; Nguyen, Ha Nam; Chavez, Shawn; Nicholas, Cory; Gromoll, Joerg; Turek, Paul J; Reijo-Pera, Renee A

    2009-01-01

    Several reports have documented the derivation of pluripotent cells (multipotent germline stem cells) from spermatogonial stem cells obtained from the adult mouse testis. These spermatogonia-derived stem cells express embryonic stem cell markers and differentiate to the three primary germ layers, as well as the germline. Data indicate that derivation may involve reprogramming of endogenous spermatogonia in culture. Here, we report the derivation of human multipotent germline stem cells (hMGSCs) from a testis biopsy. The cells express distinct markers of pluripotency, form embryoid bodies that contain derivatives of all three germ layers, maintain a normal XY karyotype, are hypomethylated at the H19 locus, and express high levels of telomerase. Teratoma assays indicate the presence of human cells 8 weeks post-transplantation but limited teratoma formation. Thus, these data suggest the potential to derive pluripotent cells from human testis biopsies but indicate a need for novel strategies to optimize hMGSC culture conditions and reprogramming. PMID:18927477

  3. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    PubMed Central

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032

  4. Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy.

    PubMed

    Pareja, Eugenia; Gómez-Lechón, María José; Tolosa, Laia

    2017-01-01

    Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.

  5. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later

    PubMed Central

    Bond, Allison M.; Ming, Guo-li; Song, Hongjun

    2015-01-01

    Summary Adult somatic stem cells in various organs maintain homeostatic tissue regeneration and enhance plasticity. Since its initial discovery five decades ago, investigations of adult neurogenesis and neural stem cells have led to an established and expanding field that has significantly influenced many facets of neuroscience, developmental biology and regenerative medicine. Here we review recent progress and focus on questions related to adult mammalian neural stem cells that also apply to other somatic stem cells. We further discuss emerging topics that are guiding the field toward better understanding adult neural stem cells and ultimately applying these principles to improve human health. PMID:26431181

  6. Adult stem cell-based apexogenesis

    PubMed Central

    Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua

    2014-01-01

    Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909

  7. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive.

  8. Sertoli Cells Maintain Leydig Cell Number and Peritubular Myoid Cell Activity in the Adult Mouse Testis

    PubMed Central

    Monteiro, Ana; Milne, Laura; Cruickshanks, Lyndsey; Jeffrey, Nathan; Guillou, Florian; Freeman, Tom C.; Mitchell, Rod T.; Smith, Lee B.

    2014-01-01

    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health. PMID:25144714

  9. Exploring Adult Care Experiences and Barriers to Transition in Adult Patients with Sickle Cell Disease

    PubMed Central

    Bemrich-Stolz, CJ; Halanych, JH; Howard, TH; Hilliard, LM; Lebensburger, JD

    2015-01-01

    Background Young adults with sickle cell anemia are at high risk for increased hospitalization and death at the time of transition to adult care. This may be related to failure of the transition system to prepare young adults for the adult healthcare system. This qualitative study was designed to identify factors related to transition that may affect the health of adults with sickle cell anemia. Procedure Ten patients currently treated in an adult hematology clinic participated in semi-structured qualitative interviews to describe their experience transitioning from pediatric to adult care and differences in adult and pediatric healthcare systems. Results Participants were generally unprepared for the adult healthcare system. Negative issues experienced by participants included physician mistrust, difficulty with employers, keeping insurance, and stress in personal relationships. Positive issues experienced by participants included improved self efficacy with improved self care and autonomy. Conclusions In the absence of a formalized transition program, adults with sickle cell anemia experience significant barriers to adult care. In addition to medical history review and identification of an adult provider, transition programs should incorporate strategies to navigate the adult medical system, insurance and relationships as well as encouraging self efficacy. PMID:26900602

  10. Gene Expression Profiling of Embryonic Human Neural Stem Cells and Dopaminergic Neurons from Adult Human Substantia Nigra

    PubMed Central

    Marei, Hany E. S.; Althani, Asma; Afifi, Nahla; Michetti, Fabrizio; Pescatori, Mario; Pallini, Roberto; Casalbore, Patricia; Cenciarelli, Carlo; Schwartz, Philip; Ahmed, Abd-Elmaksoud

    2011-01-01

    Neural stem cells (NSC) with self-renewal and multipotent properties serve as an ideal cell source for transplantation to treat neurodegenerative insults such as Parkinson's disease. We used Agilent's and Illumina Whole Human Genome Oligonucleotide Microarray to compare the genomic profiles of human embryonic NSC at a single time point in culture, and a multicellular tissue from postmortem adult substantia nigra (SN) which are rich in dopaminergic (DA) neurons. We identified 13525 up-regulated genes in both cell types of which 3737 (27.6%) genes were up-regulated in the hENSC, 4116 (30.4%) genes were up-regulated in the human substantia nigra dopaminergic cells, and 5672 (41.93%) were significantly up-regulated in both cell population. Careful analysis of the data that emerged using DAVID has permitted us to distinguish several genes and pathways that are involved in dopaminergic (DA) differentiation, and to identify the crucial signaling pathways that direct the process of differentiation. The set of genes expressed more highly at hENSC is enriched in molecules known or predicted to be involved in the M phase of the mitotic cell cycle. On the other hand, the genes enriched in SN cells include a different set of functional categories, namely synaptic transmission, central nervous system development, structural constituents of the myelin sheath, the internode region of axons, myelination, cell projection, cell somata, ion transport, and the voltage-gated ion channel complex. Our results were also compared with data from various databases, and between different types of arrays, Agilent versus Illumina. This approach has allowed us to confirm the consistency of our obtained results for a large number of genes that delineate the phenotypical differences of embryonic NSCs, and SN cells. PMID:22163301

  11. Human fetal keratocytes have multipotent characteristics in the developing avian embryo.

    PubMed

    Chao, Jennifer R; Bronner, Marianne E; Lwigale, Peter Y

    2013-08-01

    The human cornea contains stem cells that can be induced to express markers consistent with multipotency in cell culture; however, there have been no studies demonstrating that human corneal keratocytes are multipotent. The objective of this study is to examine the potential of human fetal keratocytes (HFKs) to differentiate into neural crest-derived tissues when challenged in an embryonic environment. HFKs were injected bilaterally into the cranial mesenchyme adjacent to the neural tube and the periocular mesenchyme in chick embryos at embryonic days 1.5 and 3, respectively. The injected keratocytes were detected by immunofluorescence using the human cell-specific marker, HuNu. HuNu-positive keratocytes injected along the neural crest pathway were localized adjacent to HNK-1-positive migratory host neural crest cells and in the cardiac cushion mesenchyme. The HuNu-positive cells transformed into neural crest derivatives such as smooth muscle in cranial blood vessels, stromal keratocytes, and corneal endothelium. However, they failed to form neurons despite their presence in the condensing trigeminal ganglion. These results show that HFKs retain the ability to differentiate into some neural crest-derived tissues. Their ability to respond to embryonic cues and generate corneal endothelium and stromal keratocytes provides a basis for understanding the feasibility of creating specialized cells for possible use in regenerative medicine.

  12. Endangered wolves cloned from adult somatic cells.

    PubMed

    Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hwang, Woo Suk; Hossein, Mohammad Shamim; Kim, Joung Joo; Shin, Nam Shik; Kang, Sung Keun; Lee, Byeong Chun

    2007-01-01

    Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.

  13. Small molecules that recapitulate the early steps of urodele amphibian limb regeneration and confer multipotency.

    PubMed

    Kim, Woong-Hee; Jung, Da-Woon; Kim, Jinmi; Im, Sin-Hyeog; Hwang, Seung Yong; Williams, Darren R

    2012-04-20

    In urodele amphibians, an early step in limb regeneration is skeletal muscle fiber dedifferentiation into a cellulate that proliferates to contribute new limb tissue. However, mammalian muscle cannot dedifferentiate after injury. We have developed a novel, small-molecule-based method to induce dedifferentiation in mammalian skeletal muscle. Muscle cellularization was induced by the small molecule myoseverin. Candidate small molecules were tested for the induction of proliferation in the cellulate. We observed that treatment with the small molecules BIO (glycogen synthase-3 kinase inhibitor), lysophosphatidic acid (pleiotropic activator of G-protein-coupled receptors), SB203580 (p38 MAP kinase inhibitor), or SQ22536 (adenylyl cyclase inhibitor) induced proliferation. Moreover, these proliferating cells were multipotent, as confirmed by the chemical induction of mesodermal-derived cell lineages. Microarray analysis showed that the multipotent, BIO-treated cellulate possessed a markedly different gene expression pattern than lineage-restricted C2C12 myoblasts, especially for genes related to signal transduction and differentiation. Sequential small molecule treatment of the muscle cellulate with BIO, SB203580, or SQ22536 and the aurora B kinase inhibitor, reversine, induced the formation of cells with neurogenic potential (ectodermal lineage), indicating the acquirement of pluripotency. This is the first demonstration of a small molecule method that induces mammalian muscle to undergo dedifferentiation and rededifferentiation into alternate cell lineages. This method induces dedifferentiation in a simple, stepwise approach and has therapeutic potential to enhance tissue regeneration in mammals.

  14. Zebrafish Müller glia-derived progenitors are multipotent, exhibit proliferative biases and regenerate excess neurons

    PubMed Central

    Powell, Curtis; Cornblath, Eli; Elsaeidi, Fairouz; Wan, Jin; Goldman, Daniel

    2016-01-01

    Unlike mammals, zebrafish can regenerate a damaged retina. Key to this regenerative response are Müller glia (MG) that respond to injury by reprogramming and adopting retinal stem cell properties. These reprogrammed MG divide to produce a proliferating population of retinal progenitors that migrate to areas of retinal damage and regenerate lost neurons. Previous studies have suggested that MG-derived progenitors may be biased to produce that are lost with injury. Here we investigated MG multipotency using injury paradigms that target different retinal nuclear layers for cell ablation. Our data indicate that regardless of which nuclear layer was damaged, MG respond by generating multipotent progenitors that migrate to all nuclear layers and differentiate into layer-specific cell types, suggesting that MG-derived progenitors in the injured retina are intrinsically multipotent. However, our analysis of progenitor proliferation reveals a proliferative advantage in nuclear layers where neurons were ablated. This suggests that feedback inhibition from surviving neurons may skew neuronal regeneration towards ablated cell types. PMID:27094545

  15. Cell Phone Use by Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Bryen, Diane Nelson; Carey, Allison; Friedman, Mark

    2007-01-01

    Although cell phone use has grown dramatically, there is a gap in cell phone access between people with disabilities and the general public. The importance of cell phone use among people with intellectual disabilities and studies about use of cell phones by adults with intellectual disabilities was described. Our goal was to determine the extent…

  16. Environmental factors unveil dormant developmental capacities in multipotent progenitors of the trunk neural crest.

    PubMed

    Coelho-Aguiar, Juliana M; Le Douarin, Nicole M; Dupin, Elisabeth

    2013-12-01

    The neural crest (NC), an ectoderm-derived structure of the vertebrate embryo, gives rise to the melanocytes, most of the peripheral nervous system and the craniofacial mesenchymal tissues (i.e., connective, bone, cartilage and fat cells). In the trunk of Amniotes, no mesenchymal tissues are derived from the NC. In certain in vitro conditions however, avian and murine trunk NC cells (TNCCs) displayed a limited mesenchymal differentiation capacity. Whether this capacity originates from committed precursors or from multipotent TNCCs was unknown. Here, we further investigated the potential of TNCCs to develop into mesenchymal cell types in vitro. We found that, in fact, quail TNCCs exhibit a high ability to differentiate into myofibroblasts, chondrocytes, lipid-laden adipocytes and mineralizing osteoblasts. In single cell cultures, both mesenchymal and neural cell types coexisted in TNCC clonal progeny: 78% of single cells yielded osteoblasts together with glial cells and neurons; moreover, TNCCs generated heterogenous clones with adipocytes, myofibroblasts, melanocytes and/or glial cells. Therefore, alike cephalic NCCs, early migratory TNCCs comprised multipotent progenitors able to generate both mesenchymal and melanocytic/neural derivatives, suggesting a continuum in NC developmental potentials along the neural axis. The skeletogenic capacity of the TNC, which was present in the exoskeletal armor of the extinct basal forms of Vertebrates and which persisted in the distal fin rays of extant teleost fish, thus did not totally disappear during vertebrate evolution. Mesenchymal potentials of the TNC, although not fulfilled during development, are still present in a dormant state in Amniotes and can be disclosed in in vitro culture. Whether these potentials are not expressed in vivo due to the presence of inhibitory cues or to the lack of permissive factors in the trunk environment remains to be understood.

  17. Existence of reserve quiescent stem cells in adults, from amphibians to humans.

    PubMed

    Young, H E

    2004-01-01

    Several theories have been proposed to explain the phenomenon of tissue restoration in amphibians and higher order animals. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed stem cells, and activation of quiescent stem cells. Young and colleagues demonstrated that connective tissues throughout the body contain multiple populations of quiescent lineage-committed progenitor stem cells and lineage-uncommitted pluripotent stem cells. Subsequent cloning and cell sorting studies identified quiescent lineage-uncommitted pluripotent mesenchymal stem cells, capable of forming any mesodermal cell type, and pluripotent epiblastic-like stem cells, capable of forming any somatic cell type. Based on their studies, they propose at least 11 categories of quiescent reserve stem cells resident within postnatal animals, including humans. These categories are pluripotent epiblastic-like stem cells, pluripotent ectodermal stem cells, pluripotent epidermal stem cells, pluripotent neuronal stem cells, pluripotent neural crest stem cells, pluripotent mesenchymal (mesodermal) stem cells, pluripotent endodermal stem cells, multipotent progenitor stem cells, tripotent progenitor stem cells, bipotent progenitor stem cells, and unipotent progenitor stem cells. Thus, activation of quiescent reserve stem cells, i.e., lineage-committed progenitor stem cells and lineage-uncommitted pluripotent stem cells, resident within the connective tissues could provide for the continual maintenance and repair of the postnatal organism after birth.

  18. REST regulation of gene networks in adult neural stem cells

    PubMed Central

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-01-01

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state. PMID:27819263

  19. REST regulation of gene networks in adult neural stem cells.

    PubMed

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-11-07

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state.

  20. Adult human brain cell culture for neuroscience research.

    PubMed

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders.

  1. Potential of adult neural stem cells in stroke therapy.

    PubMed

    Andres, Robert H; Choi, Raymond; Steinberg, Gary K; Guzman, Raphael

    2008-11-01

    Despite state-of-the-art therapy, clinical outcome after stroke remains poor, with many patients left permanently disabled and dependent on care. Stem cell therapy has evolved as a promising new therapeutic avenue for the treatment of stroke in experimental studies, and recent clinical trials have proven its feasibility and safety in patients. Replacement of damaged cells and restoration of function can be accomplished by transplantation of different cell types, such as embryonic, fetal or adult stem cells, human fetal tissue and genetically engineered cell lines. Adult neural stem cells offer the advantage of avoiding the ethical problems associated with embryonic or fetal stem cells and can be harvested as autologous grafts from the individual patients. Furthermore, stimulation of endogenous adult stem cell-mediated repair mechanisms in the brain might offer new avenues for stroke therapy without the necessity of transplantation. However, important scientific issues need to be addressed to advance our understanding of the molecular mechanisms underlying the critical steps in cell-based repair to allow the introduction of these experimental techniques into clinical practice. This review describes up-to-date experimental concepts using adult neural stem cells for the treatment of stroke.

  2. Evidence for epithelial-mesenchymal transitions in adult liver cells.

    PubMed

    Sicklick, Jason K; Choi, Steve S; Bustamante, Marcia; McCall, Shannon J; Pérez, Elizabeth Hernández; Huang, Jiawen; Li, Yin-Xiong; Rojkind, Marcos; Diehl, Anna Mae

    2006-10-01

    Both myofibroblastic hepatic stellate cells (HSC) and hepatic epithelial progenitors accumulate in damaged livers. In some injured organs, the ability to distinguish between fibroblastic and epithelial cells is sometimes difficult because cells undergo epithelial-mesenchymal transitions (EMT). During EMT, cells coexpress epithelial and mesenchymal cell markers. To determine whether EMT occurs in adult liver cells, we analyzed the expression profile of primary HSC, two HSC lines, and hepatic epithelial progenitors. As expected, all HSC expressed HSC markers. Surprisingly, these markers were also expressed by epithelial progenitors. In addition, one HSC line expressed typical epithelial progenitor mRNAs, and these epithelial markers were inducible in the second HSC line. In normal and damaged livers, small ductular-type cells stained positive for an HSC marker. In conclusion, HSC and hepatic epithelial progenitors both coexpress epithelial and mesenchymal markers, providing evidence that EMT occurs in adult liver cells.

  3. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.

    PubMed

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-06-21

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  4. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    PubMed Central

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-01-01

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications. PMID:27338364

  5. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases

    PubMed Central

    Bhullar, Khushwant S.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders. PMID:23840922

  6. Fluorinated benzophenone derivatives: balanced multipotent agents for Alzheimer's disease.

    PubMed

    Belluti, Federica; De Simone, Angela; Tarozzi, Andrea; Bartolini, Manuela; Djemil, Alice; Bisi, Alessandra; Gobbi, Silvia; Montanari, Serena; Cavalli, Andrea; Andrisano, Vincenza; Bottegoni, Giovanni; Rampa, Angela

    2014-05-06

    In an effort to develop multipotent agents against β-secretase (BACE-1) and acetylcholinesterase (AChE), able to counteract intracellular ROS formation as well, the structure of the fluorinated benzophenone 3 served as starting point for the synthesis of a small library of 3-fluoro-4-hydroxy- analogues. Among the series, derivatives 5 and 12, carrying chemically different amino functions, showed a balanced micromolar potency against the selected targets. In particular, compound 12, completely devoid of toxic effects, seems to be a promising lead for obtaining effective anti-AD drug candidates.

  7. Stem Cell-Mediated Regeneration of the Adult Brain

    PubMed Central

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury of the adult mammalian brain is often associated with persistent functional deficits as its potential for regeneration and capacity to rebuild lost neural structures is limited. However, the discovery that neural stem cells (NSCs) persist throughout life in discrete regions of the brain, novel approaches to induce the formation of neuronal and glial cells, and recently developed strategies to generate tissue for exogenous cell replacement strategies opened novel perspectives how to regenerate the adult brain. Here, we will review recently developed approaches for brain repair and discuss future perspectives that may eventually allow for developing novel treatment strategies in acute and chronic brain injury. PMID:27781019

  8. Neural stem cell transplantation in mouse brain.

    PubMed

    Lee, Jean-Pyo; McKercher, Scott; Muller, Franz-Josef; Snyder, Evan Y

    2008-01-01

    Neural stem cells (NSCs) are the most primordial, least committed cells of the nervous system, and transplantation of these multipotent cells holds the promise of regenerative therapy for many central nervous system (CNS) diseases. This unit describes methods for NSC transplantation into neonatal mouse pups, embryonic mouse brain, and adult mouse brain. A description of options for detection of labeled donor cells in engrafted mouse brain is provided along with an example protocol for detecting lacZ-expressing cells in situ. Also included is a protocol for preparing NSCs for transplantation.

  9. Isolation of Undifferentiated Female Germline Cells from Adult Drosophila Ovaries.

    PubMed

    Lim, Robyn Su May; Osato, Motomi; Kai, Toshie

    2015-08-03

    This unit describes a method for isolating undifferentiated, stem cell-like germline cells from adult Drosophila ovaries. Here, we demonstrate that this population of cells can be effectively purified from hand-dissected ovaries in considerably large quantities. Tumor ovaries with expanded populations of undifferentiated germline cells are first removed from fly abdomens and dissociated into a cell suspension with the aid of protease treatment. The target cells, which express Vasa-green fluorescent protein (GFP) fusion protein under the control of the germline-specific vasa promoter, are specifically selected from the suspension via fluorescence-activated cell sorting (FACS). These protocols can be adapted to isolate other cell types from fly ovaries, such as somatic follicle cells or escort cells, by driving GFP expression in the respective target cells.

  10. Primary Afferent Synapses on Developing and Adult Renshaw Cells

    PubMed Central

    Mentis, George Z.; Siembab, Valerie C.; Zerda, Ricardo; O’Donovan, Michael J.; Alvarez, Francisco J.

    2010-01-01

    The mechanisms that diversify adult interneurons from a few pools of embryonic neurons are unknown. Renshaw cells, Ia inhibitory interneurons (IaINs), and possibly other types of mammalian spinal interneurons have common embryonic origins within the V1 group. However, in contrast to IaINs and other V1-derived interneurons, adult Renshaw cells receive motor axon synapses and lack proprioceptive inputs. Here, we investigated how this specific pattern of connectivity emerges during the development of Renshaw cells. Tract tracing and immunocytochemical markers [parvalbumin and vesicular glutamate transporter 1 (VGLUT1)] showed that most embryonic (embryonic day 18) Renshaw cells lack dorsal root inputs, but more than half received dorsal root synapses by postnatal day 0 (P0) and this input spread to all Renshaw cells by P10–P15. Electrophysiological recordings in neonates indicated that this input is functional and evokes Renshaw cell firing. VGLUT1-IR bouton density on Renshaw cells increased until P15 but thereafter decreased because of limited synapse proliferation coupled with the enlargement of Renshaw cell dendrites. In parallel, Renshaw cell postsynaptic densities apposed to VGLUT1-IR synapses became smaller in adult compared with P15. In contrast, vesicular acetylcholine transporter-IR motor axon synapses contact embryonic Renshaw cells and proliferate postnatally matching Renshaw cell growth. Like other V1 neurons, Renshaw cells are thus competent to receive sensory synapses. However, after P15, these sensory inputs appear deselected through arrested proliferation and synapse weakening. Thus, Renshaw cells shift from integrating sensory and motor inputs in neonates to predominantly motor inputs in adult. Similar synaptic weight shifts on interneurons may be involved in the maturation of motor reflexes and locomotor circuitry. PMID:17182780

  11. Primary afferent synapses on developing and adult Renshaw cells.

    PubMed

    Mentis, George Z; Siembab, Valerie C; Zerda, Ricardo; O'Donovan, Michael J; Alvarez, Francisco J

    2006-12-20

    The mechanisms that diversify adult interneurons from a few pools of embryonic neurons are unknown. Renshaw cells, Ia inhibitory interneurons (IaINs), and possibly other types of mammalian spinal interneurons have common embryonic origins within the V1 group. However, in contrast to IaINs and other V1-derived interneurons, adult Renshaw cells receive motor axon synapses and lack proprioceptive inputs. Here, we investigated how this specific pattern of connectivity emerges during the development of Renshaw cells. Tract tracing and immunocytochemical markers [parvalbumin and vesicular glutamate transporter 1 (VGLUT1)] showed that most embryonic (embryonic day 18) Renshaw cells lack dorsal root inputs, but more than half received dorsal root synapses by postnatal day 0 (P0) and this input spread to all Renshaw cells by P10-P15. Electrophysiological recordings in neonates indicated that this input is functional and evokes Renshaw cell firing. VGLUT1-IR bouton density on Renshaw cells increased until P15 but thereafter decreased because of limited synapse proliferation coupled with the enlargement of Renshaw cell dendrites. In parallel, Renshaw cell postsynaptic densities apposed to VGLUT1-IR synapses became smaller in adult compared with P15. In contrast, vesicular acetylcholine transporter-IR motor axon synapses contact embryonic Renshaw cells and proliferate postnatally matching Renshaw cell growth. Like other V1 neurons, Renshaw cells are thus competent to receive sensory synapses. However, after P15, these sensory inputs appear deselected through arrested proliferation and synapse weakening. Thus, Renshaw cells shift from integrating sensory and motor inputs in neonates to predominantly motor inputs in adult. Similar synaptic weight shifts on interneurons may be involved in the maturation of motor reflexes and locomotor circuitry.

  12. Insulin–InsR signaling drives multipotent progenitor differentiation toward lymphoid lineages

    PubMed Central

    Xia, Pengyan; Wang, Shuo; Du, Ying; Huang, Guanling; Satoh, Takashi; Akira, Shizuo

    2015-01-01

    The lineage commitment of HSCs generates balanced myeloid and lymphoid populations in hematopoiesis. However, the underlying mechanisms that control this process remain largely unknown. Here, we show that insulin–insulin receptor (InsR) signaling is required for lineage commitment of multipotent progenitors (MPPs). Deletion of Insr in murine bone marrow causes skewed differentiation of MPPs to myeloid cells. mTOR acts as a downstream effector that modulates MPP differentiation. mTOR activates Stat3 by phosphorylation at serine 727 under insulin stimulation, which binds to the promoter of Ikaros, leading to its transcription priming. Our findings reveal that the insulin–InsR signaling drives MPP differentiation into lymphoid lineages in early lymphopoiesis, which is essential for maintaining a balanced immune system for an individual organism. PMID:26573296

  13. Electrophysiological Properties of Subventricular Zone Cells in Adult Mouse Brain

    PubMed Central

    Lai, Bin; Mao, Xiao Ou; Xie, Lin; Chang, Su-Youne; Xiong, Zhi-Gang; Jin, Kunlin; Greenberg, David A.

    2010-01-01

    The subventricular zone (SVZ) is a principal site of adult neurogenesis and appears to participate in the brain’s response to injury. Thus, measures that enhance SVZ neurogenesis may have a role in treatment of neurological disease. To better characterize SVZ cells and identify potential targets for therapeutic intervention, we studied electrophysiological properties of SVZ cells in adult mouse brain slices using patch-clamp techniques. Electrophysiology was correlated with immunohistochemical phenotype by injecting cells with lucifer yellow and by studying transgenic mice carrying green fluorescent protein under control of the doublecortin (DCX) or glial fibrillary acidic protein (GFAP) promoter. We identified five types of cells in the adult mouse SVZ: type 1 cells, with 4-aminopyridine (4-AP)/tetraethylammonium (TEA)-sensitive and CdCl2-sensitive inward currents; type 2 cells, with Ca2+-sensitive K+ and both 4-AP/TEA-sensitive and -insensitive currents; type 3 cells, with 4-AP/TEA-sensitive and -insensitive and small Na+ currents; type 4 cells, with slowly activating, large linear outward current and sustained outward current without fast-inactivating component; and type 5 cells, with a large outward rectifying current with a fast inactivating component. Type 2 and 3 cells expressed DCX, types 4 and 5 cells expressed GFAP, and type 1 cells expressed neither. We propose that SVZ neurogenesis involves a progression of electrophysiological cell phenotypes from types 4 and 5 cells (astrocytes) to type 1 cells (neuronal progenitors) to types 2 and 3 cells (nascent neurons), and that drugs acting on. ion channels expressed during neurogenesis might promote therapeutic neurogenesis in the injured brain. PMID:20434436

  14. Location and catalytic characteristics of a multipotent bacterial polyphenol oxidase.

    PubMed

    Fernández, E; Sanchez-Amat, A; Solano, F

    1999-10-01

    The melanogenic marine bacterium Marinomonas mediterranea contains a multipotent polyphenol oxidase (PPO) able to oxidize substrates characteristic for tyrosinase and laccase. Thus, this enzyme shows tyrosine hydroxylase activity and it catalyzes the oxidation of a wide variety of o-diphenol as well as o-methoxy-activated phenols. The study of its sensitivity to different inhibitors also revealed intermediate features between laccase and tyrosinase. It is similar to tyrosinases in its sensitivity to tropolone, but it resembles laccases in its resistance to cinnamic acid and phenylthiourea, and in its sensitivity to fluoride anion. This enzyme is mostly membrane-bound and can be solubilized either by non-ionic detergent or lipase treatments of the membrane. The expression of this enzymatic activity is growth-phase regulated, reaching a maximum in the stationary phase of bacterial growth, but L-tyrosine, Cu(II) ions, or 2,5-xylidine do not induce it. This enzyme can be separated from a second PPO form by gel permeation chromatography. The second PPO is located in the soluble fraction and shows a sodium dodecyl sulfate (SDS)-activated action on the characteristic substrates for tyrosinase, L-tyrosine, and L-dopa, but it does not show activity towards laccase-specific substrates. The involvement of the multipotent PPO in melanogenesis and its relationship with the SDS-activated form and with the alternative functions proposed for multicopper oxidases in other microorganisms are discussed.

  15. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells

    PubMed Central

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  16. Optimized cell transplantation using adult rag2 mutant zebrafish

    PubMed Central

    Tang, Qin; Abdelfattah, Nouran S.; Blackburn, Jessica S.; Moore, John C.; Martinez, Sarah A.; Moore, Finola E.; Lobbardi, Riadh; Tenente, Inês M.; Ignatius, Myron S.; Berman, Jason N.; Liwski, Robert S.; Houvras, Yariv; Langenau, David M.

    2014-01-01

    Cell transplantation into adult zebrafish has lagged behind mouse due to the lack of immune compromised models. Here, we have created homozygous rag2E450fs mutant zebrafish that have reduced numbers of functional T and B cells but are viable and fecund. Mutant fish engraft zebrafish muscle, blood stem cells, and cancers. rag2E450fs mutant zebrafish are the first immune compromised zebrafish model that permits robust, long-term engraftment of multiple tissues and cancer. PMID:25042784

  17. Adherent neural stem (NS) cells from fetal and adult forebrain.

    PubMed

    Pollard, Steven M; Conti, Luciano; Sun, Yirui; Goffredo, Donato; Smith, Austin

    2006-07-01

    Stable in vitro propagation of central nervous system (CNS) stem cells would offer expanded opportunities to dissect basic molecular, cellular, and developmental processes and to model neurodegenerative disease. CNS stem cells could also provide a source of material for drug discovery assays and cell replacement therapies. We have recently reported the generation of adherent, symmetrically expandable, neural stem (NS) cell lines derived both from mouse and human embryonic stem cells and from fetal forebrain (Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. 2005. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3(9):e283). These NS cells retain neuronal and glial differentiation potential after prolonged passaging and are transplantable. NS cells are likely to comprise the resident stem cell population within heterogeneous neurosphere cultures. Here we demonstrate that similar NS cell cultures can be established from the adult mouse brain. We also characterize the growth factor requirements for NS cell derivation and self-renewal. We discuss our current understanding of the relationship of NS cell lines to physiological progenitor cells of fetal and adult CNS.

  18. Pericytes, integral components of adult hematopoietic stem cell niches.

    PubMed

    Sá da Bandeira, D; Casamitjana, J; Crisan, M

    2017-03-01

    The interest in perivascular cells as a niche for adult hematopoietic stem cells (HSCs) is significantly growing. In the adult bone marrow (BM), perivascular cells and HSCs cohabit. Among perivascular cells, pericytes are precursors of mesenchymal stem/stromal cells (MSCs) that are capable of differentiating into osteoblasts, adipocytes and chondrocytes. In situ, pericytes are recognised by their localisation to the abluminal side of the blood vessel wall and closely associated with endothelial cells, in combination with the expression of markers such as CD146, neural glial 2 (NG2), platelet derived growth factor receptor β (PDGFRβ), α-smooth muscle actin (α-SMA), nestin (Nes) and/or leptin receptor (LepR). However, not all pericytes share a common phenotype: different immunophenotypes can be associated with distinct mesenchymal features, including hematopoietic support. In adult BM, arteriolar and sinusoidal pericytes control HSC behaviour, maintenance, quiescence and trafficking through paracrine effects. Different groups identified and characterized hematopoietic supportive pericyte subpopulations using various markers and mouse models. In this review, we summarize recent work performed by others to understand the role of the perivascular niche in the biology of HSCs in adults, as well as their importance in the development of therapies.

  19. From adult stem cells to cancer stem cells: Oct-4 Gene, cell-cell communication, and hormones during tumor promotion.

    PubMed

    Trosko, James E

    2006-11-01

    Carcinogenesis is characterized by "initiation," "promotion," and "progression" phases. The "stem cell theory" and "de-differentiation" theories are used to explain the origin of cancer. Growth control for stem cells, which lack functional gap junctional intercellular communication (GJIC), involves negative soluble or niche factors, while for progenitor cells, it involves GJIC. Tumor promoters, hormones, and growth factors inhibit GJIC reversibly. Oncogenes stably inhibit GJIC. Cancer cells, which lack growth control and the ability to terminally differentiate and to apoptose, lack GJIC. The Oct3/4 gene, a POU (Pit-Oct-Unc) family of transcription factors was thought to be expressed only in embryonic stem cells and in tumor cells. With the availability of normal adult human stem cells, tests for the expression of Oct3/4 gene and the stem cell theory in human carcinogenesis became possible. Human breast, liver, pancreas, kidney, mesenchyme, and gastric stem cells, HeLa and MCF-7 cells, and canine tumors were tested with antibodies and polymerase chain reaction (PCR) primers for Oct3/4. Adult human breast stem cells, immortalized nontumorigenic and tumor cell lines, but not the normal differentiated cells, expressed Oct3/4. Adult human differentiated cells lose their Oct-4 expression. Oct3/4 is expressed in a few cells found in the basal layer of human skin epidermis. The data demonstrate that normal adult stem cells and cancer stem cells maintain expression of Oct3/4, consistent with the stem cell hypothesis of carcinogenesis. These Oct-4 positive cells might represent the "cancer stem cells." A strategy to target "cancer stem cells" is to suppress the Oct-4 gene in order to cause the cells to differentiate.

  20. Tethering of Epidermal Growth Factor (EGF) to Beta Tricalcium Phosphate (βTCP) via Fusion to a High Affinity, Multimeric βTCP-Binding Peptide: Effects on Human Multipotent Stromal Cells/Connective Tissue Progenitors

    PubMed Central

    Stockdale, Linda; Saini, Sunil; Lee, Richard T.; Griffith, Linda G.

    2015-01-01

    Transplantation of freshly-aspirated autologous bone marrow, together with a scaffold, is a promising clinical alternative to harvest and transplantation of autologous bone for treatment of large defects. However, survival proliferation, and osteogenic differentiation of the marrow-resident stem and progenitor cells with osteogenic potential can be limited in large defects by the inflammatory microenvironment. Previous studies using EGF tethered to synthetic polymer substrates have demonstrated that surface-tethered EGF can protect human bone marrow-derived osteogenic stem and progenitor cells from pro-death inflammatory cues and enhance their proliferation without detriment to subsequent osteogenic differentiation. The objective of this study was to identify a facile means of tethering EGF to clinically-relevant βTCP scaffolds and to demonstrate the bioactivity of EGF tethered to βTCP using stimulation of the proliferative response of human bone-marrow derived mesenchymal stem cells (hBMSC) as a phenotypic metric. We used a phage display library and panned against βTCP and composites of βTCP with a degradable polyester biomaterial, together with orthogonal blocking schemes, to identify a 12-amino acid consensus binding peptide sequence, LLADTTHHRPWT, with high affinity for βTCP. When a single copy of this βTCP-binding peptide sequence was fused to EGF via a flexible peptide tether domain and expressed recombinantly in E. coli together with a maltose-binding domain to aid purification, the resulting fusion protein exhibited modest affinity for βTCP. However, a fusion protein containing a linear concatamer containing 10 repeats of the binding motif the resulting fusion protein showed high affinity stable binding to βTCP, with only 25% of the protein released after 7 days at 37oC. The fusion protein was bioactive, as assessed by its abilities to activate kinase signaling pathways downstream of the EGF receptor when presented in soluble form, and to enhance

  1. Tethering of Epidermal Growth Factor (EGF) to Beta Tricalcium Phosphate (βTCP) via Fusion to a High Affinity, Multimeric βTCP-Binding Peptide: Effects on Human Multipotent Stromal Cells/Connective Tissue Progenitors.

    PubMed

    Alvarez, Luis M; Rivera, Jaime J; Stockdale, Linda; Saini, Sunil; Lee, Richard T; Griffith, Linda G

    2015-01-01

    Transplantation of freshly-aspirated autologous bone marrow, together with a scaffold, is a promising clinical alternative to harvest and transplantation of autologous bone for treatment of large defects. However, survival proliferation, and osteogenic differentiation of the marrow-resident stem and progenitor cells with osteogenic potential can be limited in large defects by the inflammatory microenvironment. Previous studies using EGF tethered to synthetic polymer substrates have demonstrated that surface-tethered EGF can protect human bone marrow-derived osteogenic stem and progenitor cells from pro-death inflammatory cues and enhance their proliferation without detriment to subsequent osteogenic differentiation. The objective of this study was to identify a facile means of tethering EGF to clinically-relevant βTCP scaffolds and to demonstrate the bioactivity of EGF tethered to βTCP using stimulation of the proliferative response of human bone-marrow derived mesenchymal stem cells (hBMSC) as a phenotypic metric. We used a phage display library and panned against βTCP and composites of βTCP with a degradable polyester biomaterial, together with orthogonal blocking schemes, to identify a 12-amino acid consensus binding peptide sequence, LLADTTHHRPWT, with high affinity for βTCP. When a single copy of this βTCP-binding peptide sequence was fused to EGF via a flexible peptide tether domain and expressed recombinantly in E. coli together with a maltose-binding domain to aid purification, the resulting fusion protein exhibited modest affinity for βTCP. However, a fusion protein containing a linear concatamer containing 10 repeats of the binding motif the resulting fusion protein showed high affinity stable binding to βTCP, with only 25% of the protein released after 7 days at 37oC. The fusion protein was bioactive, as assessed by its abilities to activate kinase signaling pathways downstream of the EGF receptor when presented in soluble form, and to enhance

  2. Therapeutic potential of dental pulp stem cells in regenerative medicine: An overview.

    PubMed

    Verma, Kavita; Bains, Rhythm; Bains, Vivek Kumar; Rawtiya, Manjusha; Loomba, Kapil; Srivastava, Shrish Charan

    2014-05-01

    The purpose of this review is to gain an overview of the applications of the dental pulp stem cells (DPSCs) in the treatment of various medical diseases. Stem cells have the capacity to differentiate and regenerate into various tissues. DPSCs are the adult stem cells that reside in the cell rich zone of the dental pulp. These are the multipotent cells that can be explained by their embryonic origin from the neural crest. Owing to this multipotency, these DPSCs can be used in both dental and medical applications. A review of literature has been performed using electronic and hand-searching methods for the medical applications of DPSCs. On the basis of the available information, DPSCs appear to be a promising alternative for the regeneration of tissues and treatment of various diseases, although, long-term clinical trials and studies are needed to confirm their efficacy.

  3. A label-retaining but unipotent cell population resides in biliary compartment of mammalian liver

    PubMed Central

    Viil, Janeli; Klaas, Mariliis; Valter, Kadri; Belitškin, Denis; Ilmjärv, Sten; Jaks, Viljar

    2017-01-01

    Cells with slow proliferation kinetics that retain the nuclear label over long time periods–the label-retaining cells (LRCs)–represent multipotent stem cells in a number of adult tissues. Since the identity of liver LRCs (LLRCs) had remained elusive we utilized a genetic approach to reveal LLRCs in normal non-injured livers and characterized their regenerative properties in vivo and in culture. We found that LLRCs were located in biliary vessels and participated in the regeneration of biliary but not hepatocyte injury. In culture experiments the sorted LLRCs displayed an enhanced self-renewal capacity but a unipotent biliary differentiation potential. Transcriptome analysis revealed a unique set of tumorigenesis- and nervous system-related genes upregulated in LLRCs when compared to non-LRC cholangiocytes. We conclude that the LLRCs established during the normal morphogenesis of the liver do not represent a multipotent primitive somatic stem cell population but act as unipotent biliary progenitor cells. PMID:28084309

  4. Walking stability during cell phone use in healthy adults.

    PubMed

    Kao, Pei-Chun; Higginson, Christopher I; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S

    2015-05-01

    The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than in younger adults. This study examined gait stability and variability during a cell phone dialing task (phone) and two classic cognitive tasks, the Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT). Nine older and seven younger healthy adults walked on a treadmill at four different conditions: walking only, PASAT, phone, and SDMT. We computed short-term local divergence exponent (LDE) of the trunk motion (local stability), dynamic margins of stability (MOS), step spatiotemporal measures, and kinematic variability. Older and younger adults had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the dual-task. Compared to walking only, older and younger adults walked with significantly greater average mediolateral MOS during phone and SDMT conditions but significantly less ankle angle variability during all dual-tasks and less knee angle variability during PASAT. The current findings demonstrate that healthy adults may try to control foot placement and joint kinematics during cell phone use or another cognitive task with a visual component to ensure sufficient dynamic margins of stability and maintain local stability.

  5. Walking Stability during Cell Phone Use in Healthy Adults

    PubMed Central

    Kao, Pei-Chun; Higginson, Christopher I.; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S.

    2015-01-01

    The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than in younger adults. This study examined gait stability and variability during a cell phone dialing task (phone) and two classic cognitive tasks, the Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT). Nine older and seven younger healthy adults walked on a treadmill at four different conditions: walking only, PASAT, phone, and SDMT. We computed short-term local divergence exponent (LDE) of the trunk motion (local stability), dynamic margins of stability (MOS), step spatiotemporal measures, and kinematic variability. Older and younger adults had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the dual-task. Compared to walking only, older and younger adults walked with significantly greater average mediolateral MOS during phone and SDMT conditions but significantly less ankle angle variability during all dual-tasks and less knee angle variability during PASAT. The current findings demonstrate that healthy adults may try to control foot placement and joint kinematics during cell phone use or another cognitive task with a visual component to ensure sufficient dynamic margins of stability and maintain local stability. PMID:25890490

  6. Adult stem cells and their ability to differentiate.

    PubMed

    Tarnowski, Maciej; Sieron, Aleksander L

    2006-08-01

    This is a review of the current status of knowledge on adult stem cells as well as the criteria and evidence for their potential to transform into different cell types and cell lineages. Reports on stem cell sources, focusing on tissues from adult subjects, were also investigated. Numerous reports have been published on the search for early markers of both stem cells and the precursors of various cell lineages. The question is still open about the characteristics of the primary stem cell. The existing proofs and hypotheses have not yielded final solutions to this problem. From a practical point of view it is also crucial to find a minimal set of markers determining the phenotypes of the precursor cells of a particular cell lineage. Several lines of evidence seem to bring closer the day when we will be able to detect the right stem cell niche and successfully isolate precursor cells that are needed for the treatment of a particular disorder. Recent reports on cases of cancer in patients subjected to stem cell therapy are yet another controversial issue looked into in this review, although the pros and cons emerging from the results of published studies still do not provide satisfying evidence to fully understand this issue.

  7. Adult stem cells underlying lung regeneration.

    PubMed

    Xian, Wa; McKeon, Frank

    2012-03-01

    Despite the massive toll in human suffering imparted by degenerative lung disease, including COPD, idiopathic pulmonary fibrosis and ARDS, the scientific community has been surprisingly agnostic regarding the potential of lung tissue, and in particular the alveoli, to regenerate. However, there is circumstantial evidence in humans and direct evidence in mice that ARDS triggers robust regeneration of lung tissue rather than irreversible fibrosis. The stem cells responsible for this remarkable regenerative process has garnered tremendous attention, most recently yielding a defined set of cloned human airway stem cells marked by p63 expression but with distinct commitment to differentiated cell types typical of the upper or lower airways, the latter of which include alveoli-like structures in vitro and in vivo. These recent advances in lung regeneration and distal airway stem cells and the potential of associated soluble factors in regeneration must be harnessed for therapeutic options in chronic lung disease.

  8. Stem cell activation in adults can reverse detrimental changes in body composition to reduce fat and increase lean mass in both sexes.

    PubMed

    Wiren, Kristine M; Hashimoto, Joel G; Zhang, Xiao-Wei

    2011-12-01

    Detrimental changes in body composition are often associated with declining levels of testosterone. Here, we evaluated the notion that multipotent mesenchymal stem cells, that give rise to both fat and muscle tissue, can play a significant role to alter existing body composition in the adult. Transgenic mice with targeted androgen receptor (AR) overexpression in stem cells were employed. Wild-type littermate and AR-transgenic male and female mice were gonadectomized and left untreated for 2 months. After the hypogonadal period, mice were then treated with 5α-dihydrotestosterone (DHT) for 6 weeks. After orchidectomy (ORX), wild-type males have reduced lean mass and increased fat mass compared to shams. DHT treatment was beneficial to partially restore body composition. In wild-type females, ovariectomy (OVX) produced a similar change but there was no improvement with DHT. In targeted AR transgenic mice, DHT treatment increased lean and reduced fat mass to sham levels. In contrast to wild-type females, DHT treatment in female transgenic mice significantly ameliorated the increased fat and decreased lean mass changes that result after OVX. Our results show that DHT administration reduces fat mass and increases lean mass in wild-type males but not females, indicating that wild-type females are not as sensitive to androgen treatment. Because both male and female transgenic mice are more responsive than wild-type, results suggest that body composition remains linked to stem cell fate in the adult and that targeted androgen signaling in stem cells can play a significant role to reverse detrimental changes in body composition in both sexes.

  9. Intestinal stem cells in the adult Drosophila midgut

    SciTech Connect

    Jiang, Huaqi; Edgar, Bruce A.

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  10. New Nerve Cells for the Adult Brain.

    ERIC Educational Resources Information Center

    Kempermann, Gerd; Gage, Fred H.

    1999-01-01

    Contrary to dogma, the human brain does produce new nerve cells in adulthood. The mature human brain spawns neurons routinely in the hippocampus, an area important to memory and learning. This research can make it possible to ease any number of disorders involving neurological damage and death. (CCM)

  11. Control of Cell Survival in Adult Mammalian Neurogenesis.

    PubMed

    Kuhn, H Georg

    2015-10-28

    The fact that continuous proliferation of stem cells and progenitors, as well as the production of new neurons, occurs in the adult mammalian central nervous system (CNS) raises several basic questions concerning the number of neurons required in a particular system. Can we observe continued growth of brain regions that sustain neurogenesis? Or does an elimination mechanism exist to maintain a constant number of cells? If so, are old neurons replaced, or are the new neurons competing for limited network access among each other? What signals support their survival and integration and what factors are responsible for their elimination? This review will address these and other questions regarding regulatory mechanisms that control cell-death and cell-survival mechanisms during neurogenesis in the intact adult mammalian brain.

  12. Positional identity of adult stem cells in salamander limb regeneration.

    PubMed

    Kumar, Anoop; Gates, Phillip B; Brockes, Jeremy P

    2007-01-01

    Limb regeneration in larval and adult salamanders proceeds from a mound of mesenchymal stem cells called the limb blastema. The blastema gives rise just to those structures distal to its level of origin, and this property of positional identity is reset to more proximal values by treatment with retinoic acid. We have identified a cell surface protein, called Prod1/CD59, which appears to be a determinant of proximodistal identity. Prod1 is expressed in an exponential gradient in an adult limb as determined by detection of both mRNA and immunoreactive protein. Prod1 protein is up-regulated after treatment of distal blastemas with RA and this is particularly marked in cells of the dermis. These cells have previously been implicated in pattern formation during limb regeneration.

  13. Zbtb1 prevents default myeloid differentiation of lymphoid-primed multipotent progenitors

    PubMed Central

    Zhang, Xianyu; Lu, Ying; Cao, Xin; Zhen, Tao; Kovalovsky, Damian

    2016-01-01

    Zbtb1 is a transcription factor that prevents DNA damage and p53-mediated apoptosis in replicating immune progenitors, affecting lymphoid as well as myeloid development when hematopoietic progenitors are in competition in mixed bone marrow chimeras. However, Zbtb1-deficient mice do not have an apparent myeloid deficiency. We report here that Zbtb1-deficient lymphoid-primed multipotent progenitors (LMPPs) are biased to develop towards the myeloid fate in detriment of lymphoid development, contributing to the apparent unaffected myeloid development. Zbtb1 expression was maintained during lymphoid development of LMPP cells but downregulated during myeloid development. Deficiency of Zbtb1 in LMPP cells was sufficient to direct a myeloid fate in lymphoid-inducing conditions and in the absence of myeloid cytokines as shown by upregulation of a myeloid gene signature and the generation of myeloid cells in vitro. Finally, biased myeloid differentiation of Zbtb1-deficient LMPP cells was not due to increased p53-dependent apoptosis as it was not reverted by transgenic Bcl2 expression or p53 deficiency. Altogether, our results show that Zbtb1 expression prevents activation of a default myeloid program in LMPP cells, ensuring the generation of lymphoid cells. PMID:27542215

  14. Congenital hepatic fibrosis, liver cell carcinoma and adult polycystic kidneys.

    PubMed

    Manes, J L; Kissane, J M; Valdes, A J

    1977-06-01

    In reviewing the literature, we found no liver cell carcinoma (LCC) or well-documented adult polycystic kidneys (APK) associated with congenital hepatic fibrosis (CHF). We report a 69-year-old man with CHF, LCC, APK, duplication cyst of distal portion of stomach, two calcified splenic artery aneurysms, myocardial fibrosis and muscular hypertrophy of esophagus. The LCC was grossly predunculated and microscopically showed prominent fibrosis and hyaline intracytoplasmic inclusions in the tumor cells.

  15. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2014-09-01

    year old mouse menisci. MSPCs grow as colonies, express stem cell and meniscal gene signature markers found in adult human meniscus, and can be...be collected from parallel cultures for measurement of meniscus signature genes , stem cell markers as well as markers that identify bone, cartilage...in control media from both 8wk and 6month old meniscal explants. We then used real time PCR to analyze gene expression. 0   1   2   3

  16. Adult Limbal Neurosphere Cells: A Potential Autologous Cell Resource for Retinal Cell Generation

    PubMed Central

    Chen, Xiaoli; Thomson, Heather; Cooke, Jessica; Scott, Jennifer; Hossain, Parwez; Lotery, Andrew

    2014-01-01

    The Corneal limbus is a readily accessible region at the front of the eye, separating the cornea and sclera. Neural colonies (neurospheres) can be generated from adult corneal limbus in vitro. We have previously shown that these neurospheres originate from neural crest stem/progenitor cells and that they can differentiate into functional neurons in vitro. The aim of this study was to investigate whether mouse and human limbal neurosphere cells (LNS) could differentiate towards a retinal lineage both in vivo and in vitro following exposure to a developing retinal microenvironment. In this article we show that LNS can be generated from adult mice and aged humans (up to 97 years) using a serum free culture assay. Following culture with developing mouse retinal cells, we detected retinal progenitor cell markers, mature retinal/neuronal markers and sensory cilia in the majority of mouse LNS experiments. After transplantation into the sub-retinal space of neonatal mice, mouse LNS cells expressed photoreceptor specific markers, but no incorporation into host retinal tissue was seen. Human LNS cells also expressed retinal progenitor markers at the transcription level but mature retinal markers were not observed in vitro or in vivo. This data highlights that mouse corneal limbal stromal progenitor cells can transdifferentiate towards a retinal lineage. Complete differentiation is likely to require more comprehensive regulation; however, the accessibility and plasticity of LNS makes them an attractive cell resource for future study and ultimately therapeutic application. PMID:25271851

  17. Live Imaging of Adult Neural Stem Cells in Rodents

    PubMed Central

    Ortega, Felipe; Costa, Marcos R.

    2016-01-01

    The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions. PMID:27013941

  18. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain

    PubMed Central

    Boulanger, Jenna J.; Messier, Claude

    2017-01-01

    Key Points Oligodendrocyte precursor cells express doublecortin, a microtubule-associated protein.Oligodendrocyte precursor cells express doublecortin, but at a lower level of expression than in neuronal precursor.Doublecortin is not associated with a potential immature neuronal phenotype in Oligodendrocyte precursor cells. Oligodendrocyte precursor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. Considering these roles in the adult brain, OPCs are likely mobile cells that can migrate on some distances before they differentiate into myelinating oligodendrocytes. A number of studies have noted that OPCs express doublecortin (DCX), a microtubule-associated protein expressed in neural precursor cells and in migrating immature neurons. Here we describe the distribution of DCX in OPCs. We found that almost all OPCs express DCX, but the level of expression appears to be much lower than what is found in neural precursor. We found that DCX is downregulated when OPCs start expressing mature oligodendrocyte markers and is absent in myelinating oligodendrocytes. DCX does not appear to signal an immature neuronal phenotype in OPCs in the adult mouse brain. Rather, it could be involved either in cell migration, or as a marker of an immature oligodendroglial cell phenotype.

  19. Intraganglionic interactions between satellite cells and adult sensory neurons.

    PubMed

    Christie, Kimberly; Koshy, Dilip; Cheng, Chu; Guo, GuiFang; Martinez, Jose A; Duraikannu, Arul; Zochodne, Douglas W

    2015-07-01

    Perineuronal satellite cells have an intimate anatomical relationship with sensory neurons that suggests close functional collaboration and mutual support. We examined several facets of this relationship in adult sensory dorsal root ganglia (DRG). Collaboration included the support of process outgrowth by clustering of satellite cells, induction of distal branching behavior by soma signaling, the capacity of satellite cells to respond to distal axon injury of its neighboring neurons, and evidence of direct neuron-satellite cell exchange. In vitro, closely adherent coharvested satellite cells routinely clustered around new outgrowing processes and groups of satellite cells attracted neurite processes. Similar clustering was encountered in the pseudounipolar processes of intact sensory neurons within intact DRG in vivo. While short term exposure of distal growth cones of unselected adult sensory neurons to transient gradients of a PTEN inhibitor had negligible impacts on their behavior, exposure of the soma induced early and substantial growth of their distant neurites and branches, an example of local soma signaling. In turn, satellite cells sensed when distal neuronal axons were injured by enlarging and proliferating. We also observed that satellite cells were capable of internalizing and expressing a neuron fluorochrome label, diamidino yellow, applied remotely to distal injured axons of the neuron and retrogradely transported to dorsal root ganglia sensory neurons. The findings illustrate a robust interaction between intranganglionic neurons and glial cells that involve two way signals, features that may be critical for both regenerative responses and ongoing maintenance.

  20. Satellite cell proliferation in adult skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  1. Comparative proteome approach demonstrates that platelet-derived growth factor C and D efficiently induce proliferation while maintaining multipotency of hMSCs

    SciTech Connect

    Sotoca, Ana M.; Roelofs-Hendriks, Jose; Boeren, Sjef; Kraan, Peter M. van der; Vervoort, Jacques; Zoelen, Everardus J.J. van; Piek, Ester

    2013-10-15

    This is the first study that comprehensively describes the effects of the platelet-derived growth factor (PDGF) isoforms C and D during in vitro expansion of human mesenchymal stem cells (hMSCs). Our results show that PDGFs can enhance proliferation of hMSCs without affecting their multipotency. It is of great value to culture and expand hMSCs in a safe and effective manner without losing their multipotency for manipulation and further development of cell-based therapies. Moreover, differential effects of PDGF isoforms have been observed on lineage-specific differentiation induced by BMP2 and Vitamin D3. Based on label-free LC-based quantitative proteomics approach we have furthermore identified specific pathways induced by PDGFs during the proliferation process, showing the importance of bioinformatics tools to study cell function. - Highlights: • PDGFs (C and D) significantly increased the number of multipotent undifferentiated hMSCs. • Enhanced proliferation did not impair the ability to undergo lineage-specific differentiation. • Proteomic analysis confirmed the overall signatures of the ‘intact’ cells.

  2. Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos.

    PubMed

    Milet, Cécile; Maczkowiak, Frédérique; Roche, Daniel D; Monsoro-Burq, Anne Hélène

    2013-04-02

    Defining which key factors control commitment of an embryonic lineage among a myriad of candidates is a longstanding challenge in developmental biology and an essential prerequisite for developing stem cell-based therapies. Commitment implies that the induced cells not only express early lineage markers but further undergo an autonomous differentiation into the lineage. The embryonic neural crest generates a highly diverse array of derivatives, including melanocytes, neurons, glia, cartilage, mesenchyme, and bone. A complex gene regulatory network has recently classified genes involved in the many steps of neural crest induction, specification, migration, and differentiation. However, which factor or combination of factors is sufficient to trigger full commitment of this multipotent lineage remains unknown. Here, we show that, in contrast to other potential combinations of candidate factors, coactivating transcription factors Pax3 and Zic1 not only initiate neural crest specification from various early embryonic lineages in Xenopus and chicken embryos but also trigger full neural crest determination. These two factors are sufficient to drive migration and differentiation of several neural crest derivatives in minimal culture conditions in vitro or ectopic locations in vivo. After transplantation, the induced cells migrate to and integrate into normal neural crest craniofacial target territories, indicating an efficient spatial recognition in vivo. Thus, Pax3 and Zic1 cooperate and execute a transcriptional switch sufficient to activate full multipotent neural crest development and differentiation.

  3. Comparative aspects of adult neural stem cell activity in vertebrates.

    PubMed

    Grandel, Heiner; Brand, Michael

    2013-03-01

    At birth or after hatching from the egg, vertebrate brains still contain neural stem cells which reside in specialized niches. In some cases, these stem cells are deployed for further postnatal development of parts of the brain until the final structure is reached. In other cases, postnatal neurogenesis continues as constitutive neurogenesis into adulthood leading to a net increase of the number of neurons with age. Yet, in other cases, stem cells fuel neuronal turnover. An example is protracted development of the cerebellar granular layer in mammals and birds, where neurogenesis continues for a few weeks postnatally until the granular layer has reached its definitive size and stem cells are used up. Cerebellar growth also provides an example of continued neurogenesis during adulthood in teleosts. Again, it is the granular layer that grows as neurogenesis continues and no definite adult cerebellar size is reached. Neuronal turnover is most clearly seen in the telencephalon of male canaries, where projection neurons are replaced in nucleus high vocal centre each year before the start of a new mating season--circuitry reconstruction to achieve changes of the song repertoire in these birds? In this review, we describe these and other examples of adult neurogenesis in different vertebrate taxa. We also compare the structure of the stem cell niches to find common themes in their organization despite different functions adult neurogenesis serves in different species. Finally, we report on regeneration of the zebrafish telencephalon after injury to highlight similarities and differences of constitutive neurogenesis and neuronal regeneration.

  4. Axonal control of the adult neural stem cell niche.

    PubMed

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D; Tecott, Laurence H; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-04-03

    The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSCs) in the walls of the lateral ventricles of the adult brain. How the adult brain's neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C.

  5. Axonal Control of the Adult Neural Stem Cell Niche

    PubMed Central

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  6. Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system.

    PubMed

    Horie, Takeo; Shinki, Ryoko; Ogura, Yosuke; Kusakabe, Takehiro G; Satoh, Nori; Sasakura, Yasunori

    2011-01-27

    In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.

  7. In vivo cell tracking and quantification method in adult zebrafish

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Alt, Clemens; Li, Pulin; White, Richard M.; Zon, Leonard I.; Wei, Xunbin; Lin, Charles P.

    2012-03-01

    Zebrafish have become a powerful vertebrate model organism for drug discovery, cancer and stem cell research. A recently developed transparent adult zebrafish using double pigmentation mutant, called casper, provide unparalleled imaging power in in vivo longitudinal analysis of biological processes at an anatomic resolution not readily achievable in murine or other systems. In this paper we introduce an optical method for simultaneous visualization and cell quantification, which combines the laser scanning confocal microscopy (LSCM) and the in vivo flow cytometry (IVFC). The system is designed specifically for non-invasive tracking of both stationary and circulating cells in adult zebrafish casper, under physiological conditions in the same fish over time. The confocal imaging part in this system serves the dual purposes of imaging fish tissue microstructure and a 3D navigation tool to locate a suitable vessel for circulating cell counting. The multi-color, multi-channel instrument allows the detection of multiple cell populations or different tissues or organs simultaneously. We demonstrate initial testing of this novel instrument by imaging vasculature and tracking circulating cells in CD41: GFP/Gata1: DsRed transgenic casper fish whose thrombocytes/erythrocytes express the green and red fluorescent proteins. Circulating fluorescent cell incidents were recorded and counted repeatedly over time and in different types of vessels. Great application opportunities in cancer and stem cell researches are discussed.

  8. Novel Adult Stem Cells for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2012-09-01

    Circulation 103, 882–888 (2001). 52. Biernaskie, J. et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells...3). * indicates significant difference between indicated groups using Holm’s t- test . (P < 0.01). (l–s) Immunostaining of isolated sm-mHC − cells...and the tissue from which the cells were derived using student’s t- test (P < 0.05). † indicates significant difference between inferior vena cava and

  9. Haploidentical Stem Cell Transplantation in Adult Haematological Malignancies

    PubMed Central

    Parmesar, Kevon; Raj, Kavita

    2016-01-01

    Haematopoietic stem cell transplantation is a well-established treatment option for both hematological malignancies and nonmalignant conditions such as aplastic anemia and haemoglobinopathies. For those patients lacking a suitable matched sibling or matched unrelated donor, haploidentical donors are an alternative expedient donor pool. Historically, haploidentical transplantation led to high rates of graft rejection and GVHD. Strategies to circumvent these issues include T cell depletion and management of complications thereof or T replete transplants with GVHD prophylaxis. This review is an overview of these strategies and contemporaneous outcomes for hematological malignancies in adult haploidentical stem cell transplant recipients. PMID:27313619

  10. Wildtype adult stem cells, unlike tumor cells, are resistant to cellular damages in Drosophila.

    PubMed

    Ma, Meifang; Zhao, Hang; Zhao, Hanfei; Binari, Richard; Perrimon, Norbert; Li, Zhouhua

    2016-03-15

    Adult stem cells or residential progenitor cells are critical to maintain the structure and function of adult tissues (homeostasis) throughout the lifetime of an individual. Mis-regulation of stem cell proliferation and differentiation often leads to diseases including cancer, however, how wildtype adult stem cells and cancer cells respond to cellular damages remains unclear. We find that in the adult Drosophila midgut, intestinal stem cells (ISCs), unlike tumor intestinal cells, are resistant to various cellular damages. Tumor intestinal cells, unlike wildtype ISCs, are easily eliminated by apoptosis. Further, their proliferation is inhibited upon autophagy induction, and autophagy-mediated tumor inhibition is independent of caspase-dependent apoptosis. Interestingly, inhibition of tumorigenesis by autophagy is likely through the sequestration and degradation of mitochondria, as compromising mitochondria activity in these tumor models mimics the induction of autophagy and increasing the production of mitochondria alleviates the tumor-suppression capacity of autophagy. Together, these data demonstrate that wildtype adult stem cells and tumor cells show dramatic differences in sensitivity to cellular damages, thus providing potential therapeutic implications targeting tumorigenesis.

  11. Small molecule-based approaches to adult stem cell therapies.

    PubMed

    Lairson, Luke L; Lyssiotis, Costas A; Zhu, Shoutian; Schultz, Peter G

    2013-01-01

    There is considerable interest in the development of stem cell-based strategies for the treatment of a broad range of human diseases, including neurodegenerative, autoimmune, cardiovascular, and musculoskeletal diseases. To date, such regenerative approaches have focused largely on the development of cell transplantation therapies using cells derived from pluripotent embryonic stem cells (ESCs). Although there have been exciting preliminary reports describing the efficacy of ESC-derived replacement therapies, approaches involving ex vivo manipulated ESCs are hindered by issues of mutation, immune rejection, and ethical controversy. An alternative approach involves direct in vivo modulation or ex vivo expansion of endogenous adult stem cell populations using drug-like small molecules. Here we describe chemical approaches to the regulation of somatic stem cell biology that are yielding new biological insights and that may ultimately lead to innovative new medicines.

  12. Systemic Therapies for Metastatic Renal Cell Carcinoma in Older Adults

    PubMed Central

    Pal, Sumanta K.; Vanderwalde, Ari; Hurria, Arti; Figlin, Robert A.

    2016-01-01

    The introduction of targeted therapies has radically changed the treatment paradigm for metastatic renal cell carcinoma (mRCC). However, multiple clinical dilemmas have emerged. For instance, limited data are available to juxtapose the safety and efficacy profile of targeted therapies between older and younger adults. Herein, pivotal trials of vascular endothelial growth factor (VEGF)- and mammalian target of rapamycin (mTOR)-directed therapies are assessed in the context of their implications in treating older adults with mRCC. In general, subset analyses from these pivotal studies suggest similar efficacy of targeted therapies amongst older adults. Aging is accompanied by a multitude of physiological changes, as well as an increased prevalence of co-morbidities. The age-related toxicity profiles of targeted agents for mRCC are detailed to provide a framework for the risks and benefits of these therapies in older adults. Ultimately, tools such as the Comprehensive Geriatric Assessment (CGA) that account for physiological (as opposed to chronological) age may prove useful in the evaluation and treatment of older adults with mRCC. PMID:21812499

  13. Adult Tissue Sources for New β-cells

    PubMed Central

    Nichols, Robert J.; New, Connie; Annes, Justin P.

    2014-01-01

    The diabetes pandemic incurs extraordinary public health and financial costs that are projected to expand for the foreseeable future. Consequently, the development of definitive therapies for diabetes is a priority. Currently, a wide spectrum of therapeutic strategies, from implantable insulin-delivery devices to transplantation-based cell replacement therapy, to β-cell regeneration, focus on replacing the lost insulin-production capacity of diabetics. Among these, β-cell regeneration remains promising but heretofore unproven. Indeed, recent experimental work has uncovered surprising biology that underscores the potential therapeutic benefit of β-cell regeneration. These studies have elucidated a variety of sources for the endogenous production of new β-cells from existing cells. First, β-cells, long thought to be post-mitotic, have demonstrate potential for regenerative capacity. Second, the presence of pancreatic facultative endocrine progenitor cells has been established. Third, the malleability of cellular identity has availed the possibility of generating β-cells from other differentiated cell types. Here, we will review the exciting developments surrounding endogenous sources of β-cell production and consider the potential of realizing a regenerative therapy for diabetes from adult tissues. PMID:24345765

  14. Adult cutaneous hemangiomas are composed of nonreplicating endothelial cells.

    PubMed

    Tuder, R M; Young, R; Karasek, M; Bensch, K

    1987-12-01

    Thirty-four human "cherry" dermal hemangiomas were studied by electron microscopy, immunohistochemistry, and cell culture to assess the neoplastic nature of these lesions. Electron microscopy of nine hemangiomas revealed a pronounced thickening of the basement membrane (0.6 to 14 micron) in 93% of the total 158 vascular structures examined within the lesions. This increase was caused mainly by multiple layers of basal lamina, which were irregular in outline and frequently associated with pericytes. Basement membrane changes were present both in the periphery of the hemangiomas, as well as in the center of the lesions. Immature vessels could not be identified and mitoses were absent in all endothelial cells. Using an immunohistochemical marker (Ki67) specific for proliferating cells in G2 and S phases, positive staining was not found in the endothelial cells lining the hemangiomatous vessels, whereas basal epidermal keratinocytes in the same preparations and cultured microvascular endothelial cells expressed the antigen. Endothelial cells of nine hemangiomas did not stain with an activation-related antibody (E12) specific for endothelial cells. When endothelial cells from 14 hemangiomas were isolated and cultured under conditions that support the growth of normal human skin microvascular endothelial cells, the cells of hemangiomatous origin failed to grow. We conclude that the adult hemangiomas may not be true neoplasms, but a tissue overgrowth composed of mature vessels resembling dermal venules, lined by endothelial cells with virtually no turnover.

  15. FACS purification of immunolabeled cell types from adult rat brain.

    PubMed

    Guez-Barber, Danielle; Fanous, Sanya; Harvey, Brandon K; Zhang, Yongqing; Lehrmann, Elin; Becker, Kevin G; Picciotto, Marina R; Hope, Bruce T

    2012-01-15

    Molecular analysis of brain tissue is greatly complicated by having many different classes of neurons and glia interspersed throughout the brain. Fluorescence-activated cell sorting (FACS) has been used to purify selected cell types from brain tissue. However, its use has been limited to brain tissue from embryos or transgenic mice with promoter-driven reporter genes. To overcome these limitations, we developed a FACS procedure for dissociating intact cell bodies from adult wild-type rat brains and sorting them using commercially available antibodies against intracellular and extracellular proteins. As an example, we isolated neurons using a NeuN antibody and confirmed their identity using microarray and real time PCR of mRNA from the sorted cells. Our FACS procedure allows rapid, high-throughput, quantitative assays of molecular alterations in identified cell types with widespread applications in neuroscience.

  16. Beta Cell Regeneration in Adult Mice: Controversy Over the Involvement of Stem Cells.

    PubMed

    Yu, Ke; Fischbach, Shane; Xiao, Xiangwei

    2016-01-01

    Islet transplantation is an effective therapy for severe diabetes. Nevertheless, the short supply of donor pancreases constitutes a formidable obstacle to its extensive clinical application. This shortage heightens the need for alternative sources of insulin-producing beta cells. Since mature beta cells have a very slow proliferation rate, which further declines with age, great efforts have been made to identify beta cell progenitors in the adult pancreas. However, the question whether facultative beta cell progenitors indeed exist in the adult pancreas remains largely unresolved. In the current review, we discuss the problems in past studies and review the milestone studies and recent publications.

  17. Beta Cell Regeneration in Adult Mice: Controversy Over the Involvement of Stem Cells

    PubMed Central

    Yu, Ke; Fischbach, Shane; Xiao, Xiangwei

    2016-01-01

    Islet transplantation is an effective therapy for severe diabetes. Nevertheless, the short supply of donor pancreases constitutes a formidable obstacle to its extensive clinical application. This shortage heightens the need for alternative sources of insulin-producing beta cells. Since mature beta cells have a very slow proliferation rate, which further declines with age, great efforts have been made to identify beta cell progenitors in the adult pancreas. However, the question whether facultative beta cell progenitors indeed exist in the adult pancreas remains largely unresolved. In the current review, we discuss the problems in past studies and review the milestone studies and recent publications. PMID:25429702

  18. Ih without Kir in Adult Rat Retinal Ganglion Cells

    PubMed Central

    Lee, Sherwin C.; Ishida, Andrew T.

    2011-01-01

    Antisera directed against hyperpolarization-activated mixed-cation (“Ih”) and K+ (“Kir”) channels bind to some somata in the ganglion cell layer of rat and rabbit retina. Additionally, the termination of hyperpolarizing current injections can trigger spikes in some cat retinal ganglion cells, suggesting a rebound depolarization due to activation of Ih. However, patch-clamp studies have reported that rat ganglion cells lack inward rectification, or present an inwardly rectifying K+ current. We therefore tested whether hyperpolarization activates Ih in dissociated, adult rat retinal ganglion cell somata. We report here that while we found no inward rectification in some cells, and a Kir-like current in a few cells, hyperpolarization activated Ih in roughly 75% of the cells we recorded from in voltage clamp. We show that this current is blocked by Cs+ or ZD7288 and only slightly reduced by Ba2+, that the current amplitude and reversal potential are sensitive to extracellular Na+ and K+, and that we found no evidence of Kir in cells presenting Ih. In current clamp, injecting hyperpolarizing current induced a slowly relaxing membrane hyperpolarization that rebounded to a few action potentials when the hyperpolarizing current was stopped; both the membrane potential relaxation and rebound spikes were blocked by ZD7288. These results provide the first measurement of Ih in mammalian retinal ganglion cells, and indicate that the ion channels of rat retinal ganglion cells may vary in ways not expected from previous voltage and current recordings. PMID:17488978

  19. Isolated Rat Epididymal Basal Cells Share Common Properties with Adult Stem Cells1

    PubMed Central

    Mandon, Marion; Hermo, Louis; Cyr, Daniel G.

    2015-01-01

    There is little information on the function of epididymal basal cells. These cells secrete prostaglandins, can metabolize radical oxygen species, and have apical projections that are components of the blood-epididymis barrier. The objective of this study was to develop a reproducible protocol to isolate rat epididymal basal cells and to characterize their function by gene expression profiling. Integrin-alpha6 was used to isolate a highly purified population of basal cells. Microarray analysis indicated that expression levels of 552 genes were enriched in basal cells relative to other cell types. Among these genes, 45 were expressed at levels of 5-fold or greater. These highly expressed genes coded for proteins implicated in cell adhesion, cytoskeletal function, ion transport, cellular signaling, and epidermal function, and included proteases and antiproteases, signal transduction, and transcription factors. Several highly expressed genes have been reported in adult stem cells, suggesting that basal cells may represent an epididymal stem cell population. A basal cell culture was established that showed that these basal cells can differentiate in vitro from keratin (KRT) 5-positive cells to cells that express KRT8 and connexin 26, a marker of columnar cells. These data provide novel information on epididymal basal cell gene expression and suggest that these cells can act as adult stem cells. PMID:26400399

  20. The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells.

    PubMed

    Goulas, Spyros; Conder, Ryan; Knoblich, Juergen A

    2012-10-05

    The adult Drosophila midgut is maintained by intestinal stem cells (ISCs) that generate both self-renewing and differentiating daughter cells. How this asymmetry is generated is currently unclear. Here, we demonstrate that asymmetric ISC division is established by a unique combination of extracellular and intracellular polarity mechanisms. We show that Integrin-dependent adhesion to the basement membrane induces cell-intrinsic polarity and results in the asymmetric segregation of the Par proteins Par-3, Par-6, and aPKC into the apical daughter cell. Cell-specific knockdown and overexpression experiments suggest that increased activity of aPKC enhances Delta/Notch signaling in one of the two daughter cells to induce terminal differentiation. Perturbing this mechanism or altering the orientation of ISC division results in the formation of intestinal tumors. Our data indicate that mechanisms for intrinsically asymmetric cell division can be adapted to allow for the flexibility in lineage decisions that is required in adult stem cells.

  1. Amniotic Fluid Cells Are More Efficiently Reprogrammed to Pluripotency Than Adult Cells

    PubMed Central

    Galende, Elisa; Karakikes, Ioannis; Edelmann, Lisa; Desnick, Robert J.; Kerenyi, Thomas; Khoueiry, Georges; Lafferty, James; McGinn, Joseph T.; Brodman, Michael; Fuster, Valentin; Hajjar, Roger J.

    2010-01-01

    Abstract Recently, cultured human adult skin cells were reprogrammed to induced pluripotent stem (iPS) cells, which have characteristics similar to human embryonic stem (hES) cells. Patient-derived iPS cells offer genetic and immunologic advantages for cell and tissue replacement or engineering. The efficiency of generating human iPS cells has been very low; therefore an easily and efficiently reprogrammed cell type is highly desired. Here, we demonstrate that terminally differentiated human amniotic fluid (AF) skin cells provide an accessible source for efficiently generating abundant-induced pluripotent stem (AF-iPS) cells. By induction of pluripotency with the transcription factor quartet (OCT3/4, SOX2, KLF4, and c-MYC) the terminally differentiated, cultured AF skin cells formed iPS colonies approximately twice as fast and yielded nearly a two-hundred percent increase in number, compared to cultured adult skin cells. AF-iPS cells were identical to hES cells for morphological and growth characteristics, antigenic stem cell markers, stem cell gene expression, telomerase activity, in vitro and in vivo differentiation into the three germ layers and for their capacity to form embryoid bodies (EBs) and teratomas. Our findings provide a biological interesting conclusion that these fetal AF cells are more rapidly, easily, and efficiently reprogrammed to pluripotency than neonatal and adult cells. AF-iPS cells may have a “young,” more embryonic like epigenetic background, which may facilitate and accelerate pluripotency. The ability to efficiently and rapidly reprogram terminally differentiated AF skin cells and generate induced pluripotent stem cells provides an abundant iPS cell source for various basic studies and a potential for future patient-specific personalized therapies. PMID:20677926

  2. (Re)defining stem cells.

    PubMed

    Shostak, Stanley

    2006-03-01

    Stem-cell nomenclature is in a muddle! So-called stem cells may be self-renewing or emergent, oligopotent (uni- and multipotent) or pluri- and totipotent, cells with perpetual embryonic features or cells that have changed irreversibly. Ambiguity probably seeped into stem cells from common usage, flukes in biology's history beginning with Weismann's divide between germ and soma and Haeckel's biogenic law and ending with contemporary issues over the therapeutic efficacy of adult versus embryonic cells. Confusion centers on tissue dynamics, whether stem cells are properly members of emerging or steady-state populations. Clarity might yet be achieved by codifying differences between cells in emergent populations, including embryonic stem and embryonic germ (ES and EG) cells in tissue culture as opposed to self-renewing (SR) cells in steady-state populations.

  3. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.

    PubMed

    Grün, Dominic; Muraro, Mauro J; Boisset, Jean-Charles; Wiebrands, Kay; Lyubimova, Anna; Dharmadhikari, Gitanjali; van den Born, Maaike; van Es, Johan; Jansen, Erik; Clevers, Hans; de Koning, Eelco J P; van Oudenaarden, Alexander

    2016-08-04

    Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation.

  4. Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept.

    PubMed

    Boecker, Werner; Buerger, Horst

    2003-10-01

    Although experimental data clearly confirm the existence of self-renewing mammary stem cells, the characteristics of such progenitor cells have never been satisfactorily defined. Using a double immunofluorescence technique for simultaneous detection of the basal cytokeratin 5, the glandular cytokeratins 8/18 and the myoepithelial differentiation marker smooth muscle actin (SMA), we were able to demonstrate the presence of CK5+ cells in human adult breast epithelium. These cells have the potential to differentiate to either glandular (CK8/18+) or myoepithelial cells (SMA+) through intermediary cells (CK5+ and CK8/18+ or SMA+). We therefore proceeded on the assumption that the CK5+ cells are phenotypically and behaviourally progenitor (committed adult stem) cells of human breast epithelium. Furthermore, we furnish evidence that most of these progenitor cells are located in the luminal epithelium of the ductal lobular tree. Based on data obtained in extensive analyses of proliferative breast disease lesions, we have come to regard usual ductal hyperplasia as a progenitor cell-derived lesion, whereas most breast cancers seem to evolve from differentiated glandular cells. Double immunofluorescence experiments provide a new tool to characterize phenotypically progenitor (adult stem) cells and their progenies. This model has been shown to be of great value for a better understanding not only of normal tissue regeneration but also of proliferative breast disease. Furthermore, this model provides a new tool for unravelling further the regulatory mechanisms that govern normal and pathological cell growth.

  5. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair.

    PubMed

    Lu, Catherine P; Polak, Lisa; Rocha, Ana Sofia; Pasolli, H Amalia; Chen, Shann-Ching; Sharma, Neha; Blanpain, Cedric; Fuchs, Elaine

    2012-07-06

    Sweat glands are abundant in the body and essential for thermoregulation. Like mammary glands, they originate from epidermal progenitors. However, they display few signs of cellular turnover, and whether they have stem cells and tissue-regenerative capacity remains largely unexplored. Using lineage tracing, we here identify in sweat ducts multipotent progenitors that transition to unipotency after developing the sweat gland. In characterizing four adult stem cell populations of glandular skin, we show that they display distinct regenerative capabilities and remain unipotent when healing epidermal, myoepithelial-specific, and lumenal-specific injuries. We devise purification schemes and isolate and transcriptionally profile progenitors. Exploiting molecular differences between sweat and mammary glands, we show that only some progenitors regain multipotency to produce de novo ductal and glandular structures, but that these can retain their identity even within certain foreign microenvironments. Our findings provide insight into glandular stem cells and a framework for the further study of sweat gland biology.

  6. Stem cell sources for clinical islet transplantation in type 1 diabetes: embryonic and adult stem cells.

    PubMed

    Miszta-Lane, Helena; Mirbolooki, Mohammadreza; James Shapiro, A M; Lakey, Jonathan R T

    2006-01-01

    Lifelong immunosuppressive therapy and inadequate sources of transplantable islets have led the islet transplantation benefits to less than 0.5% of type 1 diabetics. Whereas the potential risk of infection by animal endogenous viruses limits the uses of islet xeno-transplantation, deriving islets from stem cells seems to be able to overcome the current problems of islet shortages and immune compatibility. Both embryonic (derived from the inner cell mass of blastocysts) and adult stem cells (derived from adult tissues) have shown controversial results in secreting insulin in vitro and normalizing hyperglycemia in vivo. ESCs research is thought to have much greater developmental potential than adult stem cells; however it is still in the basic research phase. Existing ESC lines are not believed to be identical or ideal for generating islets or beta-cells and additional ESC lines have to be established. Research with ESCs derived from humans is controversial because it requires the destruction of a human embryo and/or therapeutic cloning, which some believe is a slippery slope to reproductive cloning. On the other hand, adult stem cells are already in some degree specialized, recipients may receive their own stem cells. They are flexible but they have shown mixed degree of availability. Adult stem cells are not pluripotent. They may not exist for all organs. They are difficult to purify and they cannot be maintained well outside the body. In order to draw the future avenues in this field, existent discrepancies between the results need to be clarified. In this study, we will review the different aspects and challenges of using embryonic or adult stem cells in clinical islet transplantation for the treatment of type 1 diabetes.

  7. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking

    PubMed Central

    Ratajczak, M Z

    2015-01-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation. PMID:25486871

  8. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  9. The Conservation of the Germline Multipotency Program, from Sponges to Vertebrates: A Stepping Stone to Understanding the Somatic and Germline Origins

    PubMed Central

    Schenkelaars, Quentin; Gazave, Eve; Haguenauer, Anne; Rocher, Caroline; Ereskovsky, Alexander; Borchiellini, Carole

    2017-01-01

    The germline definition in metazoans was first based on few bilaterian models. As a result, gene function interpretations were often based on phenotypes observed in those models and led to the definition of a set of genes, considered as specific of the germline, named the “germline core”. However, some of these genes were shown to also be involved in somatic stem cells, thus leading to the notion of germline multipotency program (GMP). Because Porifera and Ctenophora are currently the best candidates to be the sister-group to all other animals, the comparative analysis of gene contents and functions between these phyla, Cnidaria and Bilateria is expected to provide clues on early animal evolution and on the links between somatic and germ lineages. Our present bioinformatic analyses at the metazoan scale show that a set of 18 GMP genes was already present in the last common ancestor of metazoans and indicate more precisely the evolution of some of them in the animal lineage. The expression patterns and levels of 11 of these genes in the homoscleromorph sponge Oscarella lobularis show that they are expressed throughout their life cycle, in pluri/multipotent progenitors, during gametogenesis, embryogenesis and during wound healing. This new study in a nonbilaterian species reinforces the hypothesis of an ancestral multipotency program. PMID:28082608

  10. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice

    PubMed Central

    Bucks, Stephanie A; Cox, Brandon C; Vlosich, Brittany A; Manning, James P; Nguyen, Tot B; Stone, Jennifer S

    2017-01-01

    Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury. DOI: http://dx.doi.org/10.7554/eLife.18128.001 PMID:28263708

  11. Immune Influence on Adult Neural Stem Cell Regulation and Function

    PubMed Central

    Carpentier, Pamela A.; Palmer, Theo D.

    2009-01-01

    Neural stem cells (NSCs) lie at the heart of central nervous system development and repair, and deficiency or dysregulation of NSCs or their progeny can have significant consequences at any stage of life. Immune signaling is emerging as one of the influential variables that define resident NSC behavior. Perturbations in local immune signaling accompany virtually every injury or disease state and signaling cascades that mediate immune activation, resolution, or chronic persistence influence resident stem and progenitor cells. Some aspects of immune signaling are beneficial, promoting intrinsic plasticity and cell replacement, while others appear to inhibit the very type of regenerative response that might restore or replace neural networks lost in injury or disease. Here we review known and speculative roles that immune signaling plays in the postnatal and adult brain, focusing on how environments encountered in disease or injury may influence the activity and fate of endogenous or transplanted NSCs. PMID:19840551

  12. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    PubMed

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-05-15

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.

  13. Optimizing Management of Patients with Adult T Cell Leukemia-Lymphoma

    PubMed Central

    Yared, Jean A.; Kimball, Amy S.

    2015-01-01

    Adult T cell leukemia-lymphoma is a rare disease with a high mortality rate, and is challenging for the clinician. Early allogeneic stem cell transplant can confer durable remission. As novel therapeutic agents become available to treat T cell malignancies, it is increasingly important that medical oncologists, hematologists, and hematopathologists recognize and accurately diagnose adult T cell leukemia-lymphoma. There is no uniform standard of treatment of adult T cell leukemia-lymphoma, and clinical trials remain critical to improving outcomes. Here we present one management approach based on the recent advances in treatment for adult T cell leukemia-lymphoma patients. PMID:26610571

  14. Evidence for a multipotent mammary progenitor with pregnancy-specific activity

    PubMed Central

    2013-01-01

    Introduction The mouse mammary gland provides a powerful model system for studying processes involved in epithelial tissue development. Although markers that enrich for mammary stem cells and progenitors have been identified, our understanding of the mammary developmental hierarchy remains incomplete. Methods We used the MMTV promoter linked to the reverse tetracycline transactivator to induce H2BGFP expression in the mouse mammary gland. Mammary epithelial cells (MECs) from virgin mice were sorted by flow cytometry for expression of the mammary stem cell/progenitor markers CD24 and CD29, and H2BGFP. Sorted populations were analyzed for in vivo repopulation ability, expression of mammary lineage markers, and differential gene expression. Results The reconstituting activity of CD24+/CD29+ cells in cleared fat pad transplantation assays was not distinguished in GFP+ compared to GFP- subpopulations. However, within the CD24+/CD29lo luminal progenitor-enriched population, H2BGFP+, but not H2BGFP-, MECs formed mammary structures in transplantation assays; moreover, this activity was dramatically enhanced in pregnant recipients. These outgrowths contained luminal and myoepithelial mammary lineages and produced milk, but lacked the capacity for serial transplantation. Transcriptional microarray analysis revealed that H2BGFP+/CD24+/CD29lo MECs are distinct from H2BGFP-/CD24+/CD29lo MECs and enriched for gene expression signatures with both the stem cell (CD24+/CD29+) and luminal progenitor (CD24+/CD29lo/CD61+) compartments. Conclusions We have identified a population of MECs containing pregnancy-activated multipotent progenitors that are present in the virgin mammary gland and contribute to the expansion of the mammary gland during pregnancy. PMID:23947835

  15. CHD7 cooperates with PBAF to control multipotent neural crest formation.

    PubMed

    Bajpai, Ruchi; Chen, Denise A; Rada-Iglesias, Alvaro; Zhang, Junmei; Xiong, Yiqin; Helms, Jill; Chang, Ching-Pin; Zhao, Yingming; Swigut, Tomek; Wysocka, Joanna

    2010-02-18

    Heterozygous mutations in the gene encoding the CHD (chromodomain helicase DNA-binding domain) member CHD7, an ATP-dependent chromatin remodeller homologous to the Drosophila trithorax-group protein Kismet, result in a complex constellation of congenital anomalies called CHARGE syndrome, which is a sporadic, autosomal dominant disorder characterized by malformations of the craniofacial structures, peripheral nervous system, ears, eyes and heart. Although it was postulated 25 years ago that CHARGE syndrome results from the abnormal development of the neural crest, this hypothesis remained untested. Here we show that, in both humans and Xenopus, CHD7 is essential for the formation of multipotent migratory neural crest (NC), a transient cell population that is ectodermal in origin but undergoes a major transcriptional reprogramming event to acquire a remarkably broad differentiation potential and ability to migrate throughout the body, giving rise to craniofacial bones and cartilages, the peripheral nervous system, pigmentation and cardiac structures. We demonstrate that CHD7 is essential for activation of the NC transcriptional circuitry, including Sox9, Twist and Slug. In Xenopus embryos, knockdown of Chd7 or overexpression of its catalytically inactive form recapitulates all major features of CHARGE syndrome. In human NC cells CHD7 associates with PBAF (polybromo- and BRG1-associated factor-containing complex) and both remodellers occupy a NC-specific distal SOX9 enhancer and a conserved genomic element located upstream of the TWIST1 gene. Consistently, during embryogenesis CHD7 and PBAF cooperate to promote NC gene expression and cell migration. Our work identifies an evolutionarily conserved role for CHD7 in orchestrating NC gene expression programs, provides insights into the synergistic control of distal elements by chromatin remodellers, illuminates the patho-embryology of CHARGE syndrome, and suggests a broader function for CHD7 in the regulation of cell

  16. Kras is required for adult hematopoiesis

    PubMed Central

    Damnernsawad, Alisa; Kong, Guangyao; Wen, Zhi; Liu, Yangang; Rajagopalan, Adhithi; You, Xiaona; Wang, Jinyong; Zhou, Yun; Ranheim, Erik A.; Luo, Hongbo R.; Chang, Qiang; Zhang, Jing

    2017-01-01

    Previous studies indicate that Kras is dispensable for fetal liver hematopoiesis, but its rolein adult hematopoiesis remains unclear. Here, we generated a Kras conditional knockout allele to address this question. Deletion of Kras in adult bone marrow is mediated by Vav-Cre or inducible Mx1-Cre. We find that loss of Kras leads to greatly reduced TPO signaling in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), while SCF-evoked ERK1/2 activation is not affected. The compromised TPO signaling is associated with reduced long term- and intermediate-term HSC compartments and a bias towards myeloid differentiation in MPPs. Although GM-CSF-evoked ERK1/2 activation is only moderately decreased in Kras−/− myeloid progenitors, it is blunted in neutrophils and neutrophil survival is significantly reduced in vitro. At 9–12 months old, Kras conditional knockout mice develop profound hematopoietic defects, including splenomegaly, an expanded neutrophil compartment, and reduced B cell number. In a serial transplantation assay, the reconstitution potential of Kras−/− bone marrow cells is greatly compromised, which is attributable to defects in the self-renewal of Kras−/− HSCs and defects in differentiated hematopietic cells. Our results demonstrate that Kras is a major regulator of TPO and GM-CSF signaling in specific populations of hematopoietic cells and its function is required for adult hematopoiesis. PMID:26972179

  17. T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation.

    PubMed

    Vago, Luca; Oliveira, Giacomo; Bondanza, Attilio; Noviello, Maddalena; Soldati, Corrado; Ghio, Domenico; Brigida, Immacolata; Greco, Raffaella; Lupo Stanghellini, Maria Teresa; Peccatori, Jacopo; Fracchia, Sergio; Del Fiacco, Matteo; Traversari, Catia; Aiuti, Alessandro; Del Maschio, Alessandro; Bordignon, Claudio; Ciceri, Fabio; Bonini, Chiara

    2012-08-30

    The genetic modification of T cells with a suicide gene grants a mechanism of control of adverse reactions, allowing safe infusion after partially incompatible hematopoietic stem cell transplantation (HSCT). In the TK007 clinical trial, 22 adults with hematologic malignancies experienced a rapid and sustained immune recovery after T cell-depleted HSCT and serial infusions of purified donor T cells expressing the HSV thymidine kinase suicide gene (TK+ cells). After a first wave of circulating TK+ cells, the majority of T cells supporting long-term immune reconstitution did not carry the suicide gene and displayed high numbers of naive lymphocytes, suggesting the thymus-dependent development of T cells, occurring only upon TK+ -cell engraftment. Accordingly, after the infusions, we documented an increase in circulating TCR excision circles and CD31+ recent thymic emigrants and a substantial expansion of the active thymic tissue as shown by chest tomography scans. Interestingly, a peak in the serum level of IL-7 was observed after each infusion of TK+ cells, anticipating the appearance of newly generated T cells. The results of the present study show that the infusion of genetically modified donor T cells after HSCT can drive the recovery of thymic activity in adults, leading to immune reconstitution.

  18. The potential origin of glioblastoma initiating cells

    PubMed Central

    Chesler, David A.; Berger, Mitchell S.; Quinones-Hinojosa, Alfredo

    2013-01-01

    Despite intensive clinical and laboratory research and effort, Glioblastoma remains the most common and invariably lethal primary cancer of the central nervous system. The identification of stem cell and lineage-restricted progenitor cell populations within the adult human brain in conjunction with the discovery of stem-like cells derived from gliomas which are themselves tumorigenic and have been shown to have properties of self-renewal and multipotency, has led to the hypothesis that this population of cells may represent glioma initiating cells. Extensive research characterizing the anatomic distribution and phenotype of neural stem cells in the adult brain, and the genetic underpinnings needed for malignant transformation may ultimately lead to the identification of the cellular origin for glioblastoma. Defining the cellular origin of this lethal disease may ultimately provide new therapeutic targets and modalities finally altering an otherwise bleak outcome for patients with glioblastoma. PMID:22202053

  19. The core planar cell polarity gene, Vangl2, directs adult corneal epithelial cell alignment and migration

    PubMed Central

    Findlay, Amy S.; Panzica, D. Alessio; Walczysko, Petr; Holt, Amy B.; Henderson, Deborah J.; West, John D.; Rajnicek, Ann M.

    2016-01-01

    This study shows that the core planar cell polarity (PCP) genes direct the aligned cell migration in the adult corneal epithelium, a stratified squamous epithelium on the outer surface of the vertebrate eye. Expression of multiple core PCP genes was demonstrated in the adult corneal epithelium. PCP components were manipulated genetically and pharmacologically in human and mouse corneal epithelial cells in vivo and in vitro. Knockdown of VANGL2 reduced the directional component of migration of human corneal epithelial (HCE) cells without affecting speed. It was shown that signalling through PCP mediators, dishevelled, dishevelled-associated activator of morphogenesis and Rho-associated protein kinase directs the alignment of HCE cells by affecting cytoskeletal reorganization. Cells in which VANGL2 was disrupted tended to misalign on grooved surfaces and migrate across, rather than parallel to the grooves. Adult corneal epithelial cells in which Vangl2 had been conditionally deleted showed a reduced rate of wound-healing migration. Conditional deletion of Vangl2 in the mouse corneal epithelium ablated the normal highly stereotyped patterns of centripetal cell migration in vivo from the periphery (limbus) to the centre of the cornea. Corneal opacity owing to chronic wounding is a major cause of degenerative blindness across the world, and this study shows that Vangl2 activity is required for directional corneal epithelial migration. PMID:27853583

  20. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis.

    PubMed

    Spassky, Nathalie; Merkle, Florian T; Flames, Nuria; Tramontin, Anthony D; García-Verdugo, José Manuel; Alvarez-Buylla, Arturo

    2005-01-05

    Ependymal cells on the walls of brain ventricles play essential roles in the transport of CSF and in brain homeostasis. It has been suggested that ependymal cells also function as stem cells. However, the proliferative capacity of mature ependymal cells remains controversial, and the developmental origin of these cells is not known. Using confocal or electron microscopy (EM) of adult mice that received bromodeoxyuridine (BrdU) or [3H]thymidine for several weeks, we found no evidence that ependymal cells proliferate. In contrast, ependymal cells were labeled by BrdU administration during embryonic development. The majority of them are born between embryonic day 14 (E14) and E16. Interestingly, we found that the maturation of ependymal cells and the formation of cilia occur significantly later, during the first postnatal week. We analyzed the early postnatal ventricular zone at the EM and found a subpopulation of radial glia in various stages of transformation into ependymal cells. These cells often had deuterosomes. To directly test whether radial glia give rise to ependymal cells, we used a Cre-lox recombination strategy to genetically tag radial glia in the neonatal brain and follow their progeny. We found that some radial glia in the lateral ventricular wall transform to give rise to mature ependymal cells. This work identifies the time of birth and early stages in the maturation of ependymal cells and demonstrates that these cells are derived from radial glia. Our results indicate that ependymal cells are born in the embryonic and early postnatal brain and that they do not divide after differentiation. The postmitotic nature of ependymal cells strongly suggests that these cells do not function as neural stem cells in the adult.

  1. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    PubMed

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  2. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division.

    PubMed

    Rocheteau, Pierre; Gayraud-Morel, Barbara; Siegl-Cachedenier, Irene; Blasco, Maria A; Tajbakhsh, Shahragim

    2012-01-20

    Satellite cells are adult skeletal muscle stem cells that are quiescent and constitute a poorly defined heterogeneous population. Using transgenic Tg:Pax7-nGFP mice, we show that Pax7-nGFP(Hi) cells are less primed for commitment and have a lower metabolic status and delayed first mitosis compared to Pax7-nGFP(Lo) cells. Pax7-nGFP(Hi) can give rise to Pax7-nGFP(Lo) cells after serial transplantations. Proliferating Pax7-nGFP(Hi) cells exhibit lower metabolic activity, and the majority performs asymmetric DNA segregation during cell division, wherein daughter cells retaining template DNA strands express stem cell markers. Using chromosome orientation-fluorescence in situ hybridization, we demonstrate that all chromatids segregate asymmetrically, whereas Pax7-nGFP(Lo) cells perform random DNA segregation. Therefore, quiescent Pax7-nGFP(Hi) cells represent a reversible dormant stem cell state, and during muscle regeneration, Pax7-nGFP(Hi) cells generate distinct daughter cell fates by asymmetrically segregating template DNA strands to the stem cell. These findings provide major insights into the biology of stem cells that segregate DNA asymmetrically.

  3. Abcg2-Labeled Cells Contribute to Different Cell Populations in the Embryonic and Adult Heart.

    PubMed

    Doyle, Michelle J; Maher, Travis J; Li, Qinglu; Garry, Mary G; Sorrentino, Brian P; Martin, Cindy M

    2016-02-01

    ATP-binding cassette transporter subfamily G member 2 (Abcg2)-expressing cardiac-side population cells have been identified in the developing and adult heart, although the role they play in mammalian heart growth and regeneration remains unclear. In this study, we use genetic lineage tracing to follow the cell fate of Abcg2-expressing cells in the embryonic and adult heart. During cardiac embryogenesis, the Abcg2 lineage gives rise to multiple cardiovascular cell types, including cardiomyocytes, endothelial cells, and vascular smooth muscle cells. This capacity for Abcg2-expressing cells to contribute to cardiomyocytes decreases rapidly during the postnatal period. We further tested the role of the Abcg2 lineage following myocardial injury. One month following ischemia reperfusion injury, Abcg2-expressing cells contributed significantly to the endothelial cell lineage, however, there was no contribution to regenerated cardiomyocytes. Furthermore, consistent with previous results showing that Abcg2 plays an important cytoprotective role during oxidative stress, we show an increase in Abcg2 labeling of the vasculature, a decrease in the scar area, and a moderate improvement in cardiac function following myocardial injury. We have uncovered a difference in the capacity of Abcg2-expressing cells to generate the cardiovascular lineages during embryogenesis, postnatal growth, and cardiac regeneration.

  4. Pluripotency of adult stem cells derived from human and rat pancreas

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Birth, M.; Rohwedel, J.; Assmuth, K.; Goepel, A.; Wedel, T.

    Adult stem cells are undifferentiated cells found within fully developed tissues or organs of an adult individuum. Until recently, these cells have been considered to bear less self-renewal ability and differentiation potency compared to embryonic stem cells. In recent studies an undifferentiated cell type was found in primary cultures of isolated acini from exocrine pancreas termed pancreatic stellate cells. Here we show that pancreatic stellate-like cells have the capacity of extended self-renewal and are able to differentiate spontaneously into cell types of all three germ layers expressing markers for smooth muscle cells, neurons, glial cells, epithelial cells, chondrocytes and secretory cells (insulin, amylase). Differentiation and subsequent formation of three-dimensional cellular aggregates (organoid bodies) were induced by merely culturing pancreatic stellate-like cells in hanging drops. These cells were developed into stable, long-term, in vitro cultures of both primary undifferentiated cell lines as well as organoid cultures. Thus, evidence is given that cell lineages of endodermal, mesodermal, and ectodermal origin arise spontaneously from a single adult undifferentiated cell type. Based on the present findings it is assumed that pancreatic stellate-like cells are a new class of lineage uncommitted pluripotent adult stem cells with a remarkable self-renewal ability and differentiation potency. The data emphasize the versatility of adult stem cells and may lead to a reappraisal of their use for the treatment of inherited disorders or acquired degenerative diseases.

  5. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    SciTech Connect

    Greene, Carol Ann Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  6. Visualization of adult stem cells within their niches using the Drosophila germline as a model system.

    PubMed

    König, Annekatrin; Shcherbata, Halyna R

    2013-01-01

    The germaria of the fruit fly Drosophila melanogaster present an excellent model to study germline stem cell-niche interactions. Two to three adult stem cells are surrounded by a number of somatic cells that form the niche. Here we describe how Drosophilae germaria can be dissected and specifically immuno-stained to allow for identification and analysis of both the adult stem cells and their somatic niche cells.

  7. Stem cells as promising therapeutic options for neurological disorders.

    PubMed

    Yoo, Jongman; Kim, Han-Soo; Hwang, Dong-Youn

    2013-04-01

    Due to the limitations of pharmacological and other current therapeutic strategies, stem cell therapies have emerged as promising options for treating many incurable neurologic diseases. A variety of stem cells including pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells) and multipotent adult stem cells (i.e., fetal brain tissue, neural stem cells, and mesenchymal stem cells from various sources) have been explored as therapeutic options for treating many neurologic diseases, and it is becoming obvious that each type of stem cell has pros and cons as a source for cell therapy. Wise selection of stem cells with regard to the nature and status of neurologic dysfunctions is required to achieve optimal therapeutic efficacy. To this aim, the stem cell-mediated therapeutic efforts on four major neurological diseases, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke, will be introduced, and current problems and future directions will be discussed.

  8. Molecular Pathology of Adult T-Cell Leukemia/Lymphoma.

    PubMed

    Ohshima, Koichi

    2015-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell neoplasm of highly pleomorphic lymphoid cells. ATLL is usually widely disseminated, and it is caused by human T-cell leukemia virus type 1 (HTLV-1). It is a disease with a long latency, and affected individuals are usually exposed to the virus very early in life. The cumulative incidence of ATLL is estimated to be 2.5% among HTLV-1 carriers. ATLL cells express CD2, CD3, CD5, CD4, and CD25, as well as CCR4 and FoxP3 of the regulatory T-cell marker. HTLV-1 is causally linked to ATLL, but infection alone is not sufficient to result in neoplastic transformation. A significant finding in this connection is that the Tax viral protein leads to transcriptional activation of many genes, while the HTLV-1 basic leucine zipper factor is thought to be important for T-cell proliferation and oncogenesis. Half of ATLL cases retain the ability to express HTLV-1 Tax, which is a target of HTLV-1-specific cytotoxic T lymphocytes (CTL). An increase in HTLV-1-specific CTL responses is observed in some asymptomatic HTLV-1 carriers. Although HTLV-1-specific CTL are also present in the peripheral blood of ATLL patients, they do not expand sufficiently. We investigated the clinicopathological features and analyzed the staining of Tax-specific CTL and FoxP3. Tax-specific CTL correlated inversely with FoxP3, an increase in the ratio of CD163+ tumor-associated macrophages was associated with worse clinical prognosis, and ATLL cell lines proliferated significantly following direct co-culture with M2 macrophages. Several clinical variants of ATLL have been identified: acute, lymphomatous, chronic, and smoldering. Oligo-array comparative genomic hybridization revealed that genomic loss of 9p21.3 was a significant characteristic of acute-type, but not of chronic-type ATLL. Furthermore, we found that genomic alteration of CD58, which is implicated in immune escape, is more frequently observed in acute than in chronic ATLL. Interestingly

  9. Comparison of proliferating cells between human adult and fetal eccrine sweat glands.

    PubMed

    Li, Hai-Hong; Fu, Xiao-Bing; Zhang, Lei; Zhou, Gang

    2008-04-01

    Studies of sweat glands had demonstrated that there were degenerating cells and proliferating cells in the eccrine sweat glands. To compare the differences in the proliferating cells between human adult and fetal eccrine sweat glands, immunostaining of proliferating-associated proliferating cell nuclear antigen (PCNA) and Ki67 nuclear antigen (Ki67) was performed, and the location and the percentage of the positive staining cells were analyzed. The results showed that a few cells of the secretory and ductal portion in both the adult and fetal eccrine sweat glands stained positive with Ki67 and PCNA. The labeling index of PCNA in adult eccrine sweat glands was 34.71 +/- 8.37%, while that in the fetal was 62.72 +/- 6.54%. The labeling index of PCNA in fetal eccrine sweat glands was higher than that in adult. Myoepithelial cells were negative staining with anti-PCNA antibody in adult eccrine sweat glands, while in the fetal a few myoepithelial cells were positive staining. Labeling index of Ki67 in adult eccrine sweat glands was similar to that in the fetal, ranging from 0.5 to 4.3%. Myoepithelial cells of the adult and fetal eccrine sweat glands both were negative staining with anti-Ki67 antibody. We concluded that the myoepithelial cells had proliferating ability only in fetal eccrine sweat glands, and that the proliferating ability of fetal eccrine sweat glands was stronger than that of the adult.

  10. [Immature-cell leukoses in the adult age].

    PubMed

    Fleischer, J; Morgenstern, D; Richter, W

    1976-04-01

    In form of a survey the author enters into selected questions of the etiopathogenesis, the pre-leucaemic phase, the epidemiology, the cytochemical subdivision, the clinic and therapy of undifferentiated cell leucaemia in adult age. The number of two-year sojourns in a hospital and other data are reported on the basis of an evaluation of the signature ledges of the clinical histories in the district Dresden. A study concerning the therapy carried out on 331 patients from six clinics of the GDR emphasizes the value of the polychemotherapy, in which cases according to the COAP- and ViDaP-scheme the results of the treatment are somewhat more unfavourable, compared with the results in the newest combinations of other authors.

  11. Sickle cell crisis in the adult: chest radiographic findings and comparison with pediatric sickle cell disease.

    PubMed Central

    Miller, J. A.; Hinrichs, C. R.

    2001-01-01

    With the advent of improved therapy, an increasing proportion of individuals suffering from sickle cell disease (SCD) are surviving into adulthood. In contrast to children, little has been documented concerning the typical radiographic findings in adults presenting with sickle cell crises (SCC). We describe the chest radiographic (CXR) manifestations of adults with SCD presenting in SSC, correlated to hemoglobin (Hb) values, and compare them to those of the pediatric sickle cell population. The chest radiographs of 66 consecutive adults presenting to our emergency department complaining of symptoms consistent with acute SCC were retrospectively reviewed over a 12-month period. The radiographic findings were correlated with admission Hb values and compared with those of 50 children with known SCD presenting with SCC. Chi square analysis revealed no significant difference between the cardiovascular and bony findings in the adults and in those of the pediatric controls (p > 0.08-p > 1.0). However, one important difference in the two cohorts was that upper lobe infiltrates occurred exclusively in the pediatric group (p = 0.06). There was a statistically significant (p < 0.05) difference in cardiovascular and skeletal abnormalities between adults with Hb above and below the mean (8.2 g/dL). The radiographic features of adults presenting in acute SCCs are similar to those of children. Although the chest radiograph is often normal, in decreasing frequency, cardiovascular abnormalities, pneumonia sparing the upper lobes, and aseptic osteonecrosis of the shoulders and spine are not uncommon. There is a significant relationship, however, between cardiovascular abnormalities and Hb levels. Images Figure 1 Figure 2 PMID:12653383

  12. Heterogeneity of Radial Glia-Like Cells in the Adult Hippocampus

    PubMed Central

    Gebara, Elias; Bonaguidi, Michael Anthony; Beckervordersandforth, Ruth; Sultan, Sébastien; Udry, Florian; Gijs, Pieter-Jan; Lie, Dieter Chichung; Ming, Guo-Li; Song, Hongjun; Toni, Nicolas

    2017-01-01

    Adult neurogenesis is tightly regulated by the neurogenic niche. Cellular contacts between niche cells and neural stem cells are hypothesized to regulate stem cell proliferation or lineage choice. However, the structure of adult neural stem cells and the contact they form with niche cells are poorly described. Here, we characterized the morphology of radial glia-like (RGL) cells, their molecular identity, proliferative activity, and fate determination in the adult mouse hippocampus. We found the coexistence of two morphotypes of cells with prototypical morphological characteristics of RGL stem cells: Type α cells, which represented 76% of all RGL cells, displayed a long primary process modestly branching into the molecular layer and type β cells, which represented 24% of all RGL cells, with a shorter radial process highly branching into the outer granule cell layer-inner molecular layer border. Stem cell markers were expressed in type α cells and coexpressed with astrocytic markers in type β cells. Consistently, in vivo lineage tracing indicated that type α cells can give rise to neurons, astrocytes, and type β cells, whereas type β cells do not proliferate. Our results reveal that the adult subgranular zone of the dentate gyrus harbors two functionally different RGL cells, which can be distinguished by simple morphological criteria, supporting a morphofunctional role of their thin cellular processes. Type β cells may represent an intermediate state in the transformation of type α, RGL stem cells, into astrocytes. PMID:26729510

  13. Heterogeneity of Radial Glia-Like Cells in the Adult Hippocampus.

    PubMed

    Gebara, Elias; Bonaguidi, Michael Anthony; Beckervordersandforth, Ruth; Sultan, Sébastien; Udry, Florian; Gijs, Pieter-Jan; Lie, Dieter Chichung; Ming, Guo-Li; Song, Hongjun; Toni, Nicolas

    2016-04-01

    Adult neurogenesis is tightly regulated by the neurogenic niche. Cellular contacts between niche cells and neural stem cells are hypothesized to regulate stem cell proliferation or lineage choice. However, the structure of adult neural stem cells and the contact they form with niche cells are poorly described. Here, we characterized the morphology of radial glia-like (RGL) cells, their molecular identity, proliferative activity, and fate determination in the adult mouse hippocampus. We found the coexistence of two morphotypes of cells with prototypical morphological characteristics of RGL stem cells: Type α cells, which represented 76% of all RGL cells, displayed a long primary process modestly branching into the molecular layer and type β cells, which represented 24% of all RGL cells, with a shorter radial process highly branching into the outer granule cell layer-inner molecular layer border. Stem cell markers were expressed in type α cells and coexpressed with astrocytic markers in type β cells. Consistently, in vivo lineage tracing indicated that type α cells can give rise to neurons, astrocytes, and type β cells, whereas type β cells do not proliferate. Our results reveal that the adult subgranular zone of the dentate gyrus harbors two functionally different RGL cells, which can be distinguished by simple morphological criteria, supporting a morphofunctional role of their thin cellular processes. Type β cells may represent an intermediate state in the transformation of type α, RGL stem cells, into astrocytes.

  14. The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues.

    PubMed

    Suszynska, Malwina; Zuba-Surma, Ewa K; Maj, Magdalena; Mierzejewska, Kasia; Ratajczak, Janina; Kucia, Magda; Ratajczak, Mariusz Z

    2014-04-01

    Evidence has accumulated that both murine and human adult tissues contain early-development stem cells with a broader differentiation potential than other adult monopotent stem cells. These cells, being pluripotent or multipotent, exist at different levels of specification and most likely represent overlapping populations of cells that, depending on the isolation strategy, ex vivo expansion protocol, and markers employed for their identification, have been given different names. In this review, we will discuss a population of very small embryonic-like stem cells (VSELs) in the context of other stem cells that express pluripotent/multipotent markers isolated from adult tissues as well as review the most current, validated working criteria on how to properly identify and isolate these very rare cells. VSELs have been successfully purified in several laboratories; however, a few have failed to isolate them, which has raised some unnecessary controversy in the field. Therefore, in this short review, we will address the most important reasons that some investigators have experienced problems in isolating these very rare cells and discuss some still unresolved challenges which should be overcome before these cells can be widely employed in the clinic.

  15. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance

    PubMed Central

    Cruz, Ivan A.; Kappedal, Ryan; Mackenzie, Scott M.; Hailey, Dale W.; Hoffman, Trevor L.; Schilling, Thomas F.; Raible, David W.

    2015-01-01

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity. PMID:25869855

  16. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    PubMed

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  17. Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes.

    PubMed

    Li, Xiaoheng; Wang, Zhao; Jiang, Zhenming; Guo, Jingjing; Zhang, Yuxi; Li, Chenhao; Chung, Jinyong; Folmer, Janet; Liu, June; Lian, Qingquan; Ge, Renshan; Zirkin, Barry R; Chen, Haolin

    2016-03-08

    Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry.

  18. Cell proliferation dynamics of somatic and germline tissues during zooidal life span in the colonial tunicate Botryllus primigenus.

    PubMed

    Kawamura, Kazuo; Tachibana, Miki; Sunanaga, Takeshi

    2008-07-01

    Botryllus primigenus is a colonial tunicate in which three successive generations develop synchronously. To identify proliferation centers and possible adult stem cells during asexual reproduction, somatic and germline cells were labeled with 5-bromo-2'-deoxyuridine (BrdU). In the youngest generation, multipotent epithelial cells exhibited an average labeling index (LI) of 30% 24 hr after BrdU injection. In the middle generation, the LI of organ rudiments decreased gradually and reached zero by the beginning of the eldest generation. Exceptionally, cells of specialized tissues such as the pharyngeal inner longitudinal vessel and the posterior end of the endostyle continued DNA synthesis and mitosis even in the eldest generation. Proliferating somatic and germline cells of younger generations expressed a Botryllus myc homolog (BpMyc), but adult tissues did not. This result strongly suggests that in B. primigenus undifferentiated progenitor cells are discernible from possible adult stem cells by the presence or absence of BpMyc.

  19. Hematopoietic Stem and Immune Cells in Chronic HIV Infection

    PubMed Central

    Zhang, Jielin; Crumpacker, Clyde

    2015-01-01

    Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure. PMID:26300920

  20. huJCAR014 CAR-T Cells in Treating Adult Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2017-03-31

    Adult B Acute Lymphoblastic Leukemia; CD19 Positive; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent B-Cell Non-Hodgkin Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Adult Acute Lymphoblastic Leukemia; Refractory B-Cell Non-Hodgkin Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Transformed Recurrent Non-Hodgkin Lymphoma

  1. Duct Cells Contribute to Regeneration of Endocrine and Acinar Cells Following Pancreatic Damage in Adult Mice

    PubMed Central

    CRISCIMANNA, ANGELA; SPEICHER, JULIE A.; HOUSHMAND, GOLBAHAR; SHIOTA, CHIYO; PRASADAN, KRISHNA; Ji, BAOAN; LOGSDON, CRAIG D.; GITTES, GEORGE K.; ESNI, FARZAD

    2015-01-01

    BACKGROUND & AIMS There have been conflicting results on a cell of origin in pancreatic regeneration. These discrepancies predominantly stem from lack of specific markers for the pancreatic precursors/stem cells, as well as differences in the targeted cells and severity of tissue injury in the experimental models so far proposed. We attempted to create a model that used diphtheria toxin receptor (DTR) to ablate specific cell populations, control the extent of injury, and avoid induction of the inflammatory response. METHODS To target specific types of pancreatic cells, we crossed R26DTR or R26dtR/lacZ mice with transgenic mice that express the Cre recombinase in the pancreas, under control of the Pdx1 (global pancreatic) or elastase (acinar-specific) promoters. RESULTS Exposure of PdxCre;R26DTR mice to diphtheria toxin resulted in extensive ablation of acinar and endocrine tissues but not ductal cells. Surviving cells within the ductal compartment contributed to regeneration of endocrine and acinar cells via recapitulation of the embryonic pancreatic developmental program. However, following selective ablation of acinar tissue in ElaCre-ERT2;R26DTR mice, regeneration likely occurred by reprogramming of ductal cells to acinar lineage. CONCLUSIONS In the pancreas of adult mice, epithelial cells within the ductal compartment contribute to regeneration of endocrine and acinar cells. The severity of injury determines the regenerative mechanisms and cell types that contribute to this process. PMID:21763240

  2. Pituitary Cell Turnover: From Adult Stem Cell Recruitment through Differentiation to Death.

    PubMed

    Garcia-Lavandeira, Montserrat; Diaz-Rodriguez, Esther; Bahar, Dilek; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Dieguez, Carlos; Alvarez, Clara V

    2015-01-01

    The recent demonstration using genetic tracing that in the adult pituitary stem cells are normally recruited from the niche in the marginal zone and differentiate into secretory cells in the adenopituitary has elegantly confirmed the proposal made when the pituitary stem cell niche was first discovered 5 years ago. Some of the early controversies have also been resolved. However, many questions remain, such as which are the markers that make a pituitary stem cell truly unique and the exact mechanisms that trigger recruitment from the niche. Little is known about the processes of commitment and differentiation once a stem cell has left the niche. Moreover, the acceptance that pituitary cells are renewed by stem cells implies the existence of regulated mechanisms of cell death in differentiated cells which must themselves be explained. The demonstration of an apoptotic pathway mediated by RET/caspase 3/Pit-1/Arf/p53 in normal somatotrophs is therefore an important step towards understanding how pituitary cell number is regulated. Further work will elucidate how the rates of the three processes of cell renewal, differentiation and apoptosis are balanced in tissue homeostasis after birth, but altered in pituitary hyperplasia in response to physiological stimuli such as puberty and lactation. Thus, we can aim to understand the mechanisms underlying human disease due to insufficient (hypopituitarism) or excess (pituitary tumor) cell numbers.

  3. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells.

    PubMed

    Kilcoyne, Karen R; Smith, Lee B; Atanassova, Nina; Macpherson, Sheila; McKinnell, Chris; van den Driesche, Sander; Jobling, Matthew S; Chambers, Thomas J G; De Gendt, Karel; Verhoeven, Guido; O'Hara, Laura; Platts, Sophie; Renato de Franca, Luiz; Lara, Nathália L M; Anderson, Richard A; Sharpe, Richard M

    2014-05-06

    Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.

  4. β-Cell neogenesis: experimental considerations in adult stem cell differentiation.

    PubMed

    Iskovich, Svetlana; Goldenberg-Cohen, Nitza; Stein, Jerry; Yaniv, Isaac; Farkas, Daniel L; Askenasy, Nadir

    2011-04-01

    The contribution of stem cells derived from adult tissues to the recovery of pancreatic islets from chemical injury is controversial. Analysis of nonhematopoietic differentiation of bone marrow-derived cells has yielded positive and negative results under different experimental conditions. Using the smallest subset of bone marrow cells lacking immuno-hematopoietic lineage markers, we have detected incorporation and conversion into insulin-producing cells. Donor cells identified by genomic markers silence green fluorescent protein (GFP) expression as a feature of differentiation, in parallel to expressing PDX-1 and proinsulin. Here we elaborate potential experimental difficulties that might result in false-negative results. The use of GFP as a reporter protein is suboptimal for differentiation experiments: (a) the bone marrow of GFP donors partially expresses the reporter protein, (b) differentiating bone marrow cells silence GFP expression, and (c) the endocrine pancreas is constitutively negative for GFP. In addition, design of the experiments, data analysis, and interpretation encounter numerous objective and subjective difficulties. Rigorous evaluation under optimized experimental conditions confirms the capacity of adult bone marrow-derived stem cells to adopt endocrine developmental traits, and demonstrates that GFP downregulation and silencing is a feature of differentiation.

  5. Immune physiology and oogenesis in fetal and adult humans, ovarian infertility, and totipotency of adult ovarian stem cells.

    PubMed

    Bukovsky, Antonin; Caudle, Michael R; Virant-Klun, Irma; Gupta, Satish K; Dominguez, Roberto; Svetlikova, Marta; Xu, Fei

    2009-03-01

    It is still widely believed that while oocytes in invertebrates and lower vertebrates are periodically renewed throughout life, oocytes in humans and higher vertebrates are formed only during the fetal/perinatal period. However, this dogma is questioned, and clashes with Darwinian evolutionary theory. Studies of oogenesis and follicular renewal from ovarian stem cells (OSCs) in adult human ovaries, and of the role of third-party bone marrow-derived cells (monocyte-derived tissue macrophages and T lymphocytes) could help provide a better understanding of the causes of ovarian infertility, its prevention, and potential treatment. We have reported differentiation of distinct cell types from OSC and the production of new eggs in cultures derived from premenopausal and postmenopausal human ovaries. OSCs are also capable of producing neural/neuronal cells in vitro after sequential stimulation with sex steroid combinations. Hence, OSC represent a unique type of totipotent adult stem cells, which could be utilized for autologous treatment of premature ovarian failure and also for autologous stem cell therapy of neurodegenerative diseases without use of allogeneic embryonic stem cells or somatic cell nuclear transfer. The in vivo application of sex steroid combinations may augment the proliferation of existing neural stem cells and their differentiation into mature neuronal cells (systemic regenerative therapy). Such treatment may also stimulate the transdifferentiation of autologous neural stem cell precursors into neural stem cells useful for topical or systemic regenerative treatment.

  6. Adult human liver mesenchymal progenitor cells express phenylalanine hydroxylase.

    PubMed

    Baruteau, Julien; Nyabi, Omar; Najimi, Mustapha; Fauvart, Maarten; Sokal, Etienne

    2014-09-01

    Phenylketonuria (PKU) is one of the most prevalent inherited metabolic diseases and is accountable for a severe encephalopathy by progressive intoxication of the brain by phenylalanine. This results from an ineffective L-phenylalanine hydroxylase enzyme (PAH) due to a mutated phenylalanine hydroxylase (PAH) gene. Neonatal screening programs allow an early dietetic treatment with restrictive phenylalanine intake. This diet prevents most of the neuropsychological disabilities but remains challenging for lifelong compliance. Adult-derived human liver progenitor cells (ADHLPC) are a pool of precursors that can differentiate into hepatocytes. We aim to study PAH expression and PAH activity in a differenciated ADHLPC. ADHLPC were isolated from human hepatocyte primary culture of two different donors and differenciated under specific culture conditions. We demonstrated the high expression of PAH and a large increase of PAH activity in differenciated LPC. The age of the donor, the cellular viability after liver digestion and cryopreservation affects PAH activity. ADHLPC might therefore be considered as a suitable source for cell therapy in PKU.

  7. Establishment and characterization of 10 cell lines derived from patients with adult T-cell leukemia.

    PubMed Central

    Hoshino, H; Esumi, H; Miwa, M; Shimoyama, M; Minato, K; Tobinai, K; Hirose, M; Watanabe, S; Inada, N; Kinoshita, K; Kamihira, S; Ichimaru, M; Sugimura, T

    1983-01-01

    By using human T-cell growth factor (TCGF), 10 cell lines were established from tissue samples of 10 patients with adult T-cell leukemia (ATL). Three cell lines were adapted to growth in medium lacking TCGF. The surface markers of all cell lines were characteristic of inducer/helper T cells, i.e., OKT3+, OKT4+, OKT6-, OKT8-, OKIa1+, and human Lyt2+ and Lyt3+, except that one cell line was OKT3-. The expression of the viral antigen was examined during establishment of 8 of the 10 cell lines. The viral antigen was not expressed in leukemic cells before cultivation. In 5 lines, the viral antigen was detected by immunofluorescent staining after a short period of cultivation. However, 3 cell lines, ATL-6A, ATL-9Y, and ATL-1K did not express the viral antigen during short-term culture: the ATL-6A and ATL-9Y cell lines became positive for the viral antigen after 5 and 2 months of cultivation, respectively; the ATL-1K cell line remained antigen-negative throughout a culture period of 13 months. Southern blot hybridization assay showed that all of the cell lines, including the viral antigen-negative ATL-1K cell line, contained the viral genome. Thus, the retrovirus was associated with all 10 cell lines established from ATL patients, but there was a heterogeneity in the expression time of the retroviral antigen in leukemic cells maintained in vitro. Our findings suggested that the expression of the viral antigen was not required for maintenance of the leukemic state in vivo and for growth of leukemic cells in vitro. Images PMID:6193528

  8. Generation of Multipotent Lung and Airway Progenitors from Mouse ESCs and Patient-Specific Cystic Fibrosis iPSCs

    PubMed Central

    Mou, Hongmei; Zhao, Rui; Sherwood, Richard; Ahfeldt, Tim; Lapey, Allen; Wain, John; Sicilian, Leonard; Izvolsky, Konstantin; Lau, Frank H.; Musunuru, Kiran; Cowan, Chad; Rajagopal, Jayaraj

    2012-01-01

    SUMMARY Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice. PMID:22482504

  9. Epimorphic regeneration approach to tissue replacement in adult mammals.

    PubMed

    Agrawal, Vineet; Johnson, Scott A; Reing, Janet; Zhang, Li; Tottey, Stephen; Wang, Gang; Hirschi, Karen K; Braunhut, Susan; Gudas, Lorraine J; Badylak, Stephen F

    2010-02-23

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor and stem cells to a site of injury. Bioactive molecules resulting from degradation of extracellular matrix (ECM) have been shown to recruit a variety of progenitor and stem cells in vitro in adult mammals. The ability to recruit multipotential cells to the site of injury by in vivo administration of chemotactic ECM degradation products in a mammalian model of digit amputation was investigated in the present study. Adult, 6- to 8-week-old C57/BL6 mice were subjected to midsecond phalanx amputation of the third digit of the right hind foot and either treated with chemotactic ECM degradation products or left untreated. At 14 days after amputation, mice treated with ECM degradation products showed an accumulation of heterogeneous cells that expressed markers of multipotency, including Sox2, Sca1, and Rex1 (Zfp42). Cells isolated from the site of amputation were capable of differentiation along neuroectodermal and mesodermal lineages, whereas cells isolated from control mice were capable of differentiation along only mesodermal lineages. The present findings demonstrate the recruitment of endogenous stem cells to a site of injury, and/or their generation/proliferation therein, in response to ECM degradation products.

  10. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type.

  11. Cell type-dependent Erk-Akt pathway crosstalk regulates the proliferation of fetal neural progenitor cells

    PubMed Central

    Rhim, Ji heon; Luo, Xiangjian; Gao, Dongbing; Xu, Xiaoyun; Zhou, Tieling; Li, Fuhai; Wang, Ping; Wong, Stephen T. C.; Xia, Xiaofeng

    2016-01-01

    Neural progenitor (NP) cells are the multipotent cells that produce neurons and glia in the central nervous system. Compounds regulating their proliferation are key to both understanding brain development and unlocking their potential in regenerative repair. We discuss a chemical screen that unexpectedly identified inhibitors of Erk signaling potently promoting the self-renewing divisions of fetal NP cells. This occurred through crosstalk between Erk and Akt signaling cascades. The crosstalk mechanism is cell type-specific, and is not detected in adult NP cells as well as brain tumor cells. The mechanism was also shown to be independent from the GSK-3 signaling pathway, which has been reported to be a major regulator of NP cell homeostasis and inhibitors to which were also identified in the screen. In vitro Erk inhibition led to the prolonged rapid expansion of fetal NP cells while retaining their multipotency. In vivo inhibitor administration significantly inhibited the neuronal differentiation, and resulted in increased proliferative progenitor cells in the ventricular/subventricular zone (VZ/SVZ) of the embryonic cortex. Our results uncovered a novel regulating pathway for NP cell proliferation in the developing brain. The discovery provides a pharmacological basis for in vitro expansion and in vivo manipulation of NP cells. PMID:27211495

  12. Mathematical modelling of adult hippocampal neurogenesis: effects of altered stem cell dynamics on cell counts and bromodeoxyuridine-labelled cells

    PubMed Central

    Ziebell, Frederik; Martin-Villalba, Ana; Marciniak-Czochra, Anna

    2014-01-01

    In the adult hippocampus, neurogenesis—the process of generating mature granule cells from adult neural stem cells—occurs throughout the entire lifetime. In order to investigate the involved regulatory mechanisms, knockout (KO) experiments, which modify the dynamic behaviour of this process, were conducted in the past. Evaluating these KOs is a non-trivial task owing to the complicated nature of the hippocampal neurogenic niche. In this study, we model neurogenesis as a multicompartmental system of ordinary differential equations based on experimental data. To analyse the results of KO experiments, we investigate how changes of cell properties, reflected by model parameters, influence the dynamics of cell counts and of the experimentally observed counts of cells labelled by the cell division marker bromodeoxyuridine (BrdU). We find that changing cell proliferation rates or the fraction of self-renewal, reflecting the balance between symmetric and asymmetric cell divisions, may result in multiple time phases in the response of the system, such as an initial increase in cell counts followed by a decrease. Furthermore, these phases may be qualitatively different in cells at different differentiation stages and even between mitotically labelled cells and all cells existing in the system. PMID:24598209

  13. Biology of the Sertoli Cell in the Fetal, Pubertal, and Adult Mammalian Testis.

    PubMed

    Chojnacka, Katarzyna; Zarzycka, Marta; Mruk, Dolores D

    A healthy man typically produces between 50 × 10(6) and 200 × 10(6) spermatozoa per day by spermatogenesis; in the absence of Sertoli cells in the male gonad, this individual would be infertile. In the adult testis, Sertoli cells are sustentacular cells that support germ cell development by secreting proteins and other important biomolecules that are essential for germ cell survival and maturation, establishing the blood-testis barrier, and facilitating spermatozoa detachment at spermiation. In the fetal testis, on the other hand, pre-Sertoli cells form the testis cords, the future seminiferous tubules. However, the role of pre-Sertoli cells in this process is much less clear than the function of Sertoli cells in the adult testis. Within this framework, we provide an overview of the biology of the fetal, pubertal, and adult Sertoli cell, highlighting relevant cell biology studies that have expanded our understanding of mammalian spermatogenesis.

  14. Adult peripheral blood mononuclear cells transdifferentiate in vitro and integrate into the retina in vivo.

    PubMed

    Liu, Qian; Guan, Liping; Huang, Bing; Li, Weihua; Su, Qiao; Yu, Minbin; Xu, Xiaoping; Luo, Ting; Lin, Shaochun; Sun, Xuerong; Chen, Mengfei; Chen, Xigu

    2011-06-01

    Adult peripheral blood-derived cells are able to differentiate into a variety of cell types, including nerve cells, liver-like cells and epithelial cells. However, their differentiation into retina-like cells is controversial. In the present study, transdifferentiation potential of human adult peripheral blood mononuclear cells into retina-like cells and integration into the retina of mice were investigated. Freshly isolated adult peripheral blood mononuclear cells were divided into two groups: cells in group I were cultured in neural stem cell medium, and cells in group II were exposed to conditioned medium from rat retinal tissue culture. After 5 days, several distinct cell morphologies were observed, including standard mononuclear, neurons with one or two axons and elongated glial-like cells. Immunohistochemical analysis of neural stem cell, neuron and retina cell markers demonstrated that cells in both groups were nestin-, MAP2 (microtubule-associated protein)- and GFAP (glial fibrillary acidic protein)-positive. Flow cytometry results suggested a significant increase in nestin-, MAP2- and CD16-positive cells in group I and nestin-, GFAP-, MAP2-, vimentin- and rhodopsin-positive cells in group II. To determine survival, migration and integration in vivo, cell suspensions (containing group I or group II cells) were injected into the vitreous or the peritoneum. Tissue specimens were obtained and immunostained 4 weeks after transplantation. We found that cells delivered by intravitreal injection integrated into the retina. Labelled cells were not detected in the retina of mice receiving differentiated cells by intraperitoneal injection, but cells (groups I and II) were detected in the liver and spleen. Our findings revealed that human adult peripheral blood mononuclear cells could be induced to transdifferentiate into neural precursor cells and retinal progenitor cells in vitro, and the differentiated peripheral blood mononuclear cells can migrate and integrate

  15. Stem cell therapy in treatment of different diseases.

    PubMed

    Larijani, Bagher; Esfahani, Ensieh Nasli; Amini, Peyvand; Nikbin, Behrouz; Alimoghaddam, Kamran; Amiri, Somayeh; Malekzadeh, Reza; Yazdi, Nika Mojahed; Ghodsi, Maryam; Dowlati, Yahya; Sahraian, Mohammad Ali; Ghavamzadeh, Ardeshir

    2012-01-01

    Stem cells are undifferentiated cells with the ability of proliferation, regeneration, conversion to differentiated cells and producing various tissues. Stem cells are divided into two categories of embryonic and adult. In another categorization stem cells are divided to Totipotent, Multipotent and Unipotent cells.So far usage of stem cells in treatment of various blood diseases has been studied (such as lymphoblastic leukemia, myeloid leukemia, thalassemia, multiple myeloma and cycle cell anemia). In this paper the goal is evaluation of cell therapy in treatment of Parkinson's disease, Amyotrophic lateral sclerosis, Alzheimer, Stroke, Spinal Cord Injury, Multiple Sclerosis, Radiation Induced Intestinal Injury, Inflammatory Bowel Disease, Liver Disease, Duchenne Muscular Dystrophy, Diabetes, Heart Disease, Bone Disease, Renal Disease, Chronic Wounds, Graft-Versus-Host Disease, Sepsis and Respiratory diseases. It should be mentioned that some disease that are the target of cell therapy are discussed in this article.

  16. Nuclear receptor regulation of stemness and stem cell differentiation

    PubMed Central

    Jeong, Yangsik

    2009-01-01

    Stem cells include a diverse number of toti-, pluri-, and multi-potent cells that play important roles in cellular genesis and differentiation, tissue development, and organogenesis. Genetic regulation involving various transcription factors results in the self-renewal and differentiation properties of stem cells. The nuclear receptor (NR) superfamily is composed of 48 ligand-activated transcription factors involved in diverse physiological functions such as metabolism, development, and reproduction. Increasing evidence shows that certain NRs function in regulating stemness or differentiation of embryonic stem (ES) cells and tissue-specific adult stem cells. Here, we review the role of the NR superfamily in various aspects of stem cell biology, including their regulation of stemness, forward- and trans-differentiation events; reprogramming of terminally differentiated cells; and interspecies differences. These studies provide insights into the therapeutic potential of the NR superfamily in stem cell therapy and in treating stem cell-associated diseases (e.g., cancer stem cell). PMID:19696553

  17. Characterization of membrane currents in dissociated adult rat pineal cells.

    PubMed Central

    Aguayo, L G; Weight, F F

    1988-01-01

    1. Membrane currents, particularly the outward components, were studied in pineal cells acutely dissociated from adult rats using the whole-cell variant of the patch-clamp technique. 2. In current clamp, outward constant current elicited a transient graded depolarizing response. A sustained membrane rectification developed within 20 ms; this phenomenon was reduced in cells internally dialysed with 120 mM-CsCl. 3. Study of the membrane current revealed the existence of a transient and a delayed outward current. These currents were virtually eliminated when the cell was internally dialysed with CsCl. 4. The delayed outward current, isolated from a holding potential of -50 mV, activated at potentials near -20 mV, reached a steady-state current amplitude within 60 ms and had little or no decay during steps up to 400 ms in duration. This component was reduced by 80% or more with the addition of 5 mM-TEA. 5. From -100 mV, the transient outward current reached a peak within 15 ms and decayed with a single-exponential time course. The mean decay time constant was 66 +/- 10 ms (at -33 mV) and it showed little voltage sensitivity. This current, which activated at potentials positive to -60 mV and displayed half-inactivation at -76 +/- 8 mV, was reduced by 50% with the addition of 5 mM-4-AP (4-amino-pyridine). 6. In the presence of external Ca2+, the current-voltage relationship for the delayed current did not display a region of negative-slope conductance (N-shape). Increasing the intracellular ionized Ca2+ concentration by varying the Ca-EGTA buffer ratio did not alter the dependence of the current on the membrane potential. 7. Block of outward currents with internal Cs+ revealed a small (less than 90 pA) inward Ca2+ current when the external Ca2+ concentration was increased to 10 mM. From a holding potential of -50 mV, it had a threshold at -30 mV and peaked at +5 mV. Evidence for an inward Na+ current was not obtained. 8. We conclude that acutely dissociated pineal cells

  18. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration

    SciTech Connect

    Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong

    2013-06-28

    Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful

  19. Very slow turnover of beta-cells in aged adult mice.

    PubMed

    Teta, Monica; Long, Simon Y; Wartschow, Lynn M; Rankin, Matthew M; Kushner, Jake A

    2005-09-01

    Although many signaling pathways have been shown to promote beta-cell growth, surprisingly little is known about the normal life cycle of preexisting beta-cells or the signaling pathways required for beta-cell survival. Adult beta-cells have been speculated to have a finite life span, with ongoing adult beta-cell replication throughout life to replace lost cells. However, little solid evidence supports this idea. To more accurately measure adult beta-cell turnover, we performed continuous long-term labeling of proliferating cells with the DNA precursor analog 5-bromo-2-deoxyuridine (BrdU) in 1-year-old mice. We show that beta-cells of aged adult mice have extremely low rates of replication, with minimal evidence of turnover. Although some pancreatic components acquired BrdU label in a linear fashion, only 1 in approximately 1,400 adult beta-cells were found to undergo replication per day. We conclude that adult beta-cells are very long lived.

  20. Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells.

    PubMed

    Gayraud-Morel, Barbara; Chrétien, Fabrice; Jory, Aurélie; Sambasivan, Ramkumar; Negroni, Elisa; Flamant, Patricia; Soubigou, Guillaume; Coppée, Jean-Yves; Di Santo, James; Cumano, Ana; Mouly, Vincent; Tajbakhsh, Shahragim

    2012-04-01

    Skeletal muscle stem cell fate in adult mice is regulated by crucial transcription factors, including the determination genes Myf5 and Myod. The precise role of Myf5 in regulating quiescent muscle stem cells has remained elusive. Here we show that most, but not all, quiescent satellite cells express Myf5 protein, but at varying levels, and that resident Myf5 heterozygous muscle stem cells are more primed for myogenic commitment compared with wild-type satellite cells. Paradoxically however, heterotypic transplantation of Myf5 heterozygous cells into regenerating muscles results in higher self-renewal capacity compared with wild-type stem cells, whereas myofibre regenerative capacity is not altered. By contrast, Pax7 haploinsufficiency does not show major modifications by transcriptome analysis. These observations provide a mechanism linking Myf5 levels to muscle stem cell heterogeneity and fate by exposing two distinct and opposing phenotypes associated with Myf5 haploinsufficiency. These findings have important implications for how stem cell fates can be modulated by crucial transcription factors while generating a pool of responsive heterogeneous cells.

  1. Role for protein geranylgeranylation in adult T-cell leukemia cell survival

    SciTech Connect

    Nonaka, Mizuho; Uota, Shin; Saitoh, Yasunori; Takahashi, Mayumi; Sugimoto, Haruyo; Amet, Tohti; Arai, Ayako; Miura, Osamu; Yamamoto, Naoki; Yamaoka, Shoji

    2009-01-15

    Adult T-cell leukemia (ATL) is a fatal lymphoproliferative disease that develops in human T-cell leukemia virus type I (HTLV-I)-infected individuals. Despite the accumulating knowledge of the molecular biology of HTLV-I-infected cells, effective therapeutic strategies remain to be established. Recent reports showed that the hydroxyl-3-methylglutaryl (HMG)-CoA reductase inhibitor statins have anti-proliferative and apoptotic effects on certain tumor cells through inhibition of protein prenylation. Here, we report that statins hinder the survival of ATL cells and induce apoptotic cell death. Inhibition of protein geranylgeranylation is responsible for these effects, since simultaneous treatment with isoprenoid precursors, geranylgeranyl pyrophosphate or farnesyl pyrophosphate, but not a cholesterol precursor squalene, restored the viability of ATL cells. Simvastatin inhibited geranylgeranylation of small GTPases Rab5B and Rac1 in ATL cells, and a geranylgeranyl transferase inhibitor GGTI-298 reduced ATL cell viability more efficiently than a farnesyl transferase inhibitor FTI-277. These results not only unveil an important role for protein geranylgeranylation in ATL cell survival, but also implicate therapeutic potentials of statins in the treatment of ATL.

  2. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells.

    PubMed

    Hiwarkar, Prashant; Qasim, Waseem; Ricciardelli, Ida; Gilmour, Kimberly; Quezada, Sergio; Saudemont, Aurore; Amrolia, Persis; Veys, Paul

    2015-12-24

    Unrelated cord blood transplantation (CBT) without in vivo T-cell depletion is increasingly used to treat high-risk hematologic malignancies. Following T-replete CBT, naïve CB T cells undergo rapid peripheral expansion with memory-effector differentiation. Emerging data suggest that unrelated CBT, particularly in the context of HLA mismatch and a T-replete graft, may reduce leukemic relapse. To study the role of CB T cells in mediating graft-versus-tumor responses and dissect the underlying immune mechanisms for this, we compared the ability of HLA-mismatched CB and adult peripheral blood (PB) T cells to eliminate Epstein-Barr virus (EBV)-driven human B-cell lymphoma in a xenogeneic NOD/SCID/IL2rg(null) mouse model. CB T cells mediated enhanced tumor rejection compared with equal numbers of PB T cells, leading to improved survival in the CB group (P < .0003). Comparison of CB T cells that were autologous vs allogeneic to the lymphoma demonstrated that this antitumor effect was mediated by alloreactive rather than EBV-specific T cells. Analysis of tumor-infiltrating lymphocytes demonstrated that CB T cells mediated this enhanced antitumor effect by rapid infiltration of the tumor with CCR7(+)CD8(+) T cells and prompt induction of cytotoxic CD8(+) and CD4(+) T-helper (Th1) T cells in the tumor microenvironment. In contrast, in the PB group, this antilymphoma effect is impaired because of delayed tumoral infiltration of PB T cells and a relative bias toward suppressive Th2 and T-regulatory cells. Our data suggest that, despite being naturally programmed toward tolerance, reconstituting T cells after unrelated T-replete CBT may provide superior Tc1-Th1 antitumor effects against high-risk hematologic malignancies.

  3. Induced pluripotent stem cells for regenerative medicine.

    PubMed

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  4. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    PubMed Central

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted. PMID:27721702

  5. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    PubMed

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  6. Transcriptional profiling of adult neural stem-like cells from the human brain.

    PubMed

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  7. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis.

    PubMed

    Tai, Mei-Hui; Chang, Chia-Cheng; Kiupel, Matti; Webster, Joshua D; Olson, L Karl; Trosko, James E

    2005-02-01

    The Oct3/4 gene, a POU family transcription factor, has been noted as being specifically expressed in embryonic stem cells and in tumor cells but not in cells of differentiated tissues. With the ability to isolate adult human stem cells it became possible to test for the expression of Oct3/4 gene in adult stem cells and to test the stem cell theory of carcinogenesis. Using antibodies and PCR primers we tested human breast, liver, pancreas, kidney, mesenchyme and gastric stem cells, the cancer cell lines HeLa and MCF-7 and human, dog and rat tumors for Oct4 expression. The results indicate that adult human stem cells, immortalized non-tumorigenic cells and tumor cells and cell lines, but not differentiated cells, express Oct4. Oct4 is expressed in a few cells found in the basal layer of human skin epidermis. The data demonstrate that adult stem cells maintain expression of Oct4, consistent with the stem cell hypothesis of carcinogenesis.

  8. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    SciTech Connect

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  9. Lymphatic Reprogramming of Adult Endothelial Stem Cells for a Cell-Based Therapy for Lymphedema in Breast Cancer Patients

    DTIC Science & Technology

    2008-09-01

    Therapy for Lymphedema inBreast Cancer Patients PRINCIPAL INVESTIGATOR: Young Kwon Hong, Ph.D. CONTRACTING ORGANIZATION...5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE Lymphatic Reprogramming of Adult Endothelial Stem Cells for a Cell-Based Therapy for Lymphedema in... lymphedema patients. The key significance of our proposal is to utilize the elusive circulating adult stem cells to avoid the ethical and immunological

  10. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution

    PubMed Central

    Spiewak, Jessica E.

    2014-01-01

    Summary Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage and mate choice and have played important roles in speciation. Here, we review recent studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns. PMID:25421288

  11. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution.

    PubMed

    Parichy, David M; Spiewak, Jessica E

    2015-01-01

    Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve-associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns.

  12. The longest telomeres: a general signature of adult stem cell compartments

    PubMed Central

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  13. Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors.

    PubMed

    Ling, H; Sylvestre, J-R; Jolicoeur, P

    2010-08-12

    Members of the Notch family are involved in the development of breast cancer in animal models and in humans. In young transgenic mice, expressing intracellular activated Notch1 (N1(IC)) in mammary cells, we found that CD24(+) CD29(high) progenitor cells had enhanced survival, and were expanded through a cyclin D1-dependent pathway. This expansion positively correlated with the later cyclin D1-dependent formation of basal-like ductal tumors. This expanded population exhibited abnormal differentiation skewed toward the basal cells, showed signs of pre-malignancy (low PTEN/p53 and high c-myc) and contained stem cells with impaired self-renewal in vivo, and more numerous multipotent, ductal-restricted progenitors. Our data suggest that N1(IC) can favor transformation of progenitor cells early in life through a cyclin D1-dependent pathway.

  14. ADVANCES IN THE USE OF STEM CELLS IN ORTHOPEDICS

    PubMed Central

    Cristante, Alexandre Fogaça; Narazaki, Douglas Kenji

    2015-01-01

    Primordial cells or stem cells are multipotent undifferentiated cells with the capacity to originate any type of cell in the organism. They may have their origins in the blastocyst and thus are classified as embryonic, or tissues developed in fetuses, newborns or adults and thus are known as somatic stem cells. Bone marrow is one of the main locations for isolating primordial cells, and there are two lineages: hematopoietic and mesenchymal progenitor cells. There are several uses for these undifferentiated cells in orthopedics, going from cartilaginous lesions in osteoarthrosis, osteochondritis dissecans and patellar chondromalacia, to bone lesions like in pseudarthrosis or bone losses, or nerve lesions like in spinal cord trauma. Studying stem cells is probably the most promising field of study of all within medicine, and this is shortly going to revolutionize all medical specialties (both clinical and surgical) and thus provide solutions for diseases that today are difficult to deal with. PMID:27027022

  15. Implications of mesenchymal stem cells in regenerative medicine.

    PubMed

    Kariminekoo, Saber; Movassaghpour, Aliakbar; Rahimzadeh, Amirbahman; Talebi, Mehdi; Shamsasenjan, Karim; Akbarzadeh, Abolfazl

    2016-05-01

    Mesenchymal stem cells (MSCs) are a population of multipotent progenitors which reside in bone marrow, fat, and some other tissues and can be isolated from various adult and fetal tissues. Self-renewal potential and multipotency are MSC's hallmarks. They have the capacity of proliferation and differentiation into a variety of cell lineages like osteoblasts, condrocytes, adipocytes, fibroblasts, cardiomyocytes. MSCs can be identified by expression of some surface molecules like CD73, CD90, CD105, and lack of hematopoietic specific markers including CD34, CD45, and HLA-DR. They are hopeful tools for regenerative medicine for repairing injured tissues. Many studies have focused on two significant features of MSC therapy: (I) systemically administered MSCs home to sites of ischemia or injury, and (II) MSCs can modulate T-cell-mediated immunological responses. MSCs express chemokine receptors and ligands involved in cells migration and homing process. MSCs induce immunomedulatory effects on the innate (dendritic cells, monocyte, natural killer cells, and neutrophils) and the adaptive immune system cells (T helper-1, cytotoxic T lymphocyte, and B lymphocyte) by secreting soluble factors like TGF-β, IL-10, IDO, PGE-2, sHLA-G5, or by cell-cell interaction. In this review, we discuss the main applications of mesenchymal stem in Regenerative Medicine and known mechanisms of homing and Immunomodulation of MSCs.

  16. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish.

    PubMed

    Berberoglu, Michael A; Gallagher, Thomas L; Morrow, Zachary T; Talbot, Jared C; Hromowyk, Kimberly J; Tenente, Inês M; Langenau, David M; Amacher, Sharon L

    2017-04-15

    Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4-5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite-like cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse.

  17. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications.

    PubMed

    Abou-Antoun, Tamara J; Hale, James S; Lathia, Justin D; Dombrowski, Stephen M

    2017-04-03

    Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.

  18. Roles of neural stem cells and adult neurogenesis in adolescent alcohol use disorders.

    PubMed

    Nixon, Kimberly; Morris, Stephanie A; Liput, Daniel J; Kelso, Matthew L

    2010-02-01

    This review discusses the contributions of a newly considered form of plasticity, the ongoing production of new neurons from neural stem cells, or adult neurogenesis, within the context of neuropathologies that occur with excessive alcohol intake in the adolescents. Neural stem cells and adult neurogenesis are now thought to contribute to the structural integrity of the hippocampus, a limbic system region involved in learning, memory, behavioral control, and mood. In adolescents with alcohol use disorders (AUDs), the hippocampus appears to be particularly vulnerable to the neurodegenerative effects of alcohol, but the role of neural stem cells and adult neurogenesis in alcoholic neuropathology has only recently been considered. This review encompasses a brief overview of neural stem cells and the processes involved in adult neurogenesis, how neural stem cells are affected by alcohol, and possible differences in the neurogenic niche between adults and adolescents. Specifically, what is known about developmental differences in adult neurogenesis between the adult and adolescent is gleaned from the literature, as well as how alcohol affects this process differently among the age groups. Finally, this review suggests differences that may exist in the neurogenic niche between adults and adolescents and how these differences may contribute to the susceptibility of the adolescent hippocampus to damage. However, many more studies are needed to discern whether these developmental differences contribute to the vulnerability of the adolescent to developing an AUD.

  19. Fetal PGC-1α Overexpression Programs Adult Pancreatic β-Cell Dysfunction

    PubMed Central

    Valtat, Bérengère; Riveline, Jean-Pierre; Zhang, Ping; Singh-Estivalet, Amrit; Armanet, Mathieu; Venteclef, Nicolas; Besseiche, Adrien; Kelly, Daniel P.; Tronche, François; Ferré, Pascal; Gautier, Jean-François; Bréant, Bernadette; Blondeau, Bertrand

    2013-01-01

    Adult β-cell dysfunction, a hallmark of type 2 diabetes, can be programmed by adverse fetal environment. We have shown that fetal glucocorticoids (GCs) participate in this programming through inhibition of β-cell development. Here we have investigated the molecular mechanisms underlying this regulation. We showed that GCs stimulate the expression of peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α), a coregulator of the GCs receptor (GR), and that the overexpression of PGC-1α represses genes important for β-cell development and function. More precisely, PGC-1α inhibited the expression of the key β-cell transcription factor pancreatic duodenal homeobox 1 (Pdx1). This repression required the GR and was mediated through binding of a GR/PGC-1α complex to the Pdx1 promoter. To explore PGC-1α function, we generated mice with inducible β-cell PGC-1α overexpression. Mice overexpressing PGC-1α exhibited at adult age impaired glucose tolerance associated with reduced insulin secretion, decreased β-cell mass, and β-cell hypotrophy. Interestingly, PGC-1α expression in fetal life only was sufficient to impair adult β-cell function whereas β-cell PGC-1α overexpression from adult age had no consequence on β-cell function. Altogether, our results demonstrate that the GR and PGC-1α participate in the fetal programming of adult β-cell function through inhibition of Pdx1 expression. PMID:23274887

  20. Analysis of gene expression in fetal and adult cells infected with rubella virus

    SciTech Connect

    Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.

    2008-01-05

    Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adult lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced

  1. Isolation and in vitro characterization of bovine amniotic fluid derived stem cells at different trimesters of pregnancy.

    PubMed

    Rossi, B; Merlo, B; Colleoni, S; Iacono, E; Tazzari, P L; Ricci, F; Lazzari, G; Galli, C

    2014-10-01

    Amniotic fluid (AF) is a source of multipotent mesenchymal stem cells (MSCs), very promising cells for tissue engineering in clinical application. The aim of this work was to isolate and characterize cells isolated from bovine AF as alternative sources of primitive multipotent stem cells in a species that could be a large-animal model for biomedical and biotechnology researches. Sa