Science.gov

Sample records for adult murine hematopoiesis

  1. Histone acetyltransferase activity of MOF is required for adult but not early fetal hematopoiesis in mice.

    PubMed

    Valerio, Daria G; Xu, Haiming; Eisold, Meghan E; Woolthuis, Carolien M; Pandita, Tej K; Armstrong, Scott A

    2017-01-05

    K(lysine) acetyltransferase 8 (KAT8, also known as MOF) mediates the acetylation of histone H4 at lysine 16 (H4K16ac) and is crucial for murine embryogenesis. Lysine acetyltransferases have been shown to regulate various stages of normal hematopoiesis. However, the function of MOF in hematopoietic stem cell (HSC) development has not yet been elucidated. We set out to study the role of MOF in general hematopoiesis by using a Vav1-cre-induced conditional murine Mof knockout system and found that MOF is critical for hematopoietic cell maintenance and HSC engraftment capacity in adult hematopoiesis. Rescue experiments with a MOF histone acetyltransferase domain mutant illustrated the requirement for MOF acetyltransferase activity in the clonogenic capacity of HSCs and progenitors. In stark contrast, fetal steady-state hematopoiesis at embryonic day (E) 14.5 was not affected by homozygous Mof deletion despite dramatic loss of global H4K16ac. Hematopoietic defects start manifesting in late gestation at E17.5. The discovery that MOF and its H4K16ac activity are required for adult but not early and midgestational hematopoiesis supports the notion that multiple chromatin regulators may be crucial for hematopoiesis at varying stages of development. MOF is therefore a developmental-stage-specific chromatin regulator found to be essential for adult but not early fetal hematopoiesis.

  2. Kras is required for adult hematopoiesis

    PubMed Central

    Damnernsawad, Alisa; Kong, Guangyao; Wen, Zhi; Liu, Yangang; Rajagopalan, Adhithi; You, Xiaona; Wang, Jinyong; Zhou, Yun; Ranheim, Erik A.; Luo, Hongbo R.; Chang, Qiang; Zhang, Jing

    2017-01-01

    Previous studies indicate that Kras is dispensable for fetal liver hematopoiesis, but its rolein adult hematopoiesis remains unclear. Here, we generated a Kras conditional knockout allele to address this question. Deletion of Kras in adult bone marrow is mediated by Vav-Cre or inducible Mx1-Cre. We find that loss of Kras leads to greatly reduced TPO signaling in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), while SCF-evoked ERK1/2 activation is not affected. The compromised TPO signaling is associated with reduced long term- and intermediate-term HSC compartments and a bias towards myeloid differentiation in MPPs. Although GM-CSF-evoked ERK1/2 activation is only moderately decreased in Kras−/− myeloid progenitors, it is blunted in neutrophils and neutrophil survival is significantly reduced in vitro. At 9–12 months old, Kras conditional knockout mice develop profound hematopoietic defects, including splenomegaly, an expanded neutrophil compartment, and reduced B cell number. In a serial transplantation assay, the reconstitution potential of Kras−/− bone marrow cells is greatly compromised, which is attributable to defects in the self-renewal of Kras−/− HSCs and defects in differentiated hematopietic cells. Our results demonstrate that Kras is a major regulator of TPO and GM-CSF signaling in specific populations of hematopoietic cells and its function is required for adult hematopoiesis. PMID:26972179

  3. Hematopoiesis

    PubMed Central

    Jagannathan-Bogdan, Madhumita; Zon, Leonard I.

    2013-01-01

    Hematopoiesis – the process by which blood cells are formed – has been studied intensely for over a century using a variety of model systems. There is conservation of the overall hematopoietic process between vertebrates, although some differences do exist. Over the last decade, the zebrafish has come to the forefront as a new model in hematopoiesis research, as it allows the use of large-scale genetics, chemical screens and transgenics. This comparative approach to understanding hematopoiesis has led to fundamental knowledge about the process and to the development of new therapies for disease. Here, we provide a broad overview of vertebrate hematopoiesis. We also highlight the benefits of using zebrafish as a model. PMID:23715539

  4. From Embryo to Adult: Hematopoiesis along the Drosophila Life Cycle.

    PubMed

    Ramond, Elodie; Meister, Marie; Lemaitre, Bruno

    2015-05-26

    Studies on Drosophila hematopoiesis have thus far focused on the embryonic and larval origin of hemocytes, the fly blood cells. In this issue of Developmental Cell, Ghosh et al. (2015) identify adult hematopoietic hubs containing progenitors that can differentiate into different blood cell types.

  5. Stable long-term blood formation by stem cells in murine steady-state hematopoiesis.

    PubMed

    Zavidij, Oksana; Ball, Claudia R; Herbst, Friederike; Oppel, Felix; Fessler, Sylvia; Schmidt, Manfred; von Kalle, Christof; Glimm, Hanno

    2012-09-01

    Hematopoietic stem cells (HSCs) generate all mature blood cells during the whole lifespan of an individual. However, the clonal contribution of individual HSC and progenitor cells in steady-state hematopoiesis is poorly understood. To investigate the activity of HSCs under steady-state conditions, murine HSC and progenitor cells were genetically marked in vivo by integrating lentiviral vectors (LVs) encoding green fluorescent protein (GFP). Hematopoietic contribution of individual marked clones was monitored by determination of lentiviral integration sites using highly sensitive linear amplification-mediated-polymerase chain reaction. A remarkably stable small proportion of hematopoietic cells expressed GFP in LV-injected animals for up to 24 months, indicating stable marking of murine steady-state hematopoiesis. Analysis of the lentiviral integration sites revealed that multiple hematopoietic clones with both myeloid and lymphoid differentiation potential contributed to long-term hematopoiesis. In contrast to intrafemoral vector injection, intravenous administration of LV preferentially targeted short-lived progenitor cells. Myelosuppressive treatment of mice prior to LV-injection did not affect the marking efficiency. Our study represents the first continuous analysis of clonal behavior of genetically marked hematopoietic cells in an unmanipulated system, providing evidence that multiple clones are simultaneously active in murine steady-state hematopoiesis.

  6. Functional significance of mononuclear phagocyte populations generated through adult hematopoiesis

    PubMed Central

    Gutknecht, Michael F.; Bouton, Amy H.

    2014-01-01

    Tissue homeostasis requires a complete repertoire of functional macrophages in peripheral tissues. Recent evidence indicates that many resident tissue macrophages are seeded during embryonic development and persist through adulthood as a consequence of localized proliferation. Mononuclear phagocytes are also produced during adult hematopoiesis; these cells are then recruited to sites throughout the body, where they function in tissue repair and remodeling, resolution of inflammation, maintenance of homeostasis, and disease progression. The focus of this review is on mononuclear phagocytes that comprise the nonresident monocyte/macrophage populations in the body. Key features of monocyte differentiation are presented, focusing primarily on the developmental hierarchy that is established through this process, the markers used to identify discrete cell populations, and novel, functional attributes of these cells. These features are then explored in the context of the tumor microenvironment, where mononuclear phagocytes exhibit extensive plasticity in phenotype and function. PMID:25225678

  7. AML1/Runx1 as a versatile regulator of hematopoiesis: regulation of its function and a role in adult hematopoiesis.

    PubMed

    Kurokawa, Mineo

    2006-08-01

    AML1/Runx1, originally identified as a gene located at the breakpoint of the t(8;21) translocation, encodes a transcription factor that is widely expressed in multiple hematopoietic lineages and that regulates the expression of a variety of hematopoietic genes. Numerous studies have shown that AML1 is a critical regulator of hematopoietic development. In addition, AML1 is a frequent target for chromosomal translocation in human leukemia. The activity of AML1 can be modulated by various types of posttranslational modification, including phosphorylation and acetylation. Phosphorylation by extracellular signal-regulated kinase (ERK) is one of the mechanisms that dictate whether AML1 acts as either a transcriptional repressor or an activator of gene expression. Recently, a physiological role for AML1 in adult hematopoiesis was revealed by conditional gene targeting in mice. Remarkably, adult hematopoietic progenitors are maintained even in the absence of AML1, in stark contrast to the total disruption of definitive hematopoiesis during embryogenesis. AML1 is, however, critical for megakaryopoiesis and plays an important role in T-cell and B-cell development in adult mice. Recent analyses engineered to recreate hematopoiesis in vitro revealed that the transcriptional activity of AML1 is closely related with the potential of AML1 to generate hematopoietic cells and support thymocyte development.

  8. The Corepressor Tle4 Is a Novel Regulator of Murine Hematopoiesis and Bone Development

    PubMed Central

    Chen, Xi; Wang, Jianfeng; Ding, Dacheng; Yamin, Rae’e; Sweetser, David A.

    2014-01-01

    Hematopoiesis is a complex process that relies on various cell types, signaling pathways, transcription factors and a specific niche. The integration of these various components is of critical importance to normal blood development, as deregulation of these may lead to bone marrow failure or malignancy. Tle4, a transcriptional corepressor, acts as a tumor suppressor gene in a subset of acute myeloid leukemia, yet little is known about its function in normal and malignant hematopoiesis or in mammalian development. We report here that Tle4 knockout mice are runted and die at around four weeks with defects in bone development and BM aplasia. By two weeks of age, Tle4 knockout mice exhibit leukocytopenia, B cell lymphopenia, and significant reductions in hematopoietic stem and progenitor cells. Tle4 deficient hematopoietic stem cells are intrinsically defective in B lymphopoiesis and exhaust upon stress, such as serial transplantation. In the absence of Tle4 there is a profound decrease in bone mineralization. In addition, Tle4 knockout stromal cells are defective at maintaining wild-type hematopoietic stem cell function in vitro. In summary, we illustrate a novel and essential role for Tle4 in the extrinsic and intrinsic regulation of hematopoiesis and in bone development. PMID:25153823

  9. Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis

    PubMed Central

    Liu, Fan; Cheng, Guoyan; Hamard, Pierre-Jacques; Greenblatt, Sarah; Wang, Lan; Man, Na; Perna, Fabiana; Xu, Haiming; Tadi, Madhavi; Luciani, Luisa; Nimer, Stephen D.

    2015-01-01

    Epigenetic regulators play critical roles in normal hematopoiesis, and the activity of these enzymes is frequently altered in hematopoietic cancers. The major type II protein arginine methyltransferase PRMT5 catalyzes the formation of symmetric dimethyl arginine and has been implicated in various cellular processes, including pluripotency and tumorigenesis. Here, we generated Prmt5 conditional KO mice to evaluate the contribution of PRMT5 to adult hematopoiesis. Loss of PRMT5 triggered an initial but transient expansion of hematopoietic stem cells (HSCs); however, Prmt5 deletion resulted in a concurrent loss of hematopoietic progenitor cells (HPCs), leading to fatal BM aplasia. PRMT5-specific effects on hematopoiesis were cell intrinsic and depended on PRMT5 methyltransferase activity. We found that PRMT5-deficient hematopoietic stem and progenitor cells exhibited severely impaired cytokine signaling as well as upregulation of p53 and expression of its downstream targets. Together, our results demonstrate that PRMT5 plays distinct roles in the behavior of HSCs compared with HPCs and is essential for the maintenance of adult hematopoietic cells. PMID:26258414

  10. Modulation of TGF-β signaling by endoglin in murine hemangioblast development and primitive hematopoiesis.

    PubMed

    Zhang, Liying; Magli, Alessandro; Catanese, Jacquelyn; Xu, Zhaohui; Kyba, Michael; Perlingeiro, Rita C R

    2011-07-07

    Endoglin (Eng), an accessory receptor for the transforming growth factor β (TGF-β) superfamily, is required for proper hemangioblast and primitive hematopoietic development. However the mechanism by which endoglin functions at this early developmental stage is currently unknown. Transcriptional analyses of differentiating eng(-/-) and eng(+/+) ES cells revealed that lack of endoglin leads to profound reductions in the levels of key hematopoietic regulators, including Scl, Lmo2, and Gata2. We also detected lower levels of phosphorylated Smad1 (pSmad1), a downstream target signaling molecule associated with the TGF-β pathway. Using doxycycline-inducible ES cell lines, we interrogated the TGF-β signaling pathway by expressing activated forms of ALK-1 and ALK-5, type I receptors for TGF-β. Our results indicate that ALK-1 signaling promotes hemangioblast development and hematopoiesis, as evidenced by colony assays, gene expression and FACS analyses, whereas signaling by ALK-5 leads to the opposite effect, inhibition of hemangioblast and hematopoietic development. In Eng(-/-) ES cells, ALK-1 rescued both the defective hemangioblast development, and primitive erythropoiesis, indicating that ALK-1 signaling can compensate for the absence of endoglin. We propose that endoglin regulates primitive hematopoiesis by modulating the activity of the Smad1/5 signaling pathway in early stages of development.

  11. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis

    PubMed Central

    Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón; Carmona, Rita

    2017-01-01

    Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system. PMID:28230720

  12. RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis

    PubMed Central

    Zhang, M; Zhu, X; Zhang, Y; Cai, Y; Chen, J; Sivaprakasam, S; Gurav, A; Pi, W; Makala, L; Wu, J; Pace, B; Tuan-Lo, D; Ganapathy, V; Singh, N; Li, H

    2015-01-01

    The Ufm1 conjugation system is a novel ubiquitin-like modification system, consisting of Ufm1, Uba5 (E1), Ufc1 (E2) and poorly characterized E3 ligase(s). RCAD/Ufl1 (also known as KIAA0776, NLBP and Maxer) was reported to function as a Ufm1 E3 ligase in ufmylation (Ufm1-mediated conjugation) of DDRGK1 and ASC1 proteins. It has also been implicated in estrogen receptor signaling, unfolded protein response (UPR) and neurodegeneration, yet its physiological function remains completely unknown. In this study, we report that RCAD/Ufl1 is essential for embryonic development, hematopoietic stem cell (HSC) survival and erythroid differentiation. Both germ-line and somatic deletion of RCAD/Ufl1 impaired hematopoietic development, resulting in severe anemia, cytopenia and ultimately animal death. Depletion of RCAD/Ufl1 caused elevated endoplasmic reticulum stress and evoked UPR in bone marrow cells. In addition, loss of RCAD/Ufl1 blocked autophagic degradation, increased mitochondrial mass and reactive oxygen species, and led to DNA damage response, p53 activation and enhanced cell death of HSCs. Collectively, our study provides the first genetic evidence for the indispensable role of RCAD/Ufl1 in murine hematopoiesis and development. The finding of RCAD/Ufl1 as a key regulator of cellular stress response sheds a light into the role of a novel protein network including RCAD/Ufl1 and its associated proteins in regulating cellular homeostasis. PMID:25952549

  13. Crustacean hematopoiesis.

    PubMed

    Söderhäll, Irene

    2016-05-01

    Crustacean hemocytes are important mediators of immune reactions, and the regulation of hemocyte homeostasis is of utmost importance for the health of these animals. This review discusses the current knowledge on the lineages, synthesis and differentiation of hemocytes in crustaceans. Hematopoietic tissues, their origins, and the regulation of hematopoiesis during molting, seasonal variation and infection are discussed. Furthermore, studies concerning the molecular regulation of hemocyte formation in crustaceans are also described, and the different lineages and their molecular markers are discussed and compared with several insect species. Signaling pathways and the regulation of hematopoiesis by transcription factors are typically conserved among these arthropods, whereas cytokines and growth factors are more variable and species specific. However, considering the great diversity among the crustaceans, one should be cautious in drawing general conclusions from studies of only a few species.

  14. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells

    PubMed Central

    Kabiri, Zahra; Numata, Akihiko; Kawasaki, Akira; Tenen, Daniel G.

    2015-01-01

    Wnt signaling controls early embryonic hematopoiesis and dysregulated β-catenin is implicated in leukemia. However, the role of Wnts and their source in adult hematopoiesis is still unclear, and is clinically important as upstream Wnt inhibitors enter clinical trials. We blocked Wnt secretion in hematopoietic lineages by targeting Porcn, a membrane-bound O-acyltransferase that is indispensable for the activity and secretion of all vertebrate Wnts. Surprisingly, deletion of Porcn in Rosa-CreERT2/PorcnDel, MX1-Cre/PorcnDel, and Vav-Cre/PorcnDel mice had no effects on proliferation, differentiation, or self-renewal of adult hematopoietic stem cells. Targeting Wnt secretion in the bone marrow niche by treatment with a PORCN inhibitor, C59, similarly had no effect on hematopoiesis. These results exclude a role for hematopoietic PORCN-dependent Wnts in adult hematopoiesis. Clinical use of upstream Wnt inhibitors is not likely to be limited by effects on hematopoiesis. PMID:26089398

  15. Cyclic Hematopoiesis: animal models

    SciTech Connect

    Jones, J.B.; Lange, R.D.

    1983-08-01

    The four existing animal models of cyclic hematopoiesis are briefly described. The unusual erythropoietin (Ep) responses of the W/Wv mouse, the Sl/Sld mouse, and cyclic hematopoietic dog are reviewed. The facts reviewed indicate that the bone marrow itself is capable of influencing regulatory events of hematopoiesis.

  16. Tachykinins and hematopoiesis.

    PubMed

    Liu, Katherine; Castillo, Marianne D; Murthy, Raghav G; Patel, Nitixa; Rameshwar, Pranela

    2007-10-01

    Originally discovered in the 1930s, tachykinins have been a subject of renewed interest. Antagonists to the tachykinin receptors have shown potential in the treatment of a variety of maladies including neurodegenerative disorders, heart disease, pain perception and malignancies. Tachykinins have been the subject of intense studies due to their impact on hematopoiesis that has significant effects on endothelial tissue and vascular conditions. Hematopoiesis relies on a relatively small subset of bone marrow-resident hematopoietic stem cells. This review discusses the network developed by cytokines and the tachykinins to regulate hematopoiesis. An understanding of tachykinin effect on normal hematopoietic functions and their involvement in hematological disorders could lead to new treatments for bone marrow disorders such as fibrosis, leukemia and anemia.

  17. Effects of Prenatal Irradiation on Fetal, Neonate, and Young Adult Murine Hemopoiesis

    DTIC Science & Technology

    1983-01-01

    mEffects of prenatal irradiation ,9t on fetal , neonate, and young < adult murine hemopoiesis S. R. Weinberg ,C:),x’--, ::- CTE L,: -’ A U U 6 19 8 4...4L/ 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED EFFECTS OF PRENATAL IRRADIATION ON FETAL , NEONATE, AND YOUNG ADULT MURINE HEMOPOIESIS 7...studied at four seleeted age pr)Ciods: (a) day 14.5 of gestation, (b) tieonate, (c) juvenile, and (d) 13 week-old adult. Fetal liver eellularity

  18. Lithium and hematopoiesis.

    PubMed Central

    Barr, R. D.; Galbraith, P. R.

    1983-01-01

    Some of lithium's effects on blood cell formation suggest that the element may be of value in treating hematologic disorders. Lithium enhances granulopoiesis and thereby induces neutrophilia. Two possible mechanisms of action are suggested: a direct action on the pluripotent stem cells, or an inhibition of the suppressor cells (thymus-dependent lymphocytes) that limit hematopoiesis. Lithium also inhibits erythropoiesis. Although most studies use concentrations at or above pharmacologic levels there is evidence that lithium plays a role in normal cell metabolism. PMID:6336655

  19. Insect immunology and hematopoiesis.

    PubMed

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.

  20. Differential expression of murine adult hemoglobins in early ontogeny

    SciTech Connect

    Wawrzyniak, C.J.; Lewis, S.E.; Popp, R.A.

    1985-01-01

    A hemoglobin mutation is described that permits study of the expression of the two adult ..beta..-globin genes throughout fetal and postnatal development. Mice with a mutation at the Hbb/sup s/, ..beta..-globin locus, were used to study the relative levels of ..beta..-s2major and ..beta..-sminor globins specified by the mutant Hbb/sup s2/ haplotype during development. At 11.5 days of gestation ..beta..-sminor comprised over 80% and ..beta..-s2major under 20% of the adult beta-globin. The relative level of ..beta..-sminor decreased through fetal development; at birth ..beta..-sminor represented 33.7% of the ..beta..-globin. The adult values of 71.0% ..beta..-s2major and 29.0% ..beta..-sminor globin are expressed in mice six days after birth. Because the two ..beta..-globin genes are expressed in mice of the Hbb/sup 2s/ haplotype, both the ..beta..-smajor and ..beta..-sminor genes must be expressed in mice of the Hbb/sup s/ haplotype. Expression of the ..beta..-sminor gene is elevated to 35.6% in Hbb/sup s2/ mice that have been bled repeatedly. Thus, the 5' ..beta..-s2major and 3' ..beta..-sminor genes of the Hbb/sup s2/ haplotype and, presumably the 5' ..beta..-smajor and 3' ..beta..-sminor genes of the Hbb/sup s/ haplotype, are regulated independently and are homologous to the 5' ..beta..-dmajor and 3' ..beta..-dminor genes of the Hbb/sup d/ haplotype. Mice of the Hbb/sup s2/ haplotype are better than mice of the Hbb/sup d/ haplotytpe for studying the mechanisms of hemoglobin switching because the Hbb/sup s2/ each of the three embryonic and two adult hemoglobins can be separated by electrophoresis. 17 refs., 3 figs.

  1. The essential role of GATA transcription factors in adult murine prostate

    PubMed Central

    Xiao, Lijuan; Feng, Qin; Zhang, Zheng; Wang, Fen; Lydon, John P.; Ittmann, Michael M.; Xin, Li; Mitsiades, Nicholas; He, Bin

    2016-01-01

    GATA transcription factors are essential in mammalian cell lineage determination and have a critical role in cancer development. In cultured prostate cancer cells, GATA2 coordinates with androgen receptor (AR) to regulate gene transcription. In the murine prostate, among six GATA members, GATA2 and GATA3 are expressed. Immunofluorescence staining revealed that both GATA factors predominantly localize in the nuclei of luminal epithelial cells. The pioneer factor FoxA1 is exclusively detected in the luminal cells, whereas AR is detected in both luminal and basal cells. Using genetic engineering, we generated prostate-specific GATA2 and GATA3 knockout (KO) mice. Ablation of single GATA gene had marginal effect on prostate morphology and AR target gene expression, likely due to their genetic compensation. Double KO mice exhibited PIN III to IV lesions, but decreased prostate to body weight ratio, altered AR target gene expression, and expansion of p63-positive basal cells. However, deletion of GATA2 and GATA3 did not reduce the mRNA or protein levels of AR or FoxA1, indicating that GATA factors are not required for AR or FoxA1 expression in adult prostate. Surprisingly, GATA2 and GATA3 exhibit minimal expression in the ventral prostatic (VP) lobe. In contrast, FoxA1 and AR expression levels in VP are at least as high as those in anterior prostatic (AP) and dorsal-lateral prostatic (DLP) lobes. Together, our results indicate that GATA2 and GATA3 are essential for adult murine prostate function and in vivo AR signaling, and the lack of the GATA factor expression in the VP suggests a fundamental difference between VP and other prostatic lobes. PMID:27374105

  2. Selective Interaction between Trf3 and Taf3 Required for Early Development and Hematopoiesis

    PubMed Central

    Hart, Daniel O.; Santra, Manas K.; Raha, Tamal; Green, Michael R.

    2010-01-01

    In zebrafish, TATA-box-binding protein (TBP)-related factor 3, Trf3, is required for early development and initiation of hematopoiesis, and functions by promoting expression of a single target gene, mespa. Recent studies have shown that in murine muscle cells, TRF3 interacts with the TBP-associated factor TAF3. Here we investigate the role of Taf3 in zebrafish embryogenesis. We find that like Trf3-depleted zebrafish embryos, Taf3-depleted embryos exhibit multiple developmental defects and fail to undergo hematopoiesis. Both Trf3 and Taf3 are selectively bound to the mespa promoter and are required for mespa expression. Significantly, Taf3 interacts with Trf3 but not Tbp, and a Trf3 mutant that disrupts this interaction fails to support mespa transcription, early development and hematopoiesis. Thus, a selective interaction between Trf3 and Taf3 is required for early zebrafish development and initiation of hematopoiesis. Finally, we provide evidence that TRF3 and TAF3 are also required for hematopoiesis initiation in the mouse. PMID:19777587

  3. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    SciTech Connect

    Weinberger, Florian Mehrkens, Dennis Starbatty, Jutta Nicol, Philipp Eschenhagen, Thomas

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  4. Crustacean hematopoiesis and the astakine cytokines.

    PubMed

    Lin, Xionghui; Söderhäll, Irene

    2011-06-16

    Major contributions to research in hematopoiesis in invertebrate animals have come from studies in the fruit fly, Drosophila melanogaster, and the freshwater crayfish, Pacifastacus leniusculus. These animals lack oxygen-carrying erythrocytes and blood cells of the lymphoid lineage, which participate in adaptive immune defense, thus making them suitable model animals to study the regulation of blood cells of the innate immune system. This review presents an overview of crustacean blood cell formation, the role of these cells in innate immunity, and how their synthesis is regulated by the astakine cytokines. Astakines are among the first invertebrate cytokines shown to be involved in hematopoiesis, and they can stimulate the proliferation, differentiation, and survival of hematopoietic tissue cells. The astakines and their vertebrate homologues, prokineticins, share similar functions in hematopoiesis; thus, studies of astakine-induced hematopoiesis in crustaceans may not only advance our understanding of the regulation of invertebrate hematopoiesis but may also provide new evolutionary perspectives about this process.

  5. Identification and enrichment of colony-forming cells from the adult murine pituitary

    SciTech Connect

    Lepore, D.A.; Roeszler, K.; Wagner, J.; Ross, S.A.; Bauer, K.; Thomas, P.Q. , E-Mail: paul.thomas@mcri.edu.au

    2005-08-01

    Stem and progenitor cells have been identified in many adult tissues including bone marrow, the central nervous system, and skin. While there is direct evidence to indicate the activity of a progenitor cell population in the pituitary gland, this putative subpopulation has not yet been identified. Herein we describe the isolation and characterization of a novel clonogenic cell type in the adult murine pituitary, which we have termed Pituitary Colony-Forming Cells (PCFCs). PCFCs constitute 0.2% of pituitary cells, and generate heterogeneous colonies from single cells. PCFCs exhibit variable proliferative potential, and may exceed 11 population doublings in 14 days. Enrichment of PCFCs to 61.5-fold with 100% recovery can be obtained through the active uptake of the fluorescent dipeptide, {beta}-Ala-Lys-N{epsilon}-AMCA. PCFCs are mostly contained within the large, agranular subpopulation of AMCA{sup +} cells, and constitute 28% of this fraction, corresponding to 140.5-fold enrichment. Interestingly, the AMCA{sup +} population contains rare cells that are GH{sup +} or PRL{sup +}. GH{sup +} cells were also identified in PCFC single cell colonies, suggesting that PCFCs have the potential to differentiate into GH{sup +} cells. Together, these data show that the pituitary contains a rare clonogenic population which may correspond to the somatotrope/lactotrope progenitors suggested by previous experiments.

  6. Alternatively activated macrophages determine repair of the infarcted adult murine heart

    PubMed Central

    Shiraishi, Manabu; Shintani, Yasunori; Shintani, Yusuke; Ishida, Hidekazu; Saba, Rie; Yamaguchi, Atsushi; Adachi, Hideo; Yashiro, Kenta

    2016-01-01

    Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1–/–), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1–/– mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1–/– mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI. PMID:27140396

  7. Stat5-deficient hematopoiesis is permissive for Myc-induced B-cell leukemogenesis.

    PubMed

    Wang, Zhengqi; Medrzycki, Magdalena; Bunting, Silvia T; Bunting, Kevin D

    2015-10-06

    Despite being an attractive molecular target for both lymphoid and myeloid leukemias characterized by activated tyrosine kinases, the molecular and physiological consequences of reduced signal transducer and activator of transcription-5 (Stat5) during leukemogenesis are not well known. Stat5 is a critical regulator of mouse hematopoietic stem cell (HSC) self-renewal and is essential for normal lymphocyte development. We report that pan-hematopoietic deletion in viable adult Vav1-Cre conditional knockout mice as well as Stat5ab(null/null) fetal liver transplant chimeras generated HSCs with reduced expression of quiescence regulating genes (Tie2, Mpl, Slamf1, Spi1, Cited2) and increased expression of B-cell development genes (Satb1, Dntt, Btla, Flk2). Using a classical murine B-cell acute lymphoblastic leukemia (B-ALL) model, we demonstrate that these HSCs were also poised to produce a burst of B-cell precursors upon expression of Bcl-2 combined with oncogenic Myc. This strong selective advantage for leukemic transformation in the background of Stat5 deficient hematopoiesis was permissive for faster initiation of Myc-induced transformation to B-ALL. However, once established, the B-ALL progression in secondary transplant recipients was Stat5-independent. Overall, these studies suggest that Stat5 can play multiple important roles that not only preserve the HSC compartment but can limit accumulation of potential pre-leukemic lymphoid populations.

  8. Long noncoding RNAs in hematopoiesis

    PubMed Central

    Zhang, Xu; Hu, Wenqian

    2016-01-01

    Mammalian development is under tight control to ensure precise gene expression. Recent studies reveal a new layer of regulation of gene expression mediated by long noncoding RNAs. These transcripts are longer than 200nt that do not have functional protein coding capacity. Interestingly, many of these long noncoding RNAs are expressed with high specificity in different types of cells, tissues, and developmental stages in mammals, suggesting that they may have functional roles in diverse biological processes. Here, we summarize recent findings of long noncoding RNAs in hematopoiesis, which is one of the best-characterized mammalian cell differentiation processes. Then we provide our own perspectives on future studies of long noncoding RNAs in this field. PMID:27508063

  9. The Proteome of Native Adult Müller Glial Cells From Murine Retina*

    PubMed Central

    Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca

    2016-01-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  10. Posterior mediastinal extramedullary hematopoiesis secondary to hypoxia

    PubMed Central

    Solazzo, A; D’Auria, V; Moccia, LG; Vatrella, A; Bocchino, M; Rea, G

    2016-01-01

    Two mediastinal masses were incidentally detected at high resolution computed tomography (HRCT) of a 72 year-old male patient, former smoker, affected by chronic obstructive pulmonary disease with worsening dyspnea and 2-year medical history of polycythemia secondary to hypoxia. Integration with a multidetector computed tomography (MDCT) scan after administration of intravenous injection contrast medium showed slightly inhomogeneous increase of enhancement of masses, suggesting in the first case potential malignancy. Diagnosis of extramedullary hematopoiesis was achieved by fine needle aspiration citology (FNAC). Extramedullary hematopoiesis must be considered in differential diagnosis in patients with medical history of polycythemia and severe hypoxia. PMID:27326388

  11. Posterior mediastinal extramedullary hematopoiesis secondary to hypoxia.

    PubMed

    Solazzo, A; D'Auria, V; Moccia, L G; Vatrella, A; Bocchino, M; Rea, G

    2016-05-01

    Two mediastinal masses were incidentally detected at high resolution computed tomography (HRCT) of a 72 year-old male patient, former smoker, affected by chronic obstructive pulmonary disease with worsening dyspnea and 2-year medical history of polycythemia secondary to hypoxia. Integration with a multidetector computed tomography (MDCT) scan after administration of intravenous injection contrast medium showed slightly inhomogeneous increase of enhancement of masses, suggesting in the first case potential malignancy. Diagnosis of extramedullary hematopoiesis was achieved by fine needle aspiration citology (FNAC). Extramedullary hematopoiesis must be considered in differential diagnosis in patients with medical history of polycythemia and severe hypoxia.

  12. The role of Smad signaling in hematopoiesis and translational hematology.

    PubMed

    Blank, U; Karlsson, S

    2011-09-01

    Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) of adult individuals and function to produce and regenerate the entire blood and immune system over the course of an individual's lifetime. Historically, HSCs are among the most thoroughly characterized tissue-specific stem cells. Despite this, the regulation of fate options, such as self-renewal and differentiation, has remained elusive, partly because of the expansive plethora of factors and signaling cues that govern HSC behavior in vivo. In the BM, HSCs are housed in specialized niches that dovetail the behavior of HSCs with the need of the organism. The Smad-signaling pathway, which operates downstream of the transforming growth factor-β (TGF-β) superfamily of ligands, regulates a diverse set of biological processes, including proliferation, differentiation and apoptosis, in many different organ systems. Much of the function of Smad signaling in hematopoiesis has remained nebulous due to early embryonic lethality of most knockout mouse models. However, recently new data have been uncovered, suggesting that the Smad-signaling circuitry is intimately linked to HSC regulation. In this review, we bring the Smad-signaling pathway into focus, chronicling key concepts and recent advances with respect to TGF-β-superfamily signaling in normal and leukemic hematopoiesis.

  13. Expression of Pitx2 in stromal cells is required for normal hematopoiesis.

    PubMed

    Kieusseian, Aurélie; Chagraoui, Jalila; Kerdudo, Cécile; Mangeot, Philippe-Emmanuel; Gage, Philip J; Navarro, Nicole; Izac, Brigitte; Uzan, Georges; Forget, Bernard G; Dubart-Kupperschmitt, Anne

    2006-01-15

    Although the expression of Pitx2, a bicoid family homeodomain transcription factor, is highly regulated during hematopoiesis, its function during this process was not documented; we thus studied hematopoiesis in Pitx2-null mice. We found that Pitx2(-/-) embryos display hypoplastic livers with reduced numbers of hematopoietic cells, but these cells had normal hematopoietic potential, as evidenced by colony-forming assays, immature progenitor cell assays, and long-term repopulation assays. Because the microenvironment is also crucial to the development of normal hematopoiesis, we established Pitx2(-/-) and Pitx2(+/+) stromas from fetal liver and studied their hematopoietic supportive capacity. We showed that the frequency of cobblestone area-forming cells was 4-fold decreased when using Pitx2(-/-) stromal cells compared with Pitx2(+/+) stromal cells, whatever the Pitx2 genotype of hematopoietic cells tested in this assay. This defect was rescued by expression of Pitx2 into Pitx2(-/-) fetal liver stromal cells, demonstrating a major and direct role of Pitx2 in the hematopoietic supportive capacity of fetal liver stroma. Finally, we showed a reduced capacity of MS5 stromal cells expressing Pitx2 RNAi to support human hematopoiesis. Altogether these data showed that Pitx2 has major functions in the hematopoietic supportive capacity of fetal liver and adult bone marrow stromal cells.

  14. Expression of Pitx2 in stromal cells is required for normal hematopoiesis

    PubMed Central

    Kieusseian, Aurélie; Chagraoui, Jalila; Kerdudo, Cécile; Mangeot, Philippe-Emmanuel; Gage, Philip J.; Navarro, Nicole; Izac, Brigitte; Uzan, Georges; Forget, Bernard G.; Dubart-Kupperschmitt, Anne

    2006-01-01

    Although the expression of Pitx2, a bicoid family homeodomain transcription factor, is highly regulated during hematopoiesis, its function during this process was not documented; we thus studied hematopoiesis in Pitx2-null mice. We found that Pitx2–/– embryos display hypoplastic livers with reduced numbers of hematopoietic cells, but these cells had normal hematopoietic potential, as evidenced by colony-forming assays, immature progenitor cell assays, and long-term repopulation assays. Because the microenvironment is also crucial to the development of normal hematopoiesis, we established Pitx2–/– and Pitx2+/+ stromas from fetal liver and studied their hematopoietic supportive capacity. We showed that the frequency of cobblestone area-forming cells was 4-fold decreased when using Pitx2–/– stromal cells compared with Pitx2+/+ stromal cells, whatever the Pitx2 genotype of hematopoietic cells tested in this assay. This defect was rescued by expression of Pitx2 into Pitx2–/– fetal liver stromal cells, demonstrating a major and direct role of Pitx2 in the hematopoietic supportive capacity of fetal liver stroma. Finally, we showed a reduced capacity of MS5 stromal cells expressing Pitx2 RNAi to support human hematopoiesis. Altogether these data showed that Pitx2 has major functions in the hematopoietic supportive capacity of fetal liver and adult bone marrow stromal cells. PMID:16195330

  15. Stochasticity and determinism in models of hematopoiesis.

    PubMed

    Kimmel, Marek

    2014-01-01

    This chapter represents a novel view of modeling in hematopoiesis, synthesizing both deterministic and stochastic approaches. Whereas the stochastic models work in situations where chance dominates, for example when the number of cells is small, or under random mutations, the deterministic models are more important for large-scale, normal hematopoiesis. New types of models are on the horizon. These models attempt to account for distributed environments such as hematopoietic niches and their impact on dynamics. Mixed effects of such structures and chance events are largely unknown and constitute both a challenge and promise for modeling. Our discussion is presented under the separate headings of deterministic and stochastic modeling; however, the connections between both are frequently mentioned. Four case studies are included to elucidate important examples. We also include a primer of deterministic and stochastic dynamics for the reader's use.

  16. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis.

    PubMed

    López-Hidalgo, Rosa; Ballestín, Raul; Vega, Jessica; Blasco-Ibáñez, José M; Crespo, Carlos; Gilabert-Juan, Javier; Nácher, Juan; Varea, Emilio

    2016-01-01

    Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5'BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5'BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice.

  17. Autosomal dominant cyclic hematopoiesis: Genetics, phenotype, and natural history

    SciTech Connect

    Palmer, S.E.; Stephens, K.; Dale, D.C.

    1994-09-01

    Autosomal dominant cyclic hematopoiesis (ADCH; cyclic neutropenia) is a rare disorder manifested by transient neutropenia that recurs every three weeks. To facilitate mapping the ADCH gene by genetic linkage analysis, we studied 9 ADCH families with 42 affected individuals. Pedigrees revealed AD inheritance with no evidence for decreased penetrance. Similar intra- and interfamilial variable expression was observed, with no evidence to support heterogeneity. At least 3 families displayed apparent new mutations. Many adults developed chronic neutropenia, while offspring always cycled during childhood. Children displayed recurrent oral ulcers, gingivitis, lymphadenopathy, fever, and skin and other infections with additional symptoms. Interestingly, there were no cases of neonatal infection. Some children required multiple hospitalizations for treatment. Four males under age 18 died of Clostridium sepsis following necrotizing enterocolitis; all had affected mothers. No other deaths due to ADCH were found; most had improvement of symptoms and infections as adults. Adults experienced increased tooth loss prior to age 30 (16 out of 27 adults, with 9 edentulous). No increase in myelodysplasia, malignancy, or congenital anomalies was observed. Recombinant G-CSF treatment resulted in dramatic improvement of symptoms and infections. The results suggest that ADCH is not a benign disorder, especially in childhood, and abdominal pain requires immediate evaluation. Diagnosis of ADCH requires serial blood counts in the proband and at least one CBC in relatives to exclude similar disorders. Genetic counseling requires specific histories as well as CBCs of each family member at risk to determine status regardless of symptom history, especially to assess apparent new mutations.

  18. Expression and localization of laminin 5, laminin 10, type IV collagen, and amelotin in adult murine gingiva.

    PubMed

    Sawada, Takashi; Yamazaki, Takaki; Shibayama, Kazuko; Kumazawa, Kaido; Yamaguchi, Yoko; Ohshima, Mitsuhiro

    2014-06-01

    The biochemical composition of the internal and external basal laminae in the junctional epithelium differs significantly, and the precise cellular origin of their respective molecules remains to be determined. In the present study, the expression and localization of three basement membrane-specific molecules-laminin 5 (γ2 chain), type IV collagen (α1 chain), and laminin 10 (α5 chain)-and one tooth-specific molecule, amelotin, was analyzed in adult murine gingiva by using in situ hybridization and immunohistochemistry. The results showed that the outermost cells in junctional epithelium facing the tooth enamel strongly expressed laminin 5 mRNA, supporting the immunohistochemical staining data. This suggests that laminin 5 is actively synthesized in junctional epithelial cells and that the products are incorporated into the internal basal lamina to maintain firm epithelial adhesion to the tooth enamel throughout life. Conversely, no amelotin mRNA signals were detected in the junctional epithelial cells, suggesting that the molecules localized on the internal basal lamina are mainly derived from maturation-stage ameloblasts. Weak and sporadic expression of type IV collagen in addition to laminin 10 in the gingiva indicates that these molecules undergo turnover less frequently in adult animals.

  19. Hematopoiesis on cellulose ester membranes (CEM). X. Effects of in vitro irradiation of stromal cells prior to application on CEM

    SciTech Connect

    Knospe, W.H.; Husseini, S.G.

    1986-11-01

    Cellulose ester membranes (CEM) were coated with stromal cells from murine bone or bone marrow irradiated in vitro with 1000, 2000, or 4000 rad and then implanted i.p. in CAF1 mice for periods of six and 12 months. CEM coated with stromal cells from bone showed excellent regeneration of bone and hematopoiesis after 1000 rad in vitro irradiation. After 2000 rad, hematopoietic and bone regeneration was reduced by about 50%, and after 4000 rad it was completely absent in CEM coated with stromal cells from bone. CEM coated with stromal cells from bone marrow showed no regeneration of hematopoiesis or bone after 1000, 2000, and 4000 rad in vitro irradiation and residence i.p. for six and 12 months. These results indicate that regeneration of the hematopoietic microenvironment is dependent upon living stromal cells. A difference in radiation sensitivity is demonstrated between stromal cells from bone and from bone marrow.

  20. Understanding leukemic hematopoiesis as a complex adaptive system

    PubMed Central

    Thomas, Xavier

    2015-01-01

    Normal and abnormal hematopoiesis is working as a complex adaptive system. From this perspective, the development and the behavior of hematopoietic cell lineages appear as a balance between normal and abnormal hematopoiesis in the setting of a functioning or malfunctioning microenvironment under the control of the immune system and the influence of hereditary and environmental events. PMID:26516407

  1. Understanding leukemic hematopoiesis as a complex adaptive system.

    PubMed

    Thomas, Xavier

    2015-10-26

    Normal and abnormal hematopoiesis is working as a complex adaptive system. From this perspective, the development and the behavior of hematopoietic cell lineages appear as a balance between normal and abnormal hematopoiesis in the setting of a functioning or malfunctioning microenvironment under the control of the immune system and the influence of hereditary and environmental events.

  2. Mutant U2AF1 Expression Alters Hematopoiesis and Pre-mRNA Splicing In Vivo

    PubMed Central

    Shirai, Cara Lunn; Ley, James N.; White, Brian S.; Kim, Sanghyun; Tibbitts, Justin; Shao, Jin; Ndonwi, Matthew; Wadugu, Brian; Duncavage, Eric J.; Okeyo-Owuor, Theresa; Liu, Tuoen; Griffith, Malachi; McGrath, Sean; Magrini, Vincent; Fulton, Robert S.; Fronick, Catrina; O’Laughlin, Michelle; Graubert, Timothy A.; Walter, Matthew J.

    2015-01-01

    SUMMARY Heterozygous somatic mutations in the spliceosome gene U2AF1 occur in ~11% of patients with myelodysplastic syndromes (MDS), the most common adult myeloid malignancy. It is unclear how these mutations contribute to disease. We examined in vivo hematopoietic consequences of the most common U2AF1 mutation using a doxycycline-inducible transgenic mouse model. Mice expressing mutant U2AF1(S34F) display altered hematopoiesis and changes in pre-mRNA splicing in hematopoietic progenitor cells by whole transcriptome analysis (RNA-seq). Integration with human RNA-seq datasets determined that common mutant U2AF1-induced splicing alterations are enriched in RNA processing genes, ribosomal genes, and recurrently-mutated MDS and acute myeloid leukemia-associated genes. These findings support the hypothesis that mutant U2AF1 alters downstream gene isoform expression, thereby contributing to abnormal hematopoiesis in MDS patients. PMID:25965570

  3. Regulation of haematopoietic stem cell proliferation by stimulatory factors produced by murine fetal and adult liver.

    PubMed Central

    Dawood, K A; Briscoe, C V; Thomas, D B; Riches, A C

    1990-01-01

    Haematopoietic stem cells in murine fetal liver are in a proliferative state unlike those in normal bone marrow which are quiescent. A regulatory activity is produced by cells in the fetal liver which will switch quiescent normal bone marrow haematopoietic stem cells into cell cycle in vitro. This regulator from Day 15 fetal liver cells is produced by adherent cells and by cells fractionated on a Percoll gradient in the 1.064 and 1.076 g per cm3 density bands but not in the 1.123 g per cm3 band. Colony-stimulating factor cannot be detected in the supernatants containing the stem cell regulatory activity. The stimulator can be detected in supernatants produced from cell suspensions of liver cells at Day 15 and Day 17 of gestation and 24 hours and 72 hours after birth. However by 1 week after birth the production of the stimulator decreases and is undetectable 3 and 10 weeks after birth. The total numbers of haematopoietic stem cells (CFU-S) in fetal liver decrease from Day 15 of gestation and only small numbers are present 1 week after birth. Thus the decline in the production of haematopoietic stem cell proliferation stimulator correlates with the decrease in haematopoietic stem cell numbers in the liver through gestation and after birth. PMID:2323992

  4. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis

    PubMed Central

    López-Hidalgo, Rosa; Ballestín, Raul; Vega, Jessica; Blasco-Ibáñez, José M.; Crespo, Carlos; Gilabert-Juan, Javier; Nácher, Juan; Varea, Emilio

    2016-01-01

    Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5′BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5′BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice

  5. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung.

    PubMed

    Lappalainen, Urpo; Whitsett, Jeffrey A; Wert, Susan E; Tichelaar, Jay W; Bry, Kristina

    2005-04-01

    The production of the inflammatory cytokine interleukin (IL)-1 is increased in lungs of patients with chronic obstructive pulmonary disease (COPD) or asthma. To characterize the in vivo actions of IL-1 in the lung, transgenic mice were generated in which human IL-1beta was expressed in the lung epithelium with a doxycycline-inducible system controlled by the rat Clara cell secretory protein (CCSP) promoter. Induction of IL-1beta expression in the lungs of adult mice caused pulmonary inflammation characterized by neutrophil and macrophage infiltrates. IL-1beta caused distal airspace enlargement, consistent with emphysema. IL-1beta caused disruption of elastin fibers in alveolar septa and fibrosis in airway walls and in the pleura. IL-1beta increased the thickness of conducting airways, enhanced mucin production, and caused lymphocytic aggregates in the airways. Decreased immunostaining for the winged helix transcription factor FOXA2 was associated with goblet cell hyperplasia in IL-1beta-expressing mice. The production of the neutrophil attractant CXC chemokines KC (CXCL1) and MIP-2 (CXCL2), and of matrix metalloproteases MMP-9 and MMP-12, was increased by IL-1beta. Chronic production of IL-1beta in respiratory epithelial cells of adult mice causes lung inflammation, enlargement of distal airspaces, mucus metaplasia, and airway fibrosis in the adult mouse.

  6. Epigenetics of hematopoiesis and hematological malignancies

    PubMed Central

    Hu, Deqing; Shilatifard, Ali

    2016-01-01

    Hematological malignancies comprise a diverse set of lymphoid and myeloid neoplasms in which normal hematopoiesis has gone awry and together account for ∼10% of all new cancer cases diagnosed in the United States in 2016. Recent intensive genomic sequencing of hematopoietic malignancies has identified recurrent mutations in genes that encode regulators of chromatin structure and function, highlighting the central role that aberrant epigenetic regulation plays in the pathogenesis of these neoplasms. Deciphering the molecular mechanisms for how alterations in epigenetic modifiers, specifically histone and DNA methylases and demethylases, drive hematopoietic cancer could provide new avenues for developing novel targeted epigenetic therapies for treating hematological malignancies. Just as past studies of blood cancers led to pioneering discoveries relevant to other cancers, determining the contribution of epigenetic modifiers in hematologic cancers could also have a broader impact on our understanding of the pathogenesis of solid tumors in which these factors are mutated. PMID:27798847

  7. Wnt Signaling Regulates Airway Epithelial Stem Cells in Adult Murine Submucosal Glands.

    PubMed

    Lynch, Thomas J; Anderson, Preston J; Xie, Weiliang; Crooke, Adrianne K; Liu, Xiaoming; Tyler, Scott R; Luo, Meihui; Kusner, David M; Zhang, Yulong; Neff, Traci; Burnette, Daniel C; Walters, Katherine S; Goodheart, Michael J; Parekh, Kalpaj R; Engelhardt, John F

    2016-06-24

    Wnt signaling is required for lineage commitment of glandular stem cells (SCs) during tracheal submucosal gland (SMG) morphogenesis from the surface airway epithelium (SAE). Whether similar Wnt-dependent processes coordinate SC expansion in adult SMGs following airway injury remains unknown. We found that two Wnt-reporters in mice (BAT-gal and TCF/Lef:H2B-GFP) are coexpressed in actively cycling SCs of primordial glandular placodes and in a small subset of adult SMG progenitor cells that enter the cell cycle 24 hours following airway injury. At homeostasis, these Wnt reporters showed nonoverlapping cellular patterns of expression in the SAE and SMGs. Following tracheal injury, proliferation was accompanied by dynamic changes in Wnt-reporter activity and the analysis of 56 Wnt-related signaling genes revealed unique temporal changes in expression within proximal (gland-containing) and distal (gland-free) portions of the trachea. Wnt stimulation in vivo and in vitro promoted epithelial proliferation in both SMGs and the SAE. Interestingly, slowly cycling nucleotide label-retaining cells (LRCs) of SMGs were spatially positioned near clusters of BAT-gal positive serous tubules. Isolation and culture of tet-inducible H2B-GFP LRCs demonstrated that SMG LRCs were more proliferative than SAE LRCs and culture expanded SMG-derived progenitor cells outcompeted SAE-derived progenitors in regeneration of tracheal xenograft epithelium using a clonal analysis competition assay. SMG-derived progenitors were also multipotent for cell types in the SAE and formed gland-like structures in xenografts. These studies demonstrate the importance of Wnt signals in modulating SC phenotypes within tracheal niches and provide new insight into phenotypic differences of SMG and SAE SCs. Stem Cells 2016.

  8. Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways.

    PubMed

    Gianotti, Ambra; Ferrera, Loretta; Philp, Amber R; Caci, Emanuela; Zegarra-Moran, Olga; Galietta, Luis J V; Flores, Carlos A

    2016-06-15

    Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice.

  9. Initiation of zebrafish hematopoiesis by the TATA-box-binding protein-related factor, Trf3

    PubMed Central

    Hart, Daniel O.; Raha, Tamal; Lawson, Nathan D.; Green, Michael R.

    2007-01-01

    TATA-box-binding protein (TBP)-related factor 3, TRF3 (also called TBP2), is a vertebrate-specific member of the TBP family that has a conserved C-terminal region and DNA binding domain virtually identical to that of TBP1. TRF3 is highly expressed during embryonic development, and studies in zebrafish and Xenopus have shown that TRF3 is required for normal embryogenesis2,3. Here we show that Trf3-depleted zebrafish embryos exhibit multiple developmental defects and, in particular, fail to undergo hematopoiesis. Expression profiling for Trf3-dependent genes identified mespa, which encodes a transcription factor whose murine orthologue is required for mesoderm specification4, and chromatin immunoprecipitation verified that Trf3 binds to the mespa promoter. Depletion of Mespa resulted in developmental and hematopoietic defects strikingly similar to those induced by Trf3 depletion. Injection of mespa mRNA restored normal development to a Trf3-depleted embryo, indicating mespa is the single Trf3 target gene required for zebrafish embryogenesis. Zebrafish embryos depleted of Trf3 or Mespa also failed to express cdx4, a caudal-related gene required for hematopoiesis. Mespa binds to the cdx4 promoter, and epistasis analysis revealed an ordered trf3-mespa-cdx4 pathway. Thus, in zebrafish commitment of mesoderm to the hematopoietic lineage occurs through a transcription factor pathway initiated by a TBP-related factor. PMID:18046332

  10. The controversial role of the Hedgehog pathway in normal and malignant hematopoiesis

    PubMed Central

    Mar, BG; Amakye, D; Aifantis, I; Buonamici, S

    2015-01-01

    Hedgehog (Hh) is a developmental signaling pathway in which Hh ligands bind Patched (Ptch), which relieves its inhibition of Smoothened (Smo), allowing the Gli family of transcription factors to translocate to the nucleus and activate Hh target genes. The role of Hh signaling in hematopoiesis is controversial and ill defined. Although some groups observed self-renewal defects with decreased replating and reduced efficiency of secondary murine transplants, other groups reported no hematopoietic phenotypes, which may be related to the timing of Hh abrogation. In malignant hematopoiesis, most attention has been focused on the role of Hh signaling in chronic myeloid leukemia (CML), considered by many to be a stem cell disorder that bears the constitutively active BCR-ABL tyrosine kinase. Despite the elimination of most leukemia cells through BCR-ABL inhibition, most patients remain PCR positive, suggesting that the putative CML stem cell may be resistant to kinase antagonism. Groups are now exploring the Hh pathway as an alternate pathway supporting CML stem cell survival. Knockdown or inhibition of Smo abrogates or delays the appearance of CML in several in vitro and in vivo models. These data have lead to clinical trials using BCR-ABL kinase and novel Smo inhibitors in combination. PMID:21660044

  11. Ultrafiltered pig leukocyte extract (IMUNOR) decreases nitric oxide formation and hematopoiesis-stimulating cytokine production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Hofer, Michal; Vacek, Antonín; Lojek, Antonín; Holá, Jirina; Streitová, Denisa

    2007-10-01

    A low-molecular-weight (<12 kDa) ultrafiltered pig leukocyte extract, IMUNOR, was tested in experiments in vitro on non-stimulated and lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages in order to assess modulation of nitric oxide (NO) production (measured indirectly as the concentration of nitrites), hematopoiesis-stimulating activity of the supernatant of the macrophage cells (ascertained by counting cell colonies growing from progenitor cells for granulocytes and macrophages (GM-CFC) in vitro), and the release of hematopoiesis-stimulating cytokines. No hematopoiesis-stimulating activity and cytokine or NO production were found in the supernatant of non-stimulated macrophages. It was found that IMUNOR does not influence this status. Supernatant of LPS-stimulated macrophages was characterized by hematopoiesis-stimulating activity, as well as by the presence of nitrites, interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). A key role in the hematopoiesis-stimulating activity of the supernatant of LPS-stimulated macrophages could be ascribed to G-CSF since the formation of the colonies could be abrogated nearly completely by monoclonal antibodies against G-CSF. IMUNOR was found to suppress all the mentioned manifestations of the LPS-activated macrophages. When considering these results together with those from our previous in vivo study revealing stimulatory effects of IMUNOR on radiation-suppressed hematopoiesis, a hypothesis may be formulated which postulates a homeostatic role of IMUNOR, consisting in stimulation of impaired immune and hematopoietic systems but also in cutting back the production of proinflammatory mediators in cases of overstimulation which threats with undesirable consequences.

  12. Modeling notch signaling in normal and neoplastic hematopoiesis: global gene expression profiling in response to activated notch expression.

    PubMed

    Ganapati, Uma; Tan, Hongying Tina; Lynch, Maureen; Dolezal, Milana; de Vos, Sven; Gasson, Judith C

    2007-08-01

    In normal hematopoiesis, proliferation is tightly linked to differentiation in ways that involve cell-cell interaction with stromal elements in the bone marrow stem cell niche. Numerous in vitro and in vivo studies strongly support a role for Notch signaling in the regulation of stem cell renewal and hematopoiesis. Not surprisingly, mutations in the Notch gene have been linked to a number of types of malignancies. To better define the function of Notch in both normal and neoplastic hematopoiesis, a tetracycline-inducible system regulating expression of a ligand-independent, constitutively active form of Notch1 was introduced into murine E14Tg2a embryonic stem cells. During coculture, OP9 stromal cells induce the embryonic stem cells to differentiate first to hemangioblasts and subsequently to hematopoietic stem cells. Our studies indicate that activation of Notch signaling in flk+ hemangioblasts dramatically reduces their survival and proliferative capacity and lowers the levels of hematopoietic stem cell markers CD34 and c-Kit and the myeloid marker CD11b. Global gene expression profiling of day 8 hematopoietic progenitors in the absence and presence of activated Notch yield candidate genes required for normal hematopoietic differentiation, as well as putative downstream targets of oncogenic forms of Notch including the noncanonical Wnts Wnt4 and 5A. Disclosure of potential conflicts of interest is found at the end of this article.

  13. Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis

    SciTech Connect

    Palmer, S.E. |; Dale, D.C.

    1996-12-30

    Cyclic hematopoiesis (CH, or cyclic neutropenia) is a rare disease manifested by transient severe neutropenia that recurs approximately every 21 days. The hematologic profile of families with the autosomal dominant form (ADCH) has not been well characterized, and it is unknown if the phenotype is distinct from the more common sporadic congenital or acquired forms of CH. We studied nine ADCH families whose children displayed typical CH blood patterns. Pedigrees confirmed dominant inheritance without evidence of heterogeneity or decreased penetrance; three pedigrees suggested new mutations. Families were Caucasian with exception of one with a Cherokee Native American founder. A wide spectrum of symptom severity, ranging from asymptomatic to life-threatening illness, was observed within families. The phenotype changed with age. Children displayed typical neutrophil cycles with symptoms of mucosal ulceration, lymphadenopathy, and infections. Adults often had fewer and milder symptoms, sometimes accompanied by mild chronic neutropenia without distinct cycles. While CH is commonly described as {open_quotes}benign{close_quotes}, four children in three of the nine families died of Clostridium or E. coli colitis, documenting the need for urgent evaluation of abdominal pain. Misdiagnosis with other neutropenias was common but can be avoided by serial blood counts in index cases. Genetic counseling requires specific histories and complete blood counts in relatives at risk to assess status regardless of symptoms, especially to determine individuals with new mutations. We propose diagnostic criteria for ADCH in affected children and adults. Recombinant human granulocyte colony-stimulating factor treatment resulted in dramatic improvement of neutropenia and morbidity. The differential diagnosis from other forms of familial neutropenia is reviewed. 45 refs., 4 figs., 1 tab.

  14. Hematopoiesis on cellulose ester membranes. XI. Induction of new bone and a hematopoietic microenvironment by matrix factors secreted by marrow stromal cells.

    PubMed

    Knospe, W H; Husseini, S G; Fried, W

    1989-07-01

    Cellulose ester membranes (CEM) were coated with stromal cells from bone marrow (BM) or bone and implanted intraperitoneally (IP) in CAF1 mice for intervals of 1 to 6 months. Previous studies indicated that matrix factors [glycoproteins (GPs), proteoglycans (PGs), and glycosaminoglycans (GAGs)] were secreted by the regenerating stromal cells and adsorbed by the CEM. After 1 to 6 months, the CEMs were removed, scraped free of adherent cells, and irradiated in vitro with 40 Gy. The scraped and irradiated CEMs were then reimplanted IP or subcutaneously (SC) for periods of 1 to 6 months in secondary syngeneic murine hosts. They were then removed for histologic study. CEMs reimplanted in SC sites developed bone and hematopoiesis as early as 1 month after implantation. Maximum hematopoiesis and bone formation was observed after 3 months. CEMs coated during the initial implantation with bone-derived stromal cells contained more bone and hematopoietic cells than did CEMs coated with marrow-derived stromal cells after SC implementation. Neither the CEMs coated with bone stromal cells nor those coated with marrow stromal cells developed new bone or trilineal hematopoiesis after being implanted IP. A few CEMs contained small foci of granulopoiesis only. We conclude that noncellular matrix substances deposited on CEMs by bone, and to a lesser degree by marrow cells, can induce prestromal cells in the SC tissues to produce a microenvironment suitable for trilineal hematopoiesis.

  15. Continuous cell supply from Krt7-expressing hematopoietic stem cells during native hematopoiesis revealed by targeted in vivo gene transfer method

    PubMed Central

    Tajima, Yoko; Ito, Keiichi; Umino, Ayumi; Wilkinson, Adam C.; Nakauchi, Hiromitsu; Yamazaki, Satoshi

    2017-01-01

    The nature of hematopoietic stem cells under normal hematopoiesis remained largely unknown due to the limited assays available to monitor their behavior in situ. Here, we develop a new mouse model to transfer genes specifically into the primitive hematopoietic stem cell compartment through the utilization of a modified Rcas/TVA system. We succeeded in transferring a GFP reporter gene into adult hematopoietic stem cells in vivo, which are predominantly quiescent, by generating pseudotyped-lentivirus. Furthermore, we demonstrate the utility of this system to study neonatal hematopoiesis, a developmental stage that has been difficult to analyze to date. Using the system developed in this study, we observed continuous multi-lineage hematopoietic cell supply in peripheral blood from Krt7-positive hematopoietic stem cells during unperturbed homeostatic condition. This powerful experimental system could provide a new standard tool to analyze hematopoiesis under physiological condition without transplantation. PMID:28098173

  16. Leptin in the regulation of immunity, inflammation, and hematopoiesis.

    PubMed

    Fantuzzi, G; Faggioni, R

    2000-10-01

    Leptin, the product of the ob gene, is a pleiotropic molecule that regulates food intake as well as metabolic and endocrine functions. Leptin also plays a regulatory role in immunity, inflammation, and hematopoiesis. Alterations in immune and inflammatory responses are present in leptin- or leptin-receptor-deficient animals, as well as during starvation and malnutrition, two conditions characterized by low levels of circulating leptin. Both leptin and its receptor share structural and functional similarities with the interleukin-6 family of cytokines. Leptin exerts proliferative and antiapoptotic activities in a variety of cell types, including T lymphocytes, leukemia cells, and hematopoietic progenitors. Leptin also affects cytokine production, the activation of monocytes/macrophages, wound healing, angiogenesis, and hematopoiesis. Moreover, leptin production is acutely increased during infection and inflammation. This review focuses on the role of leptin in the modulation of the innate immune response, inflammation, and hematopoiesis.

  17. Correlating Histone Modification Patterns with Gene Expression Data During Hematopoiesis

    PubMed Central

    Hu, Gangqing; Zhao, Keji

    2014-01-01

    Hematopoietic stem cells (HSC) in mammals are an ideal system to study differentiation. While transcription factors (TFs) control the differentiation of HSCs to distinctive terminal blood cells, accumulating evidence suggests that chromatin structure and modifications constitute another critical layer of gene regulation. Recent genome-wide studies based on next-generation sequencing reveal that histone modifications are linked to gene expression and contribute to hematopoiesis. Here, we briefl y review the bioinformatics aspects for ChIP-Seq and RNA-Seq data analysis with applications to the epigenetic studies of hematopoiesis and provide a practical guide to several basic data analysis methods. PMID:24743998

  18. Communication of bone cells with hematopoiesis, immunity and energy metabolism

    PubMed Central

    Asada, Noboru; Sato, Mari; Katayama, Yoshio

    2015-01-01

    The bone contains the bone marrow. The functional communication between bone cells and hematopoiesis has been extensively studied in the past decade or so. Osteolineage cells and their modulators, such as the sympathetic nervous system, macrophages and osteoclasts, form a complex unit to maintain the homeostasis of hematopoiesis, called the ‘microenvironment'. Recently, bone-embedded osteocytes, the sensors of gravity and mechanical stress, have joined the microenvironment, and they are demonstrated to contribute to whole body homeostasis through the control of immunity and energy metabolism. The inter-organ communication orchestrated by the bone is summarized in this article. PMID:26512322

  19. Glucose-Dependent Insulinotropic Polypeptide Receptor Deficiency Leads to Impaired Bone Marrow Hematopoiesis.

    PubMed

    Mantelmacher, Fernanda Dana; Fishman, Sigal; Cohen, Keren; Pasmanik Chor, Metsada; Yamada, Yuichiro; Zvibel, Isabel; Varol, Chen

    2017-04-15

    The bone marrow (BM) contains controlled specialized microenvironments, or niches, that regulate the quiescence, proliferation, and differentiation of hematopoietic stem and progenitor cells (HSPC). The glucose-dependent insulinotropic polypeptide (GIP) is a gut-derived incretin hormone that mediates postprandial insulin secretion and has anabolic effects on adipose tissue. Previous studies demonstrated altered bone microarchitecture in mice deficient for GIP receptor (Gipr(-/-) ), as well as the expression of high-affinity GIP receptor by distinct cells constructing the BM HSPC niche. Nevertheless, the involvement of GIP in the process of BM hematopoiesis remains elusive. In this article, we show significantly reduced representation and proliferation of HSPC and myeloid progenitors in the BM of Gipr(-/-) mice. This was further manifested by reduced levels of BM and circulating differentiated immune cells in young and old adult mice. Moreover, GIP signaling was required for the establishment of supportive BM HSPC niches during HSPC repopulation in radioablated BM chimera mice. Finally, molecular profiling of various factors involved in retention, survival, and expansion of HSPC revealed significantly lower expression of the Notch-receptor ligands Jagged 1 and Jagged 2 in osteoblast-enriched bone extracts from Gipr(-/-) mice, which are important for HSPC expansion. In addition, there was increased expression of CXCL12, a factor important for HSPC retention and quiescence, in whole-BM extracts from Gipr(-/-) mice. Collectively, our data suggest that the metabolic hormone GIP plays an important role in BM hematopoiesis.

  20. Densely interconnected transcriptional circuits control cell states in human hematopoiesis

    PubMed Central

    Novershtern, Noa; Subramanian, Aravind; Lawton, Lee N.; Mak, Raymond H.; Haining, W. Nicholas; McConkey, Marie E.; Habib, Naomi; Yosef, Nir; Chang, Cindy Y.; Shay, Tal; Frampton, Garrett M.; Drake, Adam C. B.; Leskov, Ilya; Nilsson, Bjorn; Preffer, Fred; Dombkowski, David; Evans, John W.; Liefeld, Ted; Smutko, John S.; Chen, Jianzhu; Friedman, Nir; Young, Richard A.; Golub, Todd R.; Regev, Aviv; Ebert, Benjamin L.

    2011-01-01

    While many individual transcription factors are known to regulate hematopoietic differentiation, major aspects of the global architecture of hematopoiesis remain unknown. Here, we profiled gene expression in 38 distinct purified populations of human hematopoietic cells and used probabilistic models of gene expression and analysis of cis-elements in gene promoters to decipher the general organization of their regulatory circuitry. We identified modules of highly co-expressed genes, some of which are restricted to a single lineage, but most are expressed at variable levels across multiple lineages. We found densely interconnected cis-regulatory circuits and a large number of transcription factors that are differentially expressed across hematopoietic states. These findings suggest a more complex regulatory system for hematopoiesis than previously assumed. PMID:21241896

  1. Leukemic blast cells and controversies in models of hematopoiesis.

    PubMed

    Gluzman, D F; Sklyarenko, L M; Zavelevich, M P; Koval, S V; Ivanovskaya, T S

    2015-03-01

    Classical and up-to-date models of hematopoietic lineage determination are briefly reviewed with the focus on myeloid-based models challenging the existence of the common progenitor for T cells, B cells and NK cells. The analysis of immunophenotype of leukemic blast cells seems to be a promising approach for interpreting some controversies in the schemes of normal hematopoiesis. The literature data as well as our own findings in the patients with various types of acute leukemias are in favor of the concept postulating that common myeloid-lymphoid progenitors giving rise to T and B cell branches retain the myeloid potential. The similarity of some immunophenotypic features of blast cells in pro-B acute lymphoblastic leukemia and acute monoblastic leukemia is consistent with monocyte origin postulated in the studies of normal hematopoiesis. Study of acute leukemias may be the challenging area of research allowing for new insight into the origin of hematopoietic cell lineages.

  2. Cell state-specific metabolic dependency in hematopoiesis and leukemogenesis

    PubMed Central

    Wang, Ying-Hua; Israelsen, William J.; Lee, Dongjun; Yu, Vionnie W.C.; Jeanson, Nathaniel T.; Clish, Clary B; Cantley, Lewis C.; Heiden, Matthew G. Vander; Scadden, David T.

    2014-01-01

    SUMMARY The balance between oxidative and non-oxidative glucose metabolism is essential for a number of pathophysiological processes. By deleting enzymes that affect aerobic glycolysis with different potencies, we examine how modulating glucose metabolism specifically affects hematopoietic and leukemic cell populations. We find that deficiency in the M2 pyruvate kinase isoform (PKM2) reduces levels of metabolic intermediates important for biosynthesis and impairs progenitor function without perturbing hematopoietic stem cells (HSC), whereas lactate dehydrogenase-A (LDHA) deletion significantly inhibits the function of both HSC and progenitors during hematopoiesis. In contrast, leukemia initiation by transforming alleles putatively affecting either HSC or progenitors is inhibited in the absence of either PKM2 or LDHA, indicating that the cell state-specific responses to metabolic manipulation in hematopoiesis do not apply to the setting of leukemia. This finding suggests that fine-tuning the level of glycolysis may be therapeutically explored for treating leukemia while preserving HSC function. PMID:25215489

  3. Long noncoding RNAs during normal and malignant hematopoiesis

    PubMed Central

    Alvarez-Dominguez, Juan R.; Hu, Wenqian; Gromatzky, Austin A.

    2014-01-01

    Long noncoding RNAs (lncRNAs) are increasingly recognized to contribute to cellular development via diverse mechanisms during both health and disease. Here, we highlight recent progress on the study of lncRNAs that function in the development of blood cells. We emphasize lncRNAs that regulate blood cell fates through epigenetic control of gene expression, an emerging theme among functional lncRNAs. Many of these noncoding genes and their targets become dysregulated during malignant hematopoiesis, directly implicating lncRNAs in blood cancers such as leukemia. In a few cases, dysregulation of an lncRNA alone leads to malignant hematopoiesis in a mouse model. Thus, lncRNAs may be not only useful as markers for the diagnosis and prognosis of cancers of the blood, but also as potential targets for novel therapies. PMID:24609766

  4. Gut microbiota promote hematopoiesis to control bacterial infection.

    PubMed

    Khosravi, Arya; Yáñez, Alberto; Price, Jeremy G; Chow, Andrew; Merad, Miriam; Goodridge, Helen S; Mazmanian, Sarkis K

    2014-03-12

    The commensal microbiota impacts specific immune cell populations and their functions at peripheral sites, such as gut mucosal tissues. However, it remains unknown whether gut microbiota control immunity through regulation of hematopoiesis at primary immune sites. We reveal that germ-free mice display reduced proportions and differentiation potential of specific myeloid cell progenitors of both yolk sac and bone marrow origin. Homeostatic innate immune defects may lead to impaired early responses to pathogens. Indeed, following systemic infection with Listeria monocytogenes, germ-free and oral-antibiotic-treated mice display increased pathogen burden and acute death. Recolonization of germ-free mice with a complex microbiota restores defects in myelopoiesis and resistance to Listeria. These findings reveal that gut bacteria direct innate immune cell development via promoting hematopoiesis, contributing to our appreciation of the deep evolutionary connection between mammals and their microbiota.

  5. Long noncoding RNAs during normal and malignant hematopoiesis.

    PubMed

    Alvarez-Dominguez, Juan R; Hu, Wenqian; Gromatzky, Austin A; Lodish, Harvey F

    2014-01-01

    Long noncoding RNAs (lncRNAs) are increasingly recognized to contribute to cellular development via diverse mechanisms during both health and disease. Here, we highlight recent progress on the study of lncRNAs that function in the development of blood cells. We emphasize lncRNAs that regulate blood cell fates through epigenetic control of gene expression, an emerging theme among functional lncRNAs. Many of these noncoding genes and their targets become dysregulated during malignant hematopoiesis, directly implicating lncRNAs in blood cancers such as leukemia. In a few cases, dysregulation of an lncRNA alone leads to malignant hematopoiesis in a mouse model. Thus, lncRNAs may be not only useful as markers for the diagnosis and prognosis of cancers of the blood, but also as potential targets for novel therapies.

  6. Intrathoracic extramedullary hematopoiesis: appearance on /sup 99m/Tc sulfur colloid marrow scan

    SciTech Connect

    Bronn, L.J.; Paquelet, J.R.; Tetalman, M.R.

    1980-06-01

    Imaging of the bone marrow by radionuclide scanning was performed using colloids, which are phagocytized by the reticuloendothelial cells of the marrow, or radioiron, which is incorporated into reticulocytes. The use of the former radiopharmaceutical is based on the assumption, generally valid except in aplastic states or after irradiation, that the distribution of hematopoietic and reticuloendothelial tissue in the marrow is similar. Regardless of the method used, active adult marrow is normally distributed only in the axial skeleton and proximal humeri and femurs. Marrow imaging has been used in the evaluation of myeloproliferative disorders, leukemia, lymphoma, aplastic states, malignancy metastatic to marrow, and hemolytic anemia. We report a case of thalassemia major in which the diagnosis of intrathoracic extramedullary hematopoiesis was confirmed with the /sup 99m/Tc sulfur colloid bone marrow scan.

  7. CircRNAs in hematopoiesis and hematological malignancies

    PubMed Central

    Bonizzato, A; Gaffo, E; te Kronnie, G; Bortoluzzi, S

    2016-01-01

    Cell states in hematopoiesis are controlled by master regulators and by complex circuits of a growing family of RNA species impacting cell phenotype maintenance and plasticity. Circular RNAs (circRNAs) are rapidly gaining the status of particularly stable transcriptome members with distinctive qualities. RNA-seq identified thousands of circRNAs with developmental stage- and tissue-specific expression corroborating earlier suggestions that circular isoforms are a natural feature of the cell expression program. CircRNAs are abundantly expressed also in the hematopoietic compartment. There are a number of studies on circRNAs in blood cells, a specific overview is however lacking. In this review we first present current insight in circRNA biogenesis discussing the relevance for hematopoiesis of the highly interleaved processes of splicing and circRNA biogenesis. Regarding molecular functions circRNAs modulate host gene expression, but also compete for binding of microRNAs, RNA-binding proteins or translation initiation and participate in regulatory circuits. We examine circRNA expression in the hematopoietic compartment and in hematologic malignancies and review the recent breakthrough study that identified pathogenic circRNAs derived from leukemia fusion genes. CircRNA high and regulated expression in blood cell types indicate that further studies are warranted to inform the position of these regulators in normal and malignant hematopoiesis. PMID:27740630

  8. Fell Pony syndrome: characterization of developmental hematopoiesis failure and associated gene expression profiles.

    PubMed

    Tallmadge, Rebecca L; Stokol, Tracy; Gould-Earley, Mary Jean; Earley, Ed; Secor, Erica J; Matychak, Mary Beth; Felippe, M Julia B

    2012-07-01

    Fell Pony syndrome (FPS) is a fatal immunodeficiency that occurs in foals of the Fell Pony breed. Affected foals present with severe anemia, B cell lymphopenia, and opportunistic infections. Our objective was to conduct a prospective study of potential FPS-affected Fell Pony foals to establish clinical, immunological, and molecular parameters at birth and in the first few weeks of life. Complete blood counts, peripheral blood lymphocyte phenotyping, and serum immunoglobulin concentrations were determined for 3 FPS-affected foals, 49 unaffected foals, and 6 adult horses. In addition, cytology of bone marrow aspirates was performed sequentially in a subset of foals. At birth, the FPS-affected foals were not noticeably ill and had hematocrit and circulating B cell counts comparable to those of unaffected foals; however, over 6 weeks, values for both parameters steadily declined. A bone marrow aspirate from a 3-week-old FPS-affected foal revealed erythroid hyperplasia and concurrent erythroid and myeloid dysplasia, which progressed to a severe erythroid hypoplasia at 5 weeks of life. Immunohistochemical staining confirmed the paucity of B cells in primary and secondary lymphoid tissues. The mRNA expression of genes involved in B cell development, signaling, and maturation was investigated using qualitative and quantitative reverse transcriptase PCR (RT-PCR). Several genes, including CREB1, EP300, MYB, PAX5, and SPI1/PU.1, were sequenced from FPS-affected and unaffected foals. Our study presents evidence of fetal erythrocyte and B cell hematopoiesis with rapid postnatal development of anemia and B lymphopenia in FPS-affected foals. The transition between fetal/neonatal and adult-like hematopoiesis may be an important aspect of the pathogenesis of FPS.

  9. Expansion of human and murine hematopoietic stem and progenitor cells ex vivo without genetic modification using MYC and Bcl-2 fusion proteins.

    PubMed

    Bird, Gregory A; Polsky, Avital; Estes, Patricia; Hanlon, Teri; Hamilton, Haley; Morton, John J; Gutman, Jonathan; Jimeno, Antonio; Turner, Brian C; Refaeli, Yosef

    2014-01-01

    The long-term repopulating hematopoietic stem cell (HSC) population can self-renew in vivo, support hematopoiesis for the lifetime of the individual, and is of critical importance in the context of bone marrow stem cell transplantation. The mechanisms that regulate the expansion of HSCs in vivo and in vitro remain unclear to date. Since the current set of surface markers only allow for the identification of a population of cells that is highly enriched for HSC activity, we will refer to the population of cells we expand as Hematopoietic Stem and Progenitor cells (HSPCs). We describe here a novel approach to expand a cytokine-dependent Hematopoietic Stem and Progenitor Cell (HSPC) population ex vivo by culturing primary adult human or murine HSPCs with fusion proteins including the protein transduction domain of the HIV-1 transactivation protein (Tat) and either MYC or Bcl-2. HSPCs obtained from either mouse bone marrow, human cord blood, human G-CSF mobilized peripheral blood, or human bone marrow were expanded an average of 87 fold, 16.6 fold, 13.6 fold, or 10 fold, respectively. The expanded cell populations were able to give rise to different types of colonies in methylcellulose assays in vitro, as well as mature hematopoietic populations in vivo upon transplantation into irradiated mice. Importantly, for both the human and murine case, the ex vivo expanded cells also gave rise to a self-renewing cell population in vivo, following initial transplantation, that was able to support hematopoiesis upon serial transplantation. Our results show that a self-renewing cell population, capable of reconstituting the hematopoietic compartment, expanded ex vivo in the presence of Tat-MYC and Tat-Bcl-2 suggesting that this may be an attractive approach to expand human HSPCs ex vivo for clinical use.

  10. Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis

    PubMed Central

    Andricovich, Jaclyn; Kai, Yan; Peng, Weiqun; Foudi, Adlen; Tzatsos, Alexandros

    2016-01-01

    The development of the hematopoietic system is a dynamic process that is controlled by the interplay between transcriptional and epigenetic networks to determine cellular identity. These networks are critical for lineage specification and are frequently dysregulated in leukemias. Here, we identified histone demethylase KDM2B as a critical regulator of definitive hematopoiesis and lineage commitment of murine hematopoietic stem and progenitor cells (HSPCs). RNA sequencing of Kdm2b-null HSPCs and genome-wide ChIP studies in human leukemias revealed that KDM2B cooperates with polycomb and trithorax complexes to regulate differentiation, lineage choice, cytokine signaling, and cell cycle. Furthermore, we demonstrated that KDM2B exhibits a dichotomous role in hematopoietic malignancies. Specifically, we determined that KDM2B maintains lymphoid leukemias, but restrains RAS-driven myeloid transformation. Our study reveals that KDM2B is an important mediator of hematopoietic cell development and has opposing roles in tumor progression that are dependent on cellular context. PMID:26808549

  11. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation.

    PubMed

    Stennard, Fiona A; Costa, Mauro W; Lai, Donna; Biben, Christine; Furtado, Milena B; Solloway, Mark J; McCulley, David J; Leimena, Christiana; Preis, Jost I; Dunwoodie, Sally L; Elliott, David E; Prall, Owen W J; Black, Brian L; Fatkin, Diane; Harvey, Richard P

    2005-05-01

    The genetic hierarchies guiding lineage specification and morphogenesis of the mammalian embryonic heart are poorly understood. We now show by gene targeting that murine T-box transcription factor Tbx20 plays a central role in these pathways, and has important activities in both cardiac development and adult function. Loss of Tbx20 results in death of embryos at mid-gestation with grossly abnormal heart morphogenesis. Underlying these disturbances was a severely compromised cardiac transcriptional program, defects in the molecular pre-pattern, reduced expansion of cardiac progenitors and a block to chamber differentiation. Notably, Tbx20-null embryos showed ectopic activation of Tbx2 across the whole heart myogenic field. Tbx2 encodes a transcriptional repressor normally expressed in non-chamber myocardium, and in the atrioventricular canal it has been proposed to inhibit chamber-specific gene expression through competition with positive factor Tbx5. Our data demonstrate a repressive activity for Tbx20 and place it upstream of Tbx2 in the cardiac genetic program. Thus, hierarchical, repressive interactions between Tbx20 and other T-box genes and factors underlie the primary lineage split into chamber and non-chamber myocardium in the forming heart, an early event upon which all subsequent morphogenesis depends. Additional roles for Tbx20 in adult heart integrity and contractile function were revealed by in-vivo cardiac functional analysis of Tbx20 heterozygous mutant mice. These data suggest that mutations in human cardiac transcription factor genes, possibly including TBX20, underlie both congenital heart disease and adult cardiomyopathies.

  12. Very Small Embryonic-Like Stem Cells: A Potential Developmental Link Between Germinal Lineage and Hematopoiesis in Humans.

    PubMed

    Virant-Klun, Irma

    2016-01-15

    It has been suggested that hematopoietic stem/progenitor cells (HSPCs) could become specified from a population of migrating primordial germ cells (PGCs), precursors of gametes, during embryogenesis. Some recent experimental data demonstrated that the cell population that is usually considered to be PGCs, moving toward the gonadal ridges of an embryo, contains a subset of cells coexpressing several germ cell and hematopoietic markers and possessing hematopoietic activity. Experimental data showed that bone morphogenetic protein 4 (BMP4) generates PGCs from mouse bone marrow-derived pluripotent stem cells. Interestingly, functional reproductive hormone receptors have been identified in HSPCs, thus indicating their potential role in reproductive function. Several reports have demonstrated fertility restoration and germ cell generation after bone marrow transplantation in both animal models and humans. A potential link between HSPCs and germinal lineage might be represented by very small embryonic-like stem cells (VSELs), which have been found in adult human bone marrow, peripheral blood, and umbilical cord blood, express a specific pattern of pluripotency, germinal lineage, and hematopoiesis, and are proposed to persist in adult tissues and organs from the embryonic period of life. Stem cell populations, similar to VSELs, expressing several genes related to pluripotency and germinal lineage, especially to PGCs, have been discovered in adult human reproductive organs, ovaries and testicles, and were related to primitive germ cell-like cell development in vitro, thus supporting the idea of VSELs as a potential link between germinal lineage and hematopoiesis.

  13. The effect of the zeolite clinoptilolite on serum chemistry and hematopoiesis in mice.

    PubMed

    Martin-Kleiner, I; Flegar-Mestric, Z; Zadro, R; Breljak, D; Stanovic Janda, S; Stojkovic, R; Marusic, M; Radacic, M; Boranic, M

    2001-07-01

    Zeolites are natural or synthetic crystalline alumosilicates with ion exchanging properties. Supplied in fodder, they promote biomass production and animal health. Our aim was to assess the effects of the natural zeolite, clinoptilolite, on hematopoiesis, serum electrolytes and essential biochemical indicators of kidney and liver function in mice. Two preparations differing in particle size were tested: a powderized form obtained by countercurrent mechanical treatment of the clinoptilolite (MTCp) and normally ground clinoptilolite (NGCp). Young adult mice were supplied with food containing 12.5, 25 or 50% clinoptilolite powder. Control animals received the same food ration without the clinoptilolite. After 10, 20, 30 and 40 days, six animals from each group were exsanguinated to obtain blood for hematological and serum for biochemical measurements as well as to collect femoral bone marrow for determination of hematopoietic activity. Clinoptilolite ingestion was well tolerated, as judged by comparable body masses of treated and control animals. A 20% increase of the potassium level was detected in mice receiving the zeolite-rich diet, without other changes in serum chemistry. Erythrocyte, hemoglobin and platelet levels in peripheral blood were not materially affected. NGCp caused leukocytosis, with concomitant decline of the GM-CFU content in the bone marrow, which was attributed to intestinal irritation by rough zeolite particles. The mechanically treated clinoptilolite preparation caused similar, albeit less pronounced, changes. In a limited experiment, mice having transplanted mammary carcinoma in the terminal stage showed increased potassium and decreased sodium and chloride levels, severe anemia and leukocytosis, decreased bone marrow cellularity and diminished content of hematopoietic progenitor cells in the marrow. The clinoptilolite preparations ameliorated the sodium and chloride decline, whereas the effects on hematopoiesis were erratic.

  14. Polymorphisms of the murine mitochondrial ND4, CYTB and COX3 genes impact hematopoiesis during aging

    PubMed Central

    Timmer, Katrin; Sekora, Anett; Knübel, Gudrun; Escobar, Hugo Murua; Fuellen, Georg; Ibrahim, Saleh M.; Tiedge, Markus; Baltrusch, Simone; Jaster, Robert; Köhling, Rüdiger; Junghanss, Christian

    2016-01-01

    During aging, mitochondrial DNA (mtDNA) can accumulate mutations leading to increasing levels of reactive oxygen species (ROS). Increased ROS were described to activate formerly quiescent hematopoietic stem cells (HSC). Mutations in mtDNA were shown to enhance the risk for myelodysplastic syndrome and leukemia. However, the complex relationship between mtDNA variations, ROS and aging of the hematopoietic system is not fully understood. Herein, three mouse strains with mtDNA polymorphisms in genes of respiratory chain complexes I (ND4), III (CYTB) and IV (COX3) were compared to a reference strain during aging. Analysis focused on ROS and ATP levels, bone marrow composition and blood counts. Additionally, hematopoietic restoration capacity following cytotoxic stress was tested. Mice with polymorphisms in ND4 and CYTB gene had significantly decreasing ROS levels in bone marrow cells during aging, without effecting ATP levels. In addition, the frequency of stem and progenitor cells increased during aging but the amount of lymphocytes in the peripheral blood decreased during aging. In summary, the presence of mtDNA polymorphisms affecting the respiratory chain complexes I, III and IV was associated with altered ROS levels as well as changes in BM and peripheral blood composition during aging. PMID:27626489

  15. MicroRNA-155 and Its Role in Malignant Hematopoiesis

    PubMed Central

    Ranganath, Prajnya

    2015-01-01

    MicroRNA-155 (miR-155) is a multifunctional molecule involved in both normal and malignant hematopoiesis. It has been found to be involved in the pathogenesis of many different hematological malignancies with either an oncogenic or a tumor-repressor effect, depending on the nature of the cell and the type of malignancy. In particular, it has been strongly implicated in the causation of diffuse large B-cell lymphomas. This review focuses on the molecular interactions of miR-155, its oncogenic mechanisms, and its potential as an effective therapeutic target for the associated malignancies. PMID:26523117

  16. Megaloblastic hematopoiesis in a 20 year old pregnant female

    PubMed Central

    Trivette, Evan T.; Hoedebecke, Kyle; Berry-Cabán, Cristóbal S.; Jacobs, Brandy R.

    2013-01-01

    Summary Background: Nitrous oxide can cause disordered blood cell proliferation and lead to pancytopenia and altered immune function. Case Report: A young pregnant female patient presented after binge nitrous oxide abuse with altered mental status and abnormal vital signs. From her initial assessment she was noted to have pancytopenia and was found to have megaloblastic, hyper-cellular changes in a subsequent bone marrow biopsy. This presentation was determined to be secondary to toxic effects after heavy use of nitrous oxide. Conclusions: Nitrous oxide exposure, including use as an inhalant, over 12 hours can lead to bone marrow abnormalities such as megaloblastic hematopoiesis. PMID:23569553

  17. Induction of murine tumors in adult mice by a combination of either avian sarcoma virus or human adenovirus and syngeneic mouse embryo cells.

    PubMed

    Takeuchi, M; Nitta, K

    1983-01-01

    Primary murine Rous sarcoma was produced in adult mice of seven strains, C57BL/6, DBA/2, BALB/c, C3H/He, CBAJ, AKR, and DDD, by s.c. inoculation of a mixture of 5 X 10(6) chicken tumor cells containing Schmidt-Ruppin Rous sarcoma virus and 9- to 12-day-old mouse embryo cells (MEC) (2 X 10(6) ) of the syngeneic strain. The sarcoma developed at the site of injection in almost all mice tested, but there were some differences in the latent period and the survival time among mouse strains. When the number of cells inoculated was reduced to 5 X 10(4) for chicken tumor cells induced by the Schmidt-Ruppin strain of Rous sarcoma virus (SR-CTC) and 2 X 10(4) for MEC, no tumor was produced in C3H/He mice. These tumors had strain specificity and the Schmidt-Ruppin strain of Rous sarcoma virus genome in masked form. The tumor at the site of injection originated in the embryo cells injected along with SR-CTC. This was confirmed by CBAT6/T6 marker chromosome analysis of the tumor cells of CBA mice induced with SR-CTC plus CBAT6/T6 MEC and also confirmed by transplantation of a C57BL/6 X C3H/He F1 tumor which had been induced with SR-CTC plus C3H/He or C57BL/6 MEC. Tumor induction in adult mouse by a mixture of virus and syngeneic 9- to 14-day-old embryo cells was tested for human adenovirus serotype 12 (Ad12) and simian virus 40. Primary Ad12 tumor was also induced in adult CBA, C3H/He, and DDD mice by 4 X 10(5 to 6) 50% tissue culture infective dose of Ad12 with 5 X 10(6) syngeneic embryo cells. This tumor contained Ad12 T-antigen-positive particles in cells. But in the case of simian virus 40, the tumor did not appear for about 300 days of observation.

  18. The NFKB Inducing Kinase Modulates Hematopoiesis During Stress.

    PubMed

    González-Murillo, África; Fernández, Lucía; Baena, Sara; Melen, Gustavo J; Sánchez, Rebeca; Sánchez-Valdepeñas, Carmen; Segovia, José C; Liou, Hsiou-Chi; Schmid, Roland; Madero, Luís; Fresno, Manuel; Ramírez, Manuel

    2015-09-01

    The genetic programs that maintain hematopoiesis during steady state in physiologic conditions are different from those activated during stress. Here, we show that hematopoietic stem cells (HSCs) with deficiencies in components of the alternative NFκB pathway (the NFκB inducing kinase, NIK, and the downstream molecule NFκB2) had a defect in response to stressors such as supraphysiological doses of cytokines, chemotherapy, and hematopoietic transplantation. NIK-deficient mice had peripheral blood and bone marrow leukocyte numbers within normal ranges (except for the already reported defects in B-cell maturation); however, HSCs showed significantly slower expansion capacity in in vitro cultures compared to wild-type HSCs. This was due to a delayed cell cycle and increased apoptosis. In vivo experiments showed that NIK-deficient HSCs did not recover at the same pace as controls when challenged with myeloablative chemotherapy. Finally, NIK-deficient HSCs showed a significantly decreased competitive repopulation capacity in vivo. Using HSCs from mice deficient in one of two downstream targets of NIK, that is, either NFκB2 or c-Rel, only NFκB2 deficiency recapitulated the defects detected with NIK-deficient HSCs. Our results underscore the role of NIK and the alternative NFκB pathway for the recovery of normal levels of hematopoiesis after stress.

  19. The Hippo pathway regulates hematopoiesis in Drosophila melanogaster.

    PubMed

    Milton, Claire C; Grusche, Felix A; Degoutin, Joffrey L; Yu, Eefang; Dai, Qi; Lai, Eric C; Harvey, Kieran F

    2014-11-17

    The Salvador-Warts-Hippo (Hippo) pathway is an evolutionarily conserved regulator of organ growth and cell fate. It performs these functions in epithelial and neural tissues of both insects and mammals, as well as in mammalian organs such as the liver and heart. Despite rapid advances in Hippo pathway research, a definitive role for this pathway in hematopoiesis has remained enigmatic. The hematopoietic compartments of Drosophila melanogaster and mammals possess several conserved features. D. melanogaster possess three types of hematopoietic cells that most closely resemble mammalian myeloid cells: plasmatocytes (macrophage-like cells), crystal cells (involved in wound healing), and lamellocytes (which encapsulate parasites). The proteins that control differentiation of these cells also control important blood lineage decisions in mammals. Here, we define the Hippo pathway as a key mediator of hematopoiesis by showing that it controls differentiation and proliferation of the two major types of D. melanogaster blood cells, plasmatocytes and crystal cells. In animals lacking the downstream Hippo pathway kinase Warts, lymph gland cells overproliferated, differentiated prematurely, and often adopted a mixed lineage fate. The Hippo pathway regulated crystal cell numbers by both cell-autonomous and non-cell-autonomous mechanisms. Yorkie and its partner transcription factor Scalloped were found to regulate transcription of the Runx family transcription factor Lozenge, which is a key regulator of crystal cell fate. Further, Yorkie or Scalloped hyperactivation induced ectopic crystal cells in a non-cell-autonomous and Notch-pathway-dependent fashion.

  20. Effects of deuteration on hematopoiesis in the mouse

    SciTech Connect

    Adams, W.H.; Adams, D.G.

    1988-02-01

    Mice ingesting 30 to 50% D/sub 2/O (heavy water, deuterium oxide) developed a dose-dependent depression of formed peripheral blood elements in 4 to 9 days. The principal mechanism of anemia and thrombocytopenia is impaired hematopoiesis. Despite pancytopenia in the peripheral blood, bone marrow cellularity and morphology remained normal. Upon replacement of D/sub 2/O with tap water, platelet and neutrophil concentrations returned to normal within 48 to 72 hr. In contrast, blood lymphocyte concentrations remained low for several weeks. B-lymphocytes may be more affected by deuteration than other lymphocyte subsets. In vivo reticuloendothelial cell function, as assessed by /sup 51/Cr-labeled sheep erythrocyte clearance, was unaffected by D/sub 2/O. Although a dose-dependent decrease in fluid intake occurred during deuteration, hematocytopenia was not a consequence of dehydration. In view of the known kinetics of D/sub 2/O in biological systems, the rapid response of myeloid elements to deuteration must be due primarily to the solvent (nonmetabolic) isotope effect. Prolonged deuteration has proven toxic when included in regimens for treatment of neoplasia, including leukemia, in animal models. The present study shows that modulation of hematopoiesis by D/sub 2/O is possible without invoking the toxicities associated with prolonged deuteration.

  1. A comparison of murine T-cell-depleted adult bone marrow and full-term fetal blood cells in hematopoietic engraftment and immune reconstitution.

    PubMed

    Chen, Benny J; Cui, Xiuyu; Sempowski, Gregory D; Gooding, Maria E; Liu, Congxiao; Haynes, Barton F; Chao, Nelson J

    2002-01-01

    Umbilical cord blood has been increasingly used as a source of hematopoietic stem cells. A major area of concern for the use of cord blood transplantation is the delay in myeloid and lymphoid recovery. To directly compare myeloid and lymphoid recovery using an animal model of bone marrow and cord blood as sources of stem cells, hematopoietic engraftment and immune recovery were studied following infusion of T-cell-depleted adult bone marrow or full-term fetal blood cells, as a model of cord blood in a murine allogeneic transplantation model (C57BL/6 [H-2(b)] --> BALB/c [H-2(d)]). Allogeneic full-term fetal blood has poorer radioprotective capacity but greater long-term engraftment potential on a cell-to-cell basis compared with T-cell-depleted bone marrow. Allogeneic full-term fetal blood recipients had decreased absolute numbers of T, B, and dendritic cells compared with bone marrow recipients. Splenic T cells in allogeneic full-term fetal blood recipients proliferated poorly, were unable to generate cytotoxic effectors against third-party alloantigens in vitro, and failed to generate alloantigen-specific cytotoxic antibodies in vivo. In addition, reconstituting T cells in fetal blood recipients had decreased mouse T-cell receptor delta single-joint excision circles compared with bone marrow recipients. At a per-cell level, B cells from fetal blood recipients did not proliferate as well as those found in bone marrow recipients. These results suggest that full-term fetal blood can engraft allogeneic hosts across the major histocompatibility barrier with slower hematopoietic engraftment and impaired immune reconstitution.

  2. Murine Typhus

    PubMed Central

    Dzul-Rosado, Karla R; Zavala Velázquez, Jorge Ernesto; Zavala-Castro, Jorge

    2012-01-01

    Rickettsia typhi: is an intracellular bacteria who causes murine typhus. His importance is reflected in the high frequency founding specific antibodies against Rickettsia typhi in several worldwide seroepidemiological studies, the seroprevalence ranging between 3-36%. Natural reservoirs of R. typhi are rats (some species belonging the Rattus Genus) and fleas (Xenopsylla cheopis) are his vector. This infection is associated with overcrowding, pollution and poor hygiene. Typically presents fever, headache, rash on trunk and extremities, in some cases may occur organ-specific complications, affecting liver, kidney, lung or brain. Initially the disease is very similar to other diseases, is very common to confuse the murine typhus with Dengue fever, therefore, ignorance of the disease is a factor related to complications or non-specific treatments for the resolution of this infection. This paper presents the most relevant information to consider about the rickettsiosis caused by Rickettsia typhi. PMID:24893060

  3. The Dtk receptor tyrosine kinase, which binds protein S, is expressed during hematopoiesis.

    PubMed

    Crosier, P S; Freeman, S A; Orlic, D; Bodine, D M; Crosier, K E

    1996-02-01

    Dtk (Tyro 3/Sky/Rse/Brt/Tif) belongs to a recently recognized subfamily of receptor tyrosine kinases that also includes Ufo (Axl/Ark) and Mer (Eyk). Ligands for Dtk and Ufo have been identified as protein S and the related molecule Gas6, respectively. This study examined expression of Dtk during ontogeny of the hematopoietic system and compared the pattern of expression with that of Ufo. Both receptors were abundantly expressed in differentiating embryonic stem cells, yolk sac blood islands, para-aortic splanchnopleural mesoderm, fractionated AA4+ fetal liver cells, and fetal thymus from day 14 until birth. Although Ufo was expressed at moderate levels in adult bone marrow, expression of Dtk in this tissue was barely detectable. In adult bone marrow subpopulations fractionated using counterflow centrifugal elutriation, immunomagnetic bead selection for lineage-depletion and FACS sorting for c-kit expression, very low levels of Dtk and/or Ufo were detected in some cell fractions. These results suggest that Dtk and Ufo are likely to be involved in the regulation of hematopoiesis, particularly during the embryonic stages of blood cell development.

  4. Human T-cell leukemia virus type 1 tax oncoprotein suppression of multilineage hematopoiesis of CD34+ cells in vitro.

    PubMed

    Tripp, Adam; Liu, Yingxian; Sieburg, Michelle; Montalbano, Joanne; Wrzesinski, Stephen; Feuer, Gerold

    2003-11-01

    Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are highly related viruses that differ in disease manifestation. HTLV-1 is the etiologic agent of adult T-cell leukemia and lymphoma, an aggressive clonal malignancy of human CD4-bearing T lymphocytes. Infection with HTLV-2 has not been conclusively linked to lymphoproliferative disorders. We previously showed that human hematopoietic progenitor (CD34(+)) cells can be infected by HTLV-1 and that proviral sequences were maintained after differentiation of infected CD34(+) cells in vitro and in vivo. To investigate the role of the Tax oncoprotein of HTLV on hematopoiesis, bicistronic lentiviral vectors were constructed encoding the HTLV-1 or HTLV-2 tax genes (Tax1 and Tax2, respectively) and the green fluorescent protein marker gene. Human hematopoietic progenitor (CD34(+)) cells were infected with lentivirus vectors, and transduced cells were cultured in a semisolid medium permissive for the development of erythroid, myeloid, and primitive progenitor colonies. Tax1-transduced CD34(+) cells displayed a two- to fivefold reduction in the total number of hematopoietic clonogenic colonies that arose in vitro, in contrast to Tax2-transduced cells, which showed no perturbation of hematopoiesis. The ratio of colony types that developed from Tax1-transduced CD34(+) cells remained unaffected, suggesting that Tax1 inhibited the maturation of relatively early, uncommitted hematopoietic stem cells. Since previous reports have linked Tax1 expression with initiation of apoptosis, lentiviral vector-mediated transduction of Tax1 or Tax2 was investigated in CEM and Jurkat T-cell lines. Ectopic expression of either Tax1 or Tax2 failed to induce apoptosis in T-cell lines. These data demonstrate that Tax1 expression perturbs development and maturation of pluripotent hematopoietic progenitor cells, an activity that is not displayed by Tax2, and that the suppression of hematopoiesis is not attributable to induction of apoptosis. Since

  5. Impact of oxygen concentration on adult murine pre-antral follicle development in vitro and the corresponding metabolic profile.

    PubMed

    Gook, Debra A; Edgar, D H; Lewis, K; Sheedy, J R; Gardner, D K

    2014-01-01

    Oxygen concentration during in vitro culture has a significant effect on the physiology of embryos, altering metabolic profile and developmental outcome. Although atmospheric oxygen has been used routinely for the culture of ovarian follicles, oxygen concentration may also be critical for follicle growth but the optimal concentration has not been determined. In this study, mechanically isolated primary and secondary follicles (80-140 µm diameter) from adult mouse ovaries were cultured in serum-free conditions for 8 days in either 5 or 20% oxygen to determine growth (follicular diameter), morphology and viability. For each oxygen concentration, half of the medium was replaced on Days 2, 4 and 6 or on Day 4 only. In the latter group, metabolic analysis of spent follicular culture media was performed by (1)H-NMR. The proportion of viable, growing follicles was significantly (P < 0.0001) higher in 5% than in 20% oxygen (59% versus 8%). Reducing the frequency of medium replacement during culture in 5% oxygen resulted in significantly (P < 0.001) more viable follicles (79 versus 46%). In 20% oxygen, poor follicular viability was observed irrespective of the frequency of medium replacement (8 and 10% respectively). Metabolic profiles showed marked differences in amino acid and carbohydrate utilization with respect to both oxygen concentration and between Days 4 and 8 of development. Metabolites which significantly discriminated between oxygen concentration at both time points were glucose consumption, lactate utilization, alanine, alanyl-glutamine, leucine and proline. In conclusion, the poor in vitro follicular development previously observed in minimal culture conditions may reflect the use of 20% oxygen. Frequent medium replenishment is not necessary and does not overcome the detrimental effect of high oxygen on follicle viability. Further optimization of culture conditions would benefit from metabolic analyses and the use of 5% oxygen should be tested further for

  6. SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing

    PubMed Central

    Komeno, Yukiko; Huang, Yi-Jou; Qiu, Jinsong; Lin, Leo; Xu, YiJun; Zhou, Yu; Chen, Liang; Monterroza, Dora D.; Li, Hairi; DeKelver, Russell C.; Yan, Ming

    2015-01-01

    Myelodysplastic syndromes (MDS) are a group of neoplasms characterized by ineffective myeloid hematopoiesis and various risks for leukemia. SRSF2, a member of the serine/arginine-rich (SR) family of splicing factors, is one of the mutation targets associated with poor survival in patients suffering from myelodysplastic syndromes. Here we report the biological function of SRSF2 in hematopoiesis by using conditional knockout mouse models. Ablation of SRSF2 in the hematopoietic lineage caused embryonic lethality, and Srsf2-deficient fetal liver cells showed significantly enhanced apoptosis and decreased levels of hematopoietic stem/progenitor cells. Induced ablation of SRSF2 in adult Mx1-Cre Srsf2flox/flox mice upon poly(I):poly(C) injection demonstrated a significant decrease in lineage− Sca+ c-Kit+ cells in bone marrow. To reveal the functional impact of myelodysplastic syndromes-associated mutations in SRSF2, we analyzed splicing responses on the MSD-L cell line and found that the missense mutation of proline 95 to histidine (P95H) and a P95-to-R102 in-frame 8-amino-acid deletion caused significant changes in alternative splicing. The affected genes were enriched in cancer development and apoptosis. These findings suggest that intact SRSF2 is essential for the functional integrity of the hematopoietic system and that its mutations likely contribute to development of myelodysplastic syndromes. PMID:26124281

  7. Maintenance of the functional integrity of mouse hematopoiesis by EED and promotion of leukemogenesis by EED haploinsufficiency

    PubMed Central

    Ikeda, Kenichiro; Ueda, Takeshi; Yamasaki, Norimasa; Nakata, Yuichiro; Sera, Yasuyuki; Nagamachi, Akiko; Miyama, Takahiko; Kobayashi, Hiroshi; Takubo, Keiyo; Kanai, Akinori; Oda, Hideaki; Wolff, Linda; Honda, Zen-ichiro; Ichinohe, Tatsuo; Matsubara, Akio; Suda, Toshio; Inaba, Toshiya; Honda, Hiroaki

    2016-01-01

    Polycomb repressive complex 2 (PRC2) participates in transcriptional repression through methylation of histone H3K27. The WD-repeat protein embryonic ectoderm development (EED) is a non-catalytic but an essential component of PRC2 and its mutations were identified in hematopoietic malignancies. To clarify the role(s) of EED in adult hematopoiesis and leukemogenesis, we generated Eed conditional knockout (EedΔ/Δ) mice. EedΔ/Δ mice died in a short period with rapid decrease of hematopoietic cells. Hematopoietic stem/progenitor cells (HSPCs) were markedly decreased with impaired bone marrow (BM) repopulation ability. Cell cycle analysis of HSPCs demonstrated increased S-phase fraction coupled with suppressed G0/G1 entry. Genes encoding cell adhesion molecules are significantly enriched in EedΔ/Δ HSPCs, and consistently, EedΔ/Δ HSPCs exhibited increased attachment to a major extracellular matrix component, fibronectin. Thus, EED deficiency increases proliferation on one side but promotes quiescence possibly by enhanced adhesion to the hematopoietic niche on the other, and these conflicting events would lead to abnormal differentiation and functional defect of EedΔ/Δ HSPCs. In addition, Eed haploinsufficiency induced hematopoietic dysplasia, and Eed heterozygous mice were susceptible to malignant transformation and developed leukemia in cooperation with Evi1 overexpression. Our results demonstrated differentiation stage-specific and dose-dependent roles of EED in normal hematopoiesis and leukemogenesis. PMID:27432459

  8. Long non-coding RNAs in normal and malignant hematopoiesis

    PubMed Central

    Nobili, Lucia; Lionetti, Marta; Neri, Antonino

    2016-01-01

    Long non-coding RNAs (lncRNAs) are defined as ncRNAs of more than 200 nt in length. They are involved in a large spectrum of biological processes, such as maintenance of genome integrity, genomic imprinting, cell differentiation, and development by means of mechanisms that remain to be fully elucidated. Besides their role in normal cellular physiology, accumulating evidence has linked lncRNA expression and functions to cancer development and progression. In this review, we summarize and discuss what is known about their expression and roles in hematopoiesis with a particular focus on their cell-type specificity, functional interactions, and involvement in the pathobiology of hematological malignancies. PMID:27177333

  9. Practical Murine Hematopathology: A Comparative Review and Implications for Research

    PubMed Central

    O'Connell, Karyn E; Mikkola, Amy M; Stepanek, Aaron M; Vernet, Andyna; Hall, Christopher D; Sun, Chia C; Yildirim, Eda; Staropoli, John F; Lee, Jeannie T; Brown, Diane E

    2015-01-01

    Hematologic parameters are important markers of disease in human and veterinary medicine. Biomedical research has benefited from mouse models that recapitulate such disease, thus expanding knowledge of pathogenetic mechanisms and investigative therapies that translate across species. Mice in health have many notable hematologic differences from humans and other veterinary species, including smaller erythrocytes, higher percentage of circulating reticulocytes or polychromasia, lower peripheral blood neutrophil and higher peripheral blood and bone marrow lymphocyte percentages, variable leukocyte morphologies, physiologic splenic hematopoiesis and iron storage, and more numerous and shorter-lived erythrocytes and platelets. For accurate and complete hematologic analyses of disease and response to investigative therapeutic interventions, these differences and the unique features of murine hematopathology must be understood. Here we review murine hematology and hematopathology for practical application to translational investigation. PMID:25926395

  10. Extensive double humanization of both liver and hematopoiesis in FRGN mice.

    PubMed

    Wilson, Elizabeth M; Bial, J; Tarlow, Branden; Bial, G; Jensen, B; Greiner, D L; Brehm, M A; Grompe, M

    2014-11-01

    Preclinical research in animals often fails to adequately predict the outcomes observed in human patients. Chimeric animals bearing individual human tissues have been developed to provide improved models of human-specific cellular processes. Mice transplanted with human hematopoietic stem cells can be used to study human immune responses, infections of blood cells and processes of hematopoiesis. Animals with humanized livers are useful for modeling hepatotropic infections as well as drug metabolism and hepatotoxicity. However, many pathophysiologic processes involve both the liver and the hematolymphoid system. Examples include hepatitis C/HIV co-infection, immune mediated liver diseases, liver injuries with inflammation such as steatohepatitis and alcoholic liver disease. We developed a robust protocol enabling the concurrent double-humanization of mice with mature hepatocytes and human blood. Immune-deficient, fumarylacetoacetate hydrolase (Fah(-/-)), Rag2(-/-) and Il2rg(-/-) deficient animals on the NOD-strain background (FRGN) were simultaneously co-transplanted with adult human hepatocytes and hematopoietic stem cells after busulfan and Ad:uPA pre-conditioning. Four months after transplantation the average human liver repopulation exceeded 80% and hematopoietic chimerism also was high (40-80% in bone marrow). Importantly, human macrophages (Kupffer cells) were present in the chimeric livers. Double-chimeric FRGN mice will serve as a new model for disease processes that involve interactions between hepatocytes and hematolymphoid cells.

  11. Database setup for preclinical studies of gene-modified hematopoiesis.

    PubMed

    Balcik, Brenden; Grassman, Elke; Reeves, Lilith

    2009-01-01

    Murine safety studies are routinely used for gathering preclinical safety and efficacy data and, for Phase I studies, Good Laboratory Practice (GLP) compliance is not mandated. However, extensive amounts of data must be gathered and analyzed. An inter-relational database is an effective tool for storing, sorting, and reviewing data.

  12. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms.

    PubMed

    Chalk, Alistair M; Liddicoat, Brian J J; Walkley, Carl R; Singbrant, Sofie

    2014-12-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014) in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457) provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

  13. Retroviral vector integration in post-transplant hematopoiesis in mice conditioned with either submyeloablative or ablative irradiation.

    PubMed

    Sadat, M A; Dirscherl, S; Sastry, L; Dantzer, J; Pech, N; Griffin, S; Hawkins, T; Zhao, Y; Barese, C N; Cross, S; Orazi, A; An, C; Goebel, W S; Yoder, M C; Li, X; Grez, M; Cornetta, K; Mooney, S D; Dinauer, M C

    2009-12-01

    X-linked chronic granulomatous disease (X-CGD) is an inherited immunodeficiency with absent phagocyte NADPH-oxidase activity caused by defects in the gene-encoding gp91(phox). Here, we evaluated strategies for less intensive conditioning for gene therapy of genetic blood disorders without selective advantage for gene correction, such as might be used in a human X-CGD protocol. We compared submyeloablative with ablative irradiation as conditioning in murine X-CGD, examining engraftment, oxidase activity and vector integration in mice transplanted with marrow transduced with a gamma-retroviral vector for gp91(phox) expression. The frequency of oxidase-positive neutrophils in the donor population was unexpectedly higher in many 300 cGy-conditioned mice compared with lethally irradiated recipients, as was the fraction of vector-marked donor secondary CFU-S12. Vector integration sites in marrow, spleen and secondary CFU-S12 DNA from primary recipients were enriched for cancer-associated genes, including Evi1, and integrations in or near cancer-associated genes were more frequent in marrow and secondary CFU-S12 from 300 cGy-conditioned mice compared with fully ablated mice. These findings support the concept that vector integration can confer a selection bias, and suggest that the intensity of the conditioning regimen may further influence the effects of vector integration on clonal selection in post-transplant engraftment and hematopoiesis.

  14. A multiscale model of the bone marrow and hematopoiesis

    PubMed Central

    Silva, Ariosto S; Anderson, Alexander R.A.

    2013-01-01

    The bone marrow is necessary for renewal of all hematopoietic cells and critical for maintenance of a wide range of physiologic functions. Multiple human diseases result from bone marrow dysfunction. It is also the site in which “liquid” tumors, including leukemia and multiple myeloma, develop as well as a frequent site of metastases. Understanding the complex cellular and microenvironmental interactions that govern normal bone marrow function as well as diseases and cancers of the bone marrow would be a valuable medical advance. Our goal is the development of a spatially-explicit in silico model of the bone marrow to understand both its normal function and the evolutionary dynamics that govern the emergence of bone marrow malignancy. Here we introduce a multiscale computational model of the bone marrow that incorporates three distinct spatial scales, cell, hematopoietic subunit, whole marrow. Implemented as a fixed lattice 3D cellular automaton, it reproduces the spatial characteristics of the normal bone marrow and is validated against data from the daily production of mature blood cells and response of hematopoiesis after irradiation. The major mechanisms modeled in this work are: (1) replication, specialization and migration of hematopoietic cells, (2) optimized spatial configuration of sinuses and hematopoietic compartments and, (3) intravasation of mature hematopoietic cells into sinuses. Our results, using parameter estimates from literature, recapitulates normal bone marrow function and suggest an explanation for the fractal-like structure of trabeculae and sinuses in the marrow, which would be an optimization of the hematopoietic function in order to maximize the number of mature blood cells produced daily within the volumetric restrictions of the marrow. PMID:21631151

  15. Dietary Supplementation with Probiotics Improves Hematopoiesis in Malnourished Mice

    PubMed Central

    Salva, Susana; Merino, María Cecilia; Agüero, Graciela; Gruppi, Adriana; Alvarez, Susana

    2012-01-01

    Background Lactobacillus rhamnosus CRL1505 (Lr) administered during the repletion of immunocompromised-malnourished mice improves the resistance against intestinal and respiratory infections. This effect is associated with an increase in the number and functionality of immune cells, indicating that Lr could have some influence on myeloid and lymphoid cell production and maturation. Objective This study analyzed the extent of the damage caused by malnutrition on myeloid and lymphoid cell development in the spleen and bone marrow (BM). We also evaluated the impact of immunobiotics on the recovery of hematopoiesis affected in malnourished mice. Methods Protein malnourished mice were fed on a balanced conventional diet for 7 or 14 consecutive d with or without supplemental Lr or fermented goat's milk (FGM). Malnourished mice and well-nourished mice were used as controls. Histological and flow cytometry studies were carried out in BM and spleen to study myeloid and lymphoid cells. Results Malnutrition induced quantitative alterations in spleen B and T cells; however, no alteration was observed in the ability of splenic B cells to produce immunoglobulins after challenge with LPS or CpG. The analysis of BM B cell subsets based on B220, CD24, IgM and IgD expression showed that malnutrition affected B cell development. In addition, BM myeloid cells decreased in malnourished mice. On the contrary, protein deprivation increased BM T cell number. These alterations were reverted with Lr or FGM repletion treatments since normal numbers of BM myeloid, T and B cells were observed in these groups. Conclusions Protein malnutrition significantly alters B cell development in BM. The treatment of malnourished mice with L. rhamnosus CRL1505 was able to induce a recovery of B cells that would explain its ability to increase immunity against infections. This work highlights the possibility of using immunobiotics to accelerate the recovery of lymphopoyesis in immunocompromised

  16. Inflamm-Aging of Hematopoiesis, Hematopoietic Stem Cells, and the Bone Marrow Microenvironment

    PubMed Central

    Kovtonyuk, Larisa V.; Fritsch, Kristin; Feng, Xiaomin; Manz, Markus G.; Takizawa, Hitoshi

    2016-01-01

    All hematopoietic and immune cells are continuously generated by hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) through highly organized process of stepwise lineage commitment. In the steady state, HSCs are mostly quiescent, while HPCs are actively proliferating and contributing to daily hematopoiesis. In response to hematopoietic challenges, e.g., life-threatening blood loss, infection, and inflammation, HSCs can be activated to proliferate and engage in blood formation. The HSC activation induced by hematopoietic demand is mediated by direct or indirect sensing mechanisms involving pattern recognition receptors or cytokine/chemokine receptors. In contrast to the hematopoietic challenges with obvious clinical symptoms, how the aging process, which involves low-grade chronic inflammation, impacts hematopoiesis remains undefined. Herein, we summarize recent findings pertaining to functional alternations of hematopoiesis, HSCs, and the bone marrow (BM) microenvironment during the processes of aging and inflammation and highlight some common cellular and molecular changes during the processes that influence hematopoiesis and its cells of origin, HSCs and HPCs, as well as the BM microenvironment. We also discuss how age-dependent alterations of the immune system lead to subclinical inflammatory states and how inflammatory signaling might be involved in hematopoietic aging. Our aim is to present evidence supporting the concept of “Inflamm-Aging,” or inflammation-associated aging of hematopoiesis. PMID:27895645

  17. Clonal Hematopoiesis Associated With Adverse Outcomes After Autologous Stem-Cell Transplantation for Lymphoma.

    PubMed

    Gibson, Christopher J; Lindsley, R Coleman; Tchekmedyian, Vatche; Mar, Brenton G; Shi, Jiantao; Jaiswal, Siddhartha; Bosworth, Alysia; Francisco, Liton; He, Jianbo; Bansal, Anita; Morgan, Elizabeth A; Lacasce, Ann S; Freedman, Arnold S; Fisher, David C; Jacobsen, Eric; Armand, Philippe; Alyea, Edwin P; Koreth, John; Ho, Vincent; Soiffer, Robert J; Antin, Joseph H; Ritz, Jerome; Nikiforow, Sarah; Forman, Stephen J; Michor, Franziska; Neuberg, Donna; Bhatia, Ravi; Bhatia, Smita; Ebert, Benjamin L

    2017-01-09

    Purpose Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related condition characterized by somatic mutations in the blood of otherwise healthy adults. We hypothesized that in patients undergoing autologous stem-cell transplantation (ASCT) for lymphoma, CHIP at the time of ASCT would be associated with an increased risk of myelodysplastic syndrome and acute myeloid leukemia, collectively termed therapy-related myeloid neoplasm (TMN), and other adverse outcomes. Methods We performed whole-exome sequencing on pre- and post-ASCT samples from 12 patients who developed TMN after autologous transplantation for Hodgkin lymphoma or non-Hodgkin lymphoma and targeted sequencing on cryopreserved aliquots of autologous stem-cell products from 401 patients who underwent ASCT for non-Hodgkin lymphoma between 2003 and 2010. We assessed the effect of CHIP at the time of ASCT on subsequent outcomes, including TMN, cause-specific mortality, and overall survival. Results For six of 12 patients in the exome sequencing cohort, mutations found in the TMN specimen were also detectable in the pre-ASCT specimen. In the targeted sequencing cohort, 120 patients (29.9%) had CHIP at the time of ASCT, which was associated with an increased rate of TMN (10-year cumulative incidence, 14.1% v 4.3% for those with and without CHIP, respectively; P = .002). Patients with CHIP had significantly inferior overall survival compared with those without CHIP (10-year overall survival, 30.4% v 60.9%, respectively; P < .001), including increased risk of death from TMN and cardiovascular disease. Conclusion In patients undergoing ASCT for lymphoma, CHIP at the time of transplantation is associated with inferior survival and increased risk of TMN.

  18. Aminolevulinate synthase 2 mediates erythrocyte differentiation by regulating larval globin expression during Xenopus primary hematopoiesis.

    PubMed

    Ogawa-Otomo, Asako; Kurisaki, Akira; Ito, Yuzuru

    2015-01-02

    Hemoglobin synthesis by erythrocytes continues throughout a vertebrate's lifetime. The mechanism of mammalian heme synthesis has been studied for many years; aminolevulinate synthase 2 (ALAS2), a heme synthetase, is associated with X-linked dominant protoporphyria in humans. Amphibian and mammalian blood cells differ, but little is known about amphibian embryonic hemoglobin synthesis. We investigated the function of the Xenopus alas2 gene (Xalas2) in primitive amphibian erythrocytes and found that it is first expressed in primitive erythroid cells before hemoglobin alpha 3 subunit (hba3) during primary hematopoiesis and in the posterior ventral blood islands at the tailbud stage. Xalas2 is not expressed during secondary hematopoiesis in the dorsal lateral plate. Hemoglobin was barely detectable by o-dianisidine staining and hba3 transcript levels decreased in Xalas2-knockdown embryos. These results suggest that Xalas2 might be able to synthesize hemoglobin during hematopoiesis and mediate erythrocyte differentiation by regulating hba3 expression in Xenopus laevis.

  19. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis

    PubMed Central

    Inoue, Daichi; Bradley, Robert K.; Abdel-Wahab, Omar

    2016-01-01

    Genomic analyses of the myeloid malignancies and clonal disorders of hematopoiesis that may give rise to these disorders have identified that mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are among the most common targets of somatic mutations. These spliceosomal mutations often occur in a mutually exclusive manner with one another and, in aggregate, account for the most frequent class of mutations in patients with myelodysplastic syndromes (MDSs) in particular. Although substantial progress has been made in understanding the effects of several of these mutations on splicing and splice site recognition, functional connections linking the mechanistic changes in splicing induced by these mutations to the phenotypic consequences of clonal and aberrant hematopoiesis are not yet well defined. This review describes our current understanding of the mechanistic and biological effects of spliceosomal gene mutations in MDSs as well as the regulation of splicing throughout normal hematopoiesis. PMID:27151974

  20. Active Hematopoietic Hubs in Drosophila Adults Generate Hemocytes and Contribute to Immune Response

    PubMed Central

    Ghosh, Saikat; Singh, Arashdeep; Mandal, Sudip; Mandal, Lolitika

    2015-01-01

    Summary Blood cell development in Drosophila shares significant similarities with vertebrate. The conservation ranges from biphasic mode of hematopoiesis to signaling molecules crucial for progenitor cell formation, maintenance, and differentiation. Primitive hematopoiesis in Drosophila ensues in embryonic head mesoderm, whereas definitive hematopoiesis happens in larval hematopoietic organ, the lymph gland. This organ, with the onset of pupation, ruptures to release hemocytes into circulation. It is believed that the adult lacks a hematopoietic organ and survives on the contribution of both embryonic and larval hematopoiesis. However, our studies revealed a surge of blood cell development in the dorsal abdominal hemocyte clusters of adult fly. These active hematopoietic hubs are capable of blood cell specification and can respond to bacterial challenges. The presence of progenitors and differentiated hemocytes embedded in a functional network of Laminin A and Pericardin within this hematopoietic hub projects it as a simple version of the vertebrate bone marrow. PMID:25959225

  1. Inhibitory effects of homeodomain-interacting protein kinase 2 on the aorta-gonad-mapharsen hematopoiesis

    SciTech Connect

    Ohtsu, Naoki; Nobuhisa, Ikuo; Mochita, Miyuki; Taga, Tetsuya . E-mail: taga@kaiju.medic.kumamoto-u.ac.jp

    2007-01-01

    Definitive hematopoiesis starts in the aorta-gonad-mesonephros (AGM) region of the mouse embryo. Our previous studies revealed that STAT3, a gp130 downstream transcription factor, is required for AGM hematopoiesis and that homeodomain-interacting protein kinase 2 (HIPK2) phosphorylates serine-727 of STAT3. HIPK2 is a serine/threonine kinase known to be involved in transcriptional repression and apoptosis. In the present study, we examined the role of HIPK2 in hematopoiesis in mouse embryo. HIPK2 transcripts were found in fetal hematopoietic tissues such as the mouse AGM region and fetal liver. In cultured AGM cells, HIPK2 protein was detected in adherent cells. Functional analyses of HIPK2 were carried out by introducing wild-type and mutant HIPK2 constructs into AGM cultures. Production of CD45{sup +} hematopoietic cells was suppressed by forced expression of HIPK2 in AGM cultures. This suppression required the kinase domain and nuclear localization signals of HIPK2, but the kinase activity was dispensable. HIPK2-overexpressing AGM-derived nonadherent cells did not form cobblestone-like colonies in cultures with stromal cells. Furthermore, overexpression of HIPK2 in AGM cultures impeded the expansion of CD45{sup low}c-Kit{sup +} cells, which exhibit the immature hematopoietic progenitor phenotype. These data indicate that HIPK2 plays a negative regulatory role in AGM hematopoiesis in the mouse embryo.

  2. Sympathetic neural-immune interactions regulate hematopoiesis, thermoregulation and inflammation in mammals.

    PubMed

    Madden, Kelley S

    2017-01-01

    This review will highlight recently discovered mechanisms underlying sympathetic nervous system (SNS) regulation of the immune system in hematopoiesis, thermogenesis, and inflammation. This work in mammals illuminates potential mechanisms by which the nervous and immune systems may interact in invertebrate and early vertebrate species and allow diverse organisms to thrive under varying and extreme conditions and ultimately improve survival.

  3. Versatility of stem and progenitor cells and the instructive actions of cytokines on hematopoiesis.

    PubMed

    Brown, Geoffrey; Mooney, Ciaran James; Alberti-Servera, Llucia; Muenchow, Lilly von; Toellner, Kai-Michael; Ceredig, Rhodri; Rolink, Antonius

    2015-01-01

    For many years, developing hematopoietic cells have been strictly compartmentalized into a rare population of multi-potent self-renewing hematopoietic stem cells (HSC), multi-potent hematopoietic progenitor cells (MPP) that are undergoing commitment to particular lineage fates, and recognizable precursor cells that mature towards functional blood and immune cells. A single route to each end-cell type is prescribed in the "classical" model for the architecture of hematopoiesis. Recent findings have led to the viewpoint that HSCs and MPPs are more versatile than previously thought. Underlying this are multiple routes to a particular fate and cells having clandestine fate options even when they have progressed some way along a pathway. The primary role of cytokines during hematopoiesis has long been seen to be regulation of the survival and proliferation of developing hematopoietic cells. Some cytokines now clearly have instructive actions on cell-fate decisions. All this leads to a new way of viewing hematopoiesis whereby versatile HSC and MPP are directed towards lineage outcomes via cytokine regulated cell-fate decisions. This means greater flexibility to the shaping of hematopoiesis.

  4. The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function

    PubMed Central

    Gu, Yue; Jones, Amanda E.; Yang, Wei; Liu, Shanrun; Dai, Qian; Liu, Yudong; Swindle, C. Scott; Zhou, Dewang; Zhang, Zhuo; Ryan, Thomas M.; Townes, Tim M.; Klug, Christopher A.; Chen, Dongquan; Wang, Hengbin

    2016-01-01

    Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation. PMID:26699484

  5. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    PubMed

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors.

  6. Case report and literature review: cardiac tamponade as a complication of pericardial extramedullary hematopoiesis.

    PubMed

    Mahadevan, Navin R; Morgan, Elizabeth A; Mitchell, Richard N

    2016-01-01

    Pericardial effusion can cause cardiac tamponade physiology with resultant cardiogenic shock and death. Myelofibrosis, the replacement of marrow cavity by fibrous connective tissue, is a secondary complication of a group of disorders known as myeloproliferative neoplasms, which are clonal processes characterized by abnormal proliferative growth of one or more hematopoietic lineages. One consequence of myelofibrosis is the development of hematopoiesis at other anatomic sites, most commonly the spleen and liver, a phenomenon known as extramedullary hematopoiesis (EMH). Herein we report a case of a man who died from pericardial tamponade due to a subacute pericardial effusion secondary to EMH in the pericardium in the setting of myelofibrosis. This case highlights an unusual etiology for pericardial effusion and tamponade that should be considered in cases of myelofibrosis and stimulates a discussion regarding the mechanisms and anatomic distribution of EMH.

  7. Effect of 2450 MHz microwave radiation on hematopoiesis of preganant mice

    SciTech Connect

    Galvin, M.J.; MacNichols, G.L.; McRee, D.I.

    1984-11-01

    In this study, the influence of 2450 MHz CW microwave radiation on hematopoiesis in pregnant mice was examined. Dams (mice CD-1 strain) were irradiated during Days 1-6 or 6-15 of pregnancy. The animals were irradiated for a total of 8 hr per day at an average power density of 30 mW/cm/sup 2/. Peripheral blood and bone marrow samples were obtained on Day 18 of pregnancy. The total leukocyte and differential leukocyte counts of peripheral blood samples were not affected by either exposure regimen. In addition, no effects were noted in either the erythroid or myeloid mitotic indices of bone marrow samples. Exposure of pregnant mice to microwave radiation under the conditions of these experiments had no effects on the investigated aspects of hematopoiesis.

  8. Cocaine exposure impairs multineage hematopoiesis of human hematopoietic progenitor cells mediated by the sigma-1 receptor

    PubMed Central

    Nixon, Christopher C.; Schwartz, Brandon H.; Dixit, Dhaval; Zack, Jerome A.; Vatakis, Dimitrios N.

    2015-01-01

    Prenatal exposure to cocaine is a significant source of fetal and neonatal developmental defects. While cocaine associated neurological and cardiac pathologies are well-documented, it is apparent that cocaine use has far more diverse physiological effects. It is known that in some cell types, the sigma-1 receptor mediates many of cocaine's cellular effects. Here we present a novel and concise investigation into the mechanism that underlies cocaine associated hematopoietic pathology. Indeed, this is the first examination of the effects of cocaine on hematopoiesis. We show that cocaine impairs multilineage hematopoiesis from human progenitors from multiple donors and tissue types. We go on to present the first demonstration of the expression of the sigma-1 receptor in human CD34 + human hematopoietic stem/progenitor cells. Furthermore, we demonstrate that these cocaine-induced hematopoietic defects can be reversed through sigma-1 receptor blockade. PMID:25728014

  9. Sympathoadrenergic modulation of hematopoiesis: a review of available evidence and of therapeutic perspectives

    PubMed Central

    Cosentino, Marco; Marino, Franca; Maestroni, Georges J. M.

    2015-01-01

    Innervation of the bone marrow (BM) has been described more than one century ago, however the first in vivo evidence that sympathoadrenergic fibers have a role in hematopoiesis dates back to less than 25 years ago. Evidence has since increased showing that adrenergic nerves in the BM release noradrenaline and possibly also dopamine, which act on adrenoceptors and dopaminergic receptors (DR) expressed on hematopoietic cells and affect cell survival, proliferation, migration and engraftment ability. Remarkably, dysregulation of adrenergic fibers to the BM is associated with hematopoietic disturbances and myeloproliferative disease. Several adrenergic and dopaminergic agents are already in clinical use for non-hematological indications and with a usually favorable risk-benefit profile, and are therefore potential candidates for non-conventional modulation of hematopoiesis. PMID:26300737

  10. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology.

    PubMed

    Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro

    2015-04-01

    Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2(V617F) knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera.

  11. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology

    PubMed Central

    Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K.; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro

    2015-01-01

    Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2V617F knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera. PMID:25552701

  12. Feedback signals in myelodysplastic syndromes: increased self-renewal of the malignant clone suppresses normal hematopoiesis.

    PubMed

    Walenda, Thomas; Stiehl, Thomas; Braun, Hanna; Fröbel, Julia; Ho, Anthony D; Schroeder, Thomas; Goecke, Tamme W; Rath, Björn; Germing, Ulrich; Marciniak-Czochra, Anna; Wagner, Wolfgang

    2014-04-01

    Myelodysplastic syndromes (MDS) are triggered by an aberrant hematopoietic stem cell (HSC). It is, however, unclear how this clone interferes with physiologic blood formation. In this study, we followed the hypothesis that the MDS clone impinges on feedback signals for self-renewal and differentiation and thereby suppresses normal hematopoiesis. Based on the theory that the MDS clone affects feedback signals for self-renewal and differentiation and hence suppresses normal hematopoiesis, we have developed a mathematical model to simulate different modifications in MDS-initiating cells and systemic feedback signals during disease development. These simulations revealed that the disease initiating cells must have higher self-renewal rates than normal HSCs to outcompete normal hematopoiesis. We assumed that self-renewal is the default pathway of stem and progenitor cells which is down-regulated by an increasing number of primitive cells in the bone marrow niche--including the premature MDS cells. Furthermore, the proliferative signal is up-regulated by cytopenia. Overall, our model is compatible with clinically observed MDS development, even though a single mutation scenario is unlikely for real disease progression which is usually associated with complex clonal hierarchy. For experimental validation of systemic feedback signals, we analyzed the impact of MDS patient derived serum on hematopoietic progenitor cells in vitro: in fact, MDS serum slightly increased proliferation, whereas maintenance of primitive phenotype was reduced. However, MDS serum did not significantly affect colony forming unit (CFU) frequencies indicating that regulation of self-renewal may involve local signals from the niche. Taken together, we suggest that initial mutations in MDS particularly favor aberrant high self-renewal rates. Accumulation of primitive MDS cells in the bone marrow then interferes with feedback signals for normal hematopoiesis--which then results in cytopenia.

  13. Myelopathy due to Spinal Extramedullary Hematopoiesis in a Patient with Polycythemia Vera

    PubMed Central

    Ito, Shuhei; Hosogane, Naobumi; Nagoshi, Narihito; Yagi, Mitsuru; Iwanami, Akio; Watanabe, Kota; Tsuji, Takashi; Nakamura, Masaya; Matsumoto, Morio; Ishii, Ken

    2017-01-01

    Extramedullary hematopoiesis (EMH) occasionally occurs in patients exhibiting hematological disorders with decreased hematopoietic efficacy. EMH is rarely observed in the spinal epidural space and patients are usually asymptomatic. In particular, in the patients with polycythemia vera, spinal cord compression due to EMH is extremely rare. We report a case of polycythemia vera, in which operative therapy proved to be an effective treatment for myelopathy caused by spinal EMH. PMID:28133558

  14. Fish Oil–Rich Diet Promotes Hematopoiesis and Alters Hematopoietic Niche

    PubMed Central

    Li, Xiao-ping; Cheng, Lu; Han, Mu-tian; Zhang, Miao-miao; Shao, Qi-xiang; Xu, Hua-xi

    2015-01-01

    The self-renewal and differentiation of hematopoietic stem cells (HSCs) in bone marrow are essential to replenish all blood cell types, but how this process is influenced by diet remains largely unclear. Here we show that a diet rich in fish oils promotes self-renewal of HSCs and extramedullary hematopoiesis. Chronic intake of a fish oil–rich diet increases the abundance of HSCs, alters the hematopoietic microenvironment, and, intriguingly, induces the expression of matrix metalloproteinase 12 (MMP12) in the bone marrow. Pointing to a direct effect of fish oil on MMP12 expression, omega-3 polyunsaturated fatty acids induce the expression of MMP12 in a dose-dependent manner in bone marrow cells. Importantly, down-regulation of MMP12 activity using an MMP12-specific inhibitor attenuates diet-induced myelopoiesis in both bone marrow and spleen. Thus, a fish oil–rich diet promotes hematopoiesis in the bone marrow and spleen, in part via the activity of MMP12. Taken together, these data provide new insights into diet-mediated regulation of hematopoiesis. PMID:26061726

  15. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene.

    PubMed Central

    Robb, L; Lyons, I; Li, R; Hartley, L; Köntgen, F; Harvey, R P; Metcalf, D; Begley, C G

    1995-01-01

    The scl gene encodes a basic-helix-loop-helix transcription factor which was identified through its involvement in chromosomal translocations in T-cell leukemia. To elucidate its physiological role, scl was targeted in embryonic stem cells. Mice heterozygous for the scl null mutation were intercrossed and their offspring were genotyped. Homozygous mutant (scl-/-) pups were not detected in newborn litters, and analysis at earlier time points demonstrated that scl-/- embryos were dying around embryonic day 9.5. The scl-/- embryos were pale, edematous, and markedly growth retarded after embryonic day 8.75. Histological studies showed complete absence of recognizable hematopoiesis in the yolk sac of these embryos. Early organogenesis appeared to be otherwise normal. Culture of yolk sac cells of wild-type, heterozygous, and homozygous littermates confirmed the absence of hematopoietic cells in scl-/- yolk sacs. Reverse transcription PCR was used to examine the transcripts of several genes implicated in early hematopoiesis. Transcripts of GATA-1 and PU.1 transcription factors were absent from RNA from scl-/- yolk sacs and embryos. These results implicate scl as a crucial regulator of early hematopoiesis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7624372

  16. Morphologic and GATA1 sequencing analysis of hematopoiesis in fetuses with trisomy 21.

    PubMed

    Hoeller, Sylvia; Bihl, Michel P; Tzankov, Alexandar; Chaffard, Rosemarie; Hirschmann, Petra; Miny, Peter; Kühne, Thomas; Bruder, Elisabeth

    2014-05-01

    Trisomy 21 alters fetal liver hematopoiesis and, in combination with somatic globin transcription factor 1 (GATA1) mutations, leads to development of transient myeloproliferative disease in newborns. However, little is known about the morphological hematopoietic changes caused by trisomy 21 in the fetus, and to date, the exact onset of GATA1 mutations remains uncertain. Therefore, we analyzed fetal liver hematopoiesis from second trimester pregnancies in trisomy 21 and screened for GATA1 mutations. We examined 57 formalin-fixed and paraffin-embedded fetal liver specimens (49 harboring trisomy 21 and 8 controls) by immunohistochemistry for CD34, CD61, factor VIII, and glycophorin A. GATA1 exon 2 was sequenced in fetal livers and corresponding nonhematologic tissue. Cell counts of megakaryocytes (P = .022), megakaryocytic precursors (P = .021), and erythroid precursors were higher in trisomy 21 cases. CD34-positive hematopoietic blasts showed no statistically significant differences. No mutation was detected by GATA1 exon 2 sequencing in fetal livers from 12 to 25 weeks of gestation. Our results suggest that GATA1 exon 2 mutations occur late in trisomy 21 fetal hematopoiesis. However, trisomy 21 alone provides a proliferative stimulus of fetal megakaryopoiesis and erythropoiesis. CD34-positive precursor cells are not increased in trisomy 21 fetal livers.

  17. Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics.

    PubMed

    Jaitin, Diego Adhemar; Keren-Shaul, Hadas; Elefant, Naama; Amit, Ido

    2015-02-01

    Hematopoiesis and immunity are mediated through complex interactions between multiple cell types and states. This complexity is currently addressed following a reductionist approach of characterizing cell types by a small number of cell surface molecular features and gross functions. While the introduction of global transcriptional profiling technologies enabled a more comprehensive view, heterogeneity within sampled populations remained unaddressed, obscuring the true picture of hematopoiesis and immune system function. A critical mass of technological advances in molecular biology and genomics has enabled genome-wide measurements of single cells - the fundamental unit of immunity. These new advances are expected to boost detection of less frequent cell types and fuzzy intermediate cell states, greatly expanding the resolution of current available classifications. This new era of single-cell genomics in immunology research holds great promise for further understanding of the mechanisms and circuits regulating hematopoiesis and immunity in both health and disease. In the near future, the accuracy of single-cell genomics will ultimately enable precise diagnostics and treatment of multiple hematopoietic and immune related diseases.

  18. Elk3 deficiency causes transient impairment in post-natal retinal vascular development and formation of tortuous arteries in adult murine retinae.

    PubMed

    Weinl, Christine; Wasylyk, Christine; Garcia Garrido, Marina; Sothilingam, Vithiyanjali; Beck, Susanne C; Riehle, Heidemarie; Stritt, Christine; Roux, Michel J; Seeliger, Mathias W; Wasylyk, Bohdan; Nordheim, Alfred

    2014-01-01

    Serum Response Factor (SRF) fulfills essential roles in post-natal retinal angiogenesis and adult neovascularization. These functions have been attributed to the recruitment by SRF of the cofactors Myocardin-Related Transcription Factors MRTF-A and -B, but not the Ternary Complex Factors (TCFs) Elk1 and Elk4. The role of the third TCF, Elk3, remained unknown. We generated a new Elk3 knockout mouse line and showed that Elk3 had specific, non-redundant functions in the retinal vasculature. In Elk3(-/-) mice, post-natal retinal angiogenesis was transiently delayed until P8, after which it proceeded normally. Interestingly, tortuous arteries developed in Elk3(-/-) mice from the age of four weeks, and persisted into late adulthood. Tortuous vessels have been observed in human pathologies, e.g. in ROP and FEVR. These human disorders were linked to altered activities of vascular endothelial growth factor (VEGF) in the affected eyes. However, in Elk3(-/-) mice, we did not observe any changes in VEGF or several other potential confounding factors, including mural cell coverage and blood pressure. Instead, concurrent with the post-natal transient delay of radial outgrowth and the formation of adult tortuous arteries, Elk3-dependent effects on the expression of Angiopoietin/Tie-signalling components were observed. Moreover, in vitro microvessel sprouting and microtube formation from P10 and adult aortic ring explants were reduced. Collectively, these results indicate that Elk3 has distinct roles in maintaining retinal artery integrity. The Elk3 knockout mouse is presented as a new animal model to study retinal artery tortuousity in mice and human patients.

  19. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior.

    PubMed

    Guha, Suman K; Tillu, Rucha; Sood, Ankit; Patgaonkar, Mandar; Nanavaty, Ishira N; Sengupta, Arjun; Sharma, Shobhona; Vaidya, Vidita A; Pathak, Sulabha

    2014-11-01

    Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial

  20. Murine adult neural progenitor cells alter their proliferative behavior and gene expression after the activation of Toll-like-receptor 3

    PubMed Central

    Melnik, A.; Tauber, S.; Dumrese, C.; Ullrich, O.; Wolf, S. A.

    2012-01-01

    Viral infections during pregnancy significantly increase the risk for psychological pathologies like schizophrenia in the offspring. One of the main morphological hallmarks of schizophrenia is a reduced size of the hippocampus. Since new neurons are produced in this particular brain compartment throughout life, it might be possible that low neurogenesis levels triggered by a maternal viral infection contribute to developmental deficits of the hippocampus. We injected polyinosinic:polycytidylic acid (Poly I:C) in pregnant C57Bl/6 mice to stimulate an anti-viral response through TLR3 and examined gene expressions in the neuronal progenitor cells (NPCs) of the offspring at different ages. Additionally, we treated adult NPC lines with Poly I:C to investigate its direct effect. We could show for the first time that TLR3 and its downstream effector molecule IRF3 are expressed in adult NPCs. Poly I:C treatment in vitro and in vivo led to the regulation of proliferation and genes involved in antiviral response, migration, and survival. These findings indicate that NPCs of the fetus are able to react towards an in utero immune response, and thus, changes in the neuronal stem cell pool can contribute to the development of neurological diseases like schizophrenia. PMID:24688771

  1. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta

    PubMed Central

    Panaroni, Cristina; Gioia, Roberta; Lupi, Anna; Besio, Roberta; Goldstein, Steven A.; Kreider, Jaclynn; Leikin, Sergey; Vera, Juan Carlos; Mertz, Edward L.; Perilli, Egon; Baruffaldi, Fabio; Villa, Isabella; Farina, Aurora; Casasco, Marco; Cetta, Giuseppe; Rossi, Antonio; Frattini, Annalisa; Marini, Joan C.; Vezzoni, Paolo

    2009-01-01

    Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [α1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases. PMID:19414862

  2. EphB2 and EphB3 play an important role in the lymphoid seeding of murine adult thymus.

    PubMed

    Alfaro, David; García-Ceca, Javier; Farias-de-Oliveira, Desio A; Terra-Granado, Eugenia; Montero-Herradón, Sara; Cotta-de-Almeida, Vinicius; Savino, Wilson; Zapata, Agustín

    2015-12-01

    Adult thymuses lacking either ephrin type B receptor 2 (EphB2) or EphB3, or expressing a truncated form of EphB2, the forward signal-deficient EphB2LacZ, have low numbers of early thymic progenitors (ETPs) and are colonized in vivo by reduced numbers of injected bone marrow (BM) lineage-negative (Lin(-)) cells. Hematopoietic progenitors from these EphB mutants showed decreased capacities to colonize wild type (WT) thymuses compared with WT precursors, with EphB2(-/-) cells exhibiting the greatest reduction. WT BM Lin(-) cells also showed decreased colonizing capacity into mutant thymuses. The reduction was also more severe in EphB2(-/-) host thymuses, with a less severe phenotype in the EphB2LacZ thymus. These results suggest a major function for forward signaling through EphB2 and, to a lesser extent, EphB3, in either colonizing progenitor cells or thymic stromal cells, for in vivo adult thymus recruitment. Furthermore, the altered expression of the molecules involved in thymic colonization that occurs in the mutant thymus correlates with the observed colonizing capacities of different mutant mice. Reduced production of CCL21 and CCL25 occurred in the thymus of the 3 EphB-deficient mice, but their expression, similar to that of P-selectin, on blood vessels, the method of entry of progenitor cells into the vascular thymus, only showed a significant reduction in EphB2(-/-) and EphB3(-/-) thymuses. Decreased migration into the EphB2(-/-) thymuses correlated also with reduced expression of both ephrinB1 and ephrinB2, without changes in the EphB2LacZ thymuses. In the EphB3(-/-) thymuses, only ephrinB1 expression appeared significantly diminished, confirming the relevance of forward signals mediated by the EphB2-ephrinB1 pair in cell recruitment into the adult thymus.

  3. Conditional overexpression of receptors for advanced glycation end-products in the adult murine lung causes airspace enlargement and induces inflammation.

    PubMed

    Stogsdill, Megan P; Stogsdill, Jeffrey A; Bodine, B Garrett; Fredrickson, Ali C; Sefcik, Tayler L; Wood, Tyler T; Kasteler, Stephen D; Reynolds, Paul R

    2013-07-01

    Receptors for advanced glycation end-products (RAGE) are multiligand surface receptors detected abundantly in pulmonary tissue. Our previous work revealed increased RAGE expression in cells and lungs exposed to tobacco smoke and RAGE-mediated cytokine expression via proinflammatory mechanisms involving NF-κB. RAGE expression is elevated in various pathological states, including chronic obstructive pulmonary disease; however, precise contributions of RAGE to the progression of emphysema and pulmonary inflammation in the adult lung are unknown. In the current study, we generated a RAGE transgenic (RAGE TG) mouse and conditionally induced adult alveolar epithelium to overexpress RAGE. RAGE was induced after the period of alveologenesis, from weaning (20 d of age) until animals were killed at 50, 80, and 110 days (representing 30, 60, and 90 d of RAGE overexpression). Hematoxylin and eosin staining and mean chord length revealed incremental dilation of alveolar spaces as RAGE overexpression persisted. TUNEL staining and electron microscopy confirmed increased apoptosis and blebbing of alveolar epithelium in lungs from RAGE TG mice when compared with control mice. Immunohistochemistry for matrix metalloproteinase 9 revealed an overall increase in matrix metalloproteinase 9, which correlated with decreased elastin expression in RAGE TG mice. Furthermore, RAGE TG mice manifested significant inflammation measured by elevated bronchoalveolar lavage protein, leukocyte infiltration, and secreted cytokines. These data support the concept that innovative transgenic mice that overexpress RAGE may model pulmonary inflammation and alveolar destabilization independent of tobacco smoke and validate RAGE signaling as a target pathway in the prevention or attenuation of smoke-related inflammatory lung diseases.

  4. Human and Murine Hematopoietic Stem Cell Aging Is Associated with Functional Impairments and Intrinsic Megakaryocytic/Erythroid Bias

    PubMed Central

    Rundberg Nilsson, Alexandra; Soneji, Shamit; Adolfsson, Sofia; Bryder, David; Pronk, Cornelis Jan

    2016-01-01

    Aging within the human hematopoietic system associates with various deficiencies and disease states, including anemia, myeloid neoplasms and reduced adaptive immune responses. Similar phenotypes are observed in mice and have been linked to alterations arising at the hematopoietic stem cell (HSC) level. Such an association is, however, less established in human hematopoiesis and prompted us here to detail characteristics of the most primitive human hematopoietic compartments throughout ontogeny. In addition, we also attempted to interrogate similarities between aging human and murine hematopoiesis. Coupled to the transition from human cord blood (CB) to young and aged bone marrow (BM), we observed a gradual increase in frequency of candidate HSCs. This was accompanied by functional impairments, including decreased lymphoid output and reduced proliferative potential. Downstream of human HSCs, we observed decreasing levels of common lymphoid progenitors (CLPs), and increasing frequencies of megakaryocyte/erythrocyte progenitors (MEPs) with age, which could be linked to changes in lineage-affiliated gene expression patterns in aged human HSCs. These findings were paralleled in mice. Therefore, our data support the notion that age-related changes also in human hematopoiesis involve the HSC pool, with a prominent skewing towards the megakaryocytic/erythroid lineages, and suggests conserved mechanisms underlying aging of the blood cell system. PMID:27368054

  5. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis

    PubMed Central

    Benoit, Joshua B; Vigneron, Aurélien; Broderick, Nichole A; Wu, Yineng; Sun, Jennifer S; Carlson, John R; Aksoy, Serap; Weiss, Brian L

    2017-01-01

    Symbiotic bacteria assist in maintaining homeostasis of the animal immune system. However, the molecular mechanisms that underlie symbiont-mediated host immunity are largely unknown. Tsetse flies (Glossina spp.) house maternally transmitted symbionts that regulate the development and function of their host’s immune system. Herein we demonstrate that the obligate mutualist, Wigglesworthia, up-regulates expression of odorant binding protein six in the gut of intrauterine tsetse larvae. This process is necessary and sufficient to induce systemic expression of the hematopoietic RUNX transcription factor lozenge and the subsequent production of crystal cells, which actuate the melanotic immune response in adult tsetse. Larval Drosophila’s indigenous microbiota, which is acquired from the environment, regulates an orthologous hematopoietic pathway in their host. These findings provide insight into the molecular mechanisms that underlie enteric symbiont-stimulated systemic immune system development, and indicate that these processes are evolutionarily conserved despite the divergent nature of host-symbiont interactions in these model systems. DOI: http://dx.doi.org/10.7554/eLife.19535.001 PMID:28079523

  6. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  7. Identification of Novel Targets of CSL-Dependent Notch Signaling in Hematopoiesis

    PubMed Central

    Hamidi, Habib; Gustafason, Derek; Pellegrini, Matteo; Gasson, Judith

    2011-01-01

    Somatic activating mutations in the Notch1 receptor result in the overexpression of activated Notch1, which can be tumorigenic. The goal of this study is to understand the molecular mechanisms underlying the phenotypic changes caused by the overexpression of ligand independent Notch 1 by using a tetracycline inducible promoter in an in vitro embryonic stem (ES) cells/OP9 stromal cells coculture system, recapitulating normal hematopoiesis. First, an in silico analysis of the promoters of Notch regulated genes (previously determined by microarray analysis) revealed that the motifs recognized by regulatory proteins known to mediate hematopoiesis were overrepresented. Notch 1 does not bind DNA but instead binds the CSL transcription factor to regulate gene expression. The in silico analysis also showed that there were putative CSL binding sites observed in the promoters of 28 out of 148 genes. A custom ChIP-chip array was used to assess the occupancy of CSL in the promoter regions of the Notch1 regulated genes in vivo and showed that 61 genes were bound by activated Notch responsive CSL. Then, comprehensive mapping of the CSL binding sites genome-wide using ChIP-seq analysis revealed that over 10,000 genes were bound within 10 kb of the TSS (transcription start site). The majority of the targets discovered by ChIP-seq belong to pathways that have been shown by others to crosstalk with Notch signaling. Finally, 83 miRNAs were significantly differentially expressed by greater than 1.5-fold during the course of in vitro hematopoiesis. Thirty one miRNA were up-regulated and fifty two were down-regulated. Overexpression of Notch1 altered this pattern of expression of microRNA: six miRNAs were up-regulated and four were down regulated as a result of activated Notch1 overexpression during the course of hematopoiesis. Time course analysis of hematopoietic development revealed that cells with Notch 1 overexpression mimic miRNA expression of cells in a less mature stage, which

  8. Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche.

    PubMed

    Gupta, P; Oegema, T R; Brazil, J J; Dudek, A Z; Slungaard, A; Verfaillie, C M

    1998-12-15

    Stem cell localization, conservation, and differentiation is believed to occur in niches in the marrow stromal microenvironment. Our recent observation that long-term in vitro human hematopoiesis requires a stromal heparan sulfate proteoglycan (HSPG) led us to hypothesize that such HSPG may orchestrate the formation of the stem cell niche. We compared the structure and function of HS from M2-10B4, a hematopoiesis-supportive cell line, with HS from a nonsupportive cell line, FHS-173-We. Long-term culture-initiating cell (LTC-IC) maintenance was enhanced by PG from supportive cells but not by PG from nonsupportive cells (P <.005). The supportive HS were significantly larger and more highly sulfated than the nonsupportive HS. Specifically, supportive HS contained higher 6-O-sulfation on the glucosamine residues. In agreement with these observations, purified 6-O-sulfated heparin and highly 6-O-sulfated bovine kidney HS similarly maintained LTC-IC. In contrast, completely desulfated heparin, N-sulfated heparin, and unmodified heparin did not support LTC-IC maintenance. Moreover, the supportive HS promoted LTC-IC maintenance but not differentiation of CD34(+)/HLA-DR- cells into colony-forming cells (CFCs) and mature blood cells. The supportive HS but not the nonsupportive HS bound both cytokines and matrix components critical for hematopoiesis, including interleukin-3 (IL-3), macrophage inflammatory protein-1 (MIP-1), and thrombospondin (TSP). Significantly more CD34(+) cells adhered directly to immobilized O-sulfated heparin than to N-sulfated or desulfated heparin. Thus, hematopoiesis-supportive stromal HSPG possessing large, highly 6-O-sulfated HS mediate the juxtaposition of hematopoietic progenitors with stromal cells, specific growth-promoting (IL-3) and growth-inhibitory (MIP-1 and platelet factor 4 [PF4]) cytokines, and extracellular matrix (ECM) proteins such as TSP. We conclude that the structural specificity of stromal HSPG that determines the selective

  9. Identification of novel targets of CSL-dependent Notch signaling in hematopoiesis.

    PubMed

    Hamidi, Habib; Gustafason, Derek; Pellegrini, Matteo; Gasson, Judith

    2011-01-01

    Somatic activating mutations in the Notch1 receptor result in the overexpression of activated Notch1, which can be tumorigenic. The goal of this study is to understand the molecular mechanisms underlying the phenotypic changes caused by the overexpression of ligand independent Notch 1 by using a tetracycline inducible promoter in an in vitro embryonic stem (ES) cells/OP9 stromal cells coculture system, recapitulating normal hematopoiesis. First, an in silico analysis of the promoters of Notch regulated genes (previously determined by microarray analysis) revealed that the motifs recognized by regulatory proteins known to mediate hematopoiesis were overrepresented. Notch 1 does not bind DNA but instead binds the CSL transcription factor to regulate gene expression. The in silico analysis also showed that there were putative CSL binding sites observed in the promoters of 28 out of 148 genes. A custom ChIP-chip array was used to assess the occupancy of CSL in the promoter regions of the Notch1 regulated genes in vivo and showed that 61 genes were bound by activated Notch responsive CSL. Then, comprehensive mapping of the CSL binding sites genome-wide using ChIP-seq analysis revealed that over 10,000 genes were bound within 10 kb of the TSS (transcription start site). The majority of the targets discovered by ChIP-seq belong to pathways that have been shown by others to crosstalk with Notch signaling. Finally, 83 miRNAs were significantly differentially expressed by greater than 1.5-fold during the course of in vitro hematopoiesis. Thirty one miRNA were up-regulated and fifty two were down-regulated. Overexpression of Notch1 altered this pattern of expression of microRNA: six miRNAs were up-regulated and four were down regulated as a result of activated Notch1 overexpression during the course of hematopoiesis. Time course analysis of hematopoietic development revealed that cells with Notch 1 overexpression mimic miRNA expression of cells in a less mature stage, which

  10. Conventional murine gene targeting.

    PubMed

    Zimmermann, Albert G; Sun, Yue

    2013-01-01

    Murine gene knockout models engineered over the last two decades have continued to demonstrate their potential as invaluable tools in understanding the role of gene function in the context of normal human development and disease. The more recent elucidation of the human and mouse genomes through sequencing has opened up the capability to elucidate the function of every human gene. State-of-the-art mouse model generation allows, through a multitude of experimental steps requiring careful standardization, gene function to be reliably and predictably ablated in a live model system. The application of these standardized methodologies to directly target gene function through murine gene knockout has to date provided comprehensive and verifiable genetic models that have contributed tremendously to our understanding of the cellular and molecular pathways underlying normal and disease states in humans. The ensuing chapter provides an overview of the latest steps and procedures required to ablate gene function in a murine model.

  11. Perturbed hematopoiesis in the Tc1 mouse model of Down syndrome.

    PubMed

    Alford, Kate A; Slender, Amy; Vanes, Lesley; Li, Zhe; Fisher, Elizabeth M C; Nizetic, Dean; Orkin, Stuart H; Roberts, Irene; Tybulewicz, Victor L J

    2010-04-08

    Trisomy of human chromosome 21 (Hsa21) results in Down syndrome (DS), a disorder that affects many aspects of physiology, including hematopoiesis. DS children have greatly increased rates of acute lymphoblastic leukemia and acute megakaryoblastic leukemia (AMKL); DS newborns present with transient myeloproliferative disorder (TMD), a preleukemic form of AMKL. TMD and DS-AMKL almost always carry an acquired mutation in GATA1 resulting in exclusive synthesis of a truncated protein (GATA1s), suggesting that both trisomy 21 and GATA1 mutations are required for leukemogenesis. To gain further understanding of how Hsa21 contributes to hematopoietic abnormalities, we examined the Tc1 mouse model of DS, which carries an almost complete freely segregating copy of Hsa21, and is the most complete model of DS available. We show that although Tc1 mice do not develop leukemia, they have macrocytic anemia and increased extramedullary hematopoiesis. Introduction of GATA1s into Tc1 mice resulted in a synergistic increase in megakaryopoiesis, but did not result in leukemia or a TMD-like phenotype, demonstrating that GATA1s and trisomy of approximately 80% of Hsa21 perturb megakaryopoiesis but are insufficient to induce leukemia.

  12. TC1(C8orf4) regulates hematopoietic stem/progenitor cells and hematopoiesis.

    PubMed

    Jung, Yusun; Kim, Minsung; Soh, Hyunsu; Lee, Soyoung; Kim, Jungtae; Park, Surim; Song, Kyuyoung; Lee, Inchul

    2014-01-01

    Hematopoiesis is a complex process requiring multiple regulators for hematopoietic stem/progenitor cells (HSPC) and differentiation to multi-lineage blood cells. TC1(C8orf4) is implicated in cancers, hematological malignancies and inflammatory activation. Here, we report that Tc1 regulates hematopoiesis in mice. Myeloid and lymphoid cells are increased markedly in peripheral blood of Tc1-deleted mice compared to wild type controls. Red blood cells are small-sized but increased in number. The bone marrow of Tc1-/- mice is normocellular histologically. However, Lin-Sca-1+c-Kit+ (LSK) cells are expanded in Tc1-/- mice compared to wild type controls. The expanded population mostly consists of CD150-CD48+ cells, suggesting the expansion of lineage-restricted hematopoietic progenitor cells. Colony forming units (CFU) are increased in Tc1-/- mice bone marrow cells compared to controls. In wild type mice bone marrow, Tc1 is expressed in a limited population of HSPC but not in differentiated cells. Major myeloid transcriptional regulators such as Pu.1 and Cebpα are not up-regulated in Tc1-/- mice bone marrow. Our findings indicate that TC1 is a novel hematopoietic regulator. The mechanisms of TC1-dependent HSPC regulation and lineage determination are unknown.

  13. The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis

    PubMed Central

    Smeets, Monique F.; DeLuca, Elisabetta; Wall, Meaghan; Quach, Julie M.; Chalk, Alistair M.; Deans, Andrew J.; Heierhorst, Jörg; Purton, Louise E.; Izon, David J.; Walkley, Carl R.

    2014-01-01

    Mutations within the gene encoding the DNA helicase RECQL4 underlie the autosomal recessive cancer-predisposition disorder Rothmund-Thomson syndrome, though it is unclear how these mutations lead to disease. Here, we demonstrated that somatic deletion of Recql4 causes a rapid bone marrow failure in mice that involves cells from across the myeloid, lymphoid, and, most profoundly, erythroid lineages. Apoptosis was markedly elevated in multipotent progenitors lacking RECQL4 compared with WT cells. While the stem cell compartment was relatively spared in RECQL4-deficent mice, HSCs from these animals were not transplantable and even selected against. The requirement for RECQL4 was intrinsic in hematopoietic cells, and loss of RECQL4 in these cells was associated with increased replicative DNA damage and failed cell-cycle progression. Concurrent deletion of p53, which rescues loss of function in animals lacking the related helicase BLM, did not rescue BM phenotypes in RECQL4-deficient animals. In contrast, hematopoietic defects in cells from Recql4Δ/Δ mice were fully rescued by a RECQL4 variant without RecQ helicase activity, demonstrating that RECQL4 maintains hematopoiesis independently of helicase activity. Together, our data indicate that RECQL4 participates in DNA replication rather than genome stability and identify RECQL4 as a regulator of hematopoiesis with a nonredundant role compared with other RecQ helicases. PMID:24960165

  14. Hematopoiesis toxicity induced by 4-methylumbelliferon determined in an invertebrate model organism.

    PubMed

    Fang, Yan; He, Yue; Wang, Hua; Yan, Siqi; Xing, Rui; Yin, Weimin; Sima, Yanghu; Xu, Shiqing

    2016-01-01

    Umbelliferone has potential value as it has an inhibitory effect on tumor cells; however, its impact on an animal's circulatory system and hematopoietic function has not been reported. In this study, 4-methylumbelliferon (4-MU), an umbelliferone derivative, was used as a model drug, and its potential toxicity on hemocytes and hematopoietic organs (HOs) was investigated using an invertebrate animal model, the silkworm, Bombyx mori. The results showed that the level of reactive oxygen species in HOs increased when larvae (third day of the fifth instar) were orally exposed to 4 mM 4-MU for 8 min, followed by the induction of improved antioxidative metabolism of coenzymes in hemolymph. Exposure to 4-MU also significantly upregulated the expression levels of several genes in the hemolymph and fat body (a detoxification tissue similar to the liver in mammals) including antimicrobial peptide gene cecropinA and moricin, and a phagocytosis-related gene, tetraspanin E, suggesting an increased antioxidant level and antimicrobial ability of the circulatory system. However, the percentage of dead hemocytes increased and hematopoiesis significantly decreased in HOs, indicating the toxic effect of 4-MU on hemocytes and hematopoiesis, despite it inducing enhanced antioxidant and antimicrobial activity in the circulatory system.

  15. TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis

    PubMed Central

    Gao, Lei; Li, Dantong; Ma, Ke; Zhang, Wenjuan; Xu, Tao; Fu, Cong; Jing, Changbin; Jia, Xiaoe; Wu, Shuang; Sun, Xin; Dong, Mei; Deng, Min; Chen, Yi; Zhu, Wenge; Peng, Jinrong; Wan, Fengyi; Zhou, Yi; Zon, Leonard I.; Pan, Weijun

    2015-01-01

    In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion. PMID:26131719

  16. Arrested Hematopoiesis and Vascular Relaxation Defects in Mice with a Mutation in Dhfr

    PubMed Central

    Thoms, Julie A. I.; Knezevic, Kathy; Liu, Jia Jenny; Glaros, Elias N.; Thai, Thuan; Qiao, Qiao; Campbell, Heather; Packham, Deborah; Huang, Yizhou; Papathanasiou, Peter; Tunningley, Robert; Whittle, Belinda; Yeung, Amanda W. S.; Chandrakanthan, Vashe; Hesson, Luke; Chen, Vivien; Wong, Jason W. H.; Purton, Louise E.; Ward, Robyn L.

    2016-01-01

    Dihydrofolate reductase (DHFR) is a critical enzyme in the folate metabolism pathway and also plays a role in regulating nitric oxide (NO) signaling in endothelial cells. Although both coding and noncoding mutations with phenotypic effects have been identified in the human DHFR gene, no mouse model is currently available to study the consequences of perturbing DHFR in vivo. In order to identify genes involved in definitive hematopoiesis, we performed a forward genetic screen and produced a mouse line, here referred to as Orana, with a point mutation in the Dhfr locus leading to a Thr136Ala substitution in the DHFR protein. Homozygote Orana mice initiate definitive hematopoiesis, but expansion of progenitors in the fetal liver is compromised, and the animals die between embryonic day 13.5 (E13.5) and E14.5. Heterozygote Orana mice survive to adulthood but have tissue-specific alterations in folate abundance and distribution, perturbed stress erythropoiesis, and impaired endothelium-dependent relaxation of the aorta consistent with the role of DHFR in regulating NO signaling. Orana mice provide insight into the dual roles of DHFR and are a useful model for investigating the role of environmental and dietary factors in the context of vascular defects caused by altered NO signaling. PMID:26830229

  17. Multiple allogeneic progenitors in combination function as a unit to support early transient hematopoiesis in transplantation

    PubMed Central

    Takahashi, Satoshi; Lai, Chen-Yi; Nojima, Masanori; Yamamoto, Ryo; Takeuchi, Yasuo; Higashihara, Masaaki; Nakauchi, Hiromitsu

    2016-01-01

    Cord blood (CB) is a valuable donor source in hematopoietic cell transplantation. However, the initial time to engraftment in CB transplantation (CBT) is often delayed because of low graft cell numbers. This limits the use of CB. To overcome this cell dose barrier, we modeled an insufficient dose CBT setting in lethally irradiated mice and then added hematopoietic stem/progenitor cells (HSCs/HPCs; HSPCs) derived from four mouse allogeneic strains. The mixture of HSPCs rescued recipients and significantly accelerated hematopoietic recovery. Including T cells from one strain favored single-donor chimerism through graft versus graft reactions, with early hematopoietic recovery unaffected. Furthermore, using clinically relevant procedures, we successfully isolated a mixture of CD34+ cells from multiple frozen CB units at one time regardless of HLA-type disparities. These CD34+ cells in combination proved transplantable into immunodeficient mice. This work provides proof of concept that when circumstances require support of hematopoiesis, combined multiple units of allogeneic HSPCs are capable of early hematopoietic reconstitution while allowing single-donor hematopoiesis by a principal graft. PMID:27503070

  18. Lentiviral-mediated RNAi inhibition of Sbds in murine hematopoietic progenitors impairs their hematopoietic potential

    PubMed Central

    Rawls, Amy S.; Gregory, Alyssa D.; Woloszynek, Jill R.; Liu, Fulu

    2007-01-01

    Shwachman-Diamond syndrome (SDS) is a rare multisystem disorder characterized by exocrine pancreatic insufficiency, multilineage hematopoietic dysfunction, and metaphyseal chondrodysplasia. Bone marrow dysfunction is present in nearly all patients with SDS, with neutropenia being the most common abnormality. The majority of patients with SDS have mutations in the Shwachman Bodian Diamond syndrome (SBDS) gene. We have developed a strategy to examine the consequences of lentiviral-mediated RNA interference (RNAi) of Sbds on hematopoiesis. Here, we report that both Sbds RNA and protein expression can be efficiently inhibited in primary murine hematopoietic cells using lentiviral-mediated RNAi. Inhibition of Sbds results in a defect in granulocytic differentiation in vitro and impairs myeloid progenitor generation in vivo. In addition, short-term hematopoietic engraftment was impaired, which is due in part to reduced homing of hematopoietic progenitors to the bone marrow. Finally, we show that inhibition of Sbds is associated with a decrease in circulating B lymphocytes, despite evidence of normal B lymphopoiesis. These data provide the first evidence that loss of Sbds is sufficient to induce abnormalities in hematopoiesis. PMID:17638857

  19. Hematopoietic Stem/Progenitor Cells Express Several Functional Sex Hormone Receptors—Novel Evidence for a Potential Developmental Link Between Hematopoiesis and Primordial Germ Cells

    PubMed Central

    Mierzejewska, Katarzyna; Borkowska, Sylwia; Suszynska, Ewa; Suszynska, Malwina; Poniewierska-Baran, Agata; Maj, Magda; Pedziwiatr, Daniel; Adamiak, Mateusz; Abdel-Latif, Ahmed; Kakar, Sham S.; Ratajczak, Janina; Kucia, Magda

    2015-01-01

    Evidence has accumulated that hematopoietic stem progenitor cells (HSPCs) share several markers with the germline, a connection supported by reports that prolactin, androgens, and estrogens stimulate hematopoiesis. To address this issue more directly, we tested the expression of receptors for pituitary-derived hormones, such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), on purified murine bone marrow (BM) cells enriched for HSPCs and tested the functionality of these receptors in ex vivo signal transduction studies and in vitro clonogenic assays. We also tested whether administration of pituitary- and gonad-derived sex hormones (SexHs) increases incorporation of bromodeoxyuridine (BrdU) into HSPCs and expansion of hematopoietic clonogenic progenitors in mice and promotes recovery of blood counts in sublethally irradiated animals. We report for the first time that HSPCs express functional FSH and LH receptors and that both proliferate in vivo and in vitro in response to stimulation by pituitary SexHs. Furthermore, based on our observations that at least some of CD45− very small embryonic-like stem cells (VSELs) may become specified into CD45+ HSPCs, we also evaluated the expression of pituitary and gonadal SexHs receptors on these cells and tested whether these quiescent cells may expand in vivo in response to SexHs administration. We found that VSELs express SexHs receptors and respond in vivo to SexHs stimulation, as evidenced by BrdU accumulation. Since at least some VSELs share several markers characteristic of migrating primordial germ cells and can be specified into HSPCs, this observation sheds new light on the BM stem cell hierarchy. PMID:25607657

  20. Spinal Cord Compression Secondary to Extramedullary Hematopoiesis: Case Report and Review of the Literature

    PubMed Central

    Wang, Arthur; Carberry, Nathan; Solli, Elena; Gillick, John; Islam, Humayun; Hillard, Virany

    2016-01-01

    Extramedullary hematopoiesis (EMH) is a rare cause of spinal cord compression (SCC). EMH represents the growth of blood cells outside of the bone marrow and occurs in a variety of hematologic illnesses, including various types of anemia and myeloproliferative disorders. Although EMH usually occurs in the liver, spleen, and lymph nodes, it may also occur within the spinal canal. When this occurs, the mass effect can compress the spinal cord, potentially leading to the development of neurological deficits. We present a case of SCC secondary to EMH. This report illustrates the importance of considering EMH in the differential diagnosis of SCC, even in the absence of signs of its most common etiologies. PMID:27462228

  1. Postnatal Hematopoiesis and Gut Microbiota in NOD Mice Deviate from C57BL/6 Mice

    PubMed Central

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Hasselby, Jane Preuss; Wiese, Maria; Lundsager, Mia; Buschard, Karsten Stig; Hansen, Axel Kornerup; Frøkiær, Hanne

    2016-01-01

    Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND) 1–4 in NOD mice. Furthermore, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface in NOD compared to C57BL/6 mice. PMID:26783537

  2. Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis.

    PubMed

    Pina, Cristina; Teles, José; Fugazza, Cristina; May, Gillian; Wang, Dapeng; Guo, Yanping; Soneji, Shamit; Brown, John; Edén, Patrik; Ohlsson, Mattias; Peterson, Carsten; Enver, Tariq

    2015-06-16

    We explore cell heterogeneity during spontaneous and transcription-factor-driven commitment for network inference in hematopoiesis. Since individual genes display discrete OFF states or a distribution of ON levels, we compute and combine pairwise gene associations from binary and continuous components of gene expression in single cells. Ddit3 emerges as a regulatory node with positive linkage to erythroid regulators and negative association with myeloid determinants. Ddit3 loss impairs erythroid colony output from multipotent cells, while forcing Ddit3 in granulo-monocytic progenitors (GMPs) enhances self-renewal and impedes differentiation. Network analysis of Ddit3-transduced GMPs reveals uncoupling of myeloid networks and strengthening of erythroid linkages. RNA sequencing suggests that Ddit3 acts through development or stabilization of a precursor upstream of GMPs with inherent Meg-E potential. The enrichment of Gata2 target genes in Ddit3-dependent transcriptional responses suggests that Ddit3 functions in an erythroid transcriptional network nucleated by Gata2.

  3. Mitotic History Reveals Distinct Stem Cell Populations and Their Contributions to Hematopoiesis.

    PubMed

    Säwén, Petter; Lang, Stefan; Mandal, Pankaj; Rossi, Derrick J; Soneji, Shamit; Bryder, David

    2016-03-29

    Homeostasis of short-lived blood cells is dependent on rapid proliferation of immature precursors. Using a conditional histone 2B-mCherry-labeling mouse model, we characterize hematopoietic stem cell (HSC) and progenitor proliferation dynamics in steady state and following several types of induced stress. HSC proliferation following HSC transplantation into lethally irradiated mice is fundamentally different not only from native hematopoiesis but also from other stress contexts. Whereas transplantation promoted sustained, long-term proliferation of HSCs, both cytokine-induced mobilization and acute depletion of selected blood cell lineages elicited very limited recruitment of HSCs to the proliferative pool. By coupling mCherry-based analysis of proliferation history with multiplex gene expression analyses on single cells, we have found that HSCs can be stratified into four distinct subtypes. These subtypes have distinct molecular signatures and differ significantly in their reconstitution potentials, showcasing the power of tracking proliferation history when resolving functional heterogeneity of HSCs.

  4. The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer

    PubMed Central

    2012-01-01

    MicroRNA (miRs) represent a class of small non-coding regulatory RNAs playing a major role in the control of gene expression by repressing protein synthesis at the post-transcriptional level. Studies carried out during the last years have shown that some miRNAs plays a key role in the control of normal and malignant hgematopoiesis. In this review we focus on recent progress in analyzing the functional role of miR-146a in the control of normal and malignant hematopoiesis. On the other hand, this miRNA has shown to impact in the control of innate immune responses. Finally, many recent studies indicate a deregulation of miR-146 in many solid tumors and gene knockout studies indicate a role for this miRNA as a tumor suppressor. PMID:22453030

  5. Cocaine exposure impairs multilineage hematopoiesis of human hematopoietic progenitor cells mediated by the sigma-1 receptor [corrected].

    PubMed

    Nixon, Christopher C; Schwartz, Brandon H; Dixit, Dhaval; Zack, Jerome A; Vatakis, Dimitrios N

    2015-03-02

    Prenatal exposure to cocaine is a significant source of fetal and neonatal developmental defects. While cocaine associated neurological and cardiac pathologies are well-documented, it is apparent that cocaine use has far more diverse physiological effects. It is known that in some cell types, the sigma-1 receptor mediates many of cocaine's cellular effects. Here we present a novel and concise investigation into the mechanism that underlies cocaine associated hematopoietic pathology. Indeed, this is the first examination of the effects of cocaine on hematopoiesis. We show that cocaine impairs multilineage hematopoiesis from human progenitors from multiple donors and tissue types. We go on to present the first demonstration of the expression of the sigma-1 receptor in human CD34 + human hematopoietic stem/progenitor cells. Furthermore, we demonstrate that these cocaine-induced hematopoietic defects can be reversed through sigma-1 receptor blockade.

  6. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    SciTech Connect

    Libregts, Sten F.W.M.; Nolte, Martijn A.

    2014-12-10

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.

  7. Impact of Viral Infections on Hematopoiesis: From Beneficial to Detrimental Effects on Bone Marrow Output

    PubMed Central

    Pascutti, Maria Fernanda; Erkelens, Martje N.; Nolte, Martijn A.

    2016-01-01

    The ability of the bone marrow (BM) to generate copious amounts of blood cells required on a daily basis depends on a highly orchestrated process of proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs). This process can be rapidly adapted under stress conditions, such as infections, to meet the specific cellular needs of the immune response and the ensuing physiological changes. This requires a tight regulation in order to prevent either hematopoietic failure or transformation. Although adaptation to bacterial infections or systemic inflammation has been studied and reviewed in depth, specific alterations of hematopoiesis to viral infections have received less attention so far. Viruses constantly pose a significant health risk and demand an adequate, balanced response from our immune system, which also affects the BM. In fact, both the virus itself and the ensuing immune response can have a tremendous impact on the hematopoietic process. On one hand, this can be beneficial: it helps to boost the cellular response of the body to resolve the viral infection. But on the other hand, when the virus and the resulting antiviral response persist, the inflammatory feedback to the hematopoietic system will become chronic, which can be detrimental for a balanced BM output. Chronic viral infections frequently have clinical manifestations at the level of blood cell formation, and we summarize which viruses can lead to BM pathologies, like aplastic anemia, pancytopenia, hemophagocytic lymphohistiocytosis, lymphoproliferative disorders, and malignancies. Regarding the underlying mechanisms, we address specific effects of acute and chronic viral infections on blood cell production. As such, we distinguish four different levels in which this can occur: (1) direct viral infection of HSPCs, (2) viral recognition by HSPCs, (3) indirect effects on HSPCs by inflammatory mediators, and (4) the role of the BM microenvironment on hematopoiesis upon virus

  8. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms

    PubMed Central

    Hinds, David A.; Barnholt, Kimberly E.; Mesa, Ruben A.; Kiefer, Amy K.; Do, Chuong B.; Eriksson, Nicholas; Mountain, Joanna L.; Francke, Uta; Tung, Joyce Y.; Nguyen, Huong (Marie); Zhang, Haiyu; Gojenola, Linda; Zehnder, James L.

    2016-01-01

    We conducted a genome-wide association study (GWAS) to identify novel predisposition alleles associated with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) and JAK2 V617F clonal hematopoiesis in the general population. We recruited a web-based cohort of 726 individuals with polycythemia vera, essential thrombocythemia, and myelofibrosis and 252 637 population controls unselected for hematologic phenotypes. Using a single-nucleotide polymorphism (SNP) array platform with custom probes for the JAK2 V617F mutation (V617F), we identified 497 individuals (0.2%) among the population controls who were V617F carriers. We performed a combined GWAS of the MPN cases plus V617F carriers in the control population (n = 1223) vs the remaining controls who were noncarriers for V617F (n = 252 140). For these MPN cases plus V617F carriers, we replicated the germ line JAK2 46/1 haplotype (rs59384377: odds ratio [OR] = 2.4, P = 6.6 × 10−89), previously associated with V617F-positive MPN. We also identified genome-wide significant associations in the TERT gene (rs7705526: OR = 1.8, P = 1.1 × 10−32), in SH2B3 (rs7310615: OR = 1.4, P = 3.1 × 10−14), and upstream of TET2 (rs1548483: OR = 2.0, P = 2.0 × 10−9). These associations were confirmed in a separate replication cohort of 446 V617F carriers vs 169 021 noncarriers. In a joint analysis of the combined GWAS and replication results, we identified additional genome-wide significant predisposition alleles associated with CHEK2, ATM, PINT, and GFI1B. All SNP ORs were similar for MPN patients and controls who were V617F carriers. These data indicate that the same germ line variants endow individuals with a predisposition not only to MPN, but also to JAK2 V617F clonal hematopoiesis, a more common phenomenon that may foreshadow the development of an overt neoplasm. PMID:27365426

  9. Modulation of hematopoiesis via alpha 1-adrenergic receptors on bone marrow cells.

    PubMed

    Maestroni, G J; Conti, A

    1994-03-01

    We have recently demonstrated that adrenergic agents can affect hematopoiesis after syngeneic bone marrow transplantation in mice. In particular, chemical sympathectomy by 6-hydroxydopamine (6-OHDA) and/or administration of the alpha 1-adrenergic antagonist prazosin were shown to increase the concentration of blood granulocytes, platelets, and bone marrow colony-forming units-granulocyte/macrophage (CFU-GM), and to induce a granulocytic hyperplasia of the spleen. Here we show that prazosin can also enhance myelopoiesis and platelet formation in normal mice. Furthermore, noradrenaline and the alpha 1-adrenergic agonist methoxamine could directly inhibit the in vitro growth of GM-CFU. The effect of noradrenaline was counteracted by prazosin and by other alpha-adrenergic antagonists such as phentolamine and yohimbine, in the following order of potency: prazosin > phentolamine > yohimbine. In line with these results, we were able to demonstrate that 3H-prazosin binds specifically to both bone marrow cell membranes and intact bone marrow cells. Scatchard analysis of the binding to intact cells revealed the presence of two binding sites. A kd of 0.98 +/- 0.32 nM and a B max of 5 +/- 2.9 fM/2 x 10(6) cells characterized the higher affinity site, while the lower affinity site displayed a kd of 55.9 +/- 8.2 nM and a B max of 44 +/- 7.7 fM/mg protein. These saturation studies, together with competition experiments to evaluate the ability of various adrenergic compounds to displace 3H-prazosin binding, classified the higher affinity site as an alpha 1-adrenergic receptor. The remaining low affinity binding site remains to be characterized. Furthermore, separation of bone marrow cells by counterflow centrifugal elutriation (CCE) showed that the high-affinity binding is due to a lymphoid/stem cell fraction with no blasts and no GM-CFU progenitors. The low-affinity site was apparent on the rotor-off fraction, which was enriched with GM-CFU progenitor cells. These findings

  10. Expression profile analysis of aorta-gonad-mesonephros region-derived stromal cells reveals genes that regulate hematopoiesis

    SciTech Connect

    Nagao, Kenji; Ohta, Takayuki; Hinohara, Atsushi; Tahara, Tomoyuki; Hagiwara, Tetsuya; Maeda, Yoshitake; Yoneya, Takashi; Sohma, Yoshiaki; Heike, Toshio; Nakahata, Tatsutoshi; Inagaki, Yoshimasa Nishikawa, Mitsuo

    2008-12-05

    The aorta-gonad-mesonephros (AGM) region is involved in the generation and maintenance of the first definitive hematopoietic stem cells (HSCs). A mouse AGM-derived cell line, AGM-S3, was shown to support the development of HSCs. To elucidate the molecular mechanisms regulating early hematopoiesis, we obtained subclones from AGM-S3, one of which was hematopoiesis supportive (S3-A9) and the other one of which was non-supportive (S3-A7), and we analyzed their gene expression profiles by gene chip analysis. In the present study, we found that Glypican-1 (GPC1) was highly expressed in the supportive subclone AGM-S3-A9. Over-expression of GPC1 in non-supportive cells led to the proliferation of progenitor cells in human cord blood when cocultured with the transfected-stromal cells. Thus, GPC1 may have an important role in the establishment of a microenvironment that supports early events in hematopoiesis.

  11. Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies.

    PubMed

    Priddle, Helen; Jones, D Rhodri E; Burridge, Paul W; Patient, Roger

    2006-04-01

    The multipotency and proliferative capacity of human embryonic stem cells (hESCs) make them a promising source of stem cells for transplant therapies and of vital importance given the shortage in organ donation. Recent studies suggest some immune privilege associated with hESC-derived tissues. However, the adaptability of the immune system makes it unlikely that fully differentiated tissues will permanently evade immune rejection. One promising solution is to induce a state of immune tolerance to a hESC line using tolerogenic hematopoietic cells derived from it. This could provide acceptance of other differentiated tissues from the same line. However, this approach will require efficient multilineage hematopoiesis from hESCs. This review proposes that more efficient differentiation of hESCs to the tolerogenic cell types required is most likely to occur through applying knowledge gained of the ontogeny of complex regulatory signals used by the embryo for definitive hematopoietic development in vivo. Stepwise formation of mesoderm, induction of definitive hematopoietic stem cells, and the application of factors key to their self-renewal may improve in vitro production both quantitatively and qualitatively.

  12. Embryonic Hematopoietic Progenitor Cells Reside in Muscle before Bone Marrow Hematopoiesis.

    PubMed

    Tanaka, Yuka; Inoue-Yokoo, Tomoko; Kulkeaw, Kasem; Yanagi-Mizuochi, Chiyo; Shirasawa, Senji; Nakanishi, Yoichi; Sugiyama, Daisuke

    2015-01-01

    In mice, hematopoietic cells home to bone marrow from fetal liver prenatally. To elucidate mechanisms underlying homing, we performed immunohistochemistry with the hematopoietic cell marker c-Kit, and observed c-Kit(+) cells localized inside muscle surrounding bone after 14.5 days post coitum. Flow cytometric analysis showed that CD45(+) c-Kit(+) hematopoietic cells were more abundant in muscle than in bone marrow between 14.5 and 17.5 days post coitum, peaking at 16.5 days post coitum. CD45(+) c-Kit(+) cells in muscle at 16.5 days post coitum exhibited higher expression of Gata2, among several hematopoietic genes, than did fetal liver or bone marrow cells. Colony formation assays revealed that muscle hematopoietic cells possess hematopoietic progenitor activity. Furthermore, exo utero transplantation revealed that fetal liver hematopoietic progenitor cells home to muscle and then to BM. Our findings demonstrate that hematopoietic progenitor cell homing occurs earlier than previously reported and that hematopoietic progenitor cells reside in muscle tissue before bone marrow hematopoiesis occurs during mouse embryogenesis.

  13. Adenosine A(3) receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Vacek, Antonín; Streitová, Denisa

    2007-07-01

    The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions.

  14. Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis

    PubMed Central

    Viny, Aaron D.; Ott, Christopher J.; Spitzer, Barbara; Rivas, Martin; Meydan, Cem; Papalexi, Efthymia; Yelin, Dana; Shank, Kaitlyn; Reyes, Jaime; Chiu, April; Romin, Yevgeniy; Boyko, Vitaly; Thota, Swapna; Maciejewski, Jaroslaw P.; Melnick, Ari

    2015-01-01

    Cohesin complex members have recently been identified as putative tumor suppressors in hematologic and epithelial malignancies. The cohesin complex guides chromosome segregation; however, cohesin mutant leukemias do not show genomic instability. We hypothesized that reduced cohesin function alters chromatin structure and disrupts cis-regulatory architecture of hematopoietic progenitors. We investigated the consequences of Smc3 deletion in normal and malignant hematopoiesis. Biallelic Smc3 loss induced bone marrow aplasia with premature sister chromatid separation and revealed an absolute requirement for cohesin in hematopoietic stem cell (HSC) function. In contrast, Smc3 haploinsufficiency increased self-renewal in vitro and in vivo, including competitive transplantation. Smc3 haploinsufficiency reduced coordinated transcriptional output, including reduced expression of transcription factors and other genes associated with lineage commitment. Smc3 haploinsufficiency cooperated with Flt3-ITD to induce acute leukemia in vivo, with potentiated Stat5 signaling and altered nucleolar topology. These data establish a dose dependency for cohesin in regulating chromatin structure and HSC function. PMID:26438361

  15. CD137 ligand reverse signaling skews hematopoiesis towards myelopoiesis during aging.

    PubMed

    Tang, Qianqiao; Koh, Liang Kai; Jiang, Dongsheng; Schwarz, Herbert

    2013-09-01

    CD137 is a costimulatory molecule expressed on activated T cells. Its ligand, CD137L, is expressed on the surface of hematopoietic progenitor cells, and upon binding to CD137 induces reverse signaling into hematopoietic progenitor cells promoting their activation, proliferation and myeloid differentiation. Since aging is associated with an increasing number of myeloid cells we investigated the role of CD137 and CD137L on myelopoiesis during aging. Comparing 3 and 12 months old WT, CD137‐/‐ and CD137L‐/‐ mice we found significantly more granulocytes and monocytes in the bone marrow of older WT mice, while this age‐dependent increase was absent in CD137‐/‐ and CD137L‐/‐ mice. Instead, the bone marrow of 12 months old CD137‐/‐ and CD137L‐/‐ mice was characterized by an accumulation of hematopoietic progenitor cells, suggesting that the differentiation of hematopoietic progenitor cells became arrested in the absence of CD137L signaling. CD137L signaling is initiated by activated CD137‐expressing, CD4+ T cells. These data identify a novel molecular mechanisms underlying immune aging by demonstrating that CD137‐expressing CD4+ T cells in the bone marrow engage CD137L on hematopoietic progenitor cells, and that this CD137L signaling biases hematopoiesis towards myelopoiesis during aging.

  16. Beyond Hox: the role of ParaHox genes in normal and malignant hematopoiesis.

    PubMed

    Rawat, Vijay P S; Humphries, R Keith; Buske, Christian

    2012-07-19

    During the past decade it was recognized that homeobox gene families such as the clustered Hox genes play pivotal roles both in normal and malignant hematopoiesis. More recently, similar roles have also become apparent for members of the ParaHox gene cluster, evolutionarily closely related to the Hox gene cluster. This is in particular found for the caudal-type homeobox genes (Cdx) genes, known to act as upstream regulators of Hox genes. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. Correlative studies indicate that CDX2 functions as master regulator of perturbed HOX gene expression in human acute myeloid leukemia, locating this ParaHox gene at a central position for initiating and maintaining HOX gene dysregulation as a driving leukemogenic force. There are still few data about potential upstream regulators initiating aberrant CDX2 expression in human leukemias or about critical downstream targets of CDX2 in leukemic cells. Characterizing this network will hopefully open the way to therapeutic approaches that target deregulated ParaHox genes in human leukemia.

  17. Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish

    PubMed Central

    Garcia, Elaine G.; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C.; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C.; Garcia, Amaris J.; Mylvaganam, Ravi; Yoder, Jeffrey A.; Blackburn, Jessica S.; Sadreyev, Ruslan I.; Ceol, Craig J.; North, Trista E.

    2016-01-01

    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. PMID:27139488

  18. Leptin in chronic kidney disease: a link between hematopoiesis, bone metabolism, and nutrition.

    PubMed

    Zhang, Jingjing; Wang, Ningning

    2014-06-01

    Anemia, dyslipidemia, malnutrition, together with mineral and bone disorders are common complications in patients with chronic kidney disease (CKD). All are associated with increased risk of mortality. Leptin is a small peptide hormone that is mainly but not exclusively produced in adipose tissue. It is also secreted by normal human osteoblasts, subchondral osteoblasts, placental syncytiotrophoblasts, and the gastric epithelium. Leptin binds to its receptors in the hypothalamus to regulate bone metabolism and food intake. Leptin also has several other important metabolic effects on peripheral tissues, including the liver, skeletal muscle, and bone marrow. Leptin is cleared principally by the kidney. Not surprisingly, serum leptin appears to increase concurrently with declines in the glomerular filtration rate in patients with CKD. A growing body of evidence suggests that leptin might be closely related to hematopoiesis, nutrition, and bone metabolism in CKD patients. Results are conflicting regarding leptin in patients with CKD, in whom both beneficial and detrimental effects on uremia outcome are found. This review elucidates the discovery of leptin and its receptors, changes in serum or plasma leptin levels, the functions of leptin, relationships between leptin and the complications mentioned above, and pharmaceutical interventions in serum leptin levels in patients with CKD.

  19. Parp-2 is required to maintain hematopoiesis following sublethal γ-irradiation in mice.

    PubMed

    Farrés, Jordi; Martín-Caballero, Juan; Martínez, Carlos; Lozano, Juan J; Llacuna, Laura; Ampurdanés, Coral; Ruiz-Herguido, Cristina; Dantzer, Françoise; Schreiber, Valérie; Villunger, Andreas; Bigas, Anna; Yélamos, José

    2013-07-04

    Hematopoietic stem cells self-renew for life to guarantee the continuous supply of all blood cell lineages. Here we show that Poly(ADP-ribose) polymerase-2 (Parp-2) plays an essential role in hematopoietic stem/progenitor cells (HSPC) survival under steady-state conditions and in response to stress. Increased levels of cell death were observed in HSPC from untreated Parp-2-/- mice, but this deficit was compensated by increased rates of self-renewal, associated with impaired reconstitution of hematopoiesis upon serial bone marrow transplantation. Cell death after γ-irradiation correlated with an impaired capacity to repair DNA damage in the absence of Parp-2. Upon exposure to sublethal doses of γ-irradiation, Parp-2-/- mice exhibited bone marrow failure that correlated with reduced long-term repopulation potential of irradiated Parp-2-/- HSPC under competitive conditions. In line with a protective role of Parp-2 against irradiation-induced apoptosis, loss of p53 or the pro-apoptotic BH3-only protein Puma restored survival of irradiated Parp-2-/- mice, whereas loss of Noxa had no such effect. Our results show that Parp-2 plays essential roles in the surveillance of genome integrity of HSPC by orchestrating DNA repair and restraining p53-induced and Puma-mediated apoptosis. The data may affect the design of drugs targeting Parp proteins and the improvement of radiotherapy-based therapeutic strategies.

  20. Impaired hematopoiesis and delayed thrombopoietic recovery following sublethal irradiation in SRC‑3 knockout mice.

    PubMed

    Jin, J; Wang, Y; Wang, J; Xu, Y; Chen, S L; Wang, J P; Su, Y P

    2014-05-01

    The objective of the present study was to investigate the role of the steroid receptor coactivator-3 (SRC-3) in hematopoiesis of mouse bone marrow (BM) following total body irradiation (TBI). SRC-3-/‑ mice and wild-type (WT) mice were exposed to 4.5 Gy γ rays. Immunoblotting analysis revealed that the SRC-3 protein (p160) levels in normal BM-nucleated cells in WT were higher than in SRC-3-/‑ mice. Furthermore, peripheral blood cell counts, BM cellularity and colony-forming unit (CFU) assays were performed following irradiation. The results showed that peripheral blood cells were significantly lower in number and recovered less rapidly in irradiated SRC-3-/‑ mice as compared with control animals. BM-nucleated cell and CFU counts were significantly decreased in SRC-3-/‑ mice on the 7th and 14th day. Of note, the recovery of platelet (PLT) and megakaryocytic lineage were more depressed than the granulocytic and erythroid lineage in SRC-3-/‑ mice. In conclusion, the present study demonstrated that the hematopoietic ability in SRC-3 knockout mice is severely impaired following a sublethal dose of irradiation.

  1. Effects of combined sunitinib and extracranial stereotactic radiotherapy on bone marrow hematopoiesis

    PubMed Central

    Kao, Johnny; Timmins, Jonathan; Ozao-Choy, Junko; Packer, Stuart

    2016-01-01

    There is considerable interest in deploying stereotactic body radiotherapy in combination with immune therapy for patients with extracranial oligometastases. In addition to angiogenesis inhibition, sunitinib appears to mediate antitumor immunity through effects on circulating monocytic cells. The current study investigated the effects of combined sunitinib and stereotactic radiotherapy on hematopoiesis. As part of a phase I/II clinical trial utilizing concurrent sunitinib (25–50 mg on days 1–28) and image-guided radiation therapy (40–50 Gy in 10 fractions starting on days 8–19) for patients with metastatic cancer, the complete blood count, platelet count and automatic differential were performed pretreatment and on days 8 and 19. On average, sunitinib monotherapy for 7 days resulted in a 33% decrease in monocytes and an 18% decrease in neutrophils (P<0.01 for all). Compared to sunitinib alone, combined sunitinib and radiation resulted in a further decrease in neutrophils, lymphocytes and platelets (P<0.05). Following sunitinib and radiation treatment, a greater than average decrease in monocytes (≥200/µl) was associated with a significant increase in progression-free and overall survival times. This exploratory study provides further evidence that monocytes represent a potential biomarker in patients with solid tumors treated with sunitinib. PMID:27602153

  2. Modeling normal and malignant human hematopoiesis in vivo through newborn NSG xenotransplantation.

    PubMed

    Ishikawa, Fumihiko

    2013-12-01

    Various strains of immune-compromised mice have been developed to investigate human normal and malignant stem cells in vivo. NOD/SCID mice harboring complete null mutation of Il2rg (NSG mice) lack T cells, B cells, and NK cells, and support high levels of engraftment by human cord blood hematopoietic stem cells (CB HSCs) and acute myeloid leukemia stem cells (AML LSCs). In addition to achieving high levels of human hematopoietic cell engraftment, use of newborn NSG mice as recipients has enabled the investigation into how human CB HSCs generate mature immune subsets in vivo. Moreover, through establishing an in vivo model of human primary AML by xenotransplantation of human LSCs into newborn NSG mice, functional properties of human AML such as cell cycle, location, and self-renewal capacity can be examined in vivo. Newborn NSG xenogeneic transplantation model may facilitate the understanding of human normal and malignant hematopoiesis and contribute to the development of novel therapies against hematologic diseases.

  3. Differential use of SCL/TAL-1 DNA-binding domain in developmental hematopoiesis.

    PubMed

    Kassouf, Mira T; Chagraoui, Hedia; Vyas, Paresh; Porcher, Catherine

    2008-08-15

    Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding-independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.

  4. The protumorigenic potential of FTY720 by promoting extramedullary hematopoiesis and MDSC accumulation.

    PubMed

    Li, Y; Zhou, T; Wang, Y; Ning, C; Lv, Z; Han, G; Morris, J C; Taylor, E N; Wang, R; Xiao, H; Hou, C; Ma, Y; Shen, B; Feng, J; Guo, R; Li, Y; Chen, G

    2017-02-20

    FTY720 (also called fingolimod) is recognized as an immunosuppressant and has been approved by the Food and Drug Administration to treat refractory multiple sclerosis. However, long-term administration of FTY720 potentially increases the risk for cancer in recipients. The underlying mechanisms remain poorly understood. Herein, we provided evidence that FTY720 administration potentiated tumor growth. Mechanistically, FTY720 enhanced extramedullary hematopoiesis and massive accumulation of myeloid-derived suppressor cells (MDSCs), which actively suppressed antitumor immune responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF), mainly produced by MDSCs, was identified as a key factor to mediate these effects of FTY720 in tumor microenvironment. Furthermore, we showed that FTY720 triggers MDSCs to release GM-CSF via S1P receptor 3 (S1pr3) through Rho kinase and extracellular signal-regulated kinase-dependent pathway. Thus, our findings provide mechanistic explanation for the protumorigenic potentials of FTY720 and suggest that targeting S1pr3 simultaneously may be beneficial for the patients receiving FTY720 treatment.Oncogene advance online publication, 20 February 2017; doi:10.1038/onc.2017.2.

  5. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis.

    PubMed

    Trompette, Aurélien; Gollwitzer, Eva S; Yadava, Koshika; Sichelstiel, Anke K; Sprenger, Norbert; Ngom-Bru, Catherine; Blanchard, Carine; Junt, Tobias; Nicod, Laurent P; Harris, Nicola L; Marsland, Benjamin J

    2014-02-01

    Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

  6. Traveling waves in a coupled reaction-diffusion and difference model of hematopoiesis

    NASA Astrophysics Data System (ADS)

    Adimy, M.; Chekroun, A.; Kazmierczak, B.

    2017-04-01

    The formation and development of blood cells is a very complex process, called hematopoiesis. This process involves a small population of cells called hematopoietic stem cells (HSCs). The HSCs are undifferentiated cells, located in the bone marrow before they become mature blood cells and enter the blood stream. They have a unique ability to produce either similar cells (self-renewal), or cells engaged in one of different lineages of blood cells: red blood cells, white cells and platelets (differentiation). The HSCs can be either in a proliferating or in a quiescent phase. In this paper, we distinguish between dividing cells that enter directly to the quiescent phase and dividing cells that return to the proliferating phase to divide again. We propose a mathematical model describing the dynamics of HSC population, taking into account their spatial distribution. The resulting model is a coupled reaction-diffusion equation and difference equation with delay. We study the existence of monotone traveling wave fronts and the asymptotic speed of spread.

  7. Commensal bacterial–derived signals regulate basophil hematopoiesis and allergic inflammation

    PubMed Central

    Hill, David A.; Siracusa, Mark C.; Abt, Michael C.; Kim, Brian S.; Kobuley, Dmytro; Kubo, Masato; Kambayashi, Taku; LaRosa, David F.; Renner, Ellen D.; Orange, Jordan S.; Bushman, Frederic D.; Artis, David

    2012-01-01

    Commensal bacteria that colonize mammalian barrier surfaces are reported to influence T helper type 2 (TH2) cytokine–dependent inflammation and susceptibility to allergic disease, although the mechanisms that underlie these observations are poorly understood. In this report, we identify that deliberate alteration of commensal bacterial populations via oral antibiotic treatment resulted in elevated serum immunoglobulin E (IgE) levels, increased steady–state circulating basophil populations, and exaggerated basophil–mediated TH2 cell responses and allergic inflammation. Elevated serum IgE levels correlated with increased circulating basophil populations in mice and subjects with hyperimmunoglobulinemia E syndrome. Furthermore, B cell–intrinsic expression of MyD88 was required to limit serum IgE levels and circulating basophil populations in mice. Commensal–derived signals were found to influence basophil development by limiting proliferation of bone marrow–resident precursor populations. Collectively, these results identify a previously unrecognized pathway through which commensal–derived signals influence basophil hematopoiesis and susceptibility to TH2 cytokine–dependent inflammation and allergic disease. PMID:22447074

  8. Effects of the murine skull in optoacoustic brain microscopy.

    PubMed

    Kneipp, Moritz; Turner, Jake; Estrada, Héctor; Rebling, Johannes; Shoham, Shy; Razansky, Daniel

    2016-01-01

    Despite the great promise behind the recent introduction of optoacoustic technology into the arsenal of small-animal neuroimaging methods, a variety of acoustic and light-related effects introduced by adult murine skull severely compromise the performance of optoacoustics in transcranial imaging. As a result, high-resolution noninvasive optoacoustic microscopy studies are still limited to a thin layer of pial microvasculature, which can be effectively resolved by tight focusing of the excitation light. We examined a range of distortions introduced by an adult murine skull in transcranial optoacoustic imaging under both acoustically- and optically-determined resolution scenarios. It is shown that strong low-pass filtering characteristics of the skull may significantly deteriorate the achievable spatial resolution in deep brain imaging where no light focusing is possible. While only brain vasculature with a diameter larger than 60 µm was effectively resolved via transcranial measurements with acoustic resolution, significant improvements are seen through cranial windows and thinned skull experiments.

  9. Administration of Interleukin-6 Stimulates Multilineage Hematopoiesis and Accelerates Recovery from Radiation-Induced Hematopoietic Depression

    DTIC Science & Technology

    1991-02-01

    Htirano T, Kishimoto T, Nakahata T. Asano S: In vitro hernatopoietic growth factors. J1 Natl Cancer Inst 81: t370. 1989 expansion of the murine...a.i phas S. %’ink A. Billiau A. VanSnick 1: Identification of the nutohlbyrcmiatntrekn.Cllmuolt12. human Zh-kd protein, interferon beta ,, as a B... beta . B-cell %timulatory factor type 2 shares identity T. Takaku F. Akivama Y: In vivo effects of recombinant human with rnsanc~tc-derived

  10. In vitro myelotoxicity of propanil and 3,4-dichloroaniline on murine and human CFU-E/BFU-E progenitors.

    PubMed

    Malerba, I; Castoldi, A F; Parent-Massin, D; Gribaldo, L

    2002-10-01

    Because of the wide use of pesticides for domestic and industrial purposes, the evaluation of their potential effects is of major concern for public health. The myelotoxicity of the herbicide propanil (3,4-dichloroproprioanilide) and its metabolite 3,4-dichloroaniline (DCA) is well documented in mice, but evidence that pesticides may severely compromise hematopoiesis in humans is lacking. In this study, an interspecies comparison of in vitro toxicity of these two compounds on murine and human burst- and colony-forming unit-erythrocyte (BFU-E, CFU-E) and colony-forming unit-granulocyte/macrophage (CFU-GM) progenitors, has been carried out. Murine bone marrow progenitors and human cord blood cells were exposed to propanil or DCA in doses ranging from 10 micro M to 1000 micro M, and the toxic effect was detected by a clonogenic assay with continuous exposure to the compounds. The results on murine cells indicate that the erythrocytic lineage is the most sensitive target for propanil and DCA. On the other hand, human progenitors seem to be less sensitive to the toxic effects of both compounds than murine progenitors at the same concentrations (IC(50) values are 305.2 +/- 22.6 micro M [total erythroid colonies] and >500 micro M [CFU-GM] for propanil). Propanil was significantly more toxic to human erythroid progenitors than to human CFU-GM progenitors, as was found for the murine cells, emphasizing the role of the heme pathway as the target for propanil. These data confirm the evidence that the compounds investigated interfere with erythroid colony formation at different stages of the differentiation pathway and have different effects according to the dose.

  11. Conserved hemopoietic transcription factor Cg-SCL delineates hematopoiesis of Pacific oyster Crassostrea gigas.

    PubMed

    Song, Xiaorui; Wang, Hao; Chen, Hao; Sun, Mingzhe; Liang, Zhongxiu; Wang, Lingling; Song, Linsheng

    2016-04-01

    Hemocytes are the effective immunocytes in bivalves, which have been reported to be derived from stem-like cells in gill epithelium of oyster. In the present work, a conserved haematopoietic transcription factor Tal-1/Scl (Stem Cell Leukemia) was identified in Pacific oyster (Cg-SCL), and it was evolutionarily close to the orthologs in deuterostomes. Cg-SCL was highly distributed in the hemocytes as well as gill and mantle. The hemocyte specific genes Integrin, EcSOD and haematopoietic transcription factors GATA3, C-Myb, c-kit, were down-regulated when Cg-SCL was interfered by dsRNA. During the larval developmental stages, the mRNA transcripts of Cg-SCL gradually increased after fertilization and peaked at early trochophore larvae stage (10 hpf, hours post fertilization), then sharply decreased in late trochophore larvae stage (15 hpf) before resuming in umbo larvae (120 hpf). Whole-mount immunofluorescence assay further revealed that the immunoreactivity of Cg-SCL appeared in blastula larvae with two approximate symmetric spots, and this expression pattern lasted in gastrula larvae. By trochophore, the immunoreactivity formed a ring around the dorsal region and then separated into two remarkable spots at the dorsal side in D-veliger larvae. After bacterial challenge, the mRNA expression levels of Cg-SCL were significantly up-regulated in the D-veliger and umbo larvae, indicating the available hematopoietic regulation in oyster larvae. These results demonstrated that Cg-SCL could be used as haematopoietic specific marker to trace potential developmental events of hematopoiesis during ontogenesis of oyster, which occurred early in blastula stage and maintained until D-veliger larvae.

  12. Artesunate and artelinic acid: association of embryotoxicity, reticulocytopenia, and delayed stimulation of hematopoiesis in pregnant rats.

    PubMed

    Clark, Robert L; Brannen, Kimberly C; Sanders, James E; Hoberman, Alan M

    2011-02-01

    The artemisinin antimalarials cause embryo death and malformations in animals by killing embryonic erythroblasts. Groups of pregnant rats (N = 4) were administered 35 and 48 µmol/kg artesunate and 17.2, 28.7, 48, 96, and 191 µmol/kg artelinic acid as a single oral dose on gestational day (GD) 12. Litters were examined on GD21. The ED(50) for embryo death with artelinic acid (23.4 µmol/kg) was just slightly lower than that for decreased reticulocyte count at 24 hr postdose (33.5 µmol/kg) and both had similarly steep dose responses (maximal effects of total litter loss and ∼60% decreases in reticulocyte count at 48 µmol/kg). Results with artesunate were similar. The correlation coefficient between embryo death and decreased reticulocyte count was 0.82 (p<0.01). The close relationship between embryotoxicity and reticulocytopenia is suggestive of a common mechanism-artemisinin-induced mitochondrial damage leading to cell death. At 9 days postdose, treatment with artesunate and artelinic acid also caused increases in counts of reticulocytes, lymphocytes, basophils, and monocytes (up to 3.7 ×, 1.7 ×, 4.7 ×, and 1.7 × control, respectively). This stimulation of hematopoiesis may have been mediated by the direct oxidative conversion of artesunate or artelinic acid to the artemisininyl hydroperoxide within the bone marrow cells or by an indirect increase in reactive oxygen species. The high correlation between embryotoxicity and reticulocytopenia further supports the assertion that therapeutic dosage regimens of artemisinins that cause decreases in reticulocyte count in pregnant women during the putative critical period (approximately postconception wk 3 to 9) are at risk of also causing adverse effects on the embryo.

  13. Lymph node extramedullary hematopoiesis in breast cancer patients receiving neoadjuvant therapy: a potential diagnostic pitfall.

    PubMed

    Prieto-Granada, Carlos; Setia, Namrata; Otis, Christopher N

    2013-06-01

    Extramedullary hematopoiesis (EMH) develops as a compensatory mechanism associated with hematologic processes but it may occur in association with chemotherapy. Three cases of EMH arising in axillary lymph nodes following neoadjuvant therapy for breast carcinoma are reported herein. Three women ranging in age from 41 to 47 years presented with unilateral breast masses measuring 0.6 to 4.0 cm in greatest dimension and were diagnosed with infiltrating ductal carcinoma, grade III by core needle biopsies. Two of the tumors were triple negative and one was estrogen receptor positive. All patients subsequently received neoadjuvant therapy followed by lumpectomies. No residual carcinoma was identified in postchemotherapy breast resection specimens. One patient underwent a sentinel lymph node procedure, the second patient an axillary lymph node dissection, and the third patient had a core biopsy of an enlarged axillary lymph node. The patient that underwent axillary lymph node dissection had metastatic carcinoma in one of her lymph nodes. Foci of EMH consisting of myeloid, erythroid, and megakaryocytic precursors were present within the nodal parenchyma and/or subcapsular sinuses of axillary lymph nodes of all three cases. Megakaryocytes were immunoreactive with factor VIII, erythroid elements with Glycophorin and myeloid precursors with myeloperoxidase. With increasing use of neoadjuvant therapy for breast carcinoma, EMH within lymph nodes is more likely to be encountered. Hematopoietic precursors present in lymph nodes may potentially be misdiagnosed as metastatic tumor cells, particularly as lobular carcinoma or metaplastic carcinoma. Therefore, caution should be exercised when evaluating axillary lymph nodes in the clinical setting of neoadjuvant therapy for breast carcinoma.

  14. Extramedullary hematopoiesis is associated with lower cardiac iron loading in chronically transfused thalassemia patients.

    PubMed

    Ricchi, Paolo; Meloni, Antonella; Spasiano, Anna; Neri, Maria Giovanna; Gamberini, Maria Rita; Cuccia, Liana; Caruso, Vincenzo; Gerardi, Calogera; D'Ascola, Domenico Giuseppe; Rosso, Rosamaria; Campisi, Saveria; Rizzo, Michele; Terrazzino, Fabrizia; Vangosa, Alessandra Briatico; Chiodi, Elisabetta; Missere, Massimiliano; Mangione, Maurizio; Positano, Vincenzo; Pepe, Alessia

    2015-11-01

    The aim of this study was to evaluate, in a large cohort of chronically transfused patients, whether the presence of extramedullary hematopoiesis (EMH) accounts for the typical patterns of cardiac iron distribution and/or cardiac function parameters. We retrospectively selected 1,266 thalassemia major patients who had undergone regular transfusions (611 men and 655 women; mean age: 31.3 ± 8.9 years, range: 4.2-66.6 years) and were consecutively enrolled within the Myocardial Iron Overload in Thalassemia network. The presence of EMH was evaluated based on steady-state free precession sequences; cardiac and liver iron overloads were quantified using a multiecho T2* approach; cardiac function parameters and pulmonary diameter were quantified using the steady-state free precession sequences; and myocardial fibrosis was evaluated using the late gadolinium enhancement technique. EMH was detected in 167 (13.2%) patients. The EMH+ patients had significantly lower cardiac iron overload than that of the EMH- patients (P = 0.003). The patterns of cardiac iron distribution were significantly different in the EMH+ and EMH- patients (P < 0.0001), with a higher prevalence of patients with no myocardial iron overload and heterogeneous myocardial iron overload and no significant global heart iron in the EMH+ group EMH+ patients had a significantly higher left ventricle mass index (P = 0.001) and a significantly higher pulmonary artery diameter (P = 0.002). In conclusion, in regularly transfused thalassemia patients, EMH was common and was associated with a thalassemia intermedia-like pattern of cardiac iron deposition despite regular transfusion therapy.

  15. Hyaluronan Expressed by the Hematopoietic Microenvironment Is Required for Bone Marrow Hematopoiesis*

    PubMed Central

    Goncharova, Valentina; Serobyan, Naira; Iizuka, Shinji; Schraufstatter, Ingrid; de Ridder, Audrey; Povaliy, Tatiana; Wacker, Valentina; Itano, Naoki; Kimata, Koji; Orlovskaja, Irina A.; Yamaguchi, Yu; Khaldoyanidi, Sophia

    2012-01-01

    The contribution of hyaluronan (HA) to the regulatory network of the hematopoietic microenvironment was studied using knock-out mice of three hyaluronan synthase genes (Has1, Has2, and Has3). The number of hematopoietic progenitors was decreased in bone marrow and increased in extramedullary sites of Prx1-Cre;Has2flox/flox;Has1−/−;Has3−/− triple knock-out (tKO) mice as compared with wild type (WT) and Has1−/−;Has3−/− double knock-out (dKO) mice. In line with this observation, decreased hematopoietic activity was observed in long term bone marrow cultures (LTBMC) from tKO mice, whereas the formation of the adherent layer and generation of hematopoietic cells in WT and dKO cultures was not different. 4-Methylumbelliferone (4MU) was used to pharmacologically inhibit the production of HA in LTBMC. Treatment with 4MU inhibited HA synthesis, decreased expression of HAS2 and HAS3, and eliminated hematopoiesis in LTBMC, and this effect was alleviated by the addition of exogenous HA. Exogenous HA also augmented the cell motility in LTBMC, which correlated with the HA-stimulated production of chemokines and growth factors. Conditioned media from HA-induced LTBMC enhanced the chemotaxis of hematopoietic stem/progenitor cells (HSPC) in response to SDF-1. Exposure of endothelial cells to 4MU decreased their ability to support HSPC rolling and adhesion. In addition, migration of transplanted HSPC into the marrow of 4MU-pretreated mice was lower than in untreated mice. Collectively, the results suggest that HA depletion reduces the ability of the microenvironment to support HSPC, and confirm a role for HA as a necessary regulatory element in the structure of the hematopoietic microenvironment. PMID:22654110

  16. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance.

    PubMed

    Kwok, Brian; Hall, Jeff M; Witte, John S; Xu, Yin; Reddy, Prashanti; Lin, Keming; Flamholz, Rachel; Dabbas, Bashar; Yung, Aine; Al-Hafidh, Jenan; Balmert, Emily; Vaupel, Christine; El Hader, Carlos; McGinniss, Matthew J; Nahas, Shareef A; Kines, Julie; Bejar, Rafael

    2015-11-19

    Establishing a diagnosis in patients suspected of having a myelodysplastic syndrome (MDS) can be challenging and could be informed by the identification of somatic mutations. We performed a prospective study to examine the frequency and types of mutations encountered in 144 patients with unexplained cytopenias. Based on bone marrow findings, 17% were diagnosed with MDS, 15% with idiopathic cytopenias of undetermined significance (ICUS) and some evidence of dysplasia, and 69% with ICUS and no dysplasia. Bone marrow DNA was sequenced for mutations in 22 frequently mutated myeloid malignancy genes. Somatic mutations were identified in 71% of MDS patients, 62% of patients with ICUS and some dysplasia, and 20% of ICUS patients and no dysplasia. In total, 35% of ICUS patients carried a somatic mutation or chromosomal abnormality indicative of clonal hematopoiesis. We validated these results in a cohort of 91 lower-risk MDS and 249 ICUS cases identified over a 6-month interval. Mutations were found in 79% of those with MDS, in 45% of those with ICUS with dysplasia, and in 17% of those with ICUS without dysplasia. The spectrum of mutated genes was similar with the exception of SF3B1 which was rarely mutated in patients without dysplasia. Variant allele fractions were comparable between clonal ICUS (CCUS) and MDS as were mean age and blood counts. We demonstrate that CCUS is a more frequent diagnosis than MDS in cytopenic patients. Clinical and mutational features are similar in these groups and may have diagnostic utility once outcomes in CCUS patients are better understood.

  17. Monoclonal antibodies reacting with murine teratocarcinoma cells.

    PubMed Central

    Goodfellow, P N; Levinson, J R; Williams, V E; McDevitt, H O

    1979-01-01

    Monoclonal antibodies were produced in vitro by fusing mouse myeloma cells with spleen cells from a rat immunized with the C3H mouse teratocarcinoma C86-S1. After the fusion two clones were chosen for further analysis. The first clone, 3C4-10, produced an antibody recognizing an antigen with a distribution restricted to teratocarcinoma cell lines, an endoderm cell line, and a neuroblastoma. The second clone, 4A1-9, produced an antibody that reacted with all cultured murine cells tested and adult brain. Neither antibody reacted with preimplantation embryos. The 3C4-10 antibody recognized an antigen associated with proteins. The apparent molecular weight of the 3C4-10 antigen was greater than 100,000. PMID:284353

  18. Targeted disruption of the murine fps/fes proto-oncogene reveals that Fps/Fes kinase activity is dispensable for hematopoiesis.

    PubMed

    Senis, Y; Zirngibl, R; McVeigh, J; Haman, A; Hoang, T; Greer, P A

    1999-11-01

    The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase that is functionally implicated in the survival and terminal differentiation of myeloid progenitors and in signaling from several members of the cytokine receptor superfamily. To gain further insight into the physiological function of fps/fes, we targeted the mouse locus with a kinase-inactivating missense mutation. Mutant Fps/Fes protein was expressed at normal levels in these mice, but it lacked detectable kinase activity. Homozygous mutant animals were viable and fertile, and they showed no obvious defects. Flow cytometry analysis of bone marrow showed no statistically significant differences in the levels of myeloid, erythroid, or B-cell precursors. Subtle abnormalities observed in mutant mice included slightly elevated total leukocyte counts and splenomegaly. In bone marrow hematopoietic progenitor cell colony-forming assays, mutant mice gave slightly elevated numbers and variable sizes of CFU-granulocyte macrophage in response to interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Tyrosine phosphorylation of Stat3 and Stat5A in bone marrow-derived macrophages was dramatically reduced in response to GM-CSF but not to IL-3 or IL-6. This suggests a distinct nonredundant role for Fps/Fes in signaling from the GM-CSF receptor that does not extend to the closely related IL-3 receptor. Lipopolysaccharide-induced Erk1/2 activation was also reduced in mutant macrophages. These subtle molecular phenotypes suggest a possible nonredundant role for Fps/Fes in myelopoiesis and immune responses.

  19. Murine typhus in travelers returning from Indonesia.

    PubMed Central

    Parola, P.; Vogelaers, D.; Roure, C.; Janbon, F.; Raoult, D.

    1998-01-01

    We report the first three documented cases of murine typhus imported into Europe from Indonesia, discuss clues for the diagnosis of the disease, and urge that murine fever be considered in the diagnosis of febrile disease in travelers. PMID:9866749

  20. Murine typhus in travelers returning from Indonesia.

    PubMed

    Parola, P; Vogelaers, D; Roure, C; Janbon, F; Raoult, D

    1998-01-01

    We report the first three documented cases of murine typhus imported into Europe from Indonesia, discuss clues for the diagnosis of the disease, and urge that murine fever be considered in the diagnosis of febrile disease in travelers.

  1. ZIP8 Zinc Transporter: Indispensable Role for Both Multiple-Organ Organogenesis and Hematopoiesis In Utero

    PubMed Central

    Gálvez-Peralta, Marina; He, Lei; Jorge-Nebert, Lucia F.; Wang, Bin; Miller, Marian L.; Eppert, Bryan L.; Afton, Scott; Nebert, Daniel W.

    2012-01-01

    Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn2+/(HCO3–)2 symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo) mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo) allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo) newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo) homozygotes from gestational day(GD)-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo) neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+) and Slc39a8(neo/neo) offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo) with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele); this cross generated viable Slc39a8(neo/neo)_BTZIP8-3(+/+) pups showing none of the above-mentioned congenital defects–proving Slc39a8(neo/neo) causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis. PMID:22563477

  2. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero.

    PubMed

    Gálvez-Peralta, Marina; He, Lei; Jorge-Nebert, Lucia F; Wang, Bin; Miller, Marian L; Eppert, Bryan L; Afton, Scott; Nebert, Daniel W

    2012-01-01

    Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn(2+)/(HCO(3)(-))(2) symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo) mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo) allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo) newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo) homozygotes from gestational day(GD)-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo) neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+) and Slc39a8(neo/neo) offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo) with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele); this cross generated viable Slc39a8(neo/neo)_BTZIP8-3(+/+) pups showing none of the above-mentioned congenital defects-proving Slc39a8(neo/neo) causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis.

  3. Zebrafish hoxd4a Acts Upstream of meis1.1 to Direct Vasculogenesis, Angiogenesis and Hematopoiesis

    PubMed Central

    Amali, Aseervatham Anusha; Sie, Lawrence; Winkler, Christoph; Featherstone, Mark

    2013-01-01

    Mice lacking the 4th-group paralog Hoxd4 display malformations of the anterior vertebral column, but are viable and fertile. Here, we report that zebrafish embryos having decreased function of the orthologous hoxd4a gene manifest striking perturbations in vasculogenesis, angiogenesis and primitive and definitive hematopoiesis. These defects are preceded by reduced expression of the hemangioblast markers scl1, lmo2 and fli1 within the posterior lateral plate mesoderm (PLM) at 13 hours post fertilization (hpf). Epistasis analysis revealed that hoxd4a acts upstream of meis1.1 but downstream of cdx4 as early as the shield stage in ventral-most mesoderm fated to give rise to hemangioblasts, leading us to propose that loss of hoxd4a function disrupts hemangioblast specification. These findings place hoxd4a high in a genetic hierarchy directing hemangioblast formation downstream of cdx1/cdx4 and upstream of meis1.1. An additional consequence of impaired hoxd4a and meis1.1 expression is the deregulation of multiple Hox genes implicated in vasculogenesis and hematopoiesis which may further contribute to the defects described here. Our results add to evidence implicating key roles for Hox genes in their initial phase of expression early in gastrulation. PMID:23554940

  4. Platelet factor 4 promotes adhesion of hematopoietic progenitor cells and binds IL-8: novel mechanisms for modulation of hematopoiesis.

    PubMed

    Dudek, Arkadiusz Z; Nesmelova, Irina; Mayo, Kevin; Verfaillie, Catherine M; Pitchford, Simon; Slungaard, Arne

    2003-06-15

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule C-X-C chemokine that has weak chemotactic potency but strongly inhibits hematopoiesis through an unknown mechanism. We find that PF4 binds to human CD34+ hematopoietic progenitor cells (HPCs) with a median effective concentration of 1 microg/mL but not after exposure to chondroitinase ABC. PF4 enhances adhesion of HPCs to intact stroma. Committed progenitors also adhere avidly to immobilized PF4. This adhesion is time-dependent, requires metabolic activity, causes cytoskeletal rearrangement, and induces cell-cycle inhibition. Using extracellular acidification rate to indicate transmembrane signaling, we find that interleukin-8 (IL-8), but not PF4, activates CD34+ progenitors, and PF4 blocks IL-8-mediated activation. Surface plasmon resonance analysis shows that PF4 binds IL-8 with high (dissociation constant [Kd] = 42 nM) affinity. Nuclear magnetic resonance analysis of IL-8 and PF4 in solution confirms this interaction. We conclude that PF4 has the capacity to influence hematopoiesis through mechanisms not mediated by a classical high-affinity, 7-transmembrane domain chemokine receptor. Instead, PF4 may modulate the hematopoietic milieu both directly, by promoting progenitor adhesion and quiescence through interaction with an HPC chondroitin sulfate-containing moiety, and indirectly, by binding to or interfering with signaling caused by other, hematopoietically active chemokines, such as IL-8.

  5. The role of G-CSF and IL-6 in the granulopoiesis-stimulating activity of murine blood serum induced by perorally administered ultrafiltered pig leukocyte extract, IMUNOR.

    PubMed

    Vacek, Antonín; Hofer, Michal; Holá, Jirina; Weiterová, Lenka; Streitová, Denisa; Svoboda, Jaroslav

    2007-05-01

    IMUNOR, a low-molecular weight (< 12 kD) ultrafiltered pig leukocyte extract, has been previously found to have significant stimulatory effects on murine hematopoiesis supressed by ionizing radiation or cytotoxic drugs. This communication shows data on the mechanisms of these effects. Using ELISA assay, significantly increased levels of granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed. On the contrary, no detectable levels of granulocyte-macrophage colony-stimulating factor (GM-CFC) and interleukin-3 (IL-3) have been found in blood serum of IMUNOR-treated mice. Incubation of the serum from IMUNOR-treated mice with antibodies against G-CSF caused abrogation of the ability of the sera to stimulate in vitro growth of colonies originating from granulocyte-macrophage progenitor cells (GM-CFC). In contrast, incubation of the serum with antibodies against IL-6 did not change its colony-stimulating activity. It may be inferred from these findings that G-CSF is probably the main cytokine responsible for the granulopoiesis-stimulating effects of IMUNOR. When the serum from IMUNOR-treated mice with G-CSF inactivated by anti-G-CSF antibodies (but with elevated IL-6) was added to cultures of bone marrow cells together with a suboptimum concentration of IL-3, a significant increase in the numbers of GM-CFC colonies was found. Moreover, conjoint inactivation of G-CSF and IL-6 significantly decreased the numbers of GM-CFC colonies in comparison with those observed when only G-CSF was inactivated. This observation strongly suggests that though IMUNOR-induced IL-6 is not able to induce the growth of GM-CFC colonies alone, it is able to potentiate the hematopoiesis-stimulating effect of IL-3. These findings represent a new knowledge concerning the hematopoiesis-stimulating action of IMUNOR, a promising immunomodulatory agent.

  6. The adult murine heart has a sparse, phagocytically active macrophage population that expands through monocyte recruitment and adopts an ‘M2’ phenotype in response to Th2 immunologic challenge

    PubMed Central

    Mylonas, Katie J.; Jenkins, Stephen J.; Castellan, Raphael F.P.; Ruckerl, Dominik; McGregor, Kieran; Phythian-Adams, Alexander T.; Hewitson, James P.; Campbell, Sharon M.; MacDonald, Andrew S.; Allen, Judith E.; Gray, Gillian A.

    2015-01-01

    Tissue resident macrophages have vital homeostatic roles in many tissues but their roles are less well defined in the heart. The present study aimed to identify the density, polarisation status and distribution of macrophages in the healthy murine heart and to investigate their ability to respond to immune challenge. Histological analysis of hearts from CSF-1 receptor (csf1-GFP; MacGreen) and CX3CR1 (Cx3cr1GFP/+) reporter mice revealed a sparse population of GFP positive macrophages that were evenly distributed throughout the left and right ventricular free walls and septum. F4/80+CD11b+ cardiac macrophages, sorted from myocardial homogenates, were able to phagocytose fluorescent beads in vitro and expressed markers typical of both ‘M1’ (IL-1β, TNF and CCR2) and ‘M2’ activation (Ym1, Arg 1, RELMα and IL-10), suggesting no specific polarisation in healthy myocardium. Exposure to Th2 challenge by infection of mice with helminth parasites Schistosoma mansoni, or Heligmosomoides polygyrus, resulted in an increase in cardiac macrophage density, adoption of a stellate morphology and increased expression of Ym1, RELMα and CD206 (mannose receptor), indicative of ‘M2’ polarisation. This was dependent on recruitment of Ly6ChighCCR2+ monocytes and was accompanied by an increase in collagen content. In conclusion, in the healthy heart resident macrophages are relatively sparse and have a phagocytic role. Following Th2 challenge this population expands due to monocyte recruitment and adopts an ‘M2’ phenotype associated with increased tissue fibrosis. PMID:25700973

  7. The adult murine heart has a sparse, phagocytically active macrophage population that expands through monocyte recruitment and adopts an 'M2' phenotype in response to Th2 immunologic challenge.

    PubMed

    Mylonas, Katie J; Jenkins, Stephen J; Castellan, Raphael F P; Ruckerl, Dominik; McGregor, Kieran; Phythian-Adams, Alexander T; Hewitson, James P; Campbell, Sharon M; MacDonald, Andrew S; Allen, Judith E; Gray, Gillian A

    2015-07-01

    Tissue resident macrophages have vital homeostatic roles in many tissues but their roles are less well defined in the heart. The present study aimed to identify the density, polarisation status and distribution of macrophages in the healthy murine heart and to investigate their ability to respond to immune challenge. Histological analysis of hearts from CSF-1 receptor (csf1-GFP; MacGreen) and CX3CR1 (Cx3cr1(GFP/+)) reporter mice revealed a sparse population of GFP positive macrophages that were evenly distributed throughout the left and right ventricular free walls and septum. F4/80+CD11b+ cardiac macrophages, sorted from myocardial homogenates, were able to phagocytose fluorescent beads in vitro and expressed markers typical of both 'M1' (IL-1β, TNF and CCR2) and 'M2' activation (Ym1, Arg 1, RELMα and IL-10), suggesting no specific polarisation in healthy myocardium. Exposure to Th2 challenge by infection of mice with helminth parasites Schistosoma mansoni, or Heligmosomoides polygyrus, resulted in an increase in cardiac macrophage density, adoption of a stellate morphology and increased expression of Ym1, RELMα and CD206 (mannose receptor), indicative of 'M2' polarisation. This was dependent on recruitment of Ly6ChighCCR2+ monocytes and was accompanied by an increase in collagen content. In conclusion, in the healthy heart resident macrophages are relatively sparse and have a phagocytic role. Following Th2 challenge this population expands due to monocyte recruitment and adopts an 'M2' phenotype associated with increased tissue fibrosis.

  8. Antimicrobial proteins of murine macrophages.

    PubMed Central

    Hiemstra, P S; Eisenhauer, P B; Harwig, S S; van den Barselaar, M T; van Furth, R; Lehrer, R I

    1993-01-01

    Three murine microbicidal proteins (MUMPs) were purified from cells of the murine macrophage cell line RAW264.7 that had been activated by gamma interferon. Similar proteins were also present in nonactivated RAW264.7 cells, in cells of the murine macrophage cell line J774A.1, and in resident and activated murine peritoneal macrophages. MUMP-1, MUMP-2, and MUMP-3 killed Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Mycobacterium fortuitum, and Cryptococcus neoformans in vitro. MUMP-1 resembled an H1 histone but was unusual because its N-terminal residue (serine) was not N acetylated. Although MUMP-2 was N terminally blocked, its high lysine/arginine ratio and its reactivity with an antibody to H1 histones suggested that it also belonged to the H1 histone family. MUMP-3 was identical to histone H2B in 30 of 30 amino-terminal residues. Although the antimicrobial properties of histones have been recognized for decades, this is the first evidence that such proteins may endow the lysosomal apparatus of macrophages with nonoxidative antimicrobial potential. Other MUMPs, including some with a more restricted antimicrobial spectrum and one that appeared to be induced in RAW264.7 cells after gamma interferon stimulation, were noted but remain to be characterized. Images PMID:8514411

  9. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis

    SciTech Connect

    Li, Wei; Fu, Jianfang; Zhang, Shun; Zhao, Jie; Xie, Nianlin; Cai, Guoqing

    2015-06-01

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli–germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli–germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. - Highlights: • Intermittent treatment with BTZ caused fertility impairment in adult mice. • BTZ treatment elicited apoptosis during early phase of testicular recovery. • Up-regulation of oxidative stress by BTZ treatment

  10. Acute arrest of hematopoiesis induced by infection with Staphylococcus epidermidis following total knee arthroplasty: A case report and literature review.

    PubMed

    Bi, Lintao; Li, Jun; Lu, Zhenxia; Shao, Hui; Wang, Ying

    2016-03-01

    Infection is one of the most severe complications of total knee prosthesis implantation. The present study reported the case of a 74-year-old female that developed a Staphylococcus epidermidis infection following a cemented total knee arthroplasty. A routine blood test revealed neutropenia and anemia, while S. epidermidis was detected in the peripheral blood and bone marrow. In the present case, S. epidermidis infection led to acute arrest of hematopoiesis (AAH), also known as aplastic crisis, which is the temporary cessation of red cell production. The development of AAH secondary to S. epidermidis infection is rare and, to the best of our knowledge, this is the first case reported in the literature. The present study increased our knowledge of this rare disease and its characteristics, which will enable physicians to be aware of the development of AAH as a rare complication of S. epidermidis infection.

  11. Inferring Cell Differentiation Processes Based on Phylogenetic Analysis of Genome-Wide Epigenetic Information: Hematopoiesis as a Model Case

    PubMed Central

    Koyanagi, Kanako O.

    2015-01-01

    How cells divide and differentiate is a fundamental question in organismal development; however, the discovery of differentiation processes in various cell types is laborious and sometimes impossible. Phylogenetic analysis is typically used to reconstruct evolutionary processes based on inherent characters. It could also be used to reconstruct developmental processes based on the developmental changes that occur during cell proliferation and differentiation. In this study, DNA methylation information from differentiated hematopoietic cells was used to perform phylogenetic analyses. The results were assessed for their validity in inferring hierarchical differentiation processes of hematopoietic cells and DNA methylation processes of differentiating progenitor cells. Overall, phylogenetic analyses based on DNA methylation information facilitated inferences regarding hematopoiesis. PMID:25638259

  12. [Bone metabolism and cardiovascular function update. Inter-communication between bone marrow hematopoiesis and skeletal/vascular network].

    PubMed

    Katayama, Yoshio

    2014-07-01

    The hematopoiesis takes place in the bone marrow. Because bone marrow is the "marrow" of the bone, bone marrow does not exist without bone. The specialized microenvironment for hematopoietic stem cells (HSCs) to be appropriately functional is called "niche" . In the recent ten years since the bone-forming osteoblast was identified as a HSC niche, the entire mesenchymal lineage cells from mesenchymal stem cells to end-terminal osteocytes have been recognized as niche cells or niche-modulators. Among these, mesenchymal stem/progenitor cells are located at perivascular area. The very recent study showed the difference between arteriolar and sinusoidal niches. It is likely that the vascular network and the bone tissue are connected by the mesenchymal lineage cells as a complex of bone forming system, and HSCs utilize this complex as a series of niche.

  13. Ultrasound backscatter microscopy image-guided intraventricular gene delivery at murine embryonic age 9.5 and 10.5 produces distinct transgene expression patterns at the adult stage.

    PubMed

    Jang, Jiwon; Ahn, Jyhyun; Lee, Nayeon; Kim, Seong-Tae; Kweon, Dae-Hyuk; Cho, Jae Youl; Park, Kye Won; Kim, Sunyoung; Yoon, Keejung

    2013-01-01

    In utero injection of a retroviral vector into the embryonic telencephalon aided by ultrasound backscatter microscopy permits introduction of a gene of interest at an early stage of development. In this study, we compared the tissue distribution of gene expression in adult mice injected with retroviral vectors at different embryonic ages in utero. Following ultrasound image-guided gene delivery (UIGD) into the embryonic telencephalon, adult mice were subjected to whole-body luciferase imaging and immunohistochemical analysis at 6 weeks and 1 year postinjection. Luciferase activity was observed in a wide range of tissues in animals injected at embryonic age 9.5 (E9.5), whereas animals injected at E10.5 showed brain-localized reporter gene expression. These results suggest that mouse embryonic brain creates a closed and impermeable structure around E10. Therefore, by injecting a transgene before or after E10, transgene expression can be manipulated to be local or systemic. Our results also provide information that widens the applicability of UIGD beyond neuroscience studies.

  14. Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells.

    PubMed

    Weishaupt, Holger; Sigvardsson, Mikael; Attema, Joanne L

    2010-01-14

    Heritable epigenetic signatures are proposed to serve as an important regulatory mechanism in lineage fate determination. To investigate this, we profiled chromatin modifications in murine hematopoietic stem cells, lineage-restricted progenitors, and CD4(+) T cells using modified genome-scale mini-chromatin immunoprecipitation technology. We show that genes involved in mature hematopoietic cell function associate with distinct chromatin states in stem and progenitor cells, before their activation or silencing upon cellular maturation. Many lineage-restricted promoters are associated with bivalent histone methylation and highly combinatorial histone modification patterns, which may determine their selective priming of gene expression during lineage commitment. These bivalent chromatin states are conserved in mammalian evolution, with a particular overrepresentation of promoters encoding key regulators of hematopoiesis. After differentiation into progenitors and T cells, activating histone modifications persist at transcriptionally repressed promoters, suggesting that these transcriptional programs might be reactivated after lineage restriction. Collectively, our data reveal the epigenetic framework that underlies the cell fate options of hematopoietic stem cells.

  15. Quantitative trait gene Slit2 positively regulates murine hematopoietic stem cell numbers

    PubMed Central

    Waterstrat, Amanda; Rector, Kyle; Geiger, Hartmut; Liang, Ying

    2016-01-01

    Hematopoietic stem cells (HSC) demonstrate natural variation in number and function. The genetic factors responsible for the variations (or quantitative traits) are largely unknown. We previously identified a gene whose differential expression underlies the natural variation of HSC numbers in C57BL/6 (B6) and DBA/2 (D2) mice. We now report the finding of another gene, Slit2, on chromosome 5 that also accounts for variation in HSC number. In reciprocal chromosome 5 congenic mice, introgressed D2 alleles increased HSC numbers, whereas B6 alleles had the opposite effect. Using gene array and quantitative polymerase chain reaction, we identified Slit2 as a quantitative trait gene whose expression was positively correlated with the number of HSCs. Ectopic expression of Slit2 not only increased the number of the long-term colony forming HSCs, but also enhanced their repopulation capacity upon transplantation. Therefore, Slit2 is a novel quantitative trait gene and a positive regulator of the number and function of murine HSCs. This finding suggests that Slit2 may be a potential therapeutic target for the effective in vitro and in vivo expansion of HSCs without compromising normal hematopoiesis. PMID:27503415

  16. Murine Typhus, Reunion, France, 2011–2013

    PubMed Central

    Camuset, Guillaume; Socolovschi, Cristina; Moiton, Marie-Pierre; Kuli, Barbara; Foucher, Aurélie; Poubeau, Patrice; Borgherini, Gianandrea; Wartel, Guillaume; Audin, Héla; Raoult, Didier; Filleul, Laurent; Parola, Philippe; Pagès, Fréderic

    2015-01-01

    Murine typhus case was initially identified in Reunion, France, in 2012 in a tourist. Our investigation confirmed 8 autochthonous cases that occurred during January 2011–January 2013 in Reunion. Murine typhus should be considered in local patients and in travelers returning from Reunion who have fevers of unknown origin. PMID:25625653

  17. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human

    PubMed Central

    Kushwah, Rahul; Guezguez, Borhane; Lee, Jung Bok; Hopkins, Claudia I; Bhatia, Mickie

    2014-01-01

    The Notch signaling pathway is evolutionarily conserved across species and plays an important role in regulating cell differentiation, proliferation, and survival. It has been implicated in several different hematopoietic processes including early hematopoietic development as well as adult hematological malignancies in humans. This review focuses on recent developments in understanding the role of Notch signaling in the human hematopoietic system with an emphasis on hematopoietic initiation from human pluripotent stem cells and regulation within the bone marrow. Based on recent insights, we summarize potential strategies for treatment of human hematological malignancies toward the concept of targeting Notch signaling for fate regulation. PMID:25252682

  18. Integrated analysis of miRNA and mRNA during differentiation of human CD34+ cells delineates the regulatory roles of microRNA in hematopoiesis.

    PubMed

    Raghavachari, Nalini; Liu, Poching; Barb, Jennifer J; Yang, Yanqin; Wang, Richard; Nguyen, Quang Tri; Munson, Peter J

    2014-01-01

    In the process of human hematopoiesis, precise regulation of the expression of lineage-specific gene products is critical for multiple cell-fate decisions that govern cell differentiation, proliferation, and self-renewal. Given the important role of microRNAs (miRNAs) in development and differentiation, we examined the global expression of miRNA in CD34(+) cells during lineage specific hematopoiesis and found 49 miRNAs to be differentially expressed, with functional roles in cellular growth and proliferation, and apoptosis. miR-18a was upregulated during erythropoiesis and downregulated during megakaryopoiesis. miR-145 was upregulated during granulopoiesis and down regulated during erythropoiesis. Megakaryopoitic differentiation resulted in significant alteration in the expression of many miRNAs that are believed to play critical roles in the regulation of B and T cell differentiation. Target prediction analyses on three different miRNA databases indicated that TargetScan outperformed microCosm and miRDB in identifying potential miRNA targets associated with hematopoietic differentiation process. An integrated analysis of the observed miRNAs and messenger RNAs (mRNAs) resulted in 87 highly correlated miRNA-mRNA pairs that have major functional roles in cellular growth and proliferation, hematopoietic system development, and Wnt/B-catenin and Flt 3 signaling pathways. We believe that this study will enhance our understanding on the regulatory roles of miRNA in hematopoiesis by providing a library of mRNA-miRNA networks.

  19. Role of the thrombopoietin (TPO)/Mpl system: c-Mpl-like molecule/TPO signaling enhances early hematopoiesis in Xenopus laevis.

    PubMed

    Kakeda, Minoru; Kyuno, Jun-ichi; Kato, Takashi; Nishikawa, Mitsuo; Asashima, Makoto

    2002-02-01

    Multiple organs are induced in the primitive embryonic ectoderm excised from blastula stage Xenopus laevis embryos, under the strict control of mesoderm inducing factors. This in vitro system is useful for exploring the mechanisms of development. In this study, the function of thrombopoietin (TPO)/c-Mpl signaling in the development of hematopoietic cells was investigated. An optimal hematopoietic cell induction system was established to evaluate the influence of growth factors on hematopoiesis. It was found that exogenous TPO enhanced hematopoiesis in explants induced by activin and bone morphogenetic protein (BMP)-4 and increased the number of both erythrocytes and leukocytes in a dose-dependent manner. Addition of anti-c-Mpl antibody completely inhibited the expansion of hematopoietic cells stimulated by TPO, and the antibody specifically recognized blood-like cells. These results demonstrate that TPO acts on hematopoietic progenitors induced in explants and the c-Mpl-like molecule in Xenopus mediates the cellular function of TPO. We also found that forced expression of TPO in embryos promoted hematopoiesis in the ventral blood island and the dorsal-- lateral plate mesoderm. These results suggest that hematopoietic stem and progenitor cells are regulated by TPO/c-Mpl signaling from when they appear in their ontogeny. They also suggest that TPO/c-Mpl signaling play a crucial role in the formation of hematopoietic cells in Xenopus.

  20. Protein kinase R as mediator of the effects of interferon (IFN) gamma and tumor necrosis factor (TNF) alpha on normal and dysplastic hematopoiesis.

    PubMed

    Sharma, Bhumika; Altman, Jessica K; Goussetis, Dennis J; Verma, Amit K; Platanias, Leonidas C

    2011-08-05

    IFNγ and TNFα are potent inhibitors of hematopoiesis and have been implicated in the pathophysiology of bone marrow failure and myelodysplastic syndromes (MDS). We examined the role of protein kinase R (PKR) in the generation of the inhibitory effects of these myelosuppressive cytokines on hematopoiesis. Our data demonstrate that PKR is rapidly phosphorylated/activated in response to engagement of IFNγ or TNFα receptors in normal human hematopoietic progenitors. Such engagement of PKR is important for the suppressive effects of these cytokines on normal hematopoiesis. Pharmacological targeting of PKR using a specific inhibitor or siRNA-mediated PKR knockdown results in partial reversal of the suppressive effects of IFNγ and TNFα on normal human CD34+-derived myeloid (colony-forming unit-granulocyte-monocytic) and erythroid (burst-forming unit-erythroid) progenitors. Importantly, inhibition of PKR activity or expression increases hematopoietic colony formation from human MDS progenitors, suggesting that drugs that target PKR may provide a novel approach for the treatment of MDS and marrow failure syndromes. Altogether, our data establish that beyond its key role in the induction of IFN-antiviral responses, PKR plays important roles in signaling for IFNγ and other myelosuppressive cytokine receptors as a common mediator of signals for hematopoietic suppression.

  1. IL-10 regulates murine lupus.

    PubMed

    Yin, Zhinan; Bahtiyar, Gul; Zhang, Na; Liu, Lanzhen; Zhu, Ping; Robert, Marie E; McNiff, Jennifer; Madaio, Michael P; Craft, Joe

    2002-08-15

    MRL/MpJ-Tnfrsf6(lpr) (MRL/MpJ-Fas(lpr); MRL-Fas(lpr)) mice develop a spontaneous lupus syndrome closely resembling human systemic lupus erythematosus. To define the role of IL-10 in the regulation of murine lupus, IL-10 gene-deficient (IL-10(-/-)) MRL-Fas(lpr) (MRL-Fas(lpr) IL-10(-/-)) mice were generated and their disease phenotype was compared with littermates with one or two copies of an intact IL-10 locus (MRL-Fas(lpr) IL-10(+/-) and MRL-Fas(lpr) IL-10(+/+) mice, respectively). MRL-Fas(lpr) IL-10(-/-) mice developed severe lupus, with earlier appearance of skin lesions, increased lymphadenopathy, more severe glomerulonephritis, and higher mortality than their IL-10-intact littermate controls. The increased severity of lupus in MRL-Fas(lpr) IL-10(-/-) mice was closely associated with enhanced IFN-gamma production by both CD4(+) and CD8(+) cells and increased serum concentration of IgG2a anti-dsDNA autoantibodies. The protective effect of IL-10 in this lupus model was further supported by the observation that administration of rIL-10 reduced IgG2a anti-dsDNA autoantibody production in wild-type MRL-Fas(lpr) animals. In summary, our results provide evidence that IL-10 can down-modulate murine lupus through inhibition of pathogenic Th1 cytokine responses. Modulation of the level of IL-10 may be of potential therapeutic benefit for human lupus.

  2. Hemorrhage, Impaired Hematopoiesis, and Lethality in Mouse Embryos Carrying a Targeted Disruption of the Fli1 Transcription Factor†

    PubMed Central

    Spyropoulos, Demetri D.; Pharr, Pamela N.; Lavenburg, Kim R.; Jackers, Pascale; Papas, Takis S.; Ogawa, Makio; Watson, Dennis K.

    2000-01-01

    The Ets family of transcription factors have been suggested to function as key regulators of hematopoeisis. Here we describe aberrant hematopoeisis and hemorrhaging in mouse embryos homozygous for a targeted disruption in the Ets family member, Fli1. Mutant embryos are found to hemorrhage from the dorsal aorta to the lumen of the neural tube and ventricles of the brain (hematorrhachis) on embryonic day 11.0 (E11.0) and are dead by E12.5. Histological examinations and in situ hybridization reveal disorganization of columnar epithelium and the presence of hematomas within the neuroepithelium and disruption of the basement membrane lying between this and mesenchymal tissues, both of which express Fli1 at the time of hemorrhaging. Livers from mutant embryos contain few pronormoblasts and basophilic normoblasts and have drastically reduced numbers of colony forming cells. These defects occur with complete penetrance of phenotype regardless of the genetic background (inbred B6, hybrid 129/B6, or outbred CD1) or the targeted embryonic stem cell line used for the generation of knockout lines. Taken together, these results provide in vivo evidence for the role of Fli1 in the regulation of hematopoiesis and hemostasis. PMID:10891501

  3. Extramedullary hematopoiesis associated with organizing peritoneal hemorrhage: a report of 5 cases in patients presenting with primary gynecologic disorders.

    PubMed

    Ardakani, Nima Mesbah; Kumarasinghe, Marian Priyanthi; Spagnolo, Dominic V; Stewart, Colin J R

    2014-05-01

    Extramedullary hematopoiesis (EMH) usually occurs in patients with severe anemia or myelofibrosis, and involvement of the serous cavities is uncommon. A total of 5 cases of peritoneal EMH are presented in patients presenting with primary gynecologic pathology including endometrial adenosarcoma (n=2), ovarian leiomyosarcoma, and ovarian endometrioid adenocarcinoma (each n=1), all of which were associated with peritoneal metastases; the remaining patient had a hemorrhagic benign ovarian cyst. All cases were associated with organizing peritoneal hemorrhage, and EMH was localized to the reactive granulation tissue. EMH was not identified within the tumor tissue in the 4 neoplastic cases. Erythroid precursors were present in all cases and granulocytic precursors and megakaryocytes were identified in two and three cases, respectively. There was no evidence of EMH in the corresponding peritoneal fluid cytology preparations examined in 4 cases. None of the patients had a significant hematological abnormality at the time of presentation or during a mean follow-up period of 35 mo (range, 2-66 mo). The mechanism of peritoneal EMH in these cases is uncertain but most likely related to tissue hemorrhage and repair as described in other sites such as dura, myocardium, and synovium. Pathologists should be aware that EMH may involve the peritoneum to avoid misinterpretation of the findings, particularly in small biopsy or cytology samples.

  4. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis.

    PubMed

    Zhao, Jimmy L; Ma, Chao; O'Connell, Ryan M; Mehta, Arnav; DiLoreto, Race; Heath, James R; Baltimore, David

    2014-04-03

    During an infection, the body increases the output of mature immune cells in order to fight off the pathogen. Despite convincing evidence that hematopoietic stem and progenitor cells (HSPCs) can sense pathogens directly, how this contributes to hematopoietic cell output remains unknown. Here, we have combined mouse models with a single-cell proteomics platform to show that, in response to Toll-like receptor stimulation, short-term HSCs and multipotent progenitor cells produce copious amounts of diverse cytokines through nuclear factor κB (NF-κB) signaling. Interestingly, the cytokine production ability of HSPCs trumps mature immune cells in both magnitude and breadth. Among cytokines produced by HSPCs, IL-6 is a particularly important regulator of myeloid differentiation and HSPC proliferation in a paracrine manner and in mediating rapid myeloid cell recovery during neutropenia. This study has uncovered an important property of HSPCs that enables them to convert danger signals into versatile cytokine signals for the regulation of stress hematopoiesis.

  5. Co-transplantation of Hematopoietic Stem Cells and Cxcr4 Gene-Transduced Mesenchymal Stem Cells Promotes Hematopoiesis.

    PubMed

    Chen, Wei; Li, Miao; Su, Guizhen; Zang, Yu; Yan, Zhiling; Cheng, Hai; Pan, Bin; Cao, Jiang; Wu, Qingyun; Zhao, Kai; Zhu, Feng; Zeng, Lingyu; Li, Zhenyu; Xu, Kailin

    2015-04-01

    Mesenchymal stem cells (MSCs) are a promising candidate for cellular therapies. Co-transplantation of MSCs and hematopoietic stem cells (HSCs) promotes successful engraftment and improves hematopoietic recovery. In this study, the effects of co-transplantation of HSCs and mouse bone marrow (BM)-derived MSCs overexpressing CXCR4 (CXCR4-MSC) on CXCR4-MSC homing capacity and the reconstitution potential in lethally irradiated mice were evaluated. Recovery of donor-derived peripheral blood leukocytes and platelets was accelerated when CXCR4-MSCs were co-transplanted with BM cells. The frequency of c-kit(+)Sca(+)Lin(-) HSCs was higher in recipient BM following co-transplantation of CXCR4-MSCs compared with the EGFP-MSC control and the BMT only groups. Surprisingly, the rate of early engraftment of donor-derived BM cells in recipients co-transplanted with CXCR4-MSCs was slightly lower than in the absence of MSCs on day 7. Moreover, co-transplantation of CXCR4-MSCs regulated the balance of T helper cells subsets. Hematopoietic tissue reconstitution was evaluated by histopathological analysis of BM and spleen. Co-transplantation of CXCR4-MSCs was shown to promote the recovery of hematopoietic organs. These findings indicate that co-transplantation of CXCR4-MSCs promotes the early phase of hematopoietic recovery and sustained hematopoiesis.

  6. Kit ligand cytoplasmic domain is essential for basolateral sorting in vivo and has roles in spermatogenesis and hematopoiesis

    PubMed Central

    Deshpande, Shayu; Agosti, Valter; Manova, Katia; Moore, Malcolm A.S.; Hardy, Matthew P.

    2009-01-01

    Juxtamembrane signaling via the membrane growth factor KitL is critical for Kit mediated functions. KitL has a conserved cytoplasmic domain, and has been shown to possess a monomeric leucine dependent basolateral targeting signal. To investigate the consequences in vivo of impaired basolateral KitL targeting in polarized epithelial cells, we have mutated this critical leucine to alanine using a knock-in strategy. KitLL263A/L263A mutant mice are pigmented normally and steady-state hematopoiesis is unaffected although peritoneal and skin mast cell numbers are significantly increased. KitL localization is affected in the Sertoli cells of the KitLL263A/L263A testis and testis size is reduced in these mice due to aberrant spermatogonial proliferation. Further, the effect of the KitL L263A mutation on the testicular phenotype is dosage dependent. The tubules of hemizygous KitLL263A/Sl mice completely lack germ cells in contrast to the weaker testicular phenotype of KitLL263A/L263A mice. The onset of the testis phenotype coincides with the formation of tight junctions between Sertoli cells during postnatal development. Thus, the altered sorting of KitL is dispensable for hematopoietic and melanogenic lineages, yet is crucial in the testicular environment, where the basal membranes of adjacent polarized Sertoli cells form a niche for the proliferating spermatogonia. PMID:19874813

  7. Far Upstream Element Binding Protein Plays a Crucial Role in Embryonic Development, Hematopoiesis, and Stabilizing Myc Expression Levels

    PubMed Central

    Zhou, Weixin; Chung, Yang Jo; Parrilla Castellar, Edgardo R.; Zheng, Ying; Chung, Hye-Jung; Bandle, Russell; Liu, Juhong; Tessarollo, Lino; Batchelor, Eric; Aplan, Peter D.; Levens, David

    2017-01-01

    The transcription factor far upstream element binding protein (FBP) binds and activates the MYC promoter when far upstream element is via TFIIH helicase activity early in the transcription cycle. The fundamental biology and pathology of FBP are complex. In some tumors FBP seems pro-oncogenic, whereas in others it is a tumor suppressor. We generated an FBP knockout (Fubp1−/−) mouse to study FBP deficiency. FBP is embryo lethal from embryonic day 10.5 to birth. A spectrum of pathology is associated with FBP loss; besides cerebral hyperplasia and pulmonary hypoplasia, pale livers, hypoplastic spleen, thymus, and bone marrow, cardiac hypertrophy, placental distress, and small size were all indicative of anemia. Immunophenotyping of hematopoietic cells in wild-type versus knockout livers revealed irregular trilineage anemia, with deficits in colony formation. Despite normal numbers of hematopoietic stem cells, transplantation of Fubp1−/− hematopoietic stem cells into irradiated mice entirely failed to reconstitute hematopoiesis. In competitive transplantation assays against wild-type donor bone marrow, Fubp1−/− hematopoietic stem cells functioned only sporadically at a low level. Although cultures of wild-type mouse embryo fibroblasts set Myc levels precisely, Myc levels of mouse varied wildly between fibroblasts harvested from different Fubp1−/− embryos, suggesting that FBP contributes to Myc set point fixation. FBP helps to hold multiple physiologic processes to close tolerances, at least in part by constraining Myc expression. PMID:26774856

  8. Analysis of hematopoiesis in mice irradiated with 500 mGy of X rays at different stages of development

    SciTech Connect

    Grande, T.; Bueren, J.A.

    1995-09-01

    We have investigated whether a relatively low dose of 500 mGy of X rays given as a single acute irradiation at different stages of pre-and postnatal development induces significant changes in the content of femoral hematopoietic progenitores during a 1-year period after irradiation. Data obtained show that, in the case of 4-day-old embryos as well as in 2-day, 8-day and 12-week-old mice, this dose is below the threshold capable of inducing a long-term impairment of hematopoiesis in the mouse. Nevertheless, in mice irradiated at the 13th or the 17th day postconception, a hematopoietic dysfunction consisting of a significant reduction in the proportion of femoral granulocyte-macrophage colony-forming units (CFU-GM) was manifested 1 year after irradiation. Our study confirms that, for most stages of development in the mouse, a single acute X irradiation of 500 mGy is below the threshold dose capable of inducing deterministic effects in the mouse hematopoietic system, although it reveals the induction of a significant impairment in the CFU-GM population when irradiation is given at the late stages of embryonic development. 24 refs., 4 figs.

  9. Extramedullary hematopoiesis in a case of benign mixed mammary tumor in a female dog: cytological and histopathological assessment

    PubMed Central

    2010-01-01

    Backgroud Extramedullary hematopoiesis (EMH) is defined as the presence of hematopoietic stem cells such as erythroid and myeloid lineage plus megakaryocytes in extramedullary sites like liver, spleen and lymph nodes and is usually associated with either bone marrow or hematological disorders. Mammary EMH is a rare condition either in human and veterinary medicine and can be associated with benign mixed mammary tumors, similarly to that described in this case. Case presentation Hematopoietic stem cells were found in a benign mixed mammary tumor of a 7-year-old female mongrel dog that presents a nodule in the left inguinal mammary gland. The patient did not have any hematological abnormalities. Cytological evaluation demonstrated two distinct cell populations, composed of either epithelial or mesenchymal cells, sometimes associated with a fibrillar acidophilic matrix, apart from megakaryocytes, osteoclasts, metarubricytes, prorubricytes, rubricytes, rubriblasts, promyelocytes, myeloblasts. Histological examination confirmed the presence of an active hematopoietic bone marrow within the bone tissue of a benign mammary mixed tumor. Conclusions EMH is a rare condition described in veterinary medicine that can be associated with mammary mixed tumors. It's detection can be associated with several neoplastic and non-neoplastic mammary lesions, i.e. osteosarcomas, mixed tumors and bone metaplasia. PMID:20846427

  10. Contrasting Spatial Distribution and Risk Factors for Past Infection with Scrub Typhus and Murine Typhus in Vientiane City, Lao PDR

    PubMed Central

    Vallée, Julie; Thaojaikong, Thaksinaporn; Moore, Catrin E.; Phetsouvanh, Rattanaphone; Richards, Allen L.; Souris, Marc; Fournet, Florence; Salem, Gérard; Gonzalez, Jean-Paul J.; Newton, Paul N.

    2010-01-01

    Background The aetiological diagnostic of fevers in Laos remains difficult due to limited laboratory diagnostic facilities. However, it has recently become apparent that both scrub and murine typhus are common causes of previous undiagnosed fever. Epidemiological data suggests that scrub typhus would be more common in rural areas and murine typhus in urban areas, but there is very little recent information on factors involved in scrub and murine typhus transmission, especially where they are sympatric - as is the case in Vientiane, the capital of the Lao PDR. Methodology and Principal Findings We therefore determined the frequency of IgG seropositivity against scrub typhus (Orientia tsutsugamushi) and murine typhus (Rickettsia typhi), as indices of prior exposure to these pathogens, in randomly selected adults in urban and peri-urban Vientiane City (n = 2,002, ≥35 years). Anti-scrub and murine typhus IgG were detected by ELISA assays using filter paper elutes. We validated the accuracy of ELISA of these elutes against ELISA using serum samples. The overall prevalence of scrub and murine typhus IgG antibodies was 20.3% and 20.6%, respectively. Scrub typhus seropositivity was significantly higher among adults living in the periphery (28.4%) than in the central zone (13.1%) of Vientiane. In contrast, seroprevalence of murine typhus IgG antibodies was significantly higher in the central zone (30.8%) as compared to the periphery (14.4%). In multivariate analysis, adults with a longer residence in Vientiane were at significant greater risk of past infection with murine typhus and at lower risk for scrub typhus. Those with no education, living on low incomes, living on plots of land with poor sanitary conditions, living in large households, and farmers were at higher risk of scrub typhus and those living in neighborhoods with high building density and close to markets were at greater risk for murine typhus and at lower risk of scrub typhus past infection

  11. Optimized flow cytometry isolation of murine spermatocytes

    PubMed Central

    Gaysinskaya, Valeriya; Soh, Ina Y.; van der Heijden, Godfried W.; Bortvin, Alex

    2014-01-01

    Meiotic prophase I (MPI), is an initial stage of meiosis characterized by intricate homologous chromosome interactions, synapsis and DNA recombination. These processes depend on the complex, but poorly understood early MPI events of homologous chromosome search, alignment and pairing. Detailed molecular investigation of these early events requires isolation of individual MPI substages. Enrichment for Pachytene (P) and Diplotene (D) substages of late MPI was previously accomplished using flow cytometry. However, separation of early MPI spermatocytes, specifically, of Leptotene (L) and Zygotene (Z) substages, has been a challenge due to these cells’ similar characteristics. In this report, we describe an optimized Hoechst-33342 (Hoechst)-based flow cytometry approach for isolating individual MPI populations from adult murine testis. We get significant enrichment for individual L and Z spermatocytes, previously inseparable from each other, and optimize the isolation of other MPI substages. Our flow cytometry approach is a combination of three optimized strategies. The first is optimization of testis dissociation protocol that yields more consistent and reproducible testicular single cell suspension. The second involves optimization of flow cytometric gating protocol where a critical addition to the standard protocol for cell discrimination based on Hoechst fluorescence, involves a back-gating technique based on light scattering parameters. This step specifies selection of individual MPI substages. The third, is an addition of DNA content restriction to the gating protocol to minimize contamination from non-meiotic cells. Finally, we confirm significant enrichment of high-purity Preleptotene (PreL), L, Z, P and D MPI spermatocytes using stage-specific marker distribution. The technique will facilitate understanding of the molecular events underlying meiotic prophase I. PMID:24664803

  12. The aryl hydrocarbon receptor: Regulation of hematopoiesis and involvement in the progression of blood diseases

    PubMed Central

    Casado, Fanny L.; Singh, Kameshwar P.; Gasiewicz, Thomas A.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix protein that belongs to the superfamily of environment-sensing PAS (Per-ARNT-Sim) proteins. A large number of ligands have been described to bind AhR and promote its nuclear translocation. In the nucleus, the AhR and its dimerization partner the AhR nuclear translocase (ARNT), also known as HIF1β, form a DNA-binding complex that acts as a transcriptional regulator. Animal and human data suggest that, beyond its mediating responses to xenobiotic and/or unknown endogenous ligands, the AhR has a role, although as yet undefined, in the regulation of cell cycle and inflammation. The AhR also appears to regulate the hematopoietic and immune systems during development and adult life in a cell-specific manner. While accidental exposure to xenobiotic AhR ligands has been associated with leukemia in humans, the specific mechanisms of AhR involvement are still not completely understood. However, recent data are consistent with a functional role of the AhR in the maintenance of hematopoietic stem and/or progenitor cells (HSCs/HPCs). Studies highlighting AhR-regulation of HSCs/HPCs provide a rational framework to understand their biology, a role of the AhR in hematopoietic diseases, and a means to develop interventions for these diseases. PMID:20171126

  13. The aryl hydrocarbon receptor: regulation of hematopoiesis and involvement in the progression of blood diseases.

    PubMed

    Casado, Fanny L; Singh, Kameshwar P; Gasiewicz, Thomas A

    2010-04-15

    The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix protein that belongs to the superfamily of environment-sensing PAS (Per-ARNT-Sim) proteins. A large number of ligands have been described to bind AhR and promote its nuclear translocation. In the nucleus, the AhR and its dimerization partner the AhR nuclear translocator (ARNT) form a DNA-binding complex that acts as a transcriptional regulator. Animal and human data suggest that, beyond its mediating responses to xenobiotic and/or unknown endogenous ligands, the AhR has a role, although as yet undefined, in the regulation of cell cycle and inflammation. The AhR also appears to regulate the hematopoietic and immune systems during development and adult life in a cell-specific manner. While accidental exposure to xenobiotic AhR ligands has been associated with leukemia in humans, the specific mechanisms of AhR involvement are still not completely understood. However, recent data are consistent with a functional role of the AhR in the maintenance of hematopoietic stem and/or progenitor cells (HSCs/HPCs). Studies highlighting AhR regulation of HSCs/HPCs provide a rational framework to understand their biology, a role of the AhR in hematopoietic diseases, and a means to develop interventions for these diseases.

  14. Isolation, cultivation, and characterization of adult murine prostate stem cells

    PubMed Central

    Lukacs, Rita U.; Goldstein, Andrew S.; Lawson, Devon A.; Cheng, Donghui; Witte, Owen N.

    2010-01-01

    ABSTRACT/SUMMARY The successful isolation and cultivation of prostate stem cells will allow us to study their unique biological properties and their application in therapeutic approaches. Here we provide step-by-step procedures on the basis of previous work in our laboratory for: the harvesting of primary prostate cells from adolescent male mice by a modified enzymatic procedure; the isolation of an enriched population of prostate stem cells through cell sorting; the cultivation of prostate stem cells in vitro; and characterization of these cells and their stem-like activity, including in vivo tubule regeneration. Normally it will take approximately 8 hours to harvest prostate cells, isolate the stem cell enriched population, and set up the in vitro sphere assay. It will take up to 8 weeks to analyze the unique properties of the stem cells, including their regenerative capacity in vivo. PMID:20360765

  15. Isolation, cultivation and characterization of adult murine prostate stem cells.

    PubMed

    Lukacs, Rita U; Goldstein, Andrew S; Lawson, Devon A; Cheng, Donghui; Witte, Owen N

    2010-04-01

    The successful isolation and cultivation of prostate stem cells will allow us to study their unique biological properties and their application in therapeutic approaches. Here we describe step-by-step procedures on the basis of previous work in our laboratory for the harvesting of primary prostate cells from adolescent male mice by a modified enzymatic procedure; the isolation of an enriched population of prostate stem cells through cell sorting; and the cultivation of prostate stem cells in vitro and characterization of these cells and their stem-like activity, including in vivo tubule regeneration. Normally, it will take approximately 8 h to harvest prostate cells, isolate the stem cell-enriched population and set up the in vitro sphere assay. It will take up to 8 weeks to analyze the unique properties of the stem cells, including their regenerative capacity in vivo.

  16. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations.

    PubMed

    Galán-Díez, Marta; Isa, Adiba; Ponzetti, Marco; Nielsen, Morten Frost; Kassem, Moustapha; Kousteni, Stavroula

    2016-03-01

    Osteoblasts are emerging regulators of myeloid malignancies since genetic alterations in them, such as constitutive activation of β-catenin, instigate their appearance. The LDL receptor-related protein 5 (LRP5), initially proposed to be a co-receptor for Wnt proteins, in fact favors bone formation by suppressing gut-serotonin synthesis. This function of Lrp5 occurring in the gut is independent of β-catenin activation in osteoblasts. However, it is unknown whether Lrp5 can act directly in osteoblast to influence other functions that require β-catenin signaling, particularly, the deregulation of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5 mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.

  17. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations☆, ☆☆

    PubMed Central

    Galán-Díez, Marta; Isa, Adiba; Ponzetti, Marco; Nielsen, Morten Frost; Kassem, Moustapha; Kousteni, Stavroula

    2016-01-01

    Osteoblasts are emerging regulators of myeloid malignancies since genetic alterations in them, such as constitutive activation of β-catenin, instigate their appearance. The LDL receptor-related protein 5 (LRP5), initially proposed to be a co-receptor for Wnt proteins, in fact favors bone formation by suppressing gut-serotonin synthesis. This function of Lrp5 occurring in the gut is independent of β-catenin activation in osteoblasts. However, it is unknown whether Lrp5 can act directly in osteoblast to influence other functions that require β-catenin signaling, particularly, the deregulation of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5A214V) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5 mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5A214V mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation of β-catenin in osteoblasts (Ctnnb1CAosb), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5A214V mice. Likewise, peripheral blood count analysis in HBM patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza. PMID:26681532

  18. IFN-γ-mediated hematopoietic cell destruction in murine models of immune-mediated bone marrow failure

    PubMed Central

    Feng, Xingmin; Desierto, Marie J.; Keyvanfar, Keyvan; Young, Neal S.

    2015-01-01

    Interferon gamma (IFN-γ) has been reported to have both negative and positive activity on hematopoietic cells, adding complexity to the interpretation of its pleiotropic functions. We examined the effects of IFN-γ on murine hematopoietic stem cells (HSCs) and progenitors in vitro and in vivo by using mouse models. IFN-γ treatment expanded bone marrow (BM) c-Kit+Sca1+Lin– (KSL) cell number but reduced BM KLCD150+ and KLCD150+CD48– cells. IFN-γ-expanded KSL cells engrafted poorly when tested by competitive repopulation in vivo. KSL, KLCD150+, and KLCD150+CD48– cells from IFN-γ-treated animals all showed significant upregulation in Fas expression. When cocultured with activated T cells in vitro, KSL and KLCD150+ cells from IFN-γ-treated donors showed increased apoptosis relative to those from untreated animals, and infusion of activated CD8 T cells into IFN-γ-injected animals in vivo led to partial elimination of KSL cells. Exposure of BM cells or KSL cells to IFN-γ increased expression of Fas, caspases, and related proapoptotic genes and decreased expression of Ets-1 and other hematopoietic genes. In mouse models of BM failure, mice genetically deficient in IFN-γ receptor expression showed attenuation of immune-mediated marrow destruction, whereas effector lymphocytes from IFN-γ-deficient donors were much less potent in initiating BM damage. We conclude that the activity of IFN-γ on murine hematopoiesis is context dependent. IFN-γ-augmented apoptotic gene expression facilitates destruction of HSCs and progenitors in the presence of activated cytotoxic T cells, as occurs in human BM failure. PMID:26491068

  19. IFN-γ-mediated hematopoietic cell destruction in murine models of immune-mediated bone marrow failure.

    PubMed

    Chen, Jichun; Feng, Xingmin; Desierto, Marie J; Keyvanfar, Keyvan; Young, Neal S

    2015-12-10

    Interferon gamma (IFN-γ) has been reported to have both negative and positive activity on hematopoietic cells, adding complexity to the interpretation of its pleiotropic functions. We examined the effects of IFN-γ on murine hematopoietic stem cells (HSCs) and progenitors in vitro and in vivo by using mouse models. IFN-γ treatment expanded bone marrow (BM) c-Kit(+)Sca1(+)Lin(-) (KSL) cell number but reduced BM KLCD150(+) and KLCD150(+)CD48(-) cells. IFN-γ-expanded KSL cells engrafted poorly when tested by competitive repopulation in vivo. KSL, KLCD150(+), and KLCD150(+)CD48(-) cells from IFN-γ-treated animals all showed significant upregulation in Fas expression. When cocultured with activated T cells in vitro, KSL and KLCD150(+) cells from IFN-γ-treated donors showed increased apoptosis relative to those from untreated animals, and infusion of activated CD8 T cells into IFN-γ-injected animals in vivo led to partial elimination of KSL cells. Exposure of BM cells or KSL cells to IFN-γ increased expression of Fas, caspases, and related proapoptotic genes and decreased expression of Ets-1 and other hematopoietic genes. In mouse models of BM failure, mice genetically deficient in IFN-γ receptor expression showed attenuation of immune-mediated marrow destruction, whereas effector lymphocytes from IFN-γ-deficient donors were much less potent in initiating BM damage. We conclude that the activity of IFN-γ on murine hematopoiesis is context dependent. IFN-γ-augmented apoptotic gene expression facilitates destruction of HSCs and progenitors in the presence of activated cytotoxic T cells, as occurs in human BM failure.

  20. CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts.

    PubMed

    Saint-Paul, Laetitia; Nguyen, Chi-Hung; Buffière, Anne; Pais de Barros, Jean-Paul; Hammann, Arlette; Landras-Guetta, Corinne; Filomenko, Rodolphe; Chrétien, Marie-Lorraine; Johnson, Pauline; Bastie, Jean-Noël; Delva, Laurent; Quéré, Ronan

    2016-10-04

    CD45 is a pan-leukocyte protein with tyrosine phosphatase activity involved in the regulation of signal transduction in hematopoiesis. Exploiting CD45 KO mice and lentiviral shRNA, we prove the crucial role that CD45 plays in acute myeloid leukemia (AML) development and maintenance. We discovered that CD45 does not colocalize with lipid rafts on murine and human non-transformed hematopoietic cells. Using a mouse model, we proved that CD45 positioning within lipid rafts is modified during their oncogenic transformation to AML. CD45 colocalized with lipid rafts on AML cells, which contributes to elevated GM-CSF signal intensity involved in proliferation of leukemic cells. We furthermore proved that the GM-CSF/Lyn/Stat3 pathway that contributes to growth of leukemic cells could be profoundly affected, by using a new plasma membrane disrupting agent, which rapidly delocalized CD45 away from lipid rafts. We provide evidence that this mechanism is also effective on human primary AML samples and xenograft transplantation. In conclusion, this study highlights the emerging evidence of the involvement of lipid rafts in oncogenic development of AML and the targeting of CD45 positioning among lipid rafts as a new strategy in the treatment of AML.

  1. CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts

    PubMed Central

    Saint-Paul, Laetitia; Nguyen, Chi-Hung; Buffière, Anne; de Barros, Jean-Paul Pais; Hammann, Arlette; Landras-Guetta, Corinne; Filomenko, Rodolphe; Chrétien, Marie-Lorraine; Johnson, Pauline; Bastie, Jean-Noël; Delva, Laurent; Quéré, Ronan

    2016-01-01

    CD45 is a pan-leukocyte protein with tyrosine phosphatase activity involved in the regulation of signal transduction in hematopoiesis. Exploiting CD45 KO mice and lentiviral shRNA, we prove the crucial role that CD45 plays in acute myeloid leukemia (AML) development and maintenance. We discovered that CD45 does not colocalize with lipid rafts on murine and human non-transformed hematopoietic cells. Using a mouse model, we proved that CD45 positioning within lipid rafts is modified during their oncogenic transformation to AML. CD45 colocalized with lipid rafts on AML cells, which contributes to elevated GM-CSF signal intensity involved in proliferation of leukemic cells. We furthermore proved that the GM-CSF/Lyn/Stat3 pathway that contributes to growth of leukemic cells could be profoundly affected, by using a new plasma membrane disrupting agent, which rapidly delocalized CD45 away from lipid rafts. We provide evidence that this mechanism is also effective on human primary AML samples and xenograft transplantation. In conclusion, this study highlights the emerging evidence of the involvement of lipid rafts in oncogenic development of AML and the targeting of CD45 positioning among lipid rafts as a new strategy in the treatment of AML. PMID:27579617

  2. The aryl hydrocarbon receptor nuclear translocator is an essential regulator of murine hematopoietic stem cell viability

    PubMed Central

    Krock, Bryan L.; Eisinger-Mathason, Tzipora S.; Giannoukos, Dionysios N.; Shay, Jessica E.; Gohil, Mercy; Lee, David S.; Nakazawa, Michael S.; Sesen, Julie; Skuli, Nicolas

    2015-01-01

    Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to low oxygen and play essential roles in embryonic development, tissue homeostasis, and disease. Recent studies have demonstrated that hematopoietic stem cells (HSCs) within the bone marrow localize to a hypoxic niche and that HIF-1α promotes HSC adaptation to stress. Because the related factor HIF-2α is also expressed in HSCs, the combined role of HIF-1α and HIF-2α in HSC maintenance is unclear. To this end, we have conditionally deleted the HIF-α dimerization partner, the aryl hydrocarbon receptor nuclear translocator (ARNT) in the hematopoietic system to ablate activity of both HIF-1α and HIF-2α and assessed the functional consequence of ARNT deficiency on fetal liver and adult hematopoiesis. We determined that ARNT is essential for adult and fetal HSC viability and homeostasis. Importantly, conditional knockout of both Hif-1α and Hif-2α phenocopied key aspects of these HSC phenotypes, demonstrating that the impact of Arnt deletion is primarily HIF dependent. ARNT-deficient long-term HSCs underwent apoptosis, potentially because of reduced B-cell lymphoma 2 (BCL-2) and vascular endothelial growth factor A (VEGF-A) expression. Our results suggest that HIF activity may regulate HSC homeostasis through these prosurvival factors. PMID:25855602

  3. Tumor necrosis factor receptors support murine hematopoietic progenitor function in the early stages of engraftment.

    PubMed

    Pearl-Yafe, Michal; Mizrahi, Keren; Stein, Jerry; Yolcu, Esma S; Kaplan, Ofer; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir

    2010-07-01

    Tumor necrosis factor (TNF) family receptors/ligands are important participants in hematopoietic homeostasis, in particular as essential negative expansion regulators of differentiated clones. As a prominent injury cytokine, TNF-alpha has been traditionally considered to suppress donor hematopoietic stem and progenitor cell function after transplantation. We monitored the involvement of TNF receptors (TNF-R) 1 and 2 in murine hematopoietic cell engraftment and their inter-relationship with Fas. Transplantation of lineage-negative (lin(-)) bone marrow cells (BMC) from TNF receptor-deficient mice into wild-type recipients showed defective early engraftment and loss of durable hematopoietic contribution upon recovery of host hematopoiesis. Consistently, cells deficient in TNF receptors had reduced competitive capacity as compared to wild-type progenitors. The TNF receptors were acutely upregulated in bone marrow (BM)-homed donor cells (wild-type) early after transplantation, being expressed in 60%-75% of the donor cells after 6 days. Both TNF receptors were detected in fast cycling, early differentiating progenitors, and were ubiquitously expressed in the most primitive progenitors with long-term reconstituting potential (lin(-)c-kit(+) stem cell antigen (SCA)-1(+)). BM-homed donor cells were insensitive to apoptosis induced by TNF-alpha and Fas-ligand and their combination, despite reciprocal inductive cross talk between the TNF and Fas receptors. The engraftment supporting effect of TNF-alpha is attributed to stimulation of progenitors through TNF-R1, which involves activation of the caspase cascade. This stimulatory effect was not observed for TNF-R2, and this receptor did not assume redundant stimulatory function in TNFR1-deficient cells. It is concluded that TNF-alpha plays a tropic role early after transplantation, which is essential to successful progenitor engraftment.

  4. Regulation of Hematopoiesis

    PubMed Central

    Desforges, Jane F.

    1984-01-01

    These discussions are selected from the weekly staff conferences in the Department of Medicine, University of California, San Francisco. Taken from transcriptions, they are prepared by Drs Homer A. Boushey, Associate Professor of Medicine, and David G. Warnock, Associate Professor of Medicine, under the direction of Dr Lloyd H. Smith, Jr, Professor of Medicine and Chairman of the Department of Medicine. Requests for reprints should be sent to the Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA 94143. PMID:6382801

  5. Murine erythroleukemia cell line GM979 contains factors that can activate silent chromosomal human. gamma. -globin genes

    SciTech Connect

    Zitnik, G.; Hines, P.; Stamatoyannopoulos, G.; Papayannopoulou, T. )

    1991-03-15

    The authors introduced a normal chromosome 11 into GM979 murine erythroleukemia cells by fusing them with Epstein-Barr virus-transformed lymphocytes from a normal individual. In contrast to precious data obtained with other murine erythroleukemia cells, they detected activation of human chromosomal {gamma}-globin genes in GM979 cells. GM979, unlike previously used murine erythroleukemia cell lines, expresses murine embryonic globin in addition to adult globin. While all the hybrids expressed {gamma}- and {beta}-globin, they displayed a wide range of {gamma}-globin expression in relation to that of {beta}-globin. No correlation, however, was found in quantitative expression between murine embryonic globin and human {gamma}-globin in these hybrids, suggesting that the two globins are regulated independently, at least in this cell line. These data indicate that {gamma}-globin genes from normal, nonerythroid chromosomes are not irreversibly silenced, and they can be activated by a positive trans factor(s) present in GM979 cells.

  6. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D.

    PubMed

    Carayannopoulos, Leonidas N; Naidenko, Olga V; Fremont, Daved H; Yokoyama, Wayne M

    2002-10-15

    Murine NKG2D is known to recognize H60 and five RAE1 variants. The human homologue recognizes both inducible MHC class I chain-related gene and constitutive (UL16-binding protein (ULBP)) ligands. Widely expressed, the latter are thought to mark transformed or infected cells for destruction by NK cells in the context of down-regulated cell surface class I (i.e., the "missing self"-response). Unlike MIC and ULBP however, mRNA for the murine ligands appears only in very limited contexts in the mature animal. In this study, we describe a NKG2D ligand termed "murine ULBP-like transcript 1 (MULT1) whose mRNA appears to be widely expressed in adult parenchyma. This molecule possesses MHC class I-like alpha1 and alpha2 domains as well as a large cytoplasmic domain. Recombinant MULT1 binds NKG2D with relatively high affinity (K(D) approximately 6 nM) and low k(off) (approximately 0.006s(-1)). Expression of MULT1 by normally resistant RMA cells results in their susceptibility to lysis by C57BL/6 splenocytes.

  7. A novel murine homeobox gene isolated by a tissue specific PCR cloning strategy.

    PubMed Central

    Kern, M J; Witte, D P; Valerius, M T; Aronow, B J; Potter, S S

    1992-01-01

    We have identified a novel homeobox gene, designated K-2, using a reverse transcription PCR cloning strategy. Sequence analysis reveals that the homeobox of K-2 is 77.6% homologous at the nucleotide level and 97% identical at the amino acid sequence level to another murine gene, S8. Homeodomain sequence comparisons indicate that K-2 and S8 represent a distinct subclass of paired type homeobox genes. Northern blot analysis of RNA from murine embryos and adult tissues identified multiple transcripts that are expressed in a developmentally specific and tissue restricted manner. Alternate splicing of K-2 at the 3-coding region leads to the inclusion of a chain terminating sequence. In addition, the developmental expression pattern of this gene at day 12 of gestation was determined by in situ hybridization. Expression was observed in diverse mesenchymal cells in craniofacial, pericardial, primitive dermal, prevertebral, and genital structures. Images PMID:1383943

  8. Commonly dysregulated genes in murine APL cells

    PubMed Central

    Yuan, Wenlin; Payton, Jacqueline E.; Holt, Matthew S.; Link, Daniel C.; Watson, Mark A.; DiPersio, John F.; Ley, Timothy J.

    2007-01-01

    To identify genes that are commonly dysregulated in a murine model of acute promyelocytic leukemia (APL), we first defined gene expression patterns during normal murine myeloid development; serial gene expression profiling studies were performed with primary murine hematopoietic progenitors that were induced to undergo myeloid maturation in vitro with G-CSF. Many genes were reproducibly expressed in restricted developmental “windows,” suggesting a structured hierarchy of expression that is relevant for the induction of developmental fates and/or differentiated cell functions. We compared the normal myeloid developmental transcriptome with that of APL cells derived from mice expressing PML-RARα under control of the murine cathepsin G locus. While many promyelocyte-specific genes were highly expressed in all APL samples, 116 genes were reproducibly dysregulated in many independent APL samples, including Fos, Jun, Egr1, Tnf, and Vcam1. However, this set of commonly dysregulated genes was expressed normally in preleukemic, early myeloid cells from the same mouse model, suggesting that dysregulation occurs as a “downstream” event during disease progression. These studies suggest that the genetic events that lead to APL progression may converge on common pathways that are important for leukemia pathogenesis. PMID:17008535

  9. Cell signaling directing the formation and function of hemogenic endothelium during murine embryogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During developmental hematopoiesis, multilineage hematopoietic progenitors are thought to derive from a subset of vascular endothelium. Herein, we define the phenotype of such hemogenic endothelial cells and demonstrate, on a clonal level, that they exhibit multilineage hematopoietic potential. Furt...

  10. Neonatal CD71+ erythroid cells do not modify murine sepsis mortality

    PubMed Central

    Wynn, James L.; Scumpia, Philip O.; Stocks, Blair T.; Romano-Keeler, Joann; Alrifai, Mhd Wael; Liu, Jin-Hua; Kim, Annette S.; Alford, Catherine E.; Matta, Pranathi; Weitkamp, Jörn-Hendrik; Moore, Daniel J.

    2015-01-01

    Sepsis is a major cause of neonatal mortality and morbidity worldwide. A recent report suggested murine neonatal host defense against infection could be compromised by immunosuppressive CD71+ erythroid splenocytes. We examined the impact of CD71+ erythroid splenocytes on murine neonatal mortality to endotoxin challenge or polymicrobial sepsis and characterized circulating CD71+ erythroid (CD235a+) cells in human neonates. Adoptive transfer or antibody-mediated reduction of neonatal CD71+ erythroid splenocytes did not alter murine neonatal survival to endotoxin challenge or polymicrobial sepsis challenge. Ex vivo immunosuppression of stimulated adult CD11b+ cells was not limited to neonatal splenocytes as it also occurred with adult and neonatal bone marrow. Animals treated with anti-CD71 antibody showed reduced splenic bacterial load following bacterial challenge compared to isotype-treated mice. However, adoptive transfer of enriched CD71+ erythroid splenocytes to CD71+-reduced animals did not reduce bacterial clearance. Human CD71+CD235a+ cells were common among cord blood mononuclear cells and were shown to be reticulocytes. In summary, a lack of effect on murine survival to polymicrobial sepsis following adoptive transfer or diminution of CD71+ erythroid splenocytes under these experimental conditions suggests the impact of these cells on neonatal infection risk and progression may be limited. An unanticipated immune priming effect of anti-CD71 antibody treatment was likely responsible for the reported enhanced bacterial clearance, rather than a reduction of immunosuppressive CD71+ erythroid splenocytes. In humans, the well-described rapid decrease in circulating reticulocytes after birth suggests they may have a limited role in reducing inflammation secondary to microbial colonization. PMID:26101326

  11. Deep Sequencing of the Murine Olfactory Receptor Neuron Transcriptome

    PubMed Central

    Kanageswaran, Ninthujah; Demond, Marilen; Nagel, Maximilian; Schreiner, Benjamin S. P.; Baumgart, Sabrina; Scholz, Paul; Altmüller, Janine; Becker, Christian; Doerner, Julia F.; Conrad, Heike; Oberland, Sonja; Wetzel, Christian H.; Neuhaus, Eva M.; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation. PMID:25590618

  12. Differential Requirement for irf8 in Formation of Embryonic and Adult Macrophages in Zebrafish

    PubMed Central

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; Talbot, William S.

    2015-01-01

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. In particular, genetic tools to analyze the role of Irf8 in zebrafish macrophage development at larval and adult stages are lacking. We generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils and excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system. PMID:25615614

  13. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    DOE PAGES

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; ...

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less

  14. Murine typhus: an unrecognized suburban vectorborne disease.

    PubMed

    Civen, Rachel; Ngo, Van

    2008-03-15

    Murine typhus, an acute febrile illness caused by Rickettsia typhi, is distributed worldwide. Mainly transmitted by the fleas of rodents, it is associated with cities and ports where urban rats (Rattus rattus and Rattus norvegicus) are abundant. In the United States, cases are concentrated in suburban areas of Texas and California. Contrary to the classic rat-flea-rat cycle, the most important reservoirs of infection in these areas are opossums and cats. The cat flea, Ctenocephalides felis, has been identified as the principal vector. In Texas, murine typhus cases occur in spring and summer, whereas, in California, cases have been documented in summer and fall. Most patients present with fever, and many have rash and headache. Serologic testing with the indirect immunofluorescence assay is the preferred diagnostic method. Doxycycline is the antibiotic of choice and has been shown to shorten the course of illness.

  15. Enhanced Cultivation Of Stimulated Murine B Cells

    NASA Technical Reports Server (NTRS)

    Sammons, David W.

    1994-01-01

    Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.

  16. Potent Inhibition of Junín Virus Infection by Interferon in Murine Cells

    PubMed Central

    Huang, Cheng; Walker, Aida G.; Grant, Ashley M.; Kolokoltsova, Olga A.; Yun, Nadezhda E.; Seregin, Alexey V.; Paessler, Slobodan

    2014-01-01

    The new world arenavirus Junín virus (JUNV) is the causative agent of Argentine hemorrhagic fever, a lethal human infectious disease. Adult laboratory mice are generally resistant to peripheral infection by JUNV. The mechanism underlying the mouse resistance to JUNV infection is largely unknown. We have reported that interferon receptor knockout mice succumb to JUNV infection, indicating the critical role of interferon in restricting JUNV infection in mice. Here we report that the pathogenic and vaccine strains of JUNV were highly sensitive to interferon in murine primary cells. Treatment with low concentrations of interferon abrogated viral NP protein expression in murine cells. The replication of both JUNVs was enhanced in IRF3/IRF7 deficient cells. In addition, the vaccine strain of JUNV displayed impaired growth in primary murine cells. Our data suggested a direct and potent role of host interferon response in restricting JUNV replication in mice. The defect in viral growth for vaccine JUNV might also partially explain its attenuation in mice. PMID:24901990

  17. Tissue-specific in vivo transcription start sites of the human and murine cystic fibrosis genes.

    PubMed

    White, N L; Higgins, C F; Trezise, A E

    1998-03-01

    The in vivo transcription start sites of the human cystic fibrosis transmembrane conductance regulator gene ( CFTR ) and its murine homologue ( Cftr ) have been mapped in a range of tissues using the technique of 5' rapid amplification of cDNA ends (5' RACE). These are the first in vivo transcription start sites for CFTR or Cftr to be reported. Distinct, tissue-specific patterns of CFTR start site usage were identified in both mouse and human. In particular, striking variation in the position of the murine Cftr transcription start site was seen along the length of the intestinal tract; different start sites being utilized in ileum and in duodenum. In humans, distinct transcription start sites are utilized in adult and foetal lungs. In addition, a novel 5'-untranslated exon of murine Cftr , denoted exon -1, was identified and shown to be expressed exclusively in mouse testis. Expression of exon -1-containing Cftr transcripts was shown by mRNA in situ hybridization to be confined to the germ cells and to be regulated during spermatogenesis.

  18. Differential Secreted Proteome Approach in Murine Model for Candidate Biomarker Discovery in Colon Cancer

    PubMed Central

    Rangiah, Kannan; Tippornwong, Montri; Sangar, Vineet; Austin, David; Tétreault, Marie-Pier; Rustgi, Anil K.; Blair, Ian A.; Yu, Kenneth H.

    2009-01-01

    The complexity and heterogeneity of the plasma proteome have presented significant challenges in the identification of protein changes associated with tumor development. We used cell culture as a model system and identified differentially expressed, secreted proteins which may constitute serological biomarkers. A stable isotope labeling by amino acids in cell culture (SILAC) approach was used to label the entire secreted proteomes of the CT26 murine colon cancer cell line and normal young adult mouse colon (YAMC) cell line, thereby creating a stable isotope labeled proteome (SILAP) standard. This SILAP standard was added to unlabeled murine CT26 colon cancer cell or normal murine YAMC colon epithelial cell secreted proteome samples. A multidimensional approach combining isoelectric focusing (IEF), strong cation exchange (SCX) followed by reversed phase liquid chromatography was used for extensive protein and peptide separation. A total of 614 and 929 proteins were identified from the YAMC and CT26 cell lines, with 418 proteins common to both cell lines. Twenty highly abundant differentially expressed proteins from these groups were selected for liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS) analysis in sera. Differential secretion into the serum was observed for several proteins when Apcmin mice were compared with control mice. These findings were then confirmed by Western blot analysis. PMID:19769411

  19. Stage-specific roles for CXCR4 signaling in murine hematopoietic stem/progenitor cells in the process of bone marrow repopulation.

    PubMed

    Lai, Chen-Yi; Yamazaki, Satoshi; Okabe, Motohito; Suzuki, Sachie; Maeyama, Yoshihiro; Iimura, Yasuaki; Onodera, Masafumi; Kakuta, Shigeru; Iwakura, Yoichiro; Nojima, Masanori; Otsu, Makoto; Nakauchi, Hiromitsu

    2014-07-01

    Hematopoietic cell transplantation has proven beneficial for various intractable diseases, but it remains unclear how hematopoietic stem/progenitor cells (HSPCs) home to the bone marrow (BM) microenvironment, initiate hematopoietic reconstitution, and maintain life-long hematopoiesis. The use of newly elucidated molecular determinants for overall HSPC engraftment should benefit patients. Here, we report that modification of C-X-C chemokine receptor type 4 (Cxcr4) signaling in murine HSPCs does not significantly affect initial homing/lodging events, but leads to alteration in subsequent BM repopulation kinetics, with observations confirmed by both gain- and loss-of-function approaches. By using C-terminal truncated Cxcr4 as a gain-of-function effector, we demonstrated that signal augmentation likely led to favorable in vivo repopulation of primitive cell populations in BM. These improved features were correlated with enhanced seeding efficiencies in stromal cell cocultures and altered ligand-mediated phosphorylation kinetics of extracellular signal-regulated kinases observed in Cxcr4 signal-augmented HSPCs in vitro. Unexpectedly, however, sustained signal enhancement even with wild-type Cxcr4 overexpression resulted in impaired peripheral blood (PB) reconstitution, most likely by preventing release of donor hematopoietic cells from the marrow environment. We thus conclude that timely regulation of Cxcr4/CXCR4 signaling is key in providing donor HSPCs with enhanced repopulation potential following transplantation, whilst preserving the ability to release HSPC progeny into PB for improved transplantation outcomes.

  20. Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera

    PubMed Central

    Bruedigam, Claudia; Poveromo, Luke; Heidel, Florian H.; Purdon, Amy; Vu, Therese; Austin, Rebecca; Heckl, Dirk; Breyfogle, Lawrence J.; Kuhn, Catherine Paine; Kalaitzidis, Demetrios; Armstrong, Scott A.; Williams, David A.; Hill, Geoff R.; Ebert, Benjamin L.

    2013-01-01

    Interferon-α (IFNα) is an effective treatment of patients with myeloproliferative neoplasms (MPNs). In addition to inducing hematological responses in most MPN patients, IFNα reduces the JAK2V617F allelic burden and can render the JAK2V617F mutant clone undetectable in some patients. The precise mechanism underlying these responses is incompletely understood and whether the molecular responses that are seen occur due to the effects of IFNα on JAK2V617F mutant stem cells is debated. Using a murine model of Jak2V617F MPN, we investigated the effects of IFNα on Jak2V617F MPN-propagating stem cells in vivo. We report that IFNα treatment induces hematological responses in the model and causes depletion of Jak2V617F MPN-propagating cells over time, impairing disease transplantation. We demonstrate that IFNα treatment induces cell cycle activation of Jak2V617F mutant long-term hematopoietic stem cells and promotes a predetermined erythroid-lineage differentiation program. These findings provide insights into the differential effects of IFNα on Jak2V617F mutant and normal hematopoiesis and suggest that IFNα achieves molecular remissions in MPN patients through its effects on MPN stem cells. Furthermore, these results support combinatorial therapeutic approaches in MPN by concurrently depleting dormant JAK2V617F MPN-propagating stem cells with IFNα and targeting the proliferating downstream progeny with JAK2 inhibitors or cytotoxic chemotherapy. PMID:23487027

  1. Loss of c-Kit and bone marrow failure upon conditional removal of the GATA-2 C-terminal zinc finger domain in adult mice.

    PubMed

    Li, Haiyan S; Jin, Jin; Liang, Xiaoxuan; Matatall, Katie A; Ma, Ying; Zhang, Huiyuan; Ullrich, Stephen E; King, Katherine Y; Sun, Shao-Cong; Watowich, Stephanie S

    2016-09-01

    Heterozygous mutations in the transcriptional regulator GATA-2 associate with multilineage immunodeficiency, myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML). The majority of these mutations localize in the zinc finger (ZnF) domains, which mediate GATA-2 DNA binding. Deregulated hematopoiesis with GATA-2 mutation frequently develops in adulthood, yet GATA-2 function in the bone marrow remains unresolved. To investigate this, we conditionally deleted the GATA-2 C-terminal ZnF (C-ZnF) coding sequences in adult mice. Upon Gata2 C-ZnF deletion, we observed rapid peripheral cytopenia, bone marrow failure, and decreased c-Kit expression on hematopoietic progenitors. Transplant studies indicated GATA-2 has a cell-autonomous role in bone marrow hematopoiesis. Moreover, myeloid lineage populations were particularly sensitive to Gata2 hemizygosity, while molecular assays indicated GATA-2 regulates c-Kit expression in multilineage progenitor cells. Enforced c-Kit expression in Gata2 C-ZnF-deficient hematopoietic progenitors enhanced myeloid colony activity, suggesting GATA-2 sustains myelopoiesis via a cell intrinsic role involving maintenance of c-Kit expression. Our results provide insight into mechanisms regulating hematopoiesis in bone marrow and may contribute to a better understanding of immunodeficiency and bone marrow failure associated with GATA-2 mutation.

  2. Novel transient outward K+ current of mature murine hippocampal neurones.

    PubMed

    Li, X Y; McArdle, J J

    1997-06-01

    Hippocampal neurones were freshly isolated from the brain of adult mice and voltage-dependent K+ currents were recorded with whole-cell patch-clamp technique. Three components of transient K+ current (IA) were isolated when analyzing data with exponential functions or treating neurones with a variety of voltage protocols and pharmacologic agents. Subtraction of the delayed rectifier current (IK) from the K+ currents elicited after prepulses to -120 mV of varying duration revealed fast (IAf) and slow (IAs) components with decay time constants of 45 +/- 8 and 612 +/- 140 ms, respectively; the corresponding time constants for the removal of inactivation were 12.3 and 189.6 ms. both tetraethylammonium and dendrotoxin selectively inhibited IAs. 4-Aminopyridine (4-AP) specifically blocked IAf and 40% of IAs with different affinities. Therefore, the properties of a 4-AP-resistant (IAsR) and 4-AP-sensitive (IAsS) component of IAs were compared. These data suggest that three distinct subtypes of K+ currents contribute to the IA of mature murine hippocampal neurones.

  3. Factors affecting responses to murine oncogenic viral infections.

    PubMed Central

    Harvey, J. J.; Rager-Zisman, B.; Wheelock, E. F.; Nevin, P. A.

    1980-01-01

    Silica specifically kills macrophages in vitro, and in vivo has been used as a method of determining the possible immunological or other roles of macrophages in a number of viral infections. In experiments reported here, injection of 30 or 50 mg silica i.p. increased the severity of the oncogenic effects of the murine sarcoma virus (MSV) and Friend virus (FV) in BALB/c mice. Unlike Herpes simplex and Coxsackie B-3 infections, however, passive transfer of adult macrophages to suckling mice did not protect the latter against MSV. In mice injected with silica, histological evidence of the compensatory proliferation of macrophages suggests that precursors of these cells may act as target cells for the virus and that this may override any immunosuppressive response effected by the silica. In addition, there was a considerable enhancing effect on the erythroproliferative response to both MSV and FV by injection of saline 5 h before the virus, and indeed to FV after only a simple abdominal needle puncture. We attributed this to the lymphopenic immunodepressive effects of stress, and our data may explain previously published findings of augmented oncogenic responses in mice after "normal" serum injections. Newborn BALB/c (FV-1b) mice were susceptible to N-tropic FV, but developed resistance by 29 days of age. Antithymocyte serum (ATS) but not silica injections or adult thymectomy ablated this resistance. C57BL (FV-2r) mice were completely resistant to FV; however, those receiving FV and ATS developed late-onset leukaemia histologically characteristic of that produced by the helper component of the FV complex. Images Fig. PMID:6248095

  4. B cells modulate systemic responses to Pneumocystis murina lung infection and protect on-demand hematopoiesis via T cell-independent innate mechanisms when type I interferon signaling is absent.

    PubMed

    Hoyt, Teri R; Dobrinen, Erin; Kochetkova, Irina; Meissner, Nicole

    2015-02-01

    HIV infection results in a complex immunodeficiency due to loss of CD4(+) T cells, impaired type I interferon (IFN) responses, and B cell dysfunctions causing susceptibility to opportunistic infections such as Pneumocystis murina pneumonia and unexplained comorbidities, including bone marrow dysfunctions. Type I IFNs and B cells critically contribute to immunity to Pneumocystis lung infection. We recently also identified B cells as supporters of on-demand hematopoiesis following Pneumocystis infection that would otherwise be hampered due to systemic immune effects initiated in the context of a defective type I IFN system. While studying the role of type I IFNs in immunity to Pneumocystis infection, we discovered that mice lacking both lymphocytes and type I IFN receptor (IFrag(-/-)) developed progressive bone marrow failure following infection, while lymphocyte-competent type I IFN receptor-deficient mice (IFNAR(-/-)) showed transient bone marrow depression and extramedullary hematopoiesis. Lymphocyte reconstitution of lymphocyte-deficient IFrag(-/-) mice pointed to B cells as a key player in bone marrow protection. Here we define how B cells protect on-demand hematopoiesis following Pneumocystis lung infection in our model. We demonstrate that adoptive transfer of B cells into IFrag(-/-) mice protects early hematopoietic progenitor activity during systemic responses to Pneumocystis infection, thus promoting replenishment of depleted bone marrow cells. This activity is independent of CD4(+) T cell help and B cell receptor specificity and does not require B cell migration to bone marrow. Furthermore, we show that B cells protect on-demand hematopoiesis in part by induction of interleukin-10 (IL-10)- and IL-27-mediated mechanisms. Thus, our data demonstrate an important immune modulatory role of B cells during Pneumocystis lung infection that complement the modulatory role of type I IFNs to prevent systemic complications.

  5. The hematopoiesis in gill and its role in the immune response of Pacific oyster Crassostrea gigas against secondary challenge with Vibrio splendidus.

    PubMed

    Li, Yiqun; Song, Xiaorui; Wang, Weilin; Wang, Lingling; Yi, Qilin; Jiang, Shuai; Jia, Zhihao; Du, Xinyu; Qiu, Limei; Song, Linsheng

    2017-06-01

    Increasing evidences have demonstrated that the invertebrate gill is a predominant tissue participating in the immune response during pathogen challenge. In the present study, the hematopoiesis and immune activities in gill of Pacific oyster Crassostrea gigas were investigated. Stem-like cells with big nuclei and thin cytoplasm were found in the tubules of gill filaments, where DNA synthesis is active and hemocytes production are exuberant. The oysters primarily stimulated by formaldehyde-killed Vibrio splendidus exhibited stronger immune responses and enhanced cell regeneration in gill when they encountered the secondary challenge of live V. splendidus. After the secondary stimulation with V. splendidus, the expression levels of CgClec-4 and CgIFN in the gill of oysters pre-stimulated with formaldehyde-killed V. splendidus were significantly higher (p < 0.05) than that in the oysters pre-stimulated with filter-sterilized (0.22 μm pore size) sea water, while the expression level of CgIL-17 was significantly decreased (p < 0.05). Meanwhile, the protein expression level of hematopoietic transcription factor CgGATA3 and immune-related protein CgEcSOD in gill increased apparently after the secondary challenge with V. splendidus. ROS production was also enhanced (p < 0.05) at 6 h and 24 h after the secondary challenge. The phagocytic rate in gill of oysters pre-stimulated with formaldehyde-killed V. splendidus was significantly increased (p < 0.05) at 6 h after the secondary challenge with live V. splendidus, showing faster response than that pre-stimulated with filter-sterilized sea water. These results collectively showed that the immune parameters in gill were apparently enhanced after secondary challenge with live V. splendidus, indicating that hematopoiesis might participate in immune priming in Pacific oyster C. gigas.

  6. Zebrafish scube1 (Signal Peptide-CUB (Complement Protein C1r/C1s, Uegf, and Bmp1)-EGF (Epidermal Growth Factor) Domain-containing Protein 1) Is Involved in Primitive Hematopoiesis*

    PubMed Central

    Tsao, Ku-Chi; Tu, Cheng-Fen; Lee, Shyh-Jye; Yang, Ruey-Bing

    2013-01-01

    scube1 (signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF domain-containing protein 1), the founding member of a novel secreted and cell surface SCUBE protein family, is expressed predominantly in various developing tissues in mice. However, its function in primitive hematopoiesis remains unknown. In this study, we identified and characterized zebrafish scube1 and analyzed its function by injecting antisense morpholino-oligonucleotide into embryos. Whole-mount in situ hybridization revealed that zebrafish scube1 mRNA is maternally expressed and widely distributed during early embryonic development. Knockdown of scube1 by morpholino-oligonucleotide down-regulated the expression of marker genes associated with early primitive hematopoietic precursors (scl) and erythroid (gata1 and hbbe1), as well as early (pu.1) and late (mpo and l-plastin) myelomonocytic lineages. However, the expression of an early endothelial marker fli1a and vascular morphogenesis appeared normal in scube1 morphants. Overexpression of bone morphogenetic protein (bmp) rescued the expression of scl in the posterior lateral mesoderm during early primitive hematopoiesis in scube1 morphants. Biochemical and molecular analysis revealed that Scube1 could be a BMP co-receptor to augment BMP signaling. Our results suggest that scube1 is critical for and functions at the top of the regulatory hierarchy of primitive hematopoiesis by modulating BMP activity during zebrafish embryogenesis. PMID:23271740

  7. Efficacy of posaconazole in murine experimental sporotrichosis.

    PubMed

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio; Guarro, Josep

    2012-05-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology.

  8. Efficacy of Posaconazole in Murine Experimental Sporotrichosis

    PubMed Central

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio

    2012-01-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology. PMID:22330929

  9. Irradiation Design for an Experimental Murine Model

    SciTech Connect

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Celis, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Rubio-Osornio, M. C.; Custodio-Ramirez, V.; Paz, C.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  10. Irradiation Design for an Experimental Murine Model

    NASA Astrophysics Data System (ADS)

    Ballesteros-Zebadúa, P.; Lárraga-Gutierrez, J. M.; García-Garduño, O. A.; Rubio-Osornio, M. C.; Custodio-Ramírez, V.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Paz, C.; Celis, M. A.

    2010-12-01

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  11. Characterization of Murine Gammaherpesvirus 68 Glycoprotein B

    PubMed Central

    Lopes, Filipa B.; Colaco, Susanna; May, Janet S.; Stevenson, Philip G.

    2004-01-01

    Murine gammaherpesvirus 68 (MHV-68) glycoprotein B (gB) was identified in purified virions by immunoblotting, immunoprecipitation, and immunoelectron microscopy. It was synthesized as a 120-kDa precursor in infected cells and cleaved into 65-kDa and 55-kDa disulfide-linked subunits close to the time of virion release. The N-linked glycans on the cleaved, virion gB remained partially endoglycosidase H sensitive. The processing of MHV-68 gB therefore appears similar to that of Kaposi's sarcoma-associated herpesvirus gB and human cytomegalovirus gB. PMID:15542690

  12. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    SciTech Connect

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; Talbot, William S.

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils and excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.

  13. Reemergence of murine typhus in Galveston, Texas, USA, 2013.

    PubMed

    Blanton, Lucas S; Vohra, Rahat F; Bouyer, Donald H; Walker, David H

    2015-03-01

    Twelve patients with murine typhus were identified in Galveston, Texas, USA, in 2013. An isolate from 1 patient was confirmed to be Rickettsia typhi. Reemergence of murine typhus in Galveston emphasizes the importance of vector control and awareness of this disease by physicians and public health officials.

  14. An Unusual Cutaneous Manifestation in a Patient with Murine Typhus

    PubMed Central

    Blanton, Lucas S.; Lea, Alfred S.; Kelly, Brent C.; Walker, David H.

    2015-01-01

    Murine typhus is a flea-borne febrile illness caused by Rickettsia typhi. Although often accompanied by rash, an inoculation lesion has not been observed as it is with many tick- and mite-transmitted rickettsioses. We describe a patient with murine typhus and an unusual cutaneous manifestation at the site of rickettsial inoculation. PMID:26416115

  15. Bone marrow mononuclears from murine tibia after spaceflight on biosatellite

    NASA Astrophysics Data System (ADS)

    Andreeva, Elena; Roe, Maria; Buravkova, Ludmila; Andrianova, Irina; Goncharova, Elena; Gornostaeva, Alexandra

    Elucidation of the space flight effects on the adult stem and progenitor cells is an important goal in space biology and medicine. A unique opportunity for this is provided by project "BION -M1". The purpose of this study was to evaluate the effects of a 30-day flight on biosatellite "BION - M1" and the subsequent 7-day recovery on the quantity, viability, immunophenotype of mononuclears from murine tibia bone marrow. Also the in vitro characterization of functional capacity of multipotent mesenchymal stromal cells (MSCs) was scheduled. Under the project, the S57black/6 mice were divided into groups: spaceflight/vivarium control, recovery after spaceflight/ vivarium control to recovery. Bone marrow mononuclears were isolated from the tibia and immunophenotyped using antibodies against CD45, CD34, CD90 on a flow cytometer Epics XL (Beckman Coulter). A part of the each pool was frozen for subsequent estimation of hematopoietic colony-forming units (CFU), the rest was used for the evaluation of fibroblast CFU (CFUf) number, MSC proliferative activity and osteogenic potency. The cell number in the flight group was significantly lower than in the vivarium control group. There were no differences in this parameter between flight and control groups after 7 days of recovery. The mononuclears viability was more than 95 percent in all examined groups. Flow cytometric analysis showed no differences in the bone marrow cell immunophenotype (CD45, CD34, CD90.1 (Thy1)), but the flight animals had more large-sized CD45+mononuclears, than the control groups of mice. There was no difference in the CFUf number between groups. After 7 days in vitro the MSC number in flight group was twice higher than in vivarium group, after 10 days - 4 times higher. These data may indicate a higher proliferative activity of MSCs after spaceflight. MSCs showed the same and high alkaline phosphatase activity, both in flight and in the control groups, suggesting no effect of spaceflight factors on early

  16. The future of murine sepsis and trauma research models

    PubMed Central

    Efron, Philip A.; Mohr, Alicia M.; Moore, Frederick A.; Moldawer, Lyle L.

    2015-01-01

    Recent comparisons of the murine and human transcriptome in health and disease have called into question the appropriateness of the use of murine models for human sepsis and trauma research. More specifically, researchers have debated the suitability of mouse models of severe inflammation that is intended for eventual translation to human patients. This mini-review outlines this recent research, as well as specifically defines the arguments for and against murine models of sepsis and trauma research based on these transcriptional studies. In addition, we review newer advancements in murine models of infection and injury and define what we envision as an evolving but viable future for murine studies of sepsis and trauma. PMID:26034205

  17. Pathogenesis and immunity in murine salmonellosis.

    PubMed Central

    Hsu, H S

    1989-01-01

    Salmonella is traditionally described as a facultative intracellular parasite, and host macrophages are regarded as the primary effector cells in both native and acquired immunity in mouse typhoid. This concept has not been unanimously accepted in the literature. Based on cell culture experiments and electron microscopic examinations of infected tissues, we observed that virulent Salmonella typhimurium is killed within polymorphs and macrophages of guinea pigs and mice. In a systemic disease, the organism propagates primarily in the extracellular locations of sinusoids and tissue lesions and within hepatocytes. Hence, it is more likely to be an extracellular pathogen and its virulence is directly related to its antiphagocytic property. The conspicuous absence of macrophages in the primary lesions of murine salmonellosis disputes the likelihood of their significant role in native resistance to the disease. Acquired cellular immunity is expressed as an enhanced antibacterial activity of macrophages facilitated by cytophilic antibodies rather than as an altered antibacterial action of immune macrophages. It is proposed that acquired immunity in murine salmonellosis is a synergistic manifestation of the innate capacity of polymorphs and macrophages to destroy ingested salmonellae, the activated antibacterial functions of macrophages mediated by cytophilic antibodies, the opsonic and agglutinating actions of antiserum, and the accelerated inflammation associated with delayed hypersensitivity to bacterial antigens. Unlike live attenuated vaccines, nonviable vaccines offer a significant, though not a solid, protection against subsequent challenges. Images PMID:2687679

  18. Effect of zidovudine on preimplantation murine embryos.

    PubMed Central

    Toltzis, P; Mourton, T; Magnuson, T

    1993-01-01

    It previously has been demonstrated that zidovudine (AZT) is lethal to early murine embryos. The effect of the drug on pre- and postimplantation embryos was examined to delineate the timing of this toxicity and to investigate its possible mechanisms. Embryos exposed in the whole mouse during preblastocyst development were unable to proceed beyond the blastocyst stage. Similarly, when two-cell embryos harvested from unexposed females were exposed to low-concentration (1 microM) AZT in vitro over 24 h, development beyond the blastocyst stage was inhibited. In contrast, drug exposure during in vitro blastocyst and postblastocyst development resulted in little or no morphologic toxicity. Further investigation revealed that preblastocyst AZT exposure resulted in the development of blastocysts with significantly lower cell numbers than control embryos. While embryonic exposure to AZT at the blastocyst and postblastocyst stages also resulted in retarded cell division, the effects were milder than those recorded after preblastocyst exposure. These data demonstrate that the critical period of AZT toxicity toward murine embryos is between ovulation and implantation and indicate that AZT directly suppresses cell division in the preimplantation embryo. PMID:8215271

  19. The Gottingen minipig is a model of the hematopoietic acute radiation syndrome: G-CSF stimulates hematopoiesis and enhances survival from lethal total-body gamma-irradiation

    PubMed Central

    Moroni, Maria; Ngudiankama, Barbara F.; Christensen, Christine; Olsen, Cara H.; Owens, Rossitsa; Lombardini, Eric D.; Holt, Rebecca K.; Whitnall, Mark H.

    2013-01-01

    Purpose We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the Acute Radiation Syndrome (ARS), to enhance discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematological parameters and dynamics of cell loss/recovery following irradiation provide a convenient means to compare efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials Male Gottingen minipigs, 4–5 months old and weighing 9–11 kg were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen®, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body gamma-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results Results indicate G-CSF enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusion These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing numbers of circulating granulocytes. PMID:23845847

  20. Saponins from Sanguisorba officinalis Improve Hematopoiesis by Promoting Survival through FAK and Erk1/2 Activation and Modulating Cytokine Production in Bone Marrow

    PubMed Central

    Chen, Xin; Li, Bogang; Gao, Yue; Ji, Jianxin; Wu, Zhongliu; Chen, Shuang

    2017-01-01

    Radix Sanguisorbae, the root of Sanguisorba officinalis L. is used as traditional Chinese medicine. In recent decades, it has been reported to be clinically effective against myelosuppression induced by chemotherapy and/ or radiotherapy. However, the underlining mechanism has not been well studied. In this work, we evaluated the hematopoietic effect of total saponins from S. officinalis L. on myelosuppressive mice induced by cyclophosphamide and by60Co-γ-irradiation and confirmed the therapeutic effect. Then, we found total saponins and their characteristic constituents Ziyuglycoside I and Ziyuglycoside II can inhibit apoptosis of TF-1 cells caused by cytokine deprivation, and promote survival of mouse bone marrow nuclear cells through focal adhesion kinase (FAK) and extracellular signal-regulated kinase 1/2 (Erk1/2) activation in vitro. In addition, they can down-regulate macrophage inflammatory protein 2 (MIP-2), platelet factor 4 (PF4) and P-selectin secretion, which are reported to be suppressive to hematopoiesis, both in vitro and in vivo. These results suggest that promotion of survival through FAK and Erk1/2 activation and inhibition of suppressive cytokines in the bone marrow is likely to be the pharmacological mechanism underlying the hematopoietic effect of saponins from S. officinalis L. PMID:28360858

  1. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor–TRAF6 signaling

    PubMed Central

    Varney, Melinda E.; Niederkorn, Madeline; Konno, Hiroyasu; Matsumura, Takayuki; Gohda, Jin; Yoshida, Nobuaki; Akiyama, Taishin; Christie, Susanne; Fang, Jing; Miller, David; Jerez, Andres; Karsan, Aly; Maciejewski, Jaroslaw P.; Meetei, Ruhikanta A.; Inoue, Jun-ichiro

    2015-01-01

    TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML. PMID:26458771

  2. Whole-Exome Sequencing Identifies Loci Associated with Blood Cell Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis.

    PubMed

    Polfus, Linda M; Khajuria, Rajiv K; Schick, Ursula M; Pankratz, Nathan; Pazoki, Raha; Brody, Jennifer A; Chen, Ming-Huei; Auer, Paul L; Floyd, James S; Huang, Jie; Lange, Leslie; van Rooij, Frank J A; Gibbs, Richard A; Metcalf, Ginger; Muzny, Donna; Veeraraghavan, Narayanan; Walter, Klaudia; Chen, Lu; Yanek, Lisa; Becker, Lewis C; Peloso, Gina M; Wakabayashi, Aoi; Kals, Mart; Metspalu, Andres; Esko, Tõnu; Fox, Keolu; Wallace, Robert; Franceshini, Nora; Matijevic, Nena; Rice, Kenneth M; Bartz, Traci M; Lyytikäinen, Leo-Pekka; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Li-Gao, Ruifang; Mook-Kanamori, Dennis O; Lettre, Guillaume; van Duijn, Cornelia M; Franco, Oscar H; Rich, Stephen S; Rivadeneira, Fernando; Hofman, Albert; Uitterlinden, André G; Wilson, James G; Psaty, Bruce M; Soranzo, Nicole; Dehghan, Abbas; Boerwinkle, Eric; Zhang, Xiaoling; Johnson, Andrew D; O'Donnell, Christopher J; Johnsen, Jill M; Reiner, Alexander P; Ganesh, Santhi K; Sankaran, Vijay G

    2016-08-04

    Circulating blood cell counts and indices are important indicators of hematopoietic function and a number of clinical parameters, such as blood oxygen-carrying capacity, inflammation, and hemostasis. By performing whole-exome sequence association analyses of hematologic quantitative traits in 15,459 community-dwelling individuals, followed by in silico replication in up to 52,024 independent samples, we identified two previously undescribed coding variants associated with lower platelet count: a common missense variant in CPS1 (rs1047891, MAF = 0.33, discovery + replication p = 6.38 × 10(-10)) and a rare synonymous variant in GFI1B (rs150813342, MAF = 0.009, discovery + replication p = 1.79 × 10(-27)). By performing CRISPR/Cas9 genome editing in hematopoietic cell lines and follow-up targeted knockdown experiments in primary human hematopoietic stem and progenitor cells, we demonstrate an alternative splicing mechanism by which the GFI1B rs150813342 variant suppresses formation of a GFI1B isoform that preferentially promotes megakaryocyte differentiation and platelet production. These results demonstrate how unbiased studies of natural variation in blood cell traits can provide insight into the regulation of human hematopoiesis.

  3. Effects of the bifunctional sulfoxide MMS350, a radiation mitigator, on hematopoiesis in long-term bone marrow cultures and on radioresistance of marrow stromal cell lines.

    PubMed

    Shinde, Ashwin; Epperly, Michael W; Cao, Shaonan; Franicola, Darcy; Shields, Donna; Wang, Hong; Wipf, Peter; Sprachman, Melissa M; Greenberger, Joel S

    2014-01-01

    The ionizing irradiation mitigator MMS350 prolongs survival of mice treated with total-body irradiation and prevents radiation-induced pulmonary fibrosis when added to drinking water at day 100 after thoracic irradiation. The effects of MMS350 on hematopoiesis in long-term bone marrow culture and on the radiobiology of derived bone marrow stromal cell lines were tested. Long-term bone marrow cultures were established from C57BL/6NTac mice and maintained in a high-humidity incubator, with 7% CO2 and the addition of 100 μM MMS350 at the weekly media change. Over 10 weeks in culture, MMS350 had no significant effect on maintenance of hematopoietic stem cell production, or on nonadherent cells or colony-forming units of hematopoietic progenitor cells. Stromal cell lines derived from non MMS350-treated long-term cultures or control stromal cells treated with MMS350 were radioresistant in the clonogenic survival curve assay. MMS350 is a non-toxic, highly water-soluble radiation mitigator that exhibits radioprotective effects on bone marrow stromal cells.

  4. Expression of p21(Cip1/Waf1/Sdi1) and p27(Kip1) cyclin-dependent kinase inhibitors during human hematopoiesis.

    PubMed

    Taniguchi, T; Endo, H; Chikatsu, N; Uchimaru, K; Asano, S; Fujita, T; Nakahata, T; Motokura, T

    1999-06-15

    Expression of p21 and p27 cyclin-dependent kinase inhibitors is associated with induced differentiation and cell-cycle arrest in some hematopoietic cell lines. However, it is not clear how these inhibitors are expressed during normal hematopoiesis. We examined various human hematopoietic colonies derived from cord blood CD34(+) cells, bone marrow, and peripheral blood cells using a quantitative reverse transcription-polymerase chain reaction assay, immunochemistry, and/or Western blot analysis. p21 mRNA was expressed increasingly over time in all of the colonies examined (granulocytes, macrophages, megakaryocytes, and erythroblasts), whereas p27 mRNA levels remained low, except for erythroid bursts. Erythroid bursts expressed both p21 and p27 mRNAs with differentiation but expressed neither protein, whereas both proteins were expressed in megakaryocytes and peripheral blood monocytes. In bone marrow, p21 was immunostained almost exclusively in a subset of megakaryocytes and p27 protein was present in megakaryocytes, plasma cells, and endothelial cells. In megakaryocytes, reciprocal expression of p27 to Ki-67 was evident and an inverse relationship between p21 and Ki-67 positivities was also present, albeit less obvious. These observations suggest that a complex lineage-specific regulation is involved in p21 and p27 expression and that these inhibitors are involved in cell-cycle exit in megakaryocytes.

  5. Peptide nucleic acids targeting β-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells

    PubMed Central

    MONTAGNER, GIULIA; GEMMO, CHIARA; FABBRI, ENRICA; MANICARDI, ALEX; ACCARDO, IGEA; BIANCHI, NICOLETTA; FINOTTI, ALESSIA; BREVEGLIERI, GIULIA; SALVATORI, FRANCESCA; BORGATTI, MONICA; LAMPRONTI, ILARIA; BRESCIANI, ALBERTO; ALTAMURA, SERGIO; CORRADINI, ROBERTO; GAMBARI, ROBERTO

    2015-01-01

    In the treatment of hemoglobinopathies, amending altered hemoglobins and/or globins produced in excess is an important part of therapeutic strategies and the selective inhibition of globin production may be clinically beneficial. Therefore the development of drug-based methods for the selective inhibition of globin accumulation is required. In this study, we employed peptide nucleic acids (PNAs) to alter globin gene expression. The main conclusion of the present study was that PNAs designed to target adult murine β-globin mRNA inhibit hemoglobin accumulation and erythroid differentiation of murine erythroleukemia (MEL) cells with high efficiency and fair selectivity. No major effects were observed on cell proliferation. Our study supports the concept that PNAs may be used to target mRNAs that, similar to globin mRNAs, are expressed at very high levels in differentiating erythroid cells. Our data suggest that PNAs inhibit the excess production of globins involved in the pathophysiology of hemoglobinopathies. PMID:25405921

  6. Glucosylceramides stimulate mitogenesis in aged murine epidermis.

    PubMed

    Marchell, N L; Uchida, Y; Brown, B E; Elias, P M; Holleran, W M

    1998-04-01

    Glucosylceramides (GlcCer) and ceramides (Cer) appear to have opposite effects on epidermal growth and differentiation. Whereas Cer inhibit mitosis and induce terminal differentiation and apoptosis in cultured keratinocytes, GlcCer is mitogenic in young murine epidermis. Using a recently described murine model of chronologic senescence we explored whether GlcCer is mitogenic in aged epidermis. Epidermal GlcCer content increases following topical applications of either conduritol-B epoxide (CBE), an inhibitor of GlcCer hydrolysis, or exogenous GlcCer in a penetration-enhancing vehicle. During chronologic aging in the hairless mouse, baseline epidermal DNA synthesis rates remain normal until 18 mo, but decline significantly at 24 mo. Topical CBE stimulates a 1.5- to 1.9-fold increase in epidermal DNA synthesis in all age groups (i.e., 1-2, 18, and 24 mo). Although the CBE induced increase in [3H]thymidine incorporation in 24 mo old animals is significant (p < 0.01), it is not sufficient to reach the absolute levels reached in similarly treated, younger mouse epidermis. Moreover, topical GlcCer induced mitogenesis is both dose dependent and hexose specific in young (1-2 mo old) animals, and remains effective in aged (< or = 24 mo old) animals. Furthermore, the CBE induced increase in DNA synthesis in aged epidermis is sufficient to produce epidermal hyperplasia. Finally, although an increased GlcCer:Cer ratio can alter stratum corneum barrier function and membrane structure, neither stratum corneum function nor extracellular membrane structure change under these experimental conditions, and therefore the mitogenic effects of increased epidermal GlcCer cannot be attributed to effects on the stratum corneum. These results show that: (i) elevations in endogenous GlcCer are mitogenic for aged as well as young murine epidermis; (ii) topical GlcCer is also mitogenic when delivered in an enhancing vehicle; and (iii) despite the putative importance of epidermal DNA synthesis

  7. Glucocorticoid receptors in murine erythroleukaemic cells

    SciTech Connect

    Hammond, K.D.; Torrance, J.M.; DiDomenico, M.

    1987-01-01

    Glucocorticoid receptors in murine erythroleukaemic cells were studied in relation to hexamethylene bisacetamide (HMBA) induced differentiation. Specific binding of dexamethasone was measured. A single class of saturable, high affinity binding sites was demonstrated in intact cells; with cell homogenates or fractions binding was low and could not be reliably quantified. Receptor binding in whole cell suspensions was lower in cells which had been treated with HMBA (36.5 +/- 8.2 pmol/g protein) than in untreated controls (87.9 +/- 23.6 pmol/g protein); dissociation constants were similar in treated (2.7 nM) and untreated cells (2.5 nM). Dexamethasone, hydrocortisone, corticosterone and progesterone competed with tritium-labelled dexamethasone for receptor binding sites; cortisone, deoxycorticosterone and oestradiol had little effect.

  8. Thymopoietic and Bone Marrow Response to Murine Pneumocystis Pneumonia▿

    PubMed Central

    Shi, Xin; Zhang, Ping; Sempowski, Gregory D.; Shellito, Judd E.

    2011-01-01

    CD4+ T cells play a key role in host defense against Pneumocystis infection. To define the role of naïve CD4+ T cell production through the thymopoietic response in host defense against Pneumocystis infection, Pneumocystis murina infection in the lung was induced in adult male C57BL/6 mice with and without prior thymectomy. Pneumocystis infection caused a significant increase in the number of CCR9+ multipotent progenitor (MPP) cells in the bone marrow and peripheral circulation, an increase in populations of earliest thymic progenitors (ETPs) and double negative (DN) thymocytes in the thymus, and recruitment of naïve and total CD4+ T cells into the alveolar space. The level of murine signal joint T cell receptor excision circles (msjTRECs) in spleen CD4+ cells was increased at 5 weeks post-Pneumocystis infection. In thymectomized mice, the numbers of naïve, central memory, and total CD4+ T cells in all tissues examined were markedly reduced following Pneumocystis infection. This deficiency of naïve and central memory CD4+ T cells was associated with delayed pulmonary clearance of Pneumocystis. Extracts of Pneumocystis resulted in an increase in the number of CCR9+ MPPs in the cultured bone marrow cells. Stimulation of cultured bone marrow cells with ligands to Toll-like receptor 2 ([TLR-2] zymosan) and TLR-9 (ODN M362) each caused a similar increase in CCR9+ MPP cells via activation of the Jun N-terminal protein kinase (JNK) pathway. These results demonstrate that enhanced production of naïve CD4+ T lymphocytes through the thymopoietic response and enhanced delivery of lymphopoietic precursors from the bone marrow play an important role in host defense against Pneumocystis infection. PMID:21343353

  9. Polymyositis - adult

    MedlinePlus

    ... rash is a sign of a similar condition, dermatomyositis . Common symptoms include: Muscle weakness in the shoulders ... in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. ...

  10. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation

    PubMed Central

    Goodings, Charnise; Smith, Elizabeth; Mathias, Elizabeth; Elliott, Natalina; Cleveland, Susan M.; Tripathi, Rati M.; Layer, Justin H.; Chen, Xi; Guo, Yan; Shyr, Yu; Hamid, Rizwan; Du, Yang; Davé, Utpal P.

    2015-01-01

    Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis. PMID:25968920

  11. Hypoxia pathway and hypoxia-mediated extensive extramedullary hematopoiesis are involved in ursolic acid's anti-metastatic effect in 4T1 tumor bearing mice

    PubMed Central

    Gao, Jian-Li; Shui, Yan-Mei; Jiang, Wei; Huang, En-Yi; Shou, Qi-Yang; Ji, Xin; He, Bai-Cheng; Lv, Gui-Yuan; He, Tong-Chuan

    2016-01-01

    Hypoxic in the tumor mass is leading to the myeloproliferative-like disease (leukemoid reaction) and anemia of body, which characterized by strong extensive extramedullary hematopoiesis (EMH) in spleen. As the key transcription factor of hypoxia, hypoxia-inducible factor-1 (HIF-1) activates the expression of genes essential for EMH processes including enhanced blood cell production and angiogenesis. We found ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, inhibited growth of breast cancer both in vivo and in vitro. The suppression was mediated through the inhibition of multiple cell pathways linked to inflammation, proliferation, angiogenesis, and metastasis. UA also suppressed the leukemoid reaction and the EMH phenomenon of the tumor bearing mice without any significant suppression on body weight (i.p. by 20 mg/kg for 28 days). This is associated with the significant decrease in white blood cells (WBC), platelets (PLT) and spleen weight. During this process, we also detected the down-regulation of cell proliferative genes (PCNA, and β-catenin), and metastatic genes (VEGF, and HIF-1α), as well as the depression of nuclear protein intensity of HIF-1α. Furthermore, the expression of E2F1, p53 and MDM2 genes were increased in UA group when the VEGF and HIF-1α was over-expressed. Cancer cells were sensitive to UA treating after the silencing of HIF-1α and the response of Hypoxic pathway reporter to UA was suppressed when HIF-1α was over expressed. Overall, our results from experimental and predictive studies suggest that the anticancer activity of UA may be at least in part caused by suppressing the cancer hypoxia and hypoxia-mediated EMH. PMID:27708244

  12. dUbc9 negatively regulates the Toll-NF-kappa B pathways in larval hematopoiesis and drosomycin activation in Drosophila.

    PubMed

    Chiu, Hsiling; Ring, Brian C; Sorrentino, Richard Paul; Kalamarz, Marta; Garza, Dan; Govind, Shubha

    2005-12-01

    Highly conserved during evolution, the enzyme Ubc9 activates the small ubiquitin-like modifier (SUMO) prior to its covalent ligation to target proteins. We have used mutations in the Drosophila Ubc9 (dUbc9) gene to understand Ubc9 functions in vivo. Loss-of-function mutations in dUbc9 cause strong mitotic defects in larval hematopoietic tissues, an increase in the number of hematopoietic precursors in the lymph gland and of mature blood cells in circulation, and an increase in the proportion of cyclin-B-positive cells. Some blood cells are polyploid and multinucleate, exhibiting signs of genomic instability. We also observe an overabundance of highly differentiated blood cells (lamellocytes), normally not found in healthy larvae. Lamellocytes in mutants are either free in circulation or recruited to form tumorous masses. Hematopoietic defects of dUbc9 mutants are strongly suppressed in the absence of the Rel/NF-kappaB-family transcription factors Dorsal and Dif or in the presence of a non-signaling allele of Cactus, the IkappaB protein in Drosophila. In the larval fat body, dUbc9 negatively regulates the expression of the antifungal peptide gene drosomycin, which is constitutively expressed in dUbc9 mutants in the absence of immune challenge. dUbc9-mediated drosomycin expression requires Dorsal and Dif. Together, our results support a role for dUbc9 in the negative regulation of the Drosophila NF-kappaB signaling pathways in larval hematopoiesis and humoral immunity.

  13. Hemorrhage Exacerbates Radiation Effects on Survival, Leukocytopenia, Thrombopenia, Erythropenia, Bone Marrow Cell Depletion and Hematopoiesis, and Inflammation-Associated microRNAs Expression in Kidney

    PubMed Central

    Kiang, Juliann G.; Smith, Joan T.; Anderson, Marsha N.; Swift, Joshua M.; Christensen, Christine L.; Gupta, Paridhi; Balakathiresan, Nagaraja; Maheshwari, Radha K.

    2015-01-01

    Exposure to high-dose radiation results in detrimental effects on survival. The effects of combined trauma, such as radiation in combination with hemorrhage, the typical injury of victims exposed to a radiation blast, on survival and hematopoietic effects have yet to be understood. The purpose of this study was to evaluate the effects of radiation injury (RI) combined with hemorrhage (i.e., combined injury, CI) on survival and hematopoietic effects, and to investigate whether hemorrhage (Hemo) enhanced RI-induced mortality and hematopoietic syndrome. Male CD2F1 mice (10 weeks old) were given one single exposure of γ- radiation (60Co) at various doses (0.6 Gy/min). Within 2 hr after RI, animals under anesthesia were bled 0% (Sham) or 20% (Hemo) of total blood volume via the submandibular vein. In these mice, Hemo reduced the LD50/30 for 30-day survival from 9.1 Gy (RI) to 8.75 Gy (CI) with a DMF of 1.046. RI resulted in leukocytopenia, thrombopenia, erythropenia, and bone marrow cell depletion, but decreased the caspase-3 activation response. RI increased IL-1β, IL-6, IL-17A, and TNF-α concentrations in serum, bone marrow, ileum, spleen, and kidney. Some of these adverse alterations were magnified by CI. Erythropoietin production was increased in kidney and blood more after CI than RI. Furthermore, CI altered the global miRNAs expression in kidney and the ingenuity pathway analysis showed that miRNAs viz., let-7e, miR-30e and miR-29b that were associated with hematopoiesis and inflammation. This study provides preliminary evidence that non-lethal Hemo exacerbates RI-induced mortality and cell losses associated with high-dose γ-radiation. We identified some of the initial changes occurring due to CI which may have facilitated in worsening the injury and hampering the recovery of animals ultimately resulting in higher mortality. PMID:26422254

  14. Hemorrhage Exacerbates Radiation Effects on Survival, Leukocytopenia, Thrombopenia, Erythropenia, Bone Marrow Cell Depletion and Hematopoiesis, and Inflammation-Associated microRNAs Expression in Kidney.

    PubMed

    Kiang, Juliann G; Smith, Joan T; Anderson, Marsha N; Swift, Joshua M; Christensen, Christine L; Gupta, Paridhi; Balakathiresan, Nagaraja; Maheshwari, Radha K

    2015-01-01

    Exposure to high-dose radiation results in detrimental effects on survival. The effects of combined trauma, such as radiation in combination with hemorrhage, the typical injury of victims exposed to a radiation blast, on survival and hematopoietic effects have yet to be understood. The purpose of this study was to evaluate the effects of radiation injury (RI) combined with hemorrhage (i.e., combined injury, CI) on survival and hematopoietic effects, and to investigate whether hemorrhage (Hemo) enhanced RI-induced mortality and hematopoietic syndrome. Male CD2F1 mice (10 weeks old) were given one single exposure of γ- radiation (60Co) at various doses (0.6 Gy/min). Within 2 hr after RI, animals under anesthesia were bled 0% (Sham) or 20% (Hemo) of total blood volume via the submandibular vein. In these mice, Hemo reduced the LD50/30 for 30-day survival from 9.1 Gy (RI) to 8.75 Gy (CI) with a DMF of 1.046. RI resulted in leukocytopenia, thrombopenia, erythropenia, and bone marrow cell depletion, but decreased the caspase-3 activation response. RI increased IL-1β, IL-6, IL-17A, and TNF-α concentrations in serum, bone marrow, ileum, spleen, and kidney. Some of these adverse alterations were magnified by CI. Erythropoietin production was increased in kidney and blood more after CI than RI. Furthermore, CI altered the global miRNAs expression in kidney and the ingenuity pathway analysis showed that miRNAs viz., let-7e, miR-30e and miR-29b that were associated with hematopoiesis and inflammation. This study provides preliminary evidence that non-lethal Hemo exacerbates RI-induced mortality and cell losses associated with high-dose γ-radiation. We identified some of the initial changes occurring due to CI which may have facilitated in worsening the injury and hampering the recovery of animals ultimately resulting in higher mortality.

  15. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia

    PubMed Central

    Marijt, W. A. Erik; Heemskerk, Mirjam H. M.; Kloosterboer, Freke M.; Goulmy, Els; Kester, Michel G. D.; van der Hoorn, Menno A. W. G.; van Luxemburg-Heys, Simone A. P.; Hoogeboom, Manja; Mutis, Tuna; Drijfhout, Jan Wouter; van Rood, Jon J.; Willemze, Roel; Falkenburg, J. H. Frederik

    2003-01-01

    Donor lymphocyte infusion (DLI) into patients with a relapse of their leukemia or multiple myeloma after allogeneic stem cell transplantation (alloSCT) has been shown to be a successful treatment approach. The hematopoiesis-restricted minor histocompatibility antigens (mHAgs) HA-1 or HA-2 expressed on malignant cells of the recipient may serve as target antigens for alloreactive donor T cells. Recently we treated three mHAg HA-1- and/or HA-2-positive patients with a relapse of their disease after alloSCT with DLI from their mHAg HA-1- and/or HA-2-negative donors. Using HLA-A2/HA-1 and HA-2 peptide tetrameric complexes we showed the emergence of HA-1- and HA-2-specific CD8+ T cells in the blood of the recipients 5–7 weeks after DLI. The appearance of these tetramer-positive cells was followed immediately by a complete remission of the disease and restoration of 100% donor chimerism in each of the patients. Furthermore, cloned tetramer-positive T cells isolated during the clinical response specifically recognized HA-1 and HA-2 expressing malignant progenitor cells of the recipient and inhibited the growth of leukemic precursor cells in vitro. Thus, HA-1- and HA-2-specific cytotoxic T lymphocytes emerging in the blood of patients after DLI demonstrate graft-versus-leukemia or myeloma reactivity resulting in a durable remission. This finding implies that in vitro generated HA-1- and HA-2-specific cytotoxic T lymphocytes could be used as adoptive immunotherapy to treat hematological malignances relapsing after alloSCT. PMID:12601144

  16. A Neonatal Murine Model of MRSA Pneumonia

    PubMed Central

    Shrestha, Bishwas; Siefker, David; Patel, Vivek S.; Yadav, Nikki; Jaligama, Sridhar; Cormier, Stephania A.

    2017-01-01

    Pneumonia due to methicillin-resistant Staphylococcus aureus (MRSA) is a significant cause of morbidity and mortality in infants particularly following lower respiratory tract viral infections such as Respiratory Syncytial Virus (RSV). However, the mechanisms by which co-infection of infants by MRSA and RSV cause increased lung pathology are unknown. Because the infant immune system is qualitatively and quantitatively different from adults we developed a model of infant MRSA pneumonia which will allow us to investigate the effects of RSV co-infection on disease severity. We infected neonatal and adult mice with increasing doses of MRSA and demonstrate that neonatal mice have delayed kinetics in clearing the bacteria in comparison to adult mice. There were differences in recruitment of immune cells into the lung following infection. Adult mice exhibited an increase in neutrophil recruitment that coincided with reduced bacterial titers followed by an increase in macrophages. Neonatal mice, however, exhibited an early increase in neutrophils that did not persist despite continued presence of the bacteria. Unlike the adult mice, neonatal mice failed to exhibit an increase in macrophages. Neonates exhibited a decrease in phagocytosis of MRSA suggesting that the decrease in clearance was partially due to deficient phagocytosis of the bacteria. Both neonates and adults responded with an increase in pro-inflammatory cytokines following infection. However, in contrast to the adult mice, neonates did not express constitutive levels of the anti-microbial peptide Reg3γ in the lung. Infection of neonates did not stimulate expression of the co-stimulatory molecule CD86 by dendritic cells and neonates exhibited a diminished T cell response compared to adult mice. Overall, we have developed a neonatal model of MRSA pneumonia that displays a similar delay in bacterial clearance as is observed in the neonatal intensive care unit and will be useful for performing co

  17. Characterization of msim, a murine homologue of the Drosophila sim transcription factor

    SciTech Connect

    Moffett, P.; Reece, M.; Pelletier, J.

    1996-07-01

    Mutations in the Drosophila single-minded (sim) gene result in loss of precursor cells that give rise to midline cells of the embryonic central nervous system. During the course of an exon-trapping strategy aimed at identifying transcripts that contribute to the etiology and pathophysiology of Down syndrome, we identified a human exon from the Down syndrome, we identified a human exon from the Down syndrome critical region showing significantly homology to the Drosophila sim gene. Using a cross-hybridization approach, we have isolated a murine homolog of Drosophila sim gene, which we designated msim. Nucleotide and predicted amino acid sequence analyses of msim cDNA clones indicate the this gene encodes a member of the basic-helix-loop-helix class of transcription factors. The murine and Drosophila proteins share 88% residues within the basic-helix-loop helix domain, with an overall homology of 92%. In addition, the N-terminal domain of MSIM contains two PAS dimerization motifs also featured in the Drosophila sim gene product, as well as a small number of other transcription factors. Northern blot analysis of adult murine tissues revealed that the msim gene produces a single mRNA species of {approximately}4 kb expressed in a small number of tissues, with the highest levels in the kidneys and lower levels present in skeletal muscle, lung, testis, brain, and heart. In situ hybridization experiments demonstrate that msim is also expressed in early fetal development in the central nervous system and in cartilage primordia. The characteristics of the msim gene are consistent with its putative function as a transcriptional regulator. 51 refs., 6 figs., 1 tab.

  18. Contrasting roles of leukemia inhibitory factor in murine bone development and remodeling involve region-specific changes in vascularization.

    PubMed

    Poulton, Ingrid J; McGregor, Narelle E; Pompolo, Sueli; Walker, Emma C; Sims, Natalie A

    2012-03-01

    We describe here distinct functions of leukemia inhibitory factor (LIF) in bone development/growth and adult skeletal homeostasis. In the growth plate and developing neonate bones, LIF deficiency enhanced vascular endothelial growth factor (VEGF) levels, enlarged blood vessel formation, and increased the formation of "giant" osteoclasts/chondroclasts that rapidly destroyed the mineralized regions of the growth plate and developing neonatal bone. Below this region, osteoblasts formed large quantities of woven bone. In contrast, in adult bone undergoing remodeling osteoclast formation was unaffected by LIF deficiency, whereas osteoblast formation and function were both significantly impaired, resulting in osteopenia. Consistent with LIF promoting osteoblast commitment, enhanced marrow adipocyte formation was also observed in adult LIF null mice, and adipocytic differentiation of murine stromal cells was delayed by LIF treatment. LIF, therefore, controls vascular size and osteoclast differentiation during the transition of cartilage to bone, whereas an anatomically separate LIF-dependent pathway regulates osteoblast and adipocyte commitment in bone remodeling.

  19. Cultivation and characterization of three strains of murine rotavirus.

    PubMed Central

    Greenberg, H B; Vo, P T; Jones, R

    1986-01-01

    Three distinct strains of murine rotavirus were adapted to growth in cell culture. These strains are genetically related but not identical; they are serotypically heterogeneous. The cultivatable strains were substantially more infectious (approximately 10(6)-fold) for suckling mice than heterologous simian rotaviruses were. Homologous murine rotavirus strains spread from inoculated to uninoculated litter mates and caused diarrhea, while heterologous rotaviruses did not spread and cause illness. Images PMID:3003390

  20. Establishment of a murine epidermal cell line suitable for in vitro and in vivo skin modelling

    PubMed Central

    2011-01-01

    Background Skin diseases are a major health problem. Some of the most severe conditions involve genetic disorders, including cancer. Several of these human diseases have been modelled in genetically modified mice, thus becoming a highly valuable preclinical tool for the treatment of these pathologies. However, development of three-dimensional models of skin using keratinocytes from normal and/or genetically modified mice has been hindered by the difficulty to subculture murine epidermal keratinocytes. Methods We have generated a murine epidermal cell line by serially passaging keratinocytes isolated from the back skin of adult mice. We have termed this cell line COCA. Cell culture is done in fully defined media and does not require feeder cells or any other coating methods. Results COCA retained its capacity to differentiate and stratify in response to increased calcium concentration in the cell culture medium for more than 75 passages. These cells, including late passage, can form epidermis-like structures in three-dimensional in vitro models with a well-preserved pattern of proliferation and differentiation. Furthermore, these cells form epidermis in grafting assays in vivo, and do not develop tumorigenic ability. Conclusions We propose that COCA constitutes a good experimental system for in vitro and in vivo skin modelling. Also, cell lines from genetically modified mice of interest in skin biology could be established using the method we have developed. COCA keratinocytes would be a suitable control, within a similar background, when studying the biological implications of these alterations. PMID:21510892

  1. Optogenetic Control of Heart Rhythm by Selective Stimulation of Cardiomyocytes Derived from Pnmt+ Cells in Murine Heart

    PubMed Central

    Wang, Yanwen; Lin, Wee Khang; Crawford, William; Ni, Haibo; Bolton, Emma L.; Khan, Huma; Shanks, Julia; Bub, Gil; Wang, Xin; Paterson, David J.; Zhang, Henggui; Galione, Antony; Ebert, Steven N.; Terrar, Derek A.; Lei, Ming

    2017-01-01

    In the present study, channelrhodopsin 2 (ChR2) was specifically introduced into murine cells expressing the Phenylethanolamine n-methyltransferase (Pnmt) gene, which encodes for the enzyme responsible for conversion of noradrenaline to adrenaline. The new murine model enabled the identification of a distinctive class of Pnmt-expressing neuroendocrine cells and their descendants (i.e. Pnmt+ cell derived cells) within the heart. Here, we show that Pnmt+ cells predominantly localized to the left side of the adult heart. Remarkably, many of the Pnmt+ cells in the left atrium and ventricle appeared to be working cardiomyocytes based on their morphological appearance and functional properties. These Pnmt+ cell derived cardiomyocytes (PdCMs) are similar to conventional myocytes in morphological, electrical and contractile properties. By stimulating PdCMs selectively with blue light, we were able to control cardiac rhythm in the whole heart, isolated tissue preparations and single cardiomyocytes. Our new murine model effectively demonstrates functional dissection of cardiomyocyte subpopulations using optogenetics, and opens new frontiers of exploration into their physiological roles in normal heart function as well as their potential application for selective cardiac repair and regeneration strategies. PMID:28084430

  2. Murine and Human Tissue-Engineered Esophagus Form from Sufficient Stem/Progenitor Cells and Do Not Require Microdesigned Biomaterials

    PubMed Central

    Spurrier, Ryan Gregory; Speer, Allison L.; Hou, Xiaogang; El-Nachef, Wael N.

    2015-01-01

    Purpose: Tissue-engineered esophagus (TEE) may serve as a therapeutic replacement for absent foregut. Most prior esophagus studies have favored microdesigned biomaterials and yielded epithelial growth alone. None have generated human TEE with mesenchymal components. We hypothesized that sufficient progenitor cells might only require basic support for successful generation of murine and human TEE. Materials and Methods: Esophageal organoid units (EOUs) were isolated from murine or human esophagi and implanted on a polyglycolic acid/poly-l-lactic acid collagen-coated scaffold in adult allogeneic or immune-deficient mice. Alternatively, EOU were cultured for 10 days in vitro prior to implantation. Results: TEE recapitulated all key components of native esophagus with an epithelium and subjacent muscularis. Differentiated suprabasal and proliferative basal layers of esophageal epithelium, muscle, and nerve were identified. Lineage tracing demonstrated that multiple EOU could contribute to the epithelium and mesenchyme of a single TEE. Cultured murine EOU grew as an expanding sphere of proliferative basal cells on a neuromuscular network that demonstrated spontaneous peristalsis in culture. Subsequently, cultured EOU generated TEE. Conclusions: TEE forms after transplantation of mouse and human organ-specific stem/progenitor cells in vivo on a relatively simple biodegradable scaffold. This is a first step toward future human therapies. PMID:25298083

  3. Preclinical testing of the safety and tolerability of LV-mediated above normal alpha-L-iduronidase expression in murine and human hematopoietic cells using toxicology and biodistribution GLP studies.

    PubMed

    Visigalli, Ilaria; Delai, Stefania; Ferro, Francesca; Cecere, Francesca; Vezzoli, Michela; Sanvito, Francesca; Chanut, Franck; Benedicenti, Fabrizio; Spinozzi, Giulio; Wynn, Rob; Calabria, Andrea; Naldini, Luigi; Montini, Eugenio; Cristofori, Patrizia; Biffi, Alessandra

    2016-07-18

    In order to support the clinical application of hematopoietic stem cell (HSC) gene therapy for Mucopolysaccharidosis I (MPS I), we conducted biosafety studies to assess the toxicity and tumorigenic potential, as well as the biodistribution of HSCs and progenitor cells (HSPCs) transduced with lentiviral vectors (LV) encoding the cDNA of the alpha-iduronidase (IDUA) gene, which is mutated in MPS I patients. To this goal, toxicology and biodistribution studies were conducted employing Good Laboratory Practice (GLP) study practices. Vector integration sites studies were applied in order to predict adverse consequences of vector gene transfer and obtain HSC-related information. Overall, the results obtained in these studies provided robust evidence to support the safety and tolerability of high-efficiency LV-mediated gene transfer and above normal IDUA enzyme expression in both murine and human HSPCs and their in vivo progeny. Taken together these investigations provide essential safety data to support clinical testing of HSC gene therapy in MPS I patients. These studies have also underlined criticisms associated to the use of currently available models and highlighted the value of surrogate markers of tumorigenicity that may be further explored in the future. Notably, biological evidence supporting the efficacy of gene therapy on MPS I disease was also generated and the clonal contribution of LV-transduced HSPCs to hematopoiesis along serial transplantation was quantified in a minimum of 200-300 clones, with the different level of repopulating cells in primary recipients being reflected in the secondary.

  4. Implantable micropump technologies for murine intracochlear infusions.

    PubMed

    Johnson, D G; Waldron, M J; Frisina, R D; Borkholder, D A

    2010-01-01

    Due to the very small size of the mouse inner ear, 600 nL volume, developing effective, controlled infusion systems is quite challenging. Key technologies have been created to minimize both size and power for an implantable pump for murine intracochlear infusions. A method for coupling fine capillary tubing to microfluidic channels is presented which provides low volume, biocompatible interconnects withstanding pressures as high as 827 kPa (120 psi) and consuming less than 20 nL of volume exiting in-plane with the pump. Surface micromachined resistive bridges integrated into the flow channel for anemometry based flow rate measurement have been optimized for low power operation in the ultra-low flow rate regime. A process for creation of deformable diaphragms over pump chambers with simultaneous coating of the microfluidic channels has been developed allowing integration of a biocompatible fluid flow path. These advances represent enabling capabilities for a drug delivery system suitable for space constrained applications such as subcutaneous implantation in mice.

  5. Implantable Micropump Technologies for Murine Intracochlear Infusions

    PubMed Central

    Johnson, D. G.; Waldron, M. J.; Frisina, R. D.; Borkholder, D. A.

    2011-01-01

    Due to the very small size of the mouse inner ear, 600 nL volume, developing effective, controlled infusion systems is quite challenging. Key technologies have been created to minimize both size and power for an implantable pump for murine intracochlear infusions. A method for coupling fine capillary tubing to microfluidic channels is presented which provides low volume, biocompatible interconnects withstanding pressures as high as 827 kPa (120 psi) and consuming less than 20 nL of volume exiting in-plane with the pump. Surface micromachined resistive bridges integrated into the flow channel for anemometry based flow rate measurement have been optimized for low power operation in the ultra-low flow rate regime. A process for creation of deformable diaphragms over pump chambers with simultaneous coating of the microfluidic channels has been developed allowing integration of a biocompatible fluid flow path. These advances represent enabling capabilities for a drug delivery system suitable for space constrained applications such as subcutaneous implantation in mice. PMID:21096713

  6. Murine Ileocolic Bowel Resection with Primary Anastomosis

    PubMed Central

    Perry, Troy; Borowiec, Anna; Dicken, Bryan; Fedorak, Richard; Madsen, Karen

    2014-01-01

    Intestinal resections are frequently required for treatment of diseases involving the gastrointestinal tract, with Crohn’s disease and colon cancer being two common examples. Despite the frequency of these procedures, a significant knowledge gap remains in describing the inherent effects of intestinal resection on host physiology and disease pathophysiology. This article provides detailed instructions for an ileocolic resection with primary end-to-end anastomosis in mice, as well as essential aspects of peri-operative care to maximize post-operative success. When followed closely, this procedure yields a 95% long-term survival rate, no failure to thrive, and minimizes post-operative complications of bowel obstruction and anastomotic leak. The technical challenges of performing the procedure in mice are a barrier to its wide spread use in research. The skills described in this article can be acquired without previous surgical experience. Once mastered, the murine ileocolic resection procedure will provide a reproducible tool for studying the effects of intestinal resection in models of human disease. PMID:25406841

  7. ESCRT Requirements for Murine Leukemia Virus Release.

    PubMed

    Bartusch, Christina; Prange, Reinhild

    2016-04-18

    The Murine Leukemia Virus (MLV) is a gammaretrovirus that hijack host components of the endosomal sorting complex required for transport (ESCRT) for budding. To determine the minimal requirements for ESCRT factors in MLV viral and viral-like particles (VLP) release, an siRNA knockdown screen of ESCRT(-associated) proteins was performed in MLV-producing human cells. We found that MLV VLPs and virions primarily engage the ESCRT-I factor Tsg101 and marginally the ESCRT-associated adaptors Nedd4-1 and Alix to enter the ESCRT pathway. Conversely, the inactivation of ESCRT-II had no impact on VLP and virion egress. By analyzing the effects of individual ESCRT-III knockdowns, VLP and virion release was profoundly inhibited in CHMP2A- and CHMP4B-knockdown cells. In contrast, neither the CHMP2B and CHMP4A isoforms nor CHMP3, CHMP5, and CHMP6 were found to be essential. In case of CHMP1, we unexpectedly observed that the CHMP1A isoform was specifically required for virus budding, but dispensable for VLP release. Hence, MLV utilizes only a subset of ESCRT factors, and viral and viral-like particles differ in ESCRT-III factor requirements.

  8. Nuclear Nonhistone Proteins in Murine Melanoma Cells

    PubMed Central

    Wikswo, Muriel A.; Mcguire, Joseph S.; Shansky, Janet E.; Boshes, Roger A.

    1976-01-01

    Nuclear nonhistone proteins (NHP's) have been implicated as regulatory agents involved in controlling genetic expression. Utilizing murine melanoma cells, we describe a method for isolating and fractionating NHP's which greatly increases the yield of these proteins as well as the level of resolution required for detecting small differences in particular NHP's. Mouse melanoma cells were grown in medium labeled with [3H]leucine. Following 48 hr of incubation, the cells were harvested and nuclei isolated. The NHP's were extracted from the nuclei in a series of steps which yielded four major fractions: NHP1, NHP2, NHP3, NHP4. This method solubilized 80-90% of the protein from the nuclear homogenate. The NHP fractions were then separated on DEAE-cellulose columns in a series of salt steps increasing in concentration from 0.05 to 0.50 M NaCl, followed by steps of 2 M NaCl and 4 and 7 M guanidine-hydrochloride. The 40 NHP fractions eluted from these columns were further separated on polyacrylamide-SDS gels and ranged in molecular weight from 9000 to 110,000 daltons. Differences were observed in the electrophoretic pattern of each of these 40 fractions. The high resolution of these fractionation procedures greatly enhances the possibility of observing small changes in proteins which may play a role in gene regulation. ImagesFIG. 2FIG. 5 PMID:997593

  9. Regulation of Murine Natural Killer Cell Development

    PubMed Central

    Goh, Wilford; Huntington, Nicholas D.

    2017-01-01

    Natural killer (NK) cells are effector lymphocytes of the innate immune system that are known for their ability to kill transformed and virus-infected cells. NK cells originate from hematopoietic stem cells in the bone marrow, and studies on mouse models have revealed that NK cell development is a complex, yet tightly regulated process, which is dependent on both intrinsic and extrinsic factors. The development of NK cells can be broadly categorized into two phases: lineage commitment and maturation. Efforts to better define the developmental framework of NK cells have led to the identification of several murine NK progenitor populations and mature NK cell subsets, each defined by a varied set of cell surface markers. Nevertheless, the relationship between some of these NK cell subsets remains to be determined. The classical approach to studying both NK cell development and function is to identify the transcription factors involved and elucidate the mechanistic action of each transcription factor. In this regard, recent studies have provided further insight into the mechanisms by which transcription factors, such as ID2, FOXO1, Kruppel-like factor 2, and GATA-binding protein 3 regulate various aspects of NK cell biology. It is also becoming evident that the biology of NK cells is not only transcriptionally regulated but also determined by epigenetic alterations and posttranscriptional regulation of gene expression by microRNAs. This review summarizes recent progress made in NK development, focusing primarily on transcriptional regulators and their mechanistic actions. PMID:28261203

  10. Murine cytomegalovirus infection of cultured mouse embryos.

    PubMed Central

    Tsutsui, Y.; Naruse, I.

    1987-01-01

    Isolated mouse whole embryos of 7.5 days' gestation were infected with murine cytomegalovirus (MCMV) and cultured in pure rat serum. Although the MCMV infection had little effect on the survival and development of the embryos during 3 days of cultivation, immunohistochemical analysis of their serial sections using monoclonal antibody showed MCMV-infected cells in various portions of the embryos. This monoclonal antibody, when tested with the use of infected cultured mouse fibroblasts, reacted with nuclear antigen within 2 hours after infection and also reacted with nuclear inclusions in the late phase of infection. The viral antigen-positive cells detected by the monoclonal antibody were present in almost all of the ectoplacental cone and the yolk sac and in about 82% of the embryos. In the embryos, antigen-positive cells were frequently observed in the epithelium of the digestive tracts, endothelial cells of the blood vessels, and the mesodermal cells. In some of the embryos, viral antigen-positive cells were clearly observed in a small percentage of the blood cells. These findings indicate that blood cells, in addition to cell migration during embryogenesis, may play an important role in transmission of infectious virus into the embryos. Mouse whole embryo culture infected with MCMV can provide a model for the study of cellular tropism related to congenital infection by cytomegalovirus. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3034066

  11. Characterization of ozone disinfection of murine norovirus.

    PubMed

    Lim, Mi Young; Kim, Ju-Mi; Lee, Jung Eun; Ko, GwangPyo

    2010-02-01

    Despite the importance of human noroviruses (NoVs) in public health, little information concerning the effectiveness of ozone against NoVs is available. We determined the efficacy of ozone disinfection using murine norovirus (MNV) as a surrogate of human NoV. MNV in ozone demand-free buffer was exposed to a predetermined dose of ozone at two different pHs and temperatures. The virus remaining in the solution was analyzed by plaque assay, real-time TaqMan reverse transcriptase PCR (RT-PCR) (short template), and long-template conventional RT-PCR. Under all conditions, more than 99% of the MNV was inactivated by ozone at 1 mg/liter within 2 min. Both RT-PCR assays significantly underestimated the inactivation of MNV, compared with that measured by plaque assay. Our results indicate that NoV may be more resistant to ozone than has been previously reported. Nevertheless, proper ozone disinfection practices can be used to easily control its transmission in water.

  12. Quantitative Trait Loci for Murine Growth

    PubMed Central

    Cheverud, J. M.; Routman, E. J.; Duarte, FAM.; van-Swinderen, B.; Cothran, K.; Perel, C.

    1996-01-01

    Body size is an archetypal quantitative trait with variation due to the segregation of many gene loci, each of relatively minor effect, and the environment. We examine the effects of quantitative trait loci (QTLs) on age-specific body weights and growth in the F(2) intercross of the LG/J and SM/J strains of inbred mice. Weekly weights (1-10 wk) and 75 microsatellite genotypes were obtained for 535 mice. Interval mapping was used to locate and measure the genotypic effects of QTLs on body weight and growth. QTL effects were detected on 16 of the 19 autosomes with several chromosomes carrying more than one QTL. The number of QTLs for age-specific weights varied from seven at 1 week to 17 at 10 wk. The QTLs were each of relatively minor, subequal effect. QTLs affecting early and late growth were generally distinct, mapping to different chromosomal locations indicating separate genetic and physiological systems for early and later murine growth. PMID:8846907

  13. The possible role of liver kinase B1 in hydroquinone-induced toxicity of murine fetal liver and bone marrow hematopoietic stem cells.

    PubMed

    Li, Zhen; Wang, Chunhong; Zhu, Jie; Bai, YuE; Wang, Wei; Zhou, Yanfeng; Zhang, Shaozun; Liu, Xiangxiang; Zhou, Sheng; Huang, Wenting; Bi, Yongyi; Wang, Hong

    2016-07-01

    Epidemiological studies suggest that the increasing incidence of childhood leukemia may be due to maternal exposure to benzene, which is a known human carcinogen; however, the mechanisms involved remain unknown. Liver Kinase B1 (LKB1) acts as a regulator of cellular energy metabolism and functions to regulate hematopoietic stem cell (HSC) homeostasis. We hypothesize that LKB1 contributes to the deregulation of fetal or bone hematopoiesis caused by the benzene metabolite hydroquinone (HQ). To evaluate this hypothesis, we compared the effects of HQ on murine fetal liver hematopoietic stem cells (FL-HSCs) and bone marrow hematopoietic stem cells (BM-HSCs). FL-HSCs and BM-HSCs were isolated and enriched by a magnetic cell sorting system and exposed to various concentrations of HQ (0, 1.25, 2.5, 5, 10, 20, and 40 μM) for 24 h. We found that the inhibition of differentiation and growth, as well as the apoptosis rate of FL-HSCs, induced by HQ were consistent with the changes in BM-HSCs. Furthermore, G1 cell cycle arrest was observed in BM-HSCs and FL-HSCs in response to HQ. Importantly, FL-HSCs were more sensitive than BM-HSCs after exposure to HQ. The highest induction of LKB1 and adenosine monophosphate-activated protein kinase (AMPK) was observed with a much lower concentration of HQ in FL-HSCs than in BM-HSCs. LKB1 may play a critical role in apoptosis and cell cycle arrest of HQ-treated HSCs. This research has developed innovative ideas concerning benzene-induced hematopoietic toxicity or embryotoxicity, which can provide a new experimental evidence for preventing childhood leukemia. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 830-841, 2016.

  14. The in vitro immunoregulatory properties of cultured murine trophoblast are not unique to this tissue.

    PubMed Central

    Drake, B L; Rodger, J C

    1985-01-01

    Primary cultures of murine trophoblast (ectoplacental cone and mid-term placenta) and their supernatants were found to inhibit in vitro lymphocyte proliferative responses to concanavalin A (77-87%) and allo-antigen (52-84%). However, cultures and cell-conditioned media from non-trophoblastic tissues (embryonic sac, adult lung and liver, and B16 melanoma line) produced similar results. In all cases, the inhibitory effects were not due to reduced cell viability. Addition of anti-progesterone serum to the ectoplacental cone-lymphocyte co-cultures, at a concentration known to bind the available trophoblast-derived progesterone, did not overcome the observed suppression. The results clearly demonstrate that a range of cultured cell types, and their conditioned media, will suppress immune responses in vitro. We conclude that cultured trophoblast is not an appropriate model for studies of placental immunoregulation. PMID:3159651

  15. The murine Sry gene encodes a nuclear transcriptional activator

    SciTech Connect

    Dubin, R.A.; Ostrer, H.

    1994-09-01

    The Sry gene functions as a genetic switch in gonadal ridge initiating testis determination. The murine Sry and human SRY open reading frames (ORF) share a conserved 79 amino acid motif, the HMG-box, that binds DNA. Outside this region the two genes share no additional homology. These studies were undertaken to determine whether the Sry/SRY genes encode nuclear transcriptional regulators. As judged by the accumulation of lacZ-SRY hybrid proteins in the nucleus, both the human and murine SRY ORFs contain a nuclear localization signal. The murine Sry HMG-box selectively binds the sequence NACAAT in vitro when presented with a random pool of oligonucleotides and binds AACAAT with the highest affinity. The murine Sry ORF, when expressed in HeLa cells, activates transcription of a reporter gene containing multiple copies of the AACAAT binding site. Activation was observed for a GAL4-responsive gene when the murine Sry ORF was linked to the DNA-binding domain of GAL4. Using this system, the activation function was mapped to a C-terminal glutamine/histidine-rich domain. In addition, LexA-Sry fusion genes activated a LexA-responsive gene in yeast. In contrast, a GAL4-human SRY fusion gene did not cause transcriptional activation. These studies suggest that both the human and mouse SRY ORFs encode nuclear, DNA-binding proteins, and that the mouse Sry ORF can function as a transcriptional activator with separable DNA-binding and activator domains.

  16. Analysis of cardiomyocyte movement in the developing murine heart

    SciTech Connect

    Hashimoto, Hisayuki; Yuasa, Shinsuke; Tabata, Hidenori; Tohyama, Shugo; Seki, Tomohisa; Egashira, Toru; Hayashiji, Nozomi; Hattori, Fumiyuki; Kusumoto, Dai; Kunitomi, Akira; Takei, Makoto; Kashimura, Shin; Yozu, Gakuto; Shimojima, Masaya; Motoda, Chikaaki; Muraoka, Naoto; Nakajima, Kazunori; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Fukuda, Keiichi

    2015-09-04

    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. - Highlights: • We directly visualized cardiomyocyte movement inside the developing murine heart. • Cell cycle related genes were upregulated in the proliferating cardiomyocytes. • Time-lapse imaging revealed that proliferating murine cardiomyocytes stayed in place. • Murine ventricular cardiomyocytes proliferate on site during development.

  17. Murine bladder wall biomechanics following partial bladder obstruction.

    PubMed

    Chen, Joseph; Drzewiecki, Beth A; Merryman, W David; Pope, John C

    2013-10-18

    Evaluation of bladder wall mechanical behavior is important in understanding the functional changes that occur in response to pathologic processes such as partial bladder outlet obstruction (pBOO). In the murine model, the traditional approach of cystometry to describe bladder compliance can prove difficult secondary to small bladder capacity and surgical exposure of the bladder. Here, we explore an alternative technique to characterize murine mechanical properties by applying biaxial mechanical stretch to murine bladders that had undergone pBOO. 5-6 week old female C57/Bl6 mice were ovariectomized and subjected to pBOO via an open surgical urethral ligation and sacrificed after 4 weeks (n=12). Age matched controls (n=6) were also analyzed. Bladders were separated based on phenotype of fibrotic (n=6) or distended (n=6) at the time of harvest. Biaxial testing was performed in modified Kreb's solution at 37°C. Tissue was preconditioned to 10 cycles and mechanical response was evaluated by comparing axial strain at 50kPa. The normal murine bladders exhibited anisotropy and were stiffer in the longitudinal direction. All mice showed a loss of anisotropy after 4 weeks of pBOO. The two phenotypes observed after pBOO, fibrotic and distended, exhibited less and more extensibility, respectively. These proof-of-principle data demonstrate that pBOO creates quantifiable changes in the mechanics of the murine bladder that can be effectively quantified with biaxial testing.

  18. Neuropharmacological properties of farnesol in Murine model

    PubMed Central

    Shahnouri, M.; Abouhosseini Tabari, M.; Araghi, A.

    2016-01-01

    Research on new compounds of therapeutic value for behavioral disorders has progressed recently. Several studies have reported neuropharmacological activities of plant derived terpenes. Farnesol is a sesquiterpene whose most popular source is fruits but the anxiolytic activity for farnesol is still unknown. The present study was conducted on 32 male Swiss Albino mice (8 in each group) to evaluate the neuropharmacological properties of farnesol and its effects on plasma cortisol levels. Farnesol was administered intraperitoneally at single doses of 50 and 100 mg/kg, while diazepam 2 mg/kg was used as standard anxiolytic. Thirty minutes after injections, open field test (OFT), elevated plus maze (EPM), a forced swimming test (FST), and a hot plate test (HPT) were performed for evaluation of anxiety-like behavior, depression and nociception. In OFT, farnesol at the dose of 100 mg/kg led to significant decrease in locomotor activity (P<0.01). In EPM, only farnesol 100 mg/kg led to significant increase in the number of entries to the open arms and the time spent in open arms (P<0.01). Increase in immobility time in FST was seen in farnesol 50 and 100 mg/kg (P<0.001). Farnesol 100 mg/kg exerts significant prolongation in the latency of responses to noxious heat stimuli in HPT. Like diazepam, farnesol decreased plasma levels of cortisol. Results revealed that farnesol had anxiolytic, anti-nociceptive and depressant effects in murine models. The present study provides pharmacological evidence supporting the use of farnesol as a sedative for anxiety disorders. PMID:28224010

  19. Remodeling of alveolar septa after murine pneumonectomy

    PubMed Central

    Ysasi, Alexandra B.; Wagner, Willi L.; Bennett, Robert D.; Ackermann, Maximilian; Valenzuela, Cristian D.; Belle, Janeil; Tsuda, Akira; Konerding, Moritz A.

    2015-01-01

    In most mammals, removing one lung (pneumonectomy) results in the compensatory growth of the remaining lung. In mice, stereological observations have demonstrated an increase in the number of mature alveoli; however, anatomic evidence of the early phases of alveolar growth has remained elusive. To identify changes in the lung microstructure associated with neoalveolarization, we used tissue histology, electron microscopy, and synchrotron imaging to examine the configuration of the alveolar duct after murine pneumonectomy. Systematic histological examination of the cardiac lobe demonstrated no change in the relative frequency of dihedral angle components (Ends, Bends, and Junctions) (P > 0.05), but a significant decrease in the length of a subset of septal ends (“E”). Septal retraction, observed in 20–30% of the alveolar ducts, was maximal on day 3 after pneumonectomy (P < 0.01) and returned to baseline levels within 3 wk. Consistent with septal retraction, the postpneumonectomy alveolar duct diameter ratio (Dout:Din) was significantly lower 3 days after pneumonectomy compared to all controls except for the detergent-treated lung (P < 0.001). To identify clumped capillaries predicted by septal retraction, vascular casting, analyzed by both scanning electron microscopy and synchrotron imaging, demonstrated matted capillaries that were most prominent 3 days after pneumonectomy. Numerical simulations suggested that septal retraction could reflect increased surface tension within the alveolar duct, resulting in a new equilibrium at a higher total energy and lower surface area. The spatial and temporal association of these microstructural changes with postpneumonectomy lung growth suggests that these changes represent an early phase of alveolar duct remodeling. PMID:26078396

  20. Hematopoiesis Primer Modeling Combined Injury

    DTIC Science & Technology

    2012-05-01

    release of prostaglandins, histamine , bradykinin and possibly other chemical mediators. Interstitial edema decreases blood flow, causing this to become...debris. Mast cells—are found in connective and mucosal tissues. They contain many basophilic cytoplasmic granules that secrete heparin, histamine , and

  1. Hematopoiesis in antiorthostatic, hypokinesic rats

    NASA Technical Reports Server (NTRS)

    Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.

    1983-01-01

    Rats exposed to antiorthostatic, hypokinesia showed the following effects which are comparable to those seen in man during or after space flight: weight loss, reduced food and water consumption, transient increases in peripheral hematocrit and RBC count, decreasing MCV and reduced reticulocyte count. In addition, the hemoglobin P50 was shifted to the right. A significant shortening of RBC t1/2 was only seen after suspension. Changes in leukocyte and platelet numbers in suspended rats were also comparable to those in man during space flight, but leukocyte PHA sensitivity in rats showed no consistent alteration. The results demonstrate that this model reproduces many of the hematological effects of space flight and has potential as a tool in understanding the hematopoietic response to zero gravity.

  2. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model.

    PubMed

    Lavasani, Mitra; Robinson, Andria R; Lu, Aiping; Song, Minjung; Feduska, Joseph M; Ahani, Bahar; Tilstra, Jeremy S; Feldman, Chelsea H; Robbins, Paul D; Niedernhofer, Laura J; Huard, Johnny

    2012-01-03

    With ageing, there is a loss of adult stem cell function. However, there is no direct evidence that this has a causal role in ageing-related decline. We tested this using muscle-derived stem/progenitor cells (MDSPCs) in a murine progeria model. Here we show that MDSPCs from old and progeroid mice are defective in proliferation and multilineage differentiation. Intraperitoneal administration of MDSPCs, isolated from young wild-type mice, to progeroid mice confer significant lifespan and healthspan extension. The transplanted MDSPCs improve degenerative changes and vascularization in tissues where donor cells are not detected, suggesting that their therapeutic effect may be mediated by secreted factor(s). Indeed, young wild-type-MDSPCs rescue proliferation and differentiation defects of aged MDSPCs when co-cultured. These results establish that adult stem/progenitor cell dysfunction contributes to ageing-related degeneration and suggests a therapeutic potential of post-natal stem cells to extend health.

  3. Replication initiation patterns in the beta-globin loci of totipotent and differentiated murine cells: evidence for multiple initiation regions.

    PubMed

    Aladjem, Mirit I; Rodewald, Luo Wei; Lin, Chii Mai; Bowman, Sarah; Cimbora, Daniel M; Brody, Linnea L; Epner, Elliot M; Groudine, Mark; Wahl, Geoffrey M

    2002-01-01

    The replication initiation pattern of the murine beta-globin locus was analyzed in totipotent embryonic stem cells and in differentiated cell lines. Initiation events in the murine beta-globin locus were detected in a region extending from the embryonic Ey gene to the adult betaminor gene, unlike the restricted initiation observed in the human locus. Totipotent and differentiated cells exhibited similar initiation patterns. Deletion of the region between the adult globin genes did not prevent initiation in the remainder of the locus, suggesting that the potential to initiate DNA replication was not contained exclusively within the primary sequence of the deleted region. In addition, a deletion encompassing the six identified 5' hypersensitive sites in the mouse locus control region had no effect on initiation from within the locus. As this deletion also did not affect the chromatin structure of the locus, we propose that the sequences determining both chromatin structure and replication initiation lie outside the hypersensitive sites removed by the deletion.

  4. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.

    PubMed

    Akki, Ashwin; Gupta, Ashish; Weiss, Robert G

    2013-03-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.

  5. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion

    PubMed Central

    Miller, Michelle Erin; Rosten, Patty; Lemieux, Madeleine E.; Lai, Courteney; Humphries, R. Keith

    2016-01-01

    Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1’s importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1’s functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs) and implicate reactive oxygen species (ROS) as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA)26Sortm1(Cre/ERT)Nat/J or B6.Cg-Tg(Mx1-Cre)1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1’s role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation. PMID:26986211

  6. Redefining Myeloid Cell Subsets in Murine Spleen.

    PubMed

    Hey, Ying-Ying; Tan, Jonathan K H; O'Neill, Helen C

    2015-01-01

    Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed "L-DC" in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(lo)Ly6G(-) cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6C(lo) and Ly6C(hi) monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) cells, which are CD43(+), Siglec-F(-) and CD115(-). Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types.

  7. Organization of the murine Cd22 locus

    SciTech Connect

    Law, Che-Leung; Torres, R.M.; Sundeberg, H.A.; Clark, E.A ); Parkhouse, R.M.E. ); Brannan, C.I.; Copeland, N.G.; Jenkins, N.A. )

    1993-07-01

    Murine CD22 (mCD22) is a B cell-associated adhesion protein with seven extracellular Ig-like domains that has 62% amino acid identify to its human homologue. Southern analysis on genomic DNA isolated from tissues and cell lines from several mouse strains using mCD22 cDNA demonstrated that the Cd22 locus encoding mCD22 is a single copy gene of [le]30 kb. Digestion of genomic DNA preparations with four restriction endonucleases revealed the presence of restriction fragment length polymorphisms (RFLP) in BALB/c, C57BL/6, and C3H strains vs DBA/2j, NZB, and NZC strains, suggesting the presence of two or more Cd22 alleles. Using a mCD22 cDNA clone derived from the BALB/c strain, the authors isolated genomic clones from a DBA/2 genomic library that contained all the exons necessary to encode the full length mCD22 cDNA. Fifteen exons, including exon 3 that encodes the translation start codon, were identified. Each extracellular Ig-like domain of mCD22 is encoded by a single exon. A comparison between the nucleotide sequences of the BALB/c CD22 cDNA and the exons of the DBA/2j CD22 genomic clones revealed an 18-nucleotide deletion in exon 4 (encoding the most distal Ig-like domain 1 of mCD22) of the DBA/2j genomic sequence in addition to a number of substitutions, insertions, and deletions in other exons. These nucleotide differences were also present in a cDNA clone isolated from total RNA of LPS-activated DBA/2j splenocytes mosome 7, a region sytenic to human chromosome 19q, close to the previously reported loci, Lyb-8 and Mag (a homologue of Cd22). An antibody (CY34) against the Lyb-8.2 B cell marker reacted with a BHK transfectant expressing the full length mCd22 cDNA, thus demonstrating that Lyb-8 and Cd22 loci are identical. Furthermore, a rat anti-mCD22 mAb, NIM-R6, bound to slgM[sup +] DBA/2j B cells, confirming the expression of a CD22 protein by the Cd22[sup a]/lyb-8[sup a] allele. 63 refs., 7 figs., 1 tab.

  8. Nanoelectroablation therapy for murine basal cell carcinoma

    SciTech Connect

    Nuccitelli, Richard; Tran, Kevin; Athos, Brian; Kreis, Mark; Nuccitelli, Pamela; Chang, Kris S.; Epstein, Ervin H.; Tang, Jean Y.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Nanoelectroablation is a new, non-thermal therapy that triggers apoptosis in tumors. Black-Right-Pointing-Pointer Low energy, ultrashort, high voltage pulses ablate the tumor with little or no scar. Black-Right-Pointing-Pointer Nanoelectroablation eliminates 99.8% of the BCC but may leave a few remnants behind. Black-Right-Pointing-Pointer Pilot clinical trials on human BCCs are ongoing and leave no remnants in most cases. -- Abstract: When skin tumors are exposed to non-thermal, low energy, nanosecond pulsed electric fields (nsPEF), apoptosis is initiated both in vitro and in vivo. This nanoelectroablation therapy has already been proven effective in treating subdermal murine allograft tumors. We wanted to determine if this therapy would be equally effective in the treatment of autochthonous BCC tumors in Ptch1{sup +/-}K14-Cre-ER p53 fl/fl mice. These tumors are similar to human BCCs in histology and in response to drug therapy . We have treated 27 BCCs across 8 mice with either 300 pulses of 300 ns duration or 2700 pulses of 100 ns duration, all at 30 kV/cm and 5-7 pulses per second. Every nsPEF-treated BCC began to shrink within a day after treatment and their initial mean volume of 36 {+-} 5 (SEM) mm{sup 3} shrunk by 76 {+-} 3% over the ensuing two weeks. After four weeks, they were 99.8% ablated if the size of the treatment electrode matched the tumor size. If the tumor was larger than the 4 mm wide electrode, multiple treatments were needed for complete ablation. Treated tumors were harvested for histological analysis at various times after treatment and exhibited apoptosis markers. Specifically, pyknosis of nuclei was evident as soon as 2 days after nsPEF treatment, and DNA fragmentation as detected via TUNEL staining was also evident post treatment. Nanoelectroablation is effective in triggering apoptosis and remission of radiation-induced BCCs with a single 6 min-long treatment of 2700 pulses.

  9. CPR: Adult

    MedlinePlus

    Refresher Center Home FIRST AID, CPR and AED LIFEGUARDING Refresher Putting It All Together: CPR—Adult (2:03) Refresher videos only utilize this player QUICK LINKS Home RedCross.org Purchase Course ...

  10. The selective expression of distinct fucosylated glycoproteins on murine T and B lymphocyte subsets.

    PubMed

    Abdul-Salam, Fatma; Mansour, Mohamed H; Al-Shemary, Tahany

    2005-01-01

    The putative expression of distinct terminally fucosylated glycoconjugates among murine lymphocyte subpopulations was sought using Ulex europaeus agglutinin-I (UEA-I) and Anguilla anguilla agglutinin (AAA), each with a distinctive primary binding preference to type II and type I blood group H oligosaccharide determinants, respectively. In newly born and adult mice, direct labeling of isolated lymphocyte subsets in suspension, as well as immunohistochemical assays were indicative of the age-regulated co-expression of the UEA-I-reactive ligand among thymic epithelial cells and a subset of the mature (PNA-), medullary thymocytes. In the spleen, UEA-I-ligand expression was selectively confined to a subset of the CD4+ T lymphocytes scattered around red pulp sinuses in newly born mice, but distinctively localized within the T cell-dependent periarteriolar lymphoid sheath compartment in adult mice. Among thymocytes of adult mice, two-dimensional Western blots demonstrated the expression of the UEA-I-reactive ligand among multiple isoforms of three major 50, 114 and 180kDa acidic glycoproteins, of which, heterogeneous weight and charge variants of the 114kDa component were also evident among splenocytes. The expression of the AAA-reactive ligand was, on the other hand, restricted to a single major 120 kDa acidic glycoprotein, in addition to a minor molecular weight variant of 115kDa, associated with a subset of immature IgM+ B lymphocytes localized within the red pulp, in both newly born and adult mice. The significance of these findings is discussed in relation to mechanisms that govern lymphocyte maturation, selection and migration.

  11. Hydrocortisone differentially affects the ability of murine stromal cells and human marrow-derived adherent cells to promote the differentiation of CD34++/CD38- long-term culture-initiating cells.

    PubMed

    Croisille, L; Auffray, I; Katz, A; Izac, B; Vainchenker, W; Coulombel, L

    1994-12-15

    Very primitive human hematopoietic progenitor cells are identified indirectly by their ability to give rise to clonogenic progenitors in the presence of either human or murine stromal cells. These long-term culture-initiating cell (LTC-IC) assays are usually performed in the presence of hydrocortisone based on the initial observation that hydrocortisone was required for prolonged hematopoiesis in standard long-term bone marrow cultures. In this report, we investigated the role of hydrocortisone in LTC-IC assays initiated with CD34++/CD38- cells seeded onto either human bone marrow LTC-derived adherent cells or a murine marrow-derived stromal cell line, MS-5. It was found that weekly addition of hydrocortisone to the cultures reduced the frequency of LTC-IC (from 1/5 to 1/20) calculated from limiting dilution experiments and also reduced fivefold to 10-fold the number of their progeny clonogenic cells detected after 4 to 5 weeks. In contrast, the frequency and differentiative potential of CD34++/CD38- grown in the presence of human marrow feeders was unaltered by the addition of glucocorticoids. Data are consistent with the hypothesis that hydrocortisone inhibited LTC-IC differentiation by downregulating the expression of a synergistic factor produced by MS-5 cells. (1) In the absence of hydrocortisone, the number of clonogenic progenitors generated by LTC-IC was much higher in cultures seeded on MS-5 than in cultures seeded on human marrow adherent cells, which was also true when cytokines were added to the cocultures. However, based on the phenotype of the colonies, progenitors produced in MS-5 cocultures were more mature than those generated on human marrow adherent cells. (2) Hydrocortisone counteracted the stimulatory effect of recombinant human cytokines (interleukin-3, interleukin-6, and steel factor) in assays performed on MS-5 but not on human marrow feeders. (3) Hydrocortisone led to a 50% decrease in the numbers of colony-forming units

  12. Murine Sirt3 protein isoforms have variable half-lives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sirt3 is a NAD+-dependent protein deacetylase mainly localized in mitochondria. Recent studies indicate that the murine Sirt3 gene expresses different transcript variants resulting in three possible Sirt3 protein isoforms with variable lengths at the N-terminus: M1 (aa 1-334), M2 (aa 15-334), and M3...

  13. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    PubMed

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL(-1) and 0.6-0.7 ng mL(-1), respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces.

  14. Biochemical characterization of murine glycosylation-inhibiting factor

    SciTech Connect

    Tagaya, Yutaka; Mori, Akio; Ishizaka, Kimishige )

    1991-10-15

    The glycosylation-inhibiting factor (GIF) was isolated from serum-free culture supernatants of the murine T-cell hybridoma, 231F1 cells, by using an immunosorbent coupled with the monoclonal anti-lipomodulin antibody. The isolated lymphokine is a 14-kDa protein with a pI of 5.5, as determined by SDS/PAGE and two-dimensional gel electrophoresis. Fractionation of a mixture of radiolabeled GIF with culture supernatant of the 231F1 cells on ion-exchange and revere-phase columns and by gel filtration demonstrated homogeneity of the 14-kDa GIF and confirmed that the bioactivity of GIF and the antigenic determinant recognized by the monoclonal anti-GIF antibody are associated with the 14-kDa protein. The {sup 125}II-labeled 14-kDa protein binds to the murine T-cell hybridoma 12H5 cells, which have been used for bioassay of GIF, and the murine B-cell line A20.3 cells, but the binding of the protein to resting murine splenic lymphocytes was barely detectable. Under the same experimental conditions, binding of the {sup 125}I-labeled recombinant human lipocortin I to the 12H5 cells was not detectable. In contrast, the {sup 125}I labeled lipocortin, but not the 14-kDa GIF, bound to phosphatidylserine vesicles. The results indicate that GIF does not belong to the anexin family.

  15. Murine leukemia virus infects early bone marrow progenitors in immunocompetent mice.

    PubMed

    Tumas-Brundage, K M; Garret, W; Blank, K; Prystowsky, M B

    1996-10-15

    Chronic murine leukemia viruses (MuLVs) are retroviruses which induce leukemias/lymphomas after long latency periods. The induction of leukemia by MuLVs is complex, requiring multiple steps beginning with infection of an appropriate target cell. A number of investigators have proposed a bone marrow-thymus axis in the development of retrovirus induced T-cell lymphoma in which cells are initially infected in the bone marrow. These bone marrow cells or their progeny migrate to the thymus during the disease process. In our system using adult, immunocompetent BALB.K mice infected with E-55(+) MuLV, a similar pattern is seen; integrated virus is initially detectable in the bone marrow and spleen and only later in the thymus. In order to better understand the leukemic process, we analyzed the bone marrow from adult, immunocompetent BALB.K mice infected with the E-55(+) MuLV in bone marrow colony assays. The results from these assays demonstrate that either a pluripotent progenitor cell or an early progenitor cell is a target in the bone marrow for the virus.

  16. Dysregulation of Npas2 leads to altered metabolic pathways in a murine knockout model.

    PubMed

    O'Neil, Derek; Mendez-Figueroa, Hector; Mistretta, Toni-Ann; Su, Chunliu; Lane, Robert H; Aagaard, Kjersti M

    2013-11-01

    In our primate model of maternal high fat diet exposure, we have described that fetal epigenomic modifications to the peripheral circadian Npas2 are associated with persistent alterations in fetal hepatic metabolism and non-alcoholic fatty liver. As the interaction of circadian response with metabolism is not well understood, we employed a murine knockout model to characterize the molecular mechanisms with which Npas2 reprograms the fetal hepatic metabolic response. cDNA was generated from Npas2-/- and +/+ (wild type) livers at day 2 (newborn) and at 25 weeks (adult) of life. Newborn samples were analyzed by exon array (n = 3/cohort). Independent pathway analysis software determined that the primary dysregulated pathway(s) in the Npas2-/- animals uniformly converged on lipid metabolism. Of particular interest, Ppargc1a, which integrates circadian and metabolism pathways, was significantly (p < .01) over expressed in newborn (1.7 fold) and adult (1.8 fold) Npas2-/- animals. These findings are consistent with an essential role for Npas2 in programming the peripheral circadian response and hepatic metabolism, which has not been previously described.

  17. Expression pattern and mapping of the murine versican gene (Cspg2) to chromosome 13

    SciTech Connect

    Naso, M.F.; Morgan, J.L.; Buchberg, A.M.

    1995-09-01

    Versican is a modular proteoglycan harboring a hyaluronan-binding domain at its amino-terminal end and a selectin-like domain at its carboxyl-terminal end, separated by a large intervening region containing the attachment sites for the glycosaminoglycan side chains. By virtue of its modular nature, versican may play a role in cellular attachment, migration, and proliferation by interacting with cell surfaces and extracellular matrix molecules. To discern the function of versican through the analysis of spontaneous and targeted genetic mutations, we have isolated a mouse versican cDNA encoding part of the hyaluronan-binding region, analyzed its mRNA expression in various adult mouse tissues and embryos, and determined the chromosomal location of the gene. Murine versican was 89% identical to human versican at the amino acid level and was highly expressed in mouse embryos at Days 13, 14, and 18. Expression was also detected in adult mouse brain, heart, lung, spleen, skeletal muscle, skin, tail, kidney, and testis. Using interspecific backcross analysis, we assigned the versican gene (Cspg2) to mouse chromosome 13, in a region that is syntenic with the long arm of human chromosome 5 where the human CSPG2 gene is located. 16 refs., 2 figs., 1 tab.

  18. Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle.

    PubMed Central

    Kolattukudy, P. E.; Quach, T.; Bergese, S.; Breckenridge, S.; Hensley, J.; Altschuld, R.; Gordillo, G.; Klenotic, S.; Orosz, C.; Parker-Thornburg, J.

    1998-01-01

    To explore the possible role of monocyte chemotactic protein (MCP-1) in inflammatory diseases of the heart, we expressed the murine MCP-1(JE) gene under the control of the alpha-cardiac myosin heavy chain promoter to attempt to target MCP-1 expression to the adult heart muscle. The five lines of transgenic mice thus produced showed targeted expression of MCP-1 transcripts and protein in the adult heart muscle and pulmonary vein but not in skeletal muscle. MCP-1 level in the transgenic hearts increased up to 30 to 45 days of age, and leukocyte infiltration into interstitium between cardiomyocytes increased up to 60 to 75 days. The infiltrate was mainly macrophages but not T cells. The presence of MCP-1 in the transgenic hearts did not induce cytokine production indicative of leukocyte activation. Echocardiographic analysis of 1-year-old mice that express MCP-1 in the myocardium and of age-matched controls revealed cardiac hypertrophy and dilation, increases in left ventricular (LV) mass, and systolic and diastolic left ventricular internal diameters. A significant decline in M-mode shortening fraction showed depressed contractile function. Transgenic hearts were 65% heavier, and histological analysis showed moderate myocarditis, edema, and some fibrosis. Thus, MCP-1 expression in the heart muscle may provide a model to investigate myocarditis and cardiomyopathy. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9422528

  19. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires.

    PubMed

    Yang, Yang; Wang, Chunlin; Yang, Qunying; Kantor, Aaron B; Chu, Hiutung; Ghosn, Eliver Eb; Qin, Guang; Mazmanian, Sarkis K; Han, Jian; Herzenberg, Leonore A

    2015-09-30

    Processes that define immunoglobulin repertoires are commonly presumed to be the same for all murine B cells. However, studies here that couple high-dimensional FACS sorting with large-scale quantitative IgH deep-sequencing demonstrate that B-1a IgH repertoire differs dramatically from the follicular and marginal zone B cells repertoires and is defined by distinct mechanisms. We track B-1a cells from their early appearance in neonatal spleen to their long-term residence in adult peritoneum and spleen. We show that de novo B-1a IgH rearrangement mainly occurs during the first few weeks of life, after which their repertoire continues to evolve profoundly, including convergent selection of certain V(D)J rearrangements encoding specific CDR3 peptides in all adults and progressive introduction of hypermutation and class-switching as animals age. This V(D)J selection and AID-mediated diversification operate comparably in germ-free and conventional mice, indicating these unique B-1a repertoire-defining mechanisms are driven by antigens that are not derived from microbiota.

  20. Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system.

    PubMed

    Breier, G; Breviario, F; Caveda, L; Berthier, R; Schnürch, H; Gotsch, U; Vestweber, D; Risau, W; Dejana, E

    1996-01-15

    An early step in the formation of the extraembryonic and intraembryonic vasculature is endothelial cell differentiation and organization in blood islands and vascular structures. This involves the expression and function of specific adhesive molecules at cell-to-cell junctions. Previous work showed that endothelial cells express a cell-specific cadherin (vascular endothelial [VE]-cadherin, or 7B4/cadherin-5) that is organized at cell-to-cell contacts in cultured cells and is able to promote intercellular adhesion. In this study, we investigated whether VE-cadherin could be involved in early cardiovascular development in the mouse embryo. We first cloned and sequenced the mouse VE-cadherin cDNA. At the protein level, murine VE-cadherin presented 75% identity (90%, considering conservative amino acid substitutions) with the human homologue. Transfection of murine VE-cadherin cDNA in L cells induced Ca(++)-dependent cell-to-cell aggregation and reduced cell detachment from monolayers. In situ hybridization of adult tissues showed that the murine molecule is specifically expressed by endothelial cells. In mouse embryos, VE-cadherin transcripts were detected at the very earliest stages of vascular development (E7.5) in mesodermal cells of the yolk sac mesenchyme. At E9.5, expression of VE-cadherin was restricted to the peripheral cell layer of blood islands that gives rise to endothelial cells. Hematopoietic cells in the center of blood islands were not labeled. At later embryonic stages, VE-cadherin transcripts were detected in vascular structures of all organs examined, eg, in the ventricle of the heart, the inner cell lining of the atrium and the dorsal aorta, in intersomitic vessels, and in the capillaries of the developing brain. A comparison with flk-1 expression during brain angiogenesis revealed that brain capillaries expressed relatively low amounts of VE-cadherin. In the adult brain, the level of VE-cadherin transcript was further reduced. By

  1. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy

    PubMed Central

    Rodrigues, Merryl; Echigoya, Yusuke; Fukada, So-ichiro; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models. PMID:27854202

  2. The first wave of B lymphopoiesis develops independently of stem cells in the murine embryo.

    PubMed

    Yoshimoto, Momoko

    2015-12-01

    In the developing mouse embryo, there are several waves of hematopoiesis. Primitive and definitive erythromyeloid lineages appear prior to hematopoietic stem cell (HSC) emergence, and these waves are considered to be transient and support embryonic homeostasis until HSC-derived hematopoiesis is established. However, recent evidence strongly suggests that HSC-independent immune cells, such as tissue macrophages and some innate lymphoid cells, develop in the mouse embryo and persist into postnatal life. Innate type B-1 cells have also been reported to emerge from hemogenic endothelial cells in the extraembryonic yolk sac and para-aortic splanchnopleura, and continue to develop in the fetal liver, even in HSC-deficient mouse embryos. Here, this review discusses B-1 cell development in the context of the layered immune system hypothesis of B lymphopoiesis and the emergence of B-1 cells independent of HSCs.

  3. Engineering skeletal muscle tissues from murine myoblast progenitor cells and application of electrical stimulation.

    PubMed

    van der Schaft, Daisy W J; van Spreeuwel, Ariane C C; Boonen, Kristel J M; Langelaan, Marloes L P; Bouten, Carlijn V C; Baaijens, Frank P T

    2013-03-19

    Engineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative (1). The first reported 3D muscle constructs have been made many years ago and pioneers in the field are Vandenburgh and colleagues (2,3). Advances made in muscle tissue engineering are not only the result from the vast gain in knowledge of biochemical factors, stem cells and progenitor cells, but are in particular based on insights gained by researchers that physical factors play essential roles in the control of cell behavior and tissue development. State-of-the-art engineered muscle constructs currently consist of cell-populated hydrogel constructs. In our lab these generally consist of murine myoblast progenitor cells, isolated from murine hind limb muscles or a murine myoblast cell line C2C12, mixed with a mixture of collagen/Matrigel and plated between two anchoring points, mimicking the muscle ligaments. Other cells may be considered as well, e.g. alternative cell lines such as L6 rat myoblasts (4), neonatal muscle derived progenitor cells (5), cells derived from adult muscle tissues from other species such as human (6) or even induced pluripotent stem cells (iPS cells) (7). Cell contractility causes alignment of the cells along the long axis of the construct (8,9) and differentiation of the muscle progenitor cells after approximately one week of culture. Moreover, the application of electrical stimulation can enhance the process of differentiation to some extent (8). Because of its limited size (8 x 2 x 0.5 mm) the complete tissue can be analyzed using confocal microscopy to monitor e.g. viability, differentiation and cell alignment. Depending on the specific application the requirements for the engineered muscle tissue will vary; e.g. use for regenerative medicine requires the up scaling of tissue size and vascularization, while

  4. Engineering Skeletal Muscle Tissues from Murine Myoblast Progenitor Cells and Application of Electrical Stimulation

    PubMed Central

    van der Schaft, Daisy W. J.; van Spreeuwel, Ariane C. C.; Boonen, Kristel J. M.; Langelaan, Marloes L. P.; Bouten, Carlijn V. C.; Baaijens, Frank P. T.

    2013-01-01

    Engineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative 1. The first reported 3D muscle constructs have been made many years ago and pioneers in the field are Vandenburgh and colleagues 2,3. Advances made in muscle tissue engineering are not only the result from the vast gain in knowledge of biochemical factors, stem cells and progenitor cells, but are in particular based on insights gained by researchers that physical factors play essential roles in the control of cell behavior and tissue development. State-of-the-art engineered muscle constructs currently consist of cell-populated hydrogel constructs. In our lab these generally consist of murine myoblast progenitor cells, isolated from murine hind limb muscles or a murine myoblast cell line C2C12, mixed with a mixture of collagen/Matrigel and plated between two anchoring points, mimicking the muscle ligaments. Other cells may be considered as well, e.g. alternative cell lines such as L6 rat myoblasts 4, neonatal muscle derived progenitor cells 5, cells derived from adult muscle tissues from other species such as human 6 or even induced pluripotent stem cells (iPS cells) 7. Cell contractility causes alignment of the cells along the long axis of the construct 8,9 and differentiation of the muscle progenitor cells after approximately one week of culture. Moreover, the application of electrical stimulation can enhance the process of differentiation to some extent 8. Because of its limited size (8 x 2 x 0.5 mm) the complete tissue can be analyzed using confocal microscopy to monitor e.g. viability, differentiation and cell alignment. Depending on the specific application the requirements for the engineered muscle tissue will vary; e.g. use for regenerative medicine requires the up scaling of tissue size and vascularization, while to serve as a

  5. Characterization of the murine plasminogen/urokinase-type plasminogen-activator system.

    PubMed

    Lijnen, H R; Van Hoef, B; Collen, D

    1996-11-01

    The murine plasminogen/urokinase-type plasminogen-activator (u-PA) system was studied using purified proteins, plasma and endothelioma cells. Recombinant murine u-PA was obtained as a single-chain molecule of 45 kDa which was converted to two-chain u-PA with plasmin by cleavage of the Lys159-Ile160 peptide bond. Murine plasminogen, purified from plasma as a single-chain protein of 95 kDa, was resistant to quantitative activation with murine recombinant two-chain u-PA: only 15% activation within 1 h at 37 degrees C was obtained in mixtures of 1 microM plasminogen and 5 nM recombinant two-chain u-PA, whereas quantitative activation was observed in the autologous human system. Addition of 6-aminohexanoic acid to native murine plasminogen resulted in quantitative activation within 1 h. In murine plasma in vitro, plasminogen was also resistant to quantitative activation with u-PA (50% activation within 1 h at 37 degrees C with 50 nM recombinant two-chain u-PA, whereas in the human system nearly quantitative activation was obtained). Murine plasma clots submerged in murine plasma were resistant to lysis with u-PA; < or = 2% clot lysis in 2 h was obtained with 80 nM recombinant two-chain u-PA in the autologous murine system whereas 50% clot lysis in 2 h required only 15 nM recombinant two-chain u-PA in the autologous human system. Saturable binding of murine recombinant two-chain u-PA was observed to murine endothelioma cells that are genetically deficient in u-PA (u-PA-/- End cells). Binding was characterized by a Kd of 5.5 nM and 800000 binding sites/cell. However, u-PA-/- End cells did not significantly stimulate the activation rate of murine plasminogen by murine recombinant two-chain u-PA and did not enhance the plasmin-mediated conversion rate of murine recombinant single-chain u-PA to its two-chain derivative. Murine recombinant two-chain u-PA bound to murine endothelioma cells was quantitatively inhibited by murine plasminogen-activator inhibitor-1 (PAI-1). Thus

  6. The effects of simulated hypogravity on murine bone marrow cells

    NASA Technical Reports Server (NTRS)

    Lawless, Desales

    1989-01-01

    Mouse bone marrow cells grown in complete medium at unit gravity were compared with a similar population cultured in conditions that mimic some aspects of microgravity. After the cells adjusted to the conditions that simulated microgravity, they proliferated as fetal or oncogenic populations; their numbers doubled in twelve hour periods. Differentiated subpopulations were depleted from the heterogeneous mixture with time and the undifferentiated hematopoietic stem cells increased in numbers. The cells in the control groups in unit gravity and those in the bioreactors in conditions of microgravity were monitored under a number of parameters. Each were phenotyped as to cell surface antigens using a panel of monoclonal antibodies and flow cytometry. Other parameters compared included: pH, glucose uptake, oxygen consumption and carbon-dioxide production. Nuclear DNA was monitored by flow cytometry. Functional responses were studied by mitogenic stimulation by various lectins. The importance of these findings should have relevance to the space program. Cells should behave predictably in zero gravity; specific populations can be eliminated from diverse populations and other populations isolated. The availability of stem cell populations will enhance both bone marrow and gene transplant programs. Stem cells will permit developmental biologists study the paths of hematopoiesis.

  7. Adult Psychology.

    ERIC Educational Resources Information Center

    Bischof, Ledford J.

    This volume comprehensively reviews the research on the psychology of the middle aged (ages 40-65). Topics include the concept of maturity and maturation models, the measurement and influences of adult self image; marriage and sexual patterns; intergenerational relationships between and children; vocations and avocations (work, retirement, play,…

  8. Differences of cell surface marker expression between bone marrow- and kidney-derived murine mesenchymal stromal cells and fibroblasts.

    PubMed

    Cakiroglu, F; Osbahr, J W; Kramer, J; Rohwedel, J

    2016-10-31

    Mesenchymal stromal cells (MSC) are undifferentiated, multipotent adult cells with regenerative properties. They are particularly relevant for therapeutic approaches due to the simplicity of their isolation and cultivation. Since MSC show an expression pattern of cell surface marker, which is almost identical to fibroblasts, many attempts have been made to address the similarities and differences between MSC and fibroblasts. In this study we aimed to isolate murine MSC from bone marrow (BM) and kidney to characterize them in comparison to fibroblasts. Cells were isolated from murine kidney, BM and abdominal skin by plastic adherence and subsequently characterized by analysing their capability to build colony-forming unit-fibroblasts (CFU-F), their morphology, their proliferation, expression of telomerase activity and cell surface antigens as well as their differentiation capacity. Plastic adherent cells from the 3 mouse tissues showed similar morphology, proliferation profiles and CFU-F building capacities. However, while MSC from BM and kidney differentiated into the adipogenic, chondrogenic and osteogenic direction, fibroblasts were not able to do so efficiently. In addition, a tendency for lower expression of telomerase was found in the fibroblast population. Proliferating cells from kidney and BM expressed the MSC-specific cell surface markers CD105 and Sca-1 on a significantly higher and CD117 on a significantly lower level compared to fibroblasts and were thereby distinguishable from fibroblasts. Furthermore, we found that certain CD markers were specifically expressed on a higher level, either in BM-derived cells or fibroblasts. This study demonstrates that murine MSC isolated from different organs express certain specific markers, which enable their discrimination.

  9. Hypoxia Inducible Factor 1 Alpha Is Expressed in Germ Cells throughout the Murine Life Cycle.

    PubMed

    Takahashi, Natsumi; Davy, Philip M C; Gardner, Lauren H; Mathews, Juanita; Yamazaki, Yuki; Allsopp, Richard C

    2016-01-01

    Pluripotent stem cells of the early embryo, and germ line cells, are essential to ensure uncompromised development to adulthood as well as species propagation, respectively. Recently, the transcription factor hypoxia inducible factor 1 alpha (Hif1α) has been shown to have important roles in embryonic stem cells; in particular, regulation of conversion to glycolytic metabolism and, as we have shown, maintenance of functional levels of telomerase. In the present study, we sought to assess whether Hif1α was also expressed in the primitive cells of the murine embryo. We observed expression of Hif1α in pre-implantation embryos, specifically the 2-cell stage, morula, and blastocyst. Robust Hif1α expression was also observed in male and female primordial germ cells. We subsequently assessed whether Hif1α was expressed in adult male and female germ cells. In the testis, Hif1α was robustly expressed in spermatogonial cells, in both juvenile (6-week old) and adult (3-month old) males. In the ovaries, Hif1α was expressed in mature oocytes from adult females, as assessed both in situ and in individual oocytes flushed from super-ovulated females. Analysis of Hif1α transcript levels indicates a mechanism of regulation during early development that involves stockpiling of Hif1α protein in mature oocytes, presumably to provide protection from hypoxic stress until the gene is re-activated at the blastocyst stage. Together, these observations show that Hif1α is expressed throughout the life-cycle, including both the male and female germ line, and point to an important role for Hif1α in early progenitor cells.

  10. Hypoxia Inducible Factor 1 Alpha Is Expressed in Germ Cells throughout the Murine Life Cycle

    PubMed Central

    Gardner, Lauren H.; Mathews, Juanita; Yamazaki, Yuki; Allsopp, Richard C.

    2016-01-01

    Pluripotent stem cells of the early embryo, and germ line cells, are essential to ensure uncompromised development to adulthood as well as species propagation, respectively. Recently, the transcription factor hypoxia inducible factor 1 alpha (Hif1α) has been shown to have important roles in embryonic stem cells; in particular, regulation of conversion to glycolytic metabolism and, as we have shown, maintenance of functional levels of telomerase. In the present study, we sought to assess whether Hif1α was also expressed in the primitive cells of the murine embryo. We observed expression of Hif1α in pre-implantation embryos, specifically the 2-cell stage, morula, and blastocyst. Robust Hif1α expression was also observed in male and female primordial germ cells. We subsequently assessed whether Hif1α was expressed in adult male and female germ cells. In the testis, Hif1α was robustly expressed in spermatogonial cells, in both juvenile (6-week old) and adult (3-month old) males. In the ovaries, Hif1α was expressed in mature oocytes from adult females, as assessed both in situ and in individual oocytes flushed from super-ovulated females. Analysis of Hif1α transcript levels indicates a mechanism of regulation during early development that involves stockpiling of Hif1α protein in mature oocytes, presumably to provide protection from hypoxic stress until the gene is re-activated at the blastocyst stage. Together, these observations show that Hif1α is expressed throughout the life-cycle, including both the male and female germ line, and point to an important role for Hif1α in early progenitor cells. PMID:27148974

  11. Murine Dermal Fibroblast Isolation by FACS.

    PubMed

    Walmsley, Graham G; Maan, Zeshaan N; Hu, Michael S; Atashroo, David A; Whittam, Alexander J; Duscher, Dominik; Tevlin, Ruth; Marecic, Owen; Lorenz, H Peter; Gurtner, Geoffrey C; Longaker, Michael T

    2016-01-07

    Fibroblasts are the principle cell type responsible for secreting extracellular matrix and are a critical component of many organs and tissues. Fibroblast physiology and pathology underlie a spectrum of clinical entities, including fibroses in multiple organs, hypertrophic scarring following burns, loss of cardiac function following ischemia, and the formation of cancer stroma. However, fibroblasts remain a poorly characterized type of cell, largely due to their inherent heterogeneity. Existing methods for the isolation of fibroblasts require time in cell culture that profoundly influences cell phenotype and behavior. Consequently, many studies investigating fibroblast biology rely upon in vitro manipulation and do not accurately capture fibroblast behavior in vivo. To overcome this problem, we developed a FACS-based protocol for the isolation of fibroblasts from the dorsal skin of adult mice that does not require cell culture, thereby preserving the physiologic transcriptional and proteomic profile of each cell. Our strategy allows for exclusion of non-mesenchymal lineages via a lineage negative gate (Lin(-)) rather than a positive selection strategy to avoid pre-selection or enrichment of a subpopulation of fibroblasts expressing specific surface markers and be as inclusive as possible across this heterogeneous cell type.

  12. Proteomic analysis of murine testes lipid droplets

    PubMed Central

    Wang, Weiyi; Wei, Suning; Li, Linghai; Su, Xueying; Du, Congkuo; Li, Fengjuan; Geng, Bin; Liu, Pingsheng; Xu, Guoheng

    2015-01-01

    Testicular Leydig cells contain abundant cytoplasmic lipid droplets (LDs) as a cholesteryl-ester store for releasing cholesterols as the precursor substrate for testosterone biosynthesis. Here, we identified the protein composition of testicular LDs purified from adult mice by using mass spectrometry and immunodetection. Among 337 proteins identified, 144 were previously detected in LD proteomes; 44 were confirmed by microscopy. Testicular LDs contained multiple Rab GTPases, chaperones, and proteins involved in glucuronidation, ubiquination and transport, many known to modulate LD formation and LD-related cellular functions. In particular, testicular LDs contained many members of both the perilipin family and classical lipase/esterase superfamily assembled predominately in adipocyte LDs. Thus, testicular LDs might be regulated similar to adipocyte LDs. Remarkably, testicular LDs contained a large number of classical enzymes for biosynthesis and metabolism of cholesterol and hormonal steroids, so steroidogenic reactions might occur on testicular LDs or the steroidogenic enzymes and products could be transferred through testicular LDs. These characteristics differ from the LDs in most other types of cells, so testicular LDs could be an active organelle functionally involved in steroidogenesis. PMID:26159641

  13. Broadband acoustic properties of a murine skull.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-07

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  14. Broadband acoustic properties of a murine skull

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-01

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  15. ADULT EDUCATION OF MIGRANT ADULTS.

    ERIC Educational Resources Information Center

    BEAL, CATHERINE; AND OTHERS

    UNITS ON MIGRANT ADULT EDUCATION, AND A UNIT ON ORGANIZING INFORMAL GROUPS OF MIGRANT WOMEN TO DISCUSS MAINTAINING AND IMPROVING THEIR TEMPORARY HOMES, ARE PRESENTED. THE GOALS OF THE UNIT ON EDUCATION FOR MIGRANT MEN ARE ECONOMIC INDEPENDENCE, BETTER HEALTH AND WELL-BEING, AND BETTER HANDLING OF RESPONSIBILITIES. THE MAIN DIVISIONS OF THE…

  16. Transcriptional targets of Foxd3 in murine ES cells.

    PubMed

    Plank, Jennifer L; Suflita, Michael T; Galindo, Cristi L; Labosky, Patricia A

    2014-01-01

    Understanding gene regulatory networks controlling properties of pluripotent stem cells will facilitate development of stem cell-based therapies. The transcription factor Foxd3 is critical for maintenance of self-renewal, survival, and pluripotency in murine embryonic stem cells (ESCs). Using a conditional deletion of Foxd3 followed by gene expression analyses, we demonstrate that genes required for several developmental processes including embryonic organ development, epithelium development, and epithelial differentiation were misregulated in the absence of Foxd3. Additionally, we identified 6 novel targets of Foxd3 (Sox4, Safb, Sox15, Fosb, Pmaip1 and Smarcd3). Finally, we present data suggesting that Foxd3 functions upstream of genes required for skeletal muscle development. Together, this work provides further evidence that Foxd3 is a critical regulator of murine development through the regulation of lineage specific differentiation.

  17. Increased photosensitivity to near-ultraviolet light in murine SLE

    SciTech Connect

    Golan, D.T.; Borel, Y.

    1984-02-01

    The authors investigated whether there is increased susceptibility to near-UVL in murine SLE. Cultured spleen cells from either strain of mice with lupus disease or conventional strains of mice were exposed to different UVL fractions in vitro. The effect of DNA synthesis, release, and repair was examined. DNA synthesis and release was measured as percent of (/sup 3/H)thymidine (dT) uptake into either total acid-precipitable radioactive material of cell sediment plus supernatant, or that of the medium alone, whereas hydroxyurea-resistant dT incorporation represented DNA repair. The data indicate that all SLE strains, in contrast to all non-SLE strains, show increased DNA synthesis and release after UV-A exposure. In addition, all murine SLE strains demonstrate increased susceptibility to induction of DNA damage by UV-A. The significance of these observations in relation to the clinical activity of SLE after sunlight exposure is discussed.

  18. Murine immunization by cesium-137 irradiation attenuated Schistosoma mansoni cercariae

    SciTech Connect

    Stek, M. Jr.; Minard, P.; Cruess, D.F.

    1984-06-01

    Cesium-137, becoming a more readily available ionizing gamma radiation source for laboratory use, was shown to effectively attenuate Schistosoma mansoni cercariae for vaccine production. In parallel comparison studies with the murine model, cesium-137 attenuated cercariae consistently afforded better protection than did the cobalt-60 prepared vaccine. Dose-response data indicated that the optimal total irradiation with cesium-137 was between 45 and 50 Krad.

  19. Osteopontin Is Upregulated in Human and Murine Acute Schistosomiasis Mansoni

    PubMed Central

    Pereira, Thiago Almeida; Syn, Wing-Kin; Amâncio, Frederico Figueiredo; Cunha, Pedro Henrique Diniz; Caporali, Julia Fonseca Morais; Trindade, Guilherme Vaz de Melo; Santos, Elisângela Trindade; Souza, Márcia Maria; Andrade, Zilton Araújo; Witek, Rafal P; Secor, William Evan; Pereira, Fausto Edmundo Lima; Lambertucci, José Roberto; Diehl, Anna Mae

    2016-01-01

    Background Symptomatic acute schistosomiasis mansoni is a systemic hypersensitivity reaction against the migrating schistosomula and mature eggs after a primary infection. The mechanisms involved in the pathogenesis of acute schistosomiasis are not fully elucidated. Osteopontin has been implicated in granulomatous reactions and in acute hepatic injury. Our aims were to evaluate if osteopontin plays a role in acute Schistosoma mansoni infection in both human and experimentally infected mice and if circulating OPN levels could be a novel biomarker of this infection. Methodology/Principal Findings Serum/plasma osteopontin levels were measured by ELISA in patients with acute (n = 28), hepatointestinal (n = 26), hepatosplenic (n = 39) schistosomiasis and in uninfected controls (n = 21). Liver osteopontin was assessed by immunohistochemistry in needle biopsies of 5 patients. Sera and hepatic osteopontin were quantified in the murine model of schistosomiasis mansoni during acute (7 and 8 weeks post infection, n = 10) and chronic (30 weeks post infection, n = 8) phase. Circulating osteopontin levels are increased in patients with acute schistosomiasis (p = 0.0001). The highest levels of OPN were observed during the peak of clinical symptoms (7–11 weeks post infection), returning to baseline level once the granulomas were modulated (>12 weeks post infection). The plasma levels in acute schistosomiasis were even higher than in hepatosplenic patients. The murine model mirrored the human disease. Macrophages were the major source of OPN in human and murine acute schistosomiasis, while the ductular reaction maintains OPN production in hepatosplenic disease. Soluble egg antigens from S. mansoni induced OPN expression in primary human kupffer cells. Conclusions/Significance S. mansoni egg antigens induce the production of OPN by macrophages in the necrotic-exudative granulomas characteristic of acute schistosomiasis mansoni. Circulating OPN levels are upregulated in human and

  20. A Case of Laboratory-Acquired Murine Typhus

    PubMed Central

    Woo, Jun Hee; Cho, Joo Young; Kim, Young Sun; Choi, Doo Hong; Lee, Nam Min; Choe, Kang Won; Chang, Woo Hyun

    1990-01-01

    We encountered a 32-year-old Korean woman who developed murine typhus in a laboratory. She worked as a technician in a laboratory for rickettsial disease. Immunofluorescence test with rickettsial antigen (R. typhi) was positive at 1 : 320 on admission and 1 : 1280 after 4 weeks. A dose of 200 mg of doxycycline for 7 days proved to be effective for her condition. PMID:2098096

  1. Miniature Microwave Applicator for Murine Bladder Hyperthermia Studies

    PubMed Central

    Salahi, Sara; Maccarini, Paolo F.; Rodrigues, Dario B.; Etienne, Wiguins; Landon, Chelsea D.; Inman, Brant A.; Dewhirst, Mark W.; Stauffer, Paul R.

    2012-01-01

    Purpose Novel combinations of heat with chemotherapeutic agents are often studied in murine tumor models. Currently, no device exists to selectively heat small tumors at depth in mice. In this project, we modelled, built and tested a miniature microwave heat applicator, the physical dimensions of which can be scaled to adjust the volume and depth of heating to focus on the tumor volume. Of particular interest is a device that can selectively heat murine bladder. Materials and Methods Using Avizo® segmentation software, we created a numerical mouse model based on micro-MRI scan data. The model was imported into HFSS™ simulation software and parametric studies were performed to optimize the dimensions of a water-loaded circular waveguide for selective power deposition inside a 0.15ml bladder. A working prototype was constructed operating at 2.45GHz. Heating performance was characterized by mapping fiber-optic temperature sensors along catheters inserted at depths of 0-1mm (subcutaneous), 2-3mm (vaginal), and 4-5mm (rectal) below the abdominal wall, with the mid-depth catheter adjacent to the bladder. Core temperature was monitored orally. Results Thermal measurements confirm the simulations which demonstrate that this applicator can provide local heating at depth in small animals. Measured temperatures in murine pelvis show well-localized bladder heating to 42-43°C while maintaining normothermic skin and core temperatures. Conclusions Simulation techniques facilitate the design optimization of microwave antennas for use in pre-clinical applications such as localized tumor heating in small animals. Laboratory measurements demonstrate the effectiveness of a new miniature water-coupled microwave applicator for localized heating of murine bladder. PMID:22690856

  2. Point mutations in murine Nkx2-5 phenocopy human congenital heart disease and induce pathogenic Wnt signaling

    PubMed Central

    Furtado, Milena B.; Wilmanns, Julia C.; Chandran, Anjana; Perera, Joelle; Hon, Olivia; Biben, Christine; Willow, Taylor J.; Nim, Hieu T.; Kaur, Gurpreet; Simonds, Stephanie; Willians, David; Salimova, Ekaterina; Plachta, Nicolas; Denegre, James M.; Murray, Stephen A.; Cowley, Michael; Pearson, James T.; Kaye, David; Ramialison, Mirana; Rosenthal, Nadia A.; Costa, Mauro W.

    2017-01-01

    Mutations in the Nkx2-5 gene are a main cause of congenital heart disease. Several studies have addressed the phenotypic consequences of disrupting the Nkx2-5 gene locus, although animal models to date failed to recapitulate the full spectrum of the human disease. Here, we describe a new Nkx2-5 point mutation murine model, akin to its human counterpart disease–generating mutation. Our model fully reproduces the morphological and physiological clinical presentations of the disease and reveals an understudied aspect of Nkx2-5–driven pathology, a primary right ventricular dysfunction. We further describe the molecular consequences of disrupting the transcriptional network regulated by Nkx2-5 in the heart and show that Nkx2-5–dependent perturbation of the Wnt signaling pathway promotes heart dysfunction through alteration of cardiomyocyte metabolism. Our data provide mechanistic insights on how Nkx2-5 regulates heart function and metabolism, a link in the study of congenital heart disease, and confirms that our models are the first murine genetic models to our knowledge to present all spectra of clinically relevant adult congenital heart disease phenotypes generated by NKX2-5 mutations in patients. PMID:28352650

  3. Identification of TSIX, Encoding an RNA Antisense to Human XIST, Reveals Differences from its Murine Counterpart: Implications for X Inactivation

    PubMed Central

    Migeon, Barbara R.; Chowdhury, Ashis K.; Dunston, Jennifer A.; McIntosh, Iain

    2001-01-01

    X inactivation is the mammalian method for X-chromosome dosage compensation, but some features of this developmental process vary among mammals. Such species variations provide insights into the essential components of the pathway. Tsix encodes a transcript antisense to the murine Xist transcript and is expressed in the mouse embryo only during the initial stages of X inactivation; it has been shown to play a role in imprinted X inactivation in the mouse placenta. We have identified its counterpart within the human X inactivation center (XIC). Human TSIX produces a >30-kb transcript that is expressed only in cells of fetal origin; it is expressed from human XIC transgenes in mouse embryonic stem cells and from human embryoid-body–derived cells, but not from human adult somatic cells. Differences in the structure of human and murine genes indicate that human TSIX was truncated during evolution. These differences could explain the fact that X inactivation is not imprinted in human placenta, and they raise questions about the role of TSIX in random X inactivation. PMID:11555794

  4. Point mutations in murine Nkx2-5 phenocopy human congenital heart disease and induce pathogenic Wnt signaling.

    PubMed

    Furtado, Milena B; Wilmanns, Julia C; Chandran, Anjana; Perera, Joelle; Hon, Olivia; Biben, Christine; Willow, Taylor J; Nim, Hieu T; Kaur, Gurpreet; Simonds, Stephanie; Wu, Qizhu; Willians, David; Salimova, Ekaterina; Plachta, Nicolas; Denegre, James M; Murray, Stephen A; Fatkin, Diane; Cowley, Michael; Pearson, James T; Kaye, David; Ramialison, Mirana; Harvey, Richard P; Rosenthal, Nadia A; Costa, Mauro W

    2017-03-23

    Mutations in the Nkx2-5 gene are a main cause of congenital heart disease. Several studies have addressed the phenotypic consequences of disrupting the Nkx2-5 gene locus, although animal models to date failed to recapitulate the full spectrum of the human disease. Here, we describe a new Nkx2-5 point mutation murine model, akin to its human counterpart disease-generating mutation. Our model fully reproduces the morphological and physiological clinical presentations of the disease and reveals an understudied aspect of Nkx2-5-driven pathology, a primary right ventricular dysfunction. We further describe the molecular consequences of disrupting the transcriptional network regulated by Nkx2-5 in the heart and show that Nkx2-5-dependent perturbation of the Wnt signaling pathway promotes heart dysfunction through alteration of cardiomyocyte metabolism. Our data provide mechanistic insights on how Nkx2-5 regulates heart function and metabolism, a link in the study of congenital heart disease, and confirms that our models are the first murine genetic models to our knowledge to present all spectra of clinically relevant adult congenital heart disease phenotypes generated by NKX2-5 mutations in patients.

  5. First steps to define murine amniotic fluid stem cell microenvironment

    PubMed Central

    Bertin, E.; Piccoli, M.; Franzin, C.; Spiro, G.; Donà, S.; Dedja, A.; Schiavi, F.; Taschin, E.; Bonaldo, P.; Braghetta, P.; De Coppi, P.; Pozzobon, M.

    2016-01-01

    Stem cell niche refers to the microenvironment where stem cells reside in living organisms. Several elements define the niche and regulate stem cell characteristics, such as stromal support cells, gap junctions, soluble factors, extracellular matrix proteins, blood vessels and neural inputs. In the last years, different studies demonstrated the presence of cKit+ cells in human and murine amniotic fluid, which have been defined as amniotic fluid stem (AFS) cells. Firstly, we characterized the murine cKit+ cells present both in the amniotic fluid and in the amnion. Secondly, to analyze the AFS cell microenvironment, we injected murine YFP+ embryonic stem cells (ESC) into the amniotic fluid of E13.5 wild type embryos. Four days after transplantation we found that YFP+ sorted cells maintained the expression of pluripotency markers and that ESC adherent to the amnion were more similar to original ESC in respect to those isolated from the amniotic fluid. Moreover, cytokines evaluation and oxygen concentration analysis revealed in this microenvironment the presence of factors that are considered key regulators in stem cell niches. This is the first indication that AFS cells reside in a microenvironment that possess specific characteristics able to maintain stemness of resident and exogenous stem cells. PMID:27845396

  6. Moloney murine leukemia virus activates NF-kappa B.

    PubMed Central

    Pak, J; Faller, D V

    1996-01-01

    Nonacutely transforming retroviruses, such as Moloney murine leukemia virus (M-MuLV), differ from transforming viruses in their mechanisms of tumor induction. While the transforming viruses cause tumors by transduction of oncogenes, the leukemia retroviruses, lacking oncogenes, employ other mechanisms, including promoter insertion and enhancer activation. Although these two mechanisms occur in many tumors induced by leukemia viruses, a substantial proportion of such tumors do not show site-specific proviral insertions. Thus, other, unidentified virus-driven mechanisms may participate in tumorigenesis. In these studies, we show that infection of cells by M-MuLV activates expression of Rel family transcription factors. In murine cells chronically infected with M-MuLV, gel shift analyses with kappaB DNA-binding motifs from the murine immunoglobulin kappa light chain enhancer demonstrated induction of at least two distinct kappaB enhancer-binding complexes. Supershifting and immunoblotting analyses defined p50, p52, RelB, and c-Rel subunits as constituents of these virus-induced protein complexes. Transient transfections performed with kappaB-dependent reporter plasmids showed transcriptional activation in M-MuLV-infected cells relative to uninfected cells. Induction of Rel/NF-kappaB transcription factor activity by M-MuLV infection may prove relevant to the mechanism of M-MuLV-induced leukemia. PMID:8648762

  7. Evaluation of a Murine Single-Blood-Injection SAH Model

    PubMed Central

    Sommer, Clemens; Steiger, Hans-Jakob; Schneider, Toni; Hänggi, Daniel

    2014-01-01

    The molecular pathways underlying the pathogenesis after subarachnoid haemorrhage (SAH) are poorly understood and continue to be a matter of debate. A valid murine SAH injection model is not yet available but would be the prerequisite for further transgenic studies assessing the mechanisms following SAH. Using the murine single injection model, we examined the effects of SAH on regional cerebral blood flow (rCBF) in the somatosensory (S1) and cerebellar cortex, neuro-behavioural and morphological integrity and changes in quantitative electrocorticographic and electrocardiographic parameters. Micro CT imaging verified successful blood delivery into the cisterna magna. An acute impairment of rCBF was observed immediately after injection in the SAH and after 6, 12 and 24 hours in the S1 and 6 and 12 hours after SAH in the cerebellum. Injection of blood into the foramen magnum reduced telemetric recorded total ECoG power by an average of 65%. Spectral analysis of ECoGs revealed significantly increased absolute delta power, i.e., slowing, cortical depolarisations and changes in ripples and fast ripple oscillations 12 hours and 24 hours after SAH. Therefore, murine single-blood-injection SAH model is suitable for pathophysiological and further molecular analysis following SAH. PMID:25545775

  8. Cloning and characterization of a murine SIL gene

    SciTech Connect

    Collazo-Garcia, N.; Scherer, P.; Aplan, P.D.

    1995-12-10

    The human SIL gene is disrupted by a site-specific interstitial deletion in 25% of children with T-cell acute lymphoblastic leukemia. Since transcriptionally active genes are prone to recombination events, the recurrent nature of this lesion suggests that the SIL gene product is transcriptionally active in the cell type that undergoes this interstitial deletion and that the SIL gene product may play a role in normal lymphoid development. To facilitate studies of SIL gene function, we have cloned and characterized a murine SIL gene. The predicted murine SIL protein is 75% identical to the human gene, with good homology throughout the open reading frame. An in vitro translated SIL cDNA generated a protein slightly larger than the predicted 139-kDa protein. Although a prior report detected SIL mRNA expression exclusively in hematopoietic tissues, a sensitive RT-PCR assay demonstrated SIL expression to be ubiquitous, detectable in all tissues examined. Since the RT-PCR assay suggested that SIL mRNA expression was higher in rapidly proliferating tissues, we assayed SIL mRNA expression using a murine erythroleukemia model of terminal differentiation and found it to be dramatically decreased in conjunction with terminal differentiation. These studies demonstrate that the human SIL gene product is quite well conserved in rodents and suggest that the SIL gene product may play a role in cell proliferation. 26 refs., 6 figs.

  9. Diagnostic imaging advances in murine models of colitis.

    PubMed

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-21

    Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.

  10. Panic Disorder among Adults

    MedlinePlus

    ... Autism Spectrum Disorder (ASD) Eating Disorders Among Adults - Anorexia Nervosa Eating Disorders Among Adults - Binge Eating Disorder ... Autism Spectrum Disorder (ASD) Eating Disorders Among Adults - Anorexia Nervosa Eating Disorders Among Adults - Binge Eating Disorder ...

  11. Obstructive sleep apnea - adults

    MedlinePlus

    Sleep apnea - obstructive - adults; Apnea - obstructive sleep apnea syndrome - adults; Sleep-disordered breathing - adults; OSA - adults ... When you sleep, all of the muscles in your body become more relaxed. This includes the muscles that help keep your ...

  12. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model.

    PubMed

    Yao, Xiaomei; Carleton, Stephanie M; Kettle, Arin D; Melander, Jennifer; Phillips, Charlotte L; Wang, Yong

    2013-06-01

    Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition and hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI.

  13. Molecular analysis of fiber type-specific expression of murine myostatin promoter.

    PubMed

    Salerno, Mônica Senna; Thomas, Mark; Forbes, Davanea; Watson, Trevor; Kambadur, Ravi; Sharma, Mridula

    2004-10-01

    Myostatin is a negative regulator of muscle growth, and absence of the functional myostatin protein leads to the heavy muscle phenotype in both mouse and cattle. Although the role of myostatin in controlling muscle mass is established, little is known of the mechanisms regulating the expression of the myostatin gene. In this study, we have characterized the murine myostatin promoter in vivo. Various constructs of the murine myostatin promoter were injected into the quadriceps muscle of mice, and the reporter luciferase activity was analyzed. The results indicate that of the seven E-boxes present in the 2.5-kb fragment of the murine myostatin promoter, the E5 E-box plays an important role in the regulation of promoter activity in vivo. Furthermore, the in vitro studies demonstrated that MyoD preferentially binds and upregulates the murine myostatin promoter activity. We also analyzed the activity of the bovine and murine promoters in murine skeletal muscle and showed that, despite displaying comparable levels of activity in murine myoblast cultures, bovine myostatin promoter activity is much weaker than murine myostatin promoter in mice. Finally, we demonstrate that in vivo, the 2.5-kb region of the murine myostatin promoter is sufficient to drive the activity of the reporter gene in a fiber type-specific manner.

  14. The effect of maternal pravastatin therapy on adverse sensorimotor outcomes of the offspring in a murine model of preeclampsia.

    PubMed

    Carver, Alissa R; Tamayo, Esther; Perez-Polo, J Regino; Saade, George R; Hankins, Gary D V; Costantine, Maged M

    2014-04-01

    Animal and human studies show that in-utero exposure to preeclampsia alters fetal programming and results in long-term adverse cardiovascular outcomes in the offspring. Human epidemiologic data also suggest that offspring born to preeclamptic mothers are also at risk of adverse long term neurodevelopmental outcomes. Pravastatin, a hydrophilic lipid-lowering drug with pleiotropic properties, was found to prevent the altered cardiovascular phenotype of preeclampsia and restore fetal growth in animal models, providing biological plausibility for its use as a preventive agent for preeclampsia. In this study, we used a murine model of preeclampsia based on adenovirus over-expression of the anti-angiogenic factor soluble Fms-like tyrosine kinase 1, and demonstrated that adult offspring born to preeclamptic dams perform poorly on assays testing vestibular function, balance, and coordination, and that prenatal pravastatin treatment prevents impairment of fetal programming.

  15. Pharmacokinetics of murine p75-Fc fusion protein and MP6-XT22 anti-murine TNF-alpha mAb in mice.

    PubMed

    Filler, Scott G; Solis, Norma V; Guo, Jane; Doellgast, George; Ruiz-Garcia, Ana; Pan, Wei-Jian

    2007-05-01

    Immunologic limitations make it difficult to study the pharmacokinetic effects of human tumor necrosis factor (TNF) blockers in murine models. To counter this, we have studied the pharmacokinetics in mice of two murine analogs of human TNF blockers, a murine p75-FC fusion protein (analogous to etanercept), and the rat MP6-XT22 anti-murine TNF mAb (analogous to infliximab). We analyzed the pharmacokinetics of the murine p75-Fc protein and MP6-XT22 antibody in mice that were uninfected and in mice with disseminated candidiasis in order to confirm dosing strategies and interpret future studies evaluating the efficacy and tolerability of these agents in mice. We propose that, while conducting safety or efficacy studies in murine disease models, it is reasonable to administer the murine p75-Fc protein to mice at <10 mg/kg every 4-5 days, and the MP6-XT22 antibody at 10-20 mg/kg every 4-5 days.

  16. Adult Development and Learning of Older Adults

    ERIC Educational Resources Information Center

    Roberson, Donald N., Jr.

    2005-01-01

    This summary of adult development covers a wide range of authors. Adult development is one way of understanding how the internal and external changes in our lives have an impact on learning. Of particular importance in this work are the developmental issues of older adults. I present various theories of adult development such as linear and…

  17. Non-contact respiration monitoring for in-vivo murine micro computed tomography: characterization and imaging applications

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Wait, J. Matthew; Lu, Jianping; Zhou, Otto Z.

    2012-09-01

    A cone beam micro-CT has previously been utilized along with a pressure-tracking respiration sensor to acquire prospectively gated images of both wild-type mice and various adult murine disease models. While the pressure applied to the abdomen of the subject by this sensor is small and is generally without physiological effect, certain disease models of interest, as well as very young animals, are prone to atelectasis with added pressure, or they generate too weak a respiration signal with this method to achieve optimal prospective gating. In this work we present a new fibre-optic displacement sensor which monitors respiratory motion of a subject without requiring physical contact. The sensor outputs an analogue signal which can be used for prospective respiration gating in micro-CT imaging. The device was characterized and compared against a pneumatic air chamber pressure sensor for the imaging of adult wild-type mice. The resulting images were found to be of similar quality with respect to physiological motion blur; the quality of the respiration signal trace obtained using the non-contact sensor was comparable to that of the pressure sensor and was superior for gating purposes due to its better signal-to-noise ratio. The non-contact sensor was then used to acquire in-vivo micro-CT images of a murine model for congenital diaphragmatic hernia and of 11-day-old mouse pups. In both cases, quality CT images were successfully acquired using this new respiration sensor. Despite the presence of beam hardening artefacts arising from the presence of a fibre-optic cable in the imaging field, we believe this new technique for respiration monitoring and gating presents an opportunity for in-vivo imaging of disease models which were previously considered too delicate for established animal handling methods.

  18. In vitro studies implicate an imbalanced activation of dendritic cells in the pathogenesis of murine autoimmune pancreatitis

    PubMed Central

    Borufka, Luise; Volmer, Erik; Müller, Sarah; Engelmann, Robby; Nizze, Horst; Ibrahim, Saleh; Jaster, Robert

    2016-01-01

    Objectives MRL/MpJ mice spontaneously develop an autoimmune pancreatitis (AIP) and are widely used as a model to study the genetic, molecular and immunological basis of the disease. Here, we have addressed the question whether distinctive features of their dendritic cells (DCs) may predispose MRL/MpJ mice to the chronic inflammation. Methods Pancreatic lesions were analyzed employing histological methods. Cohorts of young (healthy) MRL/MpJ mice, adult (sick) individuals, and AIP-resistant CAST/EiJ mice were used to establish cultures of bone marrow (BM)-derived conventional DCs (cDCs). The cells were subsequently characterized regarding the expression profile of CD markers and selected genes, proliferative activity as well as cytokine secretion. Results In pancreatic lesions, large numbers of cells expressing the murine DC marker CD11c were detected in close spatial proximity to CD3+ cells. A high percentage of BM-derived cDCs from adult MRL/MpJ mice expressed typical markers of DC maturation (such as CD83) already prior to a treatment with lipopolysaccharide (LPS). After LPS-stimulation, cDC cultures of both MRL/MpJ mouse cohorts contained more mature cells, proliferated at a higher rate and secreted less interleukin-10 (but also less pro-inflammatory cytokines) than cultures of CAST/EiJ mice. Compared with corresponding cultures of the control strain, LPS-free cultured cDCs from MRL/MpJ mice expressed less mRNA of the inhibitory receptor triggering receptor expressed on myeloid cells 2 (trem2). Conclusions BM-derived cDCs from AIP-prone MRL/MpJ mice display functional features that are compatible with the hypothesis of an imbalanced DC activation in the context of murine AIP. PMID:27356751

  19. Matrix metalloproteinase-12 deficiency ameliorates the clinical course and demyelination in Theiler's murine encephalomyelitis.

    PubMed

    Hansmann, Florian; Herder, Vanessa; Kalkuhl, Arno; Haist, Verena; Zhang, Ning; Schaudien, Dirk; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2012-07-01

    Matrix metalloproteinases (MMPs) are a family of extracellular proteases involved in the pathogenesis of demyelinating diseases like multiple sclerosis (MS). The aim of the present study was to investigate whether MMPs induce direct myelin degradation, leukocyte infiltration, disruption of the blood-brain barrier (BBB), and/or extracellular matrix remodeling in the pathogenesis of Theiler's murine encephalomyelitis (TME), a virus-induced model of MS. During the demyelinating phase of TME, the highest transcriptional upregulation was detected for Mmp12, followed by Mmp3. Mmp12 (-/-) mice showed reduced demyelination, macrophage infiltration, and motor deficits compared with wild-type- and Mmp3 knock-out mice. However, BBB remained unaltered, and the amount of extracellular matrix deposition was similar in knock-out mice and wild-type mice. Furthermore, stereotaxic injection of activated MMP-3, -9, and -12 into the caudal cerebellar peduncle of adult mice induced a focally extensive primary demyelination prior to infiltration of inflammatory cells, as well as a reduction in the number of oligodendrocytes and a leakage of BBB. All these results demonstrate that MMP-12 plays an essential role in the pathogenesis of TME, most likely due to its primary myelin- or oligodendrocyte-toxic potential and its role in macrophage extravasation, whereas there was no sign of BBB damage or alterations to extracellular matrix remodeling/deposition. Thus, interrupting the MMP-12 cascade may be a relevant therapeutic approach for preventing chronic progressive demyelination.

  20. Mesenchymal stem cells from different murine tissues have differential capacity to metabolize extracellular nucleotides.

    PubMed

    Iser, Isabele C; Bracco, Paula A; Gonçalves, Carlos E I; Zanin, Rafael F; Nardi, Nance B; Lenz, Guido; Battastini, Ana Maria O; Wink, Márcia R

    2014-10-01

    Mesenchymal stem cells (MSCs) have shown a great potential for cell-based therapy and many different therapeutic purposes. Despite the recent advances in the knowledge of MSCs biology, their biochemical and molecular properties are still poorly defined. Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'-nucleotidase (eNT/CD73) are widely expressed enzymes that hydrolyze extracellular nucleotides, generating an important cellular signaling cascade. Currently, studies have evidenced the relationship between the purinergic system and the development, maintenance, and differentiation of stem cells. The objective of this study is to identify the NTPDases and eNT/CD73 and compare the levels of nucleotide hydrolysis on MSCs isolated from different murine tissues (bone marrow, lung, vena cava, kidney, pancreas, spleen, skin, and adipose tissue). MSCs from all tissues investigated expressed the ectoenzymes at different levels. In MSCs from pancreas and adipose tissue, the hydrolysis of triphosphonucleosides was significantly higher when compared to the other cells. The diphosphonucleosides were hydrolyzed at a higher rate by MSC from pancreas when compared to MSC from other tissues. The differential nucleotide hydrolysis activity and enzyme expression in these cells suggests that MSCs play different roles in regulating the purinergic system in these tissues. Overall MSCs are an attractive adult-derived cell population for therapies, however, the fact that ecto-nucleotide metabolism can affect the microenvironment, modulating important events, such as immune response, makes the assessment of this metabolism an important part of the characterization of MSCs to be applied therapeutically.

  1. Intracranial gene delivery of LV-NAGLU vector corrects neuropathology in murine MPS IIIB.

    PubMed

    Di Domenico, Carmela; Villani, Guglielmo R D; Di Napoli, Daniele; Nusco, Edoardo; Calì, Gaetano; Nitsch, Lucio; Di Natale, Paola

    2009-06-01

    Mucopolysacccharidosis (MPS) IIIB is an inherited lysosomal storage disorder caused by the deficiency of alpha-N-acetylglucosaminidase (NAGLU). The disease is characterized by mild somatic features and severe neurological involvement with high mortality. Although several therapeutic approaches have been applied to the murine model of the disease, no effective therapy is available for patients. In this study, we used the lentiviral-NAGLU vector to deliver the functional human NAGLU gene into the brain of young adult MPS IIIB mice. We report the restoration of active enzyme with a sustained expression throughout a large portion of the brain, and a significantly improved behavioral performance of treated animals. Moreover, we analyzed the effect of therapy on the expression profile of some genes related to neurotrophic signaling molecules and inflammatory cytokines previously found altered in MPS IIIB mice. At 1 month from treatment, the level of cerebellin 1 (Cbln1) was decreased while the brain-derived neurotrophic factor (Bdnf) expression was increased, both reaching normal values. At 6 months from treatment a significant reduction in the expression of all the inflammation- and oxidative stress-related genes was observed, as well as the maintenance of the correction of the Bdnf gene expression. These results indicate that NAGLU delivery from intracerebral sources has the capacity to alleviate most disease manifestations in MPS IIIB mice; furthermore, Bdnf might be a response-to-therapy biomarker for MPS IIIB.

  2. Nitric oxide mediates murine cytomegalovirus-associated pneumonitis in lungs that are free of the virus.

    PubMed Central

    Tanaka, K; Nakazawa, H; Okada, K; Umezawa, K; Fukuyama, N; Koga, Y

    1997-01-01

    4 wk after intraperitoneal inoculation of 0.2 LD50 (50% lethal dose) of murine cytomegalovirus (MCMV) in adult BALB/c mice, MCMV remained detectable in the salivary glands, but not in the lungs or other organs. When the T cells of these mice were activated in vivo by a single injection of anti-CD3 monoclonal antibody, interstitial pneumonitis was induced in the lungs that were free of the virus with an excessive production of the cytokines. In the lungs of such mice persistently infected with MCMV, the mRNA of the cytokines such as IL-2, IL-6, TNF-alpha, and IFN-gamma were abundantly expressed 3 h after the anti-CD3 injection, and the elevated levels continued thereafter. A marked expression of inducible nitric oxide synthetase (iNOS) was then noted in the lungs, suggesting that such cytokines as TNF-alpha and IFN-gamma may have induced iNOS. Although the increase in NO formation was demonstrated by the significant elevation of the serum levels of nitrite and nitrate, the interstitial pneumonitis was not associated with either increased superoxide formation or peroxynitrite-induced tyrosine nitration. Nevertheless, the administration of an NO antagonist also alleviated the interstitial pneumonitis provoked by anti-CD3 mAb. Based on these findings, it was concluded that MCMV-associated pneumonitis is mediated by a molecule of cytokine-induced NO other than peroxynitrite. PMID:9312183

  3. In vivo analysis of the murine beta-myosin heavy chain gene promoter.

    PubMed

    Rindt, H; Gulick, J; Knotts, S; Neumann, J; Robbins, J

    1993-03-05

    The 5' upstream region of the murine beta-myosin heavy chain (MHC) gene has been isolated and tested for its ability to drive gene expression in transgenic mice. Three classes of transgenic mice were generated. The constructs contained approximately 5000, 2500, and 600 base pairs of beta-MHC upstream sequence fused to the chloramphenicol acetyltransferase gene and were termed beta 5, beta 2.5, and beta .6, respectively. Muscle-specific expression was observed with all three constructs. However, only the beta 5 lines directed high levels of muscle-specific transgene expression in both pre- and postbirth mice. Expression driven by the two shorter constructs was two to three orders of magnitude lower when the chloramphenicol acetyltransferase specific activities were compared. These data suggest that a distal-positive element directs high levels of gene expression in the ventricle and in slow skeletal muscles. Analyses of transgene expression during heart maturation revealed that some of the beta 5 lines were not able to respond in an appropriate manner to developmental transcriptional cues. Unlike the endogenous beta-MHC gene, which is down regulated in the ventricles around the time of birth, reporter gene expression in the majority of the lines generated was not shut off in the ventricles of the adult animals. These data indicate that high levels of muscle-specific beta-MHC gene expression are dependent upon the combinatorial interactions of a number of sequence elements that are distributed over a large region of the gene's upstream sequence.

  4. Development of a murine ocular posterior segment explant culture for the study of intravitreous vector delivery.

    PubMed

    Denk, Nora; Misra, Vikram; Sandmeyer, Lynne S; Bauer, Bianca B; Singh, Jaswant; Forsyth, George W; Grahn, Bruce H

    2015-01-01

    The objective of this study was to develop a murine retinal/choroidal/scleral explant culture system to facilitate the intravitreous delivery of vectors. Posterior segment explants from adult mice of 2 different age groups (4 wk and 15 wk) were cultured in serum-free medium for variable time periods. Tissue viability was assessed by gross morphology, cell survival quantification, activated caspase-3 expression, and immunohistochemistry. To model ocular gene therapy, explants were exposed to varying transducing units of a lentiviral vector expressing the gene for green fluorescent protein for 48 h. Explant retinal cells remained viable for approximately 1 wk, although the ganglion cell layer developed apoptosis between 4 and 7 d. Following vector infusion into the posterior segment cups, viral transduction was noted in multiple retinal layers in both age groups. An age of donor mouse influence was noted and older mice did not transduce as well as younger mice. This explant offers an easily managed posterior segment ocular culture with minimum disturbance of the tissue, and may be useful for investigating methods of enhancing retinal gene therapy under controlled conditions.

  5. Molecular detection of murine gammaherpesvirus 68 (MHV-68) in Haemaphysalis concinna ticks collected in Slovakia.

    PubMed

    Vrbová, M; Belvončíková, P; Kovaľová, A; Matúšková, R; Slovák, M; Kúdelová, M

    Murine gammaherpesvirus 68 (MHV-68) is a natural pathogen of murid rodents, which serve as hosts to Haemaphysalis concinna ticks. The occurrence of MHV-68 was investigated in a total of 47 H. concinna adult ticks collected on the vegetation in Gabčíkovo, situated in south-western Slovakia (47º54´0´´N, 17º35´0´´E), from May 2013 to May 2014. DNA from ticks was purified and screened by nested PCR targeting ORF50 of MHV-68 and the copy number of virus genome in ticks was determined by a real-time PCR assay specific for ORF65. The MHV-68 incidence in questing ticks was 38.3% (18/47) and the virus genome copy number per tick varied from 2x102 to 9.6x103. In this study, MHV-68 was documented for the first time in H. concinna ticks. Results expand previous data describing the occurrence of MHV-68 in Ixodes ricinus and Dermacentor reticulatus ticks collected in Slovakia, supporting the hypothesis that MHV-68 might be a newfound pathogen in ticks.

  6. Neuropilin 1 and CD25 co-regulation during early murine thymic differentiation.

    PubMed

    Corbel, Catherine; Lemarchandel, Valérie; Thomas-Vaslin, Veronique; Pelus, Anne-Sophie; Agboton, Colette; Roméo, Paul-Henri

    2007-01-01

    Neuropilin 1 (NP1) is a receptor for both semaphorin and vascular endothelial growth factor expressed by subpopulations of neuronal and endothelial cells. In the immune system, NP1 is present on dendritic and regulatory T cells. Here, we show that NP1 is expressed in the murine thymus, starting on day 12.5 of gestation. In the adult, NP1 is mainly expressed by CD4(-)CD8(-) double negative cells, CD4+CD8+ double positive cells, and CD4+CD25+ regulatory T cells but barely detected in single CD4+ and CD8+ positive thymocytes. Within the CD4(-)CD8(-)CD3(-) (triple-negative, TN) immature cells, NP1 expression starts in TN3 (CD44(-)CD25+) and increases in TN4 (CD44(-)CD25(-)) cells. In order to study the role of NP1 in thymocyte differentiation, we generated mice in which the np1 gene is selectively disrupted in the T-cell lineage. The mutant mice display normal thymocyte, peripheral, conventional and CD4+CD25+Foxp3+ regulatory T-cell populations. However, we observe a down-regulation of the CD25 expression between the TN3 and TN4 stages that is (i) correlated to increased expression of NP1 in control mice and (ii) altered in mutant mice, suggesting that NP1 is co-regulated with CD25 during early immature thymocyte differentiation.

  7. Identification of Immunomodulatory Signatures Induced by American Ginseng in Murine Immune Cells

    PubMed Central

    Yan, Jian; Ma, Yonghui; Zhao, Fusheng; Gu, Weikuan; Jiao, Yan

    2013-01-01

    Background. American ginseng (Panax quinquefolius, AG) has been used for more than 300 years. Some of its claimed benefits can be attributed to the immunomodulatory activities, whose molecular mechanisms are largely unknown. Methods. Murine splenic cells from adult male C57BL/6 (B6) mice were isolated and divided into 4 groups to mimic 4 basic pathophysiological states: (1) normal naïve; (2) normal activated; (3) deficient naïve; (4) deficient activated. Then, different AG extracts were added to all groups for 24 h incubation. MTT proliferation assays were performed to evaluate the phenotypic features of cells. Finally, microarray assays were carried out to identify differentially expressed genes associated with AG exposure. Real-time PCR was performed to validate the expression of selected genes. Results. Microarray data showed that most of gene expression changes were identified in the deficient naïve group, suggesting that the pathophysiological state has major impacts on transcriptomic changes associated with AG exposure. Specifically, this study revealed downregulation of interferon-γ signaling pathway in the deficient group of cells. Conclusion. Our study demonstrated that only specific groups of immune cells responded to AG intervention and immunocompromised cells were more likely regulated by AG treatment. PMID:24319490

  8. TUMOR INDUCTION BY MURINE SARCOMA VIRUS IN AKR AND C58 MICE

    PubMed Central

    Chieco-Bianchi, Luigi; Colombatti, Alfonso; Collavo, Dino; Sendo, Fujiro; Aoki, Tadao; Fischinger, Peter J.

    1974-01-01

    Adult AKR and C58 mice injected intramuscularly with murine sarcoma virus, Moloney isolate (M-MSV), developed high incidence of nonregressing local tumors. Histologically, these tumors revealed the typical pleomorphism of M-MSV sarcomas; in some cases, however, neoplastic tissue showed a nodular or diffuse growth of monomorphic myoblastlike cells, reminiscent of clonal aggregates. No depression of immune reactivity was found in M-MSV-injected mice as evaluated by direct hemolytic plaque-forming cells against SRBC and by virus-neutralizing antibody production. The MSV recovered from the induced tumors proved to be, by neutralization assay, a Gross (G)-MSV pseudotype. Moreover, tumor cell suspensions absorbed out cytotoxic antibody directed against G-cell surface antigens. Therefore, the conclusion was drawn that MSV with envelope characteristics of endogenous G leukemia virus had formed in vivo through a phenotypic mixing phenomenon. The failure of tumors to regress has been interpreted as mainly due to the partial unresponsiveness of host immune reactivity towards G-MuLV specified antigens. Since MSV-tumors arose in AKR mice after a very long latent period, the possibility was considered that this relative resistance might depend on immunologic mechanisms. In fact, M-MSV-injected AKR mice immunodepressed by goat antimouse lymphocyte serum or rendered partially tolerant by neonatal M-MuLV inoculation developed sarcomas with higher incidence and with a shorter latency. Furthermore, the MSV recovered from these early tumors proved to be the original Moloney pseudotype. PMID:4608945

  9. Effects of carbapenems and their combination with amikacin on murine gut colonisation by Candida albicans.

    PubMed

    Samonis, George; Galanakis, Emmanouil; Ntaoukakis, Markos; Sarchianaki, Emmanouela; Spathopoulou, Thomai; Dimopoulou, Dimitra; Kofteridis, Diamantis P; Maraki, Sofia

    2013-03-01

    Carbapenems are broad-spectrum antibiotics increasingly used for the treatment of severe infections. We evaluated the effects of four carbapenems given as monotherapies or in combination with amikacin on the level of gastrointestinal colonisation by Candida albicans in a previously established mouse model. Adult male Crl : CD1 (ICR) BR mice were fed chow containing C. albicans or regular chow. The mice fed with Candida chow had their gut colonised by the yeast. Both groups were subsequently given imipenem, meropenem, ertapenem, doripenem or their combination with amikacin or normal saline subcutaneously for 10 days. Stool cultures were performed immediately before, at the end and 1 week after discontinuation of treatment. Candida-colonised mice treated with the antibiotics had higher counts of the yeast in their stools than control C. albicans-colonised animals treated with saline. All four carbapenems and their combination with amikacin caused a significant increase in C. albicans concentration. Mice fed regular chow and treated with the study antibiotics or saline did not have any Candida in their stools. Dissemination of Candida was not detected in any animal. These data suggest that carbapenems and carbapenem plus amikacin induce substantial increases in the murine intestinal concentration of C. albicans.

  10. Cloning and expression analysis of the murine lymphotoxin beta gene.

    PubMed Central

    Pokholok, D K; Maroulakou, I G; Kuprash, D V; Alimzhanov, M B; Kozlov, S V; Novobrantseva, T I; Turetskaya, R L; Green, J E; Nedospasov, S A

    1995-01-01

    Tumor necrosis factor alpha (TNF-alpha) and soluble lymphotoxin (LT) (also called LT-alpha or TNF-beta) are cytokines with similar biological activities that are encoded by related and closely linked genes. TNF-alpha, a mediator of the inflammatory response, exists in soluble and transmembrane forms. LT-alpha can be secreted or retained at the cell surface by binding to a 33-kDa transmembrane subunit, LT-beta. The recently cloned human LT-beta gene encodes another TNF family member and is linked to the TNF/LT locus within the major histocompatibility complex locus. The cell surface LT is a heterotrimer consisting of LT-alpha and LT-beta, whose physiological function is not yet clearly defined. We now report the sequence analysis of the genomic region and cDNA of murine LT-beta gene, which is closely associated with the TNF-alpha and LT-alpha genes within the murine major histocompatibility complex locus. Unlike the TNF-alpha, LT-alpha, and human LT-beta genes, which contain four exons, the murine LT-beta contains three exons and encodes a 244-amino acid polypeptide with a 66-amino acid insert that is absent from the human homologue. In situ hybridization demonstrates constitutive expression of LT-beta in lymphoid and hematopoietic tissues. LT-beta transcription is maximal in the thymic medulla and in splenic white pulp. LT-beta mRNA is also detected in the skin and in specific regions of the brain. The LT-beta promoter region contains putative Ets-binding sites, suggesting that the expression of LT-beta may be regulated in part by Ets transcription factors whose pattern of lymphoid expression overlaps that of LT-beta. Images Fig. 3 Fig. 4 PMID:7846035

  11. Methylated MicroRNA Genes of the Developing Murine Palate

    PubMed Central

    Seelan, Ratnam S.; Mukhopadhyay, Partha; Warner, Dennis R.; Appana, Savitri N.; Brock, Guy N.; Pisano, M. Michele; Greene, Robert M.

    2016-01-01

    Environmental factors contribute to the etiology of cleft palate (CP). Environmental factors can also affect gene expression via alterations in DNA methylation suggesting a possible mechanism for the induction of CP. Identification of genes methylated during development of the secondary palate provides the basis for examination of the means by which environmental factors may adversely influence palatal ontogeny. We previously characterized the methylome of the developing murine secondary palate focusing primarily on protein-encoding genes. We now extend this study to include methylated microRNA (miRNA) genes. A total of 42 miRNA genes were found to be stably methylated in developing murine palatal tissue. Twenty eight of these were localized within host genes. Gene methylation was confirmed by pyrosequencing of selected miRNA genes. Integration of methylated miRNA gene and expression datasets identified 62 miRNAs, 69% of which were non-expressed. For a majority of genes (83%), upstream CpG islands (CGIs) were highly methylated suggesting down-regulation of CGI-associated promoters. DAVID and IPA analyses indicated that both expressed and non-expressed miRNAs target identical signaling pathways and biological processes associated with palatogenesis. Furthermore, these analyses also identified novel signaling pathways whose roles in palatogenesis remain to be elucidated. In summary, we identify methylated miRNA genes in the developing murine secondary palate, correlate miRNA gene methylation with expression of their cognate miRNA transcripts, and identify pathways and biological processes potentially mediated by these miRNAs. PMID:25642850

  12. Characterization of a Novel Murine Model to Study Zika Virus

    PubMed Central

    Rossi, Shannan L.; Tesh, Robert B.; Azar, Sasha R.; Muruato, Antonio E.; Hanley, Kathryn A.; Auguste, Albert J.; Langsjoen, Rose M.; Paessler, Slobodan; Vasilakis, Nikos; Weaver, Scott C.

    2016-01-01

    The mosquito-borne Zika virus (ZIKV) is responsible for an explosive ongoing outbreak of febrile illness across the Americas. ZIKV was previously thought to cause only a mild, flu-like illness, but during the current outbreak, an association with Guillain–Barré syndrome and microcephaly in neonates has been detected. A previous study showed that ZIKV requires murine adaptation to generate reproducible murine disease. In our study, a low-passage Cambodian isolate caused disease and mortality in mice lacking the interferon (IFN) alpha receptor (A129 mice) in an age-dependent manner, but not in similarly aged immunocompetent mice. In A129 mice, viremia peaked at ∼107 plaque-forming units/mL by day 2 postinfection (PI) and reached high titers in the spleen by day 1. ZIKV was detected in the brain on day 3 PI and caused signs of neurologic disease, including tremors, by day 6. Robust replication was also noted in the testis. In this model, all mice infected at the youngest age (3 weeks) succumbed to illness by day 7 PI. Older mice (11 weeks) showed signs of illness, viremia, and weight loss but recovered starting on day 8. In addition, AG129 mice, which lack both type I and II IFN responses, supported similar infection kinetics to A129 mice, but with exaggerated disease signs. This characterization of an Asian lineage ZIKV strain in a murine model, and one of the few studies reporting a model of Zika disease and demonstrating age-dependent morbidity and mortality, could provide a platform for testing the efficacy of antivirals and vaccines. PMID:27022155

  13. Vitamin D Deficiency in Human and Murine Sepsis*

    PubMed Central

    Parekh, Dhruv; Patel, Jaimin M.; Scott, Aaron; Lax, Sian; Dancer, Rachel C. A.; D’Souza, Vijay; Greenwood, Hannah; Fraser, William D.; Gao, Fang; Sapey, Elizabeth; Perkins, Gavin D.

    2017-01-01

    Objectives: Vitamin D deficiency has been implicated as a pathogenic factor in sepsis and ICU mortality but causality of these associations has not been demonstrated. To determine whether sepsis and severe sepsis are associated with vitamin D deficiency and to determine whether vitamin D deficiency influences the severity of sepsis. Design, Setting, and Patients: Sixty-one patients with sepsis and severe sepsis from two large U.K. hospitals and 20 healthy controls were recruited. Murine models of cecal ligation and puncture and intratracheal lipopolysaccharide were undertaken in normal and vitamin D deficient mice to address the issue of causality. Measurements and Main Results: Patients with severe sepsis had significantly lower concentrations of 25-hydroxyvitamin D3 than patients with either mild sepsis or age-matched healthy controls (15.7 vs 49.5 vs 66.5 nmol/L; p = 0.0001). 25-hydroxyvitamin D3 concentrations were significantly lower in patients who had positive microbiologic culture than those who were culture negative (p = 0.0023) as well as those who died within 30 days of hospital admission (p = 0.025). Vitamin D deficiency in murine sepsis was associated with increased peritoneal (p = 0.037), systemic (p = 0.019), and bronchoalveolar lavage (p = 0.011) quantitative bacterial culture. This was associated with reduced local expression of the cathelicidin-related antimicrobial peptide as well as evidence of defective macrophage phagocytosis (p = 0.029). In the intratracheal lipopolysaccharide model, 1,500 IU of intraperitoneal cholecalciferol treatment 6 hours postinjury reduced alveolar inflammation, cellular damage, and hypoxia. Conclusions: Vitamin D deficiency is common in severe sepsis. This appears to contribute to the development of the condition in clinically relevant murine models and approaches to correct vitamin D deficiency in patients with sepsis should be developed. PMID:27632669

  14. Effect of N-methylformamide on radiocurability of murine tumors

    SciTech Connect

    Iwakawa, M.; Milas, L.

    1988-01-01

    N-Methylformamide (NMF) is a polar solvent with maturational activity, i.e., it induces malignant cells to form more differentiated phenotypes. In addition, it renders tumor cells more sensitive to chemotherapeutic drugs and ionizing radiation. In the present study, NMF failed to augment radiocurability, as measured by the single-dose TCD50 assay, of two murine tumors: an 8-mm fibrosarcoma (FSA) and a 6-mm mammary carcinoma (MCA-K). NMF, at a dose of 300 mg/kg, was given ip daily for several days before and/or after local tumor irradiation.

  15. Gene Regulation and Quality Control in Murine Polyomavirus Infection

    PubMed Central

    Carmichael, Gordon G.

    2016-01-01

    Murine polyomavirus (MPyV) infects mouse cells and is highly oncogenic in immunocompromised hosts and in other rodents. Its genome is a small, circular DNA molecule of just over 5000 base pairs and it encodes only seven polypeptides. While seemingly simply organized, this virus has adopted an unusual genome structure and some unusual uses of cellular quality control pathways that, together, allow an amazingly complex and varied pattern of gene regulation. In this review we discuss how MPyV leverages these various pathways to control its life cycle. PMID:27763514

  16. Temporal profiling of the coding and noncoding murine cytomegalovirus transcriptomes.

    PubMed

    Lacaze, Paul; Forster, Thorsten; Ross, Alan; Kerr, Lorraine E; Salvo-Chirnside, Eliane; Lisnic, Vanda Juranic; López-Campos, Guillermo H; García-Ramírez, José J; Messerle, Martin; Trgovcich, Joanne; Angulo, Ana; Ghazal, Peter

    2011-06-01

    The global transcriptional program of murine cytomegalovirus (MCMV), involving coding, noncoding, and antisense transcription, remains unknown. Here we report an oligonucleotide custom microarray platform capable of measuring both coding and noncoding transcription on a genome-wide scale. By profiling MCMV wild-type and immediate-early mutant strains in fibroblasts, we found rapid activation of the transcriptome by 6.5 h postinfection, with absolute dependency on ie3, but not ie1 or ie2, for genomic programming of viral gene expression. Evidence is also presented to show, for the first time, genome-wide noncoding and bidirectional transcription at late stages of MCMV infection.

  17. Screening and Analysis of Janelia FlyLight Project Enhancer-Gal4 Strains Identifies Multiple Gene Enhancers Active During Hematopoiesis in Normal and Wasp-Challenged Drosophila Larvae

    PubMed Central

    Tokusumi, Tsuyoshi; Tokusumi, Yumiko; Brahier, Mark S.; Lam, Victoria; Stoller-Conrad, Jessica R.; Kroeger, Paul T.; Schulz, Robert A.

    2016-01-01

    A GFP expression screen has been conducted on >1000 Janelia FlyLight Project enhancer-Gal4 lines to identify transcriptional enhancers active in the larval hematopoietic system. A total of 190 enhancers associated with 87 distinct genes showed activity in cells of the third instar larval lymph gland and hemolymph. That is, gene enhancers were active in cells of the lymph gland posterior signaling center (PSC), medullary zone (MZ), and/or cortical zone (CZ), while certain of the transcriptional control regions were active in circulating hemocytes. Phenotypic analyses were undertaken on 81 of these hematopoietic-expressed genes, with nine genes characterized in detail as to gain- and loss-of-function phenotypes in larval hematopoietic tissues and blood cells. These studies demonstrated the functional requirement of the cut gene for proper PSC niche formation, the hairy, Btk29A, and E2F1 genes for blood cell progenitor production in the MZ domain, and the longitudinals lacking, dFOXO, kayak, cap-n-collar, and delilah genes for lamellocyte induction and/or differentiation in response to parasitic wasp challenge and infestation of larvae. Together, these findings contribute substantial information to our knowledge of genes expressed during the larval stage of Drosophila hematopoiesis and newly identify multiple genes required for this developmental process. PMID:27913635

  18. The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body γ-Irradiation

    SciTech Connect

    Moroni, Maria; Ngudiankama, Barbara F.; Christensen, Christine; Olsen, Cara H.; Owens, Rossitsa; Lombardini, Eric D.; Holt, Rebecca K.; Whitnall, Mark H.

    2013-08-01

    Purpose: We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials: Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results: The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusions: These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes.

  19. Screening and Analysis of Janelia FlyLight Project Enhancer-Gal4 Strains Identifies Multiple Gene Enhancers Active During Hematopoiesis in Normal and Wasp-Challenged Drosophila Larvae.

    PubMed

    Tokusumi, Tsuyoshi; Tokusumi, Yumiko; Brahier, Mark S; Lam, Victoria; Stoller-Conrad, Jessica R; Kroeger, Paul T; Schulz, Robert A

    2017-02-09

    A GFP expression screen has been conducted on >1000 Janelia FlyLight Project enhancer-Gal4 lines to identify transcriptional enhancers active in the larval hematopoietic system. A total of 190 enhancers associated with 87 distinct genes showed activity in cells of the third instar larval lymph gland and hemolymph. That is, gene enhancers were active in cells of the lymph gland posterior signaling center (PSC), medullary zone (MZ), and/or cortical zone (CZ), while certain of the transcriptional control regions were active in circulating hemocytes. Phenotypic analyses were undertaken on 81 of these hematopoietic-expressed genes, with nine genes characterized in detail as to gain- and loss-of-function phenotypes in larval hematopoietic tissues and blood cells. These studies demonstrated the functional requirement of the cut gene for proper PSC niche formation, the hairy, Btk29A, and E2F1 genes for blood cell progenitor production in the MZ domain, and the longitudinals lacking, dFOXO, kayak, cap-n-collar, and delilah genes for lamellocyte induction and/or differentiation in response to parasitic wasp challenge and infestation of larvae. Together, these findings contribute substantial information to our knowledge of genes expressed during the larval stage of Drosophila hematopoiesis and newly identify multiple genes required for this developmental process.

  20. Role of SDF-1 (CXCL12) in regulating hematopoietic stem and progenitor cells traffic into the liver during extramedullary hematopoiesis induced by G-CSF, AMD3100 and PHZ.

    PubMed

    Mendt, Mayela; Cardier, Jose E

    2015-12-01

    The stromal cell derived factor 1 (SDF-1/CXCL12) plays an essential role in the homing of hematopoietic stem and progenitor cells (HSPCs) to bone marrow (BM). It is not known whether SDF-1 may also regulate the homing of HSPCs to the liver during extramedullary hematopoiesis (EMH). Here, we investigated the possible role of SDF-1 in attracting HSPCs to the liver during experimental EMH induced by the hematopoietic mobilizers G-CSF, AMD3100 and phenylhydrazine (PHZ). Mice treated with G-CSF, AMD3100 and PHZ showed a significant increase in the expression of SDF-1 in the liver sinusoidal endothelial cells (LSECs) microenvironments. Liver from mice treated with the hematopoietic mobilizers showed HSPCs located adjacent to the LSEC microenvironments, expressing high levels of SDF-1. An inverse relationship was found between the hepatic SDF-1 levels and those in the BM. In vitro, LSEC monolayers induced the migration of HSPCs, and this effect was significantly reduced by AMD3100. In conclusion, our results provide the first evidence showing that SDF-1 expressed by LSEC can be a major player in the recruitment of HSPCs to the liver during EMH induced by hematopoietic mobilizers.

  1. 77 FR 52333 - International Workshop on Alternatives to the Murine Histamine Sensitization Test (HIST) for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... HUMAN SERVICES International Workshop on Alternatives to the Murine Histamine Sensitization Test (HIST... an ``International Workshop on Alternatives to the Murine Histamine Sensitization Test (HIST) for... histamine sensitization test (HIST) is a key safety test used to monitor residual levels of pertussis...

  2. Calcium-activated chloride channels anoctamin 1 and 2 promote murine uterine smooth muscle contractility

    PubMed Central

    Bernstein, Kyra; Vink, Joy Y; Fu, Xiao Wen; Wakita, Hiromi; Danielsson, Jennifer; Wapner, Ronald; Gallos, George

    2014-01-01

    Objective To determine the presence of calcium activated chloride channels anoctamin 1 and 2 in human and murine uterine smooth muscle and evaluate the physiologic role for these ion channels in murine myometrial contractility. Study Design We performed reverse transcription polymerase chain reaction to determine if anoctamin 1 and 2 are expressed in human and murine uterine tissue to validate the study of this protein in mouse models. Immunohistochemical staining of anoctamin 1 and 2 was then performed to determine protein expression in murine myometrial tissue. The function of anoctamin 1 and 2 in murine uterine tissue was evaluated using electrophysiological studies, organ bath, and calcium flux experiments. Results Anoctamin 1 and 2 are expressed in human and murine USM cells. Functional studies show that selective antagonism of these channels promotes relaxation of spontaneous murine uterine smooth muscle contractions. Blockade of anoctamin 1 and 2 inhibits both agonist-induced and spontaneous transient inward currents and abolishes G-protein coupled receptor (oxytocin) mediated elevations in intracellular calcium. Conclusion The calcium activated chloride channels ANO 1 and 2 are present in human and murine myometrial tissue and may provide novel potential therapeutic targets to achieve effective tocolysis. PMID:24928056

  3. Endogenous murine Aβ increases amyloid deposition in APP23 but not in APPPS1 transgenic mice.

    PubMed

    Mahler, Jasmin; Morales-Corraliza, Jose; Stolz, Julia; Skodras, Angelos; Radde, Rebecca; Duma, Carmen C; Eisele, Yvonne S; Mazzella, Matthew J; Wong, Harrison; Klunk, William E; Nilsson, K Peter R; Staufenbiel, Matthias; Mathews, Paul M; Jucker, Mathias; Wegenast-Braun, Bettina M

    2015-07-01

    Endogenous murine amyloid-β peptide (Aβ) is expressed in most Aβ precursor protein (APP) transgenic mouse models of Alzheimer's disease but its contribution to β-amyloidosis remains unclear. We demonstrate ∼ 35% increased cerebral Aβ load in APP23 transgenic mice compared with age-matched APP23 mice on an App-null background. No such difference was found for the much faster Aβ-depositing APPPS1 transgenic mouse model between animals with or without the murine App gene. Nevertheless, both APP23 and APPPS1 mice codeposited murine Aβ, and immunoelectron microscopy revealed a tight association of murine Aβ with human Aβ fibrils. Deposition of murine Aβ was considerably less efficient compared with the deposition of human Aβ indicating a lower amyloidogenic potential of murine Aβ in vivo. The amyloid dyes Pittsburgh Compound-B and pentamer formyl thiophene acetic acid did not differentiate between amyloid deposits consisting of human Aβ and deposits of mixed human-murine Aβ. Our data demonstrate a differential effect of murine Aβ on human Aβ deposition in different APP transgenic mice. The mechanistically complex interaction of human and mouse Aβ may affect pathogenesis of the models and should be considered when models are used for translational preclinical studies.

  4. Retinal Inhibition of CCR3 Induces Retinal Cell Death in a Murine Model of Choroidal Neovascularization

    PubMed Central

    Wang, Haibo; Han, Xiaokun; Gambhir, Deeksha; Becker, Silke; Kunz, Eric; Liu, Angelina Jingtong; Hartnett, M. Elizabeth

    2016-01-01

    Inhibition of chemokine C-C motif receptor 3 (CCR3) signaling has been considered as treatment for neovascular age-related macular degeneration (AMD). However, CCR3 is expressed in neural retina from aged human donor eyes. Therefore, broad CCR3 inhibition may be harmful to the retina. We assessed the effects of CCR3 inhibition on retina and choroidal endothelial cells (CECs) that develop into choroidal neovascularization (CNV). In adult murine eyes, CCR3 colocalized with glutamine-synthetase labeled Műller cells. In a murine laser-induced CNV model, CCR3 immunolocalized not only to lectin-stained cells in CNV lesions but also to the retina. Compared to non-lasered controls, CCR3 mRNA was significantly increased in laser-treated retina. An intravitreal injection of a CCR3 inhibitor (CCR3i) significantly reduced CNV compared to DMSO or PBS controls. Both CCR3i and a neutralizing antibody to CCR3 increased TUNEL+ retinal cells overlying CNV, compared to controls. There was no difference in cleaved caspase-3 in laser-induced CNV lesions or in overlying retina between CCR3i- or control-treated eyes. Following CCR3i, apoptotic inducible factor (AIF) was significantly increased and anti-apoptotic factor BCL2 decreased in the retina; there were no differences in retinal vascular endothelial growth factor (VEGF). In cultured human Műller cells exposed to eotaxin (CCL11) and VEGF, CCR3i significantly increased TUNEL+ cells and AIF but decreased BCL2 and brain derived neurotrophic factor, without affecting caspase-3 activity or VEGF. CCR3i significantly decreased AIF in RPE/choroids and immunostaining of phosphorylated VEGF receptor 2 (p-VEGFR2) in CNV with a trend toward reduced VEGF. In cultured CECs treated with CCL11 and/or VEGF, CCR3i decreased p-VEGFR2 and increased BCL2 without increasing TUNEL+ cells and AIF. These findings suggest that inhibition of retinal CCR3 causes retinal cell death and that targeted inhibition of CCR3 in CECs may be a safer if CCR3 inhibition

  5. Retinal Inhibition of CCR3 Induces Retinal Cell Death in a Murine Model of Choroidal Neovascularization.

    PubMed

    Wang, Haibo; Han, Xiaokun; Gambhir, Deeksha; Becker, Silke; Kunz, Eric; Liu, Angelina Jingtong; Hartnett, M Elizabeth

    2016-01-01

    Inhibition of chemokine C-C motif receptor 3 (CCR3) signaling has been considered as treatment for neovascular age-related macular degeneration (AMD). However, CCR3 is expressed in neural retina from aged human donor eyes. Therefore, broad CCR3 inhibition may be harmful to the retina. We assessed the effects of CCR3 inhibition on retina and choroidal endothelial cells (CECs) that develop into choroidal neovascularization (CNV). In adult murine eyes, CCR3 colocalized with glutamine-synthetase labeled Műller cells. In a murine laser-induced CNV model, CCR3 immunolocalized not only to lectin-stained cells in CNV lesions but also to the retina. Compared to non-lasered controls, CCR3 mRNA was significantly increased in laser-treated retina. An intravitreal injection of a CCR3 inhibitor (CCR3i) significantly reduced CNV compared to DMSO or PBS controls. Both CCR3i and a neutralizing antibody to CCR3 increased TUNEL+ retinal cells overlying CNV, compared to controls. There was no difference in cleaved caspase-3 in laser-induced CNV lesions or in overlying retina between CCR3i- or control-treated eyes. Following CCR3i, apoptotic inducible factor (AIF) was significantly increased and anti-apoptotic factor BCL2 decreased in the retina; there were no differences in retinal vascular endothelial growth factor (VEGF). In cultured human Műller cells exposed to eotaxin (CCL11) and VEGF, CCR3i significantly increased TUNEL+ cells and AIF but decreased BCL2 and brain derived neurotrophic factor, without affecting caspase-3 activity or VEGF. CCR3i significantly decreased AIF in RPE/choroids and immunostaining of phosphorylated VEGF receptor 2 (p-VEGFR2) in CNV with a trend toward reduced VEGF. In cultured CECs treated with CCL11 and/or VEGF, CCR3i decreased p-VEGFR2 and increased BCL2 without increasing TUNEL+ cells and AIF. These findings suggest that inhibition of retinal CCR3 causes retinal cell death and that targeted inhibition of CCR3 in CECs may be a safer if CCR3 inhibition

  6. Preparing Educators of Adults.

    ERIC Educational Resources Information Center

    Grabowski, Stanley M.; And Others

    Model programs are described for two areas of adult education--the preparation of adult educators and the training conducted by adult educators. In Chapter One, Phyllis Caldwell reviews the literature concerning the preservice training of adult educators, concentrating on the competencies of adult education administrators and teachers. In Chapter…

  7. Murine embryonic stem cells secrete cytokines/growth modulators that enhance cell survival/anti-apoptosis and stimulate colony formation of murine hematopoietic progenitor cells.

    PubMed

    Guo, Ying; Graham-Evans, Barbara; Broxmeyer, Hal E

    2006-04-01

    Stromal cell-derived factor (SDF)-1/CXCL12, released by murine embryonic stem (ES) cells, enhances survival, chemotaxis, and hematopoietic differentiation of murine ES cells. Conditioned medium (CM) from murine ES cells growing in the presence of leukemia inhibitory factor (LIF) was generated while the ES cells were in an undifferentiated Oct-4 expressing state. ES cell-CM enhanced survival of normal murine bone marrow myeloid progenitors (CFU-GM) subjected to delayed growth factor addition in vitro and decreased apoptosis of murine bone marrow c-kit(+)lin- cells. ES CM contained interleukin (IL)-1alpha, IL-10, IL-11, macrophage-colony stimulating factor (CSF), oncostatin M, stem cell factor, vascular endothelial growth factor, as well as a number of chemokines and other proteins, some of which are known to enhance survival/anti-apoptosis of progenitors. Irradiation of ES cells enhanced release of some proteins and decreased release of others. IL-6, FGF-9, and TNF-alpha, not detected prior to irradiation was found after ES cells were irradiated. ES cell CM also stimulated CFU-GM colony formation. Thus, undifferentiated murine ES cells growing in the presence of LIF produce/release a number of biologically active interleukins, CSFs, chemokines, and other growth modulatory proteins, results which may be of physiological and/or practical significance.

  8. Epigenetic alterations in a murine model for chronic lymphocytic leukemia

    PubMed Central

    Chen, Shih-Shih; Sherman, Maura H; Hertlein, Erin; Johnson, Amy J; Teitell, Michael A.; Byrd, John C.; Plass, Christoph

    2010-01-01

    Early stages in the development of chronic lymphocytic leukemia (CLL) have not been explored mainly due to the inability to study normal B-cells in route to transformation. In order to determine such early events of leukemogenesis, we have used a well established mouse model for CLL. Over-expression of human TCL1, a known CLL oncogene, in murine B-cells leads to the development of mature CD19+/CD5+/IgM+ clonal leukemia with a similar disease phenotype seen in human CLL. Herein, we review our recent study using this TCL1 murine model for CLL and corresponding human CLL samples in a cross-species epigenomics approach to address the timing and relevance of epigenetic events occurring during leukemogenesis. We were able to demonstrate that the mouse model recapitulates epigenetic events very similar to what has been reported for human CLL and thus provides an exciting new tool to study early epigenetic events. Epigenetic alterations are seen at a time of three month after birth, much earlier than the phenotypically visible disease which occurs around 11 month of age. An early event in gene silencing is the inactivation of transcription factor Foxd3 expression through an NF-κB mediated process in animals with one month of age. PMID:19901553

  9. Murine Models of Epstein-Barr Virus-Associated Lymphomagenesis.

    PubMed

    Ahmed, Elshafa Hassan; Baiocchi, Robert A

    2016-01-01

    The Epstein-Barr virus (EBV) is a B-lymphotropic gamma herpes virus associated with a number of malignancies. Most EBV-related cancers present complex medical management challenges; thus it has been essential to develop preclinical in vivo models allowing for the study of pathogenesis, prevention, and treatment of these diseases. Early in vivo models used nonhuman primates; however, such models were limited by the inability of EBV to achieve viral latency, availability, and cost. Immunodeficient mouse strains emerged as efficient models that allow for engraftment of human mononuclear cells and controlled evaluation of EBV-driven lymphoproliferative disease (EBV-LPD). By using highly immunodeficient strains of mice such as severe combined immune deficiency (SCID) and NOD/LtSz-scid ILrg(-/-)(NOG) mice, investigators have developed efficient platforms for evaluating pathogenesis of benign (HLH) and malignant (EBV-LPD) diseases associated with EBV. Humanized murine chimeric models have been essential tools for evaluating preventive strategies with vaccine and adoptive cellular approaches, as well as development of experimental therapeutic strategies. Manipulation of the human immune cells before engraftment or mutation of viral lytic and latent genes has enhanced our understanding of the oncogenic nature of EBV and the complexity of human immune responses to EBV. In this review, we discuss how the EBV murine models have evolved to become essential tools for studying the virology of EBV as it relates to human EBV-LPD pathogenesis, the immunobiology of innate and adaptive responses, and limitations of these models.

  10. Molecular determinants of disease in Coxsackievirus B1 murine infection

    PubMed Central

    Cifuente, Javier O.; Ferrer, María F.; de Giusti, Carolina Jaquenod; Song, Wen-Chao; Romanowski, Víctor; Hafenstein, Susan L.; Gómez, Ricardo M.

    2013-01-01

    To understand better how different genomic regions may confer pathogenicity for the coxsackievirus B (CVB), two intratypic CVB1 variants and a number of recombinant viruses were studied. Sequencing analysis showed 23 nucleotide changes between the parental non-pathogenic CVB1N and the pathogenic CVB1Nm. Mutations present in CVB1Nm were more conserved than those in CVB1N when compared to other CVB sequences. Inoculation in C3H/HeJ mice showed that the P1 region is critical for pathogenicity in murine pancreas and heart. The molecular determinants of disease for these organs partially overlap. Several P1 region amino acid differences appear to be located in the decay accelerating factor (DAF) footprint CVBs. CVB1N and CVB1Nm interacted with human CAR, but only CVB1N seemed to interact with human DAF, as determined using soluble receptors in a plaque reduction assay. However, the murine homologue Daf-1 did not interact with any virus assessed by haemagglutination. The results of this study suggest that an unknown receptor interaction with the virus play an important role in the pathogenicity of CVB1Nm. Further in vivo studies may clarify this issue. PMID:21739448

  11. Molecular determinants of disease in coxsackievirus B1 murine infection.

    PubMed

    Cifuente, Javier O; Ferrer, María F; Jaquenod de Giusti, Carolina; Song, Wen-Chao; Romanowski, Víctor; Hafenstein, Susan L; Gómez, Ricardo M

    2011-09-01

    To understand better how different genomic regions may confer pathogenicity for the coxsackievirus B (CVB), two intratypic CVB1 variants, and a number of recombinant viruses were studied. Sequencing analysis showed 23 nucleotide changes between the parental non-pathogenic CVB1N and the pathogenic CVB1Nm. Mutations present in CVB1Nm were more conserved than those in CVB1N when compared to other CVB sequences. Inoculation in C3H/HeJ mice showed that the P1 region is critical for pathogenicity in murine pancreas and heart. The molecular determinants of disease for these organs partially overlap. Several P1 region amino acid differences appear to be located in the decay-accelerating factor (DAF) footprint CVBs. CVB1N and CVB1Nm interacted with human CAR, but only CVB1N seemed to interact with human DAF, as determined using soluble receptors in a plaque-reduction assay. However, the murine homolog Daf-1 did not interact with any virus assessed by hemagglutination. The results of this study suggest that an unknown receptor interaction with the virus play an important role in the pathogenicity of CVB1Nm. Further in vivo studies may clarify this issue.

  12. Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS).

    PubMed

    Teachey, David T; Obzut, Dana A; Axsom, Kelly; Choi, John K; Goldsmith, Kelly C; Hall, Junior; Hulitt, Jessica; Manno, Catherine S; Maris, John M; Rhodin, Nicholas; Sullivan, Kathleen E; Brown, Valerie I; Grupp, Stephan A

    2006-09-15

    Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of abnormal lymphocyte survival caused by defective Fas-mediated apoptosis, leading to lymphadenopathy, hepatosplenomegaly, and an increased number of double-negative T cells (DNTs). Treatment options for patients with ALPS are limited. Rapamycin has been shown to induce apoptosis in normal and malignant lymphocytes. Since ALPS is caused by defective lymphocyte apoptosis, we hypothesized that rapamycin would be effective in treating ALPS. We tested this hypothesis using rapamycin in murine models of ALPS. We followed treatment response with serial assessment of DNTs by flow cytometry in blood and lymphoid tissue, by serial monitoring of lymph node and spleen size with ultrasonography, and by enzyme-linked immunosorbent assay (ELISA) for anti-double-stranded DNA (dsDNA) antibodies. Three-dimensional ultrasound measurements in the mice correlated to actual tissue measurements at death (r = .9648). We found a dramatic and statistically significant decrease in DNTs, lymphadenopathy, splenomegaly, and autoantibodies after only 4 weeks when comparing rapamycin-treated mice with controls. Rapamycin induced apoptosis through the intrinsic mitochondrial pathway. We compared rapamycin to mycophenolate mofetil, a second-line agent used to treat ALPS, and found rapamycin's control of lymphoproliferation was superior. We conclude that rapamycin is an effective treatment for murine ALPS and should be explored as treatment for affected humans.

  13. A novel immunocompetent murine model for replicating oncolytic adenoviral therapy

    PubMed Central

    Zhang, L; Hedjran, F; Larson, C; Perez, G L; Reid, T

    2015-01-01

    Oncolytic adenoviruses are under investigation as a promising novel strategy for cancer immunotherapeutics. Unfortunately, there is no immunocompetent mouse cancer model to test oncolytic adenovirus because murine cancer cells are generally unable to produce infectious viral progeny from human adenoviruses. We find that the murine K-ras-induced lung adenocarcinoma cell line ADS-12 supports adenoviral infection and generates infectious viral progeny. ADS-12 cells express the coxsackie and adenovirus receptor and infected ADS-12 cells express the viral protein E1A. We find that our previously described oncolytic virus, adenovirus TAV-255 (AdTAV-255), kills ADS-12 cells in a dose- and time-dependent manner. We investigated ADS-12 cells as an in-vivo model system for replicating oncolytic adenoviruses. Subcutaneous injection of ADS-12 cells into immunocompetent 129 mice led to tumor formation in all injected mice. Intratumoral injection of AdTAV-255 in established tumors causes a significant reduction in tumor growth. This model system represents the first fully immunocompetent mouse model for cancer treatment with replicating oncolytic adenoviruses, and therefore will be useful to study the therapeutic effect of oncolytic adenoviruses in general and particularly immunostimulatory viruses designed to evoke an antitumor immune response. PMID:25525035

  14. Analysis of cardiomyocyte movement in the developing murine heart.

    PubMed

    Hashimoto, Hisayuki; Yuasa, Shinsuke; Tabata, Hidenori; Tohyama, Shugo; Seki, Tomohisa; Egashira, Toru; Hayashiji, Nozomi; Hattori, Fumiyuki; Kusumoto, Dai; Kunitomi, Akira; Takei, Makoto; Kashimura, Shin; Yozu, Gakuto; Shimojima, Masaya; Motoda, Chikaaki; Muraoka, Naoto; Nakajima, Kazunori; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Fukuda, Keiichi

    2015-09-04

    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle.

  15. Murine models of Aspergillosis: Role of collectins in host defense.

    PubMed

    Singh, Mamta; Mahajan, Lakshna; Chaudhary, Neelkamal; Kaur, Savneet; Madan, Taruna; Sarma, P Usha

    2015-11-01

    Aspergillus fumigatus, a ubiquitous fungus, causes a wide spectrum of clinical conditions ranging from allergic to invasive aspergillosis depending upon the hosts' immune status. Several animal models have been generated to mimic the human clinical conditions in allergic and invasive aspergillosis. The onset, duration and severity of the disease developed in models varied depending on the animal strain/fungal isolate, quantity and mode of administration of fungal antigens/spores, duration of the treatment, and type of immunosuppressive agent used. These models provide insight into host and pathogen factors and prove to be useful for evaluation of diagnostic markers and effective therapies. A series of studies established the protective role of collectins in murine models of Allergic Bronchopulmonary Aspergillosis and Invasive Pulmonary Aspergillosis. Collectins, namely surfactant protein A (SP-A), surfactant protein D (SP-D) and mannan binding lectin (MBL), are pattern recognition molecules regulating both innate and adaptive immune response against pathogens. In the present review, we discussed various murine models of allergic and invasive aspergillosis and the role of collectins in host defense against aspergillosis.

  16. Toxocara canis: anthelmintic activity of quinone derivatives in murine toxocarosis.

    PubMed

    Mata-Santos, T; Mata-Santos, H A; Carneiro, P F; De Moura, K C G; Fenalti, J M; Klafke, G B; Cruz, L A X; Martins, L H R; Pinto, N F; Pinto, M C F R; Berne, M E A; Da Silva, P E A; Scaini, C J

    2016-04-01

    Human toxocarosis is a chronic tissue parasitosis most often caused by Toxocara canis. The seroprevalence can reach up to 50%, especially among children and adolescents. The anthelmintics used in the treatment have moderate efficacy. The aim of this study was to evaluate the in vitro and in vivo anthelmintic activity of quinones and their derivatives against T. canis larvae and the cytotoxicity of the larvicidal compounds. The compounds were evaluated at 1 mg mL(-1) concentration in microculture plates containing third stage larvae in an Roswell Park Memorial Institute (RPMI) 1640 environment, incubated at 37 °C in 5% CO2 tension for 48 h. Five naphthoxiranes were selected for the cytotoxicity analysis. The cell viability evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays using murine peritoneal macrophages isolated from C57BL/6 mice revealed that the naphthoxiranes (1 and 3) were less cytotoxic at a concentration of 0.05 mg mL(-1). The efficacy of naphthoxiranes (1 and 3) was examined in murine toxocarosis also. The anthelmintic activity was examined by evaluating the number of larvae in the brain, carcass, liver, lungs, heart, kidneys and eyes. Compound (3) demonstrated anthelmintic activity similar to that of albendazole by decreasing the number of larvae in the organs of mice and thus could form the basis of the development of a new anthelmintic drug.

  17. Coxsackievirus-induced chronic myocarditis in murine models.

    PubMed

    Gauntt, C J; Tracy, S M; Chapman, N; Wood, H J; Kolbeck, P C; Karaganis, A G; Winfrey, C L; Cunningham, M W

    1995-12-01

    Challenge of several murine strains with two highly myocarditic variants of coxsackievirus B3 (CVB3) induced acute and chronic myocarditis, detectable at 21 and 45 days post-inoculation (p.i.). In-situ hybridization of coronal heart sections showing chronic inflammation with a radiolabelled CVB3 probe detected viral genomic RNA at day 7 p.i. but rarely at 21 or 45 days p.i., suggesting few murine heart cells actively replicate virus during chronic myocardial inflammation. Data will be presented that favour an alternative hypothesis, i.e. autoimmune responses to shared epitopes among CVB3 proteins, cardiac myosin and myocardial cell surface proteins (molecular mimicry) can affect the severity of chronic inflammation. Mice inoculated with human cardiac myosin (HM) prior to a CVB3m challenge develop less myocarditis than mice inoculated with virus only, suggesting that antibodies stimulated by HM bind virus, reduce the virus burden and provide protection. Mice inoculated with HM only develop non-neutralizing antibodies against purified CVB3m particles. Several strains of mice inoculated with specific synthetic peptides of HM produce antibodies against CVB3m and/or develop cardiomyopathy. Thus antigen-challenged mice can produce antibodies which cross-react among CVB3m HM or cardiac cells to protect or exacerbate heart disease.

  18. Immunological impact of magnetic nanoparticles (Ferucarbotran) on murine peritoneal macrophages

    NASA Astrophysics Data System (ADS)

    Yeh, Chen-Hao; Hsiao, Jong-Kai; Wang, Jaw-Lin; Sheu, Fuu

    2010-01-01

    Ferucarbotran, a clinically used superparamagnetic iron oxide, is widely developed as a magnetic resonance imaging (MRI) contrast agent and has the potential to improve the monitoring of macrophage recirculation in vivo. However, the biological effect of Ferucarbotran or magnetic nanoparticles (MNPs) on macrophage is not clearly understood yet. This study is aimed to examine the immunological impact of Ferucarbotran toward murine peritoneal macrophages. Cells treated with Ferucarbotran demonstrated a dose-responsive increase of granularity in the cytoplasm. After 24 h of incubation, viability and cytotoxicity in macrophages treated with 200 μg Fe/mL of Ferucarbotran were not affected. Macrophages loaded with Ferucarbotran above 100 μg Fe/mL showed a significant ( p < 0.01) increase in cytokine (TNF-α, IL-1β, IL-6) secretion and mRNA expression, followed by nitric oxide (NO) secretion and iNOS mRNA expression. Chemotactic responses of Ferucarbotran-preloaded macrophages toward CX3CL1 were significantly ( p < 0.05) lower than those of untreated macrophages. Taking together, Ferucarbotran at high dose (100 μg Fe/mL) could induce murine peritoneal macrophages activation in pro-inflammatory cytokine secretion and NO production.

  19. Notch Signaling Pathway Regulates Progesterone Secretion in Murine Luteal Cells.

    PubMed

    Wang, Jing; Liu, Shuangmei; Peng, Lichao; Dong, Qiming; Bao, Riqiang; Lv, Qiulan; Tang, Min; Hu, Chuan; Li, Gang; Liang, Shangdong; Zhang, Chunping

    2015-10-01

    Notch signaling is an evolutionarily conserved pathway, which involves in various cell life activities. Other studies and our report showed that the Notch signaling plays very important role in follicle development in mammalian ovaries. In luteal cells, Notch ligand, delta-like ligand 4, is involved in normal luteal vasculature. In this study, murine luteal cells were cultured in vitro and treated with Notch signaling inhibitors, L-658,458 and N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester (DAPT). We found that L-658,458 and DAPT treatment decrease basal and human chorionic gonadotropin (hCG)-stimulated progesterone secretion. On the contrary, overexpression of intracellular domain of Notch3 increased basal and hCG-stimulated progesterone secretion. Further studies demonstrated that Notch signaling regulated the expression of steroidogenic acute regulatory protein and CYP11A, 2 key enzymes for progesterone synthesis. In conclusion, Notch signaling plays important role in regulating progesterone secretion in murine luteal cells.

  20. Hyperglycemia-Induced Vasculopathy in the Murine Vitelline Vasculature

    PubMed Central

    Pinter, Emese; Mahooti, Sepi; Wang, Yi; Imhof, Beat A.; Madri, Joseph A.

    1999-01-01

    Maternal diabetes mellitus is associated with an increased incidence of congenital abnormalities as well as embryonic and perinatal lethality. In particular, a wide range of cardiovascular abnormalities have been noted in children of diabetic mothers and in the offspring of diabetic animals. The vascular system is the first organ system to develop in the embryo and is critical for normal organogenesis. The organization of mesodermal cells into endothelial and hematopoietic cells and into a complex vascular system is, in part, mediated by a series of specific cell-cell, cell-extracellular matrix, and cell-factor interactions. PECAM-1 expression has been observed during the earliest stages of vasculogenesis, and changes in PECAM-1 tyrosine phosphorylation have been associated with endothelial cell migration, vasculogenesis, and angiogenesis both in vitro and in vivo. In this report we demonstrate that exposure to hyperglycemia during gastrulation causes yolk sac and embryonic vasculopathy in cultured murine conceptuses and in the conceptuses of streptozotocin-induced diabetic pregnant mice. In addition, we correlate the presence of yolk sac and embryonic vasculopathy with the failure of PECAM-1 tyrosine dephosphorylation during the formation of blood islands/vessels from clusters of extra-embryonic and embryonic angioblasts in the murine conceptus using both in vitro and in vivo models. The importance of these findings in the development of vasculopathy in the offspring of diabetic mothers and the potential effects and benefits of glucose regulation during the periods of vasculogenesis/angiogenesis in embryonic development are discussed. PMID:10329590

  1. In vitro stimulation of murine lymphoid cell cultures by levamisole.

    PubMed Central

    Merluzzi, V J; Badger, A M; Kaiser, C W; Cooperband, S R

    1975-01-01

    Levamisole has been reported to act as an immunological adjuvant. Experiments reported here on the effect of this agent on a variety of murine lymphoid culture systems were designed to gain an insight into its mechanism of action. We have found levamisole to be a weak mitogen for mouse spleen cells producing a dose related response which peaks at 48 hr in culture. The drug acted to augment the response of spleen cells to sub-optimal concentrations of concanavalin A, but had no unusual effect on the lipopolysaccharide stimulation of B-cell DNA synthesis in vitro. Levamisole was directly stimulatory on enriched T-cell populations and was found to have two actions: (1) to stimulate a subpopulation of T cells and (2) to augment the response of suboptimal mitogen concentrations of concanavalin A. In addition, we have found that murine thymocytes stimulated by concanavalin A were greatly potentiated in the presence of levamisole, but this population of cells could not be stimulated directly by the drug. PMID:1083786

  2. Correlation between experimental human and murine skin sensitization induction thresholds.

    PubMed

    Api, Anne Marie; Basketter, David; Lalko, Jon

    2015-01-01

    Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the "EC3" value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).

  3. Adults Need Vaccines, Too!

    MedlinePlus

    ... turn JavaScript on. Feature: Adult Vaccinations Adults Need Vaccines, Too! Past Issues / Summer 2015 Table of Contents ... of the millions of adults not receiving the vaccines you need? What vaccines do you need? All ...

  4. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  5. Adult Day Care

    MedlinePlus

    ... Page Resize Text Printer Friendly Online Chat Adult Day Care Adult Day Care Centers are designed to provide care and ... adults who need assistance or supervision during the day. Programs offer relief to family members and caregivers, ...

  6. Adult Still's disease

    MedlinePlus

    Still's disease - adult; AOSD ... than 1 out of 100,000 people develop adult-onset Still's disease each year. It affects women more often than men. The cause of adult Still's disease is unknown. No risk factors for ...

  7. Accumulation and effects of the UV-filter octocrylene in adult and embryonic zebrafish (Danio rerio).

    PubMed

    Blüthgen, Nancy; Meili, Nicole; Chew, Geraldine; Odermatt, Alex; Fent, Karl

    2014-04-01

    Wide application of the UV-filter octocrylene (OC) in cosmetics leads to contamination of the aquatic environment, but effects of OC remain unclear. Here we determine bioaccumulation and molecular effects of OC. Adult male zebrafish were exposed to 22, 209 and 383 μg/L and embryos to 69, 293 and 925 μg/L OC. OC accumulated in fish up to 17 μg/g. Calculated BCF varied between 41 and 136. Microarray analysis in brain and liver following exposure to 383 μg/L OC revealed alteration of 628 and 136 transcripts, respectively. Most prominent GO processes included developmental processes, organ development, hematopoiesis, formation of blood vessels, blood circulation, fat cell differentiation and metabolism. Validation by RT-qPCR in brain and liver of adult fish and embryos included a series of genes. Blood levels of 11-ketotestosterone were not altered. The transcriptomics data suggest that OC mainly affects transcription of genes related to developmental processes in the brain and liver as well as metabolic processes in the liver.

  8. Clinical, histopathologic, and genetic features of pediatric primary myelofibrosis--an entity different from adults.

    PubMed

    DeLario, Melissa R; Sheehan, Andrea M; Ataya, Ramona; Bertuch, Alison A; Vega, Carlos; Webb, C Renee; Lopez-Terrada, Dolores; Venkateswaran, Lakshmi

    2012-05-01

    Primary myelofibrosis is a chronic myeloproliferative neoplasm characterized by cytopenias, leukoerythroblastosis, extramedullary hematopoiesis, hepatosplenomegaly and bone marrow fibrosis. Primary myelofibrosis is a rare disorder in adults; children are even less commonly affected by this entity, with the largest pediatric case series reporting on three patients. Most literature suggests spontaneous resolution of myelofibrosis without long term complications in the majority of affected children. We describe the clinical, pathologic, and molecular characteristics and outcomes of nineteen children with primary myelofibrosis treated in our center from 1984 to 2011. Most patients had cytopenia significant enough to require supportive therapy. No child developed malignant transformation and only five of the 19 children (26%) had spontaneous resolution of disease. Sequence analyses for JAK2V617F and MPLW515L mutations were performed on bone marrow samples from 17 and six patients, respectively, and the results were negative. In conclusion, analysis of this large series of pediatric patients with primary myelofibrosis demonstrates distinct clinical, hematologic, bone marrow, and molecular features from adult patients.

  9. Expression of murine interleukin 7 in a murine glioma cell line results in reduced tumorigenicity in vivo.

    PubMed Central

    Aoki, T; Tashiro, K; Miyatake, S; Kinashi, T; Nakano, T; Oda, Y; Kikuchi, H; Honjo, T

    1992-01-01

    We have examined the immunoregulatory effect of local and continuous secretion of interleukin 7 (IL-7) from murine glioma cells (203-glioma) engineered by murine IL-7 gene transfection. Secretion of IL-7 from glioma cells did not result in morphology or growth rate changes but did reduce tumorigenicity in vivo in proportion to the amount of IL-7 produced. This reduction in tumorigenicity could be reversed in a dose-dependent fashion by injection of anti-IL-7 neutralizing monoclonal antibody at the tumor site. Mice immunized with IL-7-producing glioma cells showed a specific immune response to 203-glioma but not to two other syngeneic cell lines (B-16, a melanoma, and YM-12, a fibrosarcoma). IL-7-producing glioma cells were not rejected in mice depleted of CD8+ cells but were rejected in mice depleted of CD4+ or NK1.1+ cells. These results suggest that CD8+ T cells may play an important role in tumor rejection. Images PMID:1570303

  10. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis

    PubMed Central

    Want, Muzamil Y; Islammudin, Mohammad; Chouhan, Garima; Ozbak, Hani A; Hemeg, Hassan A; Chattopadhyay, Asoke P; Afrin, Farhat

    2017-01-01

    Visceral leishmaniasis (VL) is a fatal, vector-borne disease caused by the intracellular protozoa of the genus Leishmania. Most of the therapeutics for VL are toxic, expensive, or ineffective. Sesquiterpenes are a new class of drugs with proven antimicrobial and antiviral activities. Artemisinin is a sesquiterpene lactone with potent antileishmanial activity, but with limited access to infected cells, being a highly lipophilic molecule. Association of artemisinin with liposome is a desirable strategy to circumvent the problem of poor accessibility, thereby improving its efficacy, as demonstrated in a murine model of experimental VL. Nanoliposomal artemisinin (NLA) was prepared by thin-film hydration method and optimized using Box–Behnken design with a mean particle diameter of 83±16 nm, polydispersity index of 0.2±0.03, zeta potential of −27.4±5.7 mV, and drug loading of 33.2%±2.1%. Morphological study of these nanoliposomes by microscopy showed a smooth and spherical surface. The mechanism of release of artemisinin from the liposomes followed the Higuchi model in vitro. NLA was free from concomitant signs of toxicity, both ex vivo in murine macrophages and in vivo in healthy BALB/c mice. NLA significantly denigrated the intracellular infection of Leishmania donovani amastigotes and the number of infected macrophages ex vivo with an IC50 of 6.0±1.4 µg/mL and 5.1±0.9 µg/mL, respectively. Following treatment in a murine model of VL, NLA demonstrated superior efficacy compared to artemisinin with a percentage inhibition of 82.4%±3.8% in the liver and 77.6%±5.5% in spleen at the highest dose of 20 mg/kg body weight with modulation of cell-mediated immunity towards protective Th1 type. This study is the first report on the use of a liposomal drug delivery system for artemisinin as a promising alternative intervention against VL. PMID:28356736

  11. Murine Mycobacterium marinum Infection as a Model for Tuberculosis.

    PubMed

    Lienard, Julia; Carlsson, Fredric

    2017-01-01

    Mycobacteria are a major human health problem globally. Regarding tuberculosis the situation is worsened by the poor efficacy of current vaccine regimens and by emergence of drug-resistant strains (Manjelievskaia J et al, Trans R Soc Trop Med Hyg 110: 110, 2016; Pereira et al., Lancet Infect Dis 12:300-306, 2012; http://www.who.int/tb/publications/global_report/en/) undermining both disease-prevention and available treatments. Thus, increased basic understanding of mycobacterial-and particularly Mycobacterium tuberculosis-virulence strategies and pathogenesis is of great importance. To this end several in vivo infection models are available (Guirado and Schlesinger, Front Immunol 4:98, 2013; Leung et al., Eur J Immunol 43:2246-2254, 2013; Patel et al., J Lab Physicians 3:75-79, 2011; van Leeuwen et al., Cold Spring Harb Perspect Med 5:a018580, 2015). While these models all have their merits they also exhibit limitations, and none perfectly mimics all aspects of human tuberculosis. Thus, there is a need for multiple models that may complement each other, ultimately allowing us to gain true insight into the pathogenesis of mycobacterial infections.Here, we describe a recently developed mouse model of Mycobacterium marinum infection that allows kinetic and quantitative studies of disease progression in live animals [8]. Notably, this model exhibits features of human tuberculosis not replicated in M. tuberculosis infected mice, and may provide an important complement to the field. For example, granulomas in the M. marinum model develop central caseating necrosis (Carlsson et al., PLoS Pathog 6:e1000895, 2010), a hallmark of granulomas in human tuberculosis normally not replicated in murine M. tuberculosis infection. Moreover, while tuberculosis is heterogeneous and presents with a continuum of active and latent disease, M. tuberculosis infected mice essentially lack this dynamic range and do not replicate latency (Guirado and Schlesinger, Front Immunol 4:98, 2013

  12. Growth and metabolism of murine and bovine embryos in bovine uterine flushing-supplemented culture media.

    PubMed Central

    Rondeau, M; Guay, P; Goff, A K; Cooke, G M

    1996-01-01

    The aim of this study was to compare the development and metabolic activity of cultured murine and bovine embryos in 2 standard media (HAM F-10 and RPMI) in the presence or absence of bovine uterine flushings. Murine morulae (n = 653) and day 7 bovine embryos (n = 273) were cultured for 18 h or 36 h in either HAM F-10 or RPMI in the presence or absence of bovine uterine flushings. After culture, the development, quality, and metabolic activity (glucose utilization or methionine uptake and incorporation) of embryos was assessed. It was found that HAM F-10 (without uterine flushings) was a more suitable medium than RPMI for optimal development and metabolism of murine and bovine embryos. Poor quality and development, as well as decreased metabolism, were evident after culture of murine embryos in RPMI; in contrast, this medium had no adverse effects on bovine embryos in culture. Supplementation of HAM F-10 with bovine uterine flushings improved the growth of murine embryos and the protein synthesis (as measured by an increased methionine incorporation) for both murine and bovine embryos. However, supplementation with bovine uterine flushings could not overcome deficiencies of an inappropriate medium (RPMI) for murine embryos. Supplementation of a well-defined culture medium with uterine flushings increased metabolism of embryos in culture, and thus might help to increase pregnancy rates after transfer of such embryos to recipient cows. PMID:8825988

  13. Validation of the murine aortic arch as a model to study human vascular diseases

    PubMed Central

    Casteleyn, Christophe; Trachet, Bram; Van Loo, Denis; Devos, Daniel G H; Van den Broeck, Wim; Simoens, Paul; Cornillie, Pieter

    2010-01-01

    Although the murine thoracic aorta and its main branches are widely studied to gain more insight into the pathogenesis of human vascular diseases, detailed anatomical data on the murine aorta are sparse. Moreover, comparative studies between mice and men focusing on the topography and geometry of the heart and aorta are lacking. As this hampers the validation of murine vascular models, the branching pattern of the murine thoracic aorta was examined in 30 vascular corrosion casts. On six casts the intrathoracic position of the heart was compared with that of six younger and six older men of whom contrast-enhanced computer tomography images of the thorax were three-dimensionally reconstructed. In addition, the geometry of the human thoracic aorta was compared with that of the mouse by reconstructing micro-computer tomography images of six murine casts. It was found that the right brachiocephalic trunk, left common carotid artery and left subclavian artery branched subsequently from the aortic arch in both mice and men. The geometry of the branches of the murine aortic arch was quite similar to that of men. In both species the initial segment of the aorta, comprising the ascending aorta, aortic arch and cranial/superior part of the descending aorta, was sigmoidally curved on a cranial/superior view. Although some analogy between the intrathoracic position of the murine and human heart was observed, the murine heart manifestly deviated more ventrally. The major conclusion of this study is that, in both mice and men, the ascending and descending aorta do not lie in a single vertical plane (non-planar aortic geometry). This contrasts clearly with most domestic mammals in which a planar aortic pattern is present. As the vascular branching pattern of the aortic arch is also similar in mice and men, the murine model seems valuable to study human vascular diseases. PMID:20345858

  14. Validation of the murine aortic arch as a model to study human vascular diseases.

    PubMed

    Casteleyn, Christophe; Trachet, Bram; Van Loo, Denis; Devos, Daniel G H; Van den Broeck, Wim; Simoens, Paul; Cornillie, Pieter

    2010-05-01

    Although the murine thoracic aorta and its main branches are widely studied to gain more insight into the pathogenesis of human vascular diseases, detailed anatomical data on the murine aorta are sparse. Moreover, comparative studies between mice and men focusing on the topography and geometry of the heart and aorta are lacking. As this hampers the validation of murine vascular models, the branching pattern of the murine thoracic aorta was examined in 30 vascular corrosion casts. On six casts the intrathoracic position of the heart was compared with that of six younger and six older men of whom contrast-enhanced computer tomography images of the thorax were three-dimensionally reconstructed. In addition, the geometry of the human thoracic aorta was compared with that of the mouse by reconstructing micro-computer tomography images of six murine casts. It was found that the right brachiocephalic trunk, left common carotid artery and left subclavian artery branched subsequently from the aortic arch in both mice and men. The geometry of the branches of the murine aortic arch was quite similar to that of men. In both species the initial segment of the aorta, comprising the ascending aorta, aortic arch and cranial/superior part of the descending aorta, was sigmoidally curved on a cranial/superior view. Although some analogy between the intrathoracic position of the murine and human heart was observed, the murine heart manifestly deviated more ventrally. The major conclusion of this study is that, in both mice and men, the ascending and descending aorta do not lie in a single vertical plane (non-planar aortic geometry). This contrasts clearly with most domestic mammals in which a planar aortic pattern is present. As the vascular branching pattern of the aortic arch is also similar in mice and men, the murine model seems valuable to study human vascular diseases.

  15. Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course

    PubMed Central

    Anderson, Olivia S.; Peterson, Karen E.; Sanchez, Brisa N.; Zhang, Zhenzhen; Mancuso, Peter; Dolinoy, Dana C.

    2013-01-01

    The development of adult-onset diseases is influenced by perinatal exposure to altered environmental conditions. One such exposure, bisphenol A (BPA), has been associated with obesity and diabetes, and consequently labeled an obesogen. Using an isogenic murine model, we examined the effects of perinatal exposure through maternal diet to 50 ng (n=20), 50 μg (n=21), or 50 mg (n=18) BPA/kg diet, as well as controls (n=20) on offspring energy expenditure, spontaneous activity, and body composition at 3, 6, and 9 mo of age, and hormone levels at 9 and 10 mo of age. Overall, exposed females and males exhibited increased energy expenditure (P<0.001 and 0.001, respectively) throughout the life course. In females, horizontal and vertical activity increased (P=0.07 and 0.06, respectively) throughout the life course. Generally, body composition measures were not different throughout the life course in exposed females or males (all P>0.44), although body fat and weight decreased in exposed females at particular ages (all P<0.08). Milligram-exposed females had improved glucose, insulin, adiponectin, and leptin profiles (all P<0.10). Thus, life-course analysis illustrates that BPA is associated with hyperactive and lean phenotypes. Variability across studies may be attributable to differential exposure duration and timing, dietary fat and phytoestrogen content, or lack of sophisticated phenotyping across the life course.—Anderson, O.S., Peterson, K.E., Sanchez, B.N., Zhang, Z., Mancuso, P., Dolinoy, D.C. Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course. PMID:23345456

  16. Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na-K-Cl cotransporter.

    PubMed

    Igarashi, P; Vanden Heuvel, G B; Payne, J A; Forbush, B

    1995-09-01

    A full-length cDNA encoding the murine renal Na-K-Cl cotransporter (NKCC2) was cloned using library screening and anchored polymerase chain reaction. The deduced protein sequence contained 1,095 amino acids and was 93.5% identical to rabbit NKCC2 and 97.6% identical to rat BSC1. Two potential sites of phosphorylation by adenosine 3',5'-cyclic monophosphate-dependent protein kinase and seven potential sites of phosphorylation by protein kinase C, which were previously identified in the rabbit and rat sequences, were phylogenetically conserved in the mouse. The expression of NKCC2 in the mouse was examined with Northern blot analysis and in situ hybridization. Expression of NKCC2 was kidney specific in both adult and embryonic mice. In the developing metanephros, NKCC2 was induced at 14.5 days post coitus and was expressed in distal limbs of immature loops of Henle but was absent from the ureteric bud, S-shaped bodies, and earlier nephrogenic structures. Similar to the rabbit, isoforms of NKCC2 that differed in the sequence of a 96-bp segment were identified in the mouse. In situ hybridization revealed that the isoforms exhibited different patterns of expression in the mature thick ascending limb of the loop of Henle as follows: isoform F was most highly expressed in the inner stripe of outer medulla, isoform A was most highly expressed in the outer stripe of the outer medulla, and isoform B was most highly expressed in the cortical thick ascending limb. To verify that the isoforms were generated by alternative splicing of mutually exclusive cassette exons, genomic clones encoding murine NKCC2 were characterized. Cassette exons were identified that corresponded to each of the three isoforms and were flanked by consensus splice donor and acceptor sequences.

  17. Assignment of CSF-1 to 5q33. 1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders

    SciTech Connect

    Pettenati, M.J.; Le Beau, M.M.; Lemons, R.S.; Shima, E.A.; Kawasaki, E.S.; Larson, R.A.; Sherr, C.J.; Diaz, M.O.; Rowley, J.D.

    1987-05-01

    The CSF-1 gene encodes a hematopoietic colony-stimulating factor (CSF) that promotes growth, differentiation, and survival of mononuclear phagocytes. By using somatic cell hybrids and in situ hybridization, the authors localized this gene to human chromosome 5 at bands q31 to q35, a chromosomal region that is frequently deleted (del(5q)) in patients with myeloid disorders. By in situ hybridization, the CSF-1 gene was found to be deleted in the 5q- chromosome of a patient with refractory anemia who had a del(5) (q15q33.3) and in that of a second patient with acute nonlymphocytic leukemia de novo who had a similar distal breakpoint (del(5)(q13q33.3)). The gene was present in the deleted chromosome of a third patient, with therapy-related acute nonlymphocytic leukemia, who had a more proximal breakpoint in band q33 (del(5)(q22q33.1)). Hybridization of the CSF-1 probe to metaphase cells of a fourth patient, with acute nonlymphocytic leukemia de novo, who had a rearrangement of chromosomes 5 and 21 resulted in labeling of the breakpoint junctions of both rearranged chromosomes; this suggested that CSF-1 is located at 5q33.1. Thus, a small segment of chromosome 5 contains GM-CSF (the gene encoding the granulocyte-macrophage CSF), CSF-1, and FMS, which encodes the CSF-1 receptor, in that order from the centromere; this cluster of genes may be involved in the altered hematopoiesis associated with a deletion of 5q.

  18. Adult Recruitment Practices.

    ERIC Educational Resources Information Center

    Kaufman, Juliet, Ed.; And Others

    Findings of an American College Testing Program 1981 survey on college recruitment of adult students are summarized, and 12 articles on adult recruitment are presented. Titles and authors are as follows: "Adult Recruitment Practices: A Report of a National Survey" (Patricia Spratt, Juliet Kaufmann, Lee Noel); "Three Programs for Adults in Shopping…

  19. The murine Cd48 gene: allelic polymorphism in the IgV-like region.

    PubMed

    Cabrero, J G; Freeman, G J; Reiser, H

    1998-12-01

    The murine CD48 molecule is a member of the immunoglobulin superfamily which regulates the activation of T lymphocytes. prior cloning experiments using mRNA from two different mouse strains had yielded discrepant sequences within the IgV-like domain of murine CD48. To resolve this issue, we have directly sequenced genomic DNA of 10 laboratory strains and two inbred strains of wild origin. The results of our analysis reveal an allelic polymorphism within the IgV-like domain of murine CD48.

  20. Computational Analysis of Lung Deformation after Murine neumonectomy

    PubMed Central

    Filipovic, Nenad; Gibney, Barry C.; Nikolic, Dalibor; Konerding, Moritz A.; Mentzer, Steven J.; Tsuda, Akira

    2012-01-01

    In many mammalian species, the removal of one lung (pneumonectomy) is associated with the compensatory growth of the remaining lung. To investigate the hypothesis that parenchymal deformation may trigger lung regeneration, we used microCT scanning to create 3-dimensional finite element geometric models of the murine lung pre- and post-pneumonectomy (24 hours). The structural correspondence between models was established using anatomic landmarks and an iterative computational algorithm. When compared with the pre-pneumonectomy lung, the post-pneumonectomy models demonstrated significant translation and rotation of the cardiac lobe into the post-pneumonectomy pleural space. 2-dimensional maps of lung deformation demonstrated significant heterogeneity ; the areas of greatest deformation were present in the subpleural regions of the lobe. Consistent with previously identified growth patterns, subpleural regions of enhanced deformation are compatible with a mechanical signal—likely involving parenchymal stretch—triggering lung growth. PMID:22978574

  1. Dye-mediated photosensitization of murine neuroblastoma cells

    SciTech Connect

    Sieber, F.; Sieber-Blum, M.

    1986-04-01

    The purpose of this study was to determine if photosensitization mediated by the fluorescent dye, merocyanine 540, could be used to preferentially kill murine neuroblastoma cells in simulated autologous remission marrow grafts. Simultaneous exposure of Neuro 2a or NB41A3 neuroblastoma cells to merocyanine 540 and white light reduced the concentration of in vitro-clonogenic tumor cells 50,000-fold. By contrast, the same treatment had little effect on the graft's ability to rescue lethally irradiated syngeneic hosts. Lethally irradiated C57BL/6J X A/J F1 mice transplanted with photosensitized mixtures of neuroblastoma cells and normal marrow cells (1:100 or 1:10) survived without developing neuroblastomas. It is conceivable that merocyanine 540-mediated photosensitization will prove useful for the extracorporeal purging of residual neuroblastoma cells from human autologous remission marrow grafts.

  2. Methylation of Inorganic Arsenic by Murine Fetal Tissue Explants

    PubMed Central

    Broka, Derrick; Ditzel, Eric; Quach, Stephanie; Camenisch, Todd D.

    2016-01-01

    Although it is generally believed that the developing fetus is principally exposed to inorganic arsenic and the methylated metabolites from the maternal metabolism of arsenic, little is known about whether the developing embryo can autonomously metabolize arsenic. This study investigates inorganic arsenic methylation by murine embryonic organ cultures of the heart, lung, and liver. mRNA for AS3mt, the gene responsible for methylation of arsenic, was detected in all of embryonic tissue types studied. In addition, methylated arsenic metabolites were generated by all three tissue types. The fetal liver explants yielded the most methylated arsenic metabolites (~7% of total arsenic/ 48 hr incubation) while the heart, and lung preparations produced slightly greater than 2% methylated metabolites. With all tissues the methylation proceeded mostly to the dimethylated arsenic species. This has profound implications for understanding arsenic-induced fetal toxicity, particularly if the methylated metabolites are produced autonomously by embryonic tissues. PMID:26446802

  3. Large-scale characterization of the murine cardiac proteome.

    PubMed

    Cosme, Jake; Emili, Andrew; Gramolini, Anthony O

    2013-01-01

    Cardiomyopathies are diseases of the heart that result in impaired cardiac muscle function. This dysfunction can progress to an inability to supply blood to the body. Cardiovascular diseases play a large role in overall global morbidity. Investigating the protein changes in the heart during disease can uncover pathophysiological mechanisms and potential therapeutic targets. Establishing a global protein expression "footprint" can facilitate more targeted studies of diseases of the heart.In the technical review presented here, we present methods to elucidate the heart's proteome through subfractionation of the cellular compartments to reduce sample complexity and improve detection of lower abundant proteins during multidimensional protein identification technology analysis. Analysis of the cytosolic, microsomal, and mitochondrial subproteomes separately in order to characterize the murine cardiac proteome is advantageous by simplifying complex cardiac protein mixtures. In combination with bioinformatic analysis and genome correlation, large-scale protein changes can be identified at the cellular compartment level in this animal model.

  4. Experimental infection of murine and human macrophages with Cystoisospora belli.

    PubMed

    Resende, Deisy V; Lages-Silva, Eliane; Assis, Dnieber C; Prata, Aluízio; Oliveira-Silva, Márcia B

    2009-08-01

    Extraintestinal cystoisosporosis by Cystoisospora belli has already been reported in HIV/AIDS patients, generally involving preferential invasion of mesenteric and trachaeobronchial lymph nodes, liver and spleen by unizoic cysts of this parasite, which may infect macrophages. To test this hypothesis, murine and human macrophages were exposed to sporozoites of C. belli and cultures were observed daily after contact with these cells. The parasites penetrated and multiplied by endodyogeny in both cell types and inserted themselves inside perinuclear vacuoles. After 48 h, extracellular parasites were removed from macrophage cultures and incubated in Monkey Kidney Rhesus cells (MK2) where there was intense multiplication. This is the first report of infection of macrophages by this parasite, which supports the hypothesis that these could act as C. belli host cells in extraintestinal sites.

  5. Angelica acutiloba Kitagawa Extract Attenuates DSS-Induced Murine Colitis

    PubMed Central

    Jang, Jong-Chan; Lee, Kang Min

    2016-01-01

    We examined the protective effects of Angelica acutiloba Kitagawa (AAK) extract on a murine model of acute experimental colitis. Colitis was induced by 4% dextran sulfate sodium (DSS) in the drinking water of male C57BL/6 mice, for 7 consecutive days. Oral administration of AAK extract (500 mg/kg/day) significantly alleviated DSS-induced symptoms such as anorexia, weight loss, events of diarrhea or bloody stools, and colon shortening. Histological damage was also ameliorated, as evidenced by the architectural preservation and suppression of inflammatory cell infiltration in colonic samples. Treatment improved the colonic mRNA expression of different inflammatory markers: cytokines, inducible enzymes, matrix metalloproteinases, and tight junction-related proteins. In the isolated serum, IgE levels were downregulated. Collectively, these findings indicate the therapeutic potentials of AAK as an effective complementary or alternative modality for the treatment of ulcerative colitis. PMID:27293323

  6. Effect of gold sodium thiomalate on murine lymphocyte functions.

    PubMed Central

    Jennings, J J; Macrae, S; Gorczynski, R M

    1979-01-01

    The in vitro effects of gold sodium thiomalate (GTM) on various murine splenic lymphocytic functions were tested. The presence of GTM in cultures of splenic cells suppressed anti-hapten responses to both thymus-independent and thymus-dependent antigens. GTM also suppressed the in vitro generation of cytotoxic effector cells as well as the mitogenic response to both T cell and B cell mitogens. This suppression could not be reversed by the addition of irradiated spleen cells. Spleen cells exposed to GTM for 4 hr prior to culture also exhibited similarly suppressed functions, although their functional capacity could be fully restored by the addition of irradiated spleen cells. These results show that GTM inhibits both humoral and cellular immune mechanisms and appears to act primarily at the accessory (macrophage) cell level, with perhaps a secondary effect on T lymphocytes. PMID:113153

  7. A novel inexpensive murine model of oral chronic digitalization.

    PubMed

    Helber, Izo; Kanashiro, Rosemeire M; Alarcon, Ernesto A; Antonio, Ednei L; Tucci, Paulo J F

    2004-01-01

    A novel inexpensive murine model of oral administration of digitoxin (100 micro g/kg per day) added to routine chow is described. Serum digitoxin levels achieved after oral (n = 5; 116 +/- 14 ng/mL) and subcutaneous (n = 5; 124 +/- 11 ng/mL) administration were similar. A significant increase in the maximal left ventricular pressure rise of treated (n = 9) compared with control (n = 6) rats (dP/dt: 8956 +/- 233 vs 7980 +/- 234 mmHg/s, respectively; P = 0.01) characterized the positive inotropic action of digitoxin. In addition, no differences were observed in treated compared with control rats with regard to the electrocardiogram and systolic and diastolic left ventricular pressures.

  8. Murine model of concurrent oral and vaginal Candida albicans colonisation.

    PubMed

    Rahman, Durdana; Mistry, Mukesh; Thavaraj, Selvam; Naglik, Julian R; Challacombe, Stephen J

    2012-01-01

    Investigations into the complex interaction between the fungal pathogen Candida albicans and its human host require the use of animals as in vivo models. A major advance is the creation of a low-oestrogen murine model of concurrent oral and vaginal C. albicans colonisation that resembles human candidal carriage at both mucosal sites. Weekly intramuscular (5 μg) and subcutaneous (5 μg) oestrogen administration was determined as optimal, enhancing oral colonisation but essential for vaginal colonisation. Using a clinical C. albicans oral isolate, persistent colonisation for up to 6 weeks can be achieved at both sites in two strains of mice (BALB/c and C57BL/6). This concurrent model of mucosal colonisation reduces the numbers of experimental mice by half, and opens up new avenues of research in assessing potential mucosal vaccine candidates and in studying delicate host-pathogen interactions during the most natural state of C. albicans epithelial colonisation.

  9. Heterogeneity across the murine small and large intestine.

    PubMed

    Bowcutt, Rowann; Forman, Ruth; Glymenaki, Maria; Carding, Simon Richard; Else, Kathryn Jane; Cruickshank, Sheena Margaret

    2014-11-07

    The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed.

  10. Expression of human adenosine deaminase in murine hematopoietic cells.

    PubMed Central

    Belmont, J W; MacGregor, G R; Wager-Smith, K; Fletcher, F A; Moore, K A; Hawkins, D; Villalon, D; Chang, S M; Caskey, C T

    1988-01-01

    Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells. Images PMID:3072474

  11. Isolation of primary murine brain microvascular endothelial cells.

    PubMed

    Ruck, Tobias; Bittner, Stefan; Epping, Lisa; Herrmann, Alexander M; Meuth, Sven G

    2014-11-14

    The blood-brain-barrier is ultrastructurally assembled by a monolayer of brain microvascular endothelial cells (BMEC) interconnected by a junctional complex of tight and adherens junctions. Together with other cell-types such as astrocytes or pericytes, they form the neurovascular unit (NVU), which specifically regulates the interchange of fluids, molecules and cells between the peripheral blood and the CNS. Through this complex and dynamic system BMECs are involved in various processes maintaining the homeostasis of the CNS. A dysfunction of the BBB is observed as an essential step in the pathogenesis of many severe CNS diseases. However, specific and targeted therapies are very limited, as the underlying mechanisms are still far from being understood. Animal and in vitro models have been extensively used to gain in-depth understanding of complex physiological and pathophysiological processes. By reduction and simplification it is possible to focus the investigation on the subject of interest and to exclude a variety of confounding factors. However, comparability and transferability are also reduced in model systems, which have to be taken into account for evaluation. The most common animal models are based on mice, among other reasons, mainly due to the constantly increasing possibilities of methodology. In vitro studies of isolated murine BMECs might enable an in-depth analysis of their properties and of the blood-brain-barrier under physiological and pathophysiological conditions. Further insights into the complex mechanisms at the BBB potentially provide the basis for new therapeutic strategies. This protocol describes a method to isolate primary murine microvascular endothelial cells by a sequence of physical and chemical purification steps. Special considerations for purity and cultivation of MBMECs as well as quality control, potential applications and limitations are discussed.

  12. Functional characterization of muscarinic receptors in murine airways.

    PubMed Central

    Garssen, J.; Van Loveren, H.; Gierveld, C. M.; Van der Vliet, H.; Nijkamp, F. P.

    1993-01-01

    1. The effects of muscarinic receptor antagonists considered to be selective for M1 receptors (pirenzepine; PZ), M2 receptors (AFDX-116), and for M3 receptors (4-diphenyl acetoxy N-methyl-piperidine (4-DAMP)) were used to investigate the existence of muscarinic receptors subtypes in murine airways. Atropine was used as a nonselective antagonist. The effects of these antagonists were studied upon tracheal contractions induced either by EFS (electric field stimulation) or by application of an exogenous cholinoceptor agonist (arecoline). 2. The muscarinic receptor antagonists tested inhibited arecoline-induced tracheal contractions with the following rank order of potency: 4-DAMP = atropine > pirenzepine = AFDX-116. The rank order of potency of the muscarinic antagonists used in inhibiting EFS-induced tracheal contractions was: 4-DAMP = atropine > PZ > AFDX-116. The pA2 values for these antagonists were similar when compared to the pA2 values determined in guinea-pig and bovine airway smooth muscle. 3. In addition to in vitro studies, the effects of inhalation of the different muscarinic antagonists on lung function parameters in vivo were investigated. Inhalation of 4-DAMP induced a decrease in airway resistance and an increase in lung compliance. In contrast, inhalation of AFDX-116 induced an increase in airway resistance and almost no change in lung compliance. Apart from some minor effects of atropine on airway resistance, atropine, PZ, and pilocarpine failed to induce changes in lung mechanics as determined by in vivo lung function measurements. 4. The results provide evidence for the existence of M3 receptors on murine tracheae that are involved in the contraction of tracheal smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 6 Figure 7 PMID:8495246

  13. Optimizing dosage of ketamine and xylazine in murine echocardiography.

    PubMed

    Xu, Qi; Ming, Ziqiu; Dart, Anthony M; Du, Xiao-Jun

    2007-01-01

    1. Ketamine and xylazine (KX) mixture is the most commonly used anaesthetic drug during echocardiography in mice to induce sedation and immobility. Nevertheless, the doses of KX reported in the literature vary substantially with associated significant difference in cardiac function. To explore the optimal KX dosage and observation time for murine echocardiography, we compared the effects of various KX combinations on echocardiographic measurement. 2. Mice were anaesthetized with ketamine (50 or 100 mg/kg) and xylazine (0-10 mg/kg). Echocardiography was performed 5, 10, 20 and 40 min after induction of anaesthesia. Also, cardiac function was assessed in mice with and without pressure-overload induced left ventricle (LV) hypertrophy and dysfunction, either under anaesthesia with KX or whilst conscious. 3. Ketamine at 100 mg/kg alone or together with xylazine at 0.1 mg/kg was associated with a high and stable heart rate (HR), a high fractional shortening (FS) and produced the least effect on LV inner dimension at end of diastole (LVIDd). Ketamine and xylazine at 100 and 10 mg/kg, respectively, produced a lower and stable FS, but with a low and unstable HR. All other combinations resulted in depressed and unstable cardiac function during this period. 4. The dose-dependent suppression of FS by xylazine was counteracted partly by ketamine. 5. Although in the chronic pressure-overload model LV hypertrophy can be detected accurately in both the anaesthetized or conscious state, systolic dysfunction was masked partially by higher doses of xylazine (2.5 or 10 mg/kg) combined with ketamine at 100 mg/kg. 6. With KX anaesthesia, both the dose of xylazine and the anaesthetic duration are critical in achieving an ideal condition for murine echocardiography. Ketamine at 100 mg/kg alone produces acceptable anaesthesia, stable cardiac function with a minimal depressant effect and is therefore recommended if single-dose anaesthetic is to be used.

  14. Force-Induced Craniosynostosis in the Murine Sagittal Suture

    PubMed Central

    Oppenheimer, Adam J.; Rhee, Samuel T.; Goldstein, Steven A.; Buchman, Steven R.

    2010-01-01

    BACKGROUND The etiology of non-syndromic craniosynostosis remains elusive. While compressive forces have been implicated in premature suture fusion, conclusive evidence of force-induced craniosynostosis is lacking. The purpose of this study was to determine if cyclical loading of the murine calvarium could induce suture fusion. METHODS Calvarial coupons from post-natal day 21, B6CBA wild-type mice (n = 18) were harvested and cultured. A custom appliance capable of delivering controlled, cyclical, compressive loads was applied perpendicular to the sagittal suture within the coupon in vitro. Nine coupons were subjected to 0.3g of force for 30 minutes each day for a total of 14 days. A control group of nine coupons was clamped in the appliance without loading. Analysis of suture phenotype was performed using alkaline phosphatase and H&E staining techniques, as well as in situ hybridization analysis using Bone Sialoprotein (BSP). RESULTS Control group sagittal sutures—which normally remain patent in mice—showed their customary histological appearance. In contradistinction, sagittal sutures subjected to cyclic loading showed histological evidence of premature fusion (craniosynostosis). In addition, alkaline phosphatase activity and BSP expression was observed to be increased in the experimental group when compared to matched controls. CONCLUSIONS An in vitro model of forced-induced craniosynostosis has been devised. Premature fusion of the murine sagittal suture was induced with the application of controlled, cyclical, compressive loads. These results implicate abnormal forces in the development of non-syndromic craniosynostosis, which supports our global hypothesis that epigenetic phenomena have a crucial role in the pathogenesis of craniosynostosis. PMID:19952640

  15. Dynein Regulators Are Important for Ecotropic Murine Leukemia Virus Infection

    PubMed Central

    Valle-Tenney, Roger; Opazo, Tatiana; Cancino, Jorge; Goff, Stephen P.

    2016-01-01

    ABSTRACT During the early steps of infection, retroviruses must direct the movement of the viral genome into the nucleus to complete their replication cycle. This process is mediated by cellular proteins that interact first with the reverse transcription complex and later with the preintegration complex (PIC), allowing it to reach and enter the nucleus. For simple retroviruses, such as murine leukemia virus (MLV), the identities of the cellular proteins involved in trafficking of the PIC in infection are unknown. To identify cellular proteins that interact with the MLV PIC, we developed a replication-competent MLV in which the integrase protein was tagged with a FLAG epitope. Using a combination of immunoprecipitation and mass spectrometry, we established that the microtubule motor dynein regulator DCTN2/p50/dynamitin interacts with the MLV preintegration complex early in infection, suggesting a direct interaction between the incoming viral particles and the dynein complex regulators. Further experiments showed that RNA interference (RNAi)-mediated silencing of either DCTN2/p50/dynamitin or another dynein regulator, NudEL, profoundly reduced the efficiency of infection by ecotropic, but not amphotropic, MLV reporters. We propose that the cytoplasmic dynein regulators are a critical component of the host machinery needed for infection by the retroviruses entering the cell via the ecotropic envelope pathway. IMPORTANCE Retroviruses must access the chromatin of host cells to integrate the viral DNA, but before this crucial event, they must reach the nucleus. The movement through the cytoplasm—a crowded environment where diffusion is slow—is thought to utilize retrograde transport along the microtubule network by the dynein complex. Different viruses use different components of this multisubunit complex. We found that the preintegration complex of murine leukemia virus (MLV) interacts with the dynein complex and that regulators of this complex are essential for

  16. Cloning of the genes encoding two murine and human cochlear unconventional type I myosins

    SciTech Connect

    Crozet, F.; El Amraoui, Z.; Blanchard, S.

    1997-03-01

    Several lines of evidence indicate a crucial role for unconventional myosins in the function of the sensory hair cells of the inner ear. We report here the characterization of the cDNAs encoding two unconventional type I myosins from a mouse cochlear cDNA library. The first cDNA encodes a putative protein named Myo1c, which is likely to be the murine orthologue of the bullfrog myosin I{beta} and which may be involved in the gating of the mechanotransduction channel of the sensory hair cells. This myosin belongs to the group of short-tailed myosins I, with its tail ending shortly after a polybasic, TH-1-like domain. The second cDNA encodes a novel type I myosin Myo1f which displays three regions: a head domain with the conserved ATP- and actin-binding sites, a neck domain with a single IQ motif, and a tail domain with the tripartite structure initially described in protozoan myosins I. The tail of Myo1f includes (1) a TH-1 region rich in basic residues, which may interact with anionic membrane phospholipids; (2) a TH-2 proline-rich region, expected to contain an ATP-insensitive actin-binding site; and (3) an SH-3 domain found in a variety of cytoskeletal and signaling proteins. Northern blot analysis indicated that the genes encoding Myo1c and Myo1f display a widespread tissue expression in the adult mouse. Myo1c and Myo1f were mapped by in situ hybridization to the chromosomal regions 11D-11E and 17B-17C, respectively. The human orthologuous genes MYO1C and MYO1F were also characterized, and mapped to the human chromosomal regions 17p13 and 19p13.2- 19p1.3.3, respectively. 45 refs., 5 figs., 2 tabs.

  17. Evidence for a Critical Role of Catecholamines for Cardiomyocyte Lineage Commitment in Murine Embryonic Stem Cells

    PubMed Central

    Lehmann, Martin; Nguemo, Filomain; Wagh, Vilas; Pfannkuche, Kurt; Hescheler, Jürgen; Reppel, Michael

    2013-01-01

    Catecholamine release is known to modulate cardiac output by increasing heart rate. Although much is known about catecholamine function and regulation in adults, little is known about the presence and role of catecholamines during heart development. The present study aimed therefore to evaluate the effects of different catecholamines on early heart development in an in vitro setting using embryonic stem (ES) cell-derived cardiomyocytes. Effects of catecholamine depletion induced by reserpine were examined in murine ES cells (line D3, αPIG44) during differentiation. Cardiac differentiation was assessed by immunocytochemistry, qRT-PCR, quantification of beating clusters, flow cytometry and pharmacological approaches. Proliferation was analyzed by EB cross-section measurements, while functionality of cardiomyocytes was studied by extracellular field potential (FP) measurements using microelectrode arrays (MEAs). To further differentiate between substance-specific effects of reserpine and catecholamine action via α- and β-receptors we proved the involvement of adrenergic receptors by application of unspecific α- and β-receptor antagonists. Reserpine treatment led to remarkable down-regulation of cardiac-specific genes, proteins and mesodermal marker genes. In more detail, the average ratio of ∼40% spontaneously beating control clusters was significantly reduced by 100%, 91.1% and 20.0% on days 10, 12, and 14, respectively. Flow cytometry revealed a significant reduction (by 71.6%, n = 11) of eGFP positive CMs after reserpine treatment. By contrast, reserpine did not reduce EB growth while number of neuronal cells in reserpine-treated EBs was significantly increased. MEA measurements of reserpine-treated EBs showed lower FP frequencies and weak responsiveness to adrenergic and muscarinic stimulation. Interestingly we found that developmental inhibition after α- and β-adrenergic blocker application mimicked developmental changes with reserpine. Using several

  18. The effects of Euphorbia hirta on the ultrastructure of the murine liver, kidney and aorta

    PubMed Central

    WONG, J.Y.R.; CHEN, Y.S.; CHAKRAVARTHI, S.; JUDSON, J.P.; L., SANTHANA RAJ; ER, H.M.

    2013-01-01

    Euphorbia hirta is widely used in traditional remedies and has been used cross-culturally for generations against maladies such as asthma, skin ailments and hypertension. Previous studies have demonstrated that Euphorbia hirta has antibacterial activity, and have also indicated certain antimolluscidal, antimalarial and anti-inflammatory properties, the latter of which have been suggested to be more pronounced than those of the rheumatological drug, etanercept. To date, no studies have identified the anatomical effects of this herb on the organs of test animals. This study aimed to identify the effects of Euphorbia hirta on the ultrastructure of the murine liver, kidney and aorta. A total of 32 adult male Sprague-Dawley rats were divided into four groups; three groups were fed with aqueous extracts of Euphorbia hirta at doses of 1, 10 and 50 mg/kg, respectively, every alternate day for 50 days, while one group served as a control. The animals were later sacrificed and the liver, kidney and aorta harvested for examination by electron microscopy. The aorta showed no ultrastructural changes across the groups. Renal and hepatic tissue from the treated groups demonstrated dose-dependent injuries, which showed architectural damage beginning in the nuclei and spreading outwards. Taking into consideration the properties of Euphorbia hirta that have been described in previous studies, in addition to the results from the present study, it appears that the herb may exhibit similar effects to those of the quinolone group of antibiotics. Further in-depth investigations are required into the potential effects of Euphorbia hirta, deleterious and otherwise. PMID:24223653

  19. Evaluation of antiobesity and cardioprotective effect of Gymnema sylvestre extract in murine model

    PubMed Central

    Kumar, Vinay; Bhandari, Uma; Tripathi, Chakra Dhar; Khanna, Geetika

    2012-01-01

    Objective: Obesity plays a central role in the insulin resistance syndrome, which is associated with hyperinsulinemia, hypertension, hyperlipidemia, type 2 diabetes mellitus, and an increased risk of atherosclerotic cardiovascular disease. The present study was done to assess the effect of Gymnema sylvestre extract (GSE) in the high fat diet (HFD)-induced cellular obesity and cardiac damage in Wistar rats. Materials and Methods: Adult male Wistar rats (150–200 g body weight) were used in this study. HFD was used to induce obesity. Body mass index, hemodynamic parameters, serum leptin, insulin, glucose, lipids, apolipoprotein levels, myocardial apoptosis, and antioxidant enzymes were assessed. Organ and visceral fat pad weights and histopathological studies were also carried out. Results: Oral feeding of HFD (20 g/day) for a period of 28 days resulted in a significant increase in body mass index, organ weights, visceral fat pad weight, cardiac caspase-3, cardiac DNA laddering (indicating apoptotic inter-nucleosomal DNA fragment), and lipid peroxide levels of cardiac tissues of rats. Further, mean arterial blood pressure, heart rate, serum leptin, insulin, LDH, LDL-C, total cholesterol, triglycerides, and apolipoprotein-B levels were enhanced significantly, whereas serum HDL-C, apoliporotein-A1 levels, and cardiac Na+ K+ ATPase, antioxidant enzymes levels were significantly decreased. Furthermore, treatment with standardized ethanolic GSE (200 m/kg/p.o.) for a period of 28 days resulted in significant reversal of above mentioned changes in the obese Wistar rats. Conclusion: The present study has demonstrated the significant antiobesity potential of GSE in murine model of obesity. PMID:23112423

  20. Determinants of the Proinflammatory Action of Ambient Particulate Matter in Immortalized Murine Macrophages

    PubMed Central

    Guastadisegni, Cecilia; Kelly, Frank J.; Cassee, Flemming R.; Gerlofs-Nijland, Miriam E.; Janssen, Nicole A.H.; Pozzi, Roberta; Brunekreef, Bert; Sandström, Thomas; Mudway, Ian

    2010-01-01

    Background Proximity to traffic-related pollution has been associated with poor respiratory health in adults and children. Objectives We wished to test the hypothesis that particulate matter (PM) from high-traffic sites would display an enhanced capacity to elicit inflammation. Methods We examined the inflammatory potential of coarse [2.5–10 μm in aerodynamic diameter (PM2.5–10)] and fine [0.1–2.5 μm in aerodynamic diameter (PM0.1–2.5)] PM collected from nine sites throughout Europe with contrasting traffic contributions. We incubated murine monocytic-macrophagic RAW264.7 cells with PM samples from these sites (20 or 60 μg/cm2) and quantified their capacity to stimulate the release of arachidonic acid (AA) or the production of interleukin-6 and tumor necrosis factor-α (TNFα) as measures of their inflammatory potential. Responses were then related to PM composition: metals, hydrocarbons, anions/cations, and endotoxin content. Results Inflammatory responses to ambient PM varied markedly on an equal mass basis, with PM2.5–10 displaying the largest signals and contrasts among sites. Notably, we found no evidence of enhanced inflammatory potential at high-traffic sites and observed some of the largest responses at sites distant from traffic. Correlation analyses indicated that much of the sample-to-sample contrast in the proinflammatory response was related to the content of endotoxin and transition metals (especially iron and copper) in PM2.5–10. Use of the metal chelator diethylene triamine pentaacetic acid inhibited AA release, whereas recombinant endotoxin-neutralizing protein partially inhibited TNFα production, demonstrating that different PM components triggered inflammatory responses through separate pathways. Conclusions We found no evidence that PM collected from sites in close proximity to traffic sources displayed enhanced proinflammatory activity in RAW264.7 cells. PMID:20663738

  1. Zinc deficiency increases organ damage and mortality in a murine model of polymicrobial sepsis

    PubMed Central

    Knoell, Daren L.; Julian, Mark W.; Bao, Shengying; Besecker, Beth; Macre, Jennifer E.; Leikauf, George D.; DiSilvestro, Robert A.; Crouser, Elliott D.

    2010-01-01

    Objective Zinc deficiency is common among populations at high risk for sepsis mortality, including elderly, alcoholic, and hospitalized patients. Zinc deficiency causes exaggerated inflammatory responses to endotoxin but has not been evaluated during bacterial sepsis. We hypothesized that subacute zinc deficiency would amplify immune responses and oxidant stress during bacterial sepsis [i.e., cecal ligation and puncture (CLP)] resulting in increased mortality and that acute nutritional repletion of zinc would be beneficial. Design Prospective, randomized, controlled animal study. Setting University medical center research laboratory. Subjects Adult male C57BL/6 mice. Interventions Ten-week-old, male, C57BL/6 mice were randomized into three dietary groups: 1) control diet, 2) zinc-deficient diet for 3 weeks, and 3) zinc-deficient diet for 3 weeks followed by oral zinc supplementation for 3 days (n = 35 per diet). Mice were then assigned to receive either CLP or sham operation (n = 15 each per diet). CLP and sham-operated treatment groups were further assigned to a 7-day survival study (n = 10 per treatment per diet) or were evaluated at 24 hours (n = 5 per treatment per diet) for signs of vital organ damage. Measurements and Main Results Sepsis mortality was significantly increased with zinc deficiency (90% vs. 30% on control diet). Zinc-deficient animals subject to CLP had higher plasma cytokines, more severe organ injury, including increased oxidative tissue damage and cell death, particularly in the lungs and spleen. None of the sham-operated animals died or developed signs of organ damage. Zinc supplementation normalized the inflammatory response, greatly diminished tissue damage, and significantly reduced mortality. Conclusions Subacute zinc deficiency significantly increases systemic inflammation, organ damage, and mortality in a murine polymicrobial sepsis model. Short-term zinc repletion provides significant, but incomplete protection despite normalization

  2. Differential display analysis of murine collagen-induced arthritis: cloning of the cDNA-encoding murine ATPase inhibitor.

    PubMed Central

    Yamada, E; Ishiguro, N; Miyaishi, O; Takeuchi, A; Nakashima, I; Iwata, H; Isobe, K

    1997-01-01

    We used the differential display technique in order to detect a new gene involved in murine type II collagen-induced arthritis (CIA). In this study, we have identified a novel gene, IF1, whose expression level is increased during the natural course of CIA. Northern blot analyses suggest that IF1 is involved in the natural course of CIA but is not involved as a trigger of CIA. IF1 is considered to be the murine ATPase inhibitor gene for several reasons. First, IF1 shows an extremely high homology to the rat ATPase inhibitor; the highly conserved region between rat and bovine amino acid residues 22-45, which is the minimum sequence showing ATPase inhibitory activities, is also highly conserved in IF1. Second, IF1 possesses a histidine-rich region in the same area, which is thought to be important for regulation of mammalian inhibitors. Third, the tissue distribution of IF1 is very suggestive. The expression of IF1 was very strong in energetic organs such as the heart, brain and kidney, and the development of arthritis requires great amounts of ATP. As arthritis develops rapidly, the cellular ATP pool may be decreased. Before the ATP pool is exhausted, the ATPase inhibitor may serve as a brake for ATP hydrolysis. If the supply of free energy can be reduced, the inflammation of arthritis may in turn be restored. Our hypothesis is that the ATPase inhibitor is involved in regulating the inflammatory responses. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:9497501

  3. Human anti-murine antibody responses in ovarian cancer patients undergoing radioimmunotherapy with the murine monoclonal antibody OC-125

    SciTech Connect

    Muto, M.G.; Finkler, N.J.; Kassis, A.I.; Lepisto, E.M.; Knapp, R.C. )

    1990-08-01

    Human anti-murine antibody (HAMA) responses were monitored in 23 patients with recurrent or persistent epithelial ovarian carcinoma undergoing single-dose intraperitoneal radioimmunotherapy (RIT) with the murine monoclonal antibody OC-125. Sera of patients receiving escalating doses of OC-125 F(ab')2 (10-70 mg) radiolabeled with 18 to 141 mCi of iodine-131 were assayed for HAMA by a protein A-based radioimmunoassay. Overall, 70% of patients (16/23) developed HAMA within 10 to 46 days (median = 29) postinfusion, with peak values (23 +/- 6 to 325 +/- 10 micrograms/ml) at 32 to 102 days (median = 38). HAMA was undetectable prior to infusion in all cases and persisted up to 76 weeks. Of patients receiving a dose of 123 mCi or less, 80% (16/20) developed HAMA, whereas in the 140-mCi group, none of the three patients had detectable levels. Two patients in the 140-mCi group demonstrated dose-limiting bone marrow toxicity (severe thrombocytopenia and neutropenia). It is concluded that a single intraperitoneal dose of monoclonal antibody leads to a high incidence of HAMA production. The results also suggest that the likelihood of HAMA formation in patients who either had undergone recent chemotherapy or had received the highest dose of the radioimmunoconjugate is reduced. These observations may be of significance in designing multiple-dose therapy trials as HAMA has been demonstrated to decrease antibody-to-tumor binding and may potentially increase renal, hepatic, and hematologic toxicity associated with radioimmunotherapy.

  4. Infection of Murine Macrophages by Salmonella enterica Serovar Heidelberg Blocks Murine Norovirus Infectivity and Virus-induced Apoptosis.

    PubMed

    Agnihothram, Sudhakar S; Basco, Maria D S; Mullis, Lisa; Foley, Steven L; Hart, Mark E; Sung, Kidon; Azevedo, Marli P

    2015-01-01

    Gastroenteritis caused by bacterial and viral pathogens constitutes a major public health threat in the United States accounting for 35% of hospitalizations. In particular, Salmonella enterica and noroviruses cause the majority of gastroenteritis infections, with emergence of sporadic outbreaks and incidence of increased infections. Although mechanisms underlying infections by these pathogens have been individually studied, little is known about the mechanisms regulating co-infection by these pathogens. In this study, we utilized RAW 264.7 murine macrophage cells to investigate the mechanisms governing co-infection with S. enterica serovar Heidelberg and murine norovirus (MNV). We demonstrate that infection of RAW 264.7 cells with S. enterica reduces the replication of MNV, in part by blocking virus entry early in the virus life cycle, and inducing antiviral cytokines later in the infection cycle. In particular, bacterial infection prior to, or during MNV infection affected virus entry, whereas MNV entry remained unaltered when the virus infection preceded bacterial invasion. This block in virus entry resulted in reduced virus replication, with the highest impact on replication observed during conditions of co-infection. In contrast, bacterial replication showed a threefold increase in MNV-infected cells, despite the presence of antibiotic in the medium. Most importantly, we present evidence that the infection of MNV-infected macrophages by S. enterica blocked MNV-induced apoptosis, despite allowing efficient virus replication. This apoptosis blockade was evidenced by reduction in DNA fragmentation and absence of poly-ADP ribose polymerase (PARP), caspase 3 and caspase 9 cleavage events. Our study suggests a novel mechanism of pathogenesis whereby initial co-infection with these pathogens could result in prolonged infection by either of these pathogens or both together.

  5. A murine-ES like state facilitates transgenesis and homologous recombination in human pluripotent stem cells

    PubMed Central

    Buecker, Christa; Chen, Hsu-Hsin; Polo, Jose; Daheron, Laurence; Bu, Lei; Barakat, Tahsin Stefan; Okwieka, Patricia; Porter, Andrew; Gribnau, Joost; Hochedlinger, Konrad; Geijsen, Niels

    2010-01-01

    Murine embryonic stem cells have been shown to exist in two functionally distinct pluripotent states, embryonic stem cells (ES cell)- and epiblast stem cells (EpiSCs), which are defined by the culture growth factor conditions. Human ES cells appear to exist in an epiblast-like state, which in comparison to their murine counterparts, is relatively difficult to propagate and manipulate. As a result, gene targeting is difficult and to-date only a handful of human knock-in or knock-out cell lines exist. We explored whether an alternative stem cell state exists for human stem cells as well, and demonstrate that manipulation of the growth factor milieu allows the derivation of a novel human stem cell type that displays morphological, molecular and functional properties of murine ES cells and facilitates gene targeting. As such, the murine ES-like state provides a powerful tool for the generation of recombinant human pluripotent stem cell lines. PMID:20569691

  6. Effect of cell cycle synchronization on the accuracy of murine and bovine embryo sex determination.

    PubMed

    Hossepian de Lima, V F; De Bem, A R; Jorge, W; Moreira-Filho, C A

    1994-02-01

    Different cell cycle synchronization methods were used to increase the mitotic index and accuracy of sex determination in murine and bovine embryos. For sexing purposes, colchicine treatment for 2, 4, 6 and 8 h and the FdU-thymidine-colchicine combination were tested in murine embryos. The best results were obtained with colchicine treatment for 8 h (96.88% accuracy) and with FdU-thymidine-colchicine (97.22% accuracy). Mitotic indexes differed significantly between the 2 treatments (21.71% for colchicine and 32.95% for FdU-thymidine-colchicine). For sex identification of murine and bovine demi-embryos, both treatments were demonstrated to be equally effective (nearly 90%). The mitotic index for the FdU-treated murine demi-embryos (19.04%) was higher than the one obtained for the 8-h colchicine treatment (15.62%).

  7. The MET Receptor Tyrosine Kinase Confers Repair of Murine Pancreatic Acinar Cells following Acute and Chronic Injury

    PubMed Central

    Gaziova, Ivana; Jackson, Daniel; Boor, Paul J.; Carter, Dwayne; Cruz-Monserrate, Zobeida; Elferink, Cornelis J.; Joshi, Aditya D.; Kaphalia, Bhupendra; Logsdon, Craig D.; Pereira de Castro, Karen; Soong, Lynn; Tao, Xinrong; Qiu, Suimin; Elferink, Lisa A.

    2016-01-01

    Acinar cells represent the primary target in necroinflammatory diseases of the pancreas, including pancreatitis. The signaling pathways guiding acinar cell repair and regeneration following injury remain poorly understood. The purpose of this study was to determine the importance of Hepatocyte Growth Factor Receptor/MET signaling as an intrinsic repair mechanism for acinar cells following acute damage and chronic alcohol-associated injury. Here, we generated mice with targeted deletion of MET in adult acinar cells (MET-/-). Acute and repetitive pancreatic injury was induced in MET-/- and control mice with cerulein, and chronic injury by feeding mice Lieber-DeCarli diets containing alcohol with or without enhancement of repetitive pancreatic injury. We examined the exocrine pancreas of these mice histologically for acinar death, edema, inflammation and collagen deposition and changes in the transcriptional program. We show that MET expression is relatively low in normal adult pancreas. However, MET levels were elevated in ductal and acinar cells in human pancreatitis specimens, consistent with a role for MET in an adaptive repair mechanism. We report that genetic deletion of MET in adult murine acinar cells was linked to increased acinar cell death, chronic inflammation and delayed recovery (regeneration) of pancreatic exocrine tissue. Notably, increased pancreatic collagen deposition was detected in MET knockout mice following repetitive injury as well alcohol-associated injury. Finally, we identified specific alterations of the pancreatic transcriptome associated with MET signaling during injury, involved in tissue repair, inflammation and endoplasmic reticulum stress. Together, these data demonstrate the importance of MET signaling for acinar repair and regeneration, a novel finding that could attenuate the symptomology of pancreatic injury. PMID:27798657

  8. Studies on the murine Ss protein. I. Purification, molecular weight, and subunit structure

    PubMed Central

    1975-01-01

    The murine Ss protein has been isolated and purified. Using specific antisera, the radiolabeled protein has a mol wt of 120,000 in sodium dodecyl sulfate polyacrylamide gels. It is composed of two basic subunits of 23,000 and 14,000 daltons. The smaller molecular weight subunit contains a single disulfide bridge, is devoid of carbohydrate, and may represent the murine equivalent of beta2-microglobulin. PMID:809530

  9. Detection of Murine Typhus Infection in Fleas by Using the Polymerase Chain Reaction

    DTIC Science & Technology

    1990-03-01

    spotted fever ( Rickettsia group-specific primers and probes for the diagnosis of rick- rickettsii ), epidemic typhus ( Rickettsia prowazekii), murine...Polymerase chain reaction, Xenops.yl~j.Lopsis;" Rickettsia typhi,- Enz me-linked immunosorbent assay ’ A amplificatin6 fProu)t 19. ABSTRACT (Continue on...olymerase chain reaction (PCR) amplification of CDNA was used to detect the etiologic agent of murine typhus, Rickettsia typhi, in experimentally infected

  10. Clueless? Adult Mysteries with Young Adult Appeal.

    ERIC Educational Resources Information Center

    Charles, John; Morrison, Joanna

    1997-01-01

    Presents a list of adult mystery titles for young adult readers. Includes first titles in a series (for reading in order); new and lesser-known mystery authors' works are the focus. Annotations include plot summary. The rest of each annotation is for professional use (includes date and name of award bestowed). (AEF)

  11. Young Adult Literature for Young Adult Males.

    ERIC Educational Resources Information Center

    Gill, Sam D.

    1999-01-01

    Argues that young adult literature can play a significant role in the emotional and mental health of an adolescent as well as help young males become more literate. Offers a 19-item annotated list of young adult novels with male protagonists, sorted by themes: nature and adventure stories, sports stories, genre stories, historical stories, and…

  12. Comparison of indirect immunofluorescence assays for diagnosis of scrub typhus and murine typhus using venous blood and finger prick filter paper blood spots.

    PubMed

    Phetsouvanh, Rattanaphone; Blacksell, Stuart D; Jenjaroen, Kemajittra; Day, Nicholas P J; Newton, Paul N

    2009-05-01

    We performed indirect immunofluorescence assays (IFAs) to compare levels of IgM and IgG antibodies to Orientia tsutsugamushi and Rickettsia typhi in admission-phase serum samples and filter paper blood spots (assayed immediately and stored at 5.4 degrees C and 29 degrees C for 30 days) collected on the same day from 53 adults with suspected scrub typhus and murine typhus admitted to Mahosot Hospital Vientiane, Lao People's Democratic Republic. The sensitivities and specificities of admission-phase filter paper blood spots in comparison to paired sera were between 91% and 95% and 87% and 100%, respectively, for the diagnosis of scrub typhus and murine typhus. The classification of patients as having or not having typhus did not significantly differ after storage of the blood spots for 30 days (P > 0.4) at 5.4 degrees C and 29 degrees C. Because filter paper blood samples do not require sophisticated and expensive storage and transport, they may be an appropriate specimen collection technique for the diagnosis of rickettsial disease in the rural tropics.

  13. Handling stress may confound murine gut microbiota studies

    PubMed Central

    Allen-Blevins, Cary R.; You, Xiaomeng; Hinde, Katie

    2017-01-01

    Background Accumulating evidence indicates interactions between human milk composition, particularly sugars (human milk oligosaccharides or HMO), the gut microbiota of human infants, and behavioral effects. Some HMO secreted in human milk are unable to be endogenously digested by the human infant but are able to be metabolized by certain species of gut microbiota, including Bifidobacterium longum subsp. infantis (B. infantis), a species sensitive to host stress (Bailey & Coe, 2004). Exposure to gut bacteria like B. infantisduring critical neurodevelopment windows in early life appears to have behavioral consequences; however, environmental, physical, and social stress during this period can also have behavioral and microbial consequences. While rodent models are a useful method for determining causal relationships between HMO, gut microbiota, and behavior, murine studies of gut microbiota usually employ oral gavage, a technique stressful to the mouse. Our aim was to develop a less-invasive technique for HMO administration to remove the potential confound of gavage stress. Under the hypothesis that stress affects gut microbiota, particularly B. infantis, we predicted the pups receiving a prebiotic solution in a less-invasive manner would have the highest amount of Bifidobacteria in their gut. Methods This study was designed to test two methods, active and passive, of solution administration to mice and the effects on their gut microbiome. Neonatal C57BL/6J mice housed in a specific-pathogen free facility received increasing doses of fructooligosaccharide (FOS) solution or deionized, distilled water. Gastrointestinal (GI) tracts were collected from five dams, six sires, and 41 pups over four time points. Seven fecal pellets from unhandled pups and two pellets from unhandled dams were also collected. Qualitative real-time polymerase chain reaction (qRT-PCR) was used to quantify and compare the amount of Bifidobacterium, Bacteroides, Bacteroidetes, and Firmicutes

  14. Development of a mechanical testing assay for fibrotic murine liver

    SciTech Connect

    Barnes, Stephanie L.; Lyshchik, Andrej; Washington, Mary K.; Gore, John C.; Miga, Michael I.

    2007-11-15

    In this article, a novel protocol for mechanical testing, combined with finite element modeling, is presented that allows the determination of the elastic modulus of normal and fibrotic murine livers and is compared to an independent mechanical testing method. The novel protocol employs suspending a portion of murine liver tissue in a cylindrical polyacrylamide gel, imaging with a microCT, conducting mechanical testing, and concluding with a mechanical property determination via a finite element method analysis. More specifically, the finite element model is built from the computerized tomography (CT) images, and boundary conditions are imposed in order to simulate the mechanical testing conditions. The resulting model surface stress is compared to that obtained during mechanical testing, which subsequently allows for direct evaluation of the liver modulus. The second comparison method involves a mechanical indentation test performed on a remaining liver lobe for comparison. In addition, this lobe is used for histological analysis to determine relationships between elasticity measurements and tissue health. This complete system was used to study 14 fibrotic livers displaying advanced fibrosis (injections with irritant), three control livers (injections without irritant), and three normal livers (no injections). The moduli evaluations for nondiseased livers were estimated as 0.62{+-}0.09 kPa and 0.59{+-}0.1 kPa for indenter and model-gel-tissue (MGT) assay tests, respectively. Moduli estimates for diseased liver ranged from 0.6-1.64 kPa and 0.96-1.88 kPa for indenter and MGT assay tests, respectively. The MGT modulus, though not equivalent to the modulus determined by indentation, demonstrates a high correlation, thus indicating a relationship between the two testing methods. The results also showed a clear difference between nondiseased and diseased livers. The developed MGT assay system is quite compact and could easily be utilized for controlled evaluation of

  15. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis

    PubMed Central

    Maeda, Takuro; Sakiyama, Toshio; Kanmura, Shuji; Hashimoto, Shinichi; Ibusuki, Kazunari; Tanoue, Shiroh; Komaki, Yuga; Arima, Shiho; Nasu, Yuichiro; Sasaki, Fumisato; Taguchi, Hiroki; Numata, Masatsugu; Uto, Hirofumi; Tsubouchi, Hirohito; Ido, Akio

    2016-01-01

    Human neutrophil peptides (HNPs) not only have antimicrobial properties, but also exert multiple immunomodulatory effects depending on the concentration used. We have previously demonstrated that the intraperitoneal administration of high-dose HNP-1 (100 µg/day) aggravates murine dextran sulfate sodium (DSS)-induced colitis, suggesting a potential pro-inflammatory role for HNPs at high concentrations. However, the role of low physiological concentrations of HNPs in the intestinal tract remains largely unknown. The aim of this study was to examine the effects of low concentrations of HNPs on intestinal inflammation. We first examined the effects of the mild transgenic overexpression of HNP-1 in DSS-induced colitis. HNP-1 transgenic mice have plasma HNP-1 levels similar to the physiological concentrations in human plasma. Compared to wild-type mice treated with DSS, HNP-1 transgenic mice treated with DSS had significantly lower clinical and histological scores, and lower colonic mRNA levels of pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α. We then injected low-dose HNP-1 (5 µg/day) or phosphate-buffered saline (PBS) intraperitoneally into C57BL/6N and BALB/c mice administered DSS. The HNP-1-treated mice exhibited significantly milder colitis with reduced expression levels of pro-inflammatory cytokines compared with the PBS-treated mice. Finally, we examined the in vitro effects of HNP-1 on the expression of cytokines associated with macrophage activation. Low physiological concentrations of HNP-1 did not significantly affect the expression levels of IL-1β, TNF-α, IL-6 or IL-10 in colonic lamina propria mononuclear cells activated with heat-killed Escherichia coli, suggesting that the anti-inflammatory effects of HNP-1 on murine colitis may not be exerted by direct action on intestinal macrophages. Collectively, our data demonstrated a biphasic dose-dependent effect of HNP-1 on DSS-induced colitis: an amelioration at

  16. Verapamil ameliorates the clinical and pathological course of murine myocarditis.

    PubMed Central

    Dong, R; Liu, P; Wee, L; Butany, J; Sole, M J

    1992-01-01

    The effects of the calcium channel blocking agent, verapamil, were studied in a murine model of viral myocarditis. Three groups of 8-wk-old DBA/2 mice (n = 25 each) were inoculated with 10 plaque-forming units of encephalomyocarditis virus and randomized to three treatment regimens. Group 1 mice received verapamil intraperitoneally (5 mg/kg per d) for 7 d before infection, followed by verapamil orally (mean dose of 3.5 mg/mouse per d) in drinking water during infection. Group 2 mice received only verapamil orally starting on day 4 after infection, coincident with peak viremia. Group 3 (infected control) received no verapamil in regular drinking water after viral inoculation. Additional control animals were studied in group 4 (n = 21), consisting of uninfected control animals receiving intraperitoneal and oral verapamil at doses identical to group 1, and in group 5 (n = 21), consisting of uninfected and untreated controls. Animals were randomly killed from each group (n = 7) at 7, 14, and 28 d after infection. Routine histology was performed blindly on an apical slice of each heart and semi-quantitatively graded for inflammation, necrosis, calcification, and fibrosis on a scale of 0-4. Digital planimetry was performed to measure the absolute and relative areas of inflammation and necrosis. The pretreated animals in group 1 showed marked reduction in inflammation and necrosis (score of 3.7 +/- 1.4 vs. 8.7 +/- 2.0 in group 3 on day 14, P < 0.05) and were indistinguishable from the posttreated group 2 mice (score of 4.0 +/- 1.5 vs. 8.7 +/- 2.0 in group 3 on day 14, P < 0.05). All the uninfected control animals (groups 4 and 5) showed no myocardial lesions whether treated with verapamil or not. Quantitative planimetry confirmed decreased inflammation and necrosis (2.0 +/- 3.3% in group 1 and 3.5 +/- 3.1% in group 2 vs. 21.9 +/- 22.6% in group 3 on day 14). Untreated infected hearts injected with liquid silicone rubber exhibited extensive areas of focal microvascular

  17. Assessment of carbon nanoparticle exposure on murine macrophage function

    NASA Astrophysics Data System (ADS)

    Suro-Maldonado, Raquel M.

    There is growing concern about the potential cytotoxicity of nanoparticles. Exposure to respirable ultrafine particles (2.5uM) can adversely affect human health and have been implicated with episodes of increased respiratory diseases such as asthma and allergies. Nanoparticles are of particular interest because of their ability to penetrate into the lung and potentially elicit health effects triggering immune responses. Nanoparticles are structures and devises with length scales in the 1 to 100-nanometer range. Black carbon (BC) nanoparticles have been observed to be products of combustion, especially flame combustion and multi-walled carbon nanotubes (MWCNT) have been shown to be found in both indoor and outdoor air. Furthermore, asbestos, which have been known to cause mesothelioma as well as lung cancer, have been shown to be structurally identical to MWCNTs. The aims of these studies were to examine the effects of carbon nanoparticles on murine macrophage function and clearance mechanisms. Macrophages are immune cells that function as the first line of defense against invading pathogens and are likely to be amongst the first cells affected by nanoparticles. Our research focused on two manufactured nanoparticles, MWCNT and BC. The two were tested against murine-derived macrophages in a chronic contact model. We hypothesized that long-term chronic exposure to carbon nanoparticles would decrease macrophages ability to effectively respond to immunological challenge. Production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), cell surface macrophage; activation markers, reactive oxygen species formation (ROS), and antigen processing and presentation were examined in response to lipopolysaccharide (LPS) following a 144hr exposure to the particulates. Data demonstrated an increase in TNF-alpha, and NO production; a decrease in phagocytosis and antigen processing and presentation; and a decrease in the expression levels of cell surface macrophage

  18. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis.

    PubMed

    Maeda, Takuro; Sakiyama, Toshio; Kanmura, Shuji; Hashimoto, Shinichi; Ibusuki, Kazunari; Tanoue, Shiroh; Komaki, Yuga; Arima, Shiho; Nasu, Yuichiro; Sasaki, Fumisato; Taguchi, Hiroki; Numata, Masatsugu; Uto, Hirofumi; Tsubouchi, Hirohito; Ido, Akio

    2016-12-01

    Human neutrophil peptides (HNPs) not only have antimicrobial properties, but also exert multiple immunomodulatory effects depending on the concentration used. We have previously demonstrated that the intraperitoneal administration of high-dose HNP-1 (100 µg/day) aggravates murine dextran sulfate sodium (DSS)-induced colitis, suggesting a potential pro-inflammatory role for HNPs at high concentrations. However, the role of low physiological concentrations of HNPs in the intestinal tract remains largely unknown. The aim of this study was to examine the effects of low concentrations of HNPs on intestinal inflammation. We first examined the effects of the mild transgenic overexpression of HNP-1 in DSS-induced colitis. HNP-1 transgenic mice have plasma HNP-1 levels similar to the physiological concentrations in human plasma. Compared to wild-type mice treated with DSS, HNP-1 transgenic mice treated with DSS had significantly lower clinical and histological scores, and lower colonic mRNA levels of pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α. We then injected low-dose HNP-1 (5 µg/day) or phosphate-buffered saline (PBS) intraperitoneally into C57BL/6N and BALB/c mice administered DSS. The HNP-1-treated mice exhibited significantly milder colitis with reduced expression levels of pro-inflammatory cytokines compared with the PBS-treated mice. Finally, we examined the in vitro effects of HNP-1 on the expression of cytokines associated with macrophage activation. Low physiological concentrations of HNP-1 did not significantly affect the expression levels of IL-1β, TNF-α, IL-6 or IL-10 in colonic lamina propria mononuclear cells activated with heat-killed Escherichia coli, suggesting that the anti-inflammatory effects of HNP-1 on murine colitis may not be exerted by direct action on intestinal macrophages. Collectively, our data demonstrated a biphasic dose-dependent effect of HNP-1 on DSS-induced colitis: an

  19. Considerations concerning the murine hepatocarcinogenicity of selected chlorinated hydrocarbons.

    PubMed

    Maronpot, R R; Anna, C H; Devereux, T R; Lucier, G W; Butterworth, B E; Anderson, M W

    1995-01-01

    Of the chlorinated hydrocarbons discussed above, all six are associated with induction of hepatocellular neoplasia in mice. None of the six is considered to be potent mutagen and most are without any significant genotoxic activity as assessed by conventional in vitro testing schemes. Although some of the agents have biological effects in common (see Figure 4), there is no single biological response (mode of action) that they all share to provide a mechanistic basis for the observed murine hepatocarcinogenicity. Based upon the information currently available for each of the chlorinated hydrocarbons discussed above, it is probable that some modes of action may be more contributory to the rodent carcinogenic response than others; however, no mode of action, pathway, or mechanism should be considered to be mutually exclusive. The murine hepatocarcinogenic effect of TriCE is most probably contingent upon its species-specific metabolism to trichloroacetic acid and DCA. There is fairly consistent evidence that cytotoxicity and reparative hyperplasia are associated with doses of TriCE that cause induction of liver neoplasms. The possibility that peroxisome proliferation is playing a role in the induction of mouse hepatocellular neoplasia remains a tempting explanation, since higher intracellular steady states of H2O2 production would be consistent with observed enhanced cellular proliferation as well as the possibility of in vivo DNA damage. The mouse hepatocarcinogenicity associated with TetCE most probably is associated with species-specific metabolic production of trichloroacetic acid. As with TriCE, cytotoxicity and reparative hyperplasia may represent a potential mode of action for the observed hepatocarcinogenicity. Once again, the potential for enhanced peroxisome proliferation is consistent with enhanced cell proliferation and oxygen radical damage would help explain the random point mutations in ras proto-oncogenes documented in DNA from TetCE-induced mouse liver

  20. Nitric oxide-mediated immunosuppression following murine Echinococcus multilocularis infection

    PubMed Central

    DAI, W J; GOTTSTEIN, B

    1999-01-01

    In some parasitic infections immunosuppression is a prominent characteristic of the host–parasite interplay. We have used a murine alveolar echinococcosis (AE) model in susceptible C57BL/6 mice to document a suppressed splenocyte proliferative response to concanavalin A (Con A) at the early (1-month) stage and to Echinococcus multilocularis-crude antigen (Emc-antigen) at the late (4–6-month) stage of chronic infection. Despite proliferative suppression, splenic cytokine production [interleukin-2 (IL-2), IL-4 and interferon-γ (IFN-γ)] in response to Con A or Emc-antigen stimulation was not suppressed at 1 month postinfection (p.i.). Infection resulted in a strong Mac-1+ cell infiltration of the peritoneal cavity and spleen. Peritoneal cells (PEC) from mice infected at the 1-month stage were rich in macrophages and expressed significantly higher levels of transcripts for the inflammatory cytokine IL-1β and for tumour necrosis factor-α and inducible nitric oxide synthase (iNOS), when compared with PEC from non-infected control mice. Conversely, the IL-10 transcript level remained low and did not change during infection. Spleen cells supplemented with PEC from infected mice induced a marked increase in the levels of nitrite in response to Con A and Emc-antigen stimulation, and also a complete suppression of splenic proliferation. The spleen cells from late-stage infected mice expressed only background levels of IL-10 but greatly increased levels of iNOS, when compared with normal spleen cells. This observation correlated with the immunosuppression demonstrated at the late stage of murine AE. Furthermore, the suppressed splenic proliferative responses observed at the early and late stage were reversed to a large extent by the addition of NG-monomethyl-l-arginine and partially by anti-IFN-γ. Thus, our results demonstrated that the immunosuppression observed in chronic AE was not primarily dependent on IL-10 but rather on nitric oxide production by macrophages

  1. Depression in Older Adults

    ERIC Educational Resources Information Center

    Stickle, Fred; Onedera, Jill D.

    2006-01-01

    The purpose of this article is to address selected aspects of depression in older adults. Specifically, symptoms, risk factors, diagnosis, and interventions for depression in older adults are reviewed.

  2. Immunization Schedules for Adults

    MedlinePlus

    ... ACIP Vaccination Recommendations Why Immunize? Vaccines: The Basics Immunization Schedules for Adults in Easy-to-read Formats ... previous immunizations. View or Print a Schedule Recommended Immunizations for Adults (19 Years and Older) by Age ...

  3. Adult Education Update

    ERIC Educational Resources Information Center

    Hall, Clyde W.

    1975-01-01

    Summarized are speeches dealing with adult education's stiff-necked adherence to middle-class values; the need for upgraded management skills; and a report of a study of adult education in area vocational schools in Georgia. (Author/AJ)

  4. The Effects of Obesity on Murine Cortical Bone

    NASA Astrophysics Data System (ADS)

    Martin, Sophi

    This dissertation details the effects of obesity on the mechanical properties and structure of cortical bone. Obesity is associated with greater bone mineral content that might be expected to protect against fracture, which has been observed in adults. Paradoxically however, the incidence of bone fractures has been found to increase in overweight and obese children and adolescents. Femora from adolescent and adult mice fed a high-fat diet are investigated for changes in shape, tissue structure, as well as tissue-level and whole-bone mechanical properties. Results indicate increased bone size, reduced size-independent mechanical properties, but maintained size-dependent mechanical properties. Other changes in cortical bone response to obesity are observed with advancing age. This study indicates that bone quantity and bone quality play important compensatory roles in determining fracture risk, and that fracture risk may not be lessened for adults as previously thought.

  5. Adult Education in Sweden.

    ERIC Educational Resources Information Center

    Miller, Harry; And Others

    Folk high schools, study circles, labor market training, union education, and municipal adult schools are the major providers of adult education in Sweden. For the most part, these programs are financed by the government and are tuition free. Folk high schools, which are the oldest type, were founded to provide young adults with a general civic…

  6. The Adult Experience.

    ERIC Educational Resources Information Center

    Belsky, Janet

    The 14 chapters of this textbook chronicle adult development from youth through old age, emphasizing both research and interviews with adults at various stages in their lives. Topics covered include the following: (1) the academic field of adult development; (2) theories and research methods; (3) aging and disease prevention; (4) sexuality and…

  7. Adult Survival Skills Assessment.

    ERIC Educational Resources Information Center

    Walsko, Gregory M.

    The purpose of this instrument is to supplement data from the Adult Basic Learning Examination in assessing the functional level of adults in daily situations. It may also be used as a teaching tool for adults requesting tutoring in specific concepts and skills presented in the instrument. This instrument is an informal assessment instrument and…

  8. Kids Who Outwit Adults.

    ERIC Educational Resources Information Center

    Seita, John R.; Brendtro, Larry K.

    Kids who distrust adults are highly skilled at hiding their real nature and resisting change. Most adults shun such youths or get mired in conflict with them. Punitive get tough practices as well as traditional flaw-fixing treatment are reactive strategies that often drive these youths further from adult bonds and reinforce oppositional and…

  9. Urbanization and Adult Education

    ERIC Educational Resources Information Center

    Short, W. Fisher

    1974-01-01

    The impact of urbanization, the main tasks facing the adult educator in an urban context, identifying the casualties of urbanization, recognizing and dealing with social deprivation, and the various agencies involved in adult education are relevant considerations for adult educators. (MW)

  10. Dimensions of Adult Learning

    ERIC Educational Resources Information Center

    Foley, Griff, Ed.

    2004-01-01

    This broad introduction to adult and postcompulsory education offers an overview of the field for students, adult educators and workplace trainers. The book establishes an analytical framework to emphasize the nature of learning and agency of learners; examines the core knowledge and skills that adult educators need; discusses policy, research and…

  11. Adult Learning: A Reader.

    ERIC Educational Resources Information Center

    Sutherland, Peter, Ed.

    This book on adult learning is divided into six sections. Section 1, Cognitive Processes, includes the following chapters: "Cognitive Processes: Contemporary Paradigms of Learning" (Jack Mezirow); "Information Processing, Memory, Age and Adult Learning" (Gillian Boulton-Lewis); "Adult Learners' Metacognitive Behaviour in Higher Education" (Barry…

  12. Adult Education in Israel.

    ERIC Educational Resources Information Center

    Kirmayer, Paul, Ed.; And Others

    This volume contains 13 articles that reflect the development of adult education in Israel during recent years. The material relates to the principal areas with which the Division of Adult Education deals: formal and nonformal education for adults, language and cultural absorption of new immigrants, and training of facilitators for parental…

  13. Adults Role in Bullying

    ERIC Educational Resources Information Center

    Notar, Charles E.; Padgett, Sharon

    2013-01-01

    Do adults play a role in bullying? Do parents, teachers, school staff, and community adult leaders influence bullying behavior in children and teenagers? This article will focus on research regarding all adults who have almost daily contact with children and teens and their part in how bullying is identified, addressed, and prevented. This article…

  14. Adult Education in Greece

    ERIC Educational Resources Information Center

    Kokkos, Alexios

    2008-01-01

    The central aim of this article is to analyse the current situation of adult education in Greece. The article focuses on the following points: (a) the degree of participation in programmes of continuing professional training and general adult education courses, (b) the quality and the outcomes of the adult education provision in Greece, and (c)…

  15. Adult Competency Education Profile.

    ERIC Educational Resources Information Center

    Bureau of Occupational and Adult Education (DHEW/OE), Washington, DC. Div. of Adult Education.

    A compilation of abstracts of 120 current Adult Performance Level (APL) and Adult Competency Education (ACE) federally supported projects being conducted in 34 States and the District of Columbia, this project profile was developed for adult and secondary education administrators, teachers, and program developers who are beginning or are currently…

  16. Adult Competency Education Resources.

    ERIC Educational Resources Information Center

    Bureau of Occupational and Adult Education (DHEW/OE), Washington, DC. Div. of Adult Education.

    A compilation of brief descriptions of 20 current resources for Adult Performance Level (APL) and Adult Competency Education (ACE) programs, this guide was developed for adult and secondary education administrators, teachers, and program developers who are beginning or are already involved with APL/ACE programs. Each citation contains information…

  17. Adult Academy Volunteer Manual.

    ERIC Educational Resources Information Center

    Cora, Marie T., Ed.; Wood, Nicole R., Ed.

    This handbook was written specifically for volunteer tutors but is appropriate for teachers, student interns, coordinators, and others working with Adult Basic Education (ABE) and English-as-a-Second-Language (ESL) adult learners. It presents an overview of adult and non-traditional education models, some principles of reading and writing, a…

  18. Canadian Adult Basic Education.

    ERIC Educational Resources Information Center

    Brooke, W. Michael, Comp.

    "Trends," a publication of the Canadian Association for Adult Education, is a collection of abstracts on selected subjects affecting adult education; this issue is on adult basic education (ABE). It covers teachers and teacher training, psychological factors relating to the ABE teacher and students, manuals for teachers, instructional…

  19. Young Adult Services Manual.

    ERIC Educational Resources Information Center

    Boegen, Anne, Ed.

    Designed to offer guidelines, ideas and help to those who provide library service to young adults, this manual includes information about the provision of young adult (YA) services in six sections. The first section, which addresses planning and administration, includes a definition of a young adult and a checklist for determining community needs…

  20. Adult Educators' Core Competences

    ERIC Educational Resources Information Center

    Wahlgren, Bjarne

    2016-01-01

    Which competences do professional adult educators need? This research note discusses the topic from a comparative perspective, finding that adult educators' required competences are wide-ranging, heterogeneous and complex. They are subject to context in terms of national and cultural environment as well as the kind of adult education concerned…

  1. An Adult ESL Curriculum.

    ERIC Educational Resources Information Center

    South Carolina Literacy Resource Center, Columbia.

    This curriculum framework for adult literacy was written by 21 South Carolina adult English-as-a-Second-Language (ESL) instructors, as submitted to the South Carolina Literacy Resource Center. It is based on current theories in the fields of adult education and second language acquisition and is designed to be flexible so that it may be adapted to…

  2. Murine Cervical Heart Transplantation Model Using a Modified Cuff Technique

    PubMed Central

    Kofler, Markus; Ritschl, Paul; Oellinger, Robert; Aigner, Felix; Sucher, Robert; Schneeberger, Stefan; Pratschke, Johann; Brandacher, Gerald; Maglione, Manuel

    2014-01-01

    Mouse models are of special interest in research since a wide variety of monoclonal antibodies and commercially defined inbred and knockout strains are available to perform mechanistic in vivo studies. While heart transplantation models using a suture technique were first successfully developed in rats, the translation into an equally widespread used murine equivalent was never achieved due the technical complexity of the microsurgical procedure. In contrast, non-suture cuff techniques, also developed initially in rats, were successfully adapted for use in mice1-3. This technique for revascularization involves two major steps I) everting the recipient vessel over a polyethylene cuff; II) pulling the donor vessel over the formerly everted recipient vessel and holding it in place with a circumferential tie. This ensures a continuity of the endothelial layer, short operating time and very high patency rates4. Using this technique for vascular anastomosis we performed more than 1,000 cervical heart transplants with an overall success rate of 95%. For arterial inflow the common carotid artery and the proximal aortic arch were anastomosed resulting in a retrograde perfusion of the transplanted heart. For venous drainage the pulmonary artery of the graft was anastomosed with the external jugular vein of the recipient5. Herein, we provide additional details of this technique to supplement the video. PMID:25350682

  3. Inactivation of murine norovirus and feline calicivirus during oyster fermentation.

    PubMed

    Seo, Dong Joo; Lee, Min Hwa; Seo, Jina; Ha, Sang-Do; Choi, Changsun

    2014-12-01

    Fermented seafood is popular in Asian countries. This study examined the survival of feline calicivirus (FCV) and murine norovirus (MNV) during oyster fermentation. Oysters spiked with FCV and MNV were fermented with 5% or 10% salt at 18 °C for 15 days, and MNV and FCV titers, lactic acid bacteria (LAB) populations, pH, and enzymatic activity were measured at 0, 1, 3, 5, 7, 10, and 15 days post-fermentation (DPF). Reductions in MNV and FCV were greater in 5% NaCl-supplemented oysters than in 10% NaCl-supplemented oysters. In 5% NaCl oysters, MNV and FCV titers significantly decreased by 1.60 log and 3.01 log, respectively, at 15 DPF. Populations of LAB increased from 3.62 log10 colony-forming units/g at 0 DPF to 8.77 log10 colony-forming units/g at 15 DPF during oyster fermentation supplemented with 5% NaCl supplementation, and the pH decreased gradually from 5.38 at 0 DPF to 4.17 at 15 DPF. During oyster fermentation, α-amylase, proteinase, and lipase were produced at higher levels in 5% salted oysters than in 10% salted oysters (P < 0.01). We concluded that many of the antimicrobial factors produced in fermented oysters could contribute to a reduction in foodborne viruses.

  4. Bmp4 from the optic vesicle specifies murine retina formation.

    PubMed

    Huang, Jie; Liu, Ying; Oltean, Alina; Beebe, David C

    2015-06-01

    Previous studies of mouse embryos concluded that after the optic vesicle evaginates from the ventral forebrain and contacts the surface ectoderm, signals from the ectoderm specify the distal region of the optic vesicle to become retina and signals from the optic vesicle induce the lens. Germline deletion of Bmp4 resulted in failure of lens formation. We performed conditional deletion of Bmp4 from the optic vesicle to test the function of Bmp4 in murine eye development. The optic vesicle evaginated normally and contacted the surface ectoderm. Lens induction did not occur. The optic cup failed to form and the expression of retina-specific genes decreased markedly in the distal optic vesicle. Instead, cells in the prospective retina expressed genes characteristic of the retinal pigmented epithelium. We conclude that Bmp4 is required for retina specification in mice. In the absence of Bmp4, formation of the retinal pigmented epithelium is the default differentiation pathway of the optic vesicle. Differences in the signaling pathways required for specification of the retina and retinal pigmented epithelium in chicken and mouse embryos suggest major changes in signaling during the evolution of the vertebrate eye.

  5. Analysis of the complete DNA sequence of murine cytomegalovirus.

    PubMed Central

    Rawlinson, W D; Farrell, H E; Barrell, B G

    1996-01-01

    The complete DNA sequence of the Smith strain of murine cytomegalovirus (MCMV) was determined from virion DNA by using a whole-genome shotgun approach. The genome has an overall G+C content of 58.7%, consists of 230,278 bp, and is arranged as a single unique sequence with short (31-bp) terminal direct repeats and several short internal repeats. Significant similarity to the genome of the sequenced human cytomegalovirus (HCMV) strain AD169 is evident, particularly for 78 open reading frames encoded by the central part of the genome. There is a very similar distribution of G+C content across the two genomes. Sequences toward the ends of the MCMV genome encode tandem arrays of homologous glycoproteins (gps) arranged as two gene families. The left end encodes 15 gps that represent one family, and the right end encodes a different family of 11 gps. A homolog (m144) of cellular major histocompatibility complex (MHC) class I genes is located at the end of the genome opposite the HCMV MHC class I homolog (UL18). G protein-coupled receptor (GCR) homologs (M33 and M78) occur in positions congruent with two (UL33 and UL78) of the four putative HCMV GCR homologs. Counterparts of all of the known enzyme homologs in HCMV are present in the MCMV genome, including the phosphotransferase gene (M97), whose product phosphorylates ganciclovir in HCMV-infected cells, and the assembly protein (M80). PMID:8971012

  6. Klebsiella pneumoniae FimK Promotes Virulence in Murine Pneumonia.

    PubMed

    Rosen, David A; Hilliard, Julia K; Tiemann, Kristin M; Todd, Elizabeth M; Morley, S Celeste; Hunstad, David A

    2016-02-15

    Klebsiella pneumoniae, a chief cause of nosocomial pneumonia, is a versatile and commonly multidrug-resistant human pathogen for which further insight into pathogenesis is needed. We show that the pilus regulatory gene fimK promotes the virulence of K. pneumoniae strain TOP52 in murine pneumonia. This contrasts with the attenuating effect of fimK on urinary tract virulence, illustrating that a single factor may exert opposing effects on pathogenesis in distinct host niches. Loss of fimK in TOP52 pneumonia was associated with diminished lung bacterial burden, limited innate responses within the lung, and improved host survival. FimK expression was shown to promote serum resistance, capsule production, and protection from phagocytosis by host immune cells. Finally, while the widely used K. pneumoniae model strain 43816 produces rapid dissemination and death in mice, TOP52 caused largely localized pneumonia with limited lethality, thereby providing an alternative tool for studying K. pneumoniae pathogenesis and control within the lung.

  7. Epigenetic alterations in a murine model for chronic lymphocytic leukemia.

    PubMed

    Chen, Shih-Shih; Sherman, Mara H; Hertlein, Erin; Johnson, Amy J; Teitell, Michael A; Byrd, John C; Plass, Christoph

    2009-11-15

    Early stages in the development of chronic lymphocytic leukemia (CLL) have not been explored mainly due to the inability to study normal B-cells en route to transformation. In order to determine such early events of leukemogenesis, we have used a well established mouse model for CLL. Over-expression of human TCL1, a known CLL oncogene in murine B-cells leads to the development of mature CD19+/CD5+/IgM+ clonal leukemia with a disease phenotype similar to that seen in human CLL. Herein, we review our recent study using this TCL1-driven mouse model for CLL and corresponding human CLL samples in a cross-species epigenomics approach to address the timing and relevance of epigenetic events occurring during leukemogenesis. We demonstrated that the mouse model recapitulates the epigenetic events that have been reported for human CLL, affirming the power and validity of this mouse model to study early epigenetic events in cancer progression. Epigenetic alterations are detected as early as three months after birth, far before disease manifests at about 11 months of age. These mice undergo NFkappaB repressor complex mediated inactivation of the transcription factor Foxd3, whose targets become aberrantly methylated and silenced in mouse and human CLL. Overall, our data suggest the accumulated epigenetic alterations during CLL pathogenesis as a