Science.gov

Sample records for adult murine lung

  1. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment

    PubMed Central

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C.; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  2. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment.

    PubMed

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  3. Interstitial lung disease - adults - discharge

    MedlinePlus

    ... lung disease Pulmonary alveolar proteinosis Rheumatoid lung disease Sarcoidosis Patient Instructions Eating extra calories when sick - adults ... team. Related MedlinePlus Health Topics Interstitial Lung Diseases Sarcoidosis Browse the Encyclopedia A.D.A.M., Inc. ...

  4. Preclinical Murine Models for Lung Cancer: Clinical Trial Applications

    PubMed Central

    Kellar, Amelia; Egan, Cay; Morris, Don

    2015-01-01

    Murine models for the study of lung cancer have historically been the backbone of preliminary preclinical data to support early human clinical trials. However, the availability of multiple experimental systems leads to debate concerning which model, if any, is best suited for a particular therapeutic strategy. It is imperative that these models accurately predict clinical benefit of therapy. This review provides an overview of the current murine models used to study lung cancer and the advantages and limitations of each model, as well as a retrospective evaluation of the uses of each model with respect to accuracy in predicting clinical benefit of therapy. A better understanding of murine models and their uses, as well as their limitations may aid future research concerning the development and implementation of new targeted therapies and chemotherapeutic agents for lung cancer. PMID:26064932

  5. Murine lung immunity to a soluble antigen

    SciTech Connect

    Weissman, D.N.; Bice, D.E.; Siegel, D.W.; Schuyler, M.R. Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM )

    1990-01-01

    To test the hypothesis that soluble antigen triggers antigen-specific immunity in the respiratory tract in a fashion similar to that reported for particulate antigen, the authors examined the development of local and systemic immunity in C57BL/6 mice after intratracheal (i.t.) instillation of a soluble, large molecular weight protein neoantigen, keyhole limpet hemocyanin (KLH). Specific anti-KLH IgG and IgM first appeared in the sera of mice on day 7 after primary immunization by i.t. instillation of KLH, with specific serum antibody concentrations remaining elevated at day 11. Cultured spleen cells obtained from mice after primary immunization released only low levels of specific IgM, and no specific IgG. No specific antibody was released by cell populations derived from the lungs of animals undergoing primary immunization. When presensitized mice were given an i.t. challenge with KLH, responses differed markedly from those following primary immunization. Lung-associated lymph node cell populations from challenged mice released greater amounts of specific antibody earlier than did cell populations, which after primary immunization had not released detectable amounts of specific antibody in vitro, released easily detectable amounts of specific antibody after challenge. Thus, i.t. instillation of soluble KLH generates specific immunity in mice in a fashion similar to that reported for particulate antigen. Specific responses following primary immunization occur largely within draining lung-associated lymph nodes. In contrast, presensitized animals challenged i.t. with soluble KLH mount secondary antibody responses in both lung and lung-associated lymph nodes.

  6. Dynamic Determination of Oxygenation and Lung Compliance in Murine Pneumonectomy

    PubMed Central

    Gibney, Barry; Lee, Grace S.; Houdek, Jan; Lin, Miao; Miele, Lino; Chamoto, Kenji; Konerding, Moritz A.; Tsuda, Akira; Mentzer, Steven J.

    2012-01-01

    Thoracic surgical procedures in mice have been applied to a wide range of investigations, but little is known about the murine physiologic response to pulmonary surgery. Using continuous arterial oximetry monitoring and the FlexiVent murine ventilator, we investigated the effect of anesthesia and pneumonectomy on mouse oxygen saturation and lung mechanics. Sedation resulted in a dose-dependent decline of oxygen saturation that ranged from 55–82%. Oxygen saturation was restored by mechanical ventilation with increased rate and tidal volumes. In the mouse strain studied, optimal ventilatory rates were a rate of 200/minute and a tidal volume of 10ml/kg. Sustained inflation pressures, referred to as a "recruitment maneuver," improved lung volumes, lung compliance and arterial oxygenation. In contrast, positive end expiratory pressure (PEEP) had a detrimental effect on oxygenation; an effect that was ameliorated after pneumonectomy. Our results confirm that lung volumes in the mouse are dynamically determined and suggest a threshold level of mechanical ventilation to maintain perioperative oxygen saturation. PMID:21574875

  7. CECAL LIGATION AND PUNCTURE INDUCED MURINE SEPSIS DOES NOT CAUSE LUNG INJURY

    PubMed Central

    Iskander, Kendra N.; Craciun, Florin L.; Stepien, David M.; Duffy, Elizabeth R.; Kim, Jiyoun; Moitra, Rituparna; Vaickus, Louis J.; Osuchowski, Marcin F.; Remick, Daniel G.

    2012-01-01

    Objective The cause of death in murine models of sepsis remains unclear. The primary purpose of this study was to determine if significant lung injury develops in mice predicted to die following cecal ligation and puncture induced sepsis compared to those predicted to live. Design Prospective, laboratory controlled experiments. Setting University research laboratory. Subjects Adult, female, outbred ICR mice. Interventions Mice underwent cecal ligation and puncture (CLP) to induce sepsis. Two groups of mice were sacrificed at 24 and 48 hours post-CLP and samples were collected. These mice were further stratified into groups predicted to die (Die-P) and predicted to live (Live-P) based on plasma interleukin 6 (IL-6) levels obtained 24 hours post-CLP. Multiple measures of lung inflammation and lung injury were quantified in these two groups. Results from a group of mice receiving intratracheal normal saline without surgical intervention were also included as a negative control. As a positive control, bacterial pneumonia was induced with Pseudomonas aeruginosa to cause definitive lung injury. Separate mice were followed for survival until day 28 post-CLP. These mice were used to verify the IL-6 cut-offs for survival prediction. Measurements and Main Results Following sepsis, both the Die-P and Live-P mice had significantly suppressed measures of respiratory physiology but maintained normal levels of arterial oxygen saturation. Bronchoalveolar lavage (BAL) levels of pro and anti-inflammatory cytokines were not elevated in the Die-P mice compared to the Live-P. Additionally, there was no increase in the recruitment of neutrophils to the lung, pulmonary vascular permeability, or histological evidence of damage. In contrast, all of these pulmonary injury and inflammatory parameters were increased in mice with Pseudomonas pneumonia. Conclusions These data demonstrate that mice predicted to die during sepsis have no significant lung injury. In murine intra-abdominal sepsis

  8. Mapping cyclic stretch in the postpneumonectomy murine lung

    PubMed Central

    Filipovic, Nenad; Gibney, Barry C.; Kojic, Milos; Nikolic, Dalibor; Isailovic, Velibor; Ysasi, Alexandra; Konerding, Moritz A.; Tsuda, Akira

    2013-01-01

    In many mammalian species, the removal of one lung [pneumonectomy (PNX)] is associated with the compensatory growth of the remaining lung. To investigate the hypothesis that parenchymal deformation may trigger lung regeneration, we used respiratory-gated micro-computed tomography scanning to create three-dimensional finite-element geometric models of the murine cardiac lobe with cyclic breathing. Models were constructed of respiratory-gated micro-computed tomography scans pre-PNX and 24 h post-PNX. The computational models demonstrated that the maximum stretch ratio map was patchy and heterogeneous, particularly in subpleural, juxta-diaphragmatic, and cephalad regions of the lobe. In these parenchymal regions, the material line segments at peak inspiration were frequently two- to fourfold greater after PNX; some regions of the post-PNX cardiac lobe demonstrated parenchymal compression at peak inspiration. Similarly, analyses of parenchymal maximum shear strain demonstrated heterogeneous regions of mechanical stress with focal regions demonstrating a threefold increase in shear strain after PNX. Consistent with previously identified growth patterns, these subpleural regions of enhanced stretch and shear strain are compatible with a mechanical signal, likely involving cyclic parenchymal stretch, triggering lung growth. PMID:23990237

  9. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. PMID:25526737

  10. Space radiation-associated lung injury in a murine model

    PubMed Central

    Pietrofesa, Ralph A.; Arguiri, Evguenia; Schweitzer, Kelly S.; Berdyshev, Evgeny V.; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S.; Yu, Yongjia; Globus, Ruth K.; Solomides, Charalambos C.; Ullrich, Robert L.; Petrache, Irina

    2014-01-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to 137Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u 56Fe ions, or 350 MeV/u 28Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy 56Fe or 28Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. PMID:25526737

  11. Lung Disease Including Asthma and Adult Vaccination

    MedlinePlus

    ... Healthcare Professionals Lung Disease including Asthma and Adult Vaccination Language: English Español (Spanish) Recommend on Facebook Tweet ... more about health insurance options. Learn about adult vaccination and other health conditions Asplenia Diabetes Heart Disease, ...

  12. Assessment of murine lung mechanics outcome measures: alignment with those made in asthmatics

    PubMed Central

    Walker, Julia K. L.; Kraft, Monica; Fisher, John T.

    2013-01-01

    Although asthma is characterized as an inflammatory disease, recent reports highlight the importance of pulmonary physiology outcome measures to the clinical assessment of asthma control and risk of asthma exacerbation. Murine models of allergic inflammatory airway disease have been widely used to gain mechanistic insight into the pathogenesis of asthma; however, several aspects of murine models could benefit from improvement. This review focuses on aligning lung mechanics measures made in mice with those made in humans, with an eye toward improving the translational utility of these measures. A brief description of techniques available to measure murine lung mechanics is provided along with a methodological consideration of their utilization. How murine lung mechanics outcome measures relate to pulmonary physiology measures conducted in humans is discussed and we recommend that, like human studies, outcome measures be standardized for murine models of asthma. PMID:23408785

  13. VEGFR-2 Targeted Chemoprevention of Murine Lung Tumors

    PubMed Central

    Karoor, Vijaya; Le, Mysan; Merrick, Daniel; Dempsey, Edward C.; Miller, York E.

    2010-01-01

    No clinically effective chemoprevention for lung cancer has been found. Angiogenesis is an early feature of both adenocarcinoma and squamous cell lung cancer. We investigated the effects of VEGFR-2 inhibition on lung carcinogenesis in a murine model of adenocarcinoma. The VEGFR-2 tyrosine kinase inhibitor, vandetanib, was administered to FVB/N mice in chow for 7 days at varying doses in order to demonstrate pharmacologic activity by inhibition of VEGF mediated VEFGR-2 and ERK phosphorylation. Plasma levels corroborated adequate dosage. For chemoprevention experiments, mice were injected i.p. with 1 mg/gm urethane, a carcinogen found in tobacco smoke. Chow containing vandetanib, 75 mg/kg/d, or control chow was given to mice, starting 7 days after urethane administration. Sixteen weeks after urethane injection, mice were sacrificed, tumors enumerated and measured. Vandetanib resulted in reductions in tumor multiplicity (6.5 +/− 0.86 vs 1.0 +/− 0.30, p = 0.001) and average tumor volume (0.85 +/− 0.10 mm3 vs. 0.15 +/− 0.09 mm3, p = 0.001), but not incidence (71% vs. 100%, p = ns), compared to control. As vandetanib has other activities besides VEGFR-2 tyrosine kinase inhibition, we administered the anti-VEGFR-2 monoclonal antibody, DC101, for weeks 11–15 of a urethane carcinogenesis protocol with an arrest in tumor volume increase, but no change in multiplicity or incidence. Further investigation of the chemopreventive effect of vandetanib and other VEGF signaling inhibitors is needed. PMID:20647338

  14. STRAIN-DEPENDENT SUSCEPTIBILITY TO TRANSPLACENTALLY-INDUCED MURINE LUNG TUMORS

    EPA Science Inventory

    STRAIN-DEPENDENT SUSCEPTIBILITY TO TRANSPLACENTALLY-INDUCED MURINE LUNG TUMORS
    M S Miller, J E Moore, M Xu, G B Nelson, S T Dance, N D Kock, J A Ross Wake Forest University, Winston-Salem, NC and USEPA, Research Triangle Park, NC

    Previously, our laboratory demonstrated...

  15. Optimized murine lung preparation for detailed structural evaluation via micro-computed tomography

    PubMed Central

    Vasilescu, Dragoş M.; Knudsen, Lars; Ochs, Matthias; Weibel, Ewald R.

    2012-01-01

    Utilizing micro-X-ray CT (μCT) imaging, we sought to generate an atlas of in vivo and intact/ex vivo lungs from normal murine strains. In vivo imaging allows visualization of parenchymal density and small airways (15–28 μm/voxel). Ex vivo imaging of the intact lung via μCT allows for improved understanding of the three-dimensional lung architecture at the alveolar level with voxel dimensions of 1–2 μm. μCT requires that air spaces remain air-filled to detect alveolar architecture while in vivo structural geometry of the lungs is maintained. To achieve these requirements, a fixation and imaging methodology that permits nondestructive whole lung ex vivo μCT imaging has been implemented and tested. After in vivo imaging, lungs from supine anesthetized C57Bl/6 mice, at 15, 20, and 25 cmH2O airway pressure, were fixed in situ via vascular perfusion using a two-stage flushing system while held at 20 cmH2O airway pressure. Extracted fixed lungs were air-dried. Whole lung volume was acquired at 1, 7, 21, and >70 days after the lungs were dried and served as validation for fixation stability. No significant shrinkage was observed: +8.95% change from in vivo to fixed lung (P = 0.12), −1.47% change from day 1 to day 7 (P = 0.07), −2.51% change from day 1 to day 21 (P = 0.05), and −4.90% change from day 1 to day 70 and thereafter (P = 0.04). μCT evaluation showed well-fixed alveoli and capillary beds correlating with histological analysis. A fixation and imaging method has been established for μCT imaging of the murine lung that allows for ex vivo morphometric analysis, representative of the in vivo lung. PMID:21817110

  16. Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture.

    PubMed

    Yun, Yeojun; Srinivas, Girish; Kuenzel, Sven; Linnenbrink, Miriam; Alnahas, Safa; Bruce, Kenneth D; Steinhoff, Ulrich; Baines, John F; Schaible, Ulrich E

    2014-01-01

    Commensal bacteria control the micro-ecology of metazoan epithelial surfaces with pivotal effect on tissue homeostasis and host defense. In contrast to the upper respiratory tract, the lower respiratory tract of healthy individuals has largely been considered free of microorganisms. To understand airway micro-ecology we studied microbiota of sterilely excised lungs from mice of different origin including outbred wild mice caught in the natural environment or kept under non-specific-pathogen-free (SPF) conditions as well as inbred mice maintained in non-SPF, SPF or germ-free (GF) facilities. High-throughput pyrosequencing of reverse transcribed 16S rRNA revealed metabolically active murine lung microbiota in all but GF mice. The overall composition across samples was similar at the phylum and family level. However, species richness was significantly different between lung microbiota from SPF and non-SPF mice. Non-cultivatable Betaproteobacteria such as Ralstonia spp. made up the major constituents and were also confirmed by 16S rRNA gene cloning analysis. Additionally, Pasteurellaceae, Enterobacteria and Firmicutes were isolated from lungs of non-SPF mice. Bacterial communities were detectable by fluorescent in situ hybridization (FISH) at alveolar epithelia in the absence of inflammation. Notably, higher bacterial abundance in non-SPF mice correlated with more and smaller size alveolae, which was corroborated by transplanting Lactobacillus spp. lung isolates into GF mice. Our data indicate a common microbial composition of murine lungs, which is diversified through different environmental conditions and affects lung architecture. Identification of the microbiota of murine lungs will pave the path to study their influence on pulmonary immunity to infection and allergens using mouse models. PMID:25470730

  17. Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung.

    PubMed

    Aguilar, Susana; Nye, Emma; Chan, Jerry; Loebinger, Michael; Spencer-Dene, Bradley; Fisk, Nick; Stamp, Gordon; Bonnet, Dominique; Janes, Sam M

    2007-06-01

    Murine mesenchymal stem cells are capable of differentiation into multiple cell types both in vitro and in vivo and may be good candidates to use as cell therapy for diseased or damaged organs. We have previously reported a method of enriching a population of murine MSCs that demonstrated a diverse differentiation potential both in vitro and in vivo. In this study, we show that this enriched population of murine mesenchymal stem cells embolize within lung capillaries following systemic injection and then rapidly expand within, and invade into, the lung parenchyma, forming tumor nodules. These lesions rarely contain cells bearing the immunohistochemical characteristics of lung epithelium, but they do show the characteristics of immature bone and cartilage that resembles exuberant fracture callus or well-differentiated osteosarcoma. Our findings indicate that murine mesenchymal stem cells can behave in a manner similar to tumor cells, with dysregulated growth and aberrant differentiation within the alveolar microenvironment after four passages. We demonstrate that unlike human MSCs, MSCs from different mouse strains can acquire chromosomal abnormalities after only a few in vitro passages. Moreover, other parameters, such as mouse strain used, might also play a role in the induction of these tumors. These findings might be clinically relevant for future stem cell therapy studies. Disclosure of potential conflicts of interest is found at the end of this article. PMID:17363552

  18. Lung consequences in adults born prematurely.

    PubMed

    Bolton, Charlotte E; Bush, Andrew; Hurst, John R; Kotecha, Sailesh; McGarvey, Lorcan

    2015-12-01

    Although survival has improved significantly in recent years, prematurity remains a major cause of infant and childhood mortality and morbidity. Preterm births (<37 weeks of gestation) account for 8% of live births representing >50,000 live births each year in the UK. Preterm birth, irrespective of whether babies require neonatal intensive care, is associated with increased respiratory symptoms, partially reversible airflow obstruction and abnormal thoracic imaging in childhood and in young adulthood compared with those born at term. Having failed to reach their optimal peak lung function in early adulthood, there are as yet unsubstantiated concerns of accelerated lung function decline especially if exposed to noxious substances leading to chronic respiratory illness; even if the rate of decline in lung function is normal, the threshold for respiratory symptoms will be crossed early. Few adult respiratory physicians enquire about the neonatal period in their clinical practice. The management of these subjects in adulthood is largely evidence free. They are often labelled as asthmatic although the underlying mechanisms are likely to be very different. Smoking cessation, maintaining physical fitness, annual influenza immunisation and a general healthy lifestyle should be endorsed irrespective of any symptoms. There are a number of clinical and research priorities to maximise the quality of life and lung health in the longer term not least understanding the underlying mechanisms and optimising treatment, rather than extrapolating from other airway diseases. PMID:26607737

  19. Lung consequences in adults born prematurely.

    PubMed

    Bolton, Charlotte E; Bush, Andrew; Hurst, John R; Kotecha, Sailesh; McGarvey, Lorcan

    2015-06-01

    Although survival has improved significantly in recent years, prematurity remains a major cause of infant and childhood mortality and morbidity. Preterm births (<37 weeks of gestation) account for 8% of live births representing >50 000 live births each year in the UK. Preterm birth, irrespective of whether babies require neonatal intensive care, is associated with increased respiratory symptoms, partially reversible airflow obstruction and abnormal thoracic imaging in childhood and in young adulthood compared with those born at term. Having failed to reach their optimal peak lung function in early adulthood, there are as yet unsubstantiated concerns of accelerated lung function decline especially if exposed to noxious substances leading to chronic respiratory illness; even if the rate of decline in lung function is normal, the threshold for respiratory symptoms will be crossed early. Few adult respiratory physicians enquire about the neonatal period in their clinical practice. The management of these subjects in adulthood is largely evidence free. They are often labelled as asthmatic although the underlying mechanisms are likely to be very different. Smoking cessation, maintaining physical fitness, annual influenza immunisation and a general healthy lifestyle should be endorsed irrespective of any symptoms. There are a number of clinical and research priorities to maximise the quality of life and lung health in the longer term not least understanding the underlying mechanisms and optimising treatment, rather than extrapolating from other airway diseases. PMID:25825005

  20. Epigenetic contributions to the developmental origins of adult lung disease.

    PubMed

    Joss-Moore, Lisa A; Lane, Robert H; Albertine, Kurt H

    2015-04-01

    Perinatal insults, including intrauterine growth restriction, preterm birth, maternal exposure to toxins, or dietary deficiencies produce deviations in the epigenome of lung cells. Occurrence of perinatal insults often coincides with the final stages of lung development. The result of epigenome disruptions in response to perinatal insults during lung development may be long-term structural and functional impairment of the lung and development of lung disease. Understanding the contribution of epigenetic mechanisms to life-long lung disease following perinatal insults is the focus of the developmental origins of adult lung disease field. DNA methylation, histone modifications, and microRNA changes are all observed in various forms of lung disease. However, the perinatal contribution to such epigenetic mechanisms is poorly understood. Here we discuss the developmental origins of adult lung disease, the interplay between perinatal events, lung development and disease, and the role that epigenetic mechanisms play in connecting these events. PMID:25493710

  1. Bronchial ligation enhances murine fetal lung development in whole-organ culture.

    PubMed

    Blewett, C J; Zgleszewski, S E; Chinoy, M R; Krummel, T M; Cilley, R E

    1996-07-01

    Evidence exists from both congenital anomalies and animal models that normal fetal lung development is dependent on maintenance of fluid pressure within the developing "airways." Fetal tracheostomy, allowing free egress of airway fluids, results in lung hypoplasia, indicating that some airway distending pressure is required for normal lung development to occur. In contrast, fetal tracheal ligation, which increases fetal airway pressure, reverses lung hypoplasia in animal models. The authors' experiments test the hypothesis that large airway obstruction accelerates the development of murine lungs in vitro in whole-organ culture. Fetuses from time-dated pregnant CD-1 mice at day 14 of gestation were removed (term, 20 days), and the lungs were excised. The left bronchus of each lung was ligated (n = 26), after which the left lung was isolated and cultured at 37 degrees C (95% air, 5% CO2) in BGJb media supplemented with vitamin C and antibiotics. Some fetal lungs were cultured under similar conditions without bronchial ligation (n = 11). After 7 days in culture, the lungs were taken for various analyses. The lungs were fixed in either formaldehyde and processed for paraffin embedding for light microscopic evaluation and morphometric data collection, or were freshly minced and aliquots taken for total protein and DNA content. Several more ligated and unligated lungs were processed for ultrastructural analysis. Morphometric analysis on transverse sections of lungs showed significant differences in the lung tissue size, thickness, epithelial cell height, luminal areas, perimeters, and total number of airspaces (airway + primordial alveolar airspaces). It was evident that bronchial ligation promoted lung development. The ligated lungs displayed thinning of the primordial alveolar walls with cuboidal epithelial cells. The total number of airspaces per field was lower for better developed ligated lungs because of the increased area of airspaces compared with that of the

  2. Gene expression profile of androgen modulated genes in the murine fetal developing lung

    PubMed Central

    2010-01-01

    Background Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. Methods To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. Results Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. Conclusion Our results show clearly that there is a real delay in lung maturation between male and female in this period

  3. Murine Lung Cancer Induces Generalized T Cell Exhaustion

    PubMed Central

    Mittal, Rohit; Chen, Ching-Wen; Lyons, John D; Margoles, Lindsay M; Liang, Zhe; Coopersmith, Craig M; Ford, Mandy L

    2015-01-01

    Background Cancer is known to modulate tumor-specific immune responses by establishing a micro-environment that leads to the upregulation of T cell inhibitory receptors, resulting in the progressive loss of function and eventual death of tumor-specific T cells. However, the ability of cancer to impact the functionality of the immune system on a systemic level is much less well characterized. Because cancer is known to predispose patients to infectious complications including sepsis, we hypothesized that the presence of cancer alters pathogen-directed immune responses on a systemic level. Materials and Methods We assessed systemic T cell coinhibitory receptor expression, cytokine production, and apoptosis in mice with established subcutaneous lung cancer tumors and in unmanipulated mice without cancer. Results Results indicated that the frequencies of PD-1+, BTLA+, and 2B4+ cells in both the CD4+ and CD8+ T cell compartments were increased in mice with localized cancer relative to non-cancer controls, and the frequencies of both CD4+ and CD8+ T cells expressing multiple different inhibitory receptors was increased in cancer animals relative to non-cancer controls. Additionally, 2B4+CD8+ T cells in cancer mice exhibited reduced IL-2 and IFN-γ, while BTLA+CD8+ T cells in cancer mice exhibited reduced IL-2 and TNF. Conversely, CD4+ T cells in cancer animals demonstrated an increase in the frequency of Annexin V+ apoptotic cells. Conclusion Taken together, these data suggest that the presence of cancer induces systemic T cell exhaustion and generalized immune suppression. PMID:25748104

  4. Automated segmentation of murine lung tumors in x-ray micro-CT images

    NASA Astrophysics Data System (ADS)

    Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis

    2014-03-01

    Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.

  5. Integrating Murine Gene Expression Studies to Understand Obstructive Lung Disease Due to Chronic Inhaled Endotoxin

    PubMed Central

    Lai, Peggy S.; Hofmann, Oliver; Baron, Rebecca M.; Cernadas, Manuela; Meng, Quanxin Ryan; Bresler, Herbert S.; Brass, David M.; Yang, Ivana V.; Schwartz, David A.; Christiani, David C.; Hide, Winston

    2013-01-01

    Rationale Endotoxin is a near ubiquitous environmental exposure that that has been associated with both asthma and chronic obstructive pulmonary disease (COPD). These obstructive lung diseases have a complex pathophysiology, making them difficult to study comprehensively in the context of endotoxin. Genome-wide gene expression studies have been used to identify a molecular snapshot of the response to environmental exposures. Identification of differentially expressed genes shared across all published murine models of chronic inhaled endotoxin will provide insight into the biology underlying endotoxin-associated lung disease. Methods We identified three published murine models with gene expression profiling after repeated low-dose inhaled endotoxin. All array data from these experiments were re-analyzed, annotated consistently, and tested for shared genes found to be differentially expressed. Additional functional comparison was conducted by testing for significant enrichment of differentially expressed genes in known pathways. The importance of this gene signature in smoking-related lung disease was assessed using hierarchical clustering in an independent experiment where mice were exposed to endotoxin, smoke, and endotoxin plus smoke. Results A 101-gene signature was detected in three murine models, more than expected by chance. The three model systems exhibit additional similarity beyond shared genes when compared at the pathway level, with increasing enrichment of inflammatory pathways associated with longer duration of endotoxin exposure. Genes and pathways important in both asthma and COPD were shared across all endotoxin models. Mice exposed to endotoxin, smoke, and smoke plus endotoxin were accurately classified with the endotoxin gene signature. Conclusions Despite the differences in laboratory, duration of exposure, and strain of mouse used in three experimental models of chronic inhaled endotoxin, surprising similarities in gene expression were observed

  6. Inflammatory responses to Pseudomonas aeruginosa and Staphylococcus aureus in the murine lung.

    PubMed

    Sordelli, D O; Zeligs, B J; Cerquetti, M C; Morris Hooke, A; Bellanti, J A

    1985-01-01

    The changes in pulmonary cell population in response to aerosols containing either Pseudomonas aeruginosa or Staphylococcus aureus were studied in a murine model. The lungs of inbred DBA/2J mice received an inoculum of 2 X 10(5) colony-forming units of the microorganism and lung lavages were performed at various time intervals thereafter. P. aeruginosa aerosols produced an immediate decrease in the number of resident alveolar macrophages (AM), followed by a two-waved recruitment of cells into the respiratory tract; the first wave was composed of polymorphonuclear leukocytes (PMN) and the second of monocyte-like peroxidase-positive AM. The change in cell populations was transient and returned to baseline values within a week after aerosolization. In contrast, aerosolized S. aureus initially induced a slight increase in mononuclear cells, and by 60 min after aerosol exposure, the cell population was not different from that of control animals. PMID:3920067

  7. Hyperglycemia impedes lung bacterial clearance in a murine model of cystic fibrosis-related diabetes

    PubMed Central

    Hunt, William R.; Zughaier, Susu M.; Guentert, Dana E.; Shenep, Melissa A.; Koval, Michael; McCarty, Nael A.

    2013-01-01

    Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity associated with cystic fibrosis (CF), impacting more than half of patients over age 30. CFRD is clinically significant, portending accelerated decline in lung function, more frequent pulmonary exacerbations, and increased mortality. Despite the profound morbidity associated with CFRD, little is known about the underlying CFRD-related pulmonary pathology. Our aim was to develop a murine model of CFRD to explore the hypothesis that elevated glucose in CFRD is associated with reduced lung bacterial clearance. A diabetic phenotype was induced in gut-corrected CF transmembrane conductance regulator (CFTR) knockout mice (CFKO) and their CFTR-expressing wild-type littermates (WT) utilizing streptozotocin. Mice were subsequently challenged with an intratracheal inoculation of Pseudomonas aeruginosa (PAO1) (75 μl of 1–5 × 106 cfu/ml) for 18 h. Bronchoalveolar lavage fluid was collected for glucose concentration and cell counts. A portion of the lung was homogenized and cultured as a measure of the remaining viable PAO1 inoculum. Diabetic mice had increased airway glucose compared with nondiabetic mice. The ability to clear bacteria from the lung was significantly reduced in diabetic WT mice and control CFKO mice. Critically, bacterial clearance by diabetic CFKO mice was significantly more diminished compared with nondiabetic CFKO mice, despite an even more robust recruitment of neutrophils to the airways. This finding that CFRD mice boast an exaggerated, but less effective, inflammatory cell response to intratracheal PAO1 challenge presents a novel and useful murine model to help identify therapeutic strategies that promote bacterial clearance in CFRD. PMID:24097557

  8. Hyperglycemia impedes lung bacterial clearance in a murine model of cystic fibrosis-related diabetes.

    PubMed

    Hunt, William R; Zughaier, Susu M; Guentert, Dana E; Shenep, Melissa A; Koval, Michael; McCarty, Nael A; Hansen, Jason M

    2014-01-01

    Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity associated with cystic fibrosis (CF), impacting more than half of patients over age 30. CFRD is clinically significant, portending accelerated decline in lung function, more frequent pulmonary exacerbations, and increased mortality. Despite the profound morbidity associated with CFRD, little is known about the underlying CFRD-related pulmonary pathology. Our aim was to develop a murine model of CFRD to explore the hypothesis that elevated glucose in CFRD is associated with reduced lung bacterial clearance. A diabetic phenotype was induced in gut-corrected CF transmembrane conductance regulator (CFTR) knockout mice (CFKO) and their CFTR-expressing wild-type littermates (WT) utilizing streptozotocin. Mice were subsequently challenged with an intratracheal inoculation of Pseudomonas aeruginosa (PAO1) (75 μl of 1-5 × 10(6) cfu/ml) for 18 h. Bronchoalveolar lavage fluid was collected for glucose concentration and cell counts. A portion of the lung was homogenized and cultured as a measure of the remaining viable PAO1 inoculum. Diabetic mice had increased airway glucose compared with nondiabetic mice. The ability to clear bacteria from the lung was significantly reduced in diabetic WT mice and control CFKO mice. Critically, bacterial clearance by diabetic CFKO mice was significantly more diminished compared with nondiabetic CFKO mice, despite an even more robust recruitment of neutrophils to the airways. This finding that CFRD mice boast an exaggerated, but less effective, inflammatory cell response to intratracheal PAO1 challenge presents a novel and useful murine model to help identify therapeutic strategies that promote bacterial clearance in CFRD. PMID:24097557

  9. Properties of Adult Lung Stem and Progenitor Cells.

    PubMed

    Bertoncello, Ivan

    2016-12-01

    The last decade has seen significant progress in understanding the organisation of regenerative cells in the adult lung. Cell-lineage tracing and in vitro clonogenic assays have enabled the identification and characterisation of endogenous lung epithelial stem and progenitor cells. Selective lung injury models, and genetically engineered mice have revealed highly conserved gene networks, factors, signalling pathways, and cellular interactions important in maintaining lung homeostasis and regulating lung regeneration and repair following injury. This review describes the current models of lung epithelial stem and progenitor cell organisation in adult mice, and the impediments encountered in translational studies aiming to identify and characterise their human homologs. J. Cell. Physiol. 231: 2582-2589, 2016. © 2016 Wiley Periodicals, Inc. PMID:27062064

  10. A Comparative Study of Lung Host Defense in Murine Obesity Models. Insights into Neutrophil Function.

    PubMed

    Ubags, Niki D J; Burg, Elianne; Antkowiak, Maryellen; Wallace, Aaron M; Dilli, Estee; Bement, Jenna; Wargo, Matthew J; Poynter, Matthew E; Wouters, Emiel F M; Suratt, Benjamin T

    2016-08-01

    We have shown that obesity-associated attenuation of murine acute lung injury is driven, in part, by blunted neutrophil chemotaxis, yet differences were noted between the two models of obesity studied. We hypothesized that obesity-associated impairment of multiple neutrophil functions contributes to increased risk for respiratory infection but that such impairments may vary between murine models of obesity. We examined the most commonly used murine obesity models (diet-induced obesity, db/db, CPE(fat/fat), and ob/ob) using a Klebsiella pneumoniae pneumonia model and LPS-induced pneumonitis. Marrow-derived neutrophils from uninjured lean and obese mice were examined for in vitro functional responses. All obesity models showed impaired clearance of K. pneumoniae, but in differing temporal patterns. Failure to contain infection in obese mice was seen in the db/db model at both 24 and 48 hours, yet this defect was only evident at 24 hours in CPE(fat/fat) and ob/ob models, and at 48 hours in diet-induced obesity. LPS-induced airspace neutrophilia was decreased in all models, and associated with blood neutropenia in the ob/ob model but with leukocytosis in the others. Obese mouse neutrophils from all models demonstrated impaired chemotaxis, whereas neutrophil granulocyte colony-stimulating factor-mediated survival, LPS-induced cytokine transcription, and mitogen-activated protein kinase and signal transducer and activator of transcription 3 activation in response to LPS and granulocyte colony-stimulating factor, respectively, were variably impaired across the four models. Obesity-associated impairment of host response to lung infection is characterized by defects in neutrophil recruitment and survival. However, critical differences exist between commonly used mouse models of obesity and may reflect variable penetrance of elements of the metabolic syndrome, as well as other factors. PMID:27128821

  11. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    NASA Astrophysics Data System (ADS)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  12. Resident alveolar macrophages suppress while recruited monocytes promote allergic lung inflammation in murine models of asthma

    PubMed Central

    Zasłona, Zbigniew; Przybranowski, Sally; Wilke, Carol; van Rooijen, Nico; Teitz-Tennenbaum, Seagal; Osterholzer, John J.; Wilkinson, John E.; Moore, Bethany B.; Peters-Golden, Marc

    2014-01-01

    The role and origin of alveolar macrophages (AMs) in asthma are incompletely defined. We sought to clarify these issues in the context of acute allergic lung inflammation utilizing house dust mite and ovalbumin murine models. Use of liposomal clodronate to deplete resident AMs (rAMs) resulted in increased levels of inflammatory cytokines and eosinophil numbers in lavage fluid and augmented histopathologic evidence of lung inflammation, suggesting a suppressive role of rAMs. Lung digests of asthmatic mice revealed an increased percentage of Ly6Chigh/CD11bpos inflammatory monocytes. Clodronate depletion of circulating monocytes, by contrast, resulted in an attenuation of allergic inflammation. A CD45.1/CD45.2 chimera model demonstrated that recruitment at least partially contributes to the AM pool in irradiated non-asthmatic mice, but its contribution was no greater in asthma. Ki-67 staining of AMs supported a role for local proliferation, which was increased in asthma. Our data demonstrate that rAMs dampen, while circulating monocytes promote, early events in allergic lung inflammation. Moreover, maintenance of the AM pool in the early stages of asthmatic inflammation depends on local proliferation but not recruitment. PMID:25225663

  13. Vesnarinone Represses the Fibrotic Changes in Murine Lung Injury Induced by Bleomycin

    PubMed Central

    Inage, Minoru; Nakamura, Hidenori; Saito, Hiroshi; Abe, Shuichi; Hino, Toshihiko; Takabatake, Noriaki; Terashita, Kyoko; Ogura, Manabu; Kato, Shuichi; Hosokawa, Tetsumi; Sata, Makoto; Tomoike, Hitonobu

    2009-01-01

    We investigated the potential usefulness of vesnarinone, a novel cytokine inhibitor, for the treatment of lung fibrosis using a murine model of bleomycin (BLM)-induced pulmonary fibrosis. Mice were fed a control diet (n=42), or a diet containing low (n=42) or high (n=42) dose of vesnarinone. Dietary intake of vesnarinone minimized the BLM toxicity as reflected by significant decreases in numbers of inflammatory cells, KC, and soluble TNF receptors in the bronchoalveolar lavage fluid. A quantitative evaluation of histology demonstrated significantly mild lung parenchymal lesions in BLM-treated mice fed with diet containing high dose of vesnarinone than in the control diet group. Consistent with the histopathology, hydroxyproline levels in lung tissue from BLM-treated mice fed with diet containing vesnarinone were significantly lower than that from mice fed with control diet. We concluded that vesnarinone inhibits BLM-induced pulmonary fibrosis, at least in part, by the inhibition of acute lung injuries in the early phase. PMID:19381349

  14. The "baby lung" became an adult.

    PubMed

    Gattinoni, Luciano; Marini, John J; Pesenti, Antonio; Quintel, Michael; Mancebo, Jordi; Brochard, Laurent

    2016-05-01

    The baby lung was originally defined as the fraction of lung parenchyma that, in acute respiratory distress syndrome (ARDS), still maintains normal inflation. Its size obviously depends on ARDS severity and relates to the compliance of the respiratory system. CO2 clearance and blood oxygenation primarily occur within the baby lung. While the specific compliance suggests the intrinsic mechanical characteristics to be nearly normal, evidence from positron emission tomography suggests that at least a part of the well-aerated baby lung is inflamed. The baby lung is more a functional concept than an anatomical one; in fact, in the prone position, the baby lung "shifts" from the ventral lung regions toward the dorsal lung regions while usually increasing its size. This change is associated with better gas exchange, more homogeneously distributed trans-pulmonary forces, and a survival advantage. Positive end expiratory pressure also increases the baby lung size, both allowing better inflation of already open units and adding new pulmonary units. Viewed as surrogates of stress and strain, tidal volume and plateau pressures are better tailored to baby lung size than to ideal body weight. Although less information is available for the baby lung during spontaneous breathing efforts, the general principles regulating the safety of ventilation are also applicable under these conditions. PMID:26781952

  15. Pathogenesis of Interstitial Lung Disease in Children and Adults.

    PubMed

    Glasser, Stephan W; Hardie, William D; Hagood, James S

    2010-03-01

    Interstitial lung diseases (ILDs) occur across the lifespan, from birth to advanced age. However, the causes, clinical manifestations, histopathology, and management of ILD differ greatly among infants, older children, and adults. The historical approach of classifying childhood ILD (chILD) using adult classification schemes may therefore have done more harm than good. Nevertheless, identification of novel forms of chILD in the past decade, such as surfactant metabolism dysfunction disorders and neuroendocrine cell hyperplasia of infancy (NEHI), as well as genomic analysis of adult ILDs, has taught us that identical genotypes may result in distinct phenotypes at different ages and developmental stages, and that lung developmental pathways and cellular phenotypes are often recapitulated in adult ILDs. Thus comparison of the pathophysiology of ILD in children and adults in the context of lung development is useful in understanding the pathogenesis of these disorders, and may lead to novel therapeutic interventions for ILDs at all ages. PMID:22087431

  16. STRAIN-DEPENDENT SUSCEPTIBILITY TO TRANSPLACENTALLY-INDUCED MURINE LUNG TUMORS AND DNA ADDUCTS OF 3-METHYLCHOLANTHRENE

    EPA Science Inventory

    Strain-dependent susceptibility to transplacentally-induced murine lung tumors and DNA adducts of 3methylcholanthrene G B Nelson, J A Ross, J E Moore, M Xu, N D Kock, M S Miller Wake Forest University, Winston-Salem, NC and USEPA, Research Triangle Park, NC.

    It has been de...

  17. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation.

    PubMed

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J; Ambalavanan, Namasivayam

    2015-07-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  18. Alterations in Gene Expression and DNA Methylation during Murine and Human Lung Alveolar Septation

    PubMed Central

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K.; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J.

    2015-01-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  19. Amine modification of nonporous silica nanoparticles reduces inflammatory response following intratracheal instillation in murine lungs.

    PubMed

    Morris, Angie S; Adamcakova-Dodd, Andrea; Lehman, Sean E; Wongrakpanich, Amaraporn; Thorne, Peter S; Larsen, Sarah C; Salem, Aliasger K

    2016-01-22

    Amorphous silica nanoparticles (NPs) possess unique material properties that make them ideal for many different applications. However, the impact of these materials on human and environmental health needs to be established. We investigated nonporous silica NPs both bare and modified with amine functional groups (3-aminopropyltriethoxysilane (APTES)) in order to evaluate the effect of surface chemistry on biocompatibility. In vitro data showed there to be little to no cytotoxicity in a human lung cancer epithelial cell line (A549) for bare silica NPs and amine-functionalized NPs using doses based on both mass concentration (below 200μg/mL) and exposed total surface area (below 14m(2)/L). To assess lung inflammation, C57BL/6 mice were administered bare or amine-functionalized silica NPs via intra-tracheal instillation. Two doses (0.1 and 0.5mg NPs/mouse) were tested using the in vivo model. At the higher dose used, bare silica NPs elicited a significantly higher inflammatory response, as evidence by increased neutrophils and total protein in bronchoalveolar lavage (BAL) fluid compared to amine-functionalized NPs. From this study, we conclude that functionalization of nonporous silica NPs with APTES molecules reduces murine lung inflammation and improves the overall biocompatibility of the nanomaterial. PMID:26562768

  20. Trace element profiles in murine Lewis lung carcinoma by radioisotope-induced X-ray fluorescence.

    PubMed Central

    Frank, A. S.; Schauble, M. K.; Preiss, I. L.

    1986-01-01

    Trace element profiles of various body tissues and tumor were established during growth of the Lewis lung tumor (LLT) with the use of radioisotope-induced X-ray fluorescence (RIXRF) analysis. The LLT, a highly malignant experimental murine tumor, resembles its human counterpart, has a well-defined life cycle, and kills its host in 30 days. When compared with normal controls, Zn, Br, and Rb levels in lung, liver, and skeletal muscle and Zn and Sr levels in bone from tumor-bearing mice exhibited large fluctuations at critical points in the tumor life cycle. In addition, the 24-day primary tumor trace element profile resembled that of its tissue of origin, normal lung, and was quite different from other normal tissues studied. These findings indicate that trace element profiles may help in the diagnosis, staging, and monitoring of disease. RIXRF is an excellent technique for this purpose because it is sensitive and relatively nondestructive of samples and has multielement capabilities. Images Figure 1 p423-a PMID:3953767

  1. Adult stem cells underlying lung regeneration

    PubMed Central

    2012-01-01

    Despite the massive toll in human suffering imparted by degenerative lung disease, including COPD, idiopathic pulmonary fibrosis and ARDS, the scientific community has been surprisingly agnostic regarding the potential of lung tissue and, in particular, the alveoli, to regenerate. However, there is circumstantial evidence in humans and direct evidence in mice that ARDS triggers robust regeneration of lung tissue rather than irreversible fibrosis. The stem cells responsible for this remarkable regenerative process has garnered tremendous attention, most recently yielding a defined set of cloned human airway stem cells marked by p63 expression but with distinct commitment to differentiated cell types typical of the upper or lower airways, the latter of which include alveoli-like structures in vitro and in vivo. These recent advances in lung regeneration and distal airway stem cells and the potential of associated soluble factors in regeneration must be harnessed for therapeutic options in chronic lung disease. PMID:22333577

  2. Older Adults with Chronic Lung Disease Report Less Limitation Compared with Younger Adults with Similar Lung Function Impairment

    PubMed Central

    Han, Meilan K.; Thompson, Bruce; Limper, Andrew H.; Martinez, Fernando J.; Schwarz, Marvin I.; Sciurba, Frank C.; Criner, Gerald J.; Wise, Robert A.

    2015-01-01

    Rationale: Disability guidelines are often based on pulmonary function testing, but factors other than lung function influence how an individual experiences physiologic impairment. Age may impact the perception of impairment in adults with chronic lung disease. Objectives: To determine if self-report of physical functional impairment differs between older adults with chronic lung disease compared with younger adults with similar degrees of lung function impairment. Methods: The Lung Tissue Research Consortium provided data on 981 participants with chronic obstructive pulmonary disease and interstitial lung disease who were well characterized with clinical, radiological, and pathological diagnoses. We used multiple logistic regression to determine if responses to health status questions (from the Short Form-12 and St. George’s Respiratory Questionnaire) related to perception of impairment differed in older adults (age ≥ 65 yr, n = 427) compared with younger adults (age < 65 yr, n = 393). Measurements and Main Results: Pulmonary function was higher in older adults (median FEV1 %, 70) compared with younger adults (median FEV1 %, 62) (P < 0.001), whereas the median 6-minute-walk distance was similar between groups (372 m vs. 388 m, P = 0.21). After adjusting for potential confounders, older adults were less likely to report that their health limited them significantly in performing moderate activities (odds ratio [OR], 0.36; 95% confidence interval [CI], 0.22–0.58) or climbing several flights of stairs (OR, 0.51; 95% CI, 0.34–0.77). The odds of reporting that their physical health limited the kinds of activities they performed were reduced by 63% in older adults (OR, 0.37; 95% CI, 0.24–0.58), and, similarly, the odds of reporting that their health caused them to accomplish less than they would like were also lower in older adults (OR, 0.39; 95% CI, 0.25–0.60). The OR for reporting that their breathing problem stops them from doing most

  3. Adult stem cells for chronic lung diseases.

    PubMed

    Mora, Ana L; Rojas, Mauricio

    2013-10-01

    Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are chronic, progressive and lethal lung diseases. The incidence of IPF and COPD increases with age, independent of exposure to common environmental risk factors. At present, there is limited understanding of the relationship between ageing and the development of chronic lung diseases. One hypothesis is that chronic injury drives to exhaustion the local and systemic repair responses in the lung. These changes are accentuated during ageing where there is a progressive accumulation of senescent cells. Recently, stem cells have emerged as a critical reparative mechanism for lung injury. In this review, we discuss the repair response of bone marrow-derived mesenchymal stem cells (B-MSC) after lung injury and how their function is affected by ageing. Our own work has demonstrated a protective role of B-MSC in several animal models of acute and chronic lung injury. We recently demonstrated the association, using animal models, between age and an increase in the susceptibility to develop severe injury and fibrosis. At the same time, we have identified functional differences between B-MSC isolated from young and old animals. Further studies are required to understand the functional impairment of ageing B-MSC, ultimately leading to a rapid stem cell depletion or fatigue, interfering with their ability to play a protective role in lung injury. The elucidation of these events will help in the development of rational and new therapeutic strategies for COPD and IPF. PMID:23648014

  4. Differential expression of murine adult hemoglobins in early ontogeny

    SciTech Connect

    Wawrzyniak, C.J.; Lewis, S.E.; Popp, R.A.

    1985-01-01

    A hemoglobin mutation is described that permits study of the expression of the two adult ..beta..-globin genes throughout fetal and postnatal development. Mice with a mutation at the Hbb/sup s/, ..beta..-globin locus, were used to study the relative levels of ..beta..-s2major and ..beta..-sminor globins specified by the mutant Hbb/sup s2/ haplotype during development. At 11.5 days of gestation ..beta..-sminor comprised over 80% and ..beta..-s2major under 20% of the adult beta-globin. The relative level of ..beta..-sminor decreased through fetal development; at birth ..beta..-sminor represented 33.7% of the ..beta..-globin. The adult values of 71.0% ..beta..-s2major and 29.0% ..beta..-sminor globin are expressed in mice six days after birth. Because the two ..beta..-globin genes are expressed in mice of the Hbb/sup 2s/ haplotype, both the ..beta..-smajor and ..beta..-sminor genes must be expressed in mice of the Hbb/sup s/ haplotype. Expression of the ..beta..-sminor gene is elevated to 35.6% in Hbb/sup s2/ mice that have been bled repeatedly. Thus, the 5' ..beta..-s2major and 3' ..beta..-sminor genes of the Hbb/sup s2/ haplotype and, presumably the 5' ..beta..-smajor and 3' ..beta..-sminor genes of the Hbb/sup s/ haplotype, are regulated independently and are homologous to the 5' ..beta..-dmajor and 3' ..beta..-dminor genes of the Hbb/sup d/ haplotype. Mice of the Hbb/sup s2/ haplotype are better than mice of the Hbb/sup d/ haplotytpe for studying the mechanisms of hemoglobin switching because the Hbb/sup s2/ each of the three embryonic and two adult hemoglobins can be separated by electrophoresis. 17 refs., 3 figs.

  5. Endogenous nitric oxide limits cytokine-induced damage of murine lung epithelial cells.

    PubMed

    Burke-Gaffney, A; Hellewell, P G

    1997-04-01

    This study investigated whether endogenous nitric oxide (NO) limits cytokine-induced damage to the murine lung epithelial cell line LA-4. NO production was assessed as nitrite using the Griess reaction, and cell damage was assessed using ethidium homodimer-1. Cytotoxicity was first detected after a 24-h incubation with a combination of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma (cytomix). Nitrite production increased to 78.0 +/- 0.5 nmol/10(6) cells at 24 h. Coincubation of LA-4 with cytomix and NO synthase inhibitors, aminoguanidine (3-1,000 microM) and N(G)-monomethyl-L-arginine (10-1,000 microM), but not N(G)-monomethyl-D-arginine, or a soluble guanylate cyclase inhibitor, 1H-[1,2,4] oxadiazole [4,3-a] quinoxalin-1-one, reduced cytomix-induced nitrite production and increased cytotoxicity up to twofold (24 h). Removal of L-arginine from the medium increased damage; reintroduction of 1,000 microM L-arginine, but not D-arginine, reversed this. In aminoguanidine-treated cells, replacement of NO with an NO donor, S-nitrosoglutathione (30 microM), reversed, in part, the cell damage observed in aminoguanidine/cytomix-treated cells. These results suggest that endogenous NO limits cytokine-induced lung epithelial damage. PMID:9142945

  6. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome

    PubMed Central

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  7. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome.

    PubMed

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Omodeo Salè, Fausta; Van den Steen, Philippe E; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  8. Thoracoscopic anatomical resection of congenital lung malformations in adults

    PubMed Central

    Macias, Lidia; Ojanguren, Amaia; Dahdah, Julien

    2015-01-01

    Congenital lung malformations (CLM) are a heterogeneous group of disorders that may require surgical resection to prevent complications. Thoracoscopic resection of CLM has been reported in infants. Our goal was to state whether it can also be a viable option in adults. Between 2007 and 2014, 11 patients had a thoracoscopic resection of a CLM (six lobectomies and five anatomic segmentectomies) with satisfactory results. Although being more challenging in adults due to infectious sequellae, this approach is safe. PMID:25922729

  9. STRAIN-SPECIFIC SENSITIVITY TO INDUCTION OF MURINE LUNG TUMORS FOLLOWING IN UTERO EXPOSURE TO 3-METHYLCHOLANTHRENE

    EPA Science Inventory

    We previously demonstrated that different strains of fetal mice were more sensitive to lung tumor induction by 3-methylcholanthrene (MC) than were adults. Offspring from either a D2 x B6D2F1 backcross or from parental Balb/c mice exhibited a similar high incidence of lung tumors ...

  10. Affecting Pseudomonas aeruginosa Phenotypic Plasticity by Quorum Sensing Dysregulation Hampers Pathogenicity in Murine Chronic Lung Infection

    PubMed Central

    Bondí, Roslen; Messina, Marco; De Fino, Ida; Bragonzi, Alessandra; Rampioni, Giordano; Leoni, Livia

    2014-01-01

    In Pseudomonas aeruginosa quorum sensing (QS) activates the production of virulence factors, playing a critical role in pathogenesis. Multiple negative regulators modulate the timing and the extent of the QS response either in the pre-quorum or post-quorum phases of growth. This regulation likely increases P. aeruginosa phenotypic plasticity and population fitness, facilitating colonization of challenging environments such as higher organisms. Accordingly, in addition to the factors required for QS signals synthesis and response, also QS regulators have been proposed as targets for anti-virulence therapies. However, while it is known that P. aeruginosa mutants impaired in QS are attenuated in their pathogenic potential, the effect of mutations causing a dysregulated timing and/or magnitude of the QS response has been poorly investigated so far in animal models of infection. In order to investigate the impact of QS dysregulation on P. aeruginosa pathogenesis in a murine model of lung infection, the QteE and RsaL proteins have been selected as representatives of negative regulators controlling P. aeruginosa QS in the pre- and post-quorum periods, respectively. Results showed that the qteE mutation does not affect P. aeruginosa lethality and ability to establish chronic infection in mice, despite causing a premature QS response and enhanced virulence factors production in test tube cultures compared to the wild type. Conversely, the post-quorum dysregulation caused by the rsaL mutation hampers the establishment of P. aeruginosa chronic lung infection in mice without affecting the mortality rate. On the whole, this study contributes to a better understanding of the impact of QS regulation on P. aeruginosa phenotypic plasticity during the infection process. Possible fallouts of these findings in the anti-virulence therapy field are also discussed. PMID:25420086

  11. Pharmacodynamics of the New Fluoroquinolone Gatifloxacin in Murine Thigh and Lung Infection Models

    PubMed Central

    Andes, D.; Craig, W. A.

    2002-01-01

    Gatifloxacin is a new 8-methoxy fluoroquinolone with enhanced activity against gram-positive cocci. We used the neutropenic murine thigh infection model to characterize the time course of antimicrobial activity of gatifloxacin and determine which pharmacokinetic (PK)-pharmacodynamic (PD) parameter best correlated with efficacy. The thighs of mice were infected with 106.5 to 107.4 CFU of strains of Staphylococcus aureus, Streptococcus pneumoniae, or Escherichia coli, and the mice were then treated for 24 h with 0.29 to 600 mg of gatifloxacin per kg of body weight per day, with the dose fractionated for dosing every 3, 6, 12, and 24 h. Levels in serum were measured by microbiologic assay. In vivo postantibiotic effects (PAEs) were calculated from serial values of the log10 numbers of CFU per thigh 2 to 4 h after the administration of doses of 8 and 32 mg/kg. Nonlinear regression analysis was used to determine which PK-PD parameter best correlated with the numbers of CFU per thigh at 24 h. Pharmacokinetic studies revealed peak/dose values of 0.23 to 0.32, area under the concentration-time curve (AUC)/dose values of 0.47 to 0.62, and half-lives of 0.6 to 1.1 h. Gatifloxacin produced in vivo PAEs of 0.2 to 3.1 h for S. pneumoniae and 0.4 to 2.3 h for S. aureus. The 24-h AUC/MIC was the PK-PD parameter that best correlated with efficacy (R2 = 90 to 94% for the three organisms, whereas R2 = 70 to 81% for peak level/MIC and R2 = 48 to 73% for the time that the concentration in serum was greater than the MIC). There was some reduced activity when dosing every 24 h was used due to the short half-life of gatifloxacin in mice. In subsequent studies we used the neutropenic and nonneutropenic murine thigh and lung infection models to determine if the magnitude of the AUC/MIC needed for the efficacy of gatifloxacin varied among pathogens (including resistant strains) and infection sites. The mice were infected with 106.5 to 107.4 CFU of four isolates of S. aureus (one methicillin

  12. Initial Host Response to Bacteria in the Murine Lung Differs Between Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae.

    PubMed

    Preu, Liselotte; Bischoff, Markus; Veith, Nils T; Rosenbruch, Martin; Theegarten, Dirk; Laschke, Matthias W; Meier, Carola; Tschernig, Thomas

    2016-04-01

    Phagocytosis of bacteria is an important process during early host defence. It has been directly observed only ex vivo or in vitro. Here, we report on the observation of phagocytosis under in vivo conditions by using intravital microscopy in the murine lung. Suspensions of fluorescently labelled Streptococcus pneumoniae, Staphylococcus aureus and Pseudomonas aeruginosa cells were each instilled intratracheally to anaesthetized mice. After thoracotomy, the alveolar surface was observed for 30 min. Alveolar phagocytes exhibiting ingested bacteria could be detected and counted. The highest numbers were found after the infection with P. aeruginosa. By using intravital microscopy, cellular host defence could be observed in living mice lungs. The initial phagocytic reaction crucially depends on the species of applied bacteria invading the lung. PMID:26481126

  13. Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia.

    PubMed

    Grzenda, Adrienne; Shannon, John; Fisher, Jason; Arkovitz, Marc S

    2013-01-01

    Congenital diaphragmatic hernia (CDH) is one of the most common congenital abnormalities. Children born with CDH suffer a number of co-morbidities, the most serious of which is respiratory insufficiency from a combination of alveolar hypoplasia and pulmonary vascular hypertension. All children born with CDH display some degree of pulmonary hypertension, the severity of which has been correlated with mortality. The molecular mechanisms responsible for the development of pulmonary hypertension in CDH remain poorly understood. Angiopoitein-1 (Ang-1), a central mediator in angiogenesis, participates in the vascular development of many tissues, including the lung. Although previous studies have demonstrated that Ang-1 might play an important role in the development of familial pulmonary hypertension, the role of Ang-1 in the development of the pulmonary hypertension associated with CDH is poorly understood. The aim of this study was to examine the role of the Ang-1 pathway in a murine model of CDH. Here, we report that Ang-1 appears important in normal murine lung development, and have established its tissue-level expression and localization patterns at key time-points. Additionally, our data from a nitrofen and bisdiamine-induced murine model of CDH suggests that altered expression patterns of Ang-1, its receptor Tie-2 and one of its transcription factors (epithelium-specific Ets transcription factor 1) might be responsible for development of the pulmonary vasculopathy seen in the setting of CDH. PMID:22917924

  14. Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    PubMed Central

    Semple, John W.; Kim, Michael; Hou, Jing; McVey, Mark; Lee, Young Jin; Tabuchi, Arata; Kuebler, Wolfgang M.; Chai, Zhong-Wei; Lazarus, Alan H.

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage. PMID:22363629

  15. Chronic intermittent hypoxia induces lung growth in adult mice

    PubMed Central

    Bevans-Fonti, Shannon; Grigoryev, Dmitry N.; Drager, Luciano F.; Myers, Allen C.; Wise, Robert A.; Schwartz, Alan R.; Mitzner, Wayne; Polotsky, Vsevolod Y.

    2011-01-01

    Obstructive sleep apnea (OSA) increases cardiovascular morbidity and mortality, which have been attributed to intermittent hypoxia (IH). The effects of IH on lung structure and function are unknown. We used a mouse model of chronic IH, which mimics the O2 profile in patients with OSA. We exposed adult C57BL/6J mice to 3 mo of IH with a fraction of inspired oxygen (FiO2) nadir of 5% 60 times/h during the 12-h light phase. Control mice were exposed to room air. Lung volumes were measured by quasistatic pressure-volume (PV) curves under anesthesia and by water displacement postmortem. Lungs were processed for morphometry, and the mean airspace chord length (Lm) and alveolar surface area were determined. Lung tissue was stained for markers of proliferation (proliferating cell nuclear antigen), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling), and type II alveolar epithelial cells (surfactant protein C). Gene microarrays were performed, and results were validated by real-time PCR. IH increased lung volumes by both PV curves (air vs. IH, 1.16 vs. 1.44 ml, P < 0.0001) and water displacement (P < 0.01) without changes in Lm, suggesting that IH increased the alveolar surface area. IH induced a 60% increase in cellular proliferation, but the number of proliferating type II alveolocytes tripled. There was no increase in apoptosis. IH upregulated pathways of cellular movement and cellular growth and development, including key developmental genes vascular endothelial growth factor A and platelet-derived growth factor B. We conclude that IH increases alveolar surface area by stimulating lung growth in adult mice. PMID:21131398

  16. Development of a sarcoidosis murine lung granuloma model using Mycobacterium superoxide dismutase A peptide.

    PubMed

    Swaisgood, Carmen M; Oswald-Richter, Kyra; Moeller, Stephen D; Klemenc, Jennifer M; Ruple, Lisa M; Farver, Carol F; Drake, John M; Culver, Daniel A; Drake, Wonder P

    2011-02-01

    Sarcoidosis is characterized by noncaseating granulomas containing CD4(+) T cells with a Th1 immunophenotype. Although the causative antigens remain unknown, independent studies noted molecular and immunologic evidence of mycobacterial virulence factors in sarcoidosis specimens. A major limiting factor in discovering new insights into the pathogenesis of sarcoidosis is the lack of an animal model. Using a distinct superoxide dismutase A peptide (sodA) associated with sarcoidosis granulomas, we developed a pulmonary model of sarcoidosis granulomatous inflammation. Mice were sensitized by a subcutaneous injection of sodA, incorporated in incomplete Freund's adjuvant (IFA). Control subjects consisted of mice with no sensitization (ConNS), sensitized with IFA only (ConIFA), or with Schistosoma mansoni eggs. Fourteen days later, sensitized mice were challenged by tail-vein injection of naked beads, covalently coupled to sodA peptides or to schistosome egg antigens (SEA). Histologic analysis revealed hilar lymphadenopathy and noncaseating granulomas in the lungs of sodA-treated or SEA-treated mice. Flow cytometry of bronchoalveolar lavage (BAL) demonstrated CD4(+) T-cell responses against sodA peptide in the sodA-sensitized mice only. Cytometric bead analysis revealed significant differences in IL-2 and IFN-γ secretion in the BAL fluid of sodA-treated mice, compared with mice that received SEA or naked beads (P = 0.008, Wilcoxon rank sum test). ConNS and ConIFA mice demonstrated no significant formation of granuloma, and no Th1 immunophenotype. The use of microbial peptides distinct for sarcoidosis reveals a histologic and immunologic profile in the murine model that correlates well with those profiles noted in human sarcoidosis, providing the framework to investigate the molecular basis for the progression or resolution of sarcoidosis. PMID:20348207

  17. Dexamethasone Attenuates VEGF Expression and Inflammation but Not Barrier Dysfunction in a Murine Model of Ventilator–Induced Lung Injury

    PubMed Central

    Hegeman, Maria A.; Hennus, Marije P.; Cobelens, Pieter M.; Kavelaars, Annemieke; Jansen, Nicolaas J. G.; Schultz, Marcus J.; van Vught, Adrianus J.; Heijnen, Cobi J.

    2013-01-01

    Background Ventilator–induced lung injury (VILI) is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF) has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar–capillary barrier dysfunction in an established murine model of VILI. Methods Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O (“lower” tidal volumes of ∼7.5 ml/kg; LVT) or 18 cmH2O (“higher” tidal volumes of ∼15 ml/kg; HVT). Dexamethasone was intravenously administered at the initiation of HVT–ventilation. Non–ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. Results Particularly HVT–ventilation led to alveolar–capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro–inflammatory response in lungs of HVT–ventilated mice, without improving alveolar–capillary permeability, gas exchange and pulmonary edema formation. Conclusions Dexamethasone treatment completely abolishes ventilator–induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar–capillary barrier dysfunction in an established murine model of VILI. PMID:23451215

  18. Comparative Plasma Exposure and Lung Distribution of Two Human Use Commercial Azithromycin Formulations Assessed in Murine Model: A Preclinical Study

    PubMed Central

    Rivulgo, Virginia; Sparo, Mónica; Ceci, Mónica; Fumuso, Elida; Confalonieri, Alejandra; Sánchez Bruni, Sergio F.

    2013-01-01

    Azithromycin (AZM) therapeutic failure and relapses of patients treated with generic formulations have been observed in clinical practice. The main goal of this research was to compare in a preclinical study the serum exposure and lung tissue concentration of two commercial formulations AZM-based in murine model. The current study involved 264 healthy Balb-C. Mice were divided into two groups (n = 44): animals of Group A (reference formulation -R-) were orally treated with AZM suspension at 10 mg/kg of b.w. Experimental animals of Group B (generic formulation -G-) received identical treatment than Group A with a generic formulation AZM-based. The study was repeated twice as Phase II and III. Serum and lung tissue samples were taken 24 h post treatment. Validated microbiological assay was used to determine the serum pharmacokinetic and lung distribution of AZM. After the pharmacokinetic analysis was observed, a similar serum exposure for both formulations of AZM assayed. In contrast, statistical differences (P < 0.001) were obtained after comparing the concentrations of both formulations in lung tissue, being the values obtained for AUC and Cmax (AZM-R-) +1586 and 122%, respectively, than those obtained for AZM-G- in lung. These differences may indicate large differences on the distribution process of both formulations, which may explain the lack of efficacy/therapeutic failure observed on clinical practice. PMID:24073402

  19. HEALTH EFFECTS OF PASSIVE SMOKING: ASSESSMENT OF LUNG CANCER IN ADULTS AND RESPIRATORY DISORDERS IN CHILDREN

    EPA Science Inventory

    This draft document addresses the scientific, mostly epidemiologic, evidence on the potential association between passive smoking or Environmental Tobacco Smoke (ETS) and (1) lung cancer in nonsmoking adults, and (2) respiratory disorders in children. ith respect to lung cancer i...

  20. Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection

    PubMed Central

    McCaughey, Laura C.; Ritchie, Neil. D.; Douce, Gillian R.; Evans, Thomas J.; Walker, Daniel

    2016-01-01

    Protein antibiotics, known as bacteriocins, are widely produced by bacteria for intraspecies competition. The potency and targeted action of bacteriocins suggests that they could be developed into clinically useful antibiotics against highly drug resistant Gram-negative pathogens for which there are few therapeutic options. Here we show that Pseudomonas aeruginosa specific bacteriocins, known as pyocins, show strong efficacy in a murine model of P. aeruginosa lung infection, with the concentration of pyocin S5 required to afford protection from a lethal infection at least 100-fold lower than the most commonly used inhaled antibiotic tobramycin. Additionally, pyocins are stable in the lung, poorly immunogenic at high concentrations and efficacy is maintained in the presence of pyocin specific antibodies after repeated pyocin administration. Bacteriocin encoding genes are frequently found in microbial genomes and could therefore offer a ready supply of highly targeted and potent antibiotics active against problematic Gram-negative pathogens. PMID:27444885

  1. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    SciTech Connect

    Weinberger, Florian Mehrkens, Dennis Starbatty, Jutta Nicol, Philipp Eschenhagen, Thomas

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  2. Label-Retaining Cells in the Adult Murine Salivary Glands Possess Characteristics of Adult Progenitor Cells

    PubMed Central

    Chibly, Alejandro M.; Querin, Lauren; Harris, Zoey; Limesand, Kirsten H.

    2014-01-01

    Radiotherapy is the primary treatment for patients with head and neck cancer, which account for roughly 500,000 annual cases worldwide. Dysfunction of the salivary glands and associated conditions like xerostomia and dysphagia are often developed by these patients, greatly diminishing their life quality. Current preventative and palliative care fail to deliver an improvement in the quality of life, thus accentuating the need for regenerative therapies. In this study, a model of label retaining cells (LRCs) in murine salivary glands was developed, in which LRCs demonstrated proliferative potential and possessed markers of putative salivary progenitors. Mice were labeled with 5-Ethynyl-2′-deoxyuridine (EdU) at postnatal day 10 and chased for 8 weeks. Tissue sections from salivary glands obtained at the end of chase demonstrated co-localization between LRCs and the salivary progenitor markers keratin 5 and keratin 14, as well as kit mRNA, indicating that LRCs encompass a heterogeneous population of salivary progenitors. Proliferative potential of LRCs was demonstrated by a sphere assay, in which LRCs were found in primary and secondary spheres and they co-localized with the proliferation marker Ki67 throughout sphere formation. Surprisingly, LRCs were shown to be radio-resistant and evade apoptosis following radiation treatment. The clinical significance of these findings lie in the potential of this model to study the mechanisms that prevent salivary progenitors from maintaining homeostasis upon exposure to radiation, which will in turn facilitate the development of regenerative therapies for salivary gland dysfunction. PMID:25238060

  3. The murine lung microbiome in relation to the intestinal and vaginal bacterial communities

    PubMed Central

    2013-01-01

    Background This work provides the first description of the bacterial population of the lung microbiota in mice. The aim of this study was to examine the lung microbiome in mice, the most used animal model for inflammatory lung diseases such as COPD, cystic fibrosis and asthma. Bacterial communities from broncho-alveolar lavage fluids and lung tissue were compared to samples taken from fecal matter (caecum) and vaginal lavage fluid from female BALB/cJ mice. Results Using a customized 16S rRNA sequencing protocol amplifying the V3-V4 region our study shows that the mice have a lung microbiome that cluster separately from mouse intestinal microbiome (caecum). The mouse lung microbiome is dominated by Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Cyanobacteria overlapping the vaginal microbiome. We also show that removal of host tissue or cells from lung fluid during the DNA extraction step has an impact on the resulting bacterial community profile. Sample preparation needs to be considered when choosing an extraction method and interpreting data. Conclusions We have consistently amplified bacterial DNA from mouse lungs that is distinct from the intestinal microbiome in these mice. The gut microbiome has been extensively studied for its links to development of disease. Here we suggest that also the lung microbiome could be important in relation to inflammatory lung diseases. Further research is needed to understand the contribution of the lung microbiome and the gut-lung axis to the development of lung diseases such as COPD and asthma. PMID:24373613

  4. Isolation and (111)In-Oxine Labeling of Murine NK Cells for Assessment of Cell Trafficking in Orthotopic Lung Tumor Model.

    PubMed

    Malviya, Gaurav; Nayak, Tapan; Gerdes, Christian; Dierckx, Rudi A J O; Signore, Alberto; de Vries, Erik F J

    2016-04-01

    A noninvasive in vivo imaging method for NK cell trafficking is essential to gain further understanding of the pathogenesis of NK cell mediated immune response to the novel cancer treatment strategies, and to discover the homing sites and physiological distribution of NK cells. Although human NK cells can be labeled for in vivo imaging, little is known about the murine NK cell labeling and its application in animal models. This study describes the isolation and ex vivo radiolabeling of murine NK cells for the evaluation of cell trafficking in an orthotopic model of human lung cancer in mice. Scid-Tg(FCGR3A)Blt transgenic SCID mice were used to isolate NK cells from mouse splenocytes using the CD49b (DX5) MicroBeads positive selection method. The purity and viability of the isolated NK cells were confirmed by FACS analysis. Different labeling buffers and incubation times were evaluated to optimize (111)In-oxine labeling conditions. Functionality of the radiolabeled NK cell was assessed by (51)Cr-release assay. We evaluated physiological distribution of (111)In-oxine labeled murine NK cells in normal SCID mice and biodistribution in irradiated and nonirradiated SCID mice with orthotopic A549 human lung tumor lesions. Imaging findings were confirmed by histology. Results showed that incubation with 0.011 MBq of (111)In-oxine per million murine NK cells in PBS (pH 7.4) for 20 min is the best condition that provides optimum labeling efficiency without affecting cell viability and functionality. Physiological distribution in normal SCID mice demonstrated NK cells homing mainly in the spleen, while (111)In released from NK cells was excreted via kidneys into urine. Biodistribution studies demonstrated a higher lung uptake in orthotopic lung tumor-bearing mice than control mice. In irradiated mice, lung tumor uptake of radiolabeled murine NK cells decreased between 24 h and 72 h postinjection (p.i.), which was accompanied by tumor regression, while in nonirradiated mice

  5. Carcinogenic alterations in murine liver, lung, and uterine tumors induced by in utero exposure to ionizing radiation.

    PubMed

    Lumniczky, K; Antal, S; Unger, E; Wunderlich, L; Hidvégi, E J; Sáfrány, G

    1998-02-01

    The atomic bombing of Hiroshima and Nagasaki and the nuclear accident at Chernobyl raised the question of prenatal sensitivity to ionizing radiation-induced cancer. In this study, mice were exposed to single doses of gamma-radiation (0.2-2.0 Gy) at different embryonic stages. The tumor incidence increased with dose from 15% in control mice to 35% in mice irradiated with 2.0 Gy on 18 d of prenatal life. Various oncogenic events were investigated in lymphoid, liver, lung, and uterine tumors. We observed threefold to fivefold increases in myc expression in 25% of the lymphomas, and the expression of Ha-ras and p53 genes decreased in 40% and 60% of the lung tumors by twofold to fivefold. Point mutations were tissue specific: Ha-ras codon 61 mutations were found in about 40% of the liver adenocarcinomas, Ki-ras codon 12 mutations in about 17% of lung tumors, and p53 mutations in about 15% of the lymphomas. Amplification and rearrangement of the p53, myc, and Ha-, Ki- and N-ras genes were not detected. Loss of heterozygosity on chromosome 4 at the multiple tumor suppressor 1 and 2 genes was observed in all types of malignancies. Allelic losses on chromosome 11 at the p53 locus were found in lymphoid, liver, and lung tumors, but they were absent from uterine tumors. Multiple oncogenic changes were often detected. The frequency of carcinogenic alterations was similar in spontaneous and radiation-induced lymphoid, liver, and uterine tumors. In radiation-induced lung adenocarcinomas, however, the incidences of many oncogenic changes were different from those found in their spontaneous counterparts. This suggests that different oncogenic pathways are activated during spontaneous and in utero gamma-radiation-induced murine lung carcinogenesis. PMID:9496910

  6. Intratracheal instillation of pravastatin for the treatment of murine allergic asthma: a lung-targeted approach to deliver statins

    PubMed Central

    Zeki, Amir A; Bratt, Jennifer M; Chang, Kevin Y; Franzi, Lisa M; Ott, Sean; Silveria, Mark; Fiehn, Oliver; Last, Jerold A; Kenyon, Nicholas J

    2015-01-01

    Systemic treatment with statins mitigates allergic airway inflammation, TH2 cytokine production, epithelial mucus production, and airway hyperreactivity (AHR) in murine models of asthma. We hypothesized that pravastatin delivered intratracheally would be quantifiable in lung tissues using mass spectrometry, achieve high drug concentrations in the lung with minimal systemic absorption, and mitigate airway inflammation and structural changes induced by ovalbumin. Male BALB/c mice were sensitized to ovalbumin (OVA) over 4 weeks, then exposed to 1% OVA aerosol or filtered air (FA) over 2 weeks. Mice received intratracheal instillations of pravastatin before and after each OVA exposure (30 mg/kg). Ultra performance liquid chromatography – mass spectrometry was used to quantify plasma, lung, and bronchoalveolar lavage fluid (BALF) pravastatin concentration. Pravastatin was quantifiable in mouse plasma, lung tissue, and BALF (BALF > lung > plasma for OVA and FA groups). At these concentrations pravastatin inhibited airway goblet cell hyperplasia/metaplasia, and reduced BALF levels of cytokines TNFα and KC, but did not reduce BALF total leukocyte or eosinophil cell counts. While pravastatin did not mitigate AHR, it did inhibit airway hypersensitivity (AHS). In this proof-of-principle study, using novel mass spectrometry methods we show that pravastatin is quantifiable in tissues, achieves high levels in mouse lungs with minimal systemic absorption, and mitigates some pathological features of allergic asthma. Inhaled pravastatin may be beneficial for the treatment of asthma by having direct airway effects independent of a potent anti-inflammatory effect. Statins with greater lipophilicity may achieve better anti-inflammatory effects warranting further research. PMID:25969462

  7. Intratracheal instillation of pravastatin for the treatment of murine allergic asthma: a lung-targeted approach to deliver statins.

    PubMed

    Zeki, Amir A; Bratt, Jennifer M; Chang, Kevin Y; Franzi, Lisa M; Ott, Sean; Silveria, Mark; Fiehn, Oliver; Last, Jerold A; Kenyon, Nicholas J

    2015-05-11

    Systemic treatment with statins mitigates allergic airway inflammation, TH2 cytokine production, epithelial mucus production, and airway hyperreactivity (AHR) in murine models of asthma. We hypothesized that pravastatin delivered intratracheally would be quantifiable in lung tissues using mass spectrometry, achieve high drug concentrations in the lung with minimal systemic absorption, and mitigate airway inflammation and structural changes induced by ovalbumin. Male BALB/c mice were sensitized to ovalbumin (OVA) over 4 weeks, then exposed to 1% OVA aerosol or filtered air (FA) over 2 weeks. Mice received intratracheal instillations of pravastatin before and after each OVA exposure (30 mg/kg). Ultra performance liquid chromatography - mass spectrometry was used to quantify plasma, lung, and bronchoalveolar lavage fluid (BALF) pravastatin concentration. Pravastatin was quantifiable in mouse plasma, lung tissue, and BALF (BALF > lung > plasma for OVA and FA groups). At these concentrations pravastatin inhibited airway goblet cell hyperplasia/metaplasia, and reduced BALF levels of cytokines TNFα and KC, but did not reduce BALF total leukocyte or eosinophil cell counts. While pravastatin did not mitigate AHR, it did inhibit airway hypersensitivity (AHS). In this proof-of-principle study, using novel mass spectrometry methods we show that pravastatin is quantifiable in tissues, achieves high levels in mouse lungs with minimal systemic absorption, and mitigates some pathological features of allergic asthma. Inhaled pravastatin may be beneficial for the treatment of asthma by having direct airway effects independent of a potent anti-inflammatory effect. Statins with greater lipophilicity may achieve better anti-inflammatory effects warranting further research. PMID:25969462

  8. Identification and enrichment of colony-forming cells from the adult murine pituitary

    SciTech Connect

    Lepore, D.A.; Roeszler, K.; Wagner, J.; Ross, S.A.; Bauer, K.; Thomas, P.Q. , E-Mail: paul.thomas@mcri.edu.au

    2005-08-01

    Stem and progenitor cells have been identified in many adult tissues including bone marrow, the central nervous system, and skin. While there is direct evidence to indicate the activity of a progenitor cell population in the pituitary gland, this putative subpopulation has not yet been identified. Herein we describe the isolation and characterization of a novel clonogenic cell type in the adult murine pituitary, which we have termed Pituitary Colony-Forming Cells (PCFCs). PCFCs constitute 0.2% of pituitary cells, and generate heterogeneous colonies from single cells. PCFCs exhibit variable proliferative potential, and may exceed 11 population doublings in 14 days. Enrichment of PCFCs to 61.5-fold with 100% recovery can be obtained through the active uptake of the fluorescent dipeptide, {beta}-Ala-Lys-N{epsilon}-AMCA. PCFCs are mostly contained within the large, agranular subpopulation of AMCA{sup +} cells, and constitute 28% of this fraction, corresponding to 140.5-fold enrichment. Interestingly, the AMCA{sup +} population contains rare cells that are GH{sup +} or PRL{sup +}. GH{sup +} cells were also identified in PCFC single cell colonies, suggesting that PCFCs have the potential to differentiate into GH{sup +} cells. Together, these data show that the pituitary contains a rare clonogenic population which may correspond to the somatotrope/lactotrope progenitors suggested by previous experiments.

  9. Alternatively activated macrophages determine repair of the infarcted adult murine heart

    PubMed Central

    Shiraishi, Manabu; Shintani, Yasunori; Shintani, Yusuke; Ishida, Hidekazu; Saba, Rie; Yamaguchi, Atsushi; Adachi, Hideo; Yashiro, Kenta

    2016-01-01

    Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1–/–), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1–/– mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1–/– mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI. PMID:27140396

  10. Long-Term Survival of Photoreceptors Transplanted into the Adult Murine Neural Retina Requires Immune Modulation

    PubMed Central

    West, Emma L.; Pearson, Rachael A.; Barker, Susie E.; Luhmann, Ulrich F. O.; Maclaren, Robert E.; Barber, Amanda C.; Duran, Yanai; Smith, Alexander J.; Sowden, Jane C.; Ali, Robin R.

    2012-01-01

    Stem cell therapy presents an opportunity to replace photoreceptors that are lost as a result of inherited and age-related degenerative disease. We have previously shown that murine postmitotic rod photoreceptor precursor cells, identified by expression of the rod-specific transcription factor Nrl, are able to migrate into and integrate within the adult murine neural retina. However, their long-term survival has yet to be determined. Here, we found that integrated Nrl.gfp+ve photoreceptors were present up to 12 months post-transplantation, albeit in significantly reduced numbers. Surviving cells had rod-like morphology, including inner/outer segments and spherule synapses. In a minority of eyes, we observed an early, marked reduction in integrated photoreceptors within 1 month post-transplantation, which correlated with increased numbers of amoeboid macrophages, indicating acute loss of transplanted cells due to an inflammatory response. In the majority of transplants, similar numbers of integrated cells were observed between 1 and 2 months post-transplantation. By 4 months, however, we observed a significant decrease in integrated cell survival. Macrophages and T cells were present around the transplantation site, indicating a chronic immune response. Immune suppression of recipients significantly increased transplanted photoreceptor survival, indicating that the loss observed in unsuppressed recipients resulted from T cell-mediated host immune responses. Thus, if immune responses are modulated, correctly integrated transplanted photoreceptors can survive for extended periods of time in hosts with partially mismatched H-2 haplotypes. These findings suggest that autologous donor cells are optimal for therapeutic approaches to repair the neural retina, though with immune suppression nonautologous donors may be effective. PMID:20857496

  11. COMPARISON OF THE PATHOGENESIS OF MURINE CYTOMEGALOVIRUS IN LUNG AND LIVER FOLLOWING INTRAPERITONEAL OR INTRATRACHEAL INFECTION

    EPA Science Inventory

    This study compares the pathogenesis of murine cytomegalovirus (MCMV) infections following intraperitoneal (I.P.) and intratracheal (I.T.) inoculation. No deaths were seen in mice given 1,000,000 pfu MCMV I.T., whereas 52% mortality occurred among animals given this dose I.P. Thi...

  12. Genome wide responses of murine lungs to dietary α-tocopherol

    PubMed Central

    Oommen, Saji; Vasu, Vihas T.; Leonard, Scott W.; Traber, Maret G.; Cross, Carroll E.; Gohil, Kishorchandra

    2009-01-01

    α-tocopherol (α-T) may affect biological processes by modulating mRNA concentrations. This study screened the responses of ~15,000 lung mRNAs to dietary α-T in mice. The lung was chosen as the target organ because it is subjected to cyclical variations in oxidant and inflammatory stressors and α-T has been implicated in their modulations. The analysis identified ~400 mRNAs sensitive to α-T status of lungs determined by dietary α-T. The female lung transcriptome appears to be more sensitive to the α-T status than that of the male lungs. Here, we focus on the induction of 13 cytoskeleton genes by dietary α-T because they were similarly induced in the male and the female lungs. Their inductions were confirmed by quantitative-real-time-polymerase chain reaction (qRT-PCR). Immunohistochemical analyses of three of the encoded proteins suggest that they are expressed in lung vasculature and alveolar regions. The data suggest that the lung α-T status may modulate cytoarchitecture of lungs. PMID:17164183

  13. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs.

    PubMed

    Wolcott, J A; Zee, Y C; Osebold, J W

    1982-09-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in viral antigen distribution was consistent with significantly reduced influenza disease mortality and prolonged survival time, but only when the oxidant was present during the course of infection. Reduced disease severity in ozone-exposed animals appeared to be independent of peak pulmonary virus titers, pulmonary interferon titers, and pulmonary and serum-neutralizing antibody titers. These studies suggested that the distribution of influenza virus in the murine lung was a key factor in disease severity. PMID:6182839

  14. Migration of CD11b+ accessory cells during murine lung regeneration.

    PubMed

    Chamoto, Kenji; Gibney, Barry C; Lee, Grace S; Ackermann, Maximilian; Konerding, Moritz A; Tsuda, Akira; Mentzer, Steven J

    2013-05-01

    In many mammalian species, the removal of one lung leads to growth of the remaining lung to near-baseline levels. In studying post-pneumonectomy mice, we used morphometric measures to demonstrate neoalveolarization within 21 days of pneumonectomy. Of note, the detailed histology during this period demonstrated no significant pulmonary inflammation. To identify occult blood-borne cells, we used a parabiotic model (wild-type/GFP) of post-pneumonectomy lung growth. Flow cytometry of post-pneumonectomy lung digests demonstrated a rapid increase in the number of cells expressing the hematopoietic membrane molecule CD11b; 64.5% of the entire GFP(+) population were CD11b(+). Fluorescence microscopy demonstrated that the CD11b(+) peripheral blood cells migrated into both the interstitial tissue and alveolar airspace compartments. Pneumonectomy in mice deficient in CD11b (CD18(-/-) mutants) demonstrated near-absent leukocyte migration into the airspace compartment (p<.001) and impaired lung growth as demonstrated by lung weight (p<.05) and lung volume (p<.05). Transcriptional activity of the partitioned CD11b(+) cells demonstrated significantly increased transcription of Angpt1, Il1b, and Mmp8, Mmp9, Ncam1, Sele, Sell, Selp in the alveolar airspace and Adamts2, Ecm1, Egf, Mmp7, Npr1, Tgfb2 in the interstitial tissue (>4-fold regulation; p<.05). These data suggest that blood-borne CD11b(+) cells represent a population of accessory cells contributing to post-pneumonectomy lung growth. PMID:23376466

  15. Outcomes of Adolescent and Adult Patients with Lung Metastatic Osteosarcoma and Comparison of Synchronous and Metachronous Lung Metastatic Groups

    PubMed Central

    Gok Durnali, Ayse; Paksoy Turkoz, Fatma; Ardic Yukruk, Fisun; Tokluoglu, Saadet; Yazici, Omer Kamil; Demirci, Ayse; Bal, Oznur; Gundogdu Buyukbas, Selay; Esbah, Onur; Oksuzoglu, Berna; Alkis, Necati

    2016-01-01

    Osteosarcomas with lung metastases are rather heterogenous group. We aimed to evaluate the clinicopathological characteristics and outcomes of osteosarcoma patients with lung metastases and to compare the synchronous and metachronous lung metastatic groups. A total of 93 adolescent and adult patients with lung metastatic osteosarcoma, from March 1995 to July 2011, in a single center, were included. Sixty-five patients (69.9%) were male. The median age was 19 years (range, 14–74). Thirty-nine patients (41.9%) had synchronous lung metastases (Group A) and 54 patients (58.1%) had metachronous lung metastases (Group B). The 5-year and 10-year post-lung metastases overall survival (PLM-OS) was 17% and 15%, respectively. In multivariate analysis for PLM-OS, time to lung metastases (p = 0.010), number of metastatic pulmonary nodules (p = 0.020), presence of pulmonary metastasectomy (p = 0.007) and presence of chemotherapy for lung metastases (p< 0.001) were found to be independent prognostic factors. The median PLM-OS of Group A and Group B was 16 months and 9 months, respectively. In Group B, the median PLM-OS of the patients who developed lung metastases within 12 months was 6 months, whereas that of the patients who developed lung metastases later was 16 months. Time to lung metastases, number and laterality of metastatic pulmonary nodules, chemotherapy for lung metastatic disease and pulmonary metastasectomy were independent prognostic factors for patients with lung metastatic osteosarcoma. The best PLM-OS was in the subgroup of patients treated both surgery and chemotherapy. The prognosis of the patients who developed lung metastases within 12 months after diagnosis was worst. PMID:27167624

  16. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  17. Ibuprofen modifies the inflammatory response of the murine lung to Pseudomonas aeruginosa.

    PubMed

    Sordelli, D O; Cerquetti, M C; el-Tawil, G; Ramwell, P W; Hooke, A M; Bellanti, J A

    1985-08-01

    In chronic P. aeruginosa infection, lung tissue damage is induced by either the microorganism or the inflammatory response. We investigated, in an animal model, whether a non-steroidal anti-inflammatory drug, ibuprofen, reduced lung inflammation produced by P. aeruginosa. Lung lavages, pulmonary clearance of P. aeruginosa and lung pathology were studied in CD-1 mice injected with sodium ibuprofenate. A single dose of the drug, injected immediately after 30 min exposure to the P. aeruginosa aerosol, decreased the recruitment of granulocytes into airways in a dose-dependent manner. Pretreatment with 2 doses of the drug 18 and 6 h before the P. aeruginosa challenge was even more effective. The kinetics of changes in prostaglandin E2, 6-keto-prostaglandin F1 alpha and thromboxane B2 concentrations in lung lavage fluids after P. aeruginosa aerosol were also modified by ibuprofen. Moreover, ibuprofen treatment did not impair lung clearance of the challenge microorganisms, and the animals had less inflammation of the lungs. PMID:3863757

  18. Developmental stage is a major determinant of lung injury in a murine model of bronchopulmonary dysplasia.

    PubMed

    Bäckström, Erica; Hogmalm, Anna; Lappalainen, Urpo; Bry, Kristina

    2011-04-01

    Bronchopulmonary dysplasia (BPD) is a common inflammatory lung disease in premature infants. To study the hypothesis that the sensitivity of the lung to inflammatory injury depends on the developmental stage, we studied postnatal lung development in transgenic mice expressing human IL-1β (hIL-1β) in the lungs during the late canalicular-early saccular, saccular, or late saccular-alveolar stage. Overexpression of hIL-1β in the saccular stage caused arrest in alveolar development, airway remodeling, and goblet cell hyperplasia in the lungs as well as poor growth and survival of infant mice. Overexpression of hIL-1β during the late canalicular-early saccular stage did not adversely affect lung development, growth, or survival of the pups. Mice expressing hIL-1β from the late saccular to alveolar stage had smaller alveolar chord length, thinner septal walls, less airway remodeling and mucus metaplasia, and better survival than mice expressing hIL-1β during the saccular stage. Human IL-1β overexpression in the saccular stage was sufficient to cause a BPD-like illness in infant mice, whereas the lung was more resistant to hIL-1β-induced injury at earlier and later developmental stages. PMID:21178818

  19. Contribution of Fetal, but Not Adult, Pulmonary Mesothelium to Mesenchymal Lineages in Lung Homeostasis and Fibrosis.

    PubMed

    von Gise, Alexander; Stevens, Sean M; Honor, Leah B; Oh, Jin Hee; Gao, Chi; Zhou, Bin; Pu, William T

    2016-02-01

    The lung is enveloped by a layer of specialized epithelium, the pulmonary mesothelium. In other organs, mesothelial cells undergo epithelial-mesenchymal transition and contribute to organ stromal cells. The contribution of pulmonary mesothelial cells (PMCs) to the developing lung has been evaluated with differing conclusions. PMCs have also been indirectly implicated in lung fibrosis in the progressive, fatal lung disease idiopathic pulmonary fibrosis. We used fetal or postnatal genetic pulse labeling of PMCs to assess their fate in murine development, normal lung homeostasis, and models of pulmonary fibrosis. We found that most fetal PMC-derived mesenchymal cells (PMCDCs) expressed markers of pericytes and fibroblasts, only a small minority expressed smooth muscle markers, and none expressed endothelial cell markers. Postnatal PMCs did not contribute to lung mesenchyme during normal lung homeostasis or in models of lung fibrosis. However, fetal PMCDCs were abundant and actively proliferating within fibrotic regions in lung fibrosis models, suggesting that they actively participate in the fibrotic process. These data clarify the role of fetal and postnatal PMCDCs in lung development and disease. PMID:26121126

  20. Early Impairment of Lung Mechanics in a Murine Model of Marfan Syndrome

    PubMed Central

    Uriarte, Juan J.; Meirelles, Thayna; Gorbenko del Blanco, Darya; Nonaka, Paula N.; Campillo, Noelia; Sarri, Elisabet; Navajas, Daniel; Egea, Gustavo; Farré, Ramon

    2016-01-01

    Early morbidity and mortality in patients with Marfan syndrome (MFS) -a connective tissue disease caused by mutations in fibrillin-1 gene- are mainly caused by aorta aneurysm and rupture. However, the increase in the life expectancy of MFS patients recently achieved by reparatory surgery promotes clinical manifestations in other organs. Although some studies have reported respiratory alterations in MFS, our knowledge of how this connective tissue disease modifies lung mechanics is scarce. Hence, we assessed whether the stiffness of the whole lung and of its extracellular matrix (ECM) is affected in a well-characterized MFS mouse model (FBN1C1039G/+). The stiffness of the whole lung and of its ECM were measured by conventional mechanical ventilation and atomic force microscopy, respectively. We studied 5-week and 9-month old mice, whose ages are representative of early and late stages of the disease. At both ages, the lungs of MFS mice were significantly more compliant than in wild type (WT) mice. By contrast, no significant differences were found in local lung ECM stiffness. Moreover, histopathological lung evaluation showed a clear emphysematous-like pattern in MFS mice since alveolar space enlargement was significantly increased compared with WT mice. These data suggest that the mechanism explaining the increased lung compliance in MFS is not a direct consequence of reduced ECM stiffness, but an emphysema-like alteration in the 3D structural organization of the lung. Since lung alterations in MFS are almost fully manifested at an early age, it is suggested that respiratory monitoring could provide early biomarkers for diagnosis and/or follow-up of patients with the Marfan syndrome. PMID:27003297

  1. Early Impairment of Lung Mechanics in a Murine Model of Marfan Syndrome.

    PubMed

    Uriarte, Juan J; Meirelles, Thayna; Gorbenko Del Blanco, Darya; Nonaka, Paula N; Campillo, Noelia; Sarri, Elisabet; Navajas, Daniel; Egea, Gustavo; Farré, Ramon

    2016-01-01

    Early morbidity and mortality in patients with Marfan syndrome (MFS) -a connective tissue disease caused by mutations in fibrillin-1 gene- are mainly caused by aorta aneurysm and rupture. However, the increase in the life expectancy of MFS patients recently achieved by reparatory surgery promotes clinical manifestations in other organs. Although some studies have reported respiratory alterations in MFS, our knowledge of how this connective tissue disease modifies lung mechanics is scarce. Hence, we assessed whether the stiffness of the whole lung and of its extracellular matrix (ECM) is affected in a well-characterized MFS mouse model (FBN1C1039G/+). The stiffness of the whole lung and of its ECM were measured by conventional mechanical ventilation and atomic force microscopy, respectively. We studied 5-week and 9-month old mice, whose ages are representative of early and late stages of the disease. At both ages, the lungs of MFS mice were significantly more compliant than in wild type (WT) mice. By contrast, no significant differences were found in local lung ECM stiffness. Moreover, histopathological lung evaluation showed a clear emphysematous-like pattern in MFS mice since alveolar space enlargement was significantly increased compared with WT mice. These data suggest that the mechanism explaining the increased lung compliance in MFS is not a direct consequence of reduced ECM stiffness, but an emphysema-like alteration in the 3D structural organization of the lung. Since lung alterations in MFS are almost fully manifested at an early age, it is suggested that respiratory monitoring could provide early biomarkers for diagnosis and/or follow-up of patients with the Marfan syndrome. PMID:27003297

  2. Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways.

    PubMed

    Gianotti, Ambra; Ferrera, Loretta; Philp, Amber R; Caci, Emanuela; Zegarra-Moran, Olga; Galietta, Luis J V; Flores, Carlos A

    2016-06-15

    Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice. PMID:27063443

  3. Upregulated Tim-3/galectin-9 expressions in acute lung injury in a murine malarial model.

    PubMed

    Liu, Jinfeng; Xiao, Siyu; Huang, Shiguang; Pei, Fuquan; Lu, Fangli

    2016-02-01

    Malaria is the most relevant parasitic disease worldwide, and severe malaria is characterized by cerebral edema, acute lung injury (ALI), and multiple organ dysfunctions; however, the mechanisms of lung damage need to be better clarified. In this study, we used Kunming outbred mice infected with Plasmodium berghei ANKA (PbANKA) to elucidate the profiles of T cell immunoglobulin and mucin domain-3 (Tim-3) and its ligand galecin-9 (Gal-9) in the development of ALI. Mice were injected intraperitoneally with 10(6) PbANKA-infected red blood cells. The lungs and mediastinal lymph nodes (MLNs) were harvested at days 5, 10, 15, and 20 post infections (p.i.). The grade of lung injury was histopathologically evaluated. Tim-3- and Gal-9-positive cells in the lungs and MLNs were stained by immunohistochemistry, and the messenger RNA (mRNA) expressions of Tim-3, Gal-9, and related cytokines were assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Bronchoalveolar lavage fluid (BALF) analyses were performed from days 18 to 20 p.i. The results showed that the pathological severities in the lungs were increased with times and the total protein level in the BALFs was significantly elevated in PbANKA-infected mice. The numbers of Gal-9(+) and Tim-3(+) cells in the lungs were significantly increased, and the mRNA levels of both Gal-9 and Tim-3 in the lungs and MLNs were over-expressed in PbANKA-infected mice. In conclusion, our data suggested that Tim-3/Gal-9 may play a role in PbANKA-induced ALI. PMID:26494364

  4. Activation of the Canonical Bone Morphogenetic Protein (BMP) Pathway during Lung Morphogenesis and Adult Lung Tissue Repair

    PubMed Central

    Sountoulidis, Alexandros; Stavropoulos, Athanasios; Giaglis, Stavros; Apostolou, Eirini; Monteiro, Rui; Chuva de Sousa Lopes, Susana M.; Chen, Huaiyong; Stripp, Barry R.; Mummery, Christine; Andreakos, Evangelos; Sideras, Paschalis

    2012-01-01

    Signaling by Bone Morphogenetic Proteins (BMP) has been implicated in early lung development, adult lung homeostasis and tissue-injury repair. However, the precise mechanism of action and the spatio-temporal pattern of BMP-signaling during these processes remains inadequately described. To address this, we have utilized a transgenic line harboring a BMP-responsive eGFP-reporter allele (BRE-eGFP) to construct the first detailed spatiotemporal map of canonical BMP-pathway activation during lung development, homeostasis and adult-lung injury repair. We demonstrate that during the pseudoglandular stage, when branching morphogenesis progresses in the developing lung, canonical BMP-pathway is active mainly in the vascular network and the sub-epithelial smooth muscle layer of the proximal airways. Activation of the BMP-pathway becomes evident in epithelial compartments only after embryonic day (E) 14.5 primarily in cells negative for epithelial-lineage markers, located in the proximal portion of the airway-tree, clusters adjacent to neuro-epithelial-bodies (NEBs) and in a substantial portion of alveolar epithelial cells. The pathway becomes activated in isolated E12.5 mesenchyme-free distal epithelial buds cultured in Matrigel suggesting that absence of reporter activity in these regions stems from a dynamic cross-talk between endoderm and mesenchyme. Epithelial cells with activated BMP-pathway are enriched in progenitors capable of forming colonies in three-dimensional Matrigel cultures. As lung morphogenesis approaches completion, eGFP-expression declines and in adult lung its expression is barely detectable. However, upon tissue-injury, either with naphthalene or bleomycin, the canonical BMP-pathways is re-activated, in bronchial or alveolar epithelial cells respectively, in a manner reminiscent to early lung development and in tissue areas where reparatory progenitor cells reside. Our studies illustrate the dynamic activation of canonical BMP-pathway during lung

  5. Protective Role of Lung Surfactant Protein D in a Murine Model of Invasive Pulmonary Aspergillosis

    PubMed Central

    Madan, Taruna; Kishore, Uday; Singh, Mamta; Strong, Peter; Hussain, Ejaj M.; Reid, Kenneth B. M.; Sarma, P. Usha

    2001-01-01

    The protective effects of intranasal administration of amphotericin B (AmB), human SP-A, SP-D and a 60-kDa fragment of SP-D (rSP-D) were examined in a murine model of invasive pulmonary aspergillosis (IPA). The untreated group of IPA mice showed no survival at 7 days postinfection. Treatment with AmB, SP-D, and rSP-D increased the survival rate to 80, 60, and 80%, respectively, suggesting that SP-D (and rSP-D) can protect immunosuppressed mice from an otherwise fatal challenge with Aspergillus fumigatus conidia. PMID:11254642

  6. A Novel Telomerase Activator Suppresses Lung Damage in a Murine Model of Idiopathic Pulmonary Fibrosis

    PubMed Central

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S.; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B.; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2–4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis. PMID:23516479

  7. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    PubMed

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis. PMID:23516479

  8. Overexpression of RAR{beta}4 and p53 in murine lung cancer

    SciTech Connect

    Landers, M.; Bradley, W.E.C.

    1994-09-01

    Lung cancer is the leading cause of cancer death in western societies. There are four major histological types: small cell, epidemoid carcinoma, adenocarcinoma and large cell carcinoma, the adenocarcinoma being the only type generally found in the mouse. Earlier studies have shown that the transgenes coding for isoform 4 of the retinoic acid receptor {beta} and a mutant form of the tumor suppressor p53 are involved in the development of lung cancer. These results led us to ask whether the two genes may contribute to lung carcinogenesis in a synergistic manner. Mice overexpressing a RAR{beta}4-like isoform transgene (which causes very marked hyperplasia of alveolar type II cells) and mutated p53 transgene were crossed and progeny were analyzed after treatment with the lung carcinogen urethane. The results to date suggest that in the double transgenic mice, lung tumor kinetics do not result from cooperation between those transgenes since the effect of the transgenes was additive rather than synergistic. We conclude that RAR{beta}4 and p53 are involved in different tumorigenic pathways.

  9. Pluripotent Allospecific CD8+ Effector T Cells Traffic to Lung in Murine Obliterative Airway Disease

    PubMed Central

    West, Erin E.; Lavoie, Tera L.; Orens, Jonathan B.; Chen, Edward S.; Ye, Shui Q.; Finkelman, Fred D.; Garcia, Joe G. N.; McDyer, John F.

    2006-01-01

    Long-term success in lung transplantation is limited by obliterative bronchiolitis, whereas T cell effector mechanisms in this process remain incompletely understood. Using the mouse heterotopic allogeneic airway transplant model, we studied T cell effector responses during obliterative airways disease (OAD). Allospecific CD8+IFN-γ+ T cells were detected in airway allografts, with significant coexpression of TNF-α and granzyme B. Therefore, using IFN-γ as a surrogate marker, we assessed the distribution and kinetics of extragraft allo-specific T cells during OAD. Robust allospecific IFN-γ was produced by draining the lymph nodes, spleen, and lung mononuclear cells from allograft, but not isograft recipients by Day 14, and significantly decreased by Day 28. Although the majority of allospecific T cells were CD8+, allospecific CD4+ T cells were also detected in these compartments, with each employing distinct allorecognition pathways. An influx of pluripotent CD8+ effector cells with a memory phenotype were detected in the lung during OAD similar to those seen in the allografts and secondary lymphoid tissue. Antibody depletion of CD8+ T cells markedly reduced airway lumen obliteration and fibrosis at Day 28. Together, these data demonstrate that allospecific CD8+ effector T cells play an important role in OAD and traffic to the lung after heterotopic airway transplant, suggesting that the lung is an important immunologic site, and perhaps a reservoir, for effector cells during the rejection process. PMID:16195540

  10. Regulatory Interactions between Androgens, Hoxb5, and TGFβ Signaling in Murine Lung Development

    PubMed Central

    Volpe, MaryAnn V.; Ramadurai, Sujatha M.; Mujahid, Sana; Vong, Thanhxuan; Brandao, Marcia; Wang, Karen T.; Pham, Lucia D.; Nielsen, Heber C.

    2013-01-01

    Androgens enhance airway branching but delay alveolar maturation contributing to increased respiratory morbidity in prematurely born male infants. Hoxb5 protein positively regulates airway branching in developing lung. In other organs, androgen regulation intersects with Hox proteins and TGFβ-SMAD signaling, but these interactions have not been studied in the lung. We hypothesized that androgen alteration of airway branching early in lung development requires Hoxb5 expression and that these androgen-Hoxb5 interactions occur partially through regional changes in TGFβ signaling. To evaluate acute effects of androgen and TGFβ on Hoxb5, E11 whole fetal mouse lungs were cultured with dihydrotestosterone (DHT) with/without Hoxb5 siRNA or TGFβ inhibitory antibody. Chronic in utero DHT exposure was accomplished by exposing pregnant mice to DHT (subcutaneous pellet) from E11 to E18. DHT's ability to enhance airway branching and alter phosphorylated SMAD2 cellular localization was partially dependent on Hoxb5. Hoxb5 inhibition also changed the cellular distribution of SMAD7 protein. Chronic in utero DHT increased Hoxb5 and altered SMAD7 mesenchymal localization. TGFβ inhibition enhanced airway branching, and Hoxb5 protein cellular localization was more diffuse. We conclude that DHT controls lung airway development partially through modulation of Hoxb5 protein expression and that this level of regulation involves interactions with TGFβ signaling. PMID:24078914

  11. Raman microimaging of murine lungs: insight into the vitamin A content.

    PubMed

    Marzec, K M; Kochan, K; Fedorowicz, A; Jasztal, A; Chruszcz-Lipska, K; Dobrowolski, J Cz; Chlopicki, S; Baranska, M

    2015-04-01

    The composition of the lung tissue of mice was investigated using Raman confocal microscopy at 532 nm excitation wavelength and was supported with various staining techniques as well as DFT calculations. This combination of experimental and theoretical techniques allows for the study of the distribution of lung lipofibroblasts (LIFs), rich in vitamin A, as well as the chemical structure of vitamin A. The comparison of the Raman spectra derived from LIFs with the experimental and theoretical spectra of standard retinoids showed the ability of LIFs to store all-trans retinol, which is partially oxidized to all-trans retinal and retinoic acid. Moreover, we were able to visualize the distribution of other lung tissue components including the surfactant and selected enzymes (lipoxygenase/glucose oxidase). PMID:25535673

  12. Lipoxin Signaling in Murine Lung Host Responses to Cryptococcus neoformans Infection.

    PubMed

    Colby, Jennifer K; Gott, Katherine M; Wilder, Julie A; Levy, Bruce D

    2016-01-01

    Lipoxins (LX) are proresolving mediators that augment host defense against bacterial infection. Here, we investigated roles for LX in lung clearance of the fungal pathogen Cryptococcus neoformans (Cne). After intranasal inoculation of 5,000 CFU Cne, C57BL/6 and C.B-17 mice exhibited strain-dependent differences in Cne clearance, immunologic responses, and lipoxin A4 (LXA4) formation and receptor (ALX/FPR2) expression. Compared with C.B-17 mice, C57BL/6 lungs had increased and persistent Cne infection 14 days after inoculation, increased eosinophils, and distinct profiles of inflammatory cytokines. Relative to C.B-17 mice, bronchoalveolar lavage fluid levels of LXA4 were increased before and after infection in C57BL/6. The kinetics for 15-epi-LXA4 production were similar in both strains. Lung basal expression of the LX biosynthetic enzyme Alox12/15 (12/15-lipoxygenase) was increased in C57BL/6 mice and further increased after Cne infection. In contrast, lung basal expression of the LXA4 receptor Alx/Fpr2 was higher in C.B-17 relative to C57BL/6 mice, and after Cne infection, Alx/Fpr2 expression was significantly increased in only C.B-17 mice. Heat-killed Cne initiated lung cell generation of IFN-γ and IL-17 and was further increased in C.B-17 mice by 15-epi-LXA4. A trend toward reduced Cne clearance and IFN-γ production was observed upon in vivo administration of an ALX/FPR2 antagonist. Together, these findings provide the first evidence that alterations in cellular immunity against Cne are associated with differences in LXA4 production and receptor expression, suggesting an important role for ALX/FPR2 signaling in the regulation of pathogen-mediated inflammation and antifungal lung host defense. PMID:26039320

  13. The Proteome of Native Adult Müller Glial Cells From Murine Retina*

    PubMed Central

    Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca

    2016-01-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  14. The Proteome of Native Adult Müller Glial Cells From Murine Retina.

    PubMed

    Grosche, Antje; Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca; von Toerne, Christine; Merl-Pham, Juliane; Hauck, Stefanie M

    2016-02-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  15. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    SciTech Connect

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, K. Monica; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  16. Lung Volume during Swallowing: Single Bolus Swallows in Healthy Young Adults

    ERIC Educational Resources Information Center

    Hegland, Karen M. Wheeler; Huber, Jessica E.; Pitts, Teresa; Sapienza, Christine M.

    2009-01-01

    Purpose: This study examined the relationship between swallowing and lung volume initiation in healthy adults during single swallows of boluses differing in volume and consistency. Differences in lung volume according to respiratory phase surrounding the swallow were also assessed. Method: Nine men and 11 women between the ages of 19 and 28 years…

  17. RELATIONSHIP BETWEEN LUNG FUNCTION AND PHYSICAL CHARACTERISTICS IN YOUNG ADULT BLACK AND WHITE MALES AND FEMALES

    EPA Science Inventory

    The relationships of lung function to physical characteristics in young adults have not been adequately described for different gender-race groups in the United States. s part of a study of the effects of ozone exposure upon Black and White men and women, we measured lung volumes...

  18. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model

    PubMed Central

    2011-01-01

    Background There is increasing interest in the environmental and health consequences of silver nanoparticles as the use of this material becomes widespread. Although human exposure to nanosilver is increasing, only a few studies address possible toxic effect of inhaled nanosilver. The objective of this study was to determine whether very small commercially available nanosilver induces pulmonary toxicity in mice following inhalation exposure. Results In this study, mice were exposed sub-acutely by inhalation to well-characterized nanosilver (3.3 mg/m3, 4 hours/day, 10 days, 5 ± 2 nm primary size). Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage fluid. Lungs were evaluated for histopathologic changes and the presence of silver. In contrast to published in vitro studies, minimal inflammatory response or toxicity was found following exposure to nanosilver in our in vivo study. The median retained dose of nanosilver in the lungs measured by inductively coupled plasma - optical emission spectroscopy (ICP-OES) was 31 μg/g lung (dry weight) immediately after the final exposure, 10 μg/g following exposure and a 3-wk rest period and zero in sham-exposed controls. Dissolution studies showed that nanosilver did not dissolve in solutions mimicking the intracellular or extracellular milieu. Conclusions Mice exposed to nanosilver showed minimal pulmonary inflammation or cytotoxicity following sub-acute exposures. However, longer term exposures with higher lung burdens of nanosilver are needed to ensure that there are no chronic effects and to evaluate possible translocation to other organs. PMID:21266073

  19. Mean lung pressure during adult high-frequency oscillatory ventilation: an experimental study using a lung model.

    PubMed

    Hirayama, Takahiro; Nagano, Osamu; Shiba, Naoki; Yumoto, Tetsuya; Sato, Keiji; Terado, Michihisa; Ugawa, Toyomu; Ichiba, Shingo; Ujike, Yoshihito

    2014-12-01

    In adult high-frequency oscillatory ventilation (HFOV), stroke volume (SV) and mean lung pressure (PLung) are important for lung protection. We measured the airway pressure at the Y-piece and the lung pressure during HFOV using a lung model and HFOV ventilators for adults (R100 and 3100B). The lung model was made of a 20-liter, airtight rigid plastic container (adiabatic compliance: 19.3 ml/cmH2O) with or without a resistor (20 cmH2O/l/sec). The ventilator settings were as follows: mean airway pressure (MAP), 30 cmH2O; frequency, 5-15 Hz (every 1 Hz); airway pressure amplitude (AMP), maximum;and % of inspiratory time (IT), 50% for R100, 33% or 50% for 3100B. The measurements were also performed with an AMP of 2/3 or 1/3 maximum at 5, 10 and 15 Hz. The PLung and the measured MAP were not consistently identical to the setting MAP in either ventilator, and decreasing IT decreased the PLung in 3100B. In conclusion, we must pay attention to the possible discrepancy between the PLung and the setting MAP during adult HFOV. PMID:25519026

  20. Hypoxia imaging predicts success of hypoxia-induced cytosine deaminase/5-fluorocytosine gene therapy in a murine lung tumor model.

    PubMed

    Lee, B-F; Lee, C-H; Chiu, N-T; Hsia, C-C; Shen, L-H; Shiau, A-L

    2012-04-01

    Tc-99m-HL91 is a hypoxia imaging biomarker. The aim of this study was to investigate the value of Tc-99m-HL91 imaging for hypoxia-induced cytosine deaminase (CD)/5-fluorocytosine (5-FC) gene therapy in a murine lung tumor model. C57BL/6 mice were implanted with Lewis lung carcinoma cells transduced with the hypoxia-inducible promoter-driven CD gene (LL2/CD) or luciferase gene (LL2/Luc) serving as the control. When tumor volumes reached 100 mm(3), pretreatment images were acquired after injection of Tc-99m-HL91. The mice were divided into low and high hypoxic groups based on the tumor-to-non-tumor ratio of Tc-99m-HL91. They were injected daily with 5-FC (500 mg kg(-1)) or the vehicle for 1 week. When tumor volumes reached 1000 mm(3), autoradiography and histological examinations were performed. Treatment with 5-FC delayed tumor growth and enhanced the survival of mice bearing high hypoxic LL2/CD tumors. The therapeutic effect of hypoxia-induced CD/5-FC gene therapy was more pronounced in high hypoxic tumors than in low hypoxic tumors. This study provides the first evidence that Tc-99m-HL91 can serve as an imaging biomarker for predicting the treatment responses of hypoxia-regulated CD/5-FC gene therapy in animal tumor models. Our results suggest that hypoxia imaging using Tc-99m-HL91 has the predictive value for the success of hypoxia-directed treatment regimens. PMID:22281757

  1. Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney.

    PubMed

    Muhl, Lars; Moessinger, Christine; Adzemovic, Milena Z; Dijkstra, Marike H; Nilsson, Ingrid; Zeitelhofer, Manuel; Hagberg, Carolina E; Huusko, Jenni; Falkevall, Annelie; Ylä-Herttuala, Seppo; Eriksson, Ulf

    2016-07-01

    Metabolic diseases, such as obesity and diabetes, are a serious burden for the health system. Vascular endothelial growth factor (VEGF)-B has been shown to regulate tissue uptake and accumulation of fatty acids and is thus involved in these metabolic diseases. However, the cell-type-specific expression pattern of Vegfb and its receptor (VEGFR1, gene Flt1) remains unclear. We explore the expression of Vegfb and Flt1 in the murine heart, lung and kidney by utilizing β-galactosidase knock-in mouse models and combining the analysis of reporter gene expression and immunofluorescence microscopy. Furthermore, Flt1 heterozygous mice were analyzed with regard to muscular fatty acid accumulation and peripheral insulin sensitivity. Throughout the heart, Vegfb expression was found in cardiomyocytes with a postnatal ventricular shift corresponding to known changes in energy requirements. Vegfb expression was also found in the pulmonary myocardium of the lung and in renal epithelial cells of the thick ascending limb of Henle's loop, the connecting tubule and the collecting duct. In all analyzed organs, VEGFR1 expression was restricted to endothelial cells. We also show that reduced expression of VEGFR1 resulted in decreased cardiac fatty acid accumulation and increased peripheral insulin sensitivity, possibly as a result of attenuated VEGF-B/VEGFR1 signaling. Our data therefore support a tightly controlled, paracrine signaling mechanism of VEGF-B to VEGFR1. The identified cell-specific expression pattern of Vegfb and Flt1 might form the basis for the development of cell-type-targeted research models and contributes to the understanding of the physiological and pathological role of VEGF-B/VEGFR1 signaling. PMID:26928042

  2. Mechanisms of decreased intestinal epithelial proliferation and increased apoptosis in murine acute lung injury

    PubMed Central

    Husain, Kareem D.; Stromberg, Paul E.; Woolsey, Cheryl A.; Turnbull, Isaiah R.; Dunne, W. Michael; Javadi, Pardis; Buchman, Timothy G.; Karl, Irene E.; Hotchkiss, Richard S.; Coopersmith, Craig M.

    2005-01-01

    Objectives The aim of this study was to determine the effects of acute lung injury (ALI) on the gut epithelium and examine mechanisms underlying changes in crypt proliferation and apoptosis. The relationship between severity and timing of lung injury to intestinal pathology was also examined. Design Randomized, controlled study. Setting University research laboratory. Subjects Genetically inbred mice. Interventions Following induction of ALI, gut epithelial proliferation and apoptosis was assessed in a) C3H/HeN wild type and C3H/HeJ mice, that lack functional toll-like receptor 4 (TLR4, n=17), b) C57Bl/6 mice that received monoclonal anti-tumor necrosis factor-α (TNFα) or control antibody (n=22) and c) C57Bl/6 wild type and transgenic mice that overexpress Bcl-2 in their gut epithelium (n=21). Intestinal epithelial proliferation and death were also examined in animals with differing degrees of lung inflammation (n=24) as well as in a timecourse analysis following a fixed injury (n=18). Measurements and Main Results ALI caused decreased proliferation and increased apoptosis in crypt epithelial cells in all animals studied. C3H/HeJ mice had higher levels of proliferation than C3H/HeN animals without additional changes in apoptosis. Anti-TNFα antibody had no effect on gut epithelial proliferation or death. Overexpression of Bcl-2 did not change proliferation despite decreasing gut apoptosis. Proliferation and apoptosis were not correlated to severity of lung injury, as gut alterations were lost in mice with more severe ALI. Changes in both gut epithelial proliferation and death were apparent within 12 hours, but proliferation was decreased 36 hours following ALI while apoptosis returned to normal. Conclusions ALI causes disparate effects on crypt proliferation and apoptosis, which occur, at least in part, through differing mechanisms involving TLR4 and Bcl-2. Severity of lung injury does not correlate with perturbations in proliferation or death in the gut

  3. Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem cells in murine lung.

    PubMed

    Woo, Min-Ah; Lee, Sang-Myung; Kim, Gunsung; Baek, JongHo; Noh, Mi Suk; Kim, Ji Eun; Park, Sung Jin; Minai-Tehrani, Arash; Park, Se-Chang; Seo, Yeong Tai; Kim, Yong-Kwon; Lee, Yoon-Sik; Jeong, Dae Hong; Cho, Myung-Haing

    2009-02-01

    Immunoassays using nanomaterials have been rapidly developed for the analysis of multiple biomolecules. Highly sensitive and biocompatible surface enhanced Raman spectroscopy-active nanomaterials have been used for biomolecule analysis by many research groups in order to overcome intrinsic problems of conventional immunoassays. We used fluorescent surface-enhanced Raman spectroscopic dots (F-SERS dots) to detect biomolecules in this study. The F-SERS dots are composed of silver nanoparticle-embedded silica nanospheres, organic Raman tagging materials, and fluorescent dyes. The F-SERS dots demonstrated highly sensitive, selective, and multifunctional characteristics for multiplex targeting, tracking, and imaging of cellular and molecular events in the living organism. We successfully applied F-SERS dots for the detection of three cellular proteins, including CD34, Sca-1, and SP-C. These proteins are simultaneously expressed in bronchioalveolar stem cells (BASCs) in the murine lung. We analyzed the relative expression ratios of each protein in BASCs since external standards were used to evaluate SERS intensity in tissue. Quantitative comparisons of multiple protein expression in tissue were first attempted using SERS-encoded nanoprobes. Our results suggested that immunoassays using F-SERS dots offered significant increases in sensitivity and selectivity. Such immunoassays may serve as the primary next-generation labeling technologies for the simultaneous analysis of multiple biomolecules. PMID:19117480

  4. Mast cells modulate acute ozone-induced inflammation of the murine lung

    SciTech Connect

    Kleeberger, S.R.; Seiden, J.E.; Levitt, R.C.; Zhang, L.Y. )

    1993-11-01

    We hypothesized that mast cells modulate lung inflammation that develops after acute ozone (O3) exposure. Two tests were done: (1) genetically mast-cell-deficient (WBB6F1-W/Wv, WCB6F1-SI/SId) and bone-marrow-transplanted W/Wv mice were exposed to O3 or filtered air, and the inflammatory responses were compared with those of mast-cell-sufficient congenic mice (WBB6F1-(+)/+, WCB6F1-(+)/+); (2) genetically O3-susceptible C57BL/6J mice were treated pharmacologically with putative mast-cell modulators or vehicle, and the O3-induced inflammatory responses were compared. Mice were exposed to 1.75 ppm O3 or air for 3 h, and lung inflammation was assessed by bronchoalveolar lavage (BAL) 6 and 24 h after exposure. Relative to O3-exposed W/Wv and SI/SId mice, the mean numbers of lavageable polymorphonuclear leukocytes (PMNs) and total BAL protein concentration (a marker of permeability) were significantly greater in the respective O3-exposed normal congenic +/+ mice (p < 0.05). Mast cells were reconstituted in W/Wv mice by transplantation of bone marrow cells from congenic +/+ mice, and O3-induced lung inflammation was assessed in the mast-cell-replete W/Wv mice. After O3 exposure, the changes in lavageable PMNs and total protein of mast-cell-replete W/Wv mice were not different from age-matched normal +/+ control mice, and they were significantly greater than those of sham-transplanted W/Wv mice (p < 0.05). Genetically susceptible C57BL/6J mice were pretreated with a mast-cell stabilizer (nedocromil sodium), secretagogue (compound 48/80), or vehicle, and the mice were exposed to O3.

  5. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    SciTech Connect

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  6. Local immunity in lung-associated lymph nodes in a murine model of pulmonary histoplasmosis.

    PubMed Central

    Fojtasek, M F; Sherman, M R; Garringer, T; Blair, R; Wheat, L J; Schnizlein-Bick, C T

    1993-01-01

    Local immunity against acute pulmonary histoplasmosis was studied in the lung-associated lymph nodes of normal nonimmune mice infected intratracheally with live Histoplasma capsulatum yeasts. The phenotypes and distribution of cells in lung-associated lymph nodes and spleens were determined by flow cytometry. In addition, the immune responsiveness of these cells was evaluated by in vitro blastogenesis. Anti-H. capsulatum antibodies in serum and H. capsulatum antigen in tissue were measured by immunoassays. Cellular immune responses were greater in the lymph nodes than in the spleens. In lymph nodes 7 days after infection, a marked increase in the number of B lymphocytes caused the percentage to rise to 43%, compared with 26% in controls, and it remained elevated throughout the course of infection. A CD3+ cell that did not express CD4 or CD8 increased in number until it constituted 21% of lymph node cells, compared with 5% in controls, by day 14. The numbers of CD4+ and CD8+ T lymphocytes were modestly increased from days 7 to 35, but their percentages dropped because of the greater numbers of B lymphocytes and CD3+4-8- cells. Macrophages consistently constituted 2 to 3% of lymph node cells during the study. In spleens 7 days after infection, the percentage of macrophages in infected mice rose to 21%, compared with 9% in controls, but the total spleen cell number did not increase until day 14, when all cell subsets were nearly double in number. The in vitro blastogenic response of lymph node cells to H. capsulatum peaked at day 7, but spleen cell response was minimal during the course of infection. Histoplasma-specific serum immunoglobulin G antibodies reached peak levels by day 21 and remained high to the end of the study. In contrast, levels of antigen-specific immunoglobulin M antibodies were very low. These data suggest that antigen-specific immune responses occur in lung-associated lymph nodes and that this draining lymph node response may be an important

  7. Ventilation-perfusion scintigraphy in an adult with congenital unilateral hyperlucent lung

    SciTech Connect

    Wegener, W.A.; Velchik, M.G. )

    1990-10-01

    A variety of congenital and acquired etiologies can give rise to the radiographic finding of a unilateral hyperlucent lung. An unusual case of congenital lobar emphysema diagnosed in a young adult following the initial discovery of a hyperexpanded, hyperlucent lung is reported. Although subsequent bronchoscopy and radiologic studies detailed extensive anatomic abnormalities, functional imaging also played an important role in arriving at this rare diagnosis. In particular, ventilation-perfusion scintigraphy identified the small contralateral lung as the functional lung and helped narrow the differential diagnosis to etiologies involving obstructive airway disorders.

  8. Ability of recombinant human catalase to suppress inflammation of the murine lung induced by influenza A.

    PubMed

    Shi, Xunlong; Shi, Zhihui; Huang, Hai; Zhu, Hongguang; Zhou, Pei; Zhu, Haiyan; Ju, Dianwen

    2014-06-01

    Influenza A virus pandemics and emerging antiviral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and inflammation of the lung. We have previously investigated the therapeutic efficacy of recombinant human catalase (rhCAT) against viral pneumonia in mice, but the protection mechanisms involved were not explored. In the present study, we have performed a more in-depth analysis covering survival, lung inflammation, immune cell responses, production of cytokines, and inflammation signaling pathways in mice. Male imprinting control region mice were infected intranasally with high pathogenicity (H1N1) influenza A virus followed by treatment with recombinant human catalase. The administration of rhCAT resulted in a significant reduction in inflammatory cell infiltration (e.g., macrophages and neutrophils), inflammatory cytokine levels (e.g., IL-2, IL-6, TNF-α, IFN-γ), the level of the intercellular adhesion molecule 1 chemokine and the mRNA levels of toll-like receptors TLR-4, TLR-7, and NF-κB, as well as partially maintaining the activity of the antioxidant enzymes system. These findings indicated that rhCAT might play a key protective role in viral pneumonia of mice via suppression of inflammatory immune responses. PMID:24385240

  9. Injection of Syngeneic Murine Melanoma Cells to Determine Their Metastatic Potential in the Lungs

    PubMed Central

    Timmons, Joshua J.; Cohessy, Sean; Wong, Eric T.

    2016-01-01

    Approximately 90% of human cancer deaths are linked to metastasis. Despite the prevalence and relative harm of metastasis, therapeutics for treatment or prevention are lacking. We report a method for the establishment of pulmonary metastases in mice, useful for the study of this phenomenon. Tail vein injection of B57BL/6J mice with B16-BL6 is among the most used models for melanoma metastases. Some of the circulating tumor cells establish themselves in the lungs of the mouse, creating "experimental" metastatic foci. With this model it is possible to measure the relative effects of therapeutic agents on the development of cancer metastasis. The difference in enumerated lung foci between treated and untreated mice indicates the efficacy of metastases neutralization. However, prior to the investigation of a therapeutic agent, it is necessary to determine an optimal number of injected B16-BL6 cells for the quantitative analysis of metastatic foci. Injection of too many cells may result in an overabundance of metastatic foci, impairing proper quantification and overwhelming the effects of anti-cancer therapies, while injection of too few cells will hinder the comparison between treated and controls. PMID:27285567

  10. Lung Volume Measured during Sequential Swallowing in Healthy Young Adults

    ERIC Educational Resources Information Center

    Hegland, Karen Wheeler; Huber, Jessica E.; Pitts, Teresa; Davenport, Paul W.; Sapienza, Christine M.

    2011-01-01

    Purpose: Outcomes from studying the coordinative relationship between respiratory and swallow subsystems are inconsistent for sequential swallows, and the lung volume at the initiation of sequential swallowing remains undefined. The first goal of this study was to quantify the lung volume at initiation of sequential swallowing ingestion cycles and…

  11. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets.

    PubMed

    Sun, Xingshen; Olivier, Alicia K; Liang, Bo; Yi, Yaling; Sui, Hongshu; Evans, Turan I A; Zhang, Yulong; Zhou, Weihong; Tyler, Scott R; Fisher, John T; Keiser, Nicholas W; Liu, Xiaoming; Yan, Ziying; Song, Yi; Goeken, J Adam; Kinyon, Joann M; Fligg, Danielle; Wang, Xiaoyan; Xie, Weiliang; Lynch, Thomas J; Kaminsky, Paul M; Stewart, Zoe A; Pope, R Marshall; Frana, Timothy; Meyerholz, David K; Parekh, Kalpaj; Engelhardt, John F

    2014-03-01

    Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator-knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets. PMID:24074402

  12. Pharmacodynamic Profile of GSK2140944 against Methicillin-Resistant Staphylococcus aureus in a Murine Lung Infection Model

    PubMed Central

    So, Wonhee; Crandon, Jared L.

    2015-01-01

    GSK2140944 is a novel bacterial type II topoisomerase inhibitor with in vitro activity against key causative respiratory pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). We described the pharmacodynamics of GSK2140944 against MRSA in the neutropenic murine lung infection model. MICs of GSK2140944 were determined by broth microdilution. Plasma and epithelial lining fluid (ELF) pharmacokinetics were evaluated to allow determination of pulmonary distribution. Six MRSA isolates were tested. GSK2140944 doses of 1.56 to 400 mg/kg of body weight every 6 h (q6h) were utilized. Efficacy as the change in log10 CFU at 24 h compared with 0 h controls and the area under the concentration-time curve for the free, unbound fraction of a drug (fAUC)/MIC required for various efficacy endpoints were determined. GSK2140944 MICs were 0.125 to 0.5 mg/liter against the six MRSA isolates. ELF penetration ratios ranged from 1.1 to 1.4. Observed maximal decreases were 1.1 to 3.1 log10 CFU in neutropenic mice. The mean fAUC/MIC ratios required for stasis and 1-log-unit decreases were 59.3 ± 34.6 and 148.4 ± 83.3, respectively. GSK2140944 displayed in vitro and in vivo activity against MRSA. The pharmacodynamic profile of GSK2140944, as determined, supports its further development as a potential treatment option for pulmonary infections, including those caused by MRSA. PMID:26055376

  13. Depletion of M. tuberculosis GlmU from Infected Murine Lungs Effects the Clearance of the Pathogen

    PubMed Central

    Soni, Vijay; Upadhayay, Sandeep; Suryadevara, Priyanka; Samla, Ganesh; Singh, Archana; Yogeeswari, Perumal; Sriram, Dharmarajan; Nandicoori, Vinay Kumar

    2015-01-01

    M. tuberculosis N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmUMtb) is a bi-functional enzyme engaged in the synthesis of two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc, catalyzed by the C- and N-terminal domains respectively. UDP-GlcNAc is a key metabolite essential for the synthesis of peptidoglycan, disaccharide linker, arabinogalactan and mycothiols. While glmUMtb was predicted to be an essential gene, till date the role of GlmUMtb in modulating the in vitro growth of Mtb or its role in survival of pathogen ex vivo / in vivo have not been deciphered. Here we present the results of a comprehensive study dissecting the role of GlmUMtb in arbitrating the survival of the pathogen both in vitro and in vivo. We find that absence of GlmUMtb leads to extensive perturbation of bacterial morphology and substantial reduction in cell wall thickness under normoxic as well as hypoxic conditions. Complementation studies show that the acetyl- and uridyl- transferase activities of GlmUMtb are independently essential for bacterial survival in vitro, and GlmUMtb is also found to be essential for mycobacterial survival in THP-1 cells as well as in guinea pigs. Depletion of GlmUMtb from infected murine lungs, four weeks post infection, led to significant reduction in the bacillary load. The administration of Oxa33, a novel oxazolidine derivative that specifically inhibits GlmUMtb, to infected mice resulted in significant decrease in the bacillary load. Thus our study establishes GlmUMtb as a strong candidate for intervention measures against established tuberculosis infections. PMID:26489015

  14. No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro.

    PubMed

    Bengtson, Stefan; Kling, Kirsten; Madsen, Anne Mette; Noergaard, Asger W; Jacobsen, Nicklas Raun; Clausen, Per Axel; Alonso, Beatriz; Pesquera, Amaia; Zurutuza, Amaia; Ramos, Raphael; Okuno, Hanako; Dijon, Jean; Wallin, Håkan; Vogel, Ulla

    2016-07-01

    Graphene and graphene oxide receive much attention these years, because they add attractive properties to a wide range of applications and products. Several studies have shown toxicological effects of other carbon-based nanomaterials such as carbon black nanoparticles and carbon nanotubes in vitro and in vivo. Here, we report in-depth physicochemical characterization of three commercial graphene materials, one graphene oxide (GO) and two reduced graphene oxides (rGO) and assess cytotoxicity and genotoxicity in the murine lung epithelial cell line FE1. The studied GO and rGO mainly consisted of 2-3 graphene layers with lateral sizes of 1-2 µm. GO had almost equimolar content of C, O, and H while the two rGO materials had lower contents of oxygen with C/O and C/H ratios of 8 and 12.8, respectively. All materials had low levels of endotoxin and low levels of inorganic impurities, which were mainly sulphur, manganese, and silicon. GO generated more ROS than the two rGO materials, but none of the graphene materials influenced cytotoxicity in terms of cell viability and cell proliferation after 24 hr. Furthermore, no genotoxicity was observed using the alkaline comet assay following 3 or 24 hr of exposure. We demonstrate that chemically pure, few-layered GO and rGO with comparable lateral size (> 1 µm) do not induce significant cytotoxicity or genotoxicity in FE1 cells at relatively high doses (5-200 µg/ml). Environ. Mol. Mutagen. 57:469-482, 2016. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:27189646

  15. Murine Lung Cancer Increases CD4+ T Cell Apoptosis and Decreases Gut Proliferative Capacity in Sepsis

    PubMed Central

    Lyons, John D.; Mittal, Rohit; Fay, Katherine T.; Chen, Ching-Wen; Liang, Zhe; Margoles, Lindsay M.; Burd, Eileen M.; Farris, Alton B.

    2016-01-01

    Background Mortality is significantly higher in septic patients with cancer than in septic patients without a history of cancer. We have previously described a model of pancreatic cancer followed by sepsis from Pseudomonas aeruginosa pneumonia in which cancer septic mice have higher mortality than previously healthy septic mice, associated with increased gut epithelial apoptosis and decreased T cell apoptosis. The purpose of this study was to determine whether this represents a common host response by creating a new model in which both the type of cancer and the model of sepsis are altered. Methods C57Bl/6 mice received an injection of 250,000 cells of the lung cancer line LLC-1 into their right thigh and were followed three weeks for development of palpable tumors. Mice with cancer and mice without cancer were then subjected to cecal ligation and puncture and sacrificed 24 hours after the onset of sepsis or followed 7 days for survival. Results Cancer septic mice had a higher mortality than previously healthy septic mice (60% vs. 18%, p = 0.003). Cancer septic mice had decreased number and frequency of splenic CD4+ lymphocytes secondary to increased apoptosis without changes in splenic CD8+ numbers. Intestinal proliferation was also decreased in cancer septic mice. Cancer septic mice had a higher bacterial burden in the peritoneal cavity, but this was not associated with alterations in local cytokine, neutrophil or dendritic cell responses. Cancer septic mice had biochemical evidence of worsened renal function, but there was no histologic evidence of renal injury. Conclusions Animals with cancer have a significantly higher mortality than previously healthy animals following sepsis. The potential mechanisms associated with this elevated mortality differ significantly based upon the model of cancer and sepsis utilized. While lymphocyte apoptosis and intestinal integrity are both altered by the combination of cancer and sepsis, the patterns of these alterations vary

  16. Murine Typhus

    PubMed Central

    Dzul-Rosado, Karla R; Zavala Velázquez, Jorge Ernesto; Zavala-Castro, Jorge

    2012-01-01

    Rickettsia typhi: is an intracellular bacteria who causes murine typhus. His importance is reflected in the high frequency founding specific antibodies against Rickettsia typhi in several worldwide seroepidemiological studies, the seroprevalence ranging between 3-36%. Natural reservoirs of R. typhi are rats (some species belonging the Rattus Genus) and fleas (Xenopsylla cheopis) are his vector. This infection is associated with overcrowding, pollution and poor hygiene. Typically presents fever, headache, rash on trunk and extremities, in some cases may occur organ-specific complications, affecting liver, kidney, lung or brain. Initially the disease is very similar to other diseases, is very common to confuse the murine typhus with Dengue fever, therefore, ignorance of the disease is a factor related to complications or non-specific treatments for the resolution of this infection. This paper presents the most relevant information to consider about the rickettsiosis caused by Rickettsia typhi. PMID:24893060

  17. Minimal toxicity of stabilized compacted DNA nanoparticles in the murine lung.

    PubMed

    Ziady, Assem-Galal; Gedeon, Christopher R; Muhammad, Osman; Stillwell, Virginia; Oette, Sharon M; Fink, Tamara L; Quan, Will; Kowalczyk, Tomasz H; Hyatt, Susannah L; Payne, Jennifer; Peischl, Angela; Seng, J E; Moen, Robert C; Cooper, Mark J; Davis, Pamela B

    2003-12-01

    Nanoparticles containing DNA compacted with poly-l-lysine modified on an N-terminal cysteine with polyethylene glycol can effectively transfect cells of the airway epithelium when applied by the luminal route. To evaluate the toxicity of these nanoparticles, we administered 10 and 100 microg DNA compacted into nanoparticles suspended in normal saline by the intranasal route to mice and determined the pulmonary and systemic responses to this challenge, compared to administration of saline alone, and in some experiments, compared to administration of naked DNA, Escherichia coli genomic DNA, or lipofectin-complexed naked DNA. There was no systemic response to either dose of nanoparticles in serum chemistries, hematologic parameters, serum complement, IL-6, or MIP-2 levels or in the activity, growth, and grooming of the mice. Nanoparticles containing 10 microg DNA induced responses comparable to saline in all measures, including BAL cell counts and differentials and cytokine levels and histology. However, mice dosed with 100 microg DNA in nanoparticles had modest increases in BAL neutrophils 48 and 72 h after dosing, modest increases in BAL IL-6 and KC beginning 24 and 48 h, respectively, after dosing, and, on histology of the lung, a trace to 1+ mononuclear cell infiltrates about the pulmonary veins at 48 h, which were markedly reduced by 10 days and gone by 28 days after dosing. BAL neutrophil and cytokine responses were no greater than those entrained by naked DNA for up to 24 h. However, compared to administration of only 10 microg E. coli genomic DNA, the response to compacted DNA was much less. A low dose of lipofectin-complexed DNA (5 microg DNA) induced the same response as 20-fold higher doses of DNA nanoparticles. These data indicate that DNA nanoparticles have no measurable toxic effect at a dose of 10 microg and a very modest effect, which is not limiting, at a dose of 100 microg, which gives maximal gene expression. This favorable toxicity profile

  18. Effect of dexamethasone and Nigella sativa on inducible nitric oxide synthase in the lungs of a murine model of allergic Asthma.

    PubMed

    Abdel-Aziz, Mohamed; Abass, Ayman; Zalata, Khaled; Abd Al-Galel, Tarek; Allam, Umamma; Karrouf, Gamal

    2014-10-01

    The aim of this study was to investigate the effects of Nigella sativa (NS) fixed oil in comparison to dexamethasone (Dex) on inducible nitric oxide synthase (iNOS), peripheral blood eosinophils (PBE), allergen specific serum IgG1 and interleukins and airway inflammation in a murine model of allergic asthma. Thirty-one mice were divided into four groups. Group I (n = 6) served as the control group. Group II (n = 10) mice were sensitized intraperitoneally and challenged intratracheally with cone albumin with no treatment. Group III(n = 6) mice were sensitized, challenged, and treated with Dex for 17 days starting at 24 hours after the first challenge. Group IV (n = 9) mice were sensitized, challenged, and treated with NS fixed oil for 17 days as well. For all groups, the following procedures were carried out: immunohistochemical study of iNOS in lung tissues, detection of PBE percentage, and histopathological examination of lung tissues for inflammatory cells. Lung tissue iNOS expression increased in sensitized, non-treated mice compared with controls, but this increase was not significant. NS fixed oil treatment significantly reduced PBE and lung inflammation but did not significantly reduce lung tissue iNOS expression compared with the control group. These effects were comparable to the effects of Dex. These results suggest that Nigella sativa exhibits immunomodulatory and anti-inflammatory effect which may be useful for treatment of allergic asthma. PMID:25150073

  19. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis.

    PubMed

    López-Hidalgo, Rosa; Ballestín, Raul; Vega, Jessica; Blasco-Ibáñez, José M; Crespo, Carlos; Gilabert-Juan, Javier; Nácher, Juan; Varea, Emilio

    2016-01-01

    Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5'BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5'BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice. PMID

  20. Can Particulate Pollution Affect Lung Function in Healthy Adults?

    EPA Science Inventory

    Accompanying editorial to paper from Harvard by Rice et al. entitled "Long-Term Exposure to Traffic Emissions and Fine Particulate Matter and Lung Function Decline in the Framingham Heart StudyBy almost any measure the Clean Air Act and its amendments has to be considered as one...

  1. Selective and inducible targeting of CD11b+ mononuclear phagocytes in the murine lung with hCD68-rtTA transgenic systems.

    PubMed

    McCubbrey, Alexandra L; Barthel, Lea; Mould, Kara J; Mohning, Michael P; Redente, Elizabeth F; Janssen, William J

    2016-07-01

    During homeostasis two distinct macrophage (Mø) populations inhabit the lungs: tissue Mø (often called interstitial Mø) and resident alveolar Mø (resAMø). During acute lung inflammation, monocytes from the circulation migrate to areas of injury where they mature into a third Mø population: recruited Mø. Resident AMø uniquely express low levels of CD11b and high levels of CD11c. In comparison, recruited Mø and tissue Mø express high levels of CD11b and low levels of CD11c. It is likely that these three Mø subpopulations play distinct roles in injury and disease states; however, tools with which to individually target or track these populations are lacking. Here we demonstrate the utility of an hCD68-rtTA transgenic system for specific, robust, and inducible targeting of CD11b(+) recruited Mø and tissue Mø in the murine lung with negligible activation in resAMø. Using hCD68rtTA-GFP reporter mice, we show both during homeostasis and inflammation that administration of doxycycline induces tet-On reporter expression in recruited Mø and tissue Mø but not in resident AMø. We further demonstrate how hCD68-rtTA can be effectively combined with tet-On Cre to target these same recMø and tissue Mø. Accordingly, the hCD68-rtTA system is a powerful new tool that can be used for lineage tracing, fate mapping, and gene deletion in a variety of murine models, thereby enabling sophisticated investigation of the unique role of these CD11b(+) Mø during lung heath and disease. PMID:27190063

  2. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    SciTech Connect

    Bredow, Sebastian . E-mail: sbredow@LRRI.org; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-06-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m{sup 3} for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease.

  3. Mast cells expedite control of pulmonary murine cytomegalovirus infection by enhancing the recruitment of protective CD8 T cells to the lungs.

    PubMed

    Ebert, Stefan; Becker, Marc; Lemmermann, Niels A W; Büttner, Julia K; Michel, Anastasija; Taube, Christian; Podlech, Jürgen; Böhm, Verena; Freitag, Kirsten; Thomas, Doris; Holtappels, Rafaela; Reddehase, Matthias J; Stassen, Michael

    2014-04-01

    The lungs are a noted predilection site of acute, latent, and reactivated cytomegalovirus (CMV) infections. Interstitial pneumonia is the most dreaded manifestation of CMV disease in the immunocompromised host, whereas in the immunocompetent host lung-infiltrating CD8 T cells confine the infection in nodular inflammatory foci and prevent viral pathology. By using murine CMV infection as a model, we provide evidence for a critical role of mast cells (MC) in the recruitment of protective CD8 T cells to the lungs. Systemic infection triggered degranulation selectively in infected MC. The viral activation of MC was associated with a wave of CC chemokine ligand 5 (CCL5) in the serum of C57BL/6 mice that was MC-derived as verified by infection of MC-deficient Kit(W-sh/W-sh) "sash" mutants. In these mutants, CD8 T cells were recruited less efficiently to the lungs, correlating with enhanced viral replication and delayed virus clearance. A causative role for MC was verified by MC reconstitution of "sash" mice restoring both, efficient CD8 T-cell recruitment and infection control. These results reveal a novel crosstalk axis between innate and adaptive immune defense against CMV, and identify MC as a hitherto unconsidered player in the immune surveillance at a relevant site of CMV disease. PMID:24763809

  4. PREDICTIONS OF OZONE ABSORPTION IN HUMAN LUNGS FROM NEWBORN TO ADULT

    EPA Science Inventory

    Dosimetry models for gases mainly have been used to predict absorption in adult humans and laboratory animals. he lack of lower respiratory tract (LRT) lung models for children has discouraged the application of theoretical gaseous dosimetry to this important subpopulation. o fil...

  5. First Case of Lung Abscess due to Salmonella enterica Serovar Abony in an Immunocompetent Adult Patient.

    PubMed

    Pitiriga, Vassiliki; Dendrinos, John; Nikitiadis, Emanuel; Vrioni, Georgia; Tsakris, Athanassios

    2016-01-01

    In healthy individuals, nontyphoidal Salmonella species predominantly cause a self-limited form of gastroenteritis, while they infrequently invade or cause fatal disease. Extraintestinal manifestations of nontyphoidal Salmonella infections are not common and mainly occur among individuals with specific risk factors; among them, focal lung infection is a rare complication caused by nontyphoidal Salmonella strains typically occurring in immunocompromised patients with prior lung disease. We describe the first case of a localized lung abscess formation in an immunocompetent healthy female adult due to Salmonella enterica serovar Abony. The patient underwent lobectomy and was discharged after full clinical recovery. This case report highlights nontyphoidal Salmonellae infections as a potential causative agent of pleuropulmonary infections even in immunocompetent healthy adults. PMID:27429814

  6. First Case of Lung Abscess due to Salmonella enterica Serovar Abony in an Immunocompetent Adult Patient

    PubMed Central

    Dendrinos, John; Nikitiadis, Emanuel; Vrioni, Georgia; Tsakris, Athanassios

    2016-01-01

    In healthy individuals, nontyphoidal Salmonella species predominantly cause a self-limited form of gastroenteritis, while they infrequently invade or cause fatal disease. Extraintestinal manifestations of nontyphoidal Salmonella infections are not common and mainly occur among individuals with specific risk factors; among them, focal lung infection is a rare complication caused by nontyphoidal Salmonella strains typically occurring in immunocompromised patients with prior lung disease. We describe the first case of a localized lung abscess formation in an immunocompetent healthy female adult due to Salmonella enterica serovar Abony. The patient underwent lobectomy and was discharged after full clinical recovery. This case report highlights nontyphoidal Salmonellae infections as a potential causative agent of pleuropulmonary infections even in immunocompetent healthy adults. PMID:27429814

  7. Diversity of epithelial stem cell types in adult lung.

    PubMed

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  8. Diversity of Epithelial Stem Cell Types in Adult Lung

    PubMed Central

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C.; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  9. Combining Carbon Ion Radiotherapy and Local Injection of {alpha}-Galactosylceramide-Pulsed Dendritic Cells Inhibits Lung Metastases in an In Vivo Murine Model

    SciTech Connect

    Ohkubo, Yu; Iwakawa, Mayumi; Seino, Ken-Ichiro; Nakawatari, Miyako; Wada, Haruka; Kamijuku, Hajime; Nakamura, Etsuko; Nakano, Takashi; Imai, Takashi

    2010-12-01

    Purpose: Our previous report indicated that carbon ion beam irradiation upregulated membrane-associated immunogenic molecules, underlining the potential clinical application of radioimmunotherapy. The antimetastatic efficacy of local combination therapy of carbon ion radiotherapy and immunotherapy was examined by use of an in vivo murine model. Methods and Materials: Tumors of mouse squamous cell carcinoma (NR-S1) cells inoculated in the legs of C3H/HeSlc mice were locally irradiated with a single 6-Gy dose of carbon ions (290 MeV/nucleon, 6-cm spread-out Bragg peak). Thirty-six hours after irradiation, {alpha}-galactosylceramide-pulsed dendritic cells (DCs) were injected into the leg tumor. We investigated the effects on distant lung metastases by counting the numbers of lung tumor colonies, making pathologic observations, and assessing immunohistochemistry. Results: The mice with no treatment (control) presented with 168 {+-} 53.8 metastatic nodules in the lungs, whereas the mice that received the combination therapy of carbon ion irradiation and DCs presented with 2.6 {+-} 1.9 (P = 0.009) at 2 weeks after irradiation. Immunohistochemistry showed that intracellular adhesion molecule 1, which activates DCs, increased from 6 h to 36 h after irradiation in the local tumors of the carbon ion-irradiated group. The expression of S100A8 in lung tissue, a marker of the lung pre-metastatic phase, was decreased only in the group with a combination of carbon ions and DCs. Conclusions: The combination of carbon ion radiotherapy with the injection of {alpha}-galactosylceramide-pulsed DCs into the primary tumor effectively inhibited distant lung metastases.

  10. Effects of letrozole on breast cancer micro-metastatic tumor growth in bone and lung in mice inoculated with murine 4T1 cells.

    PubMed

    Wang, Wendan; Belosay, Aashvini; Yang, Xujuan; Hartman, James A; Song, Huaxin; Iwaniec, Urszula T; Turner, Russell T; Churchwell, Mona I; Doerge, Daniel R; Helferich, William G

    2016-06-01

    Breast cancer (BC) is the leading cancer in women worldwide. Metastasis occurs in stage IV BC with bone and lung being common metastatic sites. Here we evaluate the effects of the aromatase inhibitor letrozole on BC micro-metastatic tumor growth in bone and lung metastasis in intact and ovariectomized (OVX) mice with murine estrogen receptor negative (ER-) BC cells inoculated in tibia. Forty-eight BALB/c mice were randomly assigned to one of four groups: OVX, OVX + Letrozole, Intact, and Intact + Letrozole, and injected with 4T1 cells intra-tibially. Letrozole was subcutaneously injected daily for 23 days at a dose of 1.75 µg/g body weight. Tumor progression was monitored by bioluminescence imaging (BLI). Following necropsy, inoculated tibiae were scanned via µCT and bone response to tumor was scored from 0 (no ectopic mineralization/osteolysis) to 5 (extensive ectopic mineralization/osteolysis). OVX mice had higher tibial pathology scores indicative of more extensive bone destruction than intact mice, irrespective of letrozole treatment. Letrozole decreased serum estradiol levels and reduced lung surface tumor numbers in intact animals. Furthermore, mice receiving letrozole had significantly fewer tumor colonies and fewer proliferative cells in the lung than OVX and intact controls based on H&E and Ki-67 staining, respectively. In conclusion, BC-inoculated OVX animals had higher tibia pathology scores than BC-inoculated intact animals and letrozole reduced BC metastases to lungs. These findings suggest that, by lowering systemic estrogen level and/or by interacting with the host organ, the aromatase inhibitor letrozole has the potential to reduce ER- BC metastasis to lung. PMID:27209469

  11. Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens.

    PubMed

    Pulling, Leah C; Vuillemenot, Brian R; Hutt, Julie A; Devereux, Theodora R; Belinsky, Steven A

    2004-06-01

    Loss of expression of the death-associated protein (DAP)-kinase gene by aberrant promoter methylation may play an important role in cancer development and progression. The purpose of this investigation was to determine the commonality for inactivation of the DAP-kinase gene in adenocarcinomas induced in mice by chronic exposure to mainstream cigarette smoke, the tobacco carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and vinyl carbamate, and the occupational carcinogen methylene chloride. The timing for inactivation was also determined in alveolar hyperplasias that arise in lung cancer induced in the A/J mouse by NNK. The DAP-kinase gene was not expressed in three of five NNK-induced lung tumor-derived cell lines or in a spontaneously arising lung tumor-derived cell line. Treatment with 5-aza-2'-deoxycytidine restored expression; dense methylation throughout the DAP-kinase CpG island detected by bisulfite sequencing supported methylation as the inactivating event in these cell lines. Methylation-specific PCR detected inactivation of the DAP-kinase gene in 43% of tumors associated with cigarette smoke, a frequency similar to those reported in human non-small cell lung cancer. In addition, DAP-kinase methylation was detected in 52%, 60%, and 50% of tumors associated with NNK, vinyl carbamate, and methylene chloride, respectively. Methylation was observed at similar prevalence in both NNK-induced hyperplasias and adenocarcinomas (46% versus 52%), suggesting that inactivation of this gene is one pathway for tumor development in the mouse lung. Bisulfite sequencing of both premalignant and malignant lesions revealed dense methylation, substantiating that this gene is functionally inactivated at the earliest histological stages of adenocarcinoma development. This study is the first to use a murine model of cigarette smoke-induced lung cancer and demonstrate commonality for inactivation by promoter hypermethylation of a gene implicated in the development

  12. In Vitro Colony Assays for Characterizing Tri-potent Progenitor Cells Isolated from the Adult Murine Pancreas.

    PubMed

    Tremblay, Jacob R; LeBon, Jeanne M; Luo, Angela; Quijano, Janine C; Wedeken, Lena; Jou, Kevin; Riggs, Arthur D; Tirrell, David A; Ku, H Teresa

    2016-01-01

    Stem and progenitor cells from the adult pancreas could be a potential source of therapeutic beta-like cells for treating patients with type 1 diabetes. However, it is still unknown whether stem and progenitor cells exist in the adult pancreas. Research strategies using cre-lox lineage-tracing in adult mice have yielded results that either support or refute the idea that beta cells can be generated from the ducts, the presumed location where adult pancreatic progenitors may reside. These in vivo cre-lox lineage-tracing methods, however, cannot answer the questions of self-renewal and multi-lineage differentiation-two criteria necessary to define a stem cell. To begin addressing this technical gap, we devised 3-dimensional colony assays for pancreatic progenitors. Soon after our initial publication, other laboratories independently developed a similar, but not identical, method called the organoid assay. Compared to the organoid assay, our method employs methylcellulose, which forms viscous solutions that allow the inclusion of extracellular matrix proteins at low concentrations. The methylcellulose-containing assays permit easier detection and analyses of progenitor cells at the single-cell level, which are critical when progenitors constitute a small sub-population, as is the case for many adult organ stem cells. Together, results from several laboratories demonstrate in vitro self-renewal and multi-lineage differentiation of pancreatic progenitor-like cells from mice. The current protocols describe two methylcellulose-based colony assays to characterize mouse pancreatic progenitors; one contains a commercial preparation of murine extracellular matrix proteins and the other an artificial extracellular matrix protein known as a laminin hydrogel. The techniques shown here are 1) dissociation of the pancreas and sorting of CD133(+)Sox9/EGFP(+) ductal cells from adult mice, 2) single cell manipulation of the sorted cells, 3) single colony analyses using microfluidic q

  13. Fate Analysis of Adult Hippocampal Progenitors in a Murine Model of Fetal Alcohol Spectrum Disorder (FASD)

    PubMed Central

    Kajimoto, Kenta; Allan, Andrea; Cunningham, Lee Anna

    2013-01-01

    Prenatal alcohol exposure can lead to fetal alcohol spectrum disorder (FASD) and associated behavioral impairments that may be linked to disruptions in adult hippocampal neurogenesis. Social and physical enrichment has been proposed as a potential therapeutic approach toward reversing behavioral deficits associated with FASD and is also a potent stimulator of adult hippocampal neurogenesis. In the present study, we utilized a genetic fate mapping approach in nestin-CreERT2/YFP bitransgenic mice to identify the stage-specific impact of prenatal alcohol exposure on the stepwise maturation of adult hippocampal progenitors. Using a limited alcohol access “drinking-in-the-dark” model of FASD, we confirm previous findings that moderate prenatal alcohol exposure has no effect on adult neurogenesis under standard housing conditions, but abolishes the neurogenic response to enriched environment (EE). Furthermore, we demonstrate that this effect is primarily due to failed EE-mediated survival of postmitotic neurons. Finally, we demonstrate that the neurogenic deficit is associated with impaired spatial pattern recognition, as demonstrated by delayed learning of FASD-EE mice in an A–B contextual discrimination task. These results identify a potential maturational stage-specific mechanism(s) underlying impaired neurogenic function in a preclinical model of FASD, and provide a basis for testing regulatory pathways in this model through conditional and inducible manipulation of gene expression in the adult hippocampal progenitor population. PMID:24040071

  14. Fate analysis of adult hippocampal progenitors in a murine model of fetal alcohol spectrum disorder (FASD).

    PubMed

    Kajimoto, Kenta; Allan, Andrea; Cunningham, Lee Anna

    2013-01-01

    Prenatal alcohol exposure can lead to fetal alcohol spectrum disorder (FASD) and associated behavioral impairments that may be linked to disruptions in adult hippocampal neurogenesis. Social and physical enrichment has been proposed as a potential therapeutic approach toward reversing behavioral deficits associated with FASD and is also a potent stimulator of adult hippocampal neurogenesis. In the present study, we utilized a genetic fate mapping approach in nestin-CreER(T2)/YFP bitransgenic mice to identify the stage-specific impact of prenatal alcohol exposure on the stepwise maturation of adult hippocampal progenitors. Using a limited alcohol access "drinking-in-the-dark" model of FASD, we confirm previous findings that moderate prenatal alcohol exposure has no effect on adult neurogenesis under standard housing conditions, but abolishes the neurogenic response to enriched environment (EE). Furthermore, we demonstrate that this effect is primarily due to failed EE-mediated survival of postmitotic neurons. Finally, we demonstrate that the neurogenic deficit is associated with impaired spatial pattern recognition, as demonstrated by delayed learning of FASD-EE mice in an A-B contextual discrimination task. These results identify a potential maturational stage-specific mechanism(s) underlying impaired neurogenic function in a preclinical model of FASD, and provide a basis for testing regulatory pathways in this model through conditional and inducible manipulation of gene expression in the adult hippocampal progenitor population. PMID:24040071

  15. Characterization of Lung Function Impairment in Adults with Bronchiectasis

    PubMed Central

    Lin, Zhi-ya; Tang, Yan; Li, Hui-min; Lin, Zhi-min; Zheng, Jin-ping; Chen, Rong-chang; Zhong, Nan-shan

    2014-01-01

    Background Characteristics of lung function impairment in bronchiectasis is not fully understood. Objectives To determine the factors associated with lung function impairment and to compare changes in spirometry during bronchiectasis exacerbation and convalescence (1 week following 14-day antibiotic therapy). Methods We recruited 142 patients with steady-state bronchiectasis, of whom 44 with acute exacerbations in the follow-up were included in subgroup analyses. Baseline measurements consisted of chest high-resolution computed tomography (HRCT), sputum volume, purulence and bacteriology, spirometry and diffusing capacity. Spirometry, but not diffusing capacity, was examined during acute exacerbations and convalescence. Results In the final multivariate models, having bronchiectasis symptoms for 10 years or greater (OR = 4.75, 95%CI: 1.46–15.43, P = 0.01), sputum culture positive for Pseudomonas aeruginosa (OR = 4.93, 95%CI: 1.52–15.94, P<0.01) and HRCT total score being 12 or greater (OR = 7.77, 95%CI: 3.21–18.79, P<0.01) were the major variables associated with FEV1 being 50%pred or less; and the only variable associated with reduced DLCO was 4 or more bronchiectatic lobes (OR = 5.91, 95%CI: 2.20–17.23, P<0.01). Overall differences in FVC and FEV1 during exacerbations and convalescence were significant (P<0.05), whereas changes in other spirometric parameters were less notable. This applied even when stratified by the magnitude of FEV1 and DLCO reduction at baseline. Conclusion Significant lung function impairment should raise alert of chest HRCT abnormality and sputum culture positive for Pseudomonas aeruginosa, in patients with predominantly mild to moderate steady-state bronchiectasis. Acute exacerbations elicited reductions in FVC and FEV1. Changes of other spirometric parameters were less significant during exacerbations. Trial Registration ClinicalTrials.gov NCT01761214 PMID:25405614

  16. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis

    PubMed Central

    López-Hidalgo, Rosa; Ballestín, Raul; Vega, Jessica; Blasco-Ibáñez, José M.; Crespo, Carlos; Gilabert-Juan, Javier; Nácher, Juan; Varea, Emilio

    2016-01-01

    Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5′BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5′BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice

  17. Serum carotenoid levels and risk of lung cancer death in US adults

    PubMed Central

    Min, Kyoung-bok; Min, Jin-young

    2014-01-01

    Lung cancer is one of the most common cancers worldwide and is the leading cause of cancer-induced death in the USA. Although much attention has been focused on the anti-carcinogenic effect of consuming carotenoid-containing food or supplements, the results have been inconsistent. We investigated whether serum carotenoid levels were associated with the mortality risk of lung cancer in US adults using data from a nationally representative sample. The data were obtained from the Third Nutrition and Health Examination Survey (NHANES III) database and the NHANES III Linked Mortality File. A total of 10 382 participants aged over 20 years with available serum carotenoid levels and no other missing information on questionnaires and biomarkers at baseline (NHANES III) were included in the present study. Of the 10 382 participants, 161 subjects died due to lung cancer. We found that high serum levels of alpha-carotene and beta-cryptoxanthin at baseline were significantly associated with a lower risk of lung cancer death. When we stratified the risk by current smoking status, the risk of death of current smokers was significantly decreased to 46% (95% confidence interval, 31–94%) for alpha-carotene and 61% (95% confidence interval, 19–80%) for beta-cryptoxanthin. By contrast, no association was observed among never/former smokers at baseline. High serum levels of alpha-carotene and beta-cryptoxanthin are associated with a lower risk of lung cancer death in US adults. PMID:24673770

  18. Further examination of alveolar septal adaptation to left pneumonectomy in the adult lung.

    PubMed

    Hsia, Connie C W; Johnson, Robert L

    2006-04-28

    Recent data from our laboratory are presented concerning alveolar septal adaptation following 42-45% lung resection by left pneumonectomy (PNX) in adult foxhounds compared to sham-operated control animals. Results confirm our previous conclusion that compensation in the remaining lung occurs without a net growth of additional alveolar septal tissue. The major ultrastructural responses are (a) alveolar capillary distention, which recruits capillary blood volume and surface area, leading to a 30-50% increase in lung diffusing capacity estimated by morphometry, a magnitude similar to that measured by physiologic methods; (b) a selectively increased volume of type 2 alveolar epithelial cells. These data, taken together with the balanced compensatory growth of alveolar septal cells observed in adult dogs following 55-58% lung resection by right PNX, support a graded alveolar cellular response to chronic mechanical strain with the alveolar epithelial cells being activated first; as strain increases further with greater lung resection other alveolar cells also become activated leading to an overt increase in septal tissue volume. The spatial distribution of lobar mechanical strain and lobar tissue volume assessed by high resolution computed tomography was markedly non-uniform after PNX, suggesting possible non-uniform distribution of alveolar cellular response. The sequential activation of physiologic recruitment and cellular adaptation confer additive functional benefits that optimize long-term exercise performance after PNX. PMID:16563882

  19. Patterns of symptom distress in adults receiving treatment for lung cancer.

    PubMed

    Cooley, Mary E; Short, Thomas H; Moriarty, Helene J

    2002-01-01

    Knowledge of the patterns of symptom distress in adults receiving treatment for lung cancer is an important first step in developing interventions that can potentially lessen symptom distress. The purposes of this secondary analysis were to describe the changes in patterns of symptom distress over time in adults receiving treatment for lung cancer, and to examine the relationship of selected demographic and clinical characteristics to symptom distress. Complete data were available for 117 patients. The patterns of symptom distress in adults receiving treatment for lung cancer varied between treatment groups and over time. Symptom distress scores were moderate to high on entry into the study, indicating that symptom management in newly diagnosed lung cancer patients is essential and should begin early in the course of illness. Moreover, clinical interventions should be tailored to the type of treatment. Various demographic and clinical variables were weak and inconsistent predictors of symptom distress, underscoring the importance of examining the role of psychosocial factors in mediating symptom distress. PMID:12418365

  20. Risk of Post-Lung Transplant Renal Dysfunction in Adults With Cystic Fibrosis

    PubMed Central

    Mayer-Hamblett, Nicole; Aitken, Moira L.; Goss, Christopher H.

    2012-01-01

    Background: Cystic fibrosis (CF) is one of the leading indications for lung transplantation. The incidence and pre-lung transplant risk factors for posttransplant renal dysfunction in the CF population remain undefined. Methods: We conducted a cohort study using adults (≥ 18 years old) in the CF Foundation Patient Registry from 2000 to 2008 to determine the incidence of post-lung transplant renal dysfunction, defined by an estimated glomerular filtration rate of < 60 mL/min/1.73 m2. Multivariable Cox proportional hazards modeling was used to identify independent pretransplant risk factors for post-lung transplant renal dysfunction. Results: The study cohort included 993 adult lung transplant recipients with CF, with a median follow-up of 2 years. During the study period, 311 individuals developed renal dysfunction, with a 2-year risk of 35% (95% CI, 32%-39%). Risk of posttransplant renal dysfunction increased substantially with increasing age (25 to < 35 years vs 18 to < 25 years: hazard ratio [HR], 1.60; 95% CI, 1.15-2.23; vs ≥ 35 years: HR, 2.45; 95% CI, 1.73-3.47) and female sex (HR, 1.56; 95% CI, 1.22-1.99). CF-related diabetes requiring insulin therapy (HR, 1.30; 95% CI, 1.02-1.67) and pretransplant renal function impairment (estimated glomerular filtration rate, 60-90 mL/min/m2 vs > 90 mL/min/m2: HR, 1.58; 95% CI, 1.19-2.12) also increased the risk of posttransplant renal dysfunction. Conclusions: Renal dysfunction is common following lung transplant in the adult CF population. Increased age, female sex, CF-related diabetes requiring insulin, and pretransplant renal impairment are significant risk factors. PMID:22222189

  1. Vitamin D and Lung Function Decline in Adults With Asthma: The HUNT Study.

    PubMed

    Brumpton, Ben Michael; Langhammer, Arnulf; Henriksen, Anne Hildur; Camargo, Carlos Arturo; Chen, Yue; Romundstad, Pål Richard; Mai, Xiao-Mei

    2016-04-15

    We investigated whether low 25-hydroxyvitamin D (25(OH)D) levels were associated with more lung function decline in adults with asthma and whether this association was modified by smoking status or inhaled corticosteroid (ICS) use. We analyzed data on 395 adults with asthma from the Nord-Trøndelag Health Study (1995-2008), Norway. Plasma 25(OH)D and lung function were measured at baseline, and lung function measurements were repeated at follow-up, approximately 11 years later. Linear regression was used to estimate lung function decline. Participants with low 25(OH)D (<50 nmol/L) had more decline in lung function measurements for forced expiratory volume in 1 second (FEV1) (388 mL), forced vital capacity (298 mL), and the FEV1/forced vital capacity ratio (3.7%) over the follow-up, compared with those with high 25(OH)D (≥50 nmol/L) who declined 314 mL, 246 mL, and 3.0%, respectively (P = 0.08, 0.30, and 0.23, respectively). The associations were stronger in never smokers and non-ICS users. In never smokers, low 25(OH)D levels were associated with more decline in FEV1 (445 vs. 222 mL) (P = 0.01). In non-ICS users, low 25(OH)D levels were associated with more decline in FEV1 (467 vs. 320 mL) (P = 0.02). Low serum 25(OH)D levels were weakly associated with more lung function decline in adults with asthma, and stronger associations were observed in never smokers and non-ICS users. PMID:26994061

  2. Serum Methylarginines and Spirometry-Measured Lung Function in Older Adults

    PubMed Central

    McEvoy, Mark A.; Schofield, Peter W.; Smith, Wayne T.; Agho, Kingsley; Mangoni, Arduino A.; Soiza, Roy L.; Peel, Roseanne; Hancock, Stephen J.; Carru, Ciriaco; Zinellu, Angelo; Attia, John R.

    2013-01-01

    Rationale Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans. Objectives This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures. Methods Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study. The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity. Measurements and Main Results In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function. Conclusions After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function. PMID:23690915

  3. Associations between antioxidants and all-cause mortality among US adults with obstructive lung function.

    PubMed

    Ford, Earl S; Li, Chaoyang; Cunningham, Timothy J; Croft, Janet B

    2014-11-28

    Chronic obstructive pulmonary disease is characterised by oxidative stress, but little is known about the associations between antioxidant status and all-cause mortality in adults with this disease. The objective of the present study was to examine the prospective associations between concentrations of α- and β-carotene, β-cryptoxanthin, lutein/zeaxanthin, lycopene, Se, vitamin C and α-tocopherol and all-cause mortality among US adults with obstructive lung function. Data collected from 1492 adults aged 20-79 years with obstructive lung function in the National Health and Nutrition Examination Survey III (1988-94) were used. Through 2006, 629 deaths were identified during a median follow-up period of 14 years. After adjustment for demographic variables, the concentrations of the following antioxidants modelled as continuous variables were found to be inversely associated with all-cause mortality among adults with obstructive lung function: α-carotene (P= 0·037); β-carotene (P= 0·022); cryptoxanthin (P= 0·022); lutein/zeaxanthin (P= 0·004); total carotenoids (P= 0·001); vitamin C (P< 0·001). In maximally adjusted models, only the concentrations of lycopene (P= 0·013) and vitamin C (P= 0·046) were found to be significantly and inversely associated with all-cause mortality. No effect modification by sex was detected, but the association between lutein/zeaxanthin concentrations and all-cause mortality varied by smoking status (P interaction= 0·048). The concentrations of lycopene and vitamin C were inversely associated with all-cause mortality in this cohort of adults with obstructive lung function. PMID:25315508

  4. Ablating hedgehog signaling in tenocytes during development impairs biomechanics and matrix organization of the adult murine patellar tendon enthesis

    PubMed Central

    Aschbacher‐Smith, Lindsey; Lu, Yinhui; Dyment, Nathaniel A.; Liu, Chia‐Feng; Liu, Han; Wylie, Chris; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Jiang, Rulang; Butler, David L.

    2015-01-01

    ABSTRACT Restoring the native structure of the tendon enthesis, where collagen fibers of the midsubstance are integrated within a fibrocartilaginous structure, is problematic following injury. As current surgical methods fail to restore this region adequately, engineers, biologists, and clinicians are working to understand how this structure forms as a prerequisite to improving repair outcomes. We recently reported on the role of Indian hedgehog (Ihh), a novel enthesis marker, in regulating early postnatal enthesis formation. Here, we investigate how inactivating the Hh pathway in tendon cells affects adult (12‐week) murine patellar tendon (PT) enthesis mechanics, fibrocartilage morphology, and collagen fiber organization. We show that ablating Hh signaling resulted in greater than 100% increased failure insertion strain (0.10 v. 0.05 mm/mm, p<0.01) as well as sub‐failure biomechanical deficiencies. Although collagen fiber orientation appears overtly normal in the midsubstance, ablating Hh signaling reduces mineralized fibrocartilage by 32%, leading to less collagen embedded within mineralized tissue. Ablating Hh signaling also caused collagen fibers to coalesce at the insertion, which may explain in part the increased strains. These results indicate that Ihh signaling plays a critical role in the mineralization process of fibrocartilaginous entheses and may be a novel therapeutic to promote tendon‐to‐bone healing. © 2015 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 33:1142–1151, 2015. PMID:25807894

  5. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells

    PubMed Central

    Kabiri, Zahra; Numata, Akihiko; Kawasaki, Akira; Tenen, Daniel G.

    2015-01-01

    Wnt signaling controls early embryonic hematopoiesis and dysregulated β-catenin is implicated in leukemia. However, the role of Wnts and their source in adult hematopoiesis is still unclear, and is clinically important as upstream Wnt inhibitors enter clinical trials. We blocked Wnt secretion in hematopoietic lineages by targeting Porcn, a membrane-bound O-acyltransferase that is indispensable for the activity and secretion of all vertebrate Wnts. Surprisingly, deletion of Porcn in Rosa-CreERT2/PorcnDel, MX1-Cre/PorcnDel, and Vav-Cre/PorcnDel mice had no effects on proliferation, differentiation, or self-renewal of adult hematopoietic stem cells. Targeting Wnt secretion in the bone marrow niche by treatment with a PORCN inhibitor, C59, similarly had no effect on hematopoiesis. These results exclude a role for hematopoietic PORCN-dependent Wnts in adult hematopoiesis. Clinical use of upstream Wnt inhibitors is not likely to be limited by effects on hematopoiesis. PMID:26089398

  6. Rare Case of Unilateral Hypoplasia of Lung with Associated Ventricular Mass in an Adult

    PubMed Central

    Alam, Azad; Iyer, Aparna; Kutty, Jayalakshmi Thelapurath

    2016-01-01

    Hypoplasia of the lung is a rare congenital condition which can be: a) primary i.e. no apparent cause is found; or b) secondary i.e. associated with other congenital anomalies that are implicated in its pathogenesis. These anomalies may involve the diaphragm, cardiovascular, central nervous, urogenital and musculoskeletal system. Patients usually present in neonatal, infancy or childhood period and very rarely in adulthood. Our patient was an adult having a unilateral hypoplastic lung associated with a ventricular mass and to our knowledge this rare combination has never been reported in the English literature; though there are reports of prenatal or newborns with hypoplastic lung and rhabdomyoma of ventricle who did not survive.

  7. Predictions of ozone absorption in human lungs from newborn to adult

    SciTech Connect

    Overton, J.H.; Graham, R.C.

    1989-01-01

    Dosimetry models for gases mainly have been used to predict absorption in adult humans and laboratory animals. The lack of lower respiratory tract (LRT) lung models for children has discouraged the application of theoretical gaseous dosimetry to this important sub-population. To fill this gap the authors have used several sources of data on age dependent LRT volumes, age dependent airway dimensions, a model of an adult tracheobronchial region, and a model of the adult acinus to construct theoretical LRT lung models for humans from birth to adult. An ozone (O{sub 3}) dosimetry model was then used to estimate the regional and local uptake of O{sub 3} in the (theoretical) LRTs of children and adults. For sedentary breathing, the LRT distribution of absorbed O{sub 3}, the percent uptake (76 to 85%), and the centriacinar O{sub 3} tissue dose are not very sensitive to age. For maximal work during exercise, predicted uptakes range from 83 to 91%, and the regional percent uptakes are more dependent on age than during quiet breathing. In general, total O{sub 3} absorption per minute increases with age. Regardless of age and state of breathing, the largest tissue dose of O{sub 3} is predicted to occur in the centriacinar region, where many animal studies show the maximal morphological damage due to O{sub 3}.

  8. Genome-wide association study of lung function decline in adults with and without asthma

    PubMed Central

    Imboden, Medea; Bouzigon, Emmanuelle; Curjuric, Ivan; Ramasamy, Adaikalavan; Kumar, Ashish; Hancock, Dana B; Wilk, Jemma B; Vonk, Judith M; Thun, Gian A; Siroux, Valerie; Nadif, Rachel; Monier, Florent; Gonzalez, Juan R; Wjst, Matthias; Heinrich, Joachim; Loehr, Laura R; Franceschini, Nora; North, Kari E; Altmüller, Janine; Koppelman, Gerard H.; Guerra, Stefano; Kronenberg, Florian; Lathrop, Mark; Moffatt, Miriam F; O’Connor, George T; Strachan, David P; Postma, Dirkje S; London, Stephanie J; Schindler, Christian; Kogevinas, Manolis; Kauffmann, Francine; Jarvis, Debbie L; Demenais, Florence; Probst-Hensch, Nicole M

    2012-01-01

    Background Genome-wide association studies (GWAS) have identified determinants of chronic obstructive pulmonary disease, asthma and lung function level, however none addressed decline in lung function. Aim We conducted the first GWAS on age-related decline in forced expiratory volume in the first second (FEV1) and in its ratio to forced vital capacity (FVC) stratified a priori by asthma status. Methods Discovery cohorts included adults of European ancestry (1441 asthmatics, 2677 non-asthmatics; Epidemiological Study on the Genetics and Environment of Asthma (EGEA); Swiss Cohort Study on Air Pollution And Lung And Heart Disease In Adults (SAPALDIA); European Community Respiratory Health Survey (ECRHS)). The associations of FEV1 and FEV1/FVC decline with 2.5 million single nucleotide polymorphisms (SNPs) were estimated. Thirty loci were followed-up by in silico replication (1160 asthmatics, 10858 non-asthmatics: Atherosclerosis Risk in Communities (ARIC); Framingham Heart Study (FHS); British 1958 Birth Cohort (B58C); Dutch asthma study). Results Main signals identified differed between asthmatics and non-asthmatics. None of the SNPs reached genome-wide significance. The association between the height related gene DLEU7 and FEV1 decline suggested for non-asthmatics in the discovery phase was replicated (discovery P=4.8×10−6; replication P=0.03) and additional sensitivity analyses point to a relation to growth. The top ranking signal, TUSC3, associated with FEV1/FVC decline in asthmatics (P=5.3×10−8) did not replicate. SNPs previously associated with cross-sectional lung function were not prominently associated with decline. Conclusions Genetic heterogeneity of lung function may be extensive. Our results suggest that genetic determinants of longitudinal and cross-sectional lung function differ and vary by asthma status. PMID:22424883

  9. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium

    PubMed Central

    Noseda, Michela; Harada, Mutsuo; McSweeney, Sara; Leja, Thomas; Belian, Elisa; Stuckey, Daniel J.; Abreu Paiva, Marta S.; Habib, Josef; Macaulay, Iain; de Smith, Adam J.; al-Beidh, Farah; Sampson, Robert; Lumbers, R. Thomas; Rao, Pulivarthi; Harding, Sian E.; Blakemore, Alexandra I. F.; Eirik Jacobsen, Sten; Barahona, Mauricio; Schneider, Michael D.

    2015-01-01

    Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT–PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα+ cells. Clonal progeny of single Sca1+ SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα− cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα+/CD31− cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα−/CD31+ cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1+ stem/progenitor cell. PMID:25980517

  10. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium.

    PubMed

    Noseda, Michela; Harada, Mutsuo; McSweeney, Sara; Leja, Thomas; Belian, Elisa; Stuckey, Daniel J; Abreu Paiva, Marta S; Habib, Josef; Macaulay, Iain; de Smith, Adam J; al-Beidh, Farah; Sampson, Robert; Lumbers, R Thomas; Rao, Pulivarthi; Harding, Sian E; Blakemore, Alexandra I F; Jacobsen, Sten Eirik; Barahona, Mauricio; Schneider, Michael D

    2015-01-01

    Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT-PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα(+) cells. Clonal progeny of single Sca1(+) SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα(-) cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα(+)/CD31(-) cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα(-)/CD31(+) cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1(+) stem/progenitor cell. PMID:25980517

  11. Differential vascular permeability along the forebrain ventricular neurogenic niche in the adult murine brain.

    PubMed

    Colín-Castelán, Dannia; Ramírez-Santos, Jesús; Gutiérrez-Ospina, Gabriel

    2016-02-01

    Adult neurogenesis is influenced by blood-borne factors. In this context, greater or lesser vascular permeability along neurogenic niches would expose differentially neural stem cells (NSCs), transit amplifying cells (TACs), and neuroblasts to such factors. Here we evaluate endothelial cell morphology and vascular permeability along the forebrain neurogenic niche in the adult brain. Our results confirm that the subventricular zone (SVZ) contains highly permeable, discontinuous blood vessels, some of which allow the extravasation of molecules larger than those previously reported. In contrast, the rostral migratory stream (RMS) and the olfactory bulb core (OBc) display mostly impermeable, continuous blood vessels. These results imply that NSCs, TACs, and neuroblasts located within the SVZ are exposed more readily to blood-borne molecules, including those with very high molecular weights, than those positioned along the RMS and the OBc, subregions in which every stage of neurogenesis also takes place. These observations suggest that the existence of specialized vascular niches is not a precondition for neurogenesis to occur; specialized vascular beds might be essential for keeping high rates of proliferation and/or differential differentiation of neural precursors located at distinct domains. PMID:26492830

  12. Regulation of proto-oncogene expression in adult and developing lungs.

    PubMed Central

    Molinar-Rode, R; Smeyne, R J; Curran, T; Morgan, J I

    1993-01-01

    Activation of immediate-early gene expression has been associated with mitogenesis, differentiation, nerve cell depolarization, and recently, terminal differentiation processes and programmed cell death. Previous evidence also suggested that immediate-early genes play a role in the physiology of the lungs (J. I. Morgan, D. R. Cohen, J. L. Hempstead, and T. Curran, Science 237:192-197, 1987). Therefore, we analyzed c-fos expression in adult and developing lung tissues. Seizures elicited by chemoconvulsants induced expression of mRNA for c-fos, c-jun, and junB and Fos-like immunoreactivity in lung tissue. The use of pharmacological antagonists and adrenalectomy indicated that this increased expression was neurogenic. Interestingly, by using a fos-lacZ transgenic mouse, it was shown that Fos-LacZ expression in response to seizure occurred preferentially in clusters of epithelial cells at the poles of the bronchioles. This was the same location of Fos-LacZ expression detected during early lung development. These data imply that pharmacological induction of immediate-early gene expression in adult mice recapitulates an embryological program of gene expression. Images PMID:8497249

  13. Body Composition and Mortality after Adult Lung Transplantation in the United States

    PubMed Central

    Singer, Jonathan P.; Peterson, Eric R.; Snyder, Mark E.; Katz, Patricia P.; Golden, Jeffrey A.; D’Ovidio, Frank; Bacchetta, Matthew; Sonett, Joshua R.; Kukreja, Jasleen; Shah, Lori; Robbins, Hilary; Van Horn, Kristin; Shah, Rupal J.; Diamond, Joshua M.; Wickersham, Nancy; Sun, Li; Hays, Steven; Arcasoy, Selim M.; Palmer, Scott M.; Ware, Lorraine B.; Christie, Jason D.

    2014-01-01

    Rationale: Obesity and underweight are contraindications to lung transplantation based on their associations with mortality in studies performed before implementation of the lung allocation score (LAS)–based organ allocation system in the United States Objectives: To determine the associations of body mass index (BMI) and plasma leptin levels with survival after lung transplantation. Methods: We used multivariable-adjusted regression models to examine associations between BMI and 1-year mortality in 9,073 adults who underwent lung transplantation in the United States between May 2005 and June 2011, and plasma leptin and mortality in 599 Lung Transplant Outcomes Group study participants. We measured body fat and skeletal muscle mass using whole-body dual X-ray absorptiometry in 142 adult lung transplant candidates. Measurements and Main Results: Adjusted mortality rates were similar among normal weight (BMI 18.5–24.9 kg/m2), overweight (BMI 25.0–29.9), and class I obese (BMI 30–34.9) transplant recipients. Underweight (BMI < 18.5) was associated with a 35% increased rate of death (95% confidence interval, 10–66%). Class II–III obesity (BMI ≥ 35 kg/m2) was associated with a nearly twofold increase in mortality (hazard ratio, 1.9; 95% confidence interval, 1.3–2.8). Higher leptin levels were associated with increased mortality after transplant surgery performed without cardiopulmonary bypass (P for interaction = 0.03). A BMI greater than or equal to 30 kg/m2 was 26% sensitive and 97% specific for total body fat–defined obesity. Conclusions: A BMI of 30.0–34.9 kg/m2 is not associated with 1-year mortality after lung transplantation in the LAS era, perhaps because of its low sensitivity for obesity. The association between leptin and mortality suggests the need to validate alternative methods to measure obesity in candidates for lung transplantation. A BMI greater than or equal to 30 kg/m2 may no longer contraindicate lung transplantation. PMID

  14. Sexuality, Lung Cancer, and the Older Adult: An Unlikely Trio?

    PubMed Central

    Williams, Anna Cathy; Reckamp, Karen; Freeman, Bonnie; Sidhu, Rupinder; Grant, Marcia

    2013-01-01

    Case Study  Mrs. L. is a 60-year-old retired female teacher with stage IIIA squamous cell carcinoma of the lung, status postchemoradiation. She recently developed radiation pneumonitis, which was managed conservatively, and she did not require steroids. Mrs. L. has noted some progression of her underlying dyspnea. She is monitoring her oxygen saturation at home, and most of the time it is in the range of 94% to 96%. On one occasion only, her oxygen dropped to 88% and rapidly improved to the mid-90s. Her cough has improved for the past 4 to 6 weeks. She denies sputum production, congestion, or fever. Mrs. L. does not require a walker and uses a wheelchair only for long distances. She has occasional, slight dysphagia. A recent CT scan shows stable disease, and she is to return to the clinic in 2 months for restaging and possible further chemotherapy. Mrs. L. and her husband have been married for 33 years, and they have been very close. Until recently, they have continued to be sexually active and very intimate with each other. Since Mrs. L.’s diagnosis, and during treatment, the couple have become extremely stressed and psychologically spent. The act of sexual intercourse has ceased, yet they have attempted to remain close and maintain open communication. In addition to Mrs. L.’s increasing dyspnea, she has also suffered a great deal of fatigue and depression, along with alopecia and vaginal atrophy, due to the chemotherapy and radiation treatments. Both Mr. and Mrs. L. are very distressed over the change in their sexual lives. Mr. L. has mentioned that he now feels more like a "nursemaid" than a husband or lover. Mrs. L. has made concerted efforts to maintain intimacy with her husband, but her fatigue is profound. She has taken to sleeping in the living room, sitting up on the couch, as it relieves her dyspnea to some degree. PMID:25032012

  15. Prenatal exposure to lipopolysaccharide results in myocardial remodelling in adult murine offspring

    PubMed Central

    2013-01-01

    Background The epigenetic plasticity hypothesis indicates that pregnancy exposure may result in adult-onset diseases, including hypertension, diabetes and cardiovascular disease, in offspring. In a previous study, we discovered that prenatal exposure to inflammatory stimulants, such as lipopolysaccharides (LPS), could lead to hypertension in adult rat offspring. In the present study, we further demonstrate that maternal inflammation induces cardiac hypertrophy and dysfunction via ectopic over-expression of nuclear transcription factor κB (NF- κB), and pyrrolidine dithiocarbamate (PDTC) can protect cardiac function by reducing maternal inflammation. Methods Pregnant SD rats were randomly divided into three groups and intraperitoneally injected with a vehicle, LPS (0.79 mg/kg), or LPS (0.79 mg/kg) plus PDTC (100 mg/kg) at 8 to 12 days of gestation. The offspring were raised until 4 and 8 months old, at which point an echocardiographic study was performed. The left ventricular (LV) mass index and apoptosis were examined. Results At 4 months of age, the LPS offspring exhibited augmented posterior wall thickness. These rats displayed left ventricle (LV) hypertrophy and LV diastolic dysfunction as well as a higher apoptotic index, a higher level of Bax and a lower level of Bcl-2 at 8 months of age. The protein levels of NF-κB (p65) in the myocardium of the offspring were measured at this time. NF-κB protein levels were higher in the myocardium of LPS offspring. The offspring that were prenatally treated with PDTC displayed improved signs of blood pressure (BP) and LV hypertrophy. Conclusions Maternal inflammation can induce cardiac hypertrophy in offspring during aging accompanied with hypertension emergence and can be rescued by the maternal administration of PDTC (the inhibitor of NF-κB). PMID:24764457

  16. Early Alterations in Cytokine Expression in Adult Compared to Developing Lung in Mice after Radiation Exposure

    PubMed Central

    Johnston, Carl J.; Hernady, Eric; Reed, Christina; Thurston, Sally W.; Finkelstein, Jacob N.; Williams, Jacqueline P.

    2010-01-01

    To assess early changes in the lung after low-dose radiation exposure that may serve as targets for mitigation of lung injury in the aftermath of a terrorist event, we analyzed cytokine expression after irradiation. Adult mice were studied after whole-lung or total-body irradiation. Mouse pups of different ages were also investigated after total-body irradiation. mRNA abundance was analyzed in tissue and plasma, and pathological changes were assessed. In lung tissue, dose-related changes were seen in IL1B, IL1R2 and CXCR2 mRNA expression at 1 and 6 h after irradiation, concurrent with increases in plasma protein levels of KC/CXCL1 and IL6. However, in the pups, changes in IL1 abundance were not detected until 28 days of age, coincident with the end of postnatal lung growth, although apoptosis was detected at all ages. In conclusion, although cytokines were expressed after low doses of radiation, their role in the progression of tissue response is yet to be determined. They may be candidates for use in marker-based biodosimetry. However, the lack of cytokine induction in early life suggests that different end points (and mitigating treatments) may be required for children. PMID:20334525

  17. Pre-Treatment with Allopurinol or Uricase Attenuates Barrier Dysfunction but Not Inflammation during Murine Ventilator-Induced Lung Injury

    PubMed Central

    Kuipers, Maria T.; Aslami, Hamid; Vlaar, Alexander P. J.; Juffermans, Nicole P.; Tuip-de Boer, Anita M.; Hegeman, Maria A.; Jongsma, Geartsje; Roelofs, Joris J. T. H.; van der Poll, Tom; Schultz, Marcus J.; Wieland, Catharina W.

    2012-01-01

    Introduction Uric acid released from injured tissue is considered a major endogenous danger signal and local instillation of uric acid crystals induces acute lung inflammation via activation of the NLRP3 inflammasome. Ventilator-induced lung injury (VILI) is mediated by the NLRP3 inflammasome and increased uric acid levels in lung lavage fluid are reported. We studied levels in human lung injury and the contribution of uric acid in experimental VILI. Methods Uric acid levels in lung lavage fluid of patients with acute lung injury (ALI) were determined. In a different cohort of cardiac surgery patients, uric acid levels were correlated with pulmonary leakage index. In a mouse model of VILI the effect of allopurinol (inhibits uric acid synthesis) and uricase (degrades uric acid) pre-treatment on neutrophil influx, up-regulation of adhesion molecules, pulmonary and systemic cytokine levels, lung pathology, and regulation of receptors involved in the recognition of uric acid was studied. In addition, total protein and immunoglobulin M in lung lavage fluid and pulmonary wet/dry ratios were measured as markers of alveolar barrier dysfunction. Results Uric acid levels increased in ALI patients. In cardiac surgery patients, elevated levels correlated significantly with the pulmonary leakage index. Allopurinol or uricase treatment did not reduce ventilator-induced inflammation, IκB-α degradation, or up-regulation of NLRP3, Toll-like receptor 2, and Toll-like receptor 4 gene expression in mice. Alveolar barrier dysfunction was attenuated which was most pronounced in mice pre-treated with allopurinol: both treatment strategies reduced wet/dry ratio, allopurinol also lowered total protein and immunoglobulin M levels. Conclusions Local uric acid levels increase in patients with ALI. In mice, allopurinol and uricase attenuate ventilator-induced alveolar barrier dysfunction. PMID:23226314

  18. Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors.

    PubMed

    Swetha, G; Chandra, Vikash; Phadnis, Smruti; Bhonde, Ramesh

    2011-02-01

    Glomerular parietal epithelial cells (GPECs) are known to revert to embryonic phenotype in response to renal injury. However, the mechanism of de-differentiation in GPECs and the underlying cellular processes are not fully understood. In the present study, we show that cultured GPECs of adult murine kidney undergo epithelial-mesenchymal transition (EMT) to generate cells, which express CD24, CD44 and CD29 surface antigens. Characterization by qRT-PCR and immunostaining of these clonogenic cells demonstrate that they exhibit metastable phenotype with co-expression of both epithelial (cytokeratin-18) and mesenchymal (vimentin) markers. Transcript analysis by qRT-PCR revealed high expression of metanephric mesenchymal (Pax-2, WT-1, Six-1, Eya-1, GDNF) and uteric bud (Hoxb-7, C-Ret) genes in these cells, indicating their bipotent progenitor status. Incubation of GPECs with EMT blocker Prostaglandin E2, resulted in low expression of renal progenitor markers reflecting the correlation between EMT and acquired stemness in these cells. Additional in vitro renal commitment assays confirmed their functional staminality. When injected into E13.5 kidney rudiments, the cells incorporated into the developing kidney primordia and co-culture with E13.5 spinal cord resulted in branching and tubulogenesis in these cells. When implanted under renal capsule of unilaterally nephrectomized mice, these cells differentiated into immature glomeruli and vascular ducts. Our study demonstrates that EMT plays a major role in imparting plasticity to terminally differentiated GPECs by producing metastable cells with traits of kidney progenitors. The present study would improve our understanding on epithelial cell plasticity, furthering our knowledge of its role in renal repair and regeneration. PMID:19840197

  19. Substance P, a potent bombesin antagonist in murine Swiss 3T3 cells, inhibits the growth of human small cell lung cancer cells in vitro

    SciTech Connect

    Woll, P.J.; Rozengurt, E. )

    1988-03-01

    In the search for a more potent bombesin antagonist, the authors found (D-Arg{sup 1},D-Phe{sup 5},D-Trp{sup 7,9},Leu{sup 11})substance P to be effective in mouse fibroblasts and to inhibit the growth of small cell lung cancer, a tumor that secretes bombesin-like peptides that may act as autocrine growth factors. In murine Swiss 3T3 cells, substance P proved to be a bombesin antagonist as judged by the following criteria: (i) inhibition of DNA synthesis induced by gastrin-releasing peptide and other bombesin-like peptides; (ii) inhibition of {sup 125}I-labeled gastrin-releasing peptide binding to the bombesin/gastrin-releasing peptide receptor; (iii) reduction in cross-linking of the M{sub r} 75,000-85,000 protein putatively a component of the bombesin/gastrin-releasing peptide receptor; (iv) blocking of early cellular events that precede mitogenesis-calcium mobilization and inhibition of epidermal growth factor binding. Substance P also inhibits mitogenesis induced by vasopressin but not that induced by a variety of other mitogens. Both antagonists reversibly inhibited the growth of small cell lung cancer in vitro in a concentration-dependent manner. Peptide antagonists could, therefore, have far-reaching therapeutic implications.

  20. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure

    PubMed Central

    Goss, Kara N.; Cucci, Anthony R.; Fisher, Amanda J.; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S.; Ahlfeld, Shawn K.

    2015-01-01

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0–4 or 0–10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  1. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure.

    PubMed

    Goss, Kara N; Cucci, Anthony R; Fisher, Amanda J; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S; Ahlfeld, Shawn K; Lahm, Tim

    2015-04-15

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0-4 or 0-10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  2. Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung.

    PubMed

    Liebler, Janice M; Marconett, Crystal N; Juul, Nicholas; Wang, Hongjun; Liu, Yixin; Flodby, Per; Laird-Offringa, Ite A; Minoo, Parviz; Zhou, Beiyun

    2016-01-15

    Distal lung epithelium is maintained by proliferation of alveolar type II (AT2) cells and, for some daughter AT2 cells, transdifferentiation into alveolar type I (AT1) cells. We investigated if subpopulations of alveolar epithelial cells (AEC) exist that represent various stages in transdifferentiation from AT2 to AT1 cell phenotypes in normal adult lung and if they can be identified using combinations of cell-specific markers. Immunofluorescence microscopy showed that, in distal rat and mouse lungs, ∼ 20-30% of NKX2.1(+) (or thyroid transcription factor 1(+)) cells did not colocalize with pro-surfactant protein C (pro-SP-C), a highly specific AT2 cell marker. In distal rat lung, NKX2.1(+) cells coexpressed either pro-SP-C or the AT1 cell marker homeodomain only protein x (HOPX). Not all HOPX(+) cells colocalize with the AT1 cell marker aquaporin 5 (AQP5), and some AQP5(+) cells were NKX2.1(+). HOPX was expressed earlier than AQP5 during transdifferentiation in rat AEC primary culture, with robust expression of both by day 7. We speculate that NKX2.1 and pro-SP-C colocalize in AT2 cells, NKX2.1 and HOPX or AQP5 colocalize in intermediate or transitional cells, and HOPX and AQP5 are expressed without NKX2.1 in AT1 cells. These findings suggest marked heterogeneity among cells previously identified as exclusively AT1 or AT2 cells, implying the presence of subpopulations of intermediate or transitional AEC in normal adult lung. PMID:26545903

  3. In Vivo Pharmacodynamic Target Assessment of Delafloxacin against Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae in a Murine Lung Infection Model.

    PubMed

    Lepak, Alexander J; Andes, David R

    2016-08-01

    Delafloxacin is a broad-spectrum anionic fluoroquinolone under development for the treatment of bacterial pneumonia. The goal of the study was to determine the pharmacokinetic/pharmacodynamic (PK/PD) targets in the murine lung infection model for Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae Four isolates of each species were utilized for in vivo studies: for S. aureus, one methicillin-susceptible and three methicillin-resistant isolates; S. pneumoniae, two penicillin-susceptible and two penicillin-resistant isolates; K. pneumoniae, one wild-type and three extended-spectrum beta-lactamase-producing isolates. MICs were determined using CLSI methods. A neutropenic murine lung infection model was utilized for all treatment studies, and drug dosing was by the subcutaneous route. Single-dose plasma pharmacokinetics was determined in the mouse model after administration of 2.5, 10, 40, and 160 mg/kg. For in vivo studies, 4-fold-increasing doses of delafloxacin (range, 0.03 to 160 mg/kg) were administered every 6 h (q6h) to infected mice. Treatment outcome was measured by determining organism burden in the lung (CFU counts) at the end of each experiment (24 h). The Hill equation for maximum effect (Emax) was used to model the dose-response data. The magnitude of the PK/PD index, the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC), associated with net stasis and 1-log kill endpoints was determined in the lung model for all isolates. MICs ranged from 0.004 to 1 mg/liter. Single-dose PK parameter ranges include the following: for maximum concentration of drug in serum (Cmax), 2 to 70.7 mg/liter; AUC from 0 h to infinity (AUC0-∞), 2.8 to 152 mg · h/liter; half-life (t1/2), 0.7 to 1 h. At the start of therapy mice had 6.3 ± 0.09 log10 CFU/lung. In control mice the organism burden increased 2.1 ± 0.44 log10 CFU/lung over the study period. There was a relatively steep dose-response relationship

  4. An allometric study of lung morphology during development in the Australian pelican, Pelicanus conspicillatus, from embryo to adult

    PubMed Central

    Runciman, S; Seymour, RS; Baudinette, RV; Pearson, JT

    2005-01-01

    Pelicans produce altricial chicks that develop into some of the largest birds capable of sustained flight. We traced pulmonary morphological development in the Australian pelican, Pelicanus conspicillatus, from third trimester embryos to adults. We described growth and development with allometric relationships between lung components and body mass or lung volume, according to the equation y = axb. Pelican lung volume increased faster than body mass (b = 1.07). Relative to lung volume, the airways and vascular spaces increased allometrically (b > 1) in embryos, but isometrically (b ≈ 1) after hatching. Parabronchial mantle volume decreased (b < 1) prior to hatching and increased isometrically thereafter. Surface area of air capillaries, blood capillaries and the blood–gas barrier increased relative to lung volume (b > 0.67) before and after hatching. Barrier thickness decreased before hatching, remained constant in juveniles and decreased by adulthood. The anatomical diffusing capacity significantly increased before hatching (b = 4.44) and after hatching (b = 1.26). Although altricial pelicans developed pulmonary complexity later than precocial turkeys, the volume-specific characteristics were similar. However, lungs of volant adult pelicans became significantly larger, with a greater capacity for gas exchange, than lungs of terrestrial turkeys. Exchange characteristics of growing pelican lungs were inferior to those of adult birds of 26 other species, but converged with them at maturity. PMID:16191165

  5. Low levels of tissue factor lead to alveolar hemorrhage, potentiating murine acute lung injury and oxidative stress

    PubMed Central

    Bastarache, J.A.; Sebag, S. C.; Clune, J.K.; Grove, B.S.; Lawson, W.E.; Janz, D. R.; Roberts, L. J.; Dworski, R; Mackman, N.; Ware, L. B.

    2013-01-01

    Background Systemic blockade of Tissue Factor (TF) attenuates acute lung injury (ALI) in animal models of sepsis but the effects of global TF deficiency are unknown. Hypothesis We used mice with complete knockout of mouse TF and low levels (~1%) of human TF (LTF mice) to test the hypothesis that global TF deficiency attenuates lung inflammation in direct lung injury. Methods LTF mice were treated with 10 μg of lipopolysaccharide (LPS) or vehicle administered by direct intratracheal (IT) injection and studied at 24 hours. Results Contrary to our hypothesis, LTF mice had increased lung inflammation and injury as measured by bronchoalveolar lavage cell count (3.4 × 105 WT LPS versus 3.3 × 105 LTF LPS, p=0.947) and protein (493 μg/ml WT LPS versus 1014 μg/ml LTF LPS, p=0.006), proinflammatory cytokines (TNF-α, IL-10, IL-12, p<0.035 WT LPS versus LTF LPS) and histology compared to wild type mice. LTF mice also had increased hemorrhage and free hemoglobin in the airspace accompanied by increased oxidant stress as measured by lipid peroxidation products (F2-Isoprostanes and Isofurans). Conclusions These findings indicate that global TF deficiency does not confer protection in a direct lung injury model. Rather, TF deficiency causes increased intra-alveolar hemorrhage following LPS leading to increased lipid peroxidation. Strategies to globally inhibit tissue factor may be deleterious in patients with ALI. PMID:23033361

  6. Adult stem cells for acute lung injury: remaining questions and concerns.

    PubMed

    Zhu, Ying-Gang; Hao, Qi; Monsel, Antoine; Feng, Xiao-Mei; Lee, Jae-Woo

    2013-07-01

    Acute lung injury (ALI) or acute respiratory distress syndrome remains a major cause of morbidity and mortality in hospitalized patients. The pathophysiology of ALI involves complex interactions between the inciting event, such as pneumonia, sepsis or aspiration, and the host immune response resulting in lung protein permeability, impaired resolution of pulmonary oedema, an intense inflammatory response in the injured alveolus and hypoxemia. In multiple preclinical studies, adult stem cells have been shown to be therapeutic due to both the ability to mitigate injury and inflammation through paracrine mechanisms and perhaps to regenerate tissue by virtue of their multi-potency. These characteristics have stimulated intensive research efforts to explore the possibility of using stem or progenitor cells for the treatment of lung injury. A variety of stem or progenitor cells have been isolated, characterized and tested experimentally in preclinical animal models of ALI. However, questions remain concerning the optimal dose, route and the adult stem or progenitor cell to use. Here, the current mechanisms underlying the therapeutic effect of stem cells in ALI as well as the questions that will arise as clinical trials for ALI are planned are reviewed. PMID:23578018

  7. Nitric oxide and superoxide mediate diesel particle effects in cytokine-treated mice and murine lung epithelial cells — implications for susceptibility to traffic-related air pollution

    PubMed Central

    2012-01-01

    Background Epidemiologic studies associate childhood exposure to traffic-related air pollution with increased respiratory infections and asthmatic and allergic symptoms. The strongest associations between traffic exposure and negative health impacts are observed in individuals with respiratory inflammation. We hypothesized that interactions between nitric oxide (NO), increased during lung inflammatory responses, and reactive oxygen species (ROS), increased as a consequence of traffic exposure ─ played a key role in the increased susceptibility of these at-risk populations to traffic emissions. Methods Diesel exhaust particles (DEP) were used as surrogates for traffic particles. Murine lung epithelial (LA-4) cells and BALB/c mice were treated with a cytokine mixture (cytomix: TNFα, IL-1β, and IFNγ) to induce a generic inflammatory state. Cells were exposed to saline or DEP (25 μg/cm2) and examined for differential effects on redox balance and cytotoxicity. Likewise, mice undergoing nose-only inhalation exposure to air or DEP (2 mg/m3 × 4 h/d × 2 d) were assessed for differential effects on lung inflammation, injury, antioxidant levels, and phagocyte ROS production. Results Cytomix treatment significantly increased LA-4 cell NO production though iNOS activation. Cytomix +  DEP-exposed cells incurred the greatest intracellular ROS production, with commensurate cytotoxicity, as these cells were unable to maintain redox balance. By contrast, saline + DEP-exposed cells were able to mount effective antioxidant responses. DEP effects were mediated by: (1) increased ROS including superoxide anion (O2˙-), related to increased xanthine dehydrogenase expression and reduced cytosolic superoxide dismutase activity; and (2) increased peroxynitrite generation related to interaction of O2˙- with cytokine-induced NO. Effects were partially reduced by superoxide dismutase (SOD) supplementation or by blocking iNOS induction. In mice, cytomix +  DEP

  8. Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs.

    PubMed

    He, Miao; Ichinose, Takamichi; Kobayashi, Makoto; Arashidani, Keiichi; Yoshida, Seiichi; Nishikawa, Masataka; Takano, Hirohisa; Sun, Guifan; Shibamoto, Takayuki

    2016-04-15

    The biological and chemical natures of materials adsorbed onto fine particulate matter (PM2.5) vary by origin and passage routes. The exacerbating effects of the two samples-urban PM2.5 (U-PM2.5) collected during the hazy weather in a Chinese city and fine particles (ASD-PM2.5) collected during Asian sand dust (ASD) storm event days in Japan-on murine lung eosinophilia were compared to clarify the role of toxic materials in PM2.5. The amounts of β-glucan and mineral components were higher in ASD-PM2.5 than in U-PM2.5. On the other hand, organic chemicals, including polycyclic aromatic hydrocarbons (PAHs), were higher in U-PM2.5 than in ASD-PM2.5. When BALB/c mice were intratracheally instilled with U-PM2.5 and ASD-PM2.5 (total 0.4 mg/mouse) with or without ovalbumin (OVA), various biological effects were observed, including enhancement of eosinophil recruitment induced by OVA in the submucosa of the airway, goblet cell proliferation in the bronchial epithelium, synergic increase of OVA-induced eosinophil-relevant cytokines and a chemokine in bronchoalveolar lavage fluid, and increase of serum OVA-specific IgG1 and IgE. Data demonstrate that U-PM2.5 and ASD-PM2.5 induced allergic inflammatory changes and caused lung pathology. U-PM2.5 and ASD-PM2.5 increased F4/80(+) CD11b(+) cells, indicating that an influx of inflammatory and exudative macrophages in lung tissue had occurred. The ratio of CD206 positive F4/80(+) CD11b(+) cells (M2 macrophages) in lung tissue was higher in the OVA+ASD-PM2.5 treated mice than in the OVA+U-PM2.5 treated mice. These results suggest that the lung eosinophilia exacerbated by both PM2.5 is due to activation of a Th2-associated immune response along with induced M2 macrophages and the exacerbating effect is greater in microbial element (β-glucan)-rich ASD-PM2.5 than in organic chemical-rich U-PM2.5. PMID:26917405

  9. Preservation of normal lung regions in the adult respiratory distress syndrome

    SciTech Connect

    Maunder, R.J.; Shuman, W.P.; McHugh, J.W.; Marglin, S.I.; Butler, J.

    1986-05-09

    In this report, the authors challenge the commonly held assumption that the adult respiratory distress syndrome (ARDS) is a homogeneous process associated with generalized and relatively uniform damage to the alveolar capillary membrane. They studied 13 patients with ARDS, comparing the pulmonary parenchymal changes seen by standard bedside chest roentgenograms with those seen by computed tomography of the chest. Three patients demonstrated generalized lung involvement by both radiologic techniques. In another eight patients, despite the appearance of generalized involvement on the standard chest x-ray film, the computed tomographic scans showed patchy infiltrates interspersed with areas of normal-appearing lung. Two patients showed patchy involvement by both techniques. The fact that ARDS spares some regions of lung parenchyma is useful knowledge in understanding the gas-exchange abnormalities of ARDS, the variable responsiveness to positive end-expiratory pressure, and the occurrence of oxygen toxicity. The problem of regional inhomogeneity should also be kept in mind when interpreting lung biopsy specimens or bronchoalveolar lavage fluid in patients with ARDS.

  10. Metabolomics Investigation Reveals Metabolite Mediators Associated with Acute Lung Injury and Repair in a Murine Model of Influenza Pneumonia

    PubMed Central

    Cui, Liang; Zheng, Dahai; Lee, Yie Hou; Chan, Tze Khee; Kumar, Yadunanda; Ho, Wanxing Eugene; Chen, Jian Zhu; Tannenbaum, Steven R.; Ong, Choon Nam

    2016-01-01

    Influenza virus infection (IVI) can cause primary viral pneumonia, which may progress to acute lung injury (ALI) and respiratory failure with a potentially fatal outcome. At present, the interactions between host and influenza virus at molecular levels and the underlying mechanisms that give rise to IVI-induced ALI are poorly understood. We conducted a comprehensive mass spectrometry-based metabolic profiling of serum, lung tissue and bronchoalveolar lavage fluid (BALF) from a non-lethal mouse model with influenza A virus at 0, 6, 10, 14, 21 and 28 days post infection (dpi), representing the major stages of IVI. Distinct metabolite signatures were observed in mice sera, lung tissues and BALF, indicating the molecular differences between systematic and localized host responses to IVI. More than 100 differential metabolites were captured in mice sera, lung tissues and BALF, including purines, pyrimidines, acylcarnitines, fatty acids, amino acids, glucocorticoids, sphingolipids, phospholipids, etc. Many of these metabolites belonged to pulmonary surfactants, indicating IVI-induced aberrations of the pulmonary surfactant system might play an important role in the etiology of respiratory failure and repair. Our findings revealed dynamic host responses to IVI and various metabolic pathways linked to disease progression, and provided mechanistic insights into IVI-induced ALI and repair process. PMID:27188343

  11. Metabolomics Investigation Reveals Metabolite Mediators Associated with Acute Lung Injury and Repair in a Murine Model of Influenza Pneumonia.

    PubMed

    Cui, Liang; Zheng, Dahai; Lee, Yie Hou; Chan, Tze Khee; Kumar, Yadunanda; Ho, Wanxing Eugene; Chen, Jian Zhu; Tannenbaum, Steven R; Ong, Choon Nam

    2016-01-01

    Influenza virus infection (IVI) can cause primary viral pneumonia, which may progress to acute lung injury (ALI) and respiratory failure with a potentially fatal outcome. At present, the interactions between host and influenza virus at molecular levels and the underlying mechanisms that give rise to IVI-induced ALI are poorly understood. We conducted a comprehensive mass spectrometry-based metabolic profiling of serum, lung tissue and bronchoalveolar lavage fluid (BALF) from a non-lethal mouse model with influenza A virus at 0, 6, 10, 14, 21 and 28 days post infection (dpi), representing the major stages of IVI. Distinct metabolite signatures were observed in mice sera, lung tissues and BALF, indicating the molecular differences between systematic and localized host responses to IVI. More than 100 differential metabolites were captured in mice sera, lung tissues and BALF, including purines, pyrimidines, acylcarnitines, fatty acids, amino acids, glucocorticoids, sphingolipids, phospholipids, etc. Many of these metabolites belonged to pulmonary surfactants, indicating IVI-induced aberrations of the pulmonary surfactant system might play an important role in the etiology of respiratory failure and repair. Our findings revealed dynamic host responses to IVI and various metabolic pathways linked to disease progression, and provided mechanistic insights into IVI-induced ALI and repair process. PMID:27188343

  12. Pilates Method for Lung Function and Functional Capacity in Obese Adults.

    PubMed

    Niehues, Janaina Rocha; Gonzáles, Inês; Lemos, Robson Rodrigues; Haas, Patrícia

    2015-01-01

    Obesity is defined as the condition in which the body mass index (BMI) is ≥ 30 kg/m2 and is responsible for decreased quality of life and functional limitations. The harmful effects on ventilatory function include reduced lung capacity and volume; diaphragmatic muscle weakness; decreased lung compliance and stiffness; and weakness of the abdominal muscles, among others. Pilates is a method of resistance training that works with low-impact muscle exercises and is based on isometric exercises. The current article is a review of the literature that aims to investigate the hypothesis that the Pilates method, as a complementary method of training, might be beneficial to pulmonary function and functional capacity in obese adults. The intent of the review was to evaluate the use of Pilates as an innovative intervention in the respiratory dysfunctions of obese adults. In studies with other populations, it has been observed that Pilates can be effective in improving chest capacity and expansion and lung volume. That finding is due to the fact that Pilates works through the center of force, made ​​up of the abdominal muscles and gluteus muscles lumbar, which are responsible for the stabilization of the static and dynamic body that is associated with breath control. It has been observed that different Pilates exercises increase the activation and recruitment of the abdominal muscles. Those muscles are important in respiration, both in expiration and inspiration, through the facilitation of diaphragmatic action. In that way, strengthening the abdominal muscles can help improve respiratory function, leading to improvements in lung volume and capacity. The results found in the current literature review support the authors' observations that Pilates promotes the strengthening of the abdominal muscles and that improvements in diaphragmatic function may result in positive outcomes in respiratory function, thereby improving functional capacity. However, the authors did not

  13. β-Nicotinamide adenine dinucleotide attenuates lipopolysaccharide-induced inflammatory effects in a murine model of acute lung injury.

    PubMed

    Umapathy, Nagavedi Siddaramappa; Gonzales, Joyce; Fulzele, Sadanand; Kim, Kyung-mi; Lucas, Rudolf; Verin, Alexander Dimitrievich

    2012-06-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) occur in approximately 200,000 patients per year. Studies indicate that lung endothelium plays a significant role in ALI. The authors' recent in vitro studies demonstrate a novel mechanism of β-nicotinamide adenine dinucleotide (β-NAD)-induced protection against gram-positive (pneumolysin, PLY) and gram-negative (lipopolysaccharide, LPS) toxin-induced lung endothelial cell (EC) barrier dysfunction. The objective of the current study was to evaluate the protective effect of β-NAD against LPS-induced ALI in mice. C57BL/6J mice were randomly divided into 4 groups: vehicle, β-NAD, LPS, and LPS/β-NAD. After surgery, mice were allowed to recover for 24 hours. Evans blue dye-albumin (EBA) was given through the internal jugular vein 2 hours prior to the termination of the experiments. Upon sacrificing the animals, bronchoalveolar lavage fluid (BALF) was collected and the lungs were harvested. β-NAD treatment significantly attenuated the inflammatory response by means of reducing the accumulation of cells and protein in BALF, blunting the parenchymal neutrophil infiltration, and preventing capillary leak. In addition, the histological examination demonstrated decreased interstitial edema in the LPS/β-NAD specimens, as compared to the LPS-only specimens. The mRNA levels of the anti-inflammatory cytokines were up-regulated in the LPS group treated with β-NAD compared to the LPS-only-treated group. β-NAD treatment down-regulated the mRNA levels of the proinflammatory cytokines. These findings suggest that β-NAD could be investigated as a therapeutic option against bacterial toxin-induced lung inflammation and ALI in mice. PMID:22563684

  14. Whole Lung Irradiation for Adults With Pulmonary Metastases From Ewing Sarcoma

    SciTech Connect

    Casey, Dana L.; Alektiar, Kaled M.; Gerber, Naamit K.; Wolden, Suzanne L.

    2014-08-01

    Purpose: To evaluate feasibility and patterns of failure in adult patients with Ewing sarcoma (ES) treated with whole lung irradiation (WLI) for pulmonary metastases. Methods and Materials: Retrospective review of all ES patients treated at age 18 or older with 12-15 Gy WLI for pulmonary metastases at a single institution between 1990 and 2014. Twenty-six patients met the study criteria. Results: The median age at WLI was 23 years (range, 18-40). The median follow-up time of the surviving patients was 3.8 years (range, 1.0-9.6). The 3-year cumulative incidence of pulmonary relapse (PR) was 55%, with a 3-year cumulative incidence of PR as the site of first relapse of 42%. The 3-year event-free survival (EFS) and overall survival (OS) were 38 and 45%, respectively. Patients with exclusively pulmonary metastases had better outcomes than did those with extrapulmonary metastases: the 3-year PR was 45% in those with exclusively lung metastases versus 76% in those with extrapulmonary metastases (P=.01); the 3-year EFS was 49% versus 14% (P=.003); and the 3-year OS was 61% versus 13% (P=.009). Smoking status was a significant prognostic factor for EFS: the 3-year EFS was 61% in nonsmokers versus 11% in smokers (P=.04). Two patients experienced herpes zoster in the radiation field 6 and 12 weeks after radiation. No patients experienced pneumonitis or cardiac toxicity, and no significant acute or late sequelae were observed among the survivors. Conclusion: WLI in adult patients with ES and lung metastases is well tolerated and is associated with freedom from PR of 45% at 3 years. Given its acceptable toxicity and potential therapeutic effect, WLI for pulmonary metastases in ES should be considered for adults, as it is in pediatric patients. All patients should be advised to quit smoking before receiving WLI.

  15. Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung

    PubMed Central

    Wong, Sandy M.; Bernui, Mariana; Shen, Hao; Akerley, Brian J.

    2013-01-01

    Bacterial coinfection represents a major cause of morbidity and mortality in epidemics of influenza A virus (IAV). The bacterium Haemophilus influenzae typically colonizes the human upper respiratory tract without causing disease, and yet in individuals infected with IAV, it can cause debilitating or lethal secondary pneumonia. Studies in murine models have detected immune components involved in susceptibility and pathology, and yet few studies have examined bacterial factors contributing to coinfection. We conducted genome-wide profiling of the H. influenzae genes that promote its fitness in a murine model of coinfection with IAV. Application of direct, high-throughput sequencing of transposon insertion sites revealed fitness phenotypes of a bank of H. influenzae mutants in viral coinfection in comparison with bacterial infection alone. One set of virulence genes was required in nonvirally infected mice but not in coinfection, consistent with a defect in anti-bacterial defenses during coinfection. Nevertheless, a core set of genes required in both in vivo conditions indicated that many bacterial countermeasures against host defenses remain critical for coinfection. The results also revealed a subset of genes required in coinfection but not in bacterial infection alone, including the iron-sulfur cluster regulator gene, iscR, which was required for oxidative stress resistance. Overexpression of the antioxidant protein Dps in the iscR mutant restored oxidative stress resistance and ability to colonize in coinfection. The results identify bacterial stress and metabolic adaptations required in an IAV coinfection model, revealing potential targets for treatment or prevention of secondary bacterial pneumonia after viral infection. PMID:24003154

  16. Inhalation of chlorine causes long-standing lung inflammation and airway hyperresponsiveness in a murine model of chemical-induced lung injury.

    PubMed

    Jonasson, Sofia; Koch, Bo; Bucht, Anders

    2013-01-01

    Chlorine is highly irritating when inhaled, and is a common toxic industrial gas causing tissue damage in the airways followed by an acute inflammatory response. In this study, we investigated mechanisms by which chlorine exposure may cause reactive airways dysfunction syndrome (RADS) and we examined the dose-dependency of the development of symptoms. Mice were exposed to 50 or 200 ppm Cl(2) during a single 15 min exposure in a nose-only container. The experiment terminated 2, 6, 12, 24, 48, 72 h and 7, 14, 28 and 90 days post exposure. Inflammatory cell counts in bronchoalveolar lavage (BAL), secretion of inflammatory mediators in BAL, occurrence of lung edema and histopathological changes in lung tissue was analyzed at each time-point. Airway hyperresponsiveness (AHR) was studied after 24 and 48 h and 7, 14, 28 and 90 days. The results showed a marked acute response at 6h (50 ppm) and 12h (200 ppm) post exposure as indicated by induced lung edema, increased airway reactivity in both central and peripheral airways, and an airway inflammation dominated by macrophages and neutrophils. The inflammatory response declined rapidly in airways, being normalized after 48 h, but inflammatory cells were sustained in lung tissue for at least seven days. In addition, a sustained AHR was observed for at least 28 days. In summary, this mouse model of chlorine exposure shows delayed symptoms of hyperreactive airways similar to human RADS. We conclude that the model can be used for studies aimed at improved understanding of adverse long-term responses following inhalation of chlorine. PMID:23146759

  17. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination

    PubMed Central

    Hamilton, Raymond F.; Buford, Mary; Xiang, Chengcheng; Wu, Nianqiang; Holian, Andrij

    2014-01-01

    Multi-walled carbon nanotubes (MWCNT) have been reported to cause lung pathologies in multiple studies. However, the mechanism responsible for the bioactivity has not been determined. This study used nine different well-characterized MWCNT and examined the outcomes in vitro and in vivo. MWCNT, from a variety of sources that differed primarily in overall purity and metal contaminants, were examined for their effects in vitro (toxicity and NLRP3 inflammasome activation using primary alveolar macrophages isolated from C57Bl/6 mice). In addition, in vivo exposures were conducted to determine the inflammatory and pathogenic potency. The particles produced a differential magnitude of responses, both in vivo and in vitro, that was associated most strongly with nickel contamination on the particle. Furthermore, the mechanism of action for the Ni-contaminated particles was in their ability to disrupt macrophage phagolysosomes, which resulted in NLRP3 activation and subsequent cytokine release associated with prolonged inflammation and lung pathology. PMID:23216160

  18. Chronic Rejection Pathology after Orthotopic Lung Transplantation in Mice: The Development of a Murine BOS Model and Its Drawbacks

    PubMed Central

    De Vleeschauwer, Stéphanie; Jungraithmayr, Wolfgang; Wauters, Shana; Willems, Stijn; Rinaldi, Manuela; Vaneylen, Annemie; Verleden, Stijn; Willems-Widyastuti, Anna; Bracke, Ken; Brusselle, Guy; Verbeken, Erik; Van Raemdonck, Dirk; Verleden, Geert; Vanaudenaerde, Bart

    2012-01-01

    Almost all animal models for chronic rejection (CR) after lung transplantation (LTx) fail to resemble the human situation. It was our attempt to develop a representative model of CR in mice. Orthotopic LTx was performed in allografts receiving daily immunosuppression with steroids and cyclosporine. Controls included isografts and mice only undergoing thoracotomy (SHAM). Allografts were sacrificed 2, 4, 6, 8, 10 or 12 weeks after LTx. Pulmonary function was measured repeatedly in the 12w allografts, isografts and SHAM mice. Histologically, all allografts demonstrated acute rejection (AR) around the blood vessels and airways two weeks after LTx. This decreased to 50–75% up to 10 weeks and was absent after 12 weeks. Obliterative bronchiolitis (OB) lesions were observed in 25–50% of the mice from 4–12 weeks. Isografts and lungs of SHAM mice were normal after 12 weeks. Pulmonary function measurements showed a decline in FEV0.1, TLC and compliance in the allografts postoperatively (2 weeks) with a slow recovery over time. After this initial decline, lung function of allografts increased more than in isografts and SHAM mice indicating that pulmonary function measurement is not a good tool to diagnose CR in a mouse. We conclude that a true model for CR, with clear OB lesions in about one third of the animals, but without a decline in lung function, is possible. This model is an important step forward in the development of an ideal model for CR which will open new perspectives in unraveling CR pathogenesis and exploring new treatment options. PMID:22238655

  19. Differential innate immune cell signatures and effects regulated by toll-like receptor 4 during murine lung tumor promotion.

    PubMed

    Alexander, Carla-Maria; Xiong, Ka-Na; Velmurugan, Kalpana; Xiong, Julie; Osgood, Ross S; Bauer, Alison K

    2016-04-01

    Tumor promotion is an early and critical stage during lung adenocarcinoma (ADC). We previously demonstrated that Tlr4 mutant mice were more susceptible to butylated hydroxytoluene (BHT)-induced pulmonary inflammation and tumor promotion in comparison to Tlr4-sufficient mice. Our study objective was to elucidate the underlying differences in Tlr4 mutant mice in innate immune cell populations, their functional responses, and the influence of these cellular differences on ADC progenitor (type II) cells following BHT-treatment. BALB (Tlr4-sufficient) and C.C3-Tlr4(Lps-d)/J (BALB(Lpsd); Tlr4 mutant) mice were treated with BHT (promoter) followed by bronchoalveolar lavage (BAL) and flow cytometry processing on the lungs. ELISAs, Club cell enrichment, macrophage function, and RNA isolation were also performed. Bone marrow-derived macrophages (BMDM) co-cultured with a type II cell line were used for wound healing assays. Innate immune cells significantly increased in whole lung in BHT-treated BALB(Lpsd) mice compared to BALB mice. BHT-treated BALB(Lpsd) mice demonstrated enhanced macrophage functionality, increased epithelial wound closure via BMDMs, and increased Club cell number in BALB(Lpsd) mice, all compared to BALB BHT-treated mice. Cytokine/chemokine (Kc, Mcp1) and growth factor (Igf1) levels also significantly differed among the strains and within macrophages, gene expression, and cell surface markers collectively demonstrated a more plastic phenotype in BALB(Lpsd) mice. Therefore, these correlative studies suggest that distinct innate immune cell populations are associated with the differences observed in the Tlr4-mutant model. Future studies will investigate the macrophage origins and the utility of the pathways identified herein as indicators of immune system deficiencies and lung tumorigenesis. PMID:27093379

  20. Detection of Host-Derived Sphingosine by Pseudomonas aeruginosa Is Important for Survival in the Murine Lung

    PubMed Central

    LaBauve, Annette E.; Wargo, Matthew J.

    2014-01-01

    Pseudomonas aeruginosa is a common environmental bacterium that is also a significant opportunistic pathogen, particularly of the human lung. We must understand how P. aeruginosa responds to the lung environment in order to identify the regulatory changes that bacteria use to establish and maintain infections. The P. aeruginosa response to pulmonary surfactant was used as a model to identify transcripts likely induced during lung infection. The most highly induced transcript in pulmonary surfactant, PA5325 (sphA), is regulated by an AraC-family transcription factor, PA5324 (SphR). We found that sphA was specifically induced by sphingosine in an SphR-dependent manner, and also via metabolism of sphingomyelin, ceramide, or sphingoshine-1-phosphate to sphingosine. These sphingolipids not only play a structural role in lipid membranes, but some are also intracellular and intercellular signaling molecules important in normal eukaryotic cell functions as well as orchestrating immune responses. The members of the SphR transcriptome were identified by microarray analyses, and DNA binding assays showed specific interaction of these promoters with SphR, which enabled us to determine the consensus SphR binding site. SphR binding to DNA was modified by sphingosine and we used labeled sphingosine to demonstrate direct binding of sphingosine by SphR. Deletion of sphR resulted in reduced bacterial survival during mouse lung infection. In vitro experiments show that deletion of sphR increases sensitivity to the antimicrobial effects of sphingosine which could, in part, explain the in vivo phenotype. This is the first identification of a sphingosine-responsive transcription factor in bacteria. We predict that SphR transcriptional regulation may be important in response to many sites of infection in eukaryotes and the presence of homologous transcription factors in other pathogens suggests that sphingosine detection is not limited to P. aeruginosa. PMID:24465209

  1. Inhalation of glycopyrronium inhibits cigarette smoke-induced acute lung inflammation in a murine model of COPD.

    PubMed

    Shen, Liang-liang; Liu, Ya-nan; Shen, Hui-juan; Wen, Chong; Jia, Yong-liang; Dong, Xin-wei; Jin, Fang; Chen, Xiao-ping; Sun, Yun; Xie, Qiang-min

    2014-02-01

    Glycopyrronium bromide (GB) is a muscarinic receptor antagonist that has been used as a long-acting bronchodilator in chronic obstructive pulmonary disease (COPD) patients. The aim of this study was to investigate the anti-inflammatory activity of inhaled GB in a cigarette smoke-induced acute lung inflammation mouse model. We found that aerosol pre-treatment with GB suppresses the accumulation of neutrophils and macrophages in the bronchoalveolar lavage fluid (BALF) in cigarette smoke (CS)-exposed mice. GB at doses of 300 and 600 μg/ml significantly inhibited the CS-induced increases in the mRNA and protein expression levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1 and transforming growth factor (TGF)-β1 in lung tissues and the BALF. Moreover, GB at a dose of 600 μg/ml significantly inhibited the CS-induced changes in glutathione (GSH) and myeloperoxidase (MPO) activities in the BALF, decreased the CS-induced expression of matrix metalloproteinases (MMP)-9, and increased the CS-induced expression of tissue inhibitor of metalloproteinases (TIMP)-1, as determined through the immunohistochemical staining of lung tissue. Our results demonstrate the beneficial effects of inhaled GB on the inflammatory reaction in COPD. PMID:24389380

  2. Toll-like receptor 2 participates in the response to lung injury in a murine model of pulmonary contusion.

    PubMed

    Hoth, J Jason; Hudson, William P; Brownlee, Noel A; Yoza, Barbara K; Hiltbold, Elizabeth M; Meredith, J Wayne; McCall, Charles E

    2007-10-01

    Blunt chest trauma resulting in pulmonary contusion with an accompanying acute inflammatory response is a common but poorly understood injury. We report that Toll-like receptor (TLR) 2 participates in the inflammatory response to lung injury. To show this, we use a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans based on histologic, morphologic, and biochemical criteria of acute lung injury. The inflammatory response to pulmonary contusion in our mouse model is characterized by pulmonary edema, neutrophil transepithelial migration, and increased expression of the innate immunity proinflammatory cytokines IL 1beta and IL 6, the adhesion intracellular adhesion molecule 1, and chemokine (CXC motif) ligand 1. Compared with wild-type animals, contused Tlr2(-/-) mice have significantly reduced pulmonary edema and neutrophilia. These findings are associated with decreased levels of circulating chemokine (CXC motif) ligand 1. In contrast, systemic IL 6 levels remain elevated in the TLR2-deficient phenotype. These results show that TLR2 has a primary role in the neutrophil response to acute lung injury. We suggest that an unidentified noninfectious ligand generated by pulmonary contusion acts via TLR2 to generate inflammatory responses. PMID:17558351

  3. Inflammatory markers and mortality among US adults with obstructive lung function

    PubMed Central

    FORD, Earl S.; CUNNINGHAM, Timothy J.; MANNINO, David M.

    2015-01-01

    Background and objective Chronic obstructive pulmonary disease is characterized by an inflammatory state of uncertain significance. The objective of this study was to examine the association between elevated inflammatory marker count (white blood cell count, C-reactive protein and fibrinogen) on all-cause mortality in a national sample of US adults with obstructive lung function (OLF). Methods Data for 1144 adults aged 40–79 years in the National Health and Nutrition Examination Survey III Linked Mortality Study were analysed. Participants entered the study from 1988 to 1994, and mortality surveillance was conducted through 2006. White blood cell count and fibrinogen were dichotomized at their medians, and C-reactive protein was divided into >3 and ≤3 g/L. The number of elevated inflammatory markers was summed to create a score of 0–3. Results The age-adjusted distribution of the number of elevated inflammatory markers differed significantly among participants with normal lung function, mild OLF, and moderate or worse OLF. Of the three dichotomized markers, only fibrinogen was significantly associated with mortality among adults with any OLF (maximally adjusted hazard ratio 1.49; 95% confidence interval (CI): 1.17–1.91). The maximally adjusted hazard ratios for having 1, 2 or 3 elevated markers were 1.17 (95% CI: 0.71–1.94), 1.44 (95% CI: 0.89–2.32) and 2.08 (95% CI: 1.29–3.37), respectively (P = 0.003). Conclusions An index of elevated inflammatory markers predicted all-cause mortality among adults with OLF. PMID:25739826

  4. Trichosanthin enhances anti-tumor immune response in a murine Lewis lung cancer model by boosting the interaction between TSLC1 and CRTAM.

    PubMed

    Cai, Yuchan; Xiong, Shudao; Zheng, Yijie; Luo, Feifei; Jiang, Pei; Chu, Yiwei

    2011-07-01

    Trichosanthin (TCS), extracted from the Chinese medicinal herb Trichosanthes kirilowi, has shown promise for the inhibition of tumor growth. However, its immunomodulatory effect on tumor-host interaction remains unknown. In this study, we focused on the effect of TCS on murine anti-tumor immune response in the 3LL Lewis lung carcinoma tumor model and explored the possible molecular pathways involved. In addition to inhibiting cell proliferation and inducing apoptosis in the 3LL tumor, TCS retarded tumor growth and prolonged mouse survival more significantly in C57BL/6 immunocompetent mice than in nude mice. This reflected the fact that the host immune system was involved in tumor eradication. Using FACS analysis, we found that TCS increased the percentage of effector T cells, particularly Interferon-gamma (IFN-γ) producing CD4(+) and CD8(+) T cells from tumor-bearing mice. TCS also promoted the vigorous proliferation of antigen-specific effector T cells, markedly increased Th1 cytokine secretion and elicited more memory T cells in tumor-bearing mice, consequently enhancing the anti-tumor response and inducing immune protection. Furthermore, we found that TCS upregulated the expression of tumor suppressor in lung cancer 1 (TSLC1) in 3LL tumor cells and the expression of its ligand, class I-restricted T cell-associated molecule (CRTAM), in effector T cells. Blocking TSLC1 expression with small interfering RNA (siRNA) significantly eliminated the effects of TCS on the proliferation and cytokine secretion of effector T cells, suggesting that TCS enhances anti-tumor immune response at least partially by boosting the interaction between TSLC1 and CRTAM. Collectively, our data demonstrate that TCS not only affects tumor cells directly, but also enhances anti-tumor immunity via the interaction between TSLC1 and CRTAM. These findings may lead to the development of a novel approach for tumor regression. PMID:21572449

  5. Sella Turcica Atypical Teratoid/Rhabdoid Tumor Complicated with Lung Metastasis in an Adult Female

    PubMed Central

    Moretti, Costanzo; Lupoi, Domenico; Spasaro, Francesca; Chioma, Laura; Di Giacinto, Paola; Colicchia, Martina; Frajoli, Mario; Mocini, Renzo; Ulisse, Salvatore; Antonelli, Manila; Giangaspero, Felice; Gnessi, Lucio

    2013-01-01

    Here we present the case of a 60-year-old woman with a rare sellar region atypical teratoid/rhabdoid tumor (AT/RT), complicated by lung metastasis and treated with neurosurgery, radiotherapy, and chemotherapy. The patient had recurrent headache associated with left cavernous sinus syndrome after a previous endonasal transsphenoidal resection for a presumptive pituitary macroadenoma. Pituitary magnetic resonance imaging showed a tumor regrowth in the original location with a haemorrhagic component involving the left cavernous sinus. A near complete transsphenoidal resection of the sellar mass was performed followed by 3 months of stereotactic radiotherapy. Because of a worsening of the general clinical conditions, respiratory failure, and asthenia, the patient underwent a contrast enhanced computer tomography of the whole body which showed the presence of lung metastasis. The histopathological diagnosis on samples from pituitary and lung tissues was AT/RT. The patient survived 30 months after diagnosis regardless chemotherapy. In the adult, the AT/RT should be considered as a possible rare, aggressive, and malignant neoplasm localized in the sella turcica. PMID:24324353

  6. Efficient estimation of the total number of acini in adult rat lung

    PubMed Central

    Barré, Sébastien F.; Haberthür, David; Stampanoni, Marco; Schittny, Johannes C.

    2014-01-01

    Abstract Pulmonary airways are subdivided into conducting and gas‐exchanging airways. An acinus is defined as the small tree of gas‐exchanging airways, which is fed by the most distal purely conducting airway. Until now a dissector of five consecutive sections or airway casts were used to count acini. We developed a faster method to estimate the number of acini in young adult rats. Right middle lung lobes were critical point dried or paraffin embedded after heavy metal staining and imaged by X‐ray micro‐CT or synchrotron radiation‐based X‐rays tomographic microscopy. The entrances of the acini were counted in three‐dimensional (3D) stacks of images by scrolling through them and using morphological criteria (airway wall thickness and appearance of alveoli). Segmentation stopper were placed at the acinar entrances for 3D visualizations of the conducting airways. We observed that acinar airways start at various generations and that one transitional bronchiole may serve more than one acinus. A mean of 5612 (±547) acini per lung and a mean airspace volume of 0.907 (±0.108) μL per acinus were estimated. In 60‐day‐old rats neither the number of acini nor the mean acinar volume did correlate with the body weight or the lung volume. PMID:24997068

  7. Predictions of ozone absorption in human lungs from newborn to adult

    SciTech Connect

    Overton, J.H.; Graham, R.C. )

    1989-01-01

    Although children are an important human population, dosimetry models for gases have been used to predict absorption mainly in laboratory animals and adult humans. To correct this omission, we have used several sources of data on age-dependent lower respiratory tract (LRT) volumes, age-dependent airway dimensions, a model of the adult tracheobronchial region, and a model of the adult acinus to construct theoretical LRT lung models for humans from birth to adulthood. An ozone (O3) dosimetry model was then used to estimate the regional and local uptake of O3 in the (theoretical) LRT of children and adults. For sedentary or quiet breathing, the LRT distribution of absorbed O3, the percent uptake (84 to 88%) and the centriacinar O3 tissue dose are not very sensitive to age. For maximal work during exercise, predicted LRT uptakes range from 87 to 93%, and the regional percent uptakes are more dependent on age than during quiet breathing. In general, the total quantity of O3 absorbed per minute increases with age. Regardless of age and state of breathing, the largest tissue dose of O3 is predicted to occur in the centriacinar region, where many animal studies show the maximal morphological damage from O3.

  8. Predictions of ozone absorption in human lungs from newborn to adult.

    PubMed

    Overton, J H; Graham, R C

    1989-01-01

    Although children are an important human population, dosimetry models for gases have been used to predict absorption mainly in laboratory animals and adult humans. To correct this omission, we have used several sources of data on age-dependent lower respiratory tract (LRT) volumes, age-dependent airway dimensions, a model of the adult tracheobronchial region, and a model of the adult acinus to construct theoretical LRT lung models for humans from birth to adulthood. An ozone (O3) dosimetry model was then used to estimate the regional and local uptake of O3 in the (theoretical) LRT of children and adults. For sedentary or quiet breathing, the LRT distribution of absorbed O3, the percent uptake (84 to 88%) and the centriacinar O3 tissue dose are not very sensitive to age. For maximal work during exercise, predicted LRT uptakes range from 87 to 93%, and the regional percent uptakes are more dependent on age than during quiet breathing. In general, the total quantity of O3 absorbed per minute increases with age. Regardless of age and state of breathing, the largest tissue dose of O3 is predicted to occur in the centriacinar region, where many animal studies show the maximal morphological damage from O3. PMID:2606688

  9. Oral Administration of Polymyxin B Modulates the Activity of Lipooligosaccharide E. coli B against Lung Metastases in Murine Tumor Models

    PubMed Central

    Kicielińska, Jagoda; Szczygieł, Agnieszka; Rossowska, Joanna; Anger, Natalia; Kempińska, Katarzyna; Świtalska, Marta; Kaszowska, Marta; Wietrzyk, Joanna; Boratyński, Janusz; Pajtasz-Piasecka, Elżbieta

    2016-01-01

    Introduction Polymyxin B (PmB) belongs to the group of cyclic peptide antibiotics, which neutralize the activity of LPS by binding to lipid A. The aim of this study was to analyze the effect of PmB on the biological activity of lipooligosaccharide (LOS E. coli B,rough form of LPS) in vitro and in experimental metastasis models. Results Cultures of murine macrophage J774A.1 cells and murine bone marrow-derived dendritic cells (BM-DC) stimulated in vitro with LOS and supplemented with PmB demonstrated a decrease in inflammatory cytokine production (IL-6, IL-10, TNF-α) and down-regulation of CD40, CD80, CD86 and MHC class II molecule expression. Additionally, PmB suspended in drinking water was given to the C57BL/6 mice seven or five days prior to the intravenous injection of B16 or LLC cells and intraperitoneal application of LOS. This strategy of PmB administration was continued throughout the duration of the experiments (29 or 21 days). In B16 model, statistically significant decrease in the number of metastases in mice treated with PmB and LOS (p<0.01) was found on the 14th day of the experiments, whereas the most intensive changes in surface-antigen expression and ex vivo production of IL-6, IL-1β and TNF-α by peritoneal cells were observed 7 days earlier. By contrast, antigen expression and ex vivo production of IL-6, IL-10, IFN-γ by splenocytes remained relatively high and stable. Statistically significant decrease in LLC metastases number was observed after the application of LOS (p<0.01) and in the group of mice preconditioned by PmB and subsequently treated with LOS (LOS + PmB, p<0.01). Conclusions In conclusion, prolonged in vivo application of PmB was not able to neutralize the LOS-induced immune cell activity but its presence in the organism of treated mice was important in modulation of the LOS-mediated response against the development of metastases. PMID:26829479

  10. Dietary magnesium, lung function, wheezing, and airway hyperreactivity in a random adult population sample.

    PubMed

    Britton, J; Pavord, I; Richards, K; Wisniewski, A; Knox, A; Lewis, S; Tattersfield, A; Weiss, S

    1994-08-01

    Magnesium is involved in a wide range of biological activities, including some that may protect against the development of asthma and chronic airflow obstruction. We tested the hypothesis that high dietary magnesium intake is associated with better lung function, and a reduced risk of airway hyper-reactivity and wheezing in a random sample of adults. In 2633 adults aged 18-70 sampled from the electoral register of an administrative area of Nottingham, UK, we measured dietary magnesium intake by semiquantitative food-frequency questionnaire, lung function as the 1-sec forced expiratory volume (FEV1), and atopy as the mean skin-prick test response to three common environmental allergens. We measured airway reactivity to methacholine in 2415 individuals, defining hyper-reactivity as a 20% fall in FEV1 after a cumulative dose of 12.25 mumol or less. Mean (SD) daily intake of magnesium was 380 (114) mg/day. After adjusting for age, sex, and height, and for the effects of atopy and smoking, a 100 mg/day higher magnesium intake was associated with a 27.7 (95% CI, 11.9-43.5) mL higher FEV1, and a reduction in the relative odds of hyper-reactivity by a ratio of 0.82 (0.72-0.93). The same incremental difference in magnesium intake was also associated with a reduction in the odds of self-reported wheeze within the past 12 months, adjusted for age, sex, smoking, atopy, and kilojoule intake, by a ratio of 0.85 (0.76-0.95). Dietary magnesium intake is independently related to lung function and the occurrence of airway hyper-reactivity and self-reported wheezing in the general population. Low magnesium intake may therefore be involved in the aetiology of asthma and chronic obstructive airways disease. PMID:7914305

  11. Quantification of asymmetric lung pathophysiology as a guide to the use of simultaneous independent lung ventilation in posttraumatic and septic adult respiratory distress syndrome.

    PubMed Central

    Siegel, J H; Stoklosa, J C; Borg, U; Wiles, C E; Sganga, G; Geisler, F H; Belzberg, H; Wedel, S; Blevins, S; Goh, K C

    1985-01-01

    The management of impaired respiratory gas exchange in patients with nonuniform posttraumatic and septic adult respiratory distress syndrome (ARDS) contains its own therapeutic paradox, since the need for volume-controlled ventilation and PEEP in the lung with the most reduced compliance increases pulmonary barotrauma to the better lung. A computer-based system has been developed by which respiratory pressure-flow-volume relations and gas exchange characteristics can be obtained and respiratory dynamic and static compliance curves computed and displayed for each lung, as a means of evaluating the effectiveness of ventilation therapy in ARDS. Using these techniques, eight patients with asymmetrical posttraumatic or septic ARDS, or both, have been managed using simultaneous independent lung ventilation (SILV). The computer assessment technique allows quantification of the nonuniform ARDS pattern between the two lungs. This enabled SILV to be utilized using two synchronized servo-ventilators at different pressure-flow-volumes, inspiratory/expiratory ratios, and PEEP settings to optimize the ventilatory volumes and gas exchange of each lung, without inducing excess barotrauma in the better lung. In the patients with nonuniform ARDS, conventional ventilation was not effective in reducing shunt (QS/QT) or in permitting a lower FIO2 to be used for maintenance of an acceptable PaO2. SILV reduced per cent v-a shunt and permitted a higher PaO2 at lower FIO2. Also, there was x-ray evidence of ARDS improvement in the poorer lung. While the ultimate outcome was largely dependent on the patient's injury and the adequacy of the septic host defense, by utilizing the SILV technique to match the quantitative aspects of respiratory dysfunction in each lung at specific times in the clinical course, it was possible to optimize gas exchange, to reduce barotrauma, and often to reverse apparently fixed ARDS changes. In some instances, this type of physiologically directed ventilatory

  12. Lung disease severity, chronic inflammation, iron deficiency, and erythropoietin response in adults with cystic fibrosis.

    PubMed

    Fischer, R; Simmerlein, R; Huber, R M; Schiffl, H; Lang, S M

    2007-12-01

    Chronic lung disorders are usually associated with a hypoxia driven increase in red cell mass. However, patients with cystic fibrosis (CF) often have normal or decreased haemoglobin levels. The present prospective observational study in cystic fibrosis patients was performed to determine which factors were involved in alterations in the hematopoetic response to corresponding arterial oxygen pressure. Sixty adult patients (age 21-51) with stable CF were included. They all had vitamin A, D, E, and K but no vitamin B12 supplementation. Twenty-five patients were on oral Fe(2+) (100 mg/day). Resting arterial blood gases, lung function, complete blood counts, parameters of iron status, CRP, sputum microbiology and serum erythropoietin were measured at recruitment and after 3 and 6 months. Patients had varying degrees of pulmonary functional impairment and 9% were hypoxemic (arterial oxygen pressure <60 mm Hg). Low-grade systemic inflammation (CRP > 0.5 mg/dl) was present in 40% of the patients, who all had bacterial colonization. None of the patient had erythrocytosis and 12 patients had anemia. There was no significant difference in iron status between patients with or without chronic iron supplementation and erythropoietin levels were normal. During the 6 months observation period no significant changes occurred. The patients exhibited an impaired erythropoietic response to hypoxemia with normal or low hematocrit in spite of chronic lung disease which might be caused by chronic inflammation associated with CF. Linear multivariate regression analysis revealed CRP levels but neither iron substitution, nor erythropoietin levels nor lung function parameters as independent determinant of haemoglobin levels. CF may be associated with anemia of variable severity as expression of the chronic inflammation present in these patients. The therapeutic consequences are to treat the underlying inflammation rather than to supplement iron. PMID:17948283

  13. Air pollution and lung function among susceptible adult subjects: a panel study

    PubMed Central

    Lagorio, Susanna; Forastiere, Francesco; Pistelli, Riccardo; Iavarone, Ivano; Michelozzi, Paola; Fano, Valeria; Marconi, Achille; Ziemacki, Giovanni; Ostro, Bart D

    2006-01-01

    Background Adverse health effects at relatively low levels of ambient air pollution have consistently been reported in the last years. We conducted a time-series panel study of subjects with chronic obstructive pulmonary disease (COPD), asthma, and ischemic heart disease (IHD) to evaluate whether daily levels of air pollutants have a measurable impact on the lung function of adult subjects with pre-existing lung or heart diseases. Methods Twenty-nine patients with COPD, asthma, or IHD underwent repeated lung function tests by supervised spirometry in two one-month surveys. Daily samples of coarse (PM10–2.5) and fine (PM2.5) particulate matter were collected by means of dichotomous samplers, and the dust was gravimetrically analyzed. The particulate content of selected metals (cadmium, chrome, iron, nickel, lead, platinum, vanadium, and zinc) was determined by atomic absorption spectrometry. Ambient concentrations of nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and sulphur dioxide (SO2) were obtained from the regional air-quality monitoring network. The relationships between concentrations of air pollutants and lung function parameters were analyzed by generalized estimating equations (GEE) for panel data. Results Decrements in lung function indices (FVC and/or FEV1) associated with increasing concentrations of PM2.5, NO2 and some metals (especially zinc and iron) were observed in COPD cases. Among the asthmatics, NO2 was associated with a decrease in FEV1. No association between average ambient concentrations of any air pollutant and lung function was observed among IHD cases. Conclusion This study suggests that the short-term negative impact of exposure to air pollutants on respiratory volume and flow is limited to individuals with already impaired respiratory function. The fine fraction of ambient PM seems responsible for the observed effects among COPD cases, with zinc and iron having a potential role via oxidative stress. The respiratory function

  14. Antimicrobial activity of murine lung cells against Staphylococcus aureus is increased in vitro and in vivo after elafin gene transfer.

    PubMed

    McMichael, J W; Maxwell, A I; Hayashi, K; Taylor, K; Wallace, W A; Govan, J R; Dorin, J R; Sallenave, J-M

    2005-06-01

    Staphylococcus aureus is a pathogen often found in pneumonia and sepsis. In the context of the resistance of this organism to conventional antibiotics, an understanding of the regulation of natural endogenous antimicrobial molecules is of paramount importance. Previous studies have shown that both human and mouse airways express a variety of these molecules, including defensins, cathelicidins, and the four-disulfide core protein secretory leukocyte protease inhibitor. We demonstrate here by culturing mouse tracheal epithelial cells at an air-liquid interface that, despite the production of Defb1, Defb14, and Defr1 in this system, these cells are unable to clear S. aureus when exposed to this respiratory pathogen. Using an adenovirus (Ad)-mediated gene transfer strategy, we show that overexpression of elafin, an anti-elastase/antimicrobial molecule (also a member of the four-disulfide core protein family), dramatically improves the clearance of S. aureus. In addition, we also demonstrate that this overexpression is efficient in vivo and that intratracheal instillation of Ad-elafin significantly reduced the lung bacterial load and demonstrates concomitant anti-inflammatory activity by reducing neutrophil numbers and markers of lung inflammation, such as bronchoalveolar lavage levels of tumor necrosis factor and myeloperoxidase. These findings show that an increased antimicrobial activity phenotype is provided by the elafin molecule and have implications for its use in S. aureus-associated local and systemic infections. PMID:15908390

  15. Antimicrobial Activity of Murine Lung Cells against Staphylococcus aureus Is Increased In Vitro and In Vivo after Elafin Gene Transfer

    PubMed Central

    McMichael, J. W.; Maxwell, A. I.; Hayashi, K.; Taylor, K.; Wallace, W. A.; Govan, J. R.; Dorin, J. R.; Sallenave, J.-M.

    2005-01-01

    Staphylococcus aureus is a pathogen often found in pneumonia and sepsis. In the context of the resistance of this organism to conventional antibiotics, an understanding of the regulation of natural endogenous antimicrobial molecules is of paramount importance. Previous studies have shown that both human and mouse airways express a variety of these molecules, including defensins, cathelicidins, and the four-disulfide core protein secretory leukocyte protease inhibitor. We demonstrate here by culturing mouse tracheal epithelial cells at an air-liquid interface that, despite the production of Defb1, Defb14, and Defr1 in this system, these cells are unable to clear S. aureus when exposed to this respiratory pathogen. Using an adenovirus (Ad)-mediated gene transfer strategy, we show that overexpression of elafin, an anti-elastase/antimicrobial molecule (also a member of the four-disulfide core protein family), dramatically improves the clearance of S. aureus. In addition, we also demonstrate that this overexpression is efficient in vivo and that intratracheal instillation of Ad-elafin significantly reduced the lung bacterial load and demonstrates concomitant anti-inflammatory activity by reducing neutrophil numbers and markers of lung inflammation, such as bronchoalveolar lavage levels of tumor necrosis factor and myeloperoxidase. These findings show that an increased antimicrobial activity phenotype is provided by the elafin molecule and have implications for its use in S. aureus-associated local and systemic infections. PMID:15908390

  16. Testing the importance of p27 degradation by the SCFskp2 pathway in murine models of lung and colon cancer.

    PubMed

    Timmerbeul, Inke; Garrett-Engele, Carrie M; Kossatz, Uta; Chen, Xueyan; Firpo, Eduardo; Grünwald, Viktor; Kamino, Kenji; Wilkens, Ludwig; Lehmann, Ulrich; Buer, Jan; Geffers, Robert; Kubicka, Stefan; Manns, Michael P; Porter, Peggy L; Roberts, James M; Malek, Nisar P

    2006-09-19

    Decreased expression of the CDK inhibitor p27kip1 in human tumors directly correlates with increased resistance to chemotherapies, increased rates of metastasis, and an overall increased rate of patient mortality. It is thought that decreased p27 expression in tumors is caused by increased proteasomal turnover, in particular activation of the pathway governed by the SCFskp2 E3 ubiquitin protein ligase. We have directly tested the importance of the SCFskp-mediated degradation of p27 in tumorigenesis by analyzing the tumor susceptibility of mice that express a form of p27 that cannot be ubiquitinated and degraded by this pathway (p27T187A). In mouse models of both lung and colon cancer down-regulation of p27 promotes tumorigenesis. However, we found that preventing p27 degradation by the SCFskp2 pathway had no impact on tumor incidence or overall survival in either tumor model. Our study unveiled a previously unrecognized role for the control of p27 mRNA abundance in the development of non-small cell lung cancers. In the colon cancer model, the frequency of intestinal adenomas was similarly unaffected by the p27T187A mutation, but, unexpectedly, we found that it inhibited progression of intestinal adenomas to carcinomas. These studies may guide the choice of clinical settings in which pharmacologic inhibitors of the Skp2 pathway might be of therapeutic value. PMID:16966613

  17. Susceptibility to Inhaled Flame-Generated Ultrafine Soot in Neonatal and Adult Rat Lungs

    PubMed Central

    Chan, Jackie K. W.; Fanucchi, Michelle V.; Anderson, Donald S.; Abid, Aamir D.; Wallis, Christopher D.; Dickinson, Dale A.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S.; Van Winkle, Laura S.

    2011-01-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth. PMID:21914721

  18. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  19. MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC

    PubMed Central

    Rolandsson Enes, Sara; Andersson Sjöland, Annika; Skog, Ingrid; Hansson, Lennart; Larsson, Hillevi; Le Blanc, Katarina; Eriksson, Leif; Bjermer, Leif; Scheding, Stefan; Westergren-Thorsson, Gunilla

    2016-01-01

    Mesenchymal stromal cells (MSC) are multipotent cells with regenerative and immune-modulatory properties. Therefore, MSC have been proposed as a potential cell-therapy for bronchiolitis obliterans syndrome (BOS). On the other hand, there are publications demonstrating that MSC might be involved in the development of BOS. Despite limited knowledge regarding the functional role of tissue-resident lung-MSC, several clinical trials have been performed using MSC, particularly bone marrow (BM)-derived MSC, for various lung diseases. We aimed to compare lung-MSC with the well-characterized BM-MSC. Furthermore, MSC isolated from lung-transplanted patients with BOS were compared to patients without BOS. Our study show that lung-MSCs are smaller, possess a higher colony-forming capacity and have a different cytokine profile compared to BM-MSC. Utilizing gene expression profiling, 89 genes including lung-specific FOXF1 and HOXB5 were found to be significantly different between BM-MSC and lung-MSC. No significant differences in cytokine secretion or gene expression were found between MSC isolated from BOS patients compared recipients without BOS. These data demonstrate that lung-resident MSC possess lung-specific properties. Furthermore, these results show that MSC isolated from lung-transplanted patients with BOS do not have an altered phenotype compared to MSC isolated from good outcome recipients. PMID:27381039

  20. pp-GalNAc-T13 induces high metastatic potential of murine Lewis lung cancer by generating trimeric Tn antigen

    SciTech Connect

    Matsumoto, Yasuyuki; Zhang, Qing; Akita, Kaoru; Nakada, Hiroshi; Hamamura, Kazunori; Tokuda, Noriyo; Tsuchida, Akiko; Matsubara, Takeshi; Hori, Tomoko; Okajima, Tetsuya; Furukawa, Keiko; Urano, Takeshi; Furukawa, Koichi

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer ppGalNAc-T13 was up-regulated in high metastatic sublines of Lewis lung cancer. Black-Right-Pointing-Pointer ppGalNAc-T13 expression enhanced cell invasion activity in low metastatic sublines. Black-Right-Pointing-Pointer Trimeric Tn antigen was induced in the transfectant cells of ppGalNAc-T13 cDNA. Black-Right-Pointing-Pointer A major protein carrying trimeric Tn structure was identified as Syndecan-1. Black-Right-Pointing-Pointer Silencing of ppGalNAc-T13 resulted in the reduction of invasion and of metastasis.. -- Abstract: In order to analyze the mechanisms for cancer metastasis, high metastatic sublines (H7-A, H7-Lu, H7-O, C4-sc, and C4-ly) were obtained by repeated injection of mouse Lewis lung cancer sublines H7 and C4 into C57BL/6 mice. These sublines exhibited increased proliferation and invasion activity in vitro. Ganglioside profiles exhibited lower expression of GM1 in high metastatic sublines than the parent lines. Then, we established GM1-Si-1 and GM1-Si-2 by stable silencing of GM1 synthase in H7 cells. These GM1-knockdown clones exhibited increased proliferation and invasion. Then, we explored genes that markedly altered in the expression levels by DNA microarray in the combination of C4 vs. C4-ly or H7 vs. H7 (GM1-Si). Consequently, pp-GalNAc-T13 gene was identified as up-regulated genes in the high metastatic sublines. Stable transfection of pp-GalNAc-T13 cDNA into C4 (T13-TF) resulted in increased invasion and motility. Then, immunoblotting and flow cytometry using various antibodies and lectins were performed. Only anti-trimeric Tn antibody (mAb MLS128), showed increased expression levels of trimeric Tn antigen in T13-TF clones. Moreover, immunoprecipitation/immunoblotting was performed by mAb MLS128, leading to the identification of an 80 kDa band carrying trimeric Tn antigen, i.e. Syndecan-1. Stable silencing of endogenous pp-GalNAc-T13 in C4-sc (T13-KD) revealed that primary tumors generated by

  1. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J

    2016-10-15

    Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress. PMID:27369091

  2. MT103 inhibits tumor growth with minimal toxicity in murine model of lung carcinoma via induction of apoptosis.

    PubMed

    Jasinski, Piotr; Zwolak, Pawel; Isaksson Vogel, Rachel; Bodempudi, Vidya; Terai, Kaoru; Galvez, Jorge; Land, David; Dudek, Arkadiusz Z

    2011-10-01

    Molecular topology (MT) was used to develop quantitative structure-activity relationship (QSAR) models to screen databases for new anticancer compounds. One of the selected compounds was MT103, an isoborneol derivative, with a promising profile predicted to slow tumor growth through pro-apoptotic signaling and protein kinase C inhibition. We found that MT103 inhibited the growth of a wide variety of cancer cell types as verified by the NCI-60 cancer cell line panel. MTT cell viability assay showed that MT103 inhibited 50% of the growth of HOP-92, ACHN, NCI-H226, MCF-7, and A549 cancer cell lines at much lower concentrations than that required for HUVECs and human fibroblasts. MT103 stimulated apoptosis in NCI-H226 lung carcinoma cells as measured by oligonucleosomal DNA fragmentation. However, protein kinase C was not targeted by MT103, as predicted by in silico modeling. MT103 slowed in vivo tumor growth and metastatic spread of NCI-H226 cells injected subcutaneously into NOD/SCID mice, without eliciting any severe adverse events as monitored by animal survival, blood serum analysis, and histological analysis of organs. Oral administration of MT103 nanoparticles (200 nm in diameter), which were generated with ElectroNanospray™ technology, inhibited in vivo growth of HOP-92 lung carcinoma cells almost as effectively as intraperitoneal injections of cisplatin. Taken together, our study of a novel anti-cancer drug identified using a molecular topology-based approach to drug discovery demonstrates that MT103 has anti-tumor activity in vitro and in vivo, although additional studies are needed to elucidate its mechanism of action. PMID:20396929

  3. Murine lung tumor response after exposure to cigarette mainstream smoke or its particulate and gas/vapor phase fractions.

    PubMed

    Stinn, Walter; Arts, Josje H E; Buettner, Ansgar; Duistermaat, Evert; Janssens, Kris; Kuper, C Frieke; Haussmann, Hans-Juergen

    2010-09-10

    Knowledge on mechanisms of smoking-induced tumorigenesis and on active smoke constituents may improve the development and evaluation of chemopreventive and therapeutic interventions, early diagnostic markers, and new and potentially reduced-risk tobacco products. A suitable laboratory animal disease model of mainstream cigarette smoke inhalation is needed for this purpose. In order to develop such a model, A/J and Swiss SWR/J mouse strains, with a genetic susceptibility to developing lung adenocarcinoma, were whole-body exposed to diluted cigarette mainstream smoke at 0, 120, and 240 mg total particulate matter per m(3) for 6h per day, 5 days per week. Mainstream smoke is the smoke actively inhaled by the smoker. For etiological reasons, parallel exposures to whole smoke fractions (enriched for particulate or gas/vapor phase) were performed at the higher concentration level. After 5 months of smoke inhalation and an additional 4-month post-inhalation period, both mouse strains responded similarly: no increase in lung tumor multiplicity was seen at the end of the inhalation period; however, there was a concentration-dependent tumorigenic response at the end of the post-inhalation period (up to 2-fold beyond control) in mice exposed to the whole smoke or the particulate phase. Tumors were characterized mainly as pulmonary adenomas. At the end of the inhalation period, epithelial hyperplasia, atrophy, and metaplasia were found in the nasal passages and larynx, and cellular and molecular markers of inflammation were found in the bronchoalveolar lavage fluid. These inflammatory effects were mostly resolved by the end of the post-inhalation period. In summary, these mouse strains responded to mainstream smoke inhalation with enhanced pulmonary adenoma formation. The major tumorigenic potency resided in the particulate phase, which is contrary to the findings published for environmental tobacco smoke surrogate inhalation in these mouse models. PMID:20594951

  4. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells.

    PubMed

    Zhang, Hui; Kho, Alvin T; Wu, Qing; Halayko, Andrew J; Limbert Rempel, Karen; Chase, Robert P; Sweezey, Neil B; Weiss, Scott T; Kaplan, Feige

    2016-09-01

    Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid-regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal-epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/- mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal-epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)-induced human fetal lung fibroblast line (MRC5). LPS-induced upregulation of the proinflammatory cytokines IL-8 and CCL2 was exacerbated in MRC5-CRISPLD2(knockdown) cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL-8, IL-6, CCL2. LPS-stimulated expression of proinflammatory mediators by human lung epithelial HAEo- cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF-CRISPLD2(knockdown) suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood. PMID:27597766

  5. The pharmacological modulation of [3H]-disaturated phosphatidylcholine overflow from perifused lung slices of adult rats: a new method for the study of lung surfactant secretion.

    PubMed Central

    Gilfillan, A. M.; Hollingsworth, M.; Jones, A. W.

    1983-01-01

    Lung slices from adult rats incubated in [methyl-3H]-choline chloride formed [3H]-disaturated phosphatidylcholine ( [3H]-DSPC) which was used as an index of lung surfactant. The slices were perifused after 3 h incubation in [methyl-3H]-choline chloride and the overflow of [3H]-DSPC, as a rate coefficient, was used as a measure of surfactant secretion. The basal overflow of [3H]-DSPC rapidly declined over the first 30 min of perifusion and then declined slowly. Salbutamol induced a prolonged, and sometimes delayed, increase in [3H]-DSPC overflow, which was reduced by (+/-)-propranolol. Potassium chloride produced an immediate, and usually transient, increase in [3H]-DSPC overflow which was not modified by atropine or (+/-)-propranolol. Adenosine 5'-triphosphate, but not phenylephrine, also increased [3H]-DSPC overflow. This method can measure the magnitude and time-course of lung surfactant secretion induced by drugs. PMID:6689133

  6. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts.

    PubMed

    Lama, Vibha N; Smith, Lisa; Badri, Linda; Flint, Andrew; Andrei, Adin-Cristian; Murray, Susan; Wang, Zhuo; Liao, Hui; Toews, Galen B; Krebsbach, Paul H; Peters-Golden, Marc; Pinsky, David J; Martinez, Fernando J; Thannickal, Victor J

    2007-04-01

    The origin and turnover of connective tissue cells in adult human organs, including the lung, are not well understood. Here, studies of cells derived from human lung allografts demonstrate the presence of a multipotent mesenchymal cell population, which is locally resident in the human adult lung and has extended life span in vivo. Examination of plastic-adherent cell populations in bronchoalveolar lavage samples obtained from 76 human lung transplant recipients revealed clonal proliferation of fibroblast-like cells in 62% (106 of 172) of samples. Immunophenotyping of these isolated cells demonstrated expression of vimentin and prolyl-4-hydroxylase, indicating a mesenchymal phenotype. Multiparametric flow cytometric analyses revealed expression of cell-surface proteins, CD73, CD90, and CD105, commonly found on mesenchymal stem cells (MSCs). Hematopoietic lineage markers CD14, CD34, and CD45 were absent. Multipotency of these cells was demonstrated by their capacity to differentiate into adipocytes, chondrocytes, and osteocytes. Cytogenetic analysis of cells from 7 sex-mismatched lung transplant recipients harvested up to 11 years after transplant revealed that 97.2% +/- 2.1% expressed the sex genotype of the donor. The presence of MSCs of donor sex identity in lung allografts even years after transplantation provides what we believe to be the first evidence for connective tissue cell progenitors that reside locally within a postnatal, nonhematopoietic organ. PMID:17347686

  7. Inhibitory effect of Zanthoxylum bungeanum seed oil on ovalbumin‑induced lung inflammation in a murine model of asthma.

    PubMed

    Wang, Jun-Qin; Li, Xiao-Wei; Liu, Mingyi; Wang, Sheng-Chun; Cao, Zeng-Fa

    2016-05-01

    The present study aimed to investigate the therapeutic efficacy of Zanthoxylum bungeanum seed oil (Z. seed oil) to alleviate airway inflammation in asthmatic mice. The asthmatic mice were treated with vehicle, ovalbumin (OVA), or OVA + Z. seed oil (2 g/kg) for between 24 h and 14 days. Following treatment, inflammatory cell infiltration and pulmonary tissue damage were assessed by hematoxylin and eosin staining, and immunohistochemistry. The expression levels of pro‑inflammatory cytokines, chemokines, adhesion molecules and mitogen activated protein kinase signaling proteins were measured by enzyme‑linked immunosorbent assays, reverse transcription quantitative‑polymerase chain reaction and western blot analysis. In asthmatic mice, administration of Z. seed oil attenuated lung tissue injury and airway remodeling, and inhibited the infiltration of leukocytes and eosinophils into the airway by reducing the expression levels of inflammatory cytokines and chemokines compared with OVA‑treated mice (P<0.05). Z. seed oil also reduced the levels of inflammatory chemokine and adhesion molecules via downregulation of extracellular signal‑regulated kinase and activation of c‑JUN N‑terminal kinase in the Z. seed‑treated mice compared with OVA‑treated mice (P<0.05). Thus, data from the present study indicates that Z. seed oil can suppress pulmonary inflammation and tissue injury during asthma, and suggests that it may be used to effectively treat allergen‑induced asthma. PMID:27035565

  8. OligoG CF-5/20 Disruption of Mucoid Pseudomonas aeruginosa Biofilm in a Murine Lung Infection Model.

    PubMed

    Hengzhuang, Wang; Song, Zhijun; Ciofu, Oana; Onsøyen, Edvar; Rye, Philip D; Høiby, Niels

    2016-05-01

    Biofilm growth is a universal survival strategy for bacteria, providing an effective and resilient approach for survival in an otherwise hostile environment. In the context of an infection, a biofilm provides resistance and tolerance to host immune defenses and antibiotics, allowing the biofilm population to survive and thrive under conditions that would destroy their planktonic counterparts. Therefore, the disruption of the biofilm is a key step in eradicating persistent bacterial infections, as seen in many types of chronic disease. In these studies, we used both in vitro minimum biofilm eradication concentration (MBEC) assays and an in vivo model of chronic biofilm infection to demonstrate the biofilm-disrupting effects of an alginate oligomer, OligoG CF-5/20. Biofilm infections were established in mice by tracheal instillation of a mucoid clinical isolate of Pseudomonas aeruginosa embedded in alginate polymer beads. The disruption of the biofilm by OligoG CF-5/20 was observed in a dose-dependent manner over 24 h, with up to a 2.5-log reduction in CFU in the infected mouse lungs. Furthermore, in vitro assays showed that 5% OligoG CF-5/20 significantly reduced the MBEC for colistin from 512 μg/ml to 4 μg/ml after 8 h. These findings support the potential for OligoG CF-5/20 as a biofilm disruption agent which may have clinical value in reducing the microbial burden in chronic biofilm infections. PMID:26833153

  9. Role of Chitinase 3-Like-1 in Interleukin-18-Induced Pulmonary Type 1, Type 2, and Type 17 Inflammation; Alveolar Destruction; and Airway Fibrosis in the Murine Lung.

    PubMed

    Kang, Min-Jong; Yoon, Chang Min; Nam, Milang; Kim, Do-Hyun; Choi, Je-Min; Lee, Chun Geun; Elias, Jack A

    2015-12-01

    Chitinase 3-like 1 (Chi3l1), which is also called YKL-40 in humans and BRP-39 in mice, is the prototypic chitinase-like protein. Recent studies have highlighted its impressive ability to regulate the nature of tissue inflammation and the magnitude of tissue injury and fibroproliferative repair. This can be appreciated in studies that highlight its induction after cigarette smoke exposure, during which it inhibits alveolar destruction and the genesis of pulmonary emphysema. IL-18 is also known to be induced and activated by cigarette smoke, and, in murine models, the IL-18 pathway has been shown to be necessary and sufficient to generate chronic obstructive pulmonary disease-like inflammation, fibrosis, and tissue destruction. However, the relationship between Chi3l1 and IL-18 has not been defined. To address this issue we characterized the expression of Chi3l1/BRP-39 in control and lung-targeted IL-18 transgenic mice. We also characterized the effects of transgenic IL-18 in mice with wild-type and null Chi3l1 loci. The former studies demonstrated that IL-18 is a potent stimulator of Chi3l1/BRP-39 and that this stimulation is mediated via IFN-γ-, IL-13-, and IL-17A-dependent mechanisms. The latter studies demonstrated that, in the absence of Chi3l1/BRP-39, IL-18 induced type 2 and type 17 inflammation and fibrotic airway remodeling were significantly ameliorated, whereas type 1 inflammation, emphysematous alveolar destruction, and the expression of cytotoxic T lymphocyte perforin, granzyme, and retinoic acid early transcript 1 expression were enhanced. These studies demonstrate that IL-18 is a potent stimulator of Chi3l1 and that Chi3l1 is an important mediator of IL-18-induced inflammatory, fibrotic, alveolar remodeling, and cytotoxic responses. PMID:25955511

  10. Profiling Analysis of Histone Modifications and Gene Expression in Lewis Lung Carcinoma Murine Cells Resistant to Anti-VEGF Treatment

    PubMed Central

    Du, Yanhua; Chen, Kaiming; Liu, Zhenping; Li, Bing; Li, Jie; Tao, Fei; Gu, Hua; Jiang, Cizhong; Fang, Jianmin

    2016-01-01

    Tumor cells become resistant after long-term use of anti-VEGF (vascular endothelial growth factor) agents. Our previous study shows that treatment with a VEGF inhibitor (VEGF-Trap) facilitates to develop tumor resistance through regulating angiogenesis-related genes. However, the underlying molecular mechanisms remain elusive. Histone modifications as a key epigenetic factor play a critical role in regulation of gene expression. Here, we explore the potential epigenetic gene regulatory functions of key histone modifications during tumor resistance in a mouse Lewis lung carcinoma (LLC) cell line. We generated high resolution genome-wide maps of key histone modifications in sensitive tumor sample (LLC-NR) and resistant tumor sample (LLC-R) after VEGF-Trap treatment. Profiling analysis of histone modifications shows that histone modification levels are effectively predictive for gene expression. Composition of promoters classified by histone modification state is different between LLC-NR and LLC-R cell lines regardless of CpG content. Histone modification state change between LLC-NR and LLC-R cell lines shows different patterns in CpG-rich and CpG-poor promoters. As a consequence, genes with different level of CpG content whose gene expression level are altered are enriched in distinct functions. Notably, histone modification state change in promoters of angiogenesis-related genes consists with their expression alteration. Taken together, our findings suggest that treatment with anti-VEGF therapy results in extensive histone modification state change in promoters with multiple functions, particularly, biological processes related to angiogenesis, likely contributing to tumor resistance development. PMID:27362259

  11. Control of Murine Cytomegalovirus in the Lungs: Relative but Not Absolute Immunodominance of the Immediate-Early 1 Nonapeptide during the Antiviral Cytolytic T-Lymphocyte Response in Pulmonary Infiltrates

    PubMed Central

    Holtappels, Rafaela; Podlech, Jürgen; Geginat, Gernot; Steffens, Hans-Peter; Thomas, Doris; Reddehase, Matthias J.

    1998-01-01

    The lungs are a major organ site of cytomegalovirus (CMV) infection, pathogenesis, and latency. Interstitial CMV pneumonia represents a critical manifestation of CMV disease, in particular in recipients of bone marrow transplantation (BMT). We have employed a murine model for studying the immune response to CMV in the lungs in the specific scenario of immune reconstitution after syngeneic BMT. Control of pulmonary infection was associated with a vigorous infiltration of the lungs, which was characterized by a preferential recruitment and massive expansion of the CD8 subset of α/β T cells. The infiltrate provided a microenvironment in which the CD8 T cells differentiated into mature effector cells, that is, into functionally active cytolytic T lymphocytes (CTL). This gave us the opportunity for an ex vivo testing of the antigen specificities of CTL present at a relevant organ site of viral pathogenesis. The contribution of the previously identified immediate-early 1 (IE1) nonapeptide of murine CMV was evaluated by comparison with the CD3ɛ-redirected cytolytic activity used as a measure of the overall CTL response in the lungs. The IE1 peptide was detected by pulmonary CTL, but it accounted for a minor part of the response. Interestingly, no additional viral or virus-induced antigenic peptides were detectable among naturally processed peptides derived from infected lungs, even though infected fibroblasts were recognized in a major histocompatibility complex-restricted manner. We conclude that the antiviral pulmonary immune response is a collaborative function that involves many antigenic peptides, among which the IE1 peptide is immunodominant in a relative sense. PMID:9696814

  12. Urinary Dialkyl Phosphate Concentrations and Lung Function Parameters in Adolescents and Adults: Results from the Canadian Health Measures Survey

    PubMed Central

    Ye, Ming; Beach, Jeremy; Martin, Jonathan W.; Senthilselvan, Ambikaipakan

    2015-01-01

    Background: Epidemiological studies have reported associations between lung function parameters and organophosphate (OP) pesticide exposures in agricultural occupations, but to our knowledge associations have not been evaluated in general populations. Objectives: We examined associations between OP metabolite dialkyl phosphates (DAPs) and lung function using data from the Canadian Health Measures Survey (CHMS) Cycle 1. Methods: Forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV1), FEV1/FVC ratio, and forced expiratory flow between 25% and 75% of FVC (FEF25%–75%) were measured for 4,446 CHMS participants. Urinary concentrations of six DAP metabolites (DMP, DMTP, DMDTP, DEP, DETP, and DEDTP), smoking status, and other predictors of lung function were also measured in the CHMS-Cycle 1. Multiple linear regression analyses were used to examine the relationship between total DAP concentrations (ΣDAPs) and lung function in adolescents (12–19 years) and adults (20–79 years). Results: In adults, estimates from multiple regression analyses suggested that a 1-unit increase on natural logarithmic scale (171% increase on the original scale) in the creatinine-corrected urinary concentration (nanomoles per gram creatinine) of ΣDAP was associated with a 32.6-mL (95% CI: –57.2, –8.1) reduction in FVC, 32.6-mL (95% CI: –59.0, –6.3) reduction in FEV1, 0.2% (95% CI: –0.6, 0.2) reduction in FEV1/FVC ratio, and 53.1-mL/sec (95% CI: –113.9, 7.7) reduction in FEF25%–75%. In adolescents, associations between ΣDAP and FEV1 were closer to the null and positive for FVC, whereas associations with FEV1/FVC and FEF25%–75% were negative, as in adults. However, none of the associations were significant in adolescents. Conclusions: The negative association between ΣDAP and lung function in adult participants suggests a detrimental effect of OP pesticides on lung function in the adult general population. Further studies using prospective designs are

  13. Partial lung resection of supernumerary tracheal bronchus combined with pulmonary artery sling in an adult: report of a case.

    PubMed

    Miyazaki, Takuro; Yamasaki, Naoya; Tsuchiya, Tomoshi; Matsumoto, Keitaro; Hayashi, Hideyuki; Izumikawa, Koichi; Izumikawa, Kinichi; Nagayasu, Takeshi

    2015-03-01

    An adult case of pulmonary resection for repeated infections in a supernumerary tracheal bronchus combined with a pulmonary artery sling is reported. A 33-year-old woman with a pulmonary artery sling was referred for recurrent lung infections. Chest computed tomography showed the left pulmonary artery arising from the right pulmonary artery and coursing posterior to the trachea. The lung parenchyma connected to the tracheal bronchus showed dense opacity and traction bronchiectasis. Partial pulmonary resection was performed with an ultrasonically activated scalpel after the tracheal bronchus was auto-sutured. The patient's postoperative course was uneventful, and she is now in good condition. PMID:23852428

  14. Antibiotic Treatment Response of Chronic Lung Diseases of Adult Sheep in the United Kingdom Based upon Ultrasonographic Findings

    PubMed Central

    Scott, Phil

    2014-01-01

    Examination of the lungs of adult sheep with chronic respiratory diseases was readily achieved using both 5 MHz linear and sector scanners. Superficial lung abscesses in eight sheep appeared as anechoic areas containing multiple hyperechoic dots bordered distally by a broad hyperechoic capsule. Unilateral fibrinous pleurisy (2 sheep) appeared as an anechoic area containing a hyperechoic latticework. Ovine pulmonary adenocarcinoma (OPA) lesions appeared as sharply demarcated hypoechoic areas in the lung parenchyma initially in the cranioventral lung lobes (21 sheep) with lesions also present in the caudodorsal diaphragmatic lobe (11 sheep); abscesses and areas of calcification within the OPA tumour mass were also identified. Daily treatment with procaine penicillin for 30 consecutive days was successful in both sheep with unilateral fibrinous pleurisy and six sheep identified with superficial lung abscesses measuring 2–8 cm in diameter; only one of two sheep with more extensive lesions recovered. Auscultation of the chest failed to detect adventitious sounds in any of the ten sheep with lung abscesses; normal breath sounds were reduced over the area of fibrinous pleurisy; no pleuritic rubs were heard. Wheezes and crackles auscultated in some OPA cases and did not correlate well with lesions detected ultrasonographically. PMID:24977091

  15. Lung ultrasound for the diagnosis of pneumonia in adults: a systematic review and meta-analysis

    PubMed Central

    2014-01-01

    Background Guidelines do not currently recommend the use of lung ultrasound (LUS) as an alternative to chest X-ray (CXR) or chest computerized tomography (CT) scan for the diagnosis of pneumonia. We conducted a meta-analysis to summarize existing evidence of the diagnostic accuracy of LUS for pneumonia in adults. Methods We conducted a systematic search of published studies comparing the diagnostic accuracy of LUS against a referent CXR or chest CT scan and/or clinical criteria for pneumonia in adults aged ≥18 years. Eligible studies were required to have a CXR and/or chest CT scan at the time of evaluation. We manually extracted descriptive and quantitative information from eligible studies, and calculated pooled sensitivity and specificity using the Mantel-Haenszel method and pooled positive and negative likelihood ratios (LR) using the DerSimonian-Laird method. We assessed for heterogeneity using the Q and I2 statistics. Results Our initial search strategy yielded 2726 articles, of which 45 (1.7%) were manually selected for review and 10 (0.4%) were eligible for analyses. These 10 studies provided a combined sample size of 1172 participants. Six studies enrolled adult patients who were either hospitalized or admitted to Emergency Departments with suspicion of pneumonia and 4 studies enrolled critically-ill adult patients. LUS was performed by highly-skilled sonographers in seven studies, by trained physicians in two, and one did not mention level of training. All studies were conducted in high-income settings. LUS took a maximum of 13 minutes to conduct. Nine studies used a 3.5-5 MHz micro-convex transducer and one used a 5–9 MHz convex probe. Pooled sensitivity and specificity for the diagnosis of pneumonia using LUS were 94% (95% CI, 92%-96%) and 96% (94%-97%), respectively; pooled positive and negative LRs were 16.8 (7.7-37.0) and 0.07 (0.05-0.10), respectively; and, the area-under-the-ROC curve was 0.99 (0.98-0.99). Conclusions Our meta

  16. Complement-mediated neutrophil activation in sepsis- and trauma-related adult respiratory distress syndrome. Clarification with radioaerosol lung scans

    SciTech Connect

    Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.

    1987-01-01

    Complement-mediated neutrophil activation (CMNA) has been proposed as an important pathogenic mechanism causing acute microvascular lung injury in the adult respiratory distress syndrome (ARDS). To clarify the relationship between CMNA and evolving lung injury, we studied 26 patients with multiple trauma and sepsis within 24 hours of risk establishment for ARDS. Pulmonary alveolar-capillary permeability (PACP) was quantified as the clearance rate of a particulate radioaerosol. Seventeen patients (65%) had increased PACP (six developed ARDS) while nine (35%) had normal PACP (none developed ARDS; clearance rates of 3.4%/min and 1.5%/min, respectively). These patients, regardless of evidence of early lung injury, had elevated plasma C3adesArg levels and neutrophil chemotactic desensitization to C5a/C5adesArg. Plasma C3adesArg levels correlated weakly, but significantly, with PACP. Thus, CMNA may be a necessary, but not a sufficient, pathogenic mechanism in the evolution of ARDS.

  17. Murine mesenchymal stem cells transplanted to the central nervous system of neonatal versus adult mice exhibit distinct engraftment kinetics and express receptors that guide neuronal cell migration.

    PubMed

    Phinney, Donald G; Baddoo, Melody; Dutreil, Maria; Gaupp, Dina; Lai, Wen Tzu; Isakova, Iryna A

    2006-06-01

    Mesenchymal stem cells (MSCs) have demonstrated efficacy as cellular vectors for treating a variety of nervous system disorders. Nevertheless, few studies have quantified MSC engraftment levels or explored the mechanisms that promote their survival and migration in nervous tissue. In this study, we compared the engraftment kinetics and anatomical distribution of murine, male MSCs injected intracranially into neonatal versus adult female mice using a real-time PCR assay that targets the mouse SRY gene. These analyses revealed that MSCs exhibited low but equivalent engraftment levels in the central nervous system (CNS) of neonatal and adult transplant recipients at 12 days post-injection. However, MSC engraftment levels were significantly greater at 60 and 150 days post-transplantation in neonates as compared to adults. Despite these differences, engrafted MSCs were widely distributed along the neuraxis of the CNS in both transplant groups. Collectively, these data indicate that proliferation, but not engraftment and migration, of MSCs in brain are regulated by the host microenvironment. Using a genomics approach, we also identified MSC subpopulations that express neural adhesion proteins and receptors that regulate neuronal cell migration in brain, including cadherin 2, neurexin 1, ninjurin 1, neogenin 1, neuropilin 2, and roundabout homolog 1 and 4. Functional studies indicate these proteins confer cell adhesion and migration of MSCs in response to the appropriate chemoattractant. On the basis of these findings, we conclude that the unique molecular composition of MSC subpopulations imparts to them an inherent capacity to engraft and migrate in brain. These subpopulations may represent more potent cellular vectors for treating CNS disorders. PMID:16846379

  18. Impact of Long-Term Tiotropium Bromide Therapy on Annual Lung Function Decline in Adult Patients with Cystic Fibrosis

    PubMed Central

    Brandt, Claudia; Thronicke, Anja; Roehmel, Jobst F.; Krannich, Alexander; Staab, Doris; Schwarz, Carsten

    2016-01-01

    Background Chronic lung disease is the leading cause of death in patients with Cystic Fibrosis (CF) and is often treated with bronchodilators. It is not known whether long-term tiotropium bromide treatment may have a positive impact on lung function. Methods This retrospective cohort study estimated annual lung function decline utilizing longitudinal data for forced expiratory volume in 1 s (FEV1). Results A total of 160 adult patients with CF were analyzed. The subjects treated for 24 months with tiotropium bromide had a significantly slower decline of mean annual change of FEV1 (treated: -0.3±4.0%; control: -2.3±5.0%; p = 0.0130). In patients with FEV1 ≥70% predicted, long-term tiotropium bromide treatment was associated with greater improvements in annual lung function decline (FEV1 ≥70% predicted: treated: +0.5±4.7%; control: -4.0±6.3%; p = 0.0132; FEV1 50–69% predicted: treated: -0.5±4.4%; control: -0.8±3.8%; p = 0.7142; FEV1 ≤49% predicted: treated: -0.6±3.4%; control: -2.4±4.8%; p = 0.0898). Conclusion This study suggests that long-term tiotropium bromide treatment may be associated with reduced annual decline of FEV1 in patients with CF, particularly in adults with a mild degree of severity. PMID:27351829

  19. A randomized controlled evaluation of a psychosocial intervention in adults with chronic lung disease.

    PubMed

    Blake, R L; Vandiver, T A; Braun, S; Bertuso, D D; Straub, V

    1990-01-01

    The effect of a stress management program on morbidity and psychosocial and physical function in patients with chronic lung disease was assessed. Adults attending either a VA pulmonary clinic or university hospital pulmonary rehabilitation clinic who met criteria for obstructive or restrictive pulmonary disease were randomly assigned to receive the intervention or to a control group. The intervention was provided by a nurse and included one to three teaching sessions, reading material, audiotapes, and telephone follow-up. The program focused on stress management techniques such as cognitive restructuring, progressive relaxation, breathing exercises, and visual imagery. The 45 experimental subjects were similar to the 49 controls with respect to baseline characteristics. Experimental and control subjects had similar rates of mortality, hospital days, bed-disability days, restricted-activity days, and physician visits during the 12-month follow-up. There were no differences between the two groups in physical or psychosocial function at six months or in levels of stressful life changes, social supports, and self-esteem at six and 12 months. Intervention recipients had better function at 12 months, suggesting a possible benefit of the intervention. PMID:2227172

  20. Pharmacokinetics and Tolerability of Oral Sildenafil in Adults with Cystic Fibrosis Lung Disease

    PubMed Central

    Taylor-Cousar, JL; Wiley, C; Felton, LA; St Clair, C; Jones, M; Curran-Everett, D; Poch, K; Nichols, DP; Solomon, GM; Saavedra, MT; Accurso, FJ; Nick, JA

    2014-01-01

    Rationale Airway inflammation is central to cystic fibrosis (CF) pathophysiology. Pre-clinical models have shown that phosphodiesterase inhibitors (PDEi) like sildenafil have anti-inflammatory activity. PDEi have not been studied in CF subjects. Objectives We evaluated the pharmacokinetics, tolerability, and safety of sildenafil in subjects with CF. Sputum biomarkers were used to explore efficacy. Methods An open-label pilot study of oral sildenafil administration was conducted in adults with mild to moderate CF lung disease. Subjects received oral sildenafil 20 or 40 mg p.o. t.i.d. for 6 weeks. Measurements and Main Results Twenty subjects completed the study. Estimated elimination rate constants were statistically different in subjects with CF compared to previously published non-CF subjects. Side effects were generally mild. There were no drug-related serious adverse events. Sputum neutrophil elastase activity decreased. Conclusions Subjects with CF may eliminate sildenafil at a faster rate than non-CF subjects. Sildenafil administration was safe in subjects with CF, and decreased sputum elastase activity. Sildenafil warrants further study as an anti-inflammatory in CF. PMID:25466700

  1. Urinary thiocyanate concentrations are associated with adult cancer and lung problems: US NHANES, 2009-2012.

    PubMed

    Shiue, Ivy

    2015-04-01

    Links between environmental chemicals and human health have emerged but the effects from perchlorate, nitrate and thiocyanate were unclear. Therefore, it was aimed to study the relationships of urinary perchlorate, nitrate and thiocyanate concentrations and adult health conditions in a national and population-based study. Data was retrieved from US National Health and Nutrition Examination Surveys, 2009-2012, including demographics, blood pressure readings, self-reported health conditions and urinary perchlorate, nitrate and thiocyanate concentrations. Analyses included chi-square test, t test survey-weighted logistic regression models and population attributable risk estimation. There were no clear associations between urinary perchlorate concentrations and adult health conditions, although people with hearing loss and diabetes could be at the borderline risk. Urinary thiocyanate concentrations were significantly associated with emphysema (odds ratio (OR) 2.70 95% confidence intervals (CI) 1.91-3.82, P < 0.001), cancer (OR 1.21 95%CI 1.06-1.39, P = 0.008), chronic bronchitis (OR 1.23 95%CI 1.10-1.52, P = 0.003), wheezing (OR 1.24 95%CI 1.05-1.46, P = 0.011), coughing (OR 1.19 95%CI 1.03-1.37, P = 0.018) and sleep complaints (OR 1.14 95%CI 1.02-1.26, P = 0.019). The population attributable risks accounted for 3.3% (1.8-5.3%), 1.9% (0.6-3.5%), 1.2% (0.5-2.6%), 2.2% (0.5-4.1%), 1.8% (0.3-6.2%) and 1.3% (0.2-2.4%) for emphysema, cancer, chronic bronchitis, wheezing, coughing and sleep complaints, respectively. In addition, there was an inverse association observed between urinary nitrate level and heart failure. This is for the first time observing significant risk effects of urinary thiocyanate concentrations on adult cancer and lung problems, although the causality cannot be established. Elimination of such environmental chemical in humans should be included in future health policy and intervention programs. PMID:25367645

  2. Liver and lung transplantation in cystic fibrosis: an adult cystic fibrosis centre's experience.

    PubMed

    Sivam, S; Al-Hindawi, Y; Di Michiel, J; Moriarty, C; Spratt, P; Jansz, P; Malouf, M; Plit, M; Pleass, H; Havryk, A; Bowen, D; Haber, P; Glanville, A R; Bye, P T P

    2016-07-01

    Liver disease develops in one-third of patients with cystic fibrosis (CF). It is rare for liver disease to have its onset after 20 years of age. Lung disease, however, is usually more severe in adulthood. A retrospective analysis was performed on nine patients. Three patients required lung transplantation approximately a decade after liver transplant, and another underwent combined liver and lung transplants. Four additional patients with liver transplants are awaiting assessment for lung transplants. One patient is awaiting combined liver and lung transplants. With increased survival in CF, several patients may require more than single organ transplantation. PMID:27405894

  3. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis

    PubMed Central

    Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J.; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L.; Künzli, Nino; Probst-Hensch, Nicole

    2015-01-01

    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m−3 increase in NO2 exposure was associated with lower levels of FEV1 (−14.0 mL, 95% CI −25.8 to −2.1) and FVC (−14.9 mL, 95% CI −28.7 to −1.1). An increase of 10 μg·m−3 in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (−44.6 mL, 95% CI −85.4 to −3.8) and FVC (−59.0 mL, 95% CI −112.3 to −5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. PMID:25193994

  4. Inhaled hypertonic saline in adults hospitalised for exacerbation of cystic fibrosis lung disease: a retrospective study

    PubMed Central

    Stoltz, David A; Hornick, Douglas B; Durairaj, Lakshmi

    2012-01-01

    Background Inhaled hypertonic saline (HTS) improves quality of life and reduces pulmonary exacerbations when given long term in patients with cystic fibrosis (CF). While increasingly being offered for acute pulmonary exacerbations, little is known about the efficacy in this setting. Objectives The authors examined the tolerability and efficacy of HTS use among adult subjects hospitalised with a CF pulmonary exacerbation and hypothesised that use of HTS would improve pulmonary function during the admission. Design Pilot retrospective non-randomised study. Setting Single tertiary care centre. Participants 45 subjects admitted to the inpatient service for acute CF pulmonary exacerbation in 2006–2007. A subset of 18 subjects who were also admitted in 2005 when HTS was not available was included in the comparative study. Primary outcome Change in forced expiratory volume in one second from admission to discharge. Secondary outcomes Change in weight from admission to discharge and time to next exacerbation. Results Mean age was 32.5 years, and mean length of stay was 11.5 days. HTS was offered to 33 subjects and was well tolerated for a total use of 336 days out of 364 days of hospital stay. Baseline demographics, lung function and sputum culture results were comparable in first and second visits. Use of HTS was not associated with an improvement in forced expiratory volume in one second (p=0.1), weight gain (p=0.24) or in the time to next admission (p=0.08). Conclusions These pilot data suggest that HTS is well tolerated during CF pulmonary exacerbation but offers no clear outcome benefits. It is possible that HTS may not have much advantage above and beyond intensive rehabilitation and intravenous antibiotics and may add to hospital costs and treatment burden. PMID:22517980

  5. Clinical and laboratory correlates of lung disease and cancer in adults with idiopathic hypogammaglobulinaemia.

    PubMed

    Brent, J; Guzman, D; Bangs, C; Grimbacher, B; Fayolle, C; Huissoon, A; Bethune, C; Thomas, M; Patel, S; Jolles, S; Alachkar, H; Kumaratne, D; Baxendale, H; Edgar, J D; Helbert, M; Hambleton, S; Arkwright, P D

    2016-04-01

    Idiopathic hypogammaglobulinaemia, including common variable immune deficiency (CVID), has a heterogeneous clinical phenotype. This study used data from the national UK Primary Immune Deficiency (UKPID) registry to examine factors associated with adverse outcomes, particularly lung damage and malignancy. A total of 801 adults labelled with idiopathic hypogammaglobulinaemia and CVID aged 18-96 years from 10 UK cities were recruited using the UKPID registry database. Clinical and laboratory data (leucocyte numbers and serum immunoglobulin concentrations) were collated and analysed using uni- and multivariate statistics. Low serum immunoglobulin (Ig)G pre-immunoglobulin replacement therapy was the key factor associated with lower respiratory tract infections (LRTI) and history of LRTI was the main factor associated with bronchiectasis. History of overt LRTI was also associated with a significantly shorter delay in diagnosis and commencing immunoglobulin replacement therapy [5 (range 1-13 years) versus 9 (range 2-24) years]. Patients with bronchiectasis started immunoglobulin replacement therapy significantly later than those without this complication [7 (range 2-22) years versus 5 (range 1-13) years]. Patients with a history of LRTI had higher serum IgG concentrations on therapy and were twice as likely to be on prophylactic antibiotics. Ensuring prompt commencement of immunoglobulin therapy in patients with idiopathic hypogammaglobulinaemia is likely to help prevent LRTI and subsequent bronchiectasis. Cancer was the only factor associated with mortality. Overt cancer, both haematological and non-haematological, was associated with significantly lower absolute CD8(+) T cell but not natural killer (NK) cell numbers, raising the question as to what extent immune senescence, particularly of CD8(+) T cells, might contribute to the increased risk of cancers as individuals age. PMID:26646609

  6. Large-Scale Genome-Wide Association Studies and Meta-Analyses of Longitudinal Change in Adult Lung Function

    PubMed Central

    Tang, Wenbo; Kowgier, Matthew; Loth, Daan W.; Soler Artigas, María; Joubert, Bonnie R.; Hodge, Emily; Gharib, Sina A.; Smith, Albert V.; Ruczinski, Ingo; Gudnason, Vilmundur; Mathias, Rasika A.; Harris, Tamara B.; Hansel, Nadia N.; Launer, Lenore J.; Barnes, Kathleen C.; Hansen, Joyanna G.; Albrecht, Eva; Aldrich, Melinda C.; Allerhand, Michael; Barr, R. Graham; Brusselle, Guy G.; Couper, David J.; Curjuric, Ivan; Davies, Gail; Deary, Ian J.; Dupuis, Josée; Fall, Tove; Foy, Millennia; Franceschini, Nora; Gao, Wei; Gläser, Sven; Gu, Xiangjun; Hancock, Dana B.; Heinrich, Joachim; Hofman, Albert; Imboden, Medea; Ingelsson, Erik; James, Alan; Karrasch, Stefan; Koch, Beate; Kritchevsky, Stephen B.; Kumar, Ashish; Lahousse, Lies; Li, Guo; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Lohman, Kurt; Lumley, Thomas; McArdle, Wendy L.; Meibohm, Bernd; Morris, Andrew P.; Morrison, Alanna C.; Musk, Bill; North, Kari E.; Palmer, Lyle J.; Probst-Hensch, Nicole M.; Psaty, Bruce M.; Rivadeneira, Fernando; Rotter, Jerome I.; Schulz, Holger; Smith, Lewis J.; Sood, Akshay; Starr, John M.; Strachan, David P.; Teumer, Alexander; Uitterlinden, André G.; Völzke, Henry; Voorman, Arend; Wain, Louise V.; Wells, Martin T.; Wilk, Jemma B.; Williams, O. Dale; Heckbert, Susan R.; Stricker, Bruno H.; London, Stephanie J.; Fornage, Myriam; Tobin, Martin D.; O′Connor, George T.; Hall, Ian P.; Cassano, Patricia A.

    2014-01-01

    Background Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. Methods We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. Results The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10-7). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10-8) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. Conclusions In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function. PMID:24983941

  7. Childhood Interstitial Lung Disease

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Childhood Interstitial Lung Disease? Childhood interstitial (in-ter-STISH-al) lung disease, ... with similar symptoms—it's not a precise diagnosis. Interstitial lung disease (ILD) also occurs in adults. However, the cause ...

  8. Hyperpolarized Gas Magnetic Resonance Lung Imaging in Children and Young Adults.

    PubMed

    Flors, Lucia; Mugler, John P; de Lange, Eduard E; Miller, Grady W; Mata, Jaime F; Tustison, Nick; Ruset, Iulian C; Hersman, F William; Altes, Talissa A

    2016-09-01

    The assessment of early pulmonary disease and its severity can be difficult in young children, as procedures such as spirometry cannot be performed on them. Computed tomography provides detailed structural images of the pulmonary parenchyma, but its major drawback is that the patient is exposed to ionizing radiation. In this context, magnetic resonance imaging (MRI) is a promising technique for the evaluation of pediatric lung disease, especially when serial imaging is needed. Traditionally, MRI played a small role in evaluating the pulmonary parenchyma. Because of its low proton density, the lungs display low signal intensity on conventional proton-based MRI. Hyperpolarized (HP) gases are inhaled contrast agents with an excellent safety profile and provide high signal within the lung, allowing for high temporal and spatial resolution imaging of the lung airspaces. Besides morphologic information, HP MR images also offer valuable information about pulmonary physiology. HP gas MRI has already made new contributions to the understanding of pediatric lung diseases and may become a clinically useful tool. In this article, we discuss the HP gas MRI technique, special considerations that need to be made when imaging children, and the role of MRI in 2 of the most common chronic pediatric lung diseases, asthma and cystic fibrosis. We also will discuss how HP gas MRI may be used to evaluate normal lung growth and development and the alterations occurring in chronic lung disease of prematurity and in patients with a congenital diaphragmatic hernia. PMID:27428024

  9. Transfer factor, lung volumes, resistance and ventilation distribution in healthy adults.

    PubMed

    Verbanck, Sylvia; Van Muylem, Alain; Schuermans, Daniel; Bautmans, Ivan; Thompson, Bruce; Vincken, Walter

    2016-01-01

    Monitoring of chronic lung disease requires reference values of lung function indices, including putative markers of small airway function, spanning a wide age range.We measured spirometry, transfer factor of the lung for carbon monoxide (TLCO), static lung volume, resistance and ventilation distribution in a healthy population, studying at least 20 subjects per sex and per decade between the ages of 20 and 80 years.With respect to the Global Lung Function Initiative reference data, our subjects had average z-scores for forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC of -0.12, 0.04 and -0.32, respectively. Reference equations were obtained which could account for a potential dependence of index variability on age and height. This was done for (but not limited to) indices that are pertinent to asthma and chronic obstructive pulmonary disease studies: forced expired volume in 6 s, forced expiratory flow, TLCO, specific airway conductance, residual volume (RV)/total lung capacity (TLC), and ventilation heterogeneity in acinar and conductive lung zones.Deterioration in acinar ventilation heterogeneity and lung clearance index with age were more marked beyond 60 years, and conductive ventilation heterogeneity showed the greatest increase in variability with age. The most clinically relevant deviation from published reference values concerned RV/TLC values, which were considerably smaller than American Thoracic Society/European Respiratory Society-endorsed reference values. PMID:26585426

  10. Ambiguous response of lung lamellar bodies to sauna-like heat stress in two age groups of adult male rats.

    PubMed

    Heino, M E

    1980-06-01

    Two groups of adult male rats, aged 2.5 and 5 months, were exposed daily for 12 min to 65 degrees C for five successive periods a week for 6 weeks. Both age groups, and in particular the young one, repeatedly suffered from exhausting heat stress. Lung specimens from cardiac lobes were prepared for light- and electron-microscopy. A significnat increase was noted in the lung lamellar body number in the old test rats, on comparison with old ones employed as controls (p < 0.05). The young group was unresponsive. Consequently, stress induced by increased sympathetic activity is not always a direct stimulus, as had been thought earlier. It seems, at least where heat stress is concerned, that it is the age, weight, and systemic reactions which exercise a great influence upon lamellar body production, and may even overrule the role of sympathetic activity. PMID:7417113

  11. Primitive neuroectodermal tumor of lungs in adults: a rare series of three cases treated with upfront chemo-radiation

    PubMed Central

    Pathak, Abhishek; Sharma, Neelam; Viswanath, Sundaram; Dutta, Vibha

    2016-01-01

    Primitive neuroectodermal tumors (PNETs) are highly malignant small round blue cell tumors of neuroectodermal origin belonging to either central nervous system, autonomic nervous system or peripheral Askin’s or Ewing’s group of neoplasms. The latter generally arise in soft tissues of trunk or axial skeleton in children and early adolescents. However in adults this entity is very uncommon. Of all peripheral entities, primary PNET of lungs without chest wall or pleural involvement in adults are extremely rare and have been scarcely reported in world literature as single case reports. We hereby report a series of three interesting cases of adult PNET of lung diagnosed and treated in our institute. The chief presenting complaints of these patients were of chest pain, cough and dyspnea. The cases were diagnosed on the basis of imaging and biopsy which confirmed these lesions to be of PNET histology, confirmed by immunopositivity for neuron specific enolase (NSE), synaptophysin, chromogranin, CD 99 and vimentin on immunohistochemistry (IHC). All three were deemed unresectable in view of infiltration of nearby vital organs and high chances of morbidity. They were treated with upfront chemotherapy followed by conformal radiotherapy (RT) to the residual disease to which they showed significant response both clinically and radiologically. Presently these patients are on regular follow-up for over 6 months without any evidence of progression of disease or distant metastasis. PMID:27413716

  12. Combustion derived ultrafine particles induce cytochrome P-450 expression in specific lung compartments in the developing neonatal and adult rat

    PubMed Central

    Chan, Jackie K. W.; Vogel, Christoph F.; Baek, Jaeeun; Kodani, Sean D.; Uppal, Ravi S.; Bein, Keith J.; Anderson, Donald S.

    2013-01-01

    Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM. PMID:23502512

  13. An integrated model of environmental factors in adult asthma lung function and disease severity: a cross-sectional study

    PubMed Central

    2010-01-01

    Background Diverse environmental exposures, studied separately, have been linked to health outcomes in adult asthma, but integrated multi-factorial effects have not been modeled. We sought to evaluate the contribution of combined social and physical environmental exposures to adult asthma lung function and disease severity. Methods Data on 176 subjects with asthma and/or rhinitis were collected via telephone interviews for sociodemographic factors and asthma severity (scored on a 0-28 point range). Dust, indoor air quality, antigen-specific IgE antibodies, and lung function (percent predicted FEV1) were assessed through home visits. Neighborhood socioeconomic status, proximity to traffic, land use, and ambient air quality data were linked to the individual-level data via residential geocoding. Multiple linear regression separately tested the explanatory power of five groups of environmental factors for the outcomes, percent predicted FEV1 and asthma severity. Final models retained all variables statistically associated (p < 0.20) with each of the two outcomes. Results Mean FEV1 was 85.0 ± 18.6%; mean asthma severity score was 6.9 ± 5.6. Of 29 variables screened, 13 were retained in the final model of FEV1 (R2 = 0.30; p < 0.001) and 15 for severity (R2 = 0.16; p < 0.001), including factors from each of the five groups. Adding FEV1 as an independent variable to the severity model further increased its explanatory power (R2 = 0.25). Conclusions Multivariate models covering a range of individual and environmental factors explained nearly a third of FEV1 variability and, taking into account lung function, one quarter of variability in asthma severity. These data support an integrated approach to modeling adult asthma outcomes, including both the physical and the social environment. PMID:20487557

  14. VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung.

    PubMed

    Healy, A M; Morgenthau, L; Zhu, X; Farber, H W; Cardoso, W V

    2000-11-01

    We used whole lung cultures as a model to study blood vessel formation in vitro and to examine the role that epithelial-mesenchymal interactions play during embryonic pulmonary vascular development. Mouse lungs were isolated at embryonic day 11.5 (E11.5) and cultured for up to 4 days prior to blood vessel analysis. Platelet endothelial cell adhesion molecule-1 (PECAM/CD31) and thrombomodulin (TM/CD141) immunolocalization demonstrate that vascular development occurs in lung cultures. The vascular structures identified in lung cultures first appear as a loosely associated plexus of capillary-like structures that with time surround the airways. To investigate the potential role of vascular endothelial cell growth factor (VEGF) during pulmonary neovascularization, we immunolocalized VEGF in embryonic lungs. Our data demonstrate that VEGF is uniformly present in the airway epithelium and the subepithelial matrix of E11.5 lungs. At later time points, E13.5 and E15.5, VEGF is no longer detected in the proximal airways, but is restricted to the branching tips of airways in the distal lung. RT-PCR analysis reveals that VEGF(164) is the predominant isoform expressed in lung cultures. Grafting heparin-bound VEGF(164) beads onto lung explants locally stimulates a marked neovascular response within 48 hr in culture. Semi-quantitative RT-PCR reveals an 18% increase in PECAM mRNA in VEGF(164)-treated whole lung cultures as compared with untreated cultures. The restricted temporal and spatial expression of VEGF suggests that matrix-associated VEGF links airway branching with blood vessel formation by stimulating neovascularization at the leading edge of branching airways. PMID:11066091

  15. CD4+CD25+FoxP3+ Regulatory Tregs inhibit fibrocyte recruitment and fibrosis via suppression of FGF-9 production in the TGF-β1 exposed murine lung

    PubMed Central

    Peng, Xueyan; Moore, Meagan W.; Peng, Hong; Sun, Huanxing; Gan, Ye; Homer, Robert J.; Herzog, Erica L.

    2014-01-01

    Pulmonary fibrosis is a difficult to treat, often fatal disease whose pathogenesis involves dysregulated TGF-β1 signaling. CD4+CD25+FoxP3+ Regulatory T cells (“Tregs”) exert important effects on host tolerance and arise from naïve CD4+ lymphocytes in response to TGF-β1. However, the precise contribution of Tregs to experimentally induced murine lung fibrosis remains unclear. We sought to better understand the role of Tregs in this context. Using a model of fibrosis caused by lung specific, doxycycline inducible overexpression of the bioactive form of the human TGF-β1 gene we find that Tregs accumulate in the lung parenchyma within 5 days of transgene activation and that this enhancement persists to at least 14 days. Anti-CD25 Antibody mediated depletion of Tregs causes increased accumulation of soluble collagen and of intrapulmonary CD45+Col Iα1 fibrocytes. These effects are accompanied by enhanced local concentrations of the classical inflammatory mediators CD40L, TNF-α, and IL-1α, along with the neuroimmune molecule fibroblast growth factor 9 (FGF-9, also known as “glial activating factor”). FGF-9 expression localizes to parenchymal cells and alveolar macrophages in this model and antibody mediated neutralization of FGF-9 results in attenuated detection of intrapulmonary collagen and fibrocytes without affecting Treg quantities. These data indicate that CD4+CD25+FoxP3+ Tregs attenuate TGF-β1 induced lung fibrosis and fibrocyte accumulation in part via suppression of FGF-9. PMID:24904415

  16. Humidification of base flow gas during adult high-frequency oscillatory ventilation: an experimental study using a lung model.

    PubMed

    Shiba, Naoki; Nagano, Osamu; Hirayama, Takahiro; Ichiba, Shingo; Ujike, Yoshihito

    2012-01-01

    In adult high-frequency oscillatory ventilation (HFOV) with an R100 artificial ventilator, exhaled gas from patient's lung may warm the temperature probe and thereby disturb the humidification of base flow (BF) gas. We measured the humidity of BF gas during HFOV with frequencies of 6, 8 and 10 Hz, maximum stroke volumes (SV) of 285, 205, and 160 ml at the respective frequencies, and, BFs of 20, 30, 40 l/min using an original lung model. The R100 device was equipped with a heated humidifier, Hummax Ⅱ, consisting of a porous hollow fiber in circuit. A 50-cm length of circuit was added between temperature probe (located at 50 cm proximal from Y-piece) and the hollow fiber. The lung model was made of a plastic container and a circuit equipped with another Hummax Ⅱ. The lung model temperature was controlled at 37℃. The Hummax Ⅱ of the R100 was inactivated in study-1 and was set at 35℃ or 37℃ in study-2. The humidity was measured at the distal end of the added circuit in study-1 and at the proximal end in study-2. In study-1, humidity was detected at 6 Hz (SV 285 ml) and BF 20 l/min, indicating the direct reach of the exhaled gas from the lung model to the temperature probe. In study-2 the absolute humidity of the BF gas decreased by increasing SV and by increasing BF and it was low with setting of 35℃. In this study setting, increasing the SV induced significant reduction of humidification of the BF gas during HFOV with R100. PMID:22918206

  17. Loss of extracellular superoxide dismutase leads to acute lung damage in the presence of ambient air: a potential mechanism underlying adult respiratory distress syndrome.

    PubMed

    Gongora, Maria Carolina; Lob, Heinrich E; Landmesser, Ulf; Guzik, Tomasz J; Martin, W David; Ozumi, Kiyoski; Wall, Susan M; Wilson, David Scott; Murthy, Niren; Gravanis, Michael; Fukai, Tohru; Harrison, David G

    2008-10-01

    The extracellular superoxide dismutase 3 (SOD3) is highly expressed in both blood vessels and lungs. In different models of pulmonary injury, SOD3 is reduced; however, it is unclear whether this contributes to lung injury. To study the role of acute SOD3 reduction in lung injury, the SOD3 gene was deleted in adult mice by using the Cre-Lox technology. Acute reduction of SOD3 led to a fivefold increase in lung superoxide, marked inflammatory cell infiltration, a threefold increase in the arterial-alveolar gradient, respiratory acidosis, histological changes similar to those observed in adult respiratory distress syndrome, and 85% mortality. Treatment with the SOD mimetic MnTBAP and intranasal administration of SOD-containing polyketal microparticles reduced mortality, prevented the histological alterations, and reduced lung superoxide levels. To understand how mice with the SOD3 embryonic deletion survived without lung injury, gene array analysis was performed. These data demonstrated the up-regulation of 37 genes and down-regulation of nine genes, including those involved in cell signaling, inflammation, and gene transcription in SOD3-/- mice compared with either mice with acute SOD3 reduction or wild-type controls. These studies show that SOD3 is essential for survival in the presence of ambient oxygen and that acute loss of this enzyme can lead to severe lung damage. Strategies either to prevent SOD3 inactivation or to augment its levels might prove useful in the treatment of acute lung injury. PMID:18787098

  18. Retinoid Homeostatic Gene Expression in Liver, Lung and Kidney: Ontogeny and Response to Vitamin A-Retinoic Acid (VARA) Supplementation from Birth to Adult Age

    PubMed Central

    Owusu, Sarah A.; Ross, A. Catharine

    2016-01-01

    Vitamin A (VA, retinol) metabolism is homeostatically controlled, but little is known of its regulation in the postnatal period. Here, we determined the postnatal trajectory of VA storage and metabolism in major compartments of VA metabolism–plasma, liver, lung, and kidney from postnatal (P) day 1 to adulthood. We also investigated the response to supplementation with VARA, a combination of VA and 10% all-trans-retinoic acid that previously was shown to synergistically increase retinol uptake and storage in lung. Nursling pups of dams fed a VA-marginal diet received an oral dose of oil (placebo) or VARA on each of four neonatal days: P1, P4, P7, and P10; and again as adults. Tissues were collected 6 h after the final dosing on P1, P4, P10, and at adult age. Gene transcripts for Lrat and Rbp4 in liver and Raldh-1 and Raldh-3 in lung, did not differ in the neonatal period but were higher, P<0.05, in adults, while Cyp26B1, Stra6, megalin, and Raldh-2 in lung did not differ from perinatal to adult ages. VARA supplementation increased total retinol in plasma, liver and lung, with a dose-by-dose accumulation in neonatal liver and lung, while transcripts for Lrat in liver, megalin in kidney, Cyp26A1/B1 in liver and lung, respectively, and Stra6 in lung, were all increased, suggesting pathways of VA uptake, storage and RA oxidation were each augmented after VARA. VARA decreased hepatic expression of Rbp4, responsible for VA trafficking from liver to plasma, and, in lung, of Raldh-1 and Raldh-2, which function in RA production. Our results define retinoid homeostatic gene expression from neonatal and adult age and show that while supplementation with VARA acutely alters retinol content and retinoid homeostatic gene expression in neonatal and adult lung, liver and kidney, VARA supplementation of neonates increased adult-age VA content only in the liver. PMID:26731668

  19. Retinoid Homeostatic Gene Expression in Liver, Lung and Kidney: Ontogeny and Response to Vitamin A-Retinoic Acid (VARA) Supplementation from Birth to Adult Age.

    PubMed

    Owusu, Sarah A; Ross, A Catharine

    2016-01-01

    Vitamin A (VA, retinol) metabolism is homeostatically controlled, but little is known of its regulation in the postnatal period. Here, we determined the postnatal trajectory of VA storage and metabolism in major compartments of VA metabolism-plasma, liver, lung, and kidney from postnatal (P) day 1 to adulthood. We also investigated the response to supplementation with VARA, a combination of VA and 10% all-trans-retinoic acid that previously was shown to synergistically increase retinol uptake and storage in lung. Nursling pups of dams fed a VA-marginal diet received an oral dose of oil (placebo) or VARA on each of four neonatal days: P1, P4, P7, and P10; and again as adults. Tissues were collected 6 h after the final dosing on P1, P4, P10, and at adult age. Gene transcripts for Lrat and Rbp4 in liver and Raldh-1 and Raldh-3 in lung, did not differ in the neonatal period but were higher, P<0.05, in adults, while Cyp26B1, Stra6, megalin, and Raldh-2 in lung did not differ from perinatal to adult ages. VARA supplementation increased total retinol in plasma, liver and lung, with a dose-by-dose accumulation in neonatal liver and lung, while transcripts for Lrat in liver, megalin in kidney, Cyp26A1/B1 in liver and lung, respectively, and Stra6 in lung, were all increased, suggesting pathways of VA uptake, storage and RA oxidation were each augmented after VARA. VARA decreased hepatic expression of Rbp4, responsible for VA trafficking from liver to plasma, and, in lung, of Raldh-1 and Raldh-2, which function in RA production. Our results define retinoid homeostatic gene expression from neonatal and adult age and show that while supplementation with VARA acutely alters retinol content and retinoid homeostatic gene expression in neonatal and adult lung, liver and kidney, VARA supplementation of neonates increased adult-age VA content only in the liver. PMID:26731668

  20. Brain Derived Neurotrophic Factor Contributes to the Cardiogenic Potential of Adult Resident Progenitor Cells in Failing Murine Heart

    PubMed Central

    Samal, Rasmita; Ameling, Sabine; Dhople, Vishnu; Sappa, Praveen Kumar; Wenzel, Kristin; Völker, Uwe; Felix, Stephan B.; Hammer, Elke; Könemann, Stephanie

    2015-01-01

    Aims Resident cardiac progenitor cells show homing properties when injected into the injured but not to the healthy myocardium. The molecular background behind this difference in behavior needs to be studied to elucidate how adult progenitor cells can restore cardiac function of the damaged myocardium. Since the brain derived neurotrophic factor (BDNF) moderates cardioprotection in injured hearts, we focused on delineating its regulatory role in the damaged myocardium. Methods and Results Comparative gene expression profiling of freshly isolated undifferentiated Sca-1 progenitor cells derived either from heart failure transgenic αMHC-CyclinT1/Gαq overexpressing mice or wildtype littermates revealed transcriptional variations. Bdnf expression was up regulated 5-fold during heart failure which was verified by qRT-PCR and confirmed at protein level. The migratory capacity of Sca-1 cells from transgenic hearts was improved by 15% in the presence of 25ng/ml BDNF. Furthermore, BDNF-mediated effects on Sca-1 cells were studied via pulsed Stable Isotope Labeling of Amino acids in Cell Culture (pSILAC) proteomics approach. After BDNF treatment significant differences between newly synthesized proteins in Sca-1 cells from control and transgenic hearts were observed for CDK1, SRRT, HDGF, and MAP2K3 which are known to regulate cell cycle, survival and differentiation. Moreover BDNF repressed the proliferation of Sca-1 cells from transgenic hearts. Conclusion Comparative profiling of resident Sca-1 cells revealed elevated BDNF levels in the failing heart. Exogenous BDNF (i) stimulated migration, which might improve the homing ability of Sca-1 cells derived from the failing heart and (ii) repressed the cell cycle progression suggesting its potency to ameliorate heart failure. PMID:25799225

  1. The Oxygen Environment at Birth Specifies the Population of Alveolar Epithelial Stem Cells in the Adult Lung.

    PubMed

    Yee, Min; Gelein, Robert; Mariani, Thomas J; Lawrence, B Paige; O'Reilly, Michael A

    2016-05-01

    Alveolar epithelial type II cells (AEC2) maintain pulmonary homeostasis by producing surfactant, expressing innate immune molecules, and functioning as adult progenitor cells for themselves and alveolar epithelial type I cells (AEC1). How the proper number of alveolar epithelial cells is determined in the adult lung is not well understood. Here, BrdU labeling, genetic lineage tracing, and targeted expression of the anti-oxidant extracellular superoxide dismutase in AEC2s are used to show how the oxygen environment at birth influences postnatal expansion of AEC2s and AEC1s in mice. Birth into low (12%) or high (≥60%) oxygen stimulated expansion of AEC2s through self-renewal and differentiation of the airway Scgb1a1 + lineage. This non-linear or hormesis response to oxygen was specific for the alveolar epithelium because low oxygen stimulated and high oxygen inhibited angiogenesis as defined by changes in V-cadherin and PECAM (CD31). Although genetic lineage tracing studies confirmed adult AEC2s are stem cells for AEC1s, we found no evidence that postnatal growth of AEC1s were derived from self-renewing Sftpc + or the Scbg1a1 + lineage of AEC2s. Taken together, our results show how a non-linear response to oxygen at birth promotes expansion of AEC2s through two distinct lineages. Since neither lineage contributes to the postnatal expansion of AEC1s, the ability of AEC2s to function as stem cells for AEC1s appears to be restricted to the adult lung. Stem Cells 2016;34:1396-1406. PMID:26891117

  2. Report of the National Heart, Lung, and Blood Institute Working Group on research in adult congenital heart disease.

    PubMed

    Williams, Roberta G; Pearson, Gail D; Barst, Robyn J; Child, John S; del Nido, Pedro; Gersony, Welton M; Kuehl, Karen S; Landzberg, Michael J; Myerson, Merle; Neish, Steven R; Sahn, David J; Verstappen, Amy; Warnes, Carole A; Webb, Catherine L

    2006-02-21

    The Working Group on research in adult congenital heart disease (ACHD) was convened in September 2004 under the sponsorship of National Heart, Lung, and Blood Institute (NHLBI) and the Office of Rare Diseases, National Institutes of Health, Department of Health and Human Services, to make recommendations on research needs. The purpose of the Working Group was to advise the NHLBI on the current state of the science in ACHD and barriers to optimal clinical care, and to make specific recommendations for overcoming those barriers. The members of the Working Group were chosen to provide expert input on a broad range of research issues from both scientific and lay perspectives. The Working Group reviewed data on the epidemiology of ACHD, long-term outcomes of complex cardiovascular malformations, issues in assessing morphology and function with current imaging techniques, surgical and catheter-based interventions, management of related conditions including pregnancy and arrhythmias, quality of life, and informatics. After research and training barriers were discussed, the Working Group recommended outreach and educational programs for adults with congenital heart disease, a network of specialized adult congenital heart disease regional centers, technology development to support advances in imaging and modeling of abnormal structure and function, and a consensus on appropriate training for physicians to provide care for adults with congenital heart disease. PMID:16487831

  3. Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury

    PubMed Central

    Ávila, Leonardo C. M.; Bruggemann, Thayse R.; Bobinski, Franciane; da Silva, Morgana Duarte; Oliveira, Regiane Carvalho; Martins, Daniel Fernandes; Mazzardo-Martins, Leidiane; Duarte, Marta Maria Medeiros Frescura; de Souza, Luiz Felipe; Dafre, Alcir; Vieira, Rodolfo de Paula; Santos, Adair Roberto Soares; Bonorino, Kelly Cattelan; Hizume Kunzler, Deborah de C.

    2015-01-01

    Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL—10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (p<0.001), neutrophils and lymphocytes (p<0.001; p<0.05) in the BALF, as well as lung levels of IL-1β (p = 0.002), TNF-α (p = 0.003), IL-6 (p = 0.0001) and IFN-ϫ (p = 0.0001). However, the levels of IL-10 (p = 0.01) and IL-1ra (p = 0.0002) increased in the swimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and p<0.002). We concluded that in this experimental model, the high-intensity swimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung

  4. Effects of lumbopelvic sling and abdominal drawing-in exercises on lung capacity in healthy adults

    PubMed Central

    Kim, Myoung-Kwon; Cha, Hyun-Gyu; Shin, Young-Jun

    2016-01-01

    [Purpose] To examine the effects of lumbopelvic sling and abdominal drawing-in exercises on the lung capacities of healthy subjects. [Subjects and Methods] Twenty-nine healthy subjects with no orthopedic history of the back were recruited. Subjects were randomly assigned to a experimental group and control group. Subjects were allocated to one of two groups; an experimental group that underwent lumbopelvic sling and abdominal drawing-in exercises and a control group that underwent treadmill and abdominal drawing-in exercises. Lung capacities were evaluated 4 weeks after exercises. [Results] The experimental group showed significant increments in EV, ERV, IRV, VT vs. pre-intervention results, and the control group showed significant increments in the EVC and IRV. Significant intergroup differences were observed in terms of post-training gains in EVC, IRV, and VT. [Conclusion] Combined application of lumbopelvic sling and abdominal drawing-in exercises were found to have a positive effect on lung capacity.

  5. Loss of p53 Attenuates the Contribution of IL-6 Deletion on Suppressed Tumor Progression and Extended Survival in Kras-Driven Murine Lung Cancer

    PubMed Central

    Chen, Zhao; Zhang, Jishuai; Wang, Yanxiao; Chen, Jicheng; Li, Xiubin; Ye, Hui; Tang, Chuanhao; Cheng, Xuan; Hou, Ning; Yang, Xiao; Wong, Kwok-Kin

    2013-01-01

    Interleukin-6 (IL-6) is involved in lung cancer tumorigenesis, tumor progression, metastasis, and drug resistance. Previous studies show that blockade of IL-6 signaling can inhibit tumor growth and increase drug sensitivity in mouse models. Clinical trials in non-small cell lung cancer (NSCLC) reveal that IL-6 targeted therapy relieves NSCLC-related anemia and cachexia, although other clinical effects require further study. We crossed IL-6-/- mice with KrasG12D mutant mice, which develop lung tumors after activation of mutant KrasG12D, to investigate whether IL-6 inhibition contributes to tumor progression and survival time in vivo. KrasG12D; IL-6-/- mice exhibited increased tumorigenesis, but slower tumor growth and longer survival, than KrasG12D mice. Further, in order to investigate whether IL-6 deletion contributes to suppression of lung cancer metastasis, we generated KrasG12D; p53flox/flox; IL-6-/- mice, which developed lung cancer with a trend for reduced metastases and longer survival than KrasG12D; p53flox/flox mice. Tumors from KrasG12D; IL-6-/- mice showed increased expression of TNFα and decreased expression of CCL-19, CCL-20 and phosphorylated STAT3 (pSTAT3) than KrasG12D mice; however, these changes were not present between tumors from KrasG12D; p53flox/flox; IL-6-/- and KrasG12D; p53flox/flox mice. Upregulation of pSTAT3 and phosphorylated AKT (pAKT) were observed in KrasG12D tumors with p53 deletion. Taken together, these results indicate that IL-6 deletion accelerates tumorigenesis but delays tumor progression and prolongs survival time in a Kras-driven mouse model of lung cancer. However, these effects can be attenuated by p53 deletion. PMID:24260500

  6. Genome structure of mink cell focus-forming murine leukemia virus in epithelial mink lung cells transformed vitro by iododeoxyuridine-induced C3H/MuLV cells.

    PubMed Central

    Rapp, U R; Birkenmeier, E; Bonner, T I; Gonda, M A; Gunnell, M

    1983-01-01

    We characterized mink cell focus-forming murine leukemia viruses that were isolated from C3H/MCA-5 cells after induction with 5-iododeoxyuridine in culture. Mink lung epithelial cells malignantly transformed in vitro by induced virus were the source of four molecular clones of mink cell focus-forming virus. CI-1, CI-2, CI-3, and CI-4. Three clones, CI-1, CI-2, and CI-3, had full-length mink cell focus-forming viral genomes, one of which (CI-3) was infectious. In addition, we obtained a defective viral genome (CI-4) which had a deletion in the envelope gene. A comparison between the envelope genes of CI-4 and those of spleen focus-forming virus by heteroduplex mapping showed close homology in the substitution region and defined the deletion as being identical to the p15E deletion of spleen focus-forming virus. The recombinant mink cell focus-forming genomes are not endogenous in C3H/MCA-5 cells and therefore must have been formed in culture after induction by 5-iododeoxyuridine. CI-3, the infectious clone of mink cell focus-forming murine leukemia virus, was dualtropic, and mink cells infected with CI-3 were altered in their response to epidermal growth factor. In the presence of epidermal growth factor at 10 ng/ml, uninfected mink cells retained their epithelial morphology in monolayer culture and did not form colonies in soft agar. In contrast, CI-3 virus-infected mink cells grew with fibroblastic morphology in monolayer culture and showed an increased growth rate in soft agar in the presence of epidermal growth factor. Images PMID:6300431

  7. Increased Lung and Bladder Cancer Incidence In Adults After In Utero and Early-Life Arsenic Exposure

    PubMed Central

    Steinmaus, Craig; Ferreccio, Catterina; Acevedo, Johanna; Yuan, Yan; Liaw, Jane; Durán, Viviana; Cuevas, Susana; García, José; Meza, Rodrigo; Valdés, Rodrigo; Valdés, Gustavo; Benítez, Hugo; VanderLinde, Vania; Villagra, Vania; Cantor, Kenneth P; Moore, Lee E; Perez, Saida G; Steinmaus, Scott; Smith, Allan H

    2014-01-01

    Background From 1958–70, >100,000 people in northern Chile were exposed to a well-documented, distinct period of high drinking water arsenic concentrations. We previously reported ecological evidence suggesting that early-life exposure in this population resulted in increased mortality in adults from several outcomes including lung and bladder cancer. Methods We have now completed the first study ever assessing incident cancer cases after early-life arsenic exposure, and the first study on this topic with individual participant exposure and confounding factor data. Subjects included 221 lung and 160 bladder cancer cases diagnosed in northern Chile from 2007–2010, and 508 age and gender-matched controls. Results Odds ratios (ORs) adjusted for age, sex, and smoking in those only exposed in early-life to arsenic water concentrations of ≤110, 110–800, and >800 μg/L were 1.00, 1.88 (95% confidence interval (CI), 0.96–3.71), and 5.24 (3.05–9.00) (p-trend<0.001) for lung cancer, and 1.00, 2.94 (1.29–6.70), and 8.11 (4.31–15.25) (p-trend<0.001) for bladder cancer. ORs were lower in those not exposed until adulthood. The highest category (>800 μg/L) involved exposures which started 49–52 years before, and ended 37–40 years before the cancer cases were diagnosed. Conclusion Lung and bladder cancer incidence in adults was markedly increased following exposure to arsenic in early-life, even up to 40 years after high exposures ceased. Findings like these have not been identified before for any environmental exposure, and suggest that humans are extraordinarily susceptible to early-life arsenic exposure. Impact Policies aimed at reducing early-life exposure may help reduce the long-term risks of arsenic-related disease. PMID:24859871

  8. Second to fourth digit ratio: A predictor of adult lung function

    PubMed Central

    Park, I-Nae; Yum, Ho-Kee; Lee, Sang Chul; Oh, Jin Kyu; Kim, Tae Beom

    2014-01-01

    Sex and sex hormones play a major role in lung physiology. It has been proposed that the ratio of the second to fourth digits (digit ratio) is correlated with fetal sex hormones. We therefore hypothesized that digit ratio might help predict lung function. We investigated the relationship between digit ratio and pulmonary function test (PFT) findings. A total of 245 South Korean patients (162 male, 83 female) aged from 34 to 90 years who were hospitalized for urological surgery were prospectively enrolled. Before administering the PFTs, the lengths of the second and fourth digits of the right hand were measured by a single investigator using a digital Vernier caliper. In males (n = 162), univariate and multivariate analysis using linear regression models showed that digit ratio was a significant predictive factor of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) (FVC: r = 0.156, P = 0.047; FEV1: r = 0.160, P = 0.042). In male ever-smokers (n = 69), lung functions (FVC and FEV1) were correlated with smoking exposure rather than digit ratio. In female never-smokers (n = 83), lung functions (FEV1 and FEV1/FVC ratio) were positively correlated with digit ratio on univariate analysis (FEV1: r = 0.242, P = 0.027; FEV1/FVC ratio: r = 0.245, P = 0.026). Patients with lower digit ratios tend to have decreased lung function. These results suggest that digit ratio is a predictor of airway function. PMID:24369148

  9. Synergistic Effect of Bolus Exposure to Zinc Oxide Nanoparticles on Bleomycin-Induced Secretion of Pro-Fibrotic Cytokines without Lasting Fibrotic Changes in Murine Lungs

    PubMed Central

    Wu, Wenting; Ichihara, Gaku; Hashimoto, Naozumi; Hasegawa, Yoshinori; Hayashi, Yasuhiko; Tada-Oikawa, Saeko; Suzuki, Yuka; Chang, Jie; Kato, Masashi; D’Alessandro-Gabazza, Corina N.; Gabazza, Esteban C.; Ichihara, Sahoko

    2014-01-01

    Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety evaluation of this manufactured material is important. The present study investigated the inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively. At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic cytokines in the lungs. PMID:25561223

  10. Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia

    SciTech Connect

    He, Miao; Ichinose, Takamichi; Song, Yuan; Yoshida, Yasuhiro; Arashidani, Keiichi; Yoshida, Seiichi; Liu, Boying; Nishikawa, Masataka; Takano, Hirohisa; and others

    2013-11-01

    The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs contained different amounts of lipopolysaccharides (LPS) and β-glucan (ASD1 < ASD2) and SiO{sub 2} (ASD1 > ASD2). CD-1 mice were instilled intratracheally with ASD1, ASD2 and/or ovalbumin (OVA) four times at 2-week intervals. ASD1 and ASD2 enhanced eosinophil recruitment induced by OVA in the submucosa of the airway, with goblet cell proliferation in the bronchial epithelium. ASD1 and ASD2 synergistically increased OVA-induced eosinophil-relevant cytokines interleukin-5 (IL-5), IL-13 (ASD1 < ASD2) and chemokine eotaxin (ASD1 > ASD2) in bronchoalveolar lavage fluid. ASD2 aggravating effects on lung eosinophilia were greater than ASD1. The role of LPS and β-glucan in ASD2 on the production of pro-inflammatory mediators was assessed using in vitro bone marrow-derived macrophages (BMDMs) from wild type, Toll-like receptor 2-deficient (TLR2 −/−), TLR4 −/−, and MyD88 −/− mice (on Balb/c background). ASD2-stimulated TLR2 −/− BMDMs enhanced IL-6, IL-12, TNF-α, MCP-1 and MIP-1α secretion compared with ASD2-stimulated TLR4 −/− BMDMs. Protein expression from ASD2-stimulated MyD88 −/− BMDM were very low or undetectable. The in vitro results indicate that lung eosinophilia caused by ASD is TLR4 dependent. Therefore, the aggravation of OVA-related lung eosinophilia by ASD may be dependent on toxic substances derived from microbes, such as LPS, rather than SiO{sub 2}. - Highlights: • Asian sand dust (ASD) from the deserts of China causes serious respiratory problems. • The aggravating effects of two ASDs on lung eosinophilia were compared. • The ASDs contained different LPS and β-glucan (ASD1

  11. Association between Lung Function in Adults and Plasma DDT and DDE Levels: Results from the Canadian Health Measures Survey

    PubMed Central

    Ye, Ming; Beach, Jeremy; Martin, Jonathan W.

    2014-01-01

    Background Although DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] has been banned in many countries since the 1970s, it may still pose a risk to human respiratory health. In agriculture, DDT exposures have been associated with asthma and chronic bronchitis. However, little is known about the effect of DDT on lung function. Methods We used data on 1,696 participants 20–79 years of age from the Canadian Health Measures Survey (CHMS) and conducted multiple regression analysis to estimate associations between plasma p,p´-DDT/DDE and lung function. Results Almost all participants (> 99.0%) had detectable concentrations of plasma p,p´-DDE, but only 10.0% had detectable p,p´-DDT. Participants with detectable p,p´-DDT had significantly lower mean FVC (difference = 311 mL; 95% CI: –492, –130; p = 0.003) and FEV1 (difference = 232 mL; 95% CI: –408, –55; p = 0.015) than those without. A 100-ng/g lipid increase in plasma p,p´-DDE was associated with an 18.8-mL decrease in mean FVC (95% CI: –29, –9) and an 11.8-mL decrease in mean FEV1 (95% CI: –21, –3). Neither exposure was associated with FEV1/FVC ratio or FEF25%–75%. Conclusions DDT exposures, which may have occurred decades ago, were still detectable among Canadians. Plasma DDT and DDE were negatively associated with lung function parameters. Additional research on the potential effects of DDT use on lung function is warranted. Citation Ye M, Beach J, Martin JW, Senthilselvan A. 2015. Association between lung function in adults and plasma DDT and DDE levels: results from the Canadian Health Measures Survey. Environ Health Perspect 123:422–427; http://dx.doi.org/10.1289/ehp.1408217 PMID:25536373

  12. Effects of mutant human Ki-ras{sup G12C} gene dosage on murine lung tumorigenesis and signaling to its downstream effectors

    SciTech Connect

    Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.; Moore, Joseph E.; Mosley, Libyadda J.; D'Agostino, Ralph B.; Pettenati, Mark J.; Miller, Mark Steven

    2008-08-15

    Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras{sup G12C} allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 {mu}g/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras{sup G12C} allele in the lung, and resulted in the development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 {mu}g/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 {mu}g/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 {mu}g/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras{sup G12C} expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models.

  13. Th2 but Not Th1 Immune Bias Results in Altered Lung Functions in a Murine Model of Pulmonary Cryptococcus neoformans Infection▿

    PubMed Central

    Jain, Aditya V.; Zhang, Yanmei; Fields, W. Bradley; McNamara, David A.; Choe, Mun Y.; Chen, Gwo-hsiao; Erb-Downward, John; Osterholzer, John J.; Toews, Galen B.; Huffnagle, Gary B.; Olszewski, Michal A.

    2009-01-01

    Changes in airway dynamics have been reported in the rat model of pulmonary cryptococcosis. However, it is not known if Cryptococcus neoformans-induced changes in lung functions are related to the immunophenotype that develops in response to cryptococcal infection in the lungs. In this study we performed a parallel analysis of the immunophenotype and airway resistance (standard resistance of the airways [SRAW]) in BALB/c mice infected with highly virulent C. neoformans strain H99 and moderately virulent strain 52D. H99 infection evoked a Th2 response and was associated with increased SRAW, while the SRAW for 52D infection, which resulted in a predominantly Th1-skewed response, did not differ from the SRAW for uninfected mice. We found that an altered SRAW in mice did not positively or negatively correlate with the pulmonary fungal burden, the magnitude of inflammatory response, the numbers of T cells, eosinophils or eosinophil subsets, neutrophils, or monocytes/macrophages, or the levels of cytokines (interleukin-4 [IL-4], IL-10, gamma interferon, or IL-13) produced by lung leukocytes. However, the level of a systemic Th2 marker, serum immunoglobulin E (IgE), correlated significantly with SRAW, indicating that the changes in lung functions were proportional to the level of Th2 skewing in this model. These data also imply that IgE may contribute to the altered SRAW observed in H99-infected mice. Lung histological analysis revealed severe allergic bronchopulmonary mycosis pathology in H99-infected mice and evidence of protective responses in 52D-infected mice with well-marginalized lesions. Taken together, the data show that C. neoformans can significantly affect airflow physiology, particularly in the context of a Th2 immune response with possible involvement of IgE as an important factor. PMID:19752036

  14. Potential of the aminosterol, squalamine in combination therapy in the rat 13,762 mammary carcinoma and the murine Lewis lung carcinoma.

    PubMed

    Teicher, B A; Williams, J I; Takeuchi, H; Ara, G; Herbst, R S; Buxton, D

    1998-01-01

    Squalamine, a naturally-occurring aminosterol, has demonstrated antiangiogenic activity in several experimental models. Extended treatment with other antiangiogenic agents has been shown to increase tumor oxygenation. Tumor oxygenation was measured using an Eppendorf pO2 histograph polarographic pO2 electrode system in the rat 13,762 mammary carcinoma after treatment of the tumor-bearing animals with squalamine (40 mglkg) on days 4 through 18 post tumor implantation. Under air breathing conditions, the hypoxic fraction (percent of pO2 readings < 5 mmHg) was 53% in controls and was decreased to 38% in the squalamine treated animals. While squalamine administration alone produced only a modest effect on the growth of the 13,762 tumor, there were increases in tumor growth delay of 1.9- to 2.5-fold when squalamine was administered along with cyclophosphamide, cisplatin and paclitaxel compared with the tumor growth delays observed with the chemotherapeutic agents alone. To determine the efficacy of squalamine alone and along with cytotoxic therapies against a model of primary and systemic disease, squalamine was administered to animals bearing the Lewis lung carcinoma by daily subcutaneous injection or by continuous infusion on days 4 through 18 post tumor implantation. Squalamine as a single agent had only a modest effect on the growth of the primary Lewis lung tumor but increased the tumor growth delays produced by cyclophosphamide, cisplatin, paclitaxel and 5-fluorouracil by 2.4- to 3.8-fold compared with the anticancer drugs alone. Squalamine administration alone substantially decreased the number of lung metastases found in animals bearing the Lewis lung carcinoma and further decreased the number of lung metastases when administered along with the chemotherapeutic agents. PMID:9703911

  15. Predictors of Family Conflict at the End of Life: The Experience of Spouses and Adult Children of Persons with Lung Cancer

    ERIC Educational Resources Information Center

    Kramer, Betty J.; Kavanaugh, Melinda; Trentham-Dietz, Amy; Walsh, Matthew; Yonker, James A.

    2010-01-01

    Purpose: Guided by an explanatory matrix of family conflict at the end of life, the purpose of this article was to examine the correlates and predictors of family conflict reported by 155 spouses and adult children of persons with lung cancer. Design and Methods: A cross-sectional statewide survey of family members of persons who died from lung…

  16. Lung Function and Inflammatory responses in healthy young adults exposed to 0.06 ppm Ozone for 6.6 hours

    EPA Science Inventory

    Rationale: Exposure to ozone causes a decrease in spirometric lung function and an increase in airway inflammation in healthy young adults at concentrations as low as 0.08 ppm close to the the National Ambient Air Quality Standard for ground level ozone. Objectives: To test wheth...

  17. Measures of body habitus are associated with lung function in adults with cystic fibrosis: A population-based study☆

    PubMed Central

    Forrester, Doug L.; Knox, Alan J.; Smyth, Alan R.; Fogarty, Andrew W.

    2013-01-01

    Background Body habitus differences may explain some of the variation in lung function between individuals with cystic fibrosis (CF). We tested the hypothesis that measures of lean muscle mass and obesity are independently associated with lung function in CF. Methods Cross-sectional study design using UK CF registry data from 2096 clinically stable adults. Results Serum creatinine and BMI were positively and independently associated with FEV1 and FVC. One standard deviation increment in serum creatinine was associated with an FEV1 increase of 171 ml (95% confidence intervals CI: + 116 to + 227 ml) in males and 90 ml (95% CI: + 46 to + 133 ml) in females. Compared to the reference group of 20–24.9 kg/m2, those with a BMI < 20 kg/m2 had lower FEV1 with values of − 642 ml (95%CI: − 784 to − 500 ml) for males and − 468 ml (95%CI: − 564 to − 372 ml) for females. Conclusions Prospective studies and controlled trials are required to ascertain if these associations have therapeutic potential in modifying disease progression. PMID:22958983

  18. A New Approach for the Study of Lung Smooth Muscle Phenotypes and Its Application in a Murine Model of Allergic Airway Inflammation

    PubMed Central

    Paez-Cortez, Jesus; Krishnan, Ramaswamy; Arno, Anneliese; Aven, Linh; Ram-Mohan, Sumati; Patel, Kruti R.; Lu, Jining; King, Oliver D.; Ai, Xingbin; Fine, Alan

    2013-01-01

    Phenotypes of lung smooth muscle cells in health and disease are poorly characterized. This is due, in part, to a lack of methodologies that allow for the independent and direct isolation of bronchial smooth muscle cells (BSMCs) and vascular smooth muscle cells (VSMCs) from the lung. In this paper, we describe the development of a bi-fluorescent mouse that permits purification of these two cell populations by cell sorting. By subjecting this mouse to an acute allergen based-model of airway inflammation that exhibits many features of asthma, we utilized this tool to characterize the phenotype of so-called asthmatic BSMCs. First, we examined the biophysical properties of single BSMCs from allergen sensitized mice and found increases in basal tone and cell size that were sustained ex vivo. We then generated for the first time, a comprehensive characterization of the global gene expression changes in BSMCs isolated from the bi-fluorescent mice with allergic airway inflammation. Using statistical methods and pathway analysis, we identified a number of differentially expressed mRNAs in BSMCs from allergen sensitized mice that code for key candidate proteins underlying changes in matrix formation, contractility, and immune responses. Ultimately, this tool will provide direction and guidance for the logical development of new markers and approaches for studying human lung smooth muscle. PMID:24040256

  19. Neonatal respiratory syncytial virus infection has an effect on lung inflammation and the CD4(+) CD25(+) T cell subpopulation during ovalbumin sensitization in adult mice.

    PubMed

    Comas-García, A; López-Pacheco, C P; García-Zepeda, E A; Soldevila, G; Ramos-Martínez, P; Ramos-Castañeda, J

    2016-08-01

    In BALB/c adult mice, respiratory syncytial virus (RSV) infection enhances the degree of lung inflammation before and/or after ovalbumin (OVA) respiratory sensitization. However, it is unclear whether RSV infection in newborn mice has an effect on the immune response to OVA respiratory sensitization in adult mice. The aim of this study was to determine if RSV neonatal infection alters T CD4(+) population and lung inflammation during OVA respiratory sensitization in adult mice. BALB/c mice were infected with RSV on the fourth day of life and challenged by OVA 4 weeks later. We found that in adult mice, RSV neonatal infection prior to OVA sensitization reduces the CD4(+) CD25(+) and CD4(+) CD25(+) forkhead protein 3 (FoxP3)(+) cell populations in the lungs and bronchoalveolar lavage. Furthermore, it also attenuates the inflammatory infiltrate and cytokine/chemokine expression levels in the mouse airways. In conclusion, the magnitude of the immune response to a non-viral respiratory perturbation in adult mice is not enhanced by a neonatal RSV infection. PMID:26990762

  20. Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven murine non-small cell lung cancer model.

    PubMed

    Baumgart, A; Mazur, P K; Anton, M; Rudelius, M; Schwamborn, K; Feuchtinger, A; Behnke, K; Walch, A; Braren, R; Peschel, C; Duyster, J; Siveke, J T; Dechow, T

    2015-01-29

    Lung cancer is the leading cause of cancer-related deaths worldwide. Recently, we have shown that Notch1 inhibition resulted in substantial cell death of non-small cell lung cancer (NSCLC) cells in vitro. New compounds targeting Notch signal transduction have been developed and are now being tested in clinical trials. However, the tumorigenic role of individual Notch receptors in vivo remains largely unclear. Using a Kras(G12D)-driven endogenous NSCLC mouse model, we analyzed the effect of conditional Notch1 and Notch2 receptor deletion on NSCLC tumorigenesis. Notch1 deficiency led to a reduced early tumor formation and lower activity of MAPK compared with the controls. Unexpectedly, Notch2 deletion resulted in a dramatically increased carcinogenesis and increased MAPK activity. These mice died significantly earlier due to rapidly growing tumor burden. We found that Notch1 regulates Ras/MAPK pathway via HES1-induced repression of the DUSP1 promoter encoding a phosphatase specifically suppressing pERK1/2. Interestingly, Notch1 but not Notch2 ablation leads to decreased HES1 and DUSP1 expression. However, Notch2-depleted tumors showed an appreciable increase in β-catenin expression, a known activator of HES1 and important lung cancer oncogene. Characteristically for β-catenin upregulation, we found that the majority of Notch2-deficient tumors revealed an undifferentiated phenotype as determined by their morphology, E-Cadherin and TTF1 expression levels. In addition, these carcinomas showed aggressive growth patterns with bronchus invasion and obstruction. Together, we show that Notch2 mediates differentiation and has tumor suppressor functions during lung carcinogenesis, whereas Notch1 promotes tumor initiation and progression. These data are further supported by immunohistochemical analysis of human NSCLC samples showing loss or downregulation of Notch2 compared with normal lung tissue. In conclusion, this is the first study characterizing the in vivo functions of

  1. Enhancement of OVA-induced murine lung eosinophilia by co-exposure to contamination levels of LPS in Asian sand dust and heated dust

    PubMed Central

    2014-01-01

    Background A previous study has shown that the aggravation of Asian sand dust (ASD) on ovalbumin (OVA)-induced lung eosinphilia was more severe in lipopolysaccharide (LPS)-rich ASD than in SiO2-rich ASD. Therefore, the effects of different LPS contamination levels in ASD on the aggravation of OVA-induced lung eosinophilia were investigated in the present study. Methods Before beginning the in vivo experiment, we investigated whether the ultra-pure LPS would act only on TLR4 or not using bone marrow-derived macrophages (BMDMs) of wild–type, TLR2-/-, TLR4-/- and MyD88-/- BALB/c mice. ASD collected from the desert was heated to remove toxic organic substances (H-ASD). BALB/c mice were instilled intratracheally with 12 different testing samples prepared with LPS (1 ng and 10 ng), H-ASD, and OVA in a normal saline solution. The lung pathology, cytological profiles in the bronchoalveolar lavage fluid (BALF), the levels of inflammatory cytokines/chemokines in BALF and OVA-specific immunoglobulin in serum were investigated. Results The LPS exhibited no response to the production of TNF-α and IL-6 in BMDMs from TLR4-/-, but did from TLR2-/-. H-ASD aggravated the LPS-induced neutrophilic lung inflammation. In the presence of OVA, LPS increased the level of eosinophils slightly and induced trace levels of Th2 cytokines IL-5 and IL-13 at the levels of 1 ng and 10 ng. In the presence of OVA and H-ASD, LPS induced severe eosinophil infiltration and proliferation of goblet cells in the airways as well as remarkable increases in Th2 cytokines IL-5 and IL-13 in BALF. The mixture containing LPS (1 ng) showed adjuvant activity on OVA-specific IgE and IgG1 production. Conclusions The results suggest that H-ASD with naturally-occurring levels of LPS enhances OVA-induced lung eosinophilia via increases in Th2-mediated cytokines and antigen-specific immunoglobulin. These results indicate that LPS is a strong candidate for being a major aggravating substance in ASD. PMID:24982682

  2. Cured Meat Consumption, Lung Function, and Chronic Obstructive Pulmonary Disease among United States Adults

    PubMed Central

    Jiang, Rui; Paik, David C.; Hankinson, John L.; Barr, R. Graham

    2007-01-01

    Rationale: Cured meats are high in nitrites. Nitrites generate reactive nitrogen species that may cause nitrative and nitrosative damage to the lung resulting in emphysema. Objective: To test the hypothesis that frequent consumption of cured meats is associated with lower lung function and increased odds of chronic obstructive pulmonary disease (COPD). Methods: Cross-sectional study of 7,352 participants in the Third National Health and Nutrition Examination Survey, 45 years of age or more, who had adequate measures of cured meat, fish, fruit, and vegetable intake, and spirometry. Results: After adjustment for age, smoking, and multiple other potential confounders, frequency of cured meat consumption was inversely associated with FEV1 and FEV1/FVC but not FVC. The adjusted differences in FEV1 between individuals who did not consume cured meats and those who consumed cured meats 1 to 2, 3 to 4, 5 to 13, and 14 or more times per month were −37.6, −11.5, −42.0, and −110 ml, respectively (p for trend < 0.001). Corresponding differences for FEV1/FVC were −0.91, −0.54, −1.13, and −2.13% (p for trend = 0.001). These associations were not modified by smoking status. The multivariate odds ratio for COPD (FEV1/FVC ⩽ 0.7 and FEV1 < 80% predicted) was 1.78 (95% confidence interval, 1.29–2.47) comparing the highest with the lowest category of cured meat consumption. The corresponding odds ratios for mild, moderate, and severe COPD were 1.11, 1.46, and 2.41, respectively. Conclusions: Frequent cured meat consumption was associated independently with an obstructive pattern of lung function and increased odds of COPD. Additional studies are required to determine if cured meat consumption is a causal risk factor for COPD. PMID:17255565

  3. Elevated Lung Cancer in Younger Adults and Low Concentrations of Arsenic in Water

    PubMed Central

    Steinmaus, Craig; Ferreccio, Catterina; Yuan, Yan; Acevedo, Johanna; González, Francisca; Perez, Liliana; Cortés, Sandra; Balmes, John R.; Liaw, Jane; Smith, Allan H.

    2014-01-01

    Arsenic concentrations greater than 100 µg/L in drinking water are a known cause of cancer, but the risks associated with lower concentrations are less well understood. The unusual geology and good information on past exposure found in northern Chile are key advantages for investigating the potential long-term effects of arsenic. We performed a case-control study of lung cancer from 2007 to 2010 in areas of northern Chile that had a wide range of arsenic concentrations in drinking water. Previously, we reported evidence of elevated cancer risks at arsenic concentrations greater than 100 µg/L. In the present study, we restricted analyses to the 92 cases and 288 population-based controls who were exposed to concentrations less than 100 µg/L. After adjustment for age, sex, and smoking behavior, these exposures from 40 or more years ago resulted in odds ratios for lung cancer of 1.00, 1.43 (90% confidence interval: 0.82, 2.52), and 2.01 (90% confidence interval: 1.14, 3.52) for increasing tertiles of arsenic exposure, respectively (P for trend = 0.02). Mean arsenic water concentrations in these tertiles were 6.5, 23.0, and 58.6 µg/L. For subjects younger than 65 years of age, the corresponding odds ratios were 1.00, 1.62 (90% confidence interval: 0.67, 3.90), and 3.41 (90% confidence interval: 1.51, 7.70). Adjustments for occupation, fruit and vegetable intake, and socioeconomic status had little impact on the results. These findings provide new evidence that arsenic water concentrations less than 100 µg/L are associated with higher risks of lung cancer. PMID:25371173

  4. Elevated lung cancer in younger adults and low concentrations of arsenic in water.

    PubMed

    Steinmaus, Craig; Ferreccio, Catterina; Yuan, Yan; Acevedo, Johanna; González, Francisca; Perez, Liliana; Cortés, Sandra; Balmes, John R; Liaw, Jane; Smith, Allan H

    2014-12-01

    Arsenic concentrations greater than 100 µg/L in drinking water are a known cause of cancer, but the risks associated with lower concentrations are less well understood. The unusual geology and good information on past exposure found in northern Chile are key advantages for investigating the potential long-term effects of arsenic. We performed a case-control study of lung cancer from 2007 to 2010 in areas of northern Chile that had a wide range of arsenic concentrations in drinking water. Previously, we reported evidence of elevated cancer risks at arsenic concentrations greater than 100 µg/L. In the present study, we restricted analyses to the 92 cases and 288 population-based controls who were exposed to concentrations less than 100 µg/L. After adjustment for age, sex, and smoking behavior, these exposures from 40 or more years ago resulted in odds ratios for lung cancer of 1.00, 1.43 (90% confidence interval: 0.82, 2.52), and 2.01 (90% confidence interval: 1.14, 3.52) for increasing tertiles of arsenic exposure, respectively (P for trend = 0.02). Mean arsenic water concentrations in these tertiles were 6.5, 23.0, and 58.6 µg/L. For subjects younger than 65 years of age, the corresponding odds ratios were 1.00, 1.62 (90% confidence interval: 0.67, 3.90), and 3.41 (90% confidence interval: 1.51, 7.70). Adjustments for occupation, fruit and vegetable intake, and socioeconomic status had little impact on the results. These findings provide new evidence that arsenic water concentrations less than 100 µg/L are associated with higher risks of lung cancer. PMID:25371173

  5. Mycobacterium avium lung disease combined with a bronchogenic cyst in an immunocompetent young adult.

    PubMed

    Kwon, Yong Soo; Han, Joungho; Jung, Ki Hwan; Kim, Je Hyeong; Koh, Won-Jung

    2013-01-01

    We report a very rare case of a bronchogenic cyst combined with nontuberculous mycobacterial pulmonary disease in an immunocompetent patient. A 21-year-old male was referred to our institution because of a cough, fever, and worsening of abnormalities on his chest radiograph, despite anti-tuberculosis treatment. Computed tomography of the chest showed a large multi-cystic mass over the right-upper lobe. Pathological examination of the excised lobe showed a bronchogenic cyst combined with a destructive cavitary lesion with granulomatous inflammation. Microbiological culture of sputum and lung tissue yielded Mycobacterium avium. The patient was administered anti-mycobacterial treatment that included clarithromycin. PMID:23346002

  6. Fever and multilobular mass of the right lung in a young adult with asthma

    PubMed Central

    Sotiriou, Adamantia; Koulouris, Nikolaos; Bakakos, Petros

    2015-01-01

    We report a case of a 37-year-old mild asthmatic male presenting with fever, productive cough and chest pain. The chest x-ray showed a multilobular perihilar shadow of the right lung with a mass-like appearance, confirmed by the CT-scan. He was diagnosed with allergic bronchopulmonary aspergillosis (ABPA). ABPA usually manifests as chronic asthma, recurrent pulmonary infiltrates and bronchiectasis. However, it can rarely be seen in patients with mild asthma and with an unusual radiological presentation of a solid mass. PMID:26858931

  7. Interstitial lung disease in an adult with Fanconi anemia: Clues to the pathogenesis

    SciTech Connect

    Rubinstein, W.S.; Wenger, S.L.; Hoffman, R.M.

    1997-03-31

    We have studied a 38-year-old man with a prior diagnosis of Holt-Oram syndrome, who presented with diabetes mellitus. He had recently taken prednisone for idiopathic interstitial lung disease and trimethoprim-sulfamethoxazole for sinusitis. Thrombocytopenia progressed to pancytopenia. The patient had skeletal, cardiac, renal, cutaneous, endocrine, hepatic, neurologic, and hematologic manifestations of Fanconi anemia (FA). Chest radiographs showed increased interstitial markings at age 25, dyspnea began in his late 20s, and he stopped smoking at age 32. At age 38, computerized tomography showed bilateral upper lobe fibrosis, lower lobe honeycombing, and bronchiectasis. Pulmonary function tests, compromised at age 29, showed a moderately severe obstructive and restrictive pattern by age 38. Serum alpha-1 antitrypsin level was 224 (normal 85-213) mg/dL and PI phenotype was M1. Karyotype was 46,X-Y with a marked increase in chromosome aberrations induced in vitro by diepoxybutane. The early onset and degree of pulmonary disease in this patient cannot be fully explained by environmental or known genetic causes. The International Fanconi Anemia Registry (IFAR) contains no example of a similar pulmonary presentation. Gene-environment (ecogenetic) interactions in FA seem evident in the final phenotype. The pathogenic mechanism of lung involvement in FA may relate to oxidative injury and cytokine anomalies. 49 refs., 2 figs., 1 tab.

  8. Oral administration of 3,3'-diindolylmethane inhibits lung metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice.

    PubMed

    Kim, Eun Ji; Shin, Minjeong; Park, Heesook; Hong, Ji Eun; Shin, Hyun-Kyung; Kim, Jongdai; Kwon, Dae Young; Park, Jung Han Yoon

    2009-12-01

    3,3'-diindolylmethane (DIM) is the major in vivo product of the acid-catalyzed oligomerization of indole-3-carbinol present in cruciferous vegetables, and it has been shown to exhibit anticancer properties. In this study, we assessed the effects of DIM on the metastasis of 4T1 mouse mammary carcinoma cells. In vitro culture studies showed that DIM dose-dependently inhibited the migration, invasion, and adhesion of 4T1 cells at concentrations of 0-10 micromol/L without attendant changes in cell viability. In an in vivo lung metastasis model, 4T1 cells (2 x 10(5) cells/mouse) were injected into the tail veins of syngeneic female BALB/c mice. Beginning on the second day, the mice were subjected to gavage with 0-10 mg DIM/(kg body weight x d) for 13 d. Oral DIM administration resulted in a marked reduction in the number of pulmonary tumor nodules. DIM treatment significantly reduced the levels of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, and vascular cell adhesion molecule (VCAM)-1 and increased TIMP-2 levels in the sera and lungs of mice injected with 4T1 cells. Additionally, DIM treatment reduced the serum concentrations of interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)alpha. We have demonstrated that DIM profoundly inhibits the lung metastasis of 4T1 cells, which was accompanied by reduced levels of MMP, adhesion molecules, and proinflammatory cytokines. These results indicate that DIM has potential as an antimetastatic agent for the treatment of breast cancer. PMID:19864400

  9. In vivo micro-CT imaging of the murine lung via a computer controlled intermittent iso-pressure breath hold (IIBH) technique

    NASA Astrophysics Data System (ADS)

    Namati, Eman; Chon, Deokiee; Thiesse, Jacqueline; McLennan, Geoffrey; Sieren, Jered; Ross, Alan; Hoffman, Eric A.

    2006-03-01

    Micro-CT, a technique for imaging small objects at high resolution using micro focused x-rays, is becoming widely available for small animal imaging. With the growing number of mouse models of pulmonary pathology, there is great interest in following disease progression and evaluating the alteration in longitudinal studies. Along with the high resolution associated with micro CT comes increased scanning times, and hence minimization of motion artifacts is required. We propose a new technique for imaging mouse lungs in vivo by inducing an intermittent iso-pressure breath hold (IIBH) with a fixed level of positive airway pressure during image acquisition, to decrease motion artifacts and increase image resolution and quality. Mechanical ventilation of the respiratory system for such a setup consists of three phases, 1) tidal breathing (hyperventilated), 2) a breath hold during a fixed level of applied positive airway pressure, 3) periodic deep sighs. Image acquisition is triggered over the stable segment of the IIBH period. Comparison of images acquired from the same mouse lung using three imaging techniques (normal breathing / no gating, normal breathing with gating at End Inspiration (EI) and finally the IIBH technique) demonstrated substantial improvements in resolution and quality when using the IIBH gating. Using IIBH triggering the total image acquisition time increased from 15 minutes to 35 minutes, although total x-ray exposure time and hence animal dosage remains the same. This technique is an important step in providing high quality lung imaging of the mouse in vivo, and will provide a good foundation for future longitudinal studies.

  10. Production and Assessment of Decellularized Pig and Human Lung Scaffolds

    PubMed Central

    Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin

    2013-01-01

    The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II

  11. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer

    PubMed Central

    Patel, Manish R.; Jacobson, Blake A.; Ji, Yan; Drees, Jeremy; Tang, Shaogeng; Xiong, Kerry; Wang, Hengbing; Prigge, Jennifer E.; Dash, Alexander S.; Kratzke, Andrea K.; Mesev, Emily; Etchison, Ryan; Federspiel, Mark J.; Russell, Stephen J.; Kratzke, Robert A.

    2015-01-01

    Vesicular stomatitis virus (VSV) is a potent oncolytic virus for many tumors. VSV that produces interferon-β (VSV-IFNβ) is now in early clinical testing for solid tumors. Here, the preclinical activity of VSV and VSV-IFNβ against non-small cell lung cancer (NSCLC) is reported. NSCLC cell lines were treated in vitro with VSV expressing green fluorescence protein (VSV-GFP) and VSV-IFNβ. VSV-GFP and VSV-IFNβ were active against NSCLC cells. JAK/STAT inhibition with ruxolitinib re-sensitized resistant H838 cells to VSV-IFNβ mediated oncolysis. Intratumoral injections of VSV-GFP and VSV-IFNβ reduced tumor growth and weight in H2009 nude mouse xenografts (p < 0.01). A similar trend was observed in A549 xenografts. Syngeneic LM2 lung tumors grown in flanks of A/J mice were injected with VSV-IFNβ intratumorally. Treatment of LM2 tumors with VSV-IFNβ resulted in tumor regression, prolonged survival (p < 0.0001), and cure of 30% of mice. Intratumoral injection of VSV-IFNβ resulted in decreased tumor-infiltrating regulatory T cells (Treg) and increased CD8+ T cells. Tumor cell expression of PDL-1 was increased after VSV-IFNβ treatment. VSV-IFNβ has potent antitumor effects and promotes systemic antitumor immunity. These data support further clinical investigation of VSV-IFNβ for NSCLC. PMID:26431376

  12. Preconditioning chemotherapy with paclitaxel and cisplatin enhances the antitumor activity of cytokine induced-killer cells in a murine lung carcinoma model.

    PubMed

    Huang, Xiang; Huang, Guichun; Song, Haizhu; Chen, Longbang

    2011-08-01

    Adoptive cell therapy involving the use of ex vivo generated cytokine-induced killer cells (CIKs) provides a promising approach to immunotherapy. However, the therapeutic activity of CIKs is limited by the immunosuppressive factors active in the host. It has become increasingly apparent that manipulation of the recipient immune system with the preconditioning regimen is essential to guarantee the antitumor effect of subsequent adoptive cell therapy. In our study, paclitaxel (PTX) and cisplatin (DDP) were used as preconditioning drugs combined with CIKs to illustrate the potential mechanisms underlying the synergic antitumor effect against Lewis lung cancer cells in vitro and in vivo. We found that 3LL cells displayed an increased sensitization to CIKs-induced lysis after treatment with PTX or DDP in vitro. Significant inhibition of tumor growth was observed in mice treated with combinatorial chemo-immunotherapy with respect to untreated or single regimen treated ones. Prior chemotherapy markedly enhanced the intratumoral accumulation of CD3(+) T lymphocytes and the homing of CIKs to the spleen and tumor. Moreover, the frequencies of intratumoral and splenic regulatory T cells (Tregs) were significantly decreased after chemotherapy pretreatment. Our findings provide a new rationale for combining immunotherapy and chemotherapy to induce a synergistic antitumor response in patients with lung cancer. PMID:20878978

  13. Humidifier Disinfectants Are a Cause of Lung Injury among Adults in South Korea: A Community-Based Case-Control Study

    PubMed Central

    Kwon, Geun-Yong; Gwack, Jin; Park, Young-Joon; Youn, Seung-Ki; Kwon, Jun-Wook; Yang, Byung-Guk; Lee, Moo-Song; Jung, Miran; Lee, Hanyi; Jun, Byung-Yool; Lim, Hyun-Sul

    2016-01-01

    Backgrounds An outbreak of lung injury among South Korean adults was examined in a hospital-based case-control study, and the suspected cause was exposure to humidifier disinfectant (HD). However, a case-control study with community-dwelling controls was needed to validate the previous study’s findings, and to confirm the exposure-response relationship between HD and lung injury. Methods Each case of lung injury was matched with four community-dwelling controls, according to age (±3 years), sex, residence, and history of childbirth since 2006 (for women). Environmental risk factors, which included type and use of humidifier and HD, were investigated using a structured questionnaire during August 2011. The exposure to HD was calculated for both cases and controls, and the corresponding risks of lung injury were compared. Results Among 28 eligible cases, 16 patients agreed to participate, and 60 matched controls were considered eligible for this study. The cases were more likely to have been exposed to HD (odds ratio: 116.1, 95% confidence interval: 6.5–2,063.7). All cases were exposed to HDs containing polyhexamethyleneguanidine phosphate, and the risk of lung injury increased with the cumulative exposure, duration of exposure, and exposure per day. Conclusions This study revealed a statistically significant exposure-response relationship between HD and lung injury. Therefore, continuous monitoring and stricter evaluation of environmental chemicals’ safety should be conducted. PMID:26990641

  14. Number concentration and size of particles in urban air: effects on spirometric lung function in adult asthmatic subjects.

    PubMed Central

    Penttinen, P; Timonen, K L; Tiittanen, P; Mirme, A; Ruuskanen, J; Pekkanen, J

    2001-01-01

    Daily variations in ambient particulate air pollution are associated with variations in respiratory lung function. It has been suggested that the effects of particulate matter may be due to particles in the ultrafine (0.01-0.1 microm) size range. Because previous studies on ultrafine particles only used self-monitored peak expiratory flow rate (PEFR), we assessed the associations between particle mass and number concentrations in several size ranges measured at a central site and measured (biweekly) spirometric lung function among a group of 54 adult asthmatics (n = 495 measurements). We also compared results to daily morning, afternoon, and evening PEFR measurements done at home (n = 7,672-8,110 measurements). The median (maximum) 24 hr number concentrations were 14,500/cm(3) (46,500/cm(3)) ultrafine particles and 800/cm(3) (2,800/cm(3)) accumulation mode (0.1-1 microm) particles. The median (maximum) mass concentration of PM(2.5) (particulate matter < 2.5 microm) and PM(10) (particulate matter < 10 microm in aerodynamic diameter) were 8.4 microg/m(3) (38.3 microg/m(3)) and 13.5 microg/m(3) (73.7 microg/m(3)), respectively. The number of accumulation mode particles was consistently inversely associated with PEFR in spirometry. Inverse, but nonsignificant, associations were observed with ultrafine particles, and no associations were observed with large particles (PM(10)). Compared to the effect estimates for self-monitored PEFR, the effect estimates for spirometric PEFR tended to be larger. The standard errors were also larger, probably due to the lower number of spirometric measurements. The present results support the need to monitor the particle number and size distributions in urban air in addition to mass. PMID:11335178

  15. Parenchymal lung involvement in adult-onset Still disease: A STROBE-compliant case series and literature review.

    PubMed

    Gerfaud-Valentin, Mathieu; Cottin, Vincent; Jamilloux, Yvan; Hot, Arnaud; Gaillard-Coadon, Agathe; Durieu, Isabelle; Broussolle, Christiane; Iwaz, Jean; Sève, Pascal

    2016-07-01

    Parenchymal lung involvement (PLI) in adult-onset Still's disease (AOSD) has seldom, if ever, been studied. We examine here retrospective cohort AOSD cases and present a review of the literature (1971-2014) on AOSD-related PLI cases.Patients with PLI were identified in 57 AOSD cases. For inclusion, the patients had to fulfill Yamaguchi or Fautrel classification criteria, show respiratory symptoms, and have imaging evidence of pulmonary involvement, and data allowing exclusion of infectious, cardiogenic, toxic, or iatrogenic cause of PLI should be available. This AOSD + PLI group was compared with a control group (non-PLI-complicated AOSD cases from the same cohort).AOSD + PLI was found in 3 out of the 57 patients with AOSD (5.3%) and the literature mentioned 27 patients. Among these 30 AOSD + PLI cases, 12 presented an acute respiratory distress syndrome (ARDS) and the remaining 18 another PLI. In the latter, a nonspecific interstitial pneumonia computed tomography pattern prevailed in the lower lobes, pulmonary function tests showed a restrictive lung function, the alveolar differential cell count was neutrophilic in half of the cases, and the histological findings were consistent with bronchiolitis and nonspecific interstitial pneumonia. Corticosteroids were fully efficient in all but 3 patients. Ten out of 12 ARDS cases occurred during the first year of the disease course. All ARDS-complicated AOSD cases received corticosteroids with favorable outcomes in 10 (2 deceased). Most PLIs occurred during the systemic onset of AOSD.PLI may occur in 5% of AOSDs, of which ARDS is the most severe. Very often, corticosteroids are efficient in controlling this complication. PMID:27472698

  16. Allergen challenge induces Ifng dependent GTPases in the lungs as part of a Th1 transcriptome response in a murine model of allergic asthma.

    PubMed

    Dharajiya, Nilesh; Vaidya, Swapnil; Sinha, Mala; Luxon, Bruce; Boldogh, Istvan; Sur, Sanjiv

    2009-01-01

    According to the current paradigm, allergic airway inflammation is mediated by Th2 cytokines and pro-inflammatory chemokines. Since allergic inflammation is self-limited, we hypothesized that allergen challenge simultaneously induces anti-inflammatory genes to counter-balance the effects of Th2 cytokines and chemokines. To identify these putative anti-inflammatory genes, we compared the gene expression profile in the lungs of ragweed-sensitized mice four hours after challenge with either PBS or ragweed extract (RWE) using a micro-array platform. Consistent with our hypothesis, RWE challenge concurrently upregulated Th1-associated early target genes of the Il12/Stat4 pathway, such as p47 and p65 GTPases (Iigp, Tgtp and Gbp1), Socs1, Cxcl9, Cxcl10 and Gadd45g with the Th2 genes Il4, Il5, Ccl2 and Ccl7. These Th1-associated genes remain upregulated longer than the Th2 genes. Augmentation of the local Th1 milieu by administration of Il12 or CpG prior to RWE challenge further upregulated these Th1 genes. Abolition of the Th1 response by disrupting the Ifng gene increased allergic airway inflammation and abrogated RWE challenge-induced upregulation of GTPases, Cxcl9, Cxcl10 and Socs1, but not Gadd45g. Our data demonstrate that allergen challenge induces two sets of Th1-associated genes in the lungs: 1) Ifng-dependent genes such as p47 and p65 GTPases, Socs1, Cxcl9 and Cxcl10 and 2) Ifng-independent Th1-inducing genes like Gadd45g. We propose that allergen-induced airway inflammation is regulated by simultaneous upregulation of Th1 and Th2 genes, and that persistent unopposed upregulation of Th1 genes resolves allergic inflammation. PMID:20027288

  17. Mechanical stretch inhibits lipopolysaccharide-induced keratinocyte-derived chemokine and tissue factor expression while increasing procoagulant activity in murine lung epithelial cells.

    PubMed

    Sebag, Sara C; Bastarache, Julie A; Ware, Lorraine B

    2013-03-15

    Previous studies have shown that the innate immune stimulant LPS augments mechanical ventilation-induced pulmonary coagulation and inflammation. Whether these effects are mediated by alveolar epithelial cells is unclear. The alveolar epithelium is a key regulator of the innate immune reaction to pathogens and can modulate both intra-alveolar inflammation and coagulation through up-regulation of proinflammatory cytokines and tissue factor (TF), the principal initiator of the extrinsic coagulation pathway. We hypothesized that cyclic mechanical stretch (MS) potentiates LPS-mediated alveolar epithelial cell (MLE-12) expression of the chemokine keratinocyte-derived cytokine (KC) and TF. Contrary to our hypothesis, MS significantly decreased LPS-induced KC and TF mRNA and protein expression. Investigation into potential mechanisms showed that stretch significantly reduced LPS-induced surface expression of TLR4 that was not a result of increased degradation. Decreased cell surface TLR4 expression was concomitant with reduced LPS-mediated NF-κB activation. Immunofluorescence staining showed that cyclic MS markedly altered LPS-induced organization of actin filaments. In contrast to expression, MS significantly increased LPS-induced cell surface TF activity independent of calcium signaling. These findings suggest that cyclic MS of lung epithelial cells down-regulates LPS-mediated inflammatory and procoagulant expression by modulating actin organization and reducing cell surface TLR4 expression and signaling. However, because LPS-induced surface TF activity was enhanced by stretch, these data demonstrate differential pathways regulating TF expression and activity. Ultimately, loss of LPS responsiveness in the epithelium induced by MS could result in increased susceptibility of the lung to bacterial infections in the setting of mechanical ventilation. PMID:23362270

  18. Biodistribution and Pharmacokinetics Study of siRNA-loaded Anti-NTSR1-mAb-functionalized Novel Hybrid Nanoparticles in a Metastatic Orthotopic Murine Lung Cancer Model.

    PubMed

    Perepelyuk, Maryna; Thangavel, Chellappagounder; Liu, Yi; Den, Robert B; Lu, Bo; Snook, Adam E; Shoyele, Sunday A

    2016-01-01

    Small interfering RNA (siRNA) is effective in silencing critical molecular pathways in cancer. The use of this tool as a treatment modality is limited by lack of an intelligent carrier system to enhance the preferential delivery of this molecule to specific targets in vivo. In the present study, the in vivo behavior of novel anti-NTSR1-mAb-functionalized antimutant K-ras siRNA-loaded hybrid nanoparticles, delivered by i.p. injection to non-small-cell lung cancer in mice models, was investigated and compared to that of a naked siRNA formulation. The siRNA in anti-NTSR1-mAb-functionalized hybrid nanoparticles was preferentially accumulated in tumor-bearing lungs and metastasized tumor for at least 48 hours while the naked siRNA formulation showed lack of preferential accumulation in all of the organs monitored. The plasma terminal half-life of nanoparticle-delivered siRNA was 11 times higher (17-1.5 hours) than that of the naked siRNA formulation. The mean residence time and AUClast were 3.4 and 33 times higher than the corresponding naked siRNA formulation, respectively. High-performance liquid chromatography analysis showed that the hybrid nanoparticle carrier system protected the encapsulated siRNA against degradation in vivo. Our novel anti-NTSR1-mAb-functionalized hybrid nanoparticles provide a useful platform for in vivo targeting of siRNA for both experimental and clinical purposes. PMID:26812654

  19. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung.

    PubMed

    Wang, Xiang; Xia, Tian; Ntim, Susana Addo; Ji, Zhaoxia; Lin, Sijie; Meng, Huan; Chung, Choong-Heui; George, Saji; Zhang, Haiyuan; Wang, Meiying; Li, Ning; Yang, Yang; Castranova, Vincent; Mitra, Somenath; Bonner, James C; Nel, André E

    2011-12-27

    We developed a dispersal method for multiwalled carbon nanotubes (MWCNTs) that allows quantitative assessment of dispersion on profibrogenic responses in tissue culture cells and in mouse lung. We demonstrate that the dispersal of as-prepared (AP), purified (PD), and carboxylated (COOH) MWCNTs by bovine serum albumin (BSA) and dipalmitoylphosphatidylcholine (DPPC) influences TGF-β1, PDGF-AA, and IL-1β production in vitro and in vivo. These biomarkers were chosen based on their synergy in promoting fibrogenesis and cellular communication in the epithelial-mesenchymal cell trophic unit in the lung. The effect of dispersal was most noticeable in AP- and PD-MWCNTs, which are more hydrophobic and unstable in aqueous buffers than hydrophilic COOH-MWCNTs. Well-dispersed AP- and PD-MWCNTs were readily taken up by BEAS-2B, THP-1 cells, and alveolar macrophages (AM) and induced more prominent TGF-β1 and IL-1β production in vitro and TGF-β1, IL-1β, and PDGF-AA production in vivo than nondispersed tubes. Moreover, there was good agreement between the profibrogenic responses in vitro and in vivo as well as the ability of dispersed tubes to generate granulomatous inflammation and fibrosis in airways. Tube dispersal also elicited more robust IL-1β production in THP-1 cells. While COOH-MWCNTs were poorly taken up in BEAS-2B and induced little TGF-β1 production, they were bioprocessed by AM and induced less prominent collagen deposition at sites of nongranulomatous inflammation in the alveolar region. Taken together, these results indicate that the dispersal state of MWCNTs affects profibrogenic cellular responses that correlate with the extent of pulmonary fibrosis and are of potential use to predict pulmonary toxicity. PMID:22047207

  20. Mechanical Stretch Inhibits Lipopolysaccharide-induced Keratinocyte-derived Chemokine and Tissue Factor Expression While Increasing Procoagulant Activity in Murine Lung Epithelial Cells*

    PubMed Central

    Sebag, Sara C.; Bastarache, Julie A.; Ware, Lorraine B.

    2013-01-01

    Previous studies have shown that the innate immune stimulant LPS augments mechanical ventilation-induced pulmonary coagulation and inflammation. Whether these effects are mediated by alveolar epithelial cells is unclear. The alveolar epithelium is a key regulator of the innate immune reaction to pathogens and can modulate both intra-alveolar inflammation and coagulation through up-regulation of proinflammatory cytokines and tissue factor (TF), the principal initiator of the extrinsic coagulation pathway. We hypothesized that cyclic mechanical stretch (MS) potentiates LPS-mediated alveolar epithelial cell (MLE-12) expression of the chemokine keratinocyte-derived cytokine (KC) and TF. Contrary to our hypothesis, MS significantly decreased LPS-induced KC and TF mRNA and protein expression. Investigation into potential mechanisms showed that stretch significantly reduced LPS-induced surface expression of TLR4 that was not a result of increased degradation. Decreased cell surface TLR4 expression was concomitant with reduced LPS-mediated NF-κB activation. Immunofluorescence staining showed that cyclic MS markedly altered LPS-induced organization of actin filaments. In contrast to expression, MS significantly increased LPS-induced cell surface TF activity independent of calcium signaling. These findings suggest that cyclic MS of lung epithelial cells down-regulates LPS-mediated inflammatory and procoagulant expression by modulating actin organization and reducing cell surface TLR4 expression and signaling. However, because LPS-induced surface TF activity was enhanced by stretch, these data demonstrate differential pathways regulating TF expression and activity. Ultimately, loss of LPS responsiveness in the epithelium induced by MS could result in increased susceptibility of the lung to bacterial infections in the setting of mechanical ventilation. PMID:23362270

  1. Reference Values of Impulse Oscillometric Lung Function Indices in Adults of Advanced Age

    PubMed Central

    Schulz, Holger; Flexeder, Claudia; Behr, Jürgen; Heier, Margit; Holle, Rolf; Huber, Rudolf M.; Jörres, Rudolf A.; Nowak, Dennis; Peters, Annette; Wichmann, H.-Erich; Heinrich, Joachim; Karrasch, Stefan

    2013-01-01

    Background Impulse oscillometry (IOS) is a non-demanding lung function test. Its diagnostic use may be particularly useful in patients of advanced age with physical or mental limitations unable to perform spirometry. Only few reference equations are available for Caucasians, none of them covering the old age. Here, we provide reference equations up to advanced age and compare them with currently available equations. Methods IOS was performed in a population-based sample of 1990 subjects, aged 45–91 years, from KORA cohorts (Augsburg, Germany). From those, 397 never-smoking, lung healthy subjects with normal spirometry were identified and sex-specific quantile regression models with age, height and body weight as predictors for respiratory system impedance, resistance, reactance, and other parameters of IOS applied. Results Women (n = 243) showed higher resistance values than men (n = 154), while reactance at low frequencies (up to 20 Hz) was lower (p<0.05). A significant age dependency was observed for the difference between resistance values at 5 Hz and 20 Hz (R5–R20), the integrated area of low-frequency reactance (AX), and resonant frequency (Fres) in both sexes whereas reactance at 5 Hz (X5) was age dependent only in females. In the healthy subjects (n = 397), mean differences between observed values and predictions for resistance (5 Hz and 20 Hz) and reactance (5 Hz) ranged between −1% and 5% when using the present model. In contrast, differences based on the currently applied equations (Vogel & Smidt 1994) ranged between −34% and 76%. Regarding our equations the indices were beyond the limits of normal in 8.1% to 18.6% of the entire KORA cohort (n = 1990), and in 0.7% to 9.4% with the currently applied equations. Conclusions Our study provides up-to-date reference equations for IOS in Caucasians aged 45 to 85 years. We suggest the use of the present equations particularly in advanced age in order to detect airway dysfunction. PMID

  2. Identification of novel mRNA transcripts of the nm23-M1 gene that are modulated during mouse embryo development and are differently expressed in adult murine tissues.

    PubMed

    Gervasi, F; Capozza, F; Bruno, T; Fanciulli, M; Lombardi, D

    1998-12-01

    The nm23-M1, a putative metastasis-suppressor gene, and its homologs are involved in development and differentiation. We have shown previously that in vitro neuronal cell proliferation and differentiation can be modulated by nm23-M1 expression levels. In the present study, by the yeast two-hybrid system, we have shown that, at the onset of mouse tissue differentiation, the Nm23-M1 protein forms either homodimers, or heterodimers with Nm23-M2. Furthermore, we have isolated two cDNA variants of the nm23-M1 gene in the 3'-untranslated region (UTR). The two variants related to novel mRNA transcripts that are modulated in mouse embryo and are differently expressed in adult murine tissues. PMID:9881672

  3. Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung.

    PubMed

    Lafkas, Daniel; Shelton, Amy; Chiu, Cecilia; de Leon Boenig, Gladys; Chen, Yongmei; Stawicki, Scott S; Siltanen, Christian; Reichelt, Mike; Zhou, Meijuan; Wu, Xiumin; Eastham-Anderson, Jeffrey; Moore, Heather; Roose-Girma, Meron; Chinn, Yvonne; Hang, Julie Q; Warming, Søren; Egen, Jackson; Lee, Wyne P; Austin, Cary; Wu, Yan; Payandeh, Jian; Lowe, John B; Siebel, Christian W

    2015-12-01

    Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation. PMID:26580007

  4. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells

    PubMed Central

    Park, So Young; Kwon, Soo Jin; Lim, Soon Sung; Kim, Jin-Kyu; Lee, Ki Won; Park, Jung Han Yoon

    2016-01-01

    Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis. PMID:27314329

  5. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells.

    PubMed

    Park, So Young; Kwon, Soo Jin; Lim, Soon Sung; Kim, Jin-Kyu; Lee, Ki Won; Park, Jung Han Yoon

    2016-01-01

    Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis. PMID:27314329

  6. Protective effect of EC-18, a synthetic monoacetyldiglyceride on lung inflammation in a murine model induced by cigarette smoke and lipopolysaccharide.

    PubMed

    Shin, In-Sik; Ahn, Kyung-Seop; Shin, Na-Rae; Lee, Hyun-Jun; Ryu, Hyung Won; Kim, Jae Wha; Sohn, Ki-Young; Kim, Heung Jae; Han, Yong-Hae; Oh, Sei-Ryang

    2016-01-01

    The antler of Sika deer (Cervus nippon Temminck) has been used a natural medicine in Korea, China and Japan, and a monoacetyldiaglyceride (1-palmitoyl-2-linoleoyl-3-acetylglycerol, PLAG) was found in the antler of Sika deer as a constituent for immunomodulation. In this study, we investigated protective effects of EC-18 (a synthetic copy of PLAG) on inflammatory responses using a cigarette smoke with lipopolysaccharide (LPS)-induced airway inflammation model. Mice were exposed to cigarette smoke for 1h per day for 3days. Ten micrograms of LPS dissolved in 50μL of PBS was administered intra nasally 1h after the final cigarette smoke exposure. EC-18 was administered by oral gavage at doses of 30 and 60mg/kg for 3days. EC-18 significantly reduced the number of neutrophils, reactive oxygen species production, cytokines and elastase activity in bronchoalveolar lavage fluid (BALF) compared with the cigarette smoke and LPS induced mice. Histologically, EC-18 attenuated airway inflammation with a reduction in myeloperoxidase expression in lung tissue. Additionally, EC-18 inhibited the phosphorylation of NF-κB and IκB induced by cigarette smoke and LPS exposure. Our results show that EC-18 effectively suppresses neutrophilic inflammation induced by cigarette smoke and LPS exposure. In conclusion, this study suggests that EC-18 has therapeutic potential for the treatment of chronic obstructive pulmonary disease. PMID:26655742

  7. SOX2 expression is an early event in a murine model of EGFR mutant lung cancer and promotes proliferation of a subset of EGFR mutant lung adenocarcinoma cell lines

    PubMed Central

    Dogan, Irem; Kawabata, Shigeru; Bergbower, Emily; Gills, Joell J.; Ekmekci, Abdullah; Wilson, Willie; Rudin, Charles M.; Dennis, Phillip A.

    2014-01-01

    Objectives Primary and acquired resistance to EGFR TKIs in EGFR mutant lung cancer occurs primarily through secondary mutations in EGFR or Met amplification. Drug resistance can also be mediated by expression of pluripotency transcription factors, such as OCT4, SOX2 and NANOG that decrease terminal differentiation. In this study, we investigated the expression and role of SOX2 in model systems of EGFR mutant tumors. Materials and Methods Immunoblotting or immunohistochemistry was used to assess expression of pluripotency transcription factors in lungs of transgenic mice or in human NSCLC cell lines. Expression of SOX2 was reduced by shRNA knockdown, and response to erlotinib and cellular proliferation were assessed. Results and Conclusion Induction of mutant EGFR in transgenic CCSP-rtTA/TetO-EGFRL858R/T790M mice correlated with increased OCT4 and SOX2 expression in lung tissue prior to tumor development. Established lung tumors retained SOX2 expression. To assess a role for SOX2 in tumorigenesis, a panel of NSCLC cell lines with activating EGFR mutations was assessed for SOX2 expression. Two of six cell lines with mutant EGFR showed detectable SOX2 levels, suggesting SOX2 expression did not correlate with EGFR mutation status. To assess the role of SOX2 in these cell lines, HCC827 and H1975 cells were infected with lentivirus containing SOX2 shRNA. Knockdown of SOX2 decreased proliferation in both cell lines and increased sensitivity to erlotinib in HCC827 cells. Because constitutive activation of the PI3K/Akt pathway is associated with EGFR TKI resistance, cells were treated with PI3K/AKT inhibitors and expression of SOX2 was examined. PI3K/Akt inhibitors decreased SOX2 expression in a time-dependent manner. These data suggest targeting SOX2 may provide therapeutic benefit in the subset of EGFR-mutant tumors with high constitutive levels of SOX2, and that until more direct means of inhibiting SOX2 are developed, PI3K/Akt inhibitors might be useful to inhibit SOX2

  8. Boussignac CPAP system for brain death confirmation with apneic test in case of acute lung injury/adult respiratory distress syndrome – series of cases

    PubMed Central

    Wieczorek, Andrzej; Gaszynski, Tomasz

    2015-01-01

    Introduction There are some patients with severe respiratory disturbances like adult respiratory distress syndrome (ARDS) and suspicion of brain death, for whom typical performance of the apneic test is difficult to complete because of quick desaturation and rapid deterioration without effective ventilation. To avoid failure of brain death confirmation and possible loss of organ donation another approach to apneic test is needed. We present two cases of patients with clinical symptoms of brain death, with lung pathology (acute lung injury, ARDS, lung embolism and lung infection), in whom apneic tests for recognizing brain death were difficult to perform. During typical performance of apneic test involving the use of oxygen catheter for apneic oxygenation we observed severe desaturation with growing hypotension and hemodynamic destabilization. But with the use of Boussignac CPAP system all necessary tests were successfully completed, confirming the patient’s brain death, which gave us the opportunity to perform procedures for organ donation. The main reason of apneic test difficulties was severe gas exchange disturbances secondary to ARDS. Thus lack of positive end expiratory pressure during classical performance of apneic test leads to quick desaturation and rapid hemodynamic deterioration, limiting the observation period below dedicated at least 10-minute interval. Conclusion The Boussignac CPAP system may be an effective tool for performing transparent apneic test in case of serious respiratory disturbances, especially in the form of acute lung injury or ARDS. PMID:26124664

  9. Antigen-pulsed bone marrow derived and pulmonary dendritic cells promote Th2 cell responses and immunopathology in lungs during the pathogenesis of murine mycoplasma pneumonia1

    PubMed Central

    Dobbs, Nicole A.; Zhou, Xia; Pulse, Mark; Hodge, Lisa M.; Schoeb, Trenton R.; Simecka, Jerry W.

    2014-01-01

    Mycoplasmas are a common cause of pneumonia in humans and animals, and attempts to create vaccines have not only failed to generate protective host responses, but exacerbated the disease. Mycoplasma pulmonis causes a chronic inflammatory lung disease resulting from a persistent infection, similar to other mycoplasma respiratory diseases. Using this model, Th1 subsets promote resistance to mycoplasma disease and infection, while Th2 responses contribute to immunopathology. The purpose of these studies was to evaluate the capacity of cytokine differentiated dendritic cells (DC) populations to influence the generation of protective and/or pathologic immune responses during M. pulmonis respiratory disease in BALB/c mice. We hypothesized that intratracheal inoculation of mycoplasma antigen-pulsed bone marrow derived dendritic cells (BMDC) could result in the generation of protective T cell responses during mycoplasma infection. However, intratracheal inoculation (priming) of mice with antigen-pulsed DCs resulted enhanced pathology in the recipient mice when challenged with mycoplasma. Inoculation of immunodeficient SCID mice with antigen-pulsed DCs demonstrated that this effect was dependent on lymphocyte responses. Similar results were observed when mice were primed with antigen-pulsed pulmonary, but not splenic, DCs. Lymphocytes generated in uninfected mice after the transfer of either antigen-pulsed BMDCs or pulmonary DCs were shown to be IL13+ Th2 cells, known to be associated with immunopathology. Thus, resident pulmonary DC most likely promote the development of immunopathology in mycoplasma disease through the generation of mycoplasma-specific Th2 responses. Vaccination strategies that disrupt or bypass this process could potentially result in a more effective vaccination. PMID:24973442

  10. Fine particulate matter, temperature, and lung function in healthy adults: findings from the HVNR study.

    PubMed

    Wu, Shaowei; Deng, Furong; Hao, Yu; Wang, Xin; Zheng, Chanjuan; Lv, Haibo; Lu, Xiuling; Wei, Hongying; Huang, Jing; Qin, Yu; Shima, Masayuki; Guo, Xinbiao

    2014-08-01

    Both ambient particulate air pollution and temperature alterations have been associated with adverse human health effects, but the interactive effect of ambient particulate and temperature on human health remains uncertain. The present study investigated the effects of ambient particulate matter with an aerodynamic diameter⩽2.5 μm (PM2.5) and temperature on human lung function simultaneously in a panel of 21 healthy university students from the Healthy Volunteer Natural Relocation (HVNR) study in the context of suburban/urban air pollution in Beijing, China. Each study subject used an electronic diary meter to record peak expiratory flow (PEF) and forced expiratory volume in 1s (FEV1) twice a day for 6 months in three periods before and after relocating from a suburban area to an urban area with changing ambient PM2.5 and temperature levels in Beijing. Hourly-averaged environmental data were obtained from central air-monitoring sites. Exposure effects were estimated using generalized linear mixed models controlling for potential confounders. Study subjects provided 6494 daily measurements on PEF and 6460 daily measurements on FEV1 over the study. PM2.5 was associated with reductions in evening PEF and morning/evening FEV1 whereas temperature was associated with reductions in morning PEF. The estimated PM2.5 effects on evening PEF and morning/evening FEV1 in the presence of high temperature were generally stronger than those in the presence of low temperature, and the estimated temperature effects on morning/evening PEF and morning FEV1 in the presence of high PM2.5 were also generally stronger than those in the presence of low PM2.5. For example, there were a 2.47% (95% confidence interval: -4.24, -0.69) reduction and a 0.78% (95% confidence interval: -1.59, 0.03) reduction in evening PEF associated with an interquartile range increase (78.7 μg/m(3)) in PM2.5 at 4-d moving average in the presence of high temperature (⩾21.6 °C) and low temperature (<21.6

  11. Household Air Pollution Exposure and Influence of Lifestyle on Respiratory Health and Lung Function in Belizean Adults and Children: A Field Study

    PubMed Central

    Kurti, Stephanie P.; Kurti, Allison N.; Emerson, Sam R.; Rosenkranz, Richard R.; Smith, Joshua R.; Harms, Craig A.; Rosenkranz, Sara K.

    2016-01-01

    Household air pollution (HAP) contributes to the global burden of disease. Our primary purpose was to determine whether HAP exposure was associated with reduced lung function and respiratory and non-respiratory symptoms in Belizean adults and children. Our secondary purpose was to investigate whether lifestyle (physical activity (PA) and fruit and vegetable consumption (FV)) is associated with reported symptoms. Belizean adults (n = 67, 19 Male) and children (n = 23, 6 Male) from San Ignacio Belize and surrounding areas participated in this cross-sectional study. Data collection took place at free walk-in clinics. Investigators performed initial screenings and administered questionnaires on (1) sources of HAP exposure; (2) reported respiratory and non-respiratory symptoms and (3) validated lifestyle questionnaires. Participants then performed pulmonary function tests (PFTs) and exhaled breath carbon monoxide (CO). There were no significant associations between HAP exposure and pulmonary function in adults. Increased exhaled CO was associated with a significantly lower forced expiratory volume in 1-s divided by forced vital capacity (FEV1/FVC) in children. Exposed adults experienced headaches, burning eyes, wheezing and phlegm production more frequently than unexposed adults. Adults who met PA guidelines were less likely to experience tightness and pressure in the chest compared to those not meeting guidelines. In conclusion, adults exposed to HAP experienced greater respiratory and non-respiratory symptoms, which may be attenuated by lifestyle modifications. PMID:27367712

  12. Household Air Pollution Exposure and Influence of Lifestyle on Respiratory Health and Lung Function in Belizean Adults and Children: A Field Study.

    PubMed

    Kurti, Stephanie P; Kurti, Allison N; Emerson, Sam R; Rosenkranz, Richard R; Smith, Joshua R; Harms, Craig A; Rosenkranz, Sara K

    2016-01-01

    Household air pollution (HAP) contributes to the global burden of disease. Our primary purpose was to determine whether HAP exposure was associated with reduced lung function and respiratory and non-respiratory symptoms in Belizean adults and children. Our secondary purpose was to investigate whether lifestyle (physical activity (PA) and fruit and vegetable consumption (FV)) is associated with reported symptoms. Belizean adults (n = 67, 19 Male) and children (n = 23, 6 Male) from San Ignacio Belize and surrounding areas participated in this cross-sectional study. Data collection took place at free walk-in clinics. Investigators performed initial screenings and administered questionnaires on (1) sources of HAP exposure; (2) reported respiratory and non-respiratory symptoms and (3) validated lifestyle questionnaires. Participants then performed pulmonary function tests (PFTs) and exhaled breath carbon monoxide (CO). There were no significant associations between HAP exposure and pulmonary function in adults. Increased exhaled CO was associated with a significantly lower forced expiratory volume in 1-s divided by forced vital capacity (FEV₁/FVC) in children. Exposed adults experienced headaches, burning eyes, wheezing and phlegm production more frequently than unexposed adults. Adults who met PA guidelines were less likely to experience tightness and pressure in the chest compared to those not meeting guidelines. In conclusion, adults exposed to HAP experienced greater respiratory and non-respiratory symptoms, which may be attenuated by lifestyle modifications. PMID:27367712

  13. Urinary Albumin-Creatinine Ratio, Estimated Glomerular Filtration Rate, and All-Cause Mortality Among US Adults With Obstructive Lung Function

    PubMed Central

    Ford, Earl S.

    2015-01-01

    BACKGROUND Elevated urinary albumin-creatinine ratio (UACR) and decreased estimated glomerular filtration rate (eGFR) predict all-cause mortality, but whether these markers of kidney damage and function do so in adults with obstructive lung function (OLF) is unclear. The objective of this study was to examine the associations between UACR and eGFR and all-cause mortality in adults with OLF. METHODS Data of 5,711 US adults aged 40 to 79 years, including 1,390 adults with any OLF who participated in the National Health and Nutrition Examination Survey III (1988–1994), were analyzed. Mortality follow-up was conducted through 2006. RESULTS During the median follow-up of 13.7 years, 650 adults with OLF died. After maximal adjustment, mean levels of UACR were higher in adults with moderate-severe OLF (7.5 mg/g; 95% CI, 6.7–8.5) than in adults with normal pulmonary function (6.2 mg/g; 95% CI, 5.8–6.6) (P = .003) and mild OLF (6.2 mg/g; 95% CI, 5.5–6.9) (P = .014). Adjusted mean levels of eGFR were lower in adults with moderate-severe OLF (87.6 mL/min/1.73 m2; < 95% CI, 86.0–89.1) than in adults with normal lung function (89.6 mL/min/1.73 m2; < 95% CI, 88.9–90.3) (P = .015). Among adults with OLF, hazard ratios for all-cause mortality increased as levels of UACR, modeled as categorical or continuous variables, increased (maximally adjusted hazard ratio for quintile 5 vs 1: 2.23; 95% CI, 1.56–3.18). eGFR, modeled as a continuous variable but not as quintiles, was significantly associated with mortality. CONCLUSIONS UACR and eGFR, in continuous form, were associated with all-cause mortality among US adults with OLF. PMID:25079336

  14. A randomized trial to assess the utility of preintubation adult fiberoptic bronchoscope assessment in patients for thoracic surgery requiring one-lung ventilation

    PubMed Central

    Amin, Nayana; Tarwade, Pritee; Shetmahajan, Madhavi; Pramesh, C. S.; Jiwnani, Sabita; Mahajan, Abhishek; Purandare, Nilendu

    2016-01-01

    Background: Confirmation of placement of Double lumen endobronchial tubes (DLETT) and bronchial blockers (BBs) with the pediatric fiberoptic bronchoscope (FOB) is the most preferred practice worldwide. Most centers possess standard adult FOBs, some, particularly in developing countries might not have access to the pediatric-sized devices. We have evaluated the role of preintubation airway assessment using the former, measuring the distance from the incisors to the carina and from carina to the left and right upper lobe bronchus in deciding the depth of insertion of the lung isolation device. Methods: The study was a randomized, controlled, double-blind trial consisting of 84 patients (all >18 years) undergoing thoracic surgery over a 12-month period. In the study group (n = 38), measurements obtained during FOB with the adult bronchoscope decided the depth of insertion of the lung isolation device. In the control group (n = 46), DLETTs and BBs were placed blindly followed by clinical confirmation by auscultation. Selection of the type and size of the lung isolation device was at the discretion of the anesthesiologist conducting the case. In all cases, pediatric FOB was used to confirm accurate placement of devices. Results: Of 84 patients (DLETT used in 76 patients; BB used in 8 patients), preintubation airway measurements significantly improved the success rate of optimal placement of lung isolation device from 25% (11/44) to 50% (18/36) (P = 0.04). Our incidence of failed device placement at initial insertion was 4.7% (4/84). Incidence of malposition was 10% (8/80) with 4 cases in each group. The incidence of suboptimal placement was lower in the study group at 38.9% (14/36) versus 65.9% (29/44). Conclusions: Preintubation airway measurements with the adult FOB reduces airway manipulations and improves the success rate of optimal placement of DLETT and BB. PMID:27052065

  15. Reliable Genetic Labeling of Adult-Born Dentate Granule Cells Using Ascl1CreERT2 and GlastCreERT2 Murine Lines

    PubMed Central

    Yang, Sung M.; Alvarez, Diego D.

    2015-01-01

    Newly generated dentate granule cells (GCs) are relevant for input discrimination in the adult hippocampus. Yet, their precise contribution to information processing remains unclear. To address this question, it is essential to develop approaches to precisely label entire cohorts of adult-born GCs. In this work, we used genetically modified mice to allow conditional expression of tdTomato (Tom) in adult-born GCs and characterized their development and functional integration. Ascl1CreERT2;CAGfloxStopTom and GlastCreERT2;CAGfloxStopTom mice resulted in indelible expression of Tom in adult neural stem cells and their lineage upon tamoxifen induction. Whole-cell recordings were performed to measure intrinsic excitability, firing behavior, and afferent excitatory connectivity. Developing GCs were also staged by the expression of early and late neuronal markers. The slow development of adult-born GCs characterized here is consistent with previous reports using retroviral approaches that have revealed that a mature phenotype is typically achieved after 6–8 weeks. Our findings demonstrate that Ascl1CreERT2 and GlastCreERT2 mouse lines enable simple and reliable labeling of adult-born GC lineages within restricted time windows. Therefore, these mice greatly facilitate tagging new neurons and manipulating their activity, required for understanding adult neurogenesis in the context of network remodeling, learning, and behavior. SIGNIFICANCE STATEMENT Our study shows that Ascl1CreERT2 and GlastCreERT2 mice lines can be used to label large cohorts of adult-born dentate granule cells with excellent time resolution. Neurons labeled in this manner display developmental and functional profiles that are in full agreement with previous findings using thymidine analogs and retroviral labeling, thus providing an alternative approach to tackle fundamental questions on circuit remodeling. Because of the massive neuronal targeting and the simplicity of this method, genetic labeling will

  16. Lung histopathology, radiography, high-resolution computed tomography, and bronchio-alveolar lavage cytology are altered by Toxocara cati infection in cats and is independent of development of adult intestinal parasites.

    PubMed

    Dillon, A Ray; Tillson, D M; Hathcock, J; Brawner, B; Wooldridge, A; Cattley, R; Welles, B; Barney, S; Lee-Fowler, T; Botzman, L; Sermersheim, M; Garbarino, R

    2013-04-15

    This study presents clinical findings after oral ingestion of Toxocara cati eggs which resulted in rapid pulmonary lung migration and parenchymal disease, noted on clinically relevant diagnostic methods. Further, the study investigated the efficacy of pre-infection applications of preventative medication on larval migration through the lungs. A third aim of the study was to determine if adult cats infected with T. cati developed lung disease. Cats in infected groups were administered five oral doses of L3 T. cati larvae. Four-month-old specific pathogen free (SPF) kittens were divided into three groups (six per group): an infected untreated group, an uninfected untreated control group, and an infected treated group (topical moxidectin and imidacloprid, Advantage Multi for Cats, Bayer Healthcare LLC). Six 2- to 3-year-old adult multiparous female SPF cats were an infected untreated adult group. The cats were evaluated by serial CBCs, bronchial-alveolar lavage (BAL), fecal examinations, thoracic radiographs, and thoracic computed tomography (CT) scans and were euthanized 65 days after the initial infection. Adult T. cati were recovered in infected untreated kittens (5/6) and infected untreated adults (5/6) in numbers consistent with natural infections. Eggs were identified in the feces of most but not all cats with adult worm infections. No adult worms were identified in the uninfected controls or the infected treated group. All cats in the infected groups, including treated cats and untreated cats without adult worms, had lung pathology based on evaluation of radiography, CT scans, and histopathology. The infected cats demonstrated a transient peripheral eosinophilia and marked eosinophilic BAL cytology, but normal bronchial reactivity based on in vivo CT and in vitro ring studies. Lung lesions initially identified by CT on day 11 were progressive. Thoracic radiographs in infected cats had a diffuse bronchial-interstitial pattern and enlarged pulmonary arteries

  17. Effect of Shisha (Waterpipe) Smoking on Lung Functions and Fractional Exhaled Nitric Oxide (FeNO) among Saudi Young Adult Shisha Smokers

    PubMed Central

    Meo, Sultan Ayoub; AlShehri, Khaled Ahmed; AlHarbi, Bader Bandar; Barayyan, Omar Rayyan; Bawazir, Abdulrahman Salem; Alanazi, Omar Abdulmohsin; Al-Zuhair, Ahmed Raad

    2014-01-01

    Shisha (waterpipe) smoking is becoming a more prevalent form of tobacco consumption, and is growing worldwide, particularly among the young generation in the Middle East. This cross-sectional study aimed to determine the effects of shisha smoking on lung functions and Fractional Exhaled Nitric Oxide (FeNO) among Saudi young adults. We recruited 146 apparently healthy male subjects (73 control and 73 shisha smokers). The exposed group consisted of male shisha smokers, with mean age 21.54 ± 0.41 (mean ± SEM) range 17–33 years. The control group consisted of similar number (73) of non-smokers with mean age 21.36 ± 0.19 (mean ± SEM) range 18–28 years. Between the groups we considered the factors like age, height, weight, gender, ethnicity and socioeconomic status to estimate the impact of shisha smoking on lung function and fractional exhaled nitric oxide. Lung function test was performed by using an Spirovit-SP-1 Electronic Spirometer. Fractional Exhaled Nitric Oxide (FeNO) was measured by using Niox Mino. A significant decrease in lung function parameters FEV1, FEV1/FVC Ratio, FEF-25%, FEF-50%, FEF-75% and FEF-75-85% was found among shisha smokers relative to their control group. There was also a significant reduction in the Fractional Exhaled Nitric Oxide among Shisha smokers compared to control group. PMID:25233010

  18. Effect of shisha (waterpipe) smoking on lung functions and fractional exhaled nitric oxide (FeNO) among Saudi young adult shisha smokers.

    PubMed

    Meo, Sultan Ayoub; AlShehri, Khaled Ahmed; AlHarbi, Bader Bandar; Barayyan, Omar Rayyan; Bawazir, Abdulrahman Salem; Alanazi, Omar Abdulmohsin; Al-Zuhair, Ahmed Raad

    2014-09-01

    Shisha (waterpipe) smoking is becoming a more prevalent form of tobacco consumption, and is growing worldwide, particularly among the young generation in the Middle East. This cross-sectional study aimed to determine the effects of shisha smoking on lung functions and Fractional Exhaled Nitric Oxide (FeNO) among Saudi young adults. We recruited 146 apparently healthy male subjects (73 control and 73 shisha smokers). The exposed group consisted of male shisha smokers, with mean age 21.54 ± 0.41 (mean ± SEM) range 17-33 years. The control group consisted of similar number (73) of non-smokers with mean age 21.36 ± 0.19 (mean ± SEM) range 18-28 years. Between the groups we considered the factors like age, height, weight, gender, ethnicity and socioeconomic status to estimate the impact of shisha smoking on lung function and fractional exhaled nitric oxide. Lung function test was performed by using an Spirovit-SP-1 Electronic Spirometer. Fractional Exhaled Nitric Oxide (FeNO) was measured by using Niox Mino. A significant decrease in lung function parameters FEV1, FEV1/FVC Ratio, FEF-25%, FEF-50%, FEF-75% and FEF-75-85% was found among shisha smokers relative to their control group. There was also a significant reduction in the Fractional Exhaled Nitric Oxide among Shisha smokers compared to control group. PMID:25233010

  19. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2'3'-cGAMP, induces M2 macrophage repolarization.

    PubMed

    Downey, Charlene M; Aghaei, Mehrnoosh; Schwendener, Reto A; Jirik, Frank R

    2014-01-01

    The vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a murine agonist of the stimulator of interferon genes (STING), appears to target the tumor vasculature primarily as a result of stimulating pro-inflammatory cytokine production from tumor-associated macrophages (TAMs). Since there were relatively few reports of DMXAA effects in genetically-engineered mutant mice (GEMM), and models of non-small cell lung cancer (NSCLC) in particular, we examined both the effectiveness and macrophage dependence of DMXAA in various NSCLC models. The DMXAA responses of primary adenocarcinomas in K-rasLA1/+ transgenic mice, as well as syngeneic subcutaneous and metastatic tumors, generated by a p53R172HΔg/+; K-rasLA1/+ NSCLC line (344SQ-ELuc), were assessed both by in vivo bioluminescence imaging as well as by histopathology. Macrophage-dependence of DMXAA effects was explored by clodronate liposome-mediated TAM depletion. Furthermore, a comparison of the vascular structure between subcutaneous tumors and metastases was carried out using micro-computed tomography (micro-CT). Interestingly, in contrast to the characteristic hemorrhagic necrosis produced by DMXAA in 344SQ-ELuc subcutaneous tumors, this agent failed to cause hemorrhagic necrosis of either 344SQ-ELuc-derived metastases or autochthonous K-rasLA1/+ NSCLCs. In addition, we found that clodronate liposome-mediated depletion of TAMs in 344SQ-ELuc subcutaneous tumors led to non-hemorrhagic necrosis due to tumor feeding-vessel occlusion. Since NSCLC were comprised exclusively of TAMs with anti-inflammatory M2-like phenotype, the ability of DMXAA to re-educate M2-polarized macrophages was examined. Using various macrophage phenotypic markers, we found that the STING agonists, DMXAA and the non-canonical endogenous cyclic dinucleotide, 2'3'-cGAMP, were both capable of re-educating M2 cells towards an M1 phenotype. Our findings demonstrate that the choice of preclinical model and the anatomical site of a

  20. DMXAA Causes Tumor Site-Specific Vascular Disruption in Murine Non-Small Cell Lung Cancer, and like the Endogenous Non-Canonical Cyclic Dinucleotide STING Agonist, 2′3′-cGAMP, Induces M2 Macrophage Repolarization

    PubMed Central

    Downey, Charlene M.; Aghaei, Mehrnoosh; Schwendener, Reto A.; Jirik, Frank R.

    2014-01-01

    The vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a murine agonist of the stimulator of interferon genes (STING), appears to target the tumor vasculature primarily as a result of stimulating pro-inflammatory cytokine production from tumor-associated macrophages (TAMs). Since there were relatively few reports of DMXAA effects in genetically-engineered mutant mice (GEMM), and models of non-small cell lung cancer (NSCLC) in particular, we examined both the effectiveness and macrophage dependence of DMXAA in various NSCLC models. The DMXAA responses of primary adenocarcinomas in K-rasLA1/+ transgenic mice, as well as syngeneic subcutaneous and metastatic tumors, generated by a p53R172HΔg/+; K-rasLA1/+ NSCLC line (344SQ-ELuc), were assessed both by in vivo bioluminescence imaging as well as by histopathology. Macrophage-dependence of DMXAA effects was explored by clodronate liposome-mediated TAM depletion. Furthermore, a comparison of the vascular structure between subcutaneous tumors and metastases was carried out using micro-computed tomography (micro-CT). Interestingly, in contrast to the characteristic hemorrhagic necrosis produced by DMXAA in 344SQ-ELuc subcutaneous tumors, this agent failed to cause hemorrhagic necrosis of either 344SQ-ELuc-derived metastases or autochthonous K-rasLA1/+ NSCLCs. In addition, we found that clodronate liposome-mediated depletion of TAMs in 344SQ-ELuc subcutaneous tumors led to non-hemorrhagic necrosis due to tumor feeding-vessel occlusion. Since NSCLC were comprised exclusively of TAMs with anti-inflammatory M2-like phenotype, the ability of DMXAA to re-educate M2-polarized macrophages was examined. Using various macrophage phenotypic markers, we found that the STING agonists, DMXAA and the non-canonical endogenous cyclic dinucleotide, 2′3′-cGAMP, were both capable of re-educating M2 cells towards an M1 phenotype. Our findings demonstrate that the choice of preclinical model and the anatomical site of a

  1. Endotoxin Inhalation Alters Lung Development in Neonatal Mice

    PubMed Central

    Kulhankova, Katarina; George, Caroline L.S.; Kline, Joel N.; Darling, Melissa; Thorne, Peter S.

    2012-01-01

    Background Childhood asthma is a significant public health problem. Epidemiologic evidence suggests an association between childhood asthma exacerbations and early life exposure to environmental endotoxin. Although the pathogenesis of endotoxin-induced adult asthma is well studied, questions remain about the impact of environmental endotoxin on pulmonary responsiveness in early life. Methods We developed a murine model of neonatal/juvenile endotoxin exposures approximating those in young children and evaluated the lungs inflammatory and remodeling responses. Results Persistent lung inflammation induced by the inhalation of endotoxin in early life was demonstrated by the influx of inflammatory cells and pro-inflammatory mediators to the airways and resulted in abnormal alveolarization. Conclusions Results of this study advance the understanding of the impact early life endotoxin inhalation has on the lower airways, and demonstrates the importance of an experimental design that approximates environmental exposures as they occur in young children. PMID:22576659

  2. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function

    PubMed Central

    Graves, Christina L.; Harden, Scott W.; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J.; Wallet, Shannon M.

    2015-01-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. PMID:25193428

  3. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures.

    PubMed

    Uhl, Franziska E; Vierkotten, Sarah; Wagner, Darcy E; Burgstaller, Gerald; Costa, Rita; Koch, Ina; Lindner, Michael; Meiners, Silke; Eickelberg, Oliver; Königshoff, Melanie

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is characterised by a progressive loss of lung tissue. Inducing repair processes within the adult diseased lung is of major interest and Wnt/β-catenin signalling represents a promising target for lung repair. However, the translation of novel therapeutic targets from model systems into clinical use remains a major challenge.We generated murine and patient-derived three-dimensional (3D) ex vivo lung tissue cultures (LTCs), which closely mimic the 3D lung microenvironment in vivo. Using two well-known glycogen synthase kinase-3β inhibitors, lithium chloride (LiCl) and CHIR 99021 (CT), we determined Wnt/β-catenin-driven lung repair processes in high spatiotemporal resolution using quantitative PCR, Western blotting, ELISA, (immuno)histological assessment, and four-dimensional confocal live tissue imaging.Viable 3D-LTCs exhibited preserved lung structure and function for up to 5 days. We demonstrate successful Wnt/β-catenin signal activation in murine and patient-derived 3D-LTCs from COPD patients. Wnt/β-catenin signalling led to increased alveolar epithelial cell marker expression, decreased matrix metalloproteinase-12 expression, as well as altered macrophage activity and elastin remodelling. Importantly, induction of surfactant protein C significantly correlated with disease stage (per cent predicted forced expiratory volume in 1 s) in patient-derived 3D-LTCs.Patient-derived 3D-LTCs represent a valuable tool to analyse potential targets and drugs for lung repair. Enhanced Wnt/β-catenin signalling attenuated pathological features of patient-derived COPD 3D-LTCs. PMID:25929950

  4. Threshold Estimation of Ultrasound-Induced Lung Hemorrhage in Adult Rabbits and Comparison of Thresholds in Mice, Rats, Rabbits and Pigs

    PubMed Central

    O'Brien, William D.; Yang, Yan; Simpson, Douglas G.; Frizzell, Leon A.; Miller, Rita J.; Blue, James P.; Zachary, James F.

    2007-01-01

    The objective of this study was to assess the threshold and superthreshold behavior of ultrasound (US)-induced lung hemorrhage in adult rabbits to gain greater understanding about species dependency. A total of 99 76 ± 7.6-d-old 2.4 ± 0.14-kg New Zealand White rabbits were used. Exposure conditions were 5.6-MHz, 10-s exposure duration, 1-kHz PRF and 1.1-μs pulse duration. The in situ (at the pleural surface) peak rarefactional pressure, pr(in situ), ranged between 1.5 and 8.4 MPa, with nine acoustic US exposure groups plus a sham exposure group. Rabbits were assigned randomly to the 10 groups, each with 10 rabbits, except for one group that had nine rabbits. Rabbits were exposed bilaterally with the order of exposure (left then right lung, or right then left lung) and acoustic pressure both randomized. Individuals involved in animal handling, exposure and lesion scoring were blinded to the exposure condition. Probit regression analysis was used to examine the dependence of the lesion occurrence on in situ peak rarefactional pressure and order of exposure (first vs. second). Likewise, lesion depth and lesion root surface area were analyzed using Gaussian tobit regression analysis. Neither probability of a lesion nor lesion size measurements was found to be statistically dependent on the order of exposure after the effect of pr(in situ) was considered. Also, a significant correlation was not detected between the two exposed lung sides on the same rabbit in either lesion occurrence or size measures. The pr(in situ) threshold estimates (in MPa) were similar to each other across occurrence (3.54 ± 0.78), depth (3.36 ± 0.73 and surface area (3.43 ± 0.77) of lesions. Using the same experimental techniques and statistical approach, great consistency of thresholds was demonstrated across three species (mouse, rat and rabbit). Further, there were no differences in the biologic mechanism of injury induced by US and US-induced lesions were similar in morphology in all

  5. Epithelial Interactions and Local Engraftment of Lung-Resident Mesenchymal Stem Cells

    PubMed Central

    Badri, Linda; Walker, Natalie M.; Ohtsuka, Takashi; Wang, Zhuo; Delmar, Mario; Flint, Andrew; Peters-Golden, Marc; Toews, Galen B.; Pinsky, David J.; Krebsbach, Paul H.

    2011-01-01

    Multipotent mesenchymal progenitor cells, termed “mesenchymal stem cells” (MSCs), have been demonstrated to reside in human adult lungs. However, there is little information regarding the associations of these local mesenchymal progenitors with other resident somatic cells and their potential for therapeutic use. Here we provide in vivo and in vitro evidence for the ability of human adult lung–resident MSCs (LR-MSCs) to interact with the local epithelial cells. The in vivo retention and localization of human LR-MSCs in an alveolar microenvironment was investigated by placing PKH-26 or DsRed lentivirus–labeled human LR-MSCs in the lungs of immunodeficient (SCID) mice. At 3 weeks after intratracheal administration, 19.3 ± 3.21% of LR-MSCs were recovered, compared with 3.47 ± 0.51% of control fibroblasts, as determined by flow cytometry. LR-MSCs were found to persist in murine lungs for up to 6 months and demonstrated preferential localization to the corners of the alveoli in close proximity to type II alveolar epithelial cells, the progenitor cells of the alveolar epithelium. In vitro, LR-MSCs established gap junction communications with lung alveolar and bronchial epithelial cells and demonstrated an ability to secrete keratinocyte growth factor, an important modulator of epithelial cell proliferation and differentiation. Gap junction communications were also demonstrable between LR-MSCs and resident murine cells in vivo. This study demonstrates, for the first time, an ability of tissue-specific MSCs to engraft in their organ of origin and establishes a pathway of bidirectional interaction between these mesenchymal progenitors and adult somatic epithelial cells in the lung. PMID:21378261

  6. Monte Carlo estimation of radiation dose in organs of female and male adult phantoms due to FDG-F18 absorbed in the lungs

    NASA Astrophysics Data System (ADS)

    Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.

    2014-03-01

    The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.

  7. Elk3 deficiency causes transient impairment in post-natal retinal vascular development and formation of tortuous arteries in adult murine retinae.

    PubMed

    Weinl, Christine; Wasylyk, Christine; Garcia Garrido, Marina; Sothilingam, Vithiyanjali; Beck, Susanne C; Riehle, Heidemarie; Stritt, Christine; Roux, Michel J; Seeliger, Mathias W; Wasylyk, Bohdan; Nordheim, Alfred

    2014-01-01

    Serum Response Factor (SRF) fulfills essential roles in post-natal retinal angiogenesis and adult neovascularization. These functions have been attributed to the recruitment by SRF of the cofactors Myocardin-Related Transcription Factors MRTF-A and -B, but not the Ternary Complex Factors (TCFs) Elk1 and Elk4. The role of the third TCF, Elk3, remained unknown. We generated a new Elk3 knockout mouse line and showed that Elk3 had specific, non-redundant functions in the retinal vasculature. In Elk3(-/-) mice, post-natal retinal angiogenesis was transiently delayed until P8, after which it proceeded normally. Interestingly, tortuous arteries developed in Elk3(-/-) mice from the age of four weeks, and persisted into late adulthood. Tortuous vessels have been observed in human pathologies, e.g. in ROP and FEVR. These human disorders were linked to altered activities of vascular endothelial growth factor (VEGF) in the affected eyes. However, in Elk3(-/-) mice, we did not observe any changes in VEGF or several other potential confounding factors, including mural cell coverage and blood pressure. Instead, concurrent with the post-natal transient delay of radial outgrowth and the formation of adult tortuous arteries, Elk3-dependent effects on the expression of Angiopoietin/Tie-signalling components were observed. Moreover, in vitro microvessel sprouting and microtube formation from P10 and adult aortic ring explants were reduced. Collectively, these results indicate that Elk3 has distinct roles in maintaining retinal artery integrity. The Elk3 knockout mouse is presented as a new animal model to study retinal artery tortuousity in mice and human patients. PMID:25203538

  8. Elk3 Deficiency Causes Transient Impairment in Post-Natal Retinal Vascular Development and Formation of Tortuous Arteries in Adult Murine Retinae

    PubMed Central

    Weinl, Christine; Wasylyk, Christine; Garcia Garrido, Marina; Sothilingam, Vithiyanjali; Beck, Susanne C.; Riehle, Heidemarie; Stritt, Christine; Roux, Michel J.; Seeliger, Mathias W.; Wasylyk, Bohdan; Nordheim, Alfred

    2014-01-01

    Serum Response Factor (SRF) fulfills essential roles in post-natal retinal angiogenesis and adult neovascularization. These functions have been attributed to the recruitment by SRF of the cofactors Myocardin-Related Transcription Factors MRTF-A and -B, but not the Ternary Complex Factors (TCFs) Elk1 and Elk4. The role of the third TCF, Elk3, remained unknown. We generated a new Elk3 knockout mouse line and showed that Elk3 had specific, non-redundant functions in the retinal vasculature. In Elk3(−/−) mice, post-natal retinal angiogenesis was transiently delayed until P8, after which it proceeded normally. Interestingly, tortuous arteries developed in Elk3(−/−) mice from the age of four weeks, and persisted into late adulthood. Tortuous vessels have been observed in human pathologies, e.g. in ROP and FEVR. These human disorders were linked to altered activities of vascular endothelial growth factor (VEGF) in the affected eyes. However, in Elk3(−/−) mice, we did not observe any changes in VEGF or several other potential confounding factors, including mural cell coverage and blood pressure. Instead, concurrent with the post-natal transient delay of radial outgrowth and the formation of adult tortuous arteries, Elk3-dependent effects on the expression of Angiopoietin/Tie-signalling components were observed. Moreover, in vitro microvessel sprouting and microtube formation from P10 and adult aortic ring explants were reduced. Collectively, these results indicate that Elk3 has distinct roles in maintaining retinal artery integrity. The Elk3 knockout mouse is presented as a new animal model to study retinal artery tortuousity in mice and human patients. PMID:25203538

  9. The in vitro immunoregulatory properties of cultured murine trophoblast are not unique to this tissue.

    PubMed Central

    Drake, B L; Rodger, J C

    1985-01-01

    Primary cultures of murine trophoblast (ectoplacental cone and mid-term placenta) and their supernatants were found to inhibit in vitro lymphocyte proliferative responses to concanavalin A (77-87%) and allo-antigen (52-84%). However, cultures and cell-conditioned media from non-trophoblastic tissues (embryonic sac, adult lung and liver, and B16 melanoma line) produced similar results. In all cases, the inhibitory effects were not due to reduced cell viability. Addition of anti-progesterone serum to the ectoplacental cone-lymphocyte co-cultures, at a concentration known to bind the available trophoblast-derived progesterone, did not overcome the observed suppression. The results clearly demonstrate that a range of cultured cell types, and their conditioned media, will suppress immune responses in vitro. We conclude that cultured trophoblast is not an appropriate model for studies of placental immunoregulation. PMID:3159651

  10. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta.

    PubMed

    Panaroni, Cristina; Gioia, Roberta; Lupi, Anna; Besio, Roberta; Goldstein, Steven A; Kreider, Jaclynn; Leikin, Sergey; Vera, Juan Carlos; Mertz, Edward L; Perilli, Egon; Baruffaldi, Fabio; Villa, Isabella; Farina, Aurora; Casasco, Marco; Cetta, Giuseppe; Rossi, Antonio; Frattini, Annalisa; Marini, Joan C; Vezzoni, Paolo; Forlino, Antonella

    2009-07-01

    Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [alpha1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases. PMID:19414862

  11. Dose-response comparisons of five lung surfactant factor (LSF) preparations in an animal model of adult respiratory distress syndrome (ARDS).

    PubMed Central

    Häfner, D.; Beume, R.; Kilian, U.; Krasznai, G.; Lachmann, B.

    1995-01-01

    1. We have examined the effects of five different lung surfactant factor (LSF) preparations in the rat lung lavage model. In this model repetitive lung lavage leads to lung injury with some similarities to adult respiratory distress syndrome with poor gas exchange and protein leakage into the alveolar spaces. These pathological sequelae can be reversed by LSF instillation soon after lavage. 2. The tested LSF preparations were: two bovine: Survanta and Alveofact: two synthetic: Exosurf and a protein-free phospholipid based LSF (PL-LSF) and one Recombinant LSF at doses of 25, 50 and 100 mg kg-1 body weight and an untreated control group. 3. Tracheotomized rats (10-12 per dose) were pressure-controlled ventilated (Siemens Servo Ventilator 900C) with 100% oxygen at a respiratory rate of 30 breaths min-1, inspiration expiration ratio of 1:2, peak inspiratory pressure (PIP) of 28 cmH2O at positive end-expiratory pressure (PEEP) of 8 cmH2O. Two hours after LSF administration, PEEP and in parallel PIP was reduced from 8 to 6 (1st reduction), from 6 to 3 (2nd reduction) and from 3 to 0 cmH2O (3rd reduction). 4. Partial arterial oxygen pressure (PaO2, mmHg) at 5 min and 120 min after LSF administration and during the 2nd PEEP reduction (PaO2(PEEP23/3)) were used for statistical comparison. All LSF preparations caused a dose-dependent increase for the PaO2(120'), whereas during the 2nd PEEP reduction only bovine and recombinant LSF exhibited dose-dependency. Exosurf did not increase PaO2 after administration of the highest dose. At the highest dose Exosurf exerted no further improvement but rather a tendency to relapse.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 Figure 4 PMID:7582456

  12. EphB2 and EphB3 play an important role in the lymphoid seeding of murine adult thymus.

    PubMed

    Alfaro, David; García-Ceca, Javier; Farias-de-Oliveira, Desio A; Terra-Granado, Eugenia; Montero-Herradón, Sara; Cotta-de-Almeida, Vinicius; Savino, Wilson; Zapata, Agustín

    2015-12-01

    Adult thymuses lacking either ephrin type B receptor 2 (EphB2) or EphB3, or expressing a truncated form of EphB2, the forward signal-deficient EphB2LacZ, have low numbers of early thymic progenitors (ETPs) and are colonized in vivo by reduced numbers of injected bone marrow (BM) lineage-negative (Lin(-)) cells. Hematopoietic progenitors from these EphB mutants showed decreased capacities to colonize wild type (WT) thymuses compared with WT precursors, with EphB2(-/-) cells exhibiting the greatest reduction. WT BM Lin(-) cells also showed decreased colonizing capacity into mutant thymuses. The reduction was also more severe in EphB2(-/-) host thymuses, with a less severe phenotype in the EphB2LacZ thymus. These results suggest a major function for forward signaling through EphB2 and, to a lesser extent, EphB3, in either colonizing progenitor cells or thymic stromal cells, for in vivo adult thymus recruitment. Furthermore, the altered expression of the molecules involved in thymic colonization that occurs in the mutant thymus correlates with the observed colonizing capacities of different mutant mice. Reduced production of CCL21 and CCL25 occurred in the thymus of the 3 EphB-deficient mice, but their expression, similar to that of P-selectin, on blood vessels, the method of entry of progenitor cells into the vascular thymus, only showed a significant reduction in EphB2(-/-) and EphB3(-/-) thymuses. Decreased migration into the EphB2(-/-) thymuses correlated also with reduced expression of both ephrinB1 and ephrinB2, without changes in the EphB2LacZ thymuses. In the EphB3(-/-) thymuses, only ephrinB1 expression appeared significantly diminished, confirming the relevance of forward signals mediated by the EphB2-ephrinB1 pair in cell recruitment into the adult thymus. PMID:25810451

  13. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation

    PubMed Central

    Choi, Nahyun; Zhang, Boyu; Zhang, Li; Ittmann, Michael; Xin, Li

    2012-01-01

    Summary The prostate epithelial lineage hierarchy and the cellular origin for prostate cancer remain inadequately defined. Using a lineage tracing approach, we show that adult rodent prostate basal and luminal cells are independently self-sustained in vivo. Disrupting the tumor suppressor Pten in either lineage led to prostate cancer initiation. However, the cellular composition and onset dynamics of the resulting tumors are distinctive. Prostate luminal cells are more responsive to Pten null-induced mitogenic signaling. In contrast, basal cells are resistant to direct transformation. Instead, loss of Pten activity induces the capability of basal cells to differentiate into transformation-competent luminal cells. Our study suggests that deregulation of epithelial differentiation is a critical step for the initiation of prostate cancers of basal cell origin. PMID:22340597

  14. Vaccination of adult and newborn mice of a resistant strain (C57BL/6J) against challenge with leukemias induced by Moloney murine leukemia virus

    SciTech Connect

    Reif, A.E.

    1985-01-01

    Adult or newborn C57BL/6J mice were immunized with isogenic Moloney strain MuLV-induced leukemia cells irradiated with 10,000 rads or treated with low concentrations of formalin. Groups of immunized and control mice were challenged with a range of doses of viable leukemia cells, and tumor deaths were recorded for 90 days after challenge. Then, the doses of challenge cells which produced 50% tumor deaths were calculated for immunized and control mice. The logarithm of their ratio quantified the degree of protection provided by immunization. For adult C57BL/6J mice, a single immunization with MuLV-induced leukemia cells was not effective; either cells plus Bacillus Calmette-Guerin or Corynebacterium parvum, or else two immunizations with irradiated leukemia cells were needed to produce statistically significant increases in the values of the doses of challenge cells which produced 50% tumor deaths. Cross-protection was obtained by immunization with other isogenic MuLV-induced leukemias, but not by immunization with isogenic carcinogen-induced tumors or with an isogenic spontaneous leukemia. For newborn mice, a single injection of irradiated leukemia cells provided 1.3 to 1.5 logs of protection, and admixture of B. Calmette-Guerin or C. parvum increased this protection to 2.4 to 2.7 logs. Since irradiated and frozen-thawed MuLV-induced leukemia cells contained viable MuLV, leukemia cells treated with 0.5 or 1.0% formalin were tested as an alternative. A single injection of formalin-treated isogenic leukemia cells admixed with C. parvum provided between 1.7 and 2.8 logs of protection. These results demonstrate that a single vaccination of newborn animals against a highly antigenic virally induced leukemia produces strong protection against a subsequent challenge with viable leukemia cells.

  15. Postnatal development of the bronchiolar club cells of distal airways in the mouse lung: stereological and molecular biological studies.

    PubMed

    Karnati, Srikanth; Graulich, Tilman; Oruqaj, Gani; Pfreimer, Susanne; Seimetz, Michael; Stamme, Cordula; Mariani, Thomas J; Weissmann, Norbert; Mühlfeld, Christian; Baumgart-Vogt, Eveline

    2016-06-01

    Club (Clara) cells are nonciliated secretory epithelial cells present in bronchioles of distal pulmonary airways. So far, no information is available on the postnatal differentiation of club cells by a combination of molecular biological, biochemical, and stereological approaches in the murine lung. Therefore, the present study was designed to investigate the changes in the club cell secretory proteins (CC10, surfactant proteins A, B and D) and club cell abundance within the epithelium of bronchioles of distal airways during the postnatal development of the mouse lung. Perfusion-fixed murine lungs of three developmental stages (newborn, 15-day-old and adult) were used. Frozen, unfixed lungs were used for cryosectioning and subsequent laser-assisted microdissection of bronchiolar epithelial cells and RT-PCR analyses. High resolution analyses of the three-dimensional structures and composition of lung airways were obtained by scanning electron microscopy. Finally, using design-based stereology, the total and average club cell volume and the volume of secretory granules were quantified by light and transmission electron microscopy. Our results reveal that murine club cells are immature at birth and differentiate postnatally. Further, increase of the club cell volume and number of intracellular granules are closely correlated to the total lung volume enlargement. However, secretory granule density was only increased within the first 15 days of postnatal development. The differentiation is accompanied by a decrease in glycogen content, and a close positive relationship between CC10 expression and secretory granule abundance. Taken together, our data are consistent with the concept that the morphological and functional differentiation of club cells is a postnatal phenomenon. PMID:26796206

  16. UNIVERSAL RELATIONSHIP OF TOTAL LUNG DEPOSITION OF PARTICLES IN NORMAL ADULTS WITH PARTICLE SIZE AND BREATHING PATTERN

    EPA Science Inventory

    Particulate matter in the air is known for causing adverse health effects and yet estimating lung deposition dose is difficult because exposure conditions vary widely. We measured total deposition fraction (TDF) of monodisperse aerosols in the size range of 0.04 - 5 micron in dia...

  17. Cloning of murine ferrochelatase.

    PubMed Central

    Brenner, D A; Frasier, F

    1991-01-01

    Ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1) catalyzes the last step in the heme biosynthetic pathway, the chelation of ferrous iron and protoporphyrin to form heme. The activity of ferrochelatase is deficient in the inherited disease protoporphyria. In this study, murine ferrochelatase cDNAs were obtained by screening cDNA libraries with an oligonucleotide probe. The derived amino acid sequence of murine ferrochelatase has 47% identity with the recently cloned Saccharomyces cerevisiae ferrochelatase, but it is not significantly similar to other published sequences. Results of Southern blotting are consistent with a single murine ferrochelatase gene, while Northern blotting demonstrates two ferrochelatase transcripts in all tissues examined. The ferrochelatase protein and mRNAs have different relative concentrations in different tissues. The cloning of murine ferrochelatase cDNAs provides the basis for future studies on ferrochelatase gene expression and on the identification of the molecular defect in protoporphyria. Images PMID:1704134

  18. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  19. Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts.

    PubMed

    Chimenti, Isotta; Gaetani, Roberto; Barile, Lucio; Forte, Elvira; Ionta, Vittoria; Angelini, Francesco; Frati, Giacomo; Messina, Elisa; Giacomello, Alessandro

    2012-01-01

    The successful isolation and ex vivo expansion of resident cardiac stem/progenitor cells from human heart biopsies has allowed us to study their biological characteristics and their applications in therapeutic approaches for the repair of ischemic/infarcted heart, the preparation of tissue-engineered cardiac grafts and, possibly, the design of cellular kits for drug screening applications. From the first publication of the original method in 2004, several adjustments and slight changes have been introduced to optimize and adjust the procedure to the evolving experimental and translational needs. Moreover, due to the wide applicability of such a method (which is based on the exploitation of intrinsic functional properties of cells with regenerative properties that are present in most tissues), the key steps of this procedure have been used to derive several kinds of tissue-specific adult stem cells for preclinical or clinical purposes.In order to define the original procedure, complete with the up-to-date modifications introduced through the years, an exhaustive description of the current protocol is performed in this chapter, with particular attention in highlighting critical steps and troubleshoots. The procedure described here consists of modular steps, that could be employed to derive cells from any kind of tissue biopsy, and needs to be considered the gold standard of all the so-called "explant methods" or "cardiosphere methods," and it represents a milestone in the clinical translation of autologous cell therapy. PMID:22610568

  20. Effective treatment of a murine model of adult T-cell leukemia using 211At-7G7/B6 and its combination with unmodified anti-Tac (daclizumab) directed toward CD25.

    PubMed

    Zhang, Zhuo; Zhang, Meili; Garmestani, Kayhan; Talanov, Vladimir S; Plascjak, Paul S; Beck, Barbara; Goldman, Carolyn; Brechbiel, Martin W; Waldmann, Thomas A

    2006-08-01

    Adult T-cell leukemia (ATL) consists of an overabundance of T cells, which express CD25. Therapeutic efficacy of astatine-211 ((211)At)-labeled murine monoclonal antibody 7G7/B6 alone and in combination with daclizumab was evaluated in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice given injections of MET-1 human T-cell leukemia cells. Daclizumab and 7G7/B6 are directed toward different epitopes of CD25. Either a single dose of 12 microCi (0.444 MBq) (211)At-7G7/B6 per mouse given intravenously or receptor-saturating doses of daclizumab given at 100 microg weekly for 4 weeks intravenously inhibited tumor growth as monitored by serum levels of human beta-2 microglobulin (beta(2)mu) and by prolonged survival of leukemia-bearing mice compared with the control groups (P < .001). The combination of 2 agents enhanced the antitumor effect when compared with groups treated with 12 microCi (0.444 MBq) of (211)At-7G7/B6 (P < .05) or daclizumab alone (P < .05). The median survival duration of the PBS group was 62.6 days and 61.5 days in the radiolabeled nonspecific antibody (211)At-11F11-treated group. In contrast, 91% of mice in the combination group survived through day 94. These results that demonstrate a significantly improved therapeutic efficacy by combining (211)At-7G7/B6 with daclizumab support a clinical trial of this regimen in patients with ATL. PMID:16569769

  1. Hyperplasia, de novo lymphangiogenesis, and lymphatic regression in mice with tissue-specific, inducible overexpression of murine VEGF-D.

    PubMed

    Lammoglia, Gabriela M; Van Zandt, Carolynn E; Galvan, Daniel X; Orozco, Jose L; Dellinger, Michael T; Rutkowski, Joseph M

    2016-08-01

    Lymphatic vessels modulate tissue fluid balance and inflammation and provide a conduit for endocrine and lipid transport. The growth of new lymphatic vessels in the adult, lymphangiogenesis, is predominantly mediated through vascular endothelial growth factor receptor-3 (VEGFR-3) signaling. We took advantage of the unique binding of murine VEGF-D specifically to VEGFR-3 and generated mice capable of inducible, tissue-specific expression of murine VEGF-D under a tightly-controlled tetracycline response element (TRE) promoter to stimulate adult tissue lymphangiogenesis. With doxycycline-activated expression, TRE-VEGF-D mouse crossed to mice with tissue-specific promoters for the lung [Clara cell secretory protein-reverse tetracycline transactivator (rtTA)] developed pulmonary lymphangiectasia. In the kidney, (kidney-specific protein-rtTA × TRE-VEGF-D) mice exhibited rapid lymphatic hyperplasia on induction of VEGF-D expression. Crossed with adipocyte-specific adiponectin-rtTA mice [Adipo-VEGF-D (VD)], chronic VEGF-D overexpression was capable of inducing de novo lymphangiogenesis in white adipose tissue and a massive expansion of brown adipose tissue lymphatics. VEGF-D expression in white adipose tissue also increased macrophage infiltration and tissue fibrosis in the tissue. Expression did not, however, measurably affect peripheral fluid transport, the blood vasculature, or basal metabolic parameters. On removal of the doxycycline stimulus, VEGF-D expression returned to normal, and the expanded adipose tissue lymphatics regressed in Adipo-VD mice. The inducible TRE-VEGF-D mouse thus provides a novel murine platform to study the adult mechanisms and therapies of an array of disease- and tissue-specific models of lymphangiogenesis. PMID:27342876

  2. Epigenome-wide DNA methylation analysis implicates neuronal and inflammatory signaling pathways in adult murine hepatic tumorigenesis following perinatal exposure to bisphenol A.

    PubMed

    Weinhouse, Caren; Sartor, Maureen A; Faulk, Christopher; Anderson, Olivia S; Sant, Karilyn E; Harris, Craig; Dolinoy, Dana C

    2016-07-01

    Developmental exposure to the endocrine-active compound bisphenol A (BPA) has been linked to epigenotoxic and potential carcinogenic effects in rodent liver, prostate, and mammary glands. A dose-dependent increase in hepatic tumors in 10-month mice perinatally exposed to one of three doses of BPA (50 ng, 50 µg, or 50 mg BPA/kg chow) was previously reported. These tumors represent early-onset disease and lack classical sexual dimorphism in incidence. Here, adult epigenome-wide liver DNA methylation profiles to identify gene promoters associated with perinatal BPA exposure and disease in 10-month mice with and without liver tumors were investigated. Mice with hepatic tumors showed 12,822 (1.8%) probes with differential methylation as compared with non-tumor animals, of which 8,656 (67.5%) were hypomethylated. A significant enrichment of differential methylation in Gene Ontology (GO) terms and biological processes related to morphogenesis and development, and epigenomic alteration were observed. Pathway enrichment revealed a predominance of hypermethylated neuronal signaling pathways linked to energy regulation and metabolic function, supporting metabolic consequences in the liver via BPA-induced disruption of neuronal signaling pathways. Hypothesis-driven pathway analysis revealed mouse and human genes linked to BPA exposure related to intracellular Jak/STAT and MAPK signaling pathways. Taken together, these findings are indicators of the relevance of the hepatic tumor phenotype seen in BPA-exposed mice to human health. This work demonstrated that epigenome-wide discovery experiments in animal models were effective tools for identification and understanding of paralagous epimutations salient to human disease. Environ. Mol. Mutagen. 57:435-446, 2016. © 2016 Wiley Periodicals, Inc. PMID:27334623

  3. Isolated Congenital Unilateral Agenesis of the Left Pulmonary Artery with Left Lung Hypoplasia in an Asymptomatic Adult Patient

    PubMed Central

    Emren, Sadık Volkan; Tülüce, Selcen Yakar; Tülüce, Kamil

    2015-01-01

    The congenital unilateral agenesis of pulmonary artery is a congenital cardiovascular anomaly rarely seen in adulthood. A 21-year-old asymptomatic male was admitted to our hospital to obtain a routine health report to accompany a job application. Posteroanterior chest radiograph revealed a mediastinal shift to the left, with increased radiopacity in the left lung and increased radiolucency in the right lung. Thoracoabdominal computed tomography revealed hypoplasia of the left pulmonary artery. Transthoracic echocardiography excluded any accompanying cardiac abnormalities. Pulmonary angiography was undertaken and confirmed diffuse hypoplasia of the left pulmonary artery while right pulmonary artery was significantly enlarged. The patient’s pulmonary artery pressure was within the normal limits, after which he decided to be carefully followed-up. PMID:27122926

  4. Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation.

    PubMed

    Sorkness, Ronald L; Bleecker, Eugene R; Busse, William W; Calhoun, William J; Castro, Mario; Chung, Kian Fan; Curran-Everett, Douglas; Erzurum, Serpil C; Gaston, Benjamin M; Israel, Elliot; Jarjour, Nizar N; Moore, Wendy C; Peters, Stephen P; Teague, W Gerald; Wenzel, Sally E

    2008-02-01

    Five to ten percent of asthma cases are poorly controlled chronically and refractory to treatment, and these severe cases account for disproportionate asthma-associated morbidity, mortality, and health care utilization. While persons with severe asthma tend to have more airway obstruction, it is not known whether they represent the severe tail of a unimodal asthma population, or a severe asthma phenotype. We hypothesized that severe asthma has a characteristic physiology of airway obstruction, and we evaluated spirometry, lung volumes, and reversibility during a stable interval in 287 severe and 382 nonsevere asthma subjects from the National Heart, Lung, and Blood Institute Severe Asthma Research Program. We partitioned airway obstruction into components of air trapping [indicated by forced vital capacity (FVC)] and airflow limitation [indicated by forced expiratory volume in 1 s (FEV(1))/FVC]. Severe asthma had prominent air trapping, evident as reduced FVC over the entire range of FEV(1)/FVC. This pattern was confirmed with measures of residual lung volume/total lung capacity (TLC) in a subgroup. In contrast, nonsevere asthma did not exhibit prominent air trapping, even at FEV(1)/FVC <75% predicted. Air trapping also was associated with increases in TLC and functional reserve capacity. After maximal bronchodilation, FEV(1) reversed similarly from baseline in severe and nonsevere asthma, but the severe asthma classification was an independent predictor of residual reduction in FEV(1) after maximal bronchodilation. An increase in FVC accounted for most of the reversal of FEV(1) when baseline FEV(1) was <60% predicted. We conclude that air trapping is a characteristic feature of the severe asthma population, suggesting that there is a pathological process associated with severe asthma that makes airways more vulnerable to this component. PMID:17991792

  5. Combustion-derived flame generated ultrafine soot generates reactive oxygen species and activates Nrf2 antioxidants differently in neonatal and adult rat lungs

    PubMed Central

    2013-01-01

    Background Urban particulate matter (PM) has been epidemiologically correlated with multiple cardiopulmonary morbidities and mortalities, in sensitive populations. Children exposed to PM are more likely to develop respiratory infections and asthma. Although PM originates from natural and anthropogenic sources, vehicle exhaust rich in polycyclic aromatic hydrocarbons (PAH) can be a dominant contributor to the PM2.5 and PM0.1 fractions and has been implicated in the generation of reactive oxygen species (ROS). Objectives Current studies of ambient PM are confounded by the variable nature of PM, so we utilized a previously characterized ethylene-combusted premixed flame particles (PFP) with consistent and reproducible physiochemical properties and 1) measured the oxidative potential of PFP compared to ambient PM, 2) determined the ability of PFPs to generate oxidative stress and activate the transcription factor using in vitro and ex vivo models, and 3) we correlated these responses with antioxidant enzyme expression in vivo. Methods We compared oxidative stress response (HMOX1) and antioxidant enzyme (SOD1, SOD2, CAT, and PRDX6) expression in vivo by performing a time-course study in 7-day old neonatal and young adult rats exposed to a single 6-hour exposure to 22.4 μg/m3 PFPs. Results We showed that PFP is a potent ROS generator that induces oxidative stress and activates Nrf2. Induction of the oxidative stress responsive enzyme HMOX1 in vitro was mediated through Nrf2 activation and was variably upregulated in both ages. Furthermore, antioxidant enzyme expression had age and lung compartment variations post exposure. Of particular interest was SOD1, which had mRNA and protein upregulation in adult parenchyma, but lacked a similar response in neonates. Conclusions We conclude that PFPs are effective ROS generators, comparable to urban ambient PM2.5, that induce oxidative stress in neonatal and adult rat lungs. PFPs upregulate a select set of antioxidant enzymes in

  6. The evolving potential for pediatric ex vivo lung perfusion.

    PubMed

    Luc, Jessica G Y; Nagendran, Jayan

    2016-02-01

    Despite the rise in the number of adult lung transplantations performed, rates of pediatric lung transplantation remain low. Lung transplantation is an accepted therapy for pediatric end-stage lung disease; however, it is limited by a shortage of donor organs. EVLP has emerged as a platform for assessment and preservation of donor lung function. EVLP has been adopted in adult lung transplantation and has successfully led to increased adult lung transplantations and donor lung utilization. We discuss the future implications of EVLP utilization, specifically, its potential evolving role in overcoming donor shortages in smaller children and adolescents to improve the quality and outcomes of lung transplantation in pediatric patients. PMID:26694514

  7. Variable Genome Sequences of the Murine Pneumotropic Virus (Polyomaviridae) Regulatory Region Isolated from an Infected Mouse Tissue Viral Suspension

    PubMed Central

    Libbey, Jane E.

    2016-01-01

    The murine pneumotropic virus genome, isolated from an infected murine tissue homogenate, was sequenced to completion. The lungs, liver, spleen, and kidneys were the source of the tissue homogenate in order to mirror the heterogeneity of the virus population in vivo. The regulatory region sequence was found to be highly variable. PMID:27231357

  8. Variable Genome Sequences of the Murine Pneumotropic Virus (Polyomaviridae) Regulatory Region Isolated from an Infected Mouse Tissue Viral Suspension.

    PubMed

    Libbey, Jane E; Fujinami, Robert S

    2016-01-01

    The murine pneumotropic virus genome, isolated from an infected murine tissue homogenate, was sequenced to completion. The lungs, liver, spleen, and kidneys were the source of the tissue homogenate in order to mirror the heterogeneity of the virus population in vivo The regulatory region sequence was found to be highly variable. PMID:27231357

  9. Methanol exposure does not produce oxidatively damaged DNA in lung, liver or kidney of adult mice, rabbits or primates

    SciTech Connect

    McCallum, Gordon P.; Siu, Michelle; Sweeting, J. Nicole; Wells, Peter G.

    2011-01-15

    In vitro and in vivo genotoxicity tests indicate methanol (MeOH) is not mutagenic, but carcinogenic potential has been claimed in one controversial long-term rodent cancer bioassay that has not been replicated. To determine whether MeOH could indirectly damage DNA via reactive oxygen species (ROS)-mediated mechanisms, we treated male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys with MeOH (2.0 g/kg ip) and 6 h later assessed oxidative damage to DNA, measured as 8-oxo-2'-deoxyguanosine (8-oxodG) by HPLC with electrochemical detection. We found no MeOH-dependent increases in 8-oxodG in lung, liver or kidney of any species. Chronic treatment of CD-1 mice with MeOH (2.0 g/kg ip) daily for 15 days also did not increase 8-oxodG levels in these organs. These results were corroborated in DNA repair-deficient oxoguanine glycosylase 1 (Ogg1) knockout (KO) mice, which accumulated 8-oxodG in lung, kidney and liver with age, but exhibited no increase following MeOH, despite a 2-fold increase in renal 8-oxodG in Ogg1 KO mice following treatment with a ROS-initiating positive control, the renal carcinogen potassium bromate (KBrO{sub 3}; 100 mg/kg ip). These observations suggest that MeOH exposure does not promote the accumulation of oxidatively damaged DNA in lung, kidney or liver, and that environmental exposure to MeOH is unlikely to initiate carcinogenesis in these organs by DNA oxidation.

  10. Characterization of msim, a murine homologue of the Drosophila sim transcription factor

    SciTech Connect

    Moffett, P.; Reece, M.; Pelletier, J.

    1996-07-01

    Mutations in the Drosophila single-minded (sim) gene result in loss of precursor cells that give rise to midline cells of the embryonic central nervous system. During the course of an exon-trapping strategy aimed at identifying transcripts that contribute to the etiology and pathophysiology of Down syndrome, we identified a human exon from the Down syndrome, we identified a human exon from the Down syndrome critical region showing significantly homology to the Drosophila sim gene. Using a cross-hybridization approach, we have isolated a murine homolog of Drosophila sim gene, which we designated msim. Nucleotide and predicted amino acid sequence analyses of msim cDNA clones indicate the this gene encodes a member of the basic-helix-loop-helix class of transcription factors. The murine and Drosophila proteins share 88% residues within the basic-helix-loop helix domain, with an overall homology of 92%. In addition, the N-terminal domain of MSIM contains two PAS dimerization motifs also featured in the Drosophila sim gene product, as well as a small number of other transcription factors. Northern blot analysis of adult murine tissues revealed that the msim gene produces a single mRNA species of {approximately}4 kb expressed in a small number of tissues, with the highest levels in the kidneys and lower levels present in skeletal muscle, lung, testis, brain, and heart. In situ hybridization experiments demonstrate that msim is also expressed in early fetal development in the central nervous system and in cartilage primordia. The characteristics of the msim gene are consistent with its putative function as a transcriptional regulator. 51 refs., 6 figs., 1 tab.

  11. Characterization of msim, a murine homologue of the Drosophila sim transcription factor.

    PubMed

    Moffett, P; Dayo, M; Reece, M; McCormick, M K; Pelletier, J

    1996-07-01

    Mutations in the Drosophila single-minded (sim) gene result in loss of precursor cells that give rise to midline cells of the embryonic central nervous system. During the course of an exon-trapping strategy aimed at identifying transcripts that contribute to the etiology and pathophysiology of Down syndrome, we identified a human exon from the Down syndrome critical region showing significant homology to the Drosophila sim gene. Using a cross-hybridization approach, we have isolated a murine homolog of the Drosophila sim gene, which we designated msim. Nucleotide and predicted amino acid sequence analyses of msim cDNA clones indicate that this gene encodes a member of the basic-helix-loop-helix class of transcription factors. The murine and Drosophila proteins share 88% residues within the basic-helix-loop-helix domain, with an overall homology of 92%. In addition, the N-terminal domain of MSIM contains two PAS dimerization motifs also featured in the Drosophila sim gene product, as well as a small number of other transcription factors. Northern blot analysis of adult murine tissues revealed that the msim gene produces a single mRNA species of approximately 4 kb expressed in a small number of tissues, with the highest levels in the kidneys and lower levels present in skeletal muscle, lung, testis, brain, and heart. In situ hybridization experiments demonstrate that msim is also expressed in early fetal development in the central nervous system and in cartilage primordia. The characteristics of the msim gene are consistent with its putative function as a transcriptional regulator. PMID:8661115

  12. Albinism and lung fibrosis in a young man - the first case of adult Hermansky-Pudlak Syndrome reported in Malaysia.

    PubMed

    Liza, A F; Aziah, A M

    2012-12-01

    A young gentleman of Indian descent with oculacutaneous albinism (OCA) was found to have severe pulmonary fibrosis at first presentation. Following investigations, he was diagnosed with Hermansky-Pudlak Syndrome (HPS). It is a genetic condition characterised by albinism, bleeding diathesis and multisystem disorder observed in individuals of particular descents. Although there is no curative treatment apart from lung transplantation, preventive measures to minimise pulmonary insult may change the natural history of the disease. Therefore HPS should be actively sought, monitored and risk factors addressed in individuals with OCA and bleeding diathesis particularly those of Indian descent as they may develop serious complications such as pulmonary fibrosis in the future. PMID:23770959

  13. Lung Transplant

    MedlinePlus

    ... the NHLBI on Twitter. What Is a Lung Transplant? A lung transplant is surgery to remove a person's diseased lung ... a healthy lung from a deceased donor. Lung transplants are used for people who are likely to ...

  14. Limited Lung Function: Impact of Reduced Peak Expiratory Flow on Health Status, Health-Care Utilization, and Expected Survival in Older Adults

    PubMed Central

    Roberts, Melissa H.; Mapel, Douglas W.

    2012-01-01

    The authors examined whether peak expiratory flow (PEF) is a valid measure of health status in older adults. Survey and test data from the 2006 and 2008 cycles of the Health and Retirement Study, a longitudinal study of US adults over age 50 years (with biennial surveys initiated in 1992), were used to develop predicted PEF regression models and to examine relations between low PEF values and other clinical factors. Low PEF (<80% of predicted value) was prevalent among persons with chronic conditions, including frequent pain, obstructive lung disease, heart disease, diabetes, and psychological distress. Persons with higher physical disability scores had substantially higher adjusted odds of having low PEF, on par with those for conditions known to be associated with poor health (cancer, heart disease, and stroke). In a multivariate regression model for difficulty with mobility, PEF remained an independent factor (odds ratio (OR) = 1.69, 95% confidence interval (CI): 1.53, 1.86). Persons with low PEF in 2006 were more likely to be hospitalized (OR = 1.26, 95% CI: 1.10, 1.43) within the subsequent 2 years and to estimate their chances of surviving for 10 or more years at less than 50% (OR = 1.69, 95% CI: 1.24, 2.30). PEF is a valid measure of health status in older persons, and low PEF is an independent predictor of hospitalization and poor subjective mortality assessment. PMID:22759722

  15. Comparison between reference values for FVC, FEV1, and FEV1/FVC ratio in White adults in Brazil and those suggested by the Global Lung Function Initiative 2012*

    PubMed Central

    Pereira, Carlos Alberto de Castro; Duarte, Andrezza Araujo Oliveira; Gimenez, Andrea; Soares, Maria Raquel

    2014-01-01

    OBJECTIVE: To evaluate the spirometry values predicted by the 2012 Global Lung Function Initiative (GLI) equations, which are recommended for international use, in comparison with those obtained for a sample of White adults used for the establishment of reference equations for spirometry in Brazil. METHODS: The sample comprised 270 and 373 healthy males and females, respectively. The mean differences between the values found in this sample and the predicted values calculated from the GLI equations for FVC, FEV1, and VEF1/FVC, as well as their lower limits, were compared by paired t-test. The predicted values by each pair of equations were compared in various combinations of age and height. RESULTS: For the males in our study sample, the values obtained for all of the variables studied were significantly higher than those predicted by the GLI equations (p < 0.01 for all). These differences become more evident in subjects who were shorter in stature and older. For the females in our study sample, only the lower limit of the FEV1/FVC ratio was significantly higher than that predicted by the GLI equation. CONCLUSIONS: The predicted values suggested by the GLI equations for White adults were significantly lower than those used as reference values for males in Brazil. For both genders, the lower limit of the FEV1/FVC ratio is significantly lower than that predicted by the GLI equations. PMID:25210962

  16. Accuracy of Lung Ultrasonography versus Chest Radiography for the Diagnosis of Adult Community-Acquired Pneumonia: Review of the Literature and Meta-Analysis.

    PubMed

    Ye, Xiong; Xiao, Hui; Chen, Bo; Zhang, SuiYang

    2015-01-01

    Lung ultrasonography (LUS) is being increasingly utilized in emergency and critical settings. We performed a systematic review of the current literature to compare the accuracy of LUS and chest radiography (CR) for the diagnosis of adult community-acquired pneumonia (CAP). We searched in Pub Med, EMBASE dealing with both LUS and CR for diagnosis of adult CAP, and conducted a meta-analysis to evaluate the diagnostic accuracy of LUS in comparison with CR. The diagnostic standard that the index test compared was the hospital discharge diagnosis or the result of chest computed tomography scan as a "gold standard". We calculated pooled sensitivity and specificity using the Mantel-Haenszel method and pooled diagnostic odds ratio using the DerSimonian-Laird method. Five articles met our inclusion criteria and were included in the final analysis. Using hospital discharge diagnosis as reference, LUS had a pooled sensitivity of 0.95 (0.93-0.97) and a specificity of 0.90 (0.86 to 0.94), CR had a pooled sensitivity of 0.77 (0.73 to 0.80) and a specificity of 0.91 (0.87 to 0.94). LUS and CR compared with computed tomography scan in 138 patients in total, the Z statistic of the two summary receiver operating characteristic was 3.093 (P = 0.002), the areas under the curve for LUS and CR were 0.901 and 0.590, respectively. Our study indicates that LUS can help to diagnosis adult CAP by clinicians and the accuracy was better compared with CR using chest computed tomography scan as the gold standard. PMID:26107512

  17. Human and murine erythropoiesis

    PubMed Central

    An, Xiuli; Schulz, Vincent P.; Mohandas, Narla; Gallagher, Patrick G.

    2015-01-01

    Purpose of review Research into the fundamental mechanisms of erythropoiesis has provided critical insights into inherited and acquired disorders of the erythrocyte. Studies of human erythropoiesis have primarily utilized in-vitro systems, whereas murine models have provided insights from in-vivo studies. This report reviews recent insights into human and murine erythropoiesis gained from transcriptome-based analyses. Recent findings The availability of high-throughput genomic methodologies has allowed attainment of detailed gene expression data from cells at varying developmental and differentiation stages of erythropoiesis. Transcriptome analyses of human and murine reveal both stage and species-specific similarities and differences across terminal erythroid differentiation. Erythroid-specific long noncoding RNAs exhibit poor sequence conservation between human and mouse. Genome-wide analyses of alternative splicing reveal that complex, dynamic, stage-specific programs of alternative splicing program are utilized during terminal erythroid differentiation. Transcriptome data provide a significant resource for understanding mechanisms of normal and perturbed erythropoiesis. Understanding these processes will provide innovative strategies to detect, diagnose, prevent, and treat hematologic disease. Summary Understanding the shared and different mechanisms controlling human and murine erythropoiesis will allow investigators to leverage the best model system to provide insights in normal and perturbed erythropoiesis. PMID:25719574

  18. General Information about Small Cell Lung Cancer

    MedlinePlus

    ... Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  19. Maximal mid-expiratory flow is a surrogate marker of lung clearance index for assessment of adults with bronchiectasis.

    PubMed

    Guan, Wei-Jie; Yuan, Jing-Jing; Gao, Yong-Hua; Li, Hui-Min; Zheng, Jin-Ping; Chen, Rong-Chang; Zhong, Nan-Shan

    2016-01-01

    Little is known about the comparative diagnostic value of lung clearance index (LCI) and maximal mid-expiratory flow (MMEF) in bronchiectasis. We compared the diagnostic performance, correlation and concordance with clinical variables, and changes of LCI and MMEF% predicted during bronchiectasis exacerbations (BEs). Patients with stable bronchiectasis underwent history inquiry, chest high-resolution computed tomography (HRCT), multiple-breath nitrogen wash-out test, spirometry and sputum culture. Patients who experienced BEs underwent these measurements during onset of BEs and 1 week following antibiotics therapy. Sensitivity analyses were performed in mild, moderate and severe bronchiectasis. We recruited 110 bronchiectasis patients between March 2014 and September 2015. LCI demonstrated similar diagnostic value with MMEF% predicted in discriminating moderate-to-severe from mild bronchiectasis. LCI negatively correlated with MMEF% predicted. Both parameters had similar concordance in reflecting clinical characteristics of bronchiectasis and correlated significantly with forced expiratory flow in one second, age, HRCT score, Pseudomonas aeruginosa colonization, cystic bronchiectasis, ventilation heterogeneity and bilateral bronchiectasis. In exacerbation cohort (n = 22), changes in LCI and MMEF% predicted were equally minimal during BEs and following antibiotics therapy. In sensitivity analyses, both parameters had similar diagnostic value and correlation with clinical variables. MMEF% predicted is a surrogate of LCI for assessing bronchiectasis severity. PMID:27339787

  20. Maximal mid-expiratory flow is a surrogate marker of lung clearance index for assessment of adults with bronchiectasis

    PubMed Central

    Guan, Wei-jie; Yuan, Jing-jing; Gao, Yong-hua; Li, Hui-min; Zheng, Jin-ping; Chen, Rong-chang; Zhong, Nan-shan

    2016-01-01

    Little is known about the comparative diagnostic value of lung clearance index (LCI) and maximal mid-expiratory flow (MMEF) in bronchiectasis. We compared the diagnostic performance, correlation and concordance with clinical variables, and changes of LCI and MMEF% predicted during bronchiectasis exacerbations (BEs). Patients with stable bronchiectasis underwent history inquiry, chest high-resolution computed tomography (HRCT), multiple-breath nitrogen wash-out test, spirometry and sputum culture. Patients who experienced BEs underwent these measurements during onset of BEs and 1 week following antibiotics therapy. Sensitivity analyses were performed in mild, moderate and severe bronchiectasis. We recruited 110 bronchiectasis patients between March 2014 and September 2015. LCI demonstrated similar diagnostic value with MMEF% predicted in discriminating moderate-to-severe from mild bronchiectasis. LCI negatively correlated with MMEF% predicted. Both parameters had similar concordance in reflecting clinical characteristics of bronchiectasis and correlated significantly with forced expiratory flow in one second, age, HRCT score, Pseudomonas aeruginosa colonization, cystic bronchiectasis, ventilation heterogeneity and bilateral bronchiectasis. In exacerbation cohort (n = 22), changes in LCI and MMEF% predicted were equally minimal during BEs and following antibiotics therapy. In sensitivity analyses, both parameters had similar diagnostic value and correlation with clinical variables. MMEF% predicted is a surrogate of LCI for assessing bronchiectasis severity. PMID:27339787

  1. Lung Emergencies

    MedlinePlus

    ... Emergencies Cardiac Emergencies Eye Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at ... should be considered an emergency. Symptoms of sudden lung collapse (pneumothorax) Symptoms of a sudden lung collapse ...

  2. Lung Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Lung Cancer What is Lung Cancer? How Tumors Form The body is made ... button on your keyboard.) Two Major Types of Lung Cancer There are two major types of lung ...

  3. Lung metastases

    MedlinePlus

    Metastases to the lung; Metastatic cancer to the lung ... Metastatic tumors in the lungs are cancers that developed at other places in the body (or other parts of the lungs) and spread through the ...

  4. Protective role of murine norovirus against Pseudomonas aeruginosa acute pneumonia.

    PubMed

    Thépaut, Marion; Grandjean, Teddy; Hober, Didier; Lobert, Pierre-Emmanuel; Bortolotti, Perrine; Faure, Karine; Dessein, Rodrigue; Kipnis, Eric; Guery, Benoit

    2015-01-01

    The murine norovirus (MNV) is a recently discovered mouse pathogen, representing the most common contaminant in laboratory mouse colonies. Nevertheless, the effects of MNV infection on biomedical research are still unclear. We tested the hypothesis that MNV infection could alter immune response in mice with acute lung infection. Here we report that co-infection with MNV increases survival of mice with Pseudomonas aeruginosa acute lung injury and decreases in vivo production of pro-inflammatory cytokines. Our results suggest that MNV infection can deeply modify the parameters studied in conventional models of infection and lead to false conclusions in experimental models. PMID:26338794

  5. Risk of childhood cancer and adult lung cancer after childhood exposure to passive smoke: A meta-analysis.

    PubMed Central

    Boffetta, P; Trédaniel, J; Greco, A

    2000-01-01

    We identified more than 30 studies on the association between exposure to maternal tobacco smoke during pregnancy and cancer in childhood. We combined their results in meta-analyses based on a random effects model. The results of the meta-analyses suggest a small increase in risk of all neoplasms [relative risk (RR) 1.10; 95% confidence interval (CI), 1.03-1.19; based on 12 studies], but not of specific neoplasms such as leukemia (RR 1.05; CI, 0.82-1.34; 8 studies) and central nervous system tumors (RR 1.04; CI, 0.92-1. 18; 12 studies). Results for other specific neoplasms were sparse, but the available data did not suggest a strong association for any type of tumor. No clear evidence of dose response was present in the studies that addressed this issue. The results on exposure to maternal tobacco smoke before or after pregnancy are too sparse to allow a conclusion. The results on exposure to paternal tobacco smoke suggest an association with brain tumors (RR 1.22; CI, 1.05-1. 40; based on 10 studies) and lymphomas (RR 2.08; CI, 1.08-3.98; 4 studies). The data are too sparse for the other neoplasms, although the results of a few recent large studies are compatible with a weak carcinogenic effect of paternal smoke. For exposure from either maternal or paternal smoke, bias and confounding cannot yet be ruled out. Further studies are needed to confirm the hypothesis that parental tobacco smoke, from the father in particular, is a risk factor of childhood cancer. Results on the risk of lung cancer in adulthood and childhood passive smoking exposure are available from 11 studies: they do not provide evidence of an increased risk (summary RR 0.91; CI, 0.80-1.05). Images Figure 1 PMID:10620527

  6. Lung cancer

    SciTech Connect

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer.

  7. Anti-inflammatory effects of methanol extract of Canarium lyi C.D. Dai & Yakovlev in RAW 264.7 macrophages and a murine model of lipopolysaccharide-induced lung injury.

    PubMed

    Hong, Ju-Mi; Kwon, Ok-Kyoung; Shin, In-Sik; Jeon, Chan-Mi; Shin, Na-Rae; Lee, Joongku; Park, Sang-Hong; Bach, Tran The; Hai, Do Van; Oh, Sei-Ryang; Han, Sang-Bae; Ahn, Kyung-Seop

    2015-05-01

    Canarium lyi C.D. Dai & Yakovlev (CL) is a member of the Anacardiaceae family. To the best of our knowledge, no studies on its anti-inflammatory effects have yet been reported. In the present study, we investigated the protective effects of CL on inflammation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and LPS-induced acute lung injury (ALI) mice. CL attenuated the production of LPS-stimulated inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and interleukin-6 (IL-6). Furthermore, CL suppressed phosphorylation of the inhibitor κB-α (IκB-α), p38, c-Jun terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), as well as the translocation of the nuclear factor-κB (NF-κB) p65 subunit into the nucleus. For the in vivo efficacy, the effect of CL on a mouse model of LPS-induced acute lung injury was assessed. CL treatment of the mice significantly inhibited the inflammatory cell recruitment and pro-inflammatory cytokine production in bronchoalveolar lavage fluids (BALF). CL-treated mice also showed a marked inhibition of cyclooxygenase-2 (COX-2) and phosphorylation of IκB and p65. In addition, CL attenuated lung histopathological changes in LPS-induced ALI mice. In conclusion, our results suggest that CL is a potential therapeutic candidate for the treatment of inflammatory diseases, including pneumonia. PMID:25738976

  8. Lung function profiles and aerobic capacity of adult cigarette and hookah smokers after 12 weeks intermittent training

    PubMed Central

    Koubaa, Abdessalem; Triki, Moez; Trabelsi, Hajer; Masmoudi, Liwa; Zeghal, Khaled N.; Sahnoun, Zouhair; Hakim, Ahmed

    2015-01-01

    Introduction Pulmonary function is compromised in most smokers. Yet it is unknown whether exercise training improves pulmonary function and aerobic capacity in cigarette and hookah smokers and whether these smokers respond in a similar way as do non-smokers. Aim To evaluate the effects of an interval exercise training program on pulmonary function and aerobic capacity in cigarette and hookah smokers. Methods Twelve cigarette smokers, 10 hookah smokers, and 11 non-smokers participated in our exercise program. All subjects performed 30 min of interval exercise (2 min of work followed by 1 min of rest) three times a week for 12 weeks at an intensity estimated at 70% of the subject's maximum aerobic capacity (V.O2max). Pulmonary function was measured using spirometry, and maximum aerobic capacity was assessed by maximal exercise testing on a treadmill before the beginning and at the end of the exercise training program. Results As expected, prior to the exercise intervention, the cigarette and hookah smokers had significantly lower pulmonary function than the non-smokers. The 12-week exercise training program did not significantly affect lung function as assessed by spirometry in the non-smoker group. However, it significantly increased both forced expiratory volume in 1 second and peak expiratory flow (PEF) in the cigarette smoker group, and PEF in the hookah smoker group. Our training program had its most notable impact on the cardiopulmonary system of smokers. In the non-smoker and cigarette smoker groups, the training program significantly improved V.O2max (4.4 and 4.7%, respectively), v V.O2max (6.7 and 5.6%, respectively), and the recovery index (7.9 and 10.5%, respectively). Conclusions After 12 weeks of interval training program, the increase of V.O2max and the decrease of recovery index and resting heart rate in the smoking subjects indicated better exercise tolerance. Although the intermittent training program altered pulmonary function only partially, both

  9. Remodeling of alveolar septa after murine pneumonectomy.

    PubMed

    Ysasi, Alexandra B; Wagner, Willi L; Bennett, Robert D; Ackermann, Maximilian; Valenzuela, Cristian D; Belle, Janeil; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-06-15

    In most mammals, removing one lung (pneumonectomy) results in the compensatory growth of the remaining lung. In mice, stereological observations have demonstrated an increase in the number of mature alveoli; however, anatomic evidence of the early phases of alveolar growth has remained elusive. To identify changes in the lung microstructure associated with neoalveolarization, we used tissue histology, electron microscopy, and synchrotron imaging to examine the configuration of the alveolar duct after murine pneumonectomy. Systematic histological examination of the cardiac lobe demonstrated no change in the relative frequency of dihedral angle components (Ends, Bends, and Junctions) (P > 0.05), but a significant decrease in the length of a subset of septal ends ("E"). Septal retraction, observed in 20-30% of the alveolar ducts, was maximal on day 3 after pneumonectomy (P < 0.01) and returned to baseline levels within 3 wk. Consistent with septal retraction, the postpneumonectomy alveolar duct diameter ratio (Dout:Din) was significantly lower 3 days after pneumonectomy compared to all controls except for the detergent-treated lung (P < 0.001). To identify clumped capillaries predicted by septal retraction, vascular casting, analyzed by both scanning electron microscopy and synchrotron imaging, demonstrated matted capillaries that were most prominent 3 days after pneumonectomy. Numerical simulations suggested that septal retraction could reflect increased surface tension within the alveolar duct, resulting in a new equilibrium at a higher total energy and lower surface area. The spatial and temporal association of these microstructural changes with postpneumonectomy lung growth suggests that these changes represent an early phase of alveolar duct remodeling. PMID:26078396

  10. Thymopoietic and Bone Marrow Response to Murine Pneumocystis Pneumonia▿

    PubMed Central

    Shi, Xin; Zhang, Ping; Sempowski, Gregory D.; Shellito, Judd E.

    2011-01-01

    CD4+ T cells play a key role in host defense against Pneumocystis infection. To define the role of naïve CD4+ T cell production through the thymopoietic response in host defense against Pneumocystis infection, Pneumocystis murina infection in the lung was induced in adult male C57BL/6 mice with and without prior thymectomy. Pneumocystis infection caused a significant increase in the number of CCR9+ multipotent progenitor (MPP) cells in the bone marrow and peripheral circulation, an increase in populations of earliest thymic progenitors (ETPs) and double negative (DN) thymocytes in the thymus, and recruitment of naïve and total CD4+ T cells into the alveolar space. The level of murine signal joint T cell receptor excision circles (msjTRECs) in spleen CD4+ cells was increased at 5 weeks post-Pneumocystis infection. In thymectomized mice, the numbers of naïve, central memory, and total CD4+ T cells in all tissues examined were markedly reduced following Pneumocystis infection. This deficiency of naïve and central memory CD4+ T cells was associated with delayed pulmonary clearance of Pneumocystis. Extracts of Pneumocystis resulted in an increase in the number of CCR9+ MPPs in the cultured bone marrow cells. Stimulation of cultured bone marrow cells with ligands to Toll-like receptor 2 ([TLR-2] zymosan) and TLR-9 (ODN M362) each caused a similar increase in CCR9+ MPP cells via activation of the Jun N-terminal protein kinase (JNK) pathway. These results demonstrate that enhanced production of naïve CD4+ T lymphocytes through the thymopoietic response and enhanced delivery of lymphopoietic precursors from the bone marrow play an important role in host defense against Pneumocystis infection. PMID:21343353

  11. Lung isolation, one-lung ventilation and hypoxaemia during lung isolation

    PubMed Central

    Purohit, Atul; Bhargava, Suresh; Mangal, Vandana; Parashar, Vinod Kumar

    2015-01-01

    Lung isolation is being used more frequently in both adult and paediatric age groups due to increasing incidence of thoracoscopy and video-assisted thoracoscopic surgery in these patients. Various indications for lung isolation and one-lung ventilation include surgical and non-surgical reasons. Isolation can be achieved by double-lumen endotracheal tubes or bronchial blocker. Different issues arise in prone and semi-prone position. The management of hypoxia with lung isolation is a stepwise drill of adding inhaled oxygen, adding positive end-expiratory pressure to ventilated lung and continuous positive airway pressure to non-ventilated side. PMID:26556920

  12. Lung surgery

    MedlinePlus

    ... balloon-like tissues (blebs) that cause lung collapse ( pneumothorax ) Wedge resection, to remove part of a lobe ... Treat injuries that cause lung tissue to collapse ( pneumothorax or hemothorax ) Treat permanently collapsed lung tissue ( atelectasis ) ...

  13. Collapsed Lung

    MedlinePlus

    A collapsed lung happens when air enters the pleural space, the area between the lung and the chest wall. If it is a total collapse, it is called pneumothorax. If only part of the lung is affected, ...

  14. Lung Diseases

    MedlinePlus

    ... many disorders affecting the lungs, such as asthma, COPD, infections like influenza, pneumonia and tuberculosis, lung cancer, and many other breathing problems. Some lung diseases can lead to respiratory failure. Dept. of Health and Human Services Office on Women's Health

  15. Collapsed Lung

    MedlinePlus

    A collapsed lung happens when air enters the pleural space, the area between the lung and the chest wall. If it is a ... is called pneumothorax. If only part of the lung is affected, it is called atelectasis. Causes of ...

  16. Lung disease

    MedlinePlus

    ... the lungs to take in oxygen and release carbon dioxide. People with this type of lung disorder often ... the lungs to take up oxygen and release carbon dioxide. These diseases may also affect heart function. An ...

  17. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  18. A rapid lung de-cellularization protocol supports embryonic stem cell differentiation in vitro and following implantation.

    PubMed

    Jensen, Todd; Roszell, Blair; Zang, Fan; Girard, Eric; Matson, Adam; Thrall, Roger; Jaworski, Diane M; Hatton, Cayla; Weiss, Daniel J; Finck, Christine

    2012-08-01

    Pulmonary diseases represent a large portion of neonatal and adult morbidity and mortality. Many of these have no cure, and new therapeutic approaches are desperately needed. De-cellularization of whole organs, which removes cellular elements but leaves intact important extracellular matrix (ECM) proteins and three-dimensional architecture, has recently been investigated for ex vivo generation of lung tissues. As specific cell culture surfaces, including ECM composition, profoundly affect cell differentiation, this approach offers a potential means of using de-cellularized lungs to direct differentiation of embryonic and other types of stem/progenitor cells into lung phenotypes. Several different methods of whole-lung de-cellularization have been reported, but the optimal method that will best support re-cellularization and generation of lung tissues from embryonic stem cells (ESCs) has not been determined. We present a 24-h approach for de-cellularizing mouse lungs utilizing a detergent-based (Triton-X100 and sodium deoxycholate) approach with maintenance of three-dimensional lung architecture and ECM protein composition. Predifferentiated murine ESCs (mESCs), with phenotypic characteristics of type II alveolar epithelial cells, were seeded into the de-cellularized lung scaffolds. Additionally, we evaluated the effect of coating the de-cellularized scaffold with either collagen or Matrigel to determine if this would enhance cell adhesion and affect mechanics of the scaffold. Finally, we subcutaneously implanted scaffolds in vivo after seeding them with mESCs that are predifferentiated to express pro-surfactant protein C (pro-SPC). The in vivo environment supported maintenance of the pro-SPC-expressing phenotype and further resulted in vascularization of the implant. We conclude that a rapid detergent-based de-cellularization approach results in a scaffold that can maintain phenotypic evidence of alveolar epithelial differentiation of ESCs and support

  19. Pneumonia - adults - discharge

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000017.htm Pneumonia in adults - discharge To use the sharing features on this page, please enable JavaScript. You have pneumonia, which is an infection in your lungs. In ...

  20. Interstitial lung disease - adults - discharge

    MedlinePlus

    ... cart with wheels to move things around the house and kitchen. Use an electric can opener, dishwasher, ... You have a fever You are coughing up dark mucus Your fingertips, or the skin around your ...

  1. Occupational lung cancer

    SciTech Connect

    Coultas, D.B.; Samet, J.M. )

    1992-06-01

    The overall importance of occupational agents as a cause of lung cancer has been a controversial subject since the 1970s. A federal report, released in the late 1970s, projected a surprisingly high burden of occupational lung cancer; for asbestos and four other agents, from 61,000 to 98,000 cases annually were attributed to these agents alone. Many estimates followed, some much more conservative. For example, Doll and Peto estimated that 15% of lung cancer in men and 5% in women could be attributed to occupational exposures. A number of population-based case-control studies also provide relevant estimates. In a recent literature review, Vineis and Simonato cited attributable risk estimates for occupation and lung cancer that ranged from 4% to 40%; for asbestos alone, the estimates ranged from 1% to 5%. These estimates would be expected to vary across locations and over time. Nevertheless, these recent estimates indicate that occupation remains an important cause of lung cancer. Approaches to Prevention. Prevention of lung cancer mortality among workers exposed to agents or industrial processes that cause lung cancer may involve several strategies, including eliminating or reducing exposures, smoking cessation, screening, and chemo-prevention. For example, changes in industrial processes that have eliminated or reduced exposures to chloromethyl ethers and nickel compounds have provided evidence of reduced risk of lung cancer following these changes. Although occupational exposures are important causes of lung cancer, cigarette smoking is the most important preventable cause of lung cancer. For adults, the work site offers an important location to target smoking cessation efforts. In fact, the work site may be the only place to reach many smokers.

  2. Deep pulmonary lymphatics in immature lungs.

    PubMed

    Dickie, Renée; Cormack, Meredith; Semmler-Behnke, Manuela; Kreyling, Wolfgang G; Tsuda, Akira

    2009-09-01

    Recently, we found that the translocation of inhaled nanoparticles from the air space to secondary organs is age dependent and substantially greater in neonates than in adults (J Respir Crit Care Med 177: A48, 2008). One reason for this difference might be age-dependent differences in alveolar barrier integrity. Because the neonate lung is undergoing morphogenetic and fluid balance changes, we hypothesize that the alveolar barrier of developing lungs is more easily compromised and susceptible to foreign material influx than that of adult lungs. On the basis of these hypotheses, we predict that the postnatally developing lung is also more likely to allow the translocation of some materials from the air space to the lymphatic lumens. To test this idea, we intratracheally instilled methyl methacrylate into immature and adult lungs and compared lymphatic filling between these two age groups. Scanning electron microscopy of the resultant corrosion casts revealed peribronchial saccular and conduit lymphatic architecture. Deep pulmonary lymphatic casts were present on the majority (58.5%) of airways in immature lungs, but lymphatic casting in adult lungs, as anticipated, was much more infrequent (21.6%). Thus the neonate lung appears to be more susceptible than the adult lung to the passage of instilled methyl methacrylate from the air space into the lymphatics. We speculate that this could imply greater probability of translocation of other materials, such as nanoparticles, from the immature lung as well. PMID:19556455

  3. Lung cancer

    PubMed Central

    Dong, Jie; Kislinger, Thomas; Jurisica, Igor; Wigle, Dennis A.

    2010-01-01

    High-throughput genomic data for both lung development and lung cancer continue to accumulate. Significant molecular intersection between these two processes has been hypothesized due to overlap in phenotypes and genomic variation. Examining the network biology of both cancer and development of the lung may shed functional light on the individual signaling modules involved. Stem cell biology may explain a portion of this network intersection and consequently studying lung organogenesis may have relevance for understanding lung cancer. This review summarizes our understanding of the potential overlapping mechanisms involved in lung development and lung tumorigenesis. PMID:19202349

  4. In vitro differentiation of rhabdomyosarcomas induced by nickel or by Moloney murine sarcoma virus.

    PubMed Central

    Nanni, P.; Azzarello, G.; Tessarollo, L.; De Giovanni, C.; Lollini, P. L.; Nicoletti, G.; Scotlandi, K.; Landuzzi, L.; Panozzo, M.; D'Andrea, E.

    1991-01-01

    In vitro cultures and clonal derivatives have been established from rat rhabdomyosarcomas induced by Moloney-Murine Sarcoma Virus (MSV) or by nickel sulfide; differentiation ability has been studied as expression of desmin, embryonic and adult myosin isoforms, alpha-actin isoforms and cellular fusion. The two rhabdomyosarcoma models showed different levels of myogenic differentiation. Multinucleated myotube-like structures were frequently observed in cultures derived from nickel-induced tumours. Desmin was present in 50-80% of cells and embryonic myosin in up to 10%. In MSV-tumour-derived cultures and in their metastases or clonal derivatives two cell types are present in different ratios: spindle-shaped cells, adherent to plastic surfaces, and rounded cells, loosely attached or floating free in the medium. These cultures showed features of myogenic differentiation (10-80% desmin-positive cells), but embryonic myosin expression and production of multinucleated myotube-like structures were very rare events. Cultures from autochthonous lymph node and lung metastatic cells showed similar patterns of differentiation. Retinoic acid increased differentiated features (myotube formation and embryonic myosin expression) only in nickel-induced rhabdomyosarcoma cells. The two models described here mimic the heterogeneity in differentiation pattern found among human rhabdomyosarcomas. Myogenic differentiation ability was retained at a good level by nickel-induced tumours, whereas it was strongly impaired in MSV-induced tumours. Images Figure 1 Figure 2 Figure 4 Figure 7 Figure 8 PMID:2039698

  5. Lung VITAL: Rationale, design, and baseline characteristics of an ancillary study evaluating the effects of vitamin D and/or marine omega-3 fatty acid supplements on acute exacerbations of chronic respiratory disease, asthma control, pneumonia and lung function in adults.

    PubMed

    Gold, Diane R; Litonjua, Augusto A; Carey, Vincent J; Manson, JoAnn E; Buring, Julie E; Lee, I-Min; Gordon, David; Walter, Joseph; Friedenberg, Georgina; Hankinson, John L; Copeland, Trisha; Luttmann-Gibson, Heike

    2016-03-01

    Laboratory and observational research studies suggest that vitamin D and marine omega-3 fatty acids may reduce risk for pneumonia, acute exacerbations of respiratory diseases including chronic obstructive lung disease (COPD) or asthma, and decline of lung function, but prevention trials with adequate dosing, adequate power, and adequate time to follow-up are lacking. The ongoing Lung VITAL study is taking advantage of a large clinical trial-the VITamin D and OmegA-3 TriaL (VITAL)--to conduct the first major evaluation of the influences of vitamin D and marine omega-3 fatty acid supplementation on pneumonia risk, respiratory exacerbation episodes, asthma control and lung function in adults. VITAL is a 5-year U.S.-wide randomized, double-blind, placebo-controlled, 2 × 2 factorial trial of supplementation with vitamin D3 ([cholecalciferol], 2000 IU/day) and marine omega-3 FA (Omacor® fish oil, eicosapentaenoic acid [EPA]+docosahexaenoic acid [DHA], 1g/day) for primary prevention of CVD and cancer among men and women, at baseline aged ≥50 and ≥55, respectively, with 5107 African Americans. In a subset of 1973 participants from 11 urban U.S. centers, lung function is measured before and two years after randomization. Yearly follow-up questionnaires assess incident pneumonia in the entire randomized population, and exacerbations of respiratory disease, asthma control and dyspnea in a subpopulation of 4314 randomized participants enriched, as shown in presentation of baseline characteristics, for respiratory disease, respiratory symptoms, and history of cigarette smoking. Self-reported pneumonia hospitalization will be confirmed by medical record review, and exacerbations will be confirmed by Center for Medicare and Medicaid Services data review. PMID:26784651

  6. Functional characterization of muscarinic receptors in murine airways.

    PubMed Central

    Garssen, J.; Van Loveren, H.; Gierveld, C. M.; Van der Vliet, H.; Nijkamp, F. P.

    1993-01-01

    1. The effects of muscarinic receptor antagonists considered to be selective for M1 receptors (pirenzepine; PZ), M2 receptors (AFDX-116), and for M3 receptors (4-diphenyl acetoxy N-methyl-piperidine (4-DAMP)) were used to investigate the existence of muscarinic receptors subtypes in murine airways. Atropine was used as a nonselective antagonist. The effects of these antagonists were studied upon tracheal contractions induced either by EFS (electric field stimulation) or by application of an exogenous cholinoceptor agonist (arecoline). 2. The muscarinic receptor antagonists tested inhibited arecoline-induced tracheal contractions with the following rank order of potency: 4-DAMP = atropine > pirenzepine = AFDX-116. The rank order of potency of the muscarinic antagonists used in inhibiting EFS-induced tracheal contractions was: 4-DAMP = atropine > PZ > AFDX-116. The pA2 values for these antagonists were similar when compared to the pA2 values determined in guinea-pig and bovine airway smooth muscle. 3. In addition to in vitro studies, the effects of inhalation of the different muscarinic antagonists on lung function parameters in vivo were investigated. Inhalation of 4-DAMP induced a decrease in airway resistance and an increase in lung compliance. In contrast, inhalation of AFDX-116 induced an increase in airway resistance and almost no change in lung compliance. Apart from some minor effects of atropine on airway resistance, atropine, PZ, and pilocarpine failed to induce changes in lung mechanics as determined by in vivo lung function measurements. 4. The results provide evidence for the existence of M3 receptors on murine tracheae that are involved in the contraction of tracheal smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 6 Figure 7 PMID:8495246

  7. Clinicoradiological Profile of Lower Lung Field Tuberculosis Cases among Young Adult and Elderly People in a Teaching Hospital of Madhya Pradesh, India

    PubMed Central

    Singh, Saurabh Kumar; Tiwari, Kamlesh Kumar

    2015-01-01

    Aim. To study the clinical and radiological features of lower lung field tuberculosis (LLFTB) in relation to the patients of nonlower lung field tuberculosis (non-LLFTB). Material and Methods. All the patients of lower lung field tuberculosis defined by the lesions below an arbitrary line across the hila in their chest X-rays were included in the study. Their sputum for acid fast bacilli, HIV, blood sugar, and other relevant investigations were performed. Results. The total of 2136 cases of pulmonary tuberculosis was studied. Among them 215 (10%) cases of patients were diagnosed as the case of lower lung field tuberculosis. Females (62%) were more commonly affected. Most common clinical feature in non-LLFTB was cough (69%) followed by fever (65%), chest pain (54.7%), and weight loss (54.4%). Chest X-ray showed predominance of right side (60.9%) in cases of LLFTB. The relative risk of having the LLFTB in diabetes patients, HIV seropositive patients, end stage renal disease patients, and patients on corticosteroid therapy was high. Conclusion. Lower lung field tuberculosis is not an uncommon entity. It is more common in diabetes, HIV positive, end stage renal disease, and corticosteroid treated patients. Clinical and radiological features are different from upper lobe tuberculosis patients. PMID:26379713

  8. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer.

    PubMed

    Ma, Tian; Galimberti, Fabrizio; Erkmen, Cherie P; Memoli, Vincent; Chinyengetere, Fadzai; Sempere, Lorenzo; Beumer, Jan H; Anyang, Bean N; Nugent, William; Johnstone, David; Tsongalis, Gregory J; Kurie, Jonathan M; Li, Hua; Direnzo, James; Guo, Yongli; Freemantle, Sarah J; Dragnev, Konstantin H; Dmitrovsky, Ethan

    2013-08-01

    Histone deacetylase inhibitor (HDACi; vorinostat) responses were studied in murine and human lung cancer cell lines and genetically engineered mouse lung cancer models. Findings were compared with a window of opportunity trial in aerodigestive tract cancers. In human (HOP62, H522, and H23) and murine transgenic (ED-1, ED-2, LKR-13, and 393P, driven, respectively, by cyclin E, degradation-resistant cyclin E, KRAS, or KRAS/p53) lung cancer cell lines, vorinostat reduced growth, cyclin D1, and cyclin E levels, but induced p27, histone acetylation, and apoptosis. Other biomarkers also changed. Findings from transgenic murine lung cancer models were integrated with those from a window of opportunity trial that measured vorinostat pharmacodynamic responses in pre- versus posttreatment tumor biopsies. Vorinostat repressed cyclin D1 and cyclin E expression in murine transgenic lung cancers and significantly reduced lung cancers in syngeneic mice. Vorinostat also reduced cyclin D1 and cyclin E expression, but increased p27 levels in post- versus pretreatment human lung cancer biopsies. Notably, necrotic and inflammatory responses appeared in posttreatment biopsies. These depended on intratumoral HDACi levels. Therefore, HDACi treatments of murine genetically engineered lung cancer models exert similar responses (growth inhibition and changes in gene expression) as observed in lung cancer cell lines. Moreover, enhanced pharmacodynamic responses occurred in the window of opportunity trial, providing additional markers of response that can be evaluated in subsequent HDACi trials. Thus, combining murine and human HDACi trials is a strategy to translate preclinical HDACi treatment outcomes into the clinic. This study uncovered clinically tractable mechanisms to engage in future HDACi trials. PMID:23686769

  9. Analysis of murine HOXA-2 activity in Drosophila melanogaster.

    PubMed

    Percival-Smith, A; Bondy, J A

    1999-01-01

    The murine HOXA-2 protein shares amino acid sequence similarity with Drosophila Proboscipedia (PB). In this paper, we test whether HOXA-2 and PB are functionally equivalent in Drosophila. In Drosophila, PB inhibits SCR activity required for larval T1 beard formation and adult tarsus formation and is required for maxillary palp and proboscis formation. HOXA-2 expressed from a heat-shock promoter weakly suppressed SCR activity required for T1 beard formation. But interestingly neither PB nor HOXA-2 expressed from a heat-shock promoter suppressed murine HOXA-5 activity, the murine SCR homologue, from inducing ectopic T1 beards in T2 and T3, indicating that HOXA-5 does not interact with PB. HOXA-2 activity expressed from the Tubulin alpha 1 promoter modified the pb null phenotype resulting in a proboscis-to-arista transformation, indicating that HOXA-2 was able to suppress SCR activity required for tarsus formation. However, HOXA-2 expressed from a Tubulin alpha 1 promoter was unable to direct maxillary palp determination when either ectopically expressed in the antenna or in the maxillary palp primordia of a pb null mutant. HOXA-2 was also unable to rescue pseudotrachea formation in a pb null mutant. These results indicate that the only activity that PB and HOXA-2 weakly share is the inhibition of SCR activity, and that murine HOXA-5 and Drosophila SCR do not share inhibition by PB activity. PMID:10322642

  10. Cloning and expression analysis of murine phospholipase D1.

    PubMed Central

    Colley, W C; Altshuller, Y M; Sue-Ling, C K; Copeland, N G; Gilbert, D J; Jenkins, N A; Branch, K D; Tsirka, S E; Bollag, R J; Bollag, W B; Frohman, M A

    1997-01-01

    Activation of phosphatidylcholine-specific phospholipase D(PLD) occurs as part of the complex signal-transduction cascade initiated by agonist stimulation of tyrosine kinase and G-protein-coupled receptors. A variety of mammalian PLD activities have been described, and cDNAs for two PLDs recently reported (human PLD1 and murine PLD2). We describe here the cloning and chromosomal localization of murine PLD1. Northern-blot hybridization and RNase protection analyses were used to examine the expression of murine PLD1 and PLD2 ina variety of cell lines and tissues. PLD1 and PLD2 were expressed in all RNA samples examined, although the absolute expression of each isoform varied, as well as the ratio of PLD1 to PLD2. Moreover, in situ hybridization of adult brain and murine embryo sections revealed high levels of expression of individual PLDs in some cell types and no detectable expression in others. Thus the two PLDs probably carry out distinct roles in restricted subsets of cells rather than ubiquitous roles in all cells. PMID:9307024

  11. Follow-up on genome-wide main effects: do polymorphisms modify the air pollution effect on lung function decline in adults?

    PubMed

    Thun, Gian Andri; Imboden, Medea; Künzli, Nino; Rochat, Thierry; Keidel, Dirk; Haun, Margot; Schindler, Christian; Kronenberg, Florian; Probst-Hensch, Nicole M

    2014-03-01

    Improved air quality has been found associated with attenuated age-related decline in lung function. But whether genetic polymorphisms strongly associated with lung function play a modifying role in this attenuation process has so far not been investigated. We selected ten single nucleotide polymorphisms derived from the largest genome-wide association studies on lung function and examined whether they modified the association between the change in exposure to particulate matter ≤10μm (ΔPM10) and lung function decline. 4310 participants from the SAPALDIA cohort provided valid spirometry measurements, a detailed pulmonary health questionnaire both at baseline and 11years later as well as blood samples for genetic testing. Spatially and temporally resolved air pollution exposures were assigned on an individual level based on participants' residences. Statistically significant interactions of moderate strength with ΔPM10 were detected for rs2284746. Individuals with the CC genotype had a 21ml slower annual decline of the mid expiratory flow per 10μg/m(3) PM10 reduction over an 10-year period, while the benefits of CG and GG carriers were smaller (14 and 7ml per year, respectively; Pinteraction=0.04). The attenuated annual decline in the percentage of the forced expiratory volume in one second relative to the forced vital capacity (FEV1/FVC) was also increased with the presence of each C-allele (Pinteraction=0.009). We observed further suggestive interactions of similar magnitude in never-smokers, but none of the results would remain statistically significant after correction for multiple testing. We could not find strong evidence that lung function benefits from improved air quality are modified by polymorphisms associated with lung function level in large meta-analyzed genome-wide association studies. PMID:24388947

  12. NPAS1 regulates branching morphogenesis in embryonic lung.

    PubMed

    Levesque, Bernadette M; Zhou, Shutang; Shan, Lin; Johnston, Pamela; Kong, Yanping; Degan, Simone; Sunday, Mary E

    2007-04-01

    Drosophila trachealess (Trl), master regulator of tracheogenesis, has no known functional mammalian homolog. We hypothesized that genes similar to trachealess regulate lung development. Quantitative (Q)RT-PCR and immunostaining were used to determine spatial and temporal patterns of npas1 gene expression in developing murine lung. Immunostaining for alpha-smooth muscle actin demonstrated myofibroblasts, and protein gene product (PGP)9.5 identified neuroendocrine cells. Branching morphogenesis of embryonic lung buds was analyzed in the presence of antisense or sense oligodeoxynucleotides (ODN). Microarray analyses were performed to screen for changes in gene expression in antisense-treated lungs. QRT-PCR was used to validate the altered expression of key genes identified on the microarrays. We demonstrate that npas1 is expressed in murine embryonic lung. npas1 mRNA peaks early at Embryonic Day (E)10.5-E11.5, then drops to low levels. Sequencing verifies the identity of npas1 transcripts in embryonic lung. NPAS1 immunostaining occurs in nuclei of parabronchial mesenchymal cells, especially at the tracheal bifurcation. Arnt, the murine homolog of Tango (the heterodimerization partner for Trl) is also expressed in developing lung but at constant levels. npas1- or arnt-antisense ODN inhibit lung branching morphogenesis, with altered myofibroblast development and increased pulmonary neuroendocrine cells. On microarrays, we identify > 50 known genes down-regulated by npas1-antisense, including multiple genes regulating cell migration and cell differentiation. QRT-PCR confirms significantly decreased expression of the neurogenic genes RBP-Jk and Tle, and three genes involved in muscle development: beta-ig-h3, claudin-11, and myocardin. Npas1 can regulate myofibroblast distribution, branching morphogenesis, and neuroendocrine cell differentiation in murine embryonic lung. PMID:17110583

  13. Murine typhus in travelers returning from Indonesia.

    PubMed Central

    Parola, P.; Vogelaers, D.; Roure, C.; Janbon, F.; Raoult, D.

    1998-01-01

    We report the first three documented cases of murine typhus imported into Europe from Indonesia, discuss clues for the diagnosis of the disease, and urge that murine fever be considered in the diagnosis of febrile disease in travelers. PMID:9866749

  14. Antibacterial activity of recombinant murine beta interferon.

    PubMed Central

    Fujiki, T; Tanaka, A

    1988-01-01

    Recombinant murine beta interferon was protective and therapeutic for mice against Listeria monocytogenes infection in vivo. The recombinant murine beta interferon caused enhanced H2O2 release by macrophages in vivo, but not in vitro. PMID:3343048

  15. Lung Cancer

    MedlinePlus

    Lung cancer is one of the most common cancers in the world. It is a leading cause of ... in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  16. Lung transplant

    MedlinePlus

    ... diseases that may require a lung transplant are: Cystic fibrosis Damage to the arteries of the lung because ... BC; Clinical Practice Guidelines for Pulmonary Therapies Committee; ... Therapies Committee. Cystic fibrosis pulmonary guidelines: ...

  17. Lung transplant

    MedlinePlus

    ... nih.gov/pubmed/20675678 . Kotloff RM, Keshavjee S. Lung transplantation. In: Broaddus VC, Mason RJ, Ernst MD, et ... 58. Solomon M, Grasemann H, Keshavjee S. Pediatric lung transplantation. Pediatr Clin North Am . 2010; 57(2):375- ...

  18. Lung surgery

    MedlinePlus

    ... Pneumonectomy; Lobectomy; Lung biopsy; Thoracoscopy; Video-assisted thoracoscopic surgery; VATS ... You will have general anesthesia before surgery. You will be asleep and unable to feel pain. Two common ways to do surgery on your lungs are thoracotomy and video- ...

  19. Pediatric lung transplantation: 10 years of experience

    PubMed Central

    Camargo, Priscila C. L. B.; Pato, Eduardo Z. S.; Campos, Silvia V.; Afonso, José E.; Carraro, Rafael M.; Costa, André N.; Teixeira, Ricardo H. O. B.; Samano, Marcos N.; Pêgo-Fernandes, Paulo M.

    2014-01-01

    Lung transplantation is a well-established treatment for advanced lung diseases. In children, the diseases that most commonly lead to the need for a transplantation are cystic fibrosis, pulmonary hypertension, and bronchiolitis. However, the number of pediatric lung transplantations being performed is low compared with the number of transplants performed in the adult age group. The objective of this study was to demonstrate our experience with pediatric lung transplants over a 10-year period in a program initially designed for adults. PMID:24860860

  20. Immunosuppressive effect of murine cytomegalovirus.

    PubMed Central

    Loh, L; Hudson, J B

    1980-01-01

    Murine cytomegalovirus suppressed the ability of spleen cells to respond to mitogens in vitro. The degree of suppression was proportional to the multiplicity of infection. This effect could not be explained by cytolysis of lymphocytes, an alteration in the kinetics of the response to mitogen, or a direct competition between virions and mitogen molecules for cell-surface receptors. Nor was it due to simple contact between cell and virus, since ultraviolet-inactivated murine cytomegalovirus failed to suppress the response to mitogens. Reconstitution experiments were performed which involved mixing various combinations of infected and uninfected macrophages and lymphocytes. Under these conditions, it was found that the infected macrophages and lymphocytes. Under these conditions, it was found that the infected macrophages had an impaired capacity to mediate the response ot T lymphocytes to concanavalin A. This suggests that murine cytomegalovirus may cause immunosuppression indirectly by interfering with macrophage function. PMID:6244228

  1. Methylation of inorganic arsenic by murine fetal tissue explants.

    PubMed

    Broka, Derrick; Ditzel, Eric; Quach, Stephanie; Camenisch, Todd D

    2016-07-01

    Although it is generally believed that the developing fetus is principally exposed to inorganic arsenic and the methylated metabolites from the maternal metabolism of arsenic, little is known about whether the developing embryo can autonomously metabolize arsenic. This study investigates inorganic arsenic methylation by murine embryonic organ cultures of the heart, lung, and liver. mRNA for AS3mt, the gene responsible for methylation of arsenic, was detected in all embryonic tissue types studied. In addition, methylated arsenic metabolites were generated by all three tissue types. The fetal liver explants yielded the most methylated arsenic metabolites (∼7% of total arsenic/48 h incubation) while the heart, and lung preparations produced slightly greater than 2% methylated metabolites. With all tissues the methylation proceeded mostly to the dimethylated arsenic species. This has profound implications for understanding arsenic-induced fetal toxicity, particularly if the methylated metabolites are produced autonomously by embryonic tissues. PMID:26446802

  2. The Murine Bladder Supports a Population of Stromal Sca-1+/CD34+/lin- Mesenchymal Stem Cells.

    PubMed

    Lilly, Meredith A; Kulkulka, Natalie A; Firmiss, Paula R; Ross, Michael J; Flum, Andrew S; Santos, Grace B Delos; Bowen, Diana K; Dettman, Robert W; Gong, Edward M

    2015-01-01

    Bladder fibrosis is an undesired end point of injury of obstruction and often renders the smooth muscle layer noncompliant. In many cases, the long-term effect of bladder fibrosis is renal failure. Despite our understanding of the progression of this disease, little is known about the cellular mechanisms that lead to a remodeled bladder wall. Resident stem (progenitor) cells have been identified in various organs such as the brain, heart and lung. These cells function normally during organ homeostasis, but become dysregulated after organ injury. Here, we aimed to characterize a mesenchymal progenitor cell population as a first step in understanding its role in bladder fibrosis. Using fluorescence activated cell sorting (FACS), we identified a Sca-1+/ CD34+/ lin- (PECAM-: CD45-: Ter119-) population in the adult murine bladder. These cells were localized to the stromal layer of the adult bladder and appeared by postnatal day 1. Cultured Sca-1+/ CD34+/ lin- bladder cells self-renewed, formed colonies and spontaneously differentiated into cells expressing smooth muscle genes. These cells differentiated into other mesenchymal lineages (chondrocytes, adipocytes and osteocytes) upon culture in induction medium. Both acute and partial obstruction of the bladder reduced expression of CD34 and changed localization of Sca-1 to the urothelium. Partial obstruction resulted in upregulation of fibrosis genes within the Sca-1+/CD34+/lin- population. Our data indicate a resident, mesenchymal stem cell population in the bladder that is altered by bladder obstruction. These findings provide new information about the cellular changes in the bladder that may be associated with bladder fibrosis. PMID:26540309

  3. The Murine Bladder Supports a Population of Stromal Sca-1+/CD34+/lin- Mesenchymal Stem Cells

    PubMed Central

    Lilly, Meredith A.; Kulkulka, Natalie A.; Firmiss, Paula R.; Ross, Michael J.; Flum, Andrew S.; Santos, Grace B. Delos; Bowen, Diana K.; Dettman, Robert W.; Gong, Edward M.

    2015-01-01

    Bladder fibrosis is an undesired end point of injury of obstruction and often renders the smooth muscle layer noncompliant. In many cases, the long-term effect of bladder fibrosis is renal failure. Despite our understanding of the progression of this disease, little is known about the cellular mechanisms that lead to a remodeled bladder wall. Resident stem (progenitor) cells have been identified in various organs such as the brain, heart and lung. These cells function normally during organ homeostasis, but become dysregulated after organ injury. Here, we aimed to characterize a mesenchymal progenitor cell population as a first step in understanding its role in bladder fibrosis. Using fluorescence activated cell sorting (FACS), we identified a Sca-1+/ CD34+/ lin- (PECAM-: CD45-: Ter119-) population in the adult murine bladder. These cells were localized to the stromal layer of the adult bladder and appeared by postnatal day 1. Cultured Sca-1+/ CD34+/ lin- bladder cells self-renewed, formed colonies and spontaneously differentiated into cells expressing smooth muscle genes. These cells differentiated into other mesenchymal lineages (chondrocytes, adipocytes and osteocytes) upon culture in induction medium. Both acute and partial obstruction of the bladder reduced expression of CD34 and changed localization of Sca-1 to the urothelium. Partial obstruction resulted in upregulation of fibrosis genes within the Sca-1+/CD34+/lin- population. Our data indicate a resident, mesenchymal stem cell population in the bladder that is altered by bladder obstruction. These findings provide new information about the cellular changes in the bladder that may be associated with bladder fibrosis. PMID:26540309

  4. What Is Lung Cancer?

    MedlinePlus

    ... starts in the lungs, it is called lung cancer. Lung cancer begins in the lungs and may spread ... lung cancer. For more information, visit the National Cancer Institute’s Lung Cancer. Previous Basic Information Basic Information Basic Information ...

  5. Lung Organogenesis

    PubMed Central

    Warburton, David; El-Hashash, Ahmed; Carraro, Gianni; Tiozzo, Caterina; Sala, Frederic; Rogers, Orquidea; De Langhe, Stijn; Kemp, Paul J.; Riccardi, Daniela; Torday, John; Bellusci, Saverio; Shi, Wei; Lubkin, Sharon R; Jesudason, Edwin

    2011-01-01

    Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the “molecular embryology” of the lung was first comprehensively reviewed, new challenges have emerged—and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits. PMID:20691848

  6. Antimicrobial proteins of murine macrophages.

    PubMed Central

    Hiemstra, P S; Eisenhauer, P B; Harwig, S S; van den Barselaar, M T; van Furth, R; Lehrer, R I

    1993-01-01

    Three murine microbicidal proteins (MUMPs) were purified from cells of the murine macrophage cell line RAW264.7 that had been activated by gamma interferon. Similar proteins were also present in nonactivated RAW264.7 cells, in cells of the murine macrophage cell line J774A.1, and in resident and activated murine peritoneal macrophages. MUMP-1, MUMP-2, and MUMP-3 killed Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Mycobacterium fortuitum, and Cryptococcus neoformans in vitro. MUMP-1 resembled an H1 histone but was unusual because its N-terminal residue (serine) was not N acetylated. Although MUMP-2 was N terminally blocked, its high lysine/arginine ratio and its reactivity with an antibody to H1 histones suggested that it also belonged to the H1 histone family. MUMP-3 was identical to histone H2B in 30 of 30 amino-terminal residues. Although the antimicrobial properties of histones have been recognized for decades, this is the first evidence that such proteins may endow the lysosomal apparatus of macrophages with nonoxidative antimicrobial potential. Other MUMPs, including some with a more restricted antimicrobial spectrum and one that appeared to be induced in RAW264.7 cells after gamma interferon stimulation, were noted but remain to be characterized. Images PMID:8514411

  7. A murine model of smoke inhalation.

    PubMed

    Matthew, E; Warden, G; Dedman, J

    2001-04-01

    The United States has one of the world's largest per capita fire death rates. House fires alone kill >9,000 Americans annually, and smoke inhalation is the leading cause of mortality from structural fires. Animal models are needed to develop therapies to combat this problem. We have developed a murine model of smoke inhalation through the design, construction, and use of a controlled-environment smoke chamber. There is a direct relationship between the quantity of wood combusted and mortality in mice. As with human victims, the primary cause of death from smoke inhalation is an elevated blood carboxyhemoglobin level. Lethal (78%) and sublethal (50%) carboxyhemoglobin levels were obtained in mice subjected to varying amounts of smoke. Mice exposed to wood smoke demonstrated more dramatic pathology than mice exposed to cotton or polyurethane smoke. A CD-1 model of wood smoke exposure was developed, demonstrating type II cell hypertrophy, cytoplasmic blebbing, cytoplasmic vacuolization, sloughing, hemorrhage, edema, macrophage infiltration, and lymphocyte infiltration. The bronchoalveolar lavage fluid of smoke-exposed mice demonstrated a significant increase in total cell counts compared with those in control mice. These findings are comparable to the lung tissue response observed in human victims of smoke inhalation. PMID:11238012

  8. Interferon-alpha inhibits murine macrophage transforming growth factor-beta mRNA expression.

    PubMed

    Dhanani, S; Huang, M; Wang, J; Dubinett, S M

    1994-06-01

    Transforming growth factor-beta (TGF-beta), a multifunctional polypeptide is produced by a wide variety of cells and regulates a broad array of physiological and pathological functions. TGF-beta appears to play a central role in pulmonary fibrosis and may contribute to tumor-associated immunosuppression. Alveolar macrophages are a rich source of TGF-beta and are intimately involved in lung inflammation. We therefore chose to study TGF-beta regulation in murine alveolar macrophages as well as an immortalized peritoneal macrophage cell line (IC-21). Murine macrophages were incubated with cytokines to evaluate their role in regulating TGF-beta mRNA expression. We conclude that IFN-alpha downregulates TGF-beta mRNA expression in murine macrophages. PMID:8088926

  9. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis

    SciTech Connect

    Li, Wei; Fu, Jianfang; Zhang, Shun; Zhao, Jie; Xie, Nianlin; Cai, Guoqing

    2015-06-01

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli–germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli–germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. - Highlights: • Intermittent treatment with BTZ caused fertility impairment in adult mice. • BTZ treatment elicited apoptosis during early phase of testicular recovery. • Up-regulation of oxidative stress by BTZ treatment

  10. Imaging of Childhood Interstitial Lung Disease

    PubMed Central

    2010-01-01

    The aphorism that children are not little adults certainly applies for the imaging of interstitial lung disease. Acquiring motion-free images of fine pulmonary structures at desired lung volumes is much more difficult in children than in adults. Several forms of interstitial lung disease are unique to children, and some forms of interstitial lung disease encountered in adults rarely, if ever, occur in children. Meticulous attention to imaging technique and specialized knowledge are required to properly perform and interpret chest imaging studies obtained for the evaluation of childhood interstitial lung disease (chILD). This review will address technique recommendations for imaging chILD, the salient imaging findings in various forms of chILD, and the efficacy of imaging in the diagnosis and management of chILD. PMID:22332031

  11. GENETIC BASIS OF MURINE ANTIBACTERIAL DEFENSE TO STREPTOCOCCAL LUNG INFECTION

    EPA Science Inventory

    To evaluate the effect of genetic background and toll-like receptor 2 on antibacterial defense to streptococcal infection, eight genetically diverse strains of mice (A/J, DBA/2J, CAST/Ei, FVB/NJ, BALB/cJ, C57BL/6J, 129/SvImJ, and C3H/HeJ) and tlr2-deficient mice (C57BL/6

  12. Murine leukemia virus envelope gp70 is a shared biomarker for the high-sensitivity quantification of murine tumor burden

    PubMed Central

    Scrimieri, Francesca; Askew, David; Corn, David J; Eid, Saada; Bobanga, Iuliana D; Bjelac, Jaclyn A; Tsao, Matthew L; Allen, Frederick; Othman, Youmna S; Wang, Shih-Chung G; Huang, Alex Y

    2013-01-01

    The preclinical development of anticancer drugs including immunotherapeutics and targeted agents relies on the ability to detect minimal residual tumor burden as a measure of therapeutic efficacy. Real-time quantitative (qPCR) represents an exquisitely sensitive method to perform such an assessment. However, qPCR-based applications are limited by the availability of a genetic defect associated with each tumor model under investigation. Here, we describe an off-the-shelf qPCR-based approach to detect a broad array of commonly used preclinical murine tumor models. In particular, we report that the mRNA coding for the envelope glycoprotein 70 (gp70) encoded by the endogenous murine leukemia virus (MuLV) is universally expressed in 22 murine cancer cell lines of disparate histological origin but is silent in 20 out of 22 normal mouse tissues. Further, we detected the presence of as few as 100 tumor cells in whole lung extracts using qPCR specific for gp70, supporting the notion that this detection approach has a higher sensitivity as compared with traditional tissue histology methods. Although gp70 is expressed in a wide variety of tumor cell lines, it was absent in inflamed tissues, non-transformed cell lines, or pre-cancerous lesions. Having a high-sensitivity biomarker for the detection of a wide range of murine tumor cells that does not require additional genetic manipulations or the knowledge of specific genetic alterations present in a given neoplasm represents a unique experimental tool for investigating metastasis, assessing antitumor therapeutic interventions, and further determining tumor recurrence or minimal residual disease. PMID:24482753

  13. DANCE Your Way to Healthier Lungs

    MedlinePlus

    ... Healthier Lungs Font: Aerosol Delivery Oxygen Resources Immunizations Pollution Nutrition Exercise Coming Of Age Older Adults Allergy ... Reduce environmental hazards by Coping with Indoor Air Pollution and by Minimizing the Effects of Outdoor Air ...

  14. Lung cancer.

    PubMed

    Akhurst, Tim; MacManus, Michael; Hicks, Rodney J

    2015-04-01

    (18)F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) plays a key role in the evaluation of undiagnosed lung nodules, when primary lung cancer is strongly suspected, or when it has already been diagnosed by other techniques. Although technical factors may compromise characterization of small or highly mobile lesions, lesions without apparent FDG uptake can generally be safely observed, whereas FDG-avid lung nodules almost always need further evaluation. FDG-PET/CT is now the primary staging imaging modality for patients with lung cancer who are being considered for curative therapy with either surgery or definitive radiation therapy. PMID:25829084

  15. Farmer's lung

    PubMed Central

    Hapke, E. J.; Seal, R. M. E.; Thomas, G. O.; Hayes, M.; Meek, J. C.

    1968-01-01

    In assessing patients suffering from farmer's lung, the acute stage must be distinguished from the chronic stage of the disease. The conspicuous radiographic signs in the acute farmer's lung episode and the often dramatic clearing make an important contribution to the diagnosis. The radiographic changes in chronic farmer's lung are not specific and cover a wide range of appearances. Even minor nodular changes are significant. Farmer's lung, acute and chronic, is not a disease predominantly characterized by a defect in gas exchange. During the acute illness the reduction in diffusing capacity is often accompanied by a decrease in lung volumes; the pulmonary function profile of the chronic stage is variable. In only a relatively small proportion of chronic farmer's lung patients does a defect in gas exchange predominate, and in some it may be manifest only during exercise. Airway obstruction is a feature of chronic farmer's lung. In chronic farmer's lung patients discrepancies between the severity of complaints and results of pulmonary function tests are not infrequent. In some patients with considerable disability conventional pulmonary function studies may demonstrate little or no impairment of the functions measured. In patients suffering from an acute farmer's lung episode, serological tests should be positive, possibly in high titre. In the chronic stage of the disease the chance of finding positive serology in a patient diminishes with the length of time elapsed since the last acute episode. The period of serological transition appears to be the third year. Images PMID:4971361

  16. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis.

    PubMed

    Li, Wei; Fu, Jianfang; Zhang, Shun; Zhao, Jie; Xie, Nianlin; Cai, Guoqing

    2015-06-01

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli-germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli-germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. PMID:25886977

  17. Multiphoton microscopy as a diagnostic imaging modality for lung cancer

    NASA Astrophysics Data System (ADS)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Peters, Rachel M.; Weiss, Robert S.; Webb, Watt W.

    2010-02-01

    Lung cancer is the leading killer among all cancers for both men and women in the US, and is associated with one of the lowest 5-year survival rates. Current diagnostic techniques, such as histopathological assessment of tissue obtained by computed tomography guided biopsies, have limited accuracy, especially for small lesions. Early diagnosis of lung cancer can be improved by introducing a real-time, optical guidance method based on the in vivo application of multiphoton microscopy (MPM). In particular, we hypothesize that MPM imaging of living lung tissue based on twophoton excited intrinsic fluorescence and second harmonic generation can provide sufficient morphologic and spectroscopic information to distinguish between normal and diseased lung tissue. Here, we used an experimental approach based on MPM with multichannel fluorescence detection for initial discovery that MPM spectral imaging could differentiate between normal and neoplastic lung in ex vivo samples from a murine model of lung cancer. Current results indicate that MPM imaging can directly distinguish normal and neoplastic lung tissues based on their distinct morphologies and fluorescence emission properties in non-processed lung tissue. Moreover, we found initial indication that MPM imaging differentiates between normal alveolar tissue, inflammatory foci, and lung neoplasms. Our long-term goal is to apply results from ex vivo lung specimens to aid in the development of multiphoton endoscopy for in vivo imaging of lung abnormalities in various animal models, and ultimately for the diagnosis of human lung cancer.

  18. Pharmacokinetics and Pulmonary Disposition of Tedizolid and Linezolid in a Murine Pneumonia Model under Variable Conditions

    PubMed Central

    Keel, Rebecca A.; Crandon, Jared L.

    2012-01-01

    In vivo pharmacokinetics are often evaluated in only one variation of an infection model, and the resulting exposures are assumed to be similar in each model. We evaluated and compared the effect of lung infection and immune status on the murine pharmacokinetics and pulmonary disposition of tedizolid and linezolid. Both factors resulted in differing blood and pulmonary exposure profiles, with similar trends for tedizolid and linezolid. These data highlight the importance of pharmacokinetic confirmation in each model. PMID:22430966

  19. Lung Cancer

    MedlinePlus

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  20. Lung transplantation

    PubMed Central

    Afonso, José Eduardo; Werebe, Eduardo de Campos; Carraro, Rafael Medeiros; Teixeira, Ricardo Henrique de Oliveira Braga; Fernandes, Lucas Matos; Abdalla, Luis Gustavo; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel

    2015-01-01

    ABSTRACT Lung transplantation is a globally accepted treatment for some advanced lung diseases, giving the recipients longer survival and better quality of life. Since the first transplant successfully performed in 1983, more than 40 thousand transplants have been performed worldwide. Of these, about seven hundred were in Brazil. However, survival of the transplant is less than desired, with a high mortality rate related to primary graft dysfunction, infection, and chronic graft dysfunction, particularly in the form of bronchiolitis obliterans syndrome. New technologies have been developed to improve the various stages of lung transplant. To increase the supply of lungs, ex vivo lung reconditioning has been used in some countries, including Brazil. For advanced life support in the perioperative period, extracorporeal membrane oxygenation and hemodynamic support equipment have been used as a bridge to transplant in critically ill patients on the waiting list, and to keep patients alive until resolution of the primary dysfunction after graft transplant. There are patients requiring lung transplant in Brazil who do not even come to the point of being referred to a transplant center because there are only seven such centers active in the country. It is urgent to create new centers capable of performing lung transplantation to provide patients with some advanced forms of lung disease a chance to live longer and with better quality of life. PMID:26154550

  1. Lung Diseases

    MedlinePlus

    When you breathe, your lungs take in oxygen from the air and deliver it to the bloodstream. The cells in your body need oxygen to ... you breathe nearly 25,000 times. People with lung disease have difficulty breathing. Millions of people in ...

  2. Ventilator-induced Lung Injury

    PubMed Central

    Kneyber, Martin C. J.; Zhang, Haibo; Slutsky, Arthur S.

    2016-01-01

    It is well established that mechanical ventilation can injure the lung, producing an entity known as ventilator-induced lung injury (VILI). There are various forms of VILI, including volutrauma (i.e., injury caused by overdistending the lung), atelectrauma (injury due to repeated opening/closing of lung units), and biotrauma (release of mediators that can induce lung injury or aggravate pre-existing injury, potentially leading to multiple organ failure). Experimental data in the pediatric context are in accord with the importance of VILI, and appear to show age-related susceptibility to VILI, although a conclusive link between use of large Vts and mortality has not been demonstrated in this population. The relevance of VILI in the pediatric intensive care unit population is thus unclear. Given the physiological and biological differences in the respiratory systems of infants, children, and adults, it is difficult to directly extrapolate clinical practice from adults to children. This Critical Care Perspective analyzes the relevance of VILI to the pediatric population, and addresses why pediatric patients might be less susceptible than adults to VILI. PMID:25003705

  3. A Novel Population of Cells Expressing Both Hematopoietic and Mesenchymal Markers Is Present in the Normal Adult Bone Marrow and Is Augmented in a Murine Model of Marrow Fibrosis

    PubMed Central

    Ohishi, Masanobu; Ono, Wanida; Ono, Noriaki; Khatri, Richa; Marzia, Marilena; Baker, Emma K.; Root, Sierra H.; Wilson, Tremika Le-Shan; Iwamoto, Yukihide; Kronenberg, Henry M.; Aguila, Hector L.; Purton, Louise E.; Schipani, Ernestina

    2012-01-01

    Bone marrow (BM) fibrosis is a feature of severe hyperparathyroidism. Consistent with this observation, mice expressing constitutively active parathyroid hormone (PTH)/PTH-related peptide receptors (PPR) in osteoblasts (PPR*Tg) display BM fibrosis. To obtain insight into the nature of BM fibrosis in such a model, a double-mutant mouse expressing constitutively active PPR and green fluorescent protein (GFP) under the control of the type I collagen promoter (PPR*Tg/GFP) was generated. Confocal microscopy and flow cytometry revealed the presence of a cell population expressing GFP (GFP+) that was also positive for the hematopoietic marker CD45 in the BM of both PPR*Tg/GFP and control animals. This cell population was expanded in PPR*Tg/GFP. The existence of cells expressing both type I collagen and CD45 in the adult BM was confirmed by IHC and fluorescence-activated cell sorting. An analysis of total RNA extracted from sorted GFP+CD45+ cells showed that these cells produced type I collagen and PTH/PTH-related peptide receptor and receptor activator for NF-κB mRNAs, further supporting their features of being both mesenchymal and hematopoietic lineages. Similar cells, known as fibrocytes, are also present in pathological fibroses. Our findings, thus, indicate that the BM is a permissive microenvironment for the differentiation of fibrocyte-like cells and raise the possibility that these cells could contribute to the pathogenesis of BM fibrosis. PMID:22155108

  4. Age-related differences in the distortion of the sheep lung in response to localised pleural stress

    PubMed Central

    Grant, Daniel A; Walker, Adrian M; Fauchère, Jean-Claude

    2001-01-01

    In order for diastolic filling to occur, the heart must displace the lung. Given the changes in lung structure and compliance that follow birth, we sought to determine whether the neonatal lung resists neighbouring structures encroaching into its space more than the adult lung and whether the lung surface making up the cardiac fossa resists distortion more than the lateral surface does. Pleural distortions, induced by applied pressures (Pappl) of 20-120 g cm−2 at airway pressures (Paw) of 2.5-15 cmH2O, were recorded in isolated lungs of adult, neonatal (4-week-old) and newborn (1-week-old) sheep. The depth of pleural distortion increased (P < 0.05, ANOVA) with increasing Pappl in all lungs. Adult lungs were significantly more distortable than newborn and neonatal lungs (P < 0.05). As Paw increased, the distortability of the adult lung decreased progressively (P < 0.05) while the distortability of the newborn and neonatal lung remained constant at Paw of 2.5 and 5 cmH2O. Adult lungs also differed from newborn and neonatal lungs in that the cardiac fossal surface was significantly less distortable than the lateral surface. As newborn and neonatal lungs are less easily distorted than adult lungs, the potential for the lungs to limit cardiac filling is greater in the newborn and neonate than in the adult. PMID:11136867

  5. Sirolimus and Gold Sodium Thiomalate in Treating Patients With Advanced Squamous Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2012-12-13

    Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  6. Collapsed lung (pneumothorax)

    MedlinePlus

    Air around the lung; Air outside the lung; Pneumothorax dropped lung; Spontaneous pneumothorax ... Collapsed lung can be caused by an injury to the lung. Injuries can include a gunshot or knife wound ...

  7. Lung disease - resources

    MedlinePlus

    Resources - lung disease ... The following organizations are good resources for information on lung disease : American Lung Association -- www.lung.org National Heart, Lung, and Blood Institute -- www.nhlbi.nih.gov ...

  8. Adenoviral vector expressing murine β-defensin 2 enhances immunogenicity of an adenoviral vector based H5N1 influenza vaccine in aged mice.

    PubMed

    Vemula, Sai V; Pandey, Aseem; Singh, Neetu; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-10-01

    The ability to resist infections and respond to vaccinations is greatly reduced in the older adult population owing to a general decline in innate and adaptive immune functions with aging. Over the years several strategies such as increasing the vaccine dose, number of immunizations and using adjuvants have been evaluated to improve the immunogenicity and efficacy of vaccines in the older adult population. Murine β-defensin 2 (Mbd2) has been shown to function as a molecular adjuvant by recruiting and activating immature dendritic cells (DCs), professional antigen-presenting cells (APC), to the site of the immunization. In this study, we evaluated the potential utility of Mbd2 to enhance the efficacy of an adenoviral vector-based H5N1 influenza vaccine expressing hemagglutinin (HA) and nucleoprotein (NP) (HAd-HA-NP) in an aged mouse model. Our results indicated that immunostimulation with an adenoviral vector expressing Mbd2 (HAd-Mbd2) activated DCs and significantly enhanced the humoral and cellular immune responses induced by HAd-HA-NP. Furthermore, immunostimulation with HAd-Mbd2 followed by immunization with HAd-HA-NP resulted in significantly lower virus titers in the lungs following challenge with a H5N1 influenza virus compared to the group immunized with HAd-HA-NP without immunostimulation. Overall, our results highlight the potential utility of Mbd2 as a molecular adjuvant to enhance the immunogenicity and protective efficacy of vaccines for the elderly. PMID:23892144

  9. Adenoviral Vector Expressing Murine β-Defensin 2 Enhances Immunogenicity of an Adenoviral Vector based H5N1 Influenza Vaccine in Aged Mice

    PubMed Central

    Vemula, Sai V.; Pandey, Aseem; Singh, Neetu; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K.

    2013-01-01

    The ability to resist infections and respond to vaccinations is greatly reduced in the older adult population owing to a general decline in innate and adaptive immune functions with aging. Over the years several strategies such as increasing the vaccine dose, number of immunizations and using adjuvants have been evaluated to improve the immunogenicity and efficacy of vaccines in the older adult population. Murine ß-defensin 2 (Mbd2) has been shown to function as a molecular adjuvant by recruiting and activating immature dendritic cells (DCs), professional antigen-presenting cells (APC), to the site of the immunization. In this study, we evaluated the potential utility of Mbd2 to enhance the efficacy of an adenoviral vector-based H5N1 influenza vaccine expressing hemagglutinin (HA) and nucleoprotein (NP) (HAd-HA-NP) in an aged mouse model. Our results indicated that immunostimulation with an adenoviral vector expressing Mbd2 (HAd-Mbd2) activated DCs and significantly enhanced the humoral and cellular immune responses induced by HAd-HA-NP. Furthermore, immunostimulation with HAd-Mbd2 followed by immunization with HAd-HA-NP resulted in significantly lower virus titers in the lungs following challenge with a H5N1 influenza virus compared to the group immunized with HAd-HA-NP without immunostimulation. Overall, our results highlight the potential utility of Mbd2 as a molecular adjuvant to enhance the immunogenicity and protective efficacy of vaccines for the elderly. PMID:23892144

  10. Assay of lapatinib in murine models of cigarette smoke carcinogenesis

    PubMed Central

    Balansky, Roumen; Izzotti, Alberto; D’Agostini, Francesco; Longobardi, Mariagrazia; Micale, Rosanna T.; La Maestra, Sebastiano; Camoirano, Anna; Ganchev, Gancho; Iltcheva, Marietta; Steele, Vernon E.; De Flora, Silvio

    2014-01-01

    Lapatinib, a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), is prescribed for the treatment of patients with metastatic breast cancer overexpressing HER-2. Involvement of this drug in pulmonary carcinogenesis has been poorly investigated. We used murine models suitable to evaluate cigarette smoke-related molecular and histopathological alterations. A total of 481 Swiss H mice were used. The mice were exposed to mainstream cigarette smoke (MCS) during the first four months of life. After 10 weeks, MCS caused an elevation of bulky DNA adducts, oxidative DNA damage and an extensive downregulation of microRNAs in lung. After four months, an increase in micronucleus frequency was observed in peripheral blood erythrocytes. After 7.5 months, histopathological alterations were detected in the lung, also including benign tumors and malignant tumors, and in the urinary tract. A subchronic toxicity study assessed the non-toxic doses of lapatinib, administered daily with the diet after weaning. After 10 weeks, lapatinib significantly attenuated the MCS-related nucleotide changes and upregulated several low-intensity microRNAs in lung. The drug poorly affected the MCS systemic genotoxicity and had modest protective effects on MCS-induced preneoplastic lesions in lung and kidney, when administered under conditions that temporarily mimicked interventions either in current smokers or ex-smokers. On the other hand, it caused some toxicity to the liver. Thus, on the whole, lapatinib appears to have a low impact in the smoke-related lung carcinogenesis models used, especially in terms of tumorigenic response. PMID:25053627

  11. Quantitative and Qualitative Deficits in Neonatal Lung-Migratory Dendritic Cells Impact the Generation of the CD8+ T Cell Response

    PubMed Central

    Ruckwardt, Tracy J.; Malloy, Allison M. W.; Morabito, Kaitlyn M.; Graham, Barney S.

    2014-01-01

    CD103+ and CD11b+ populations of CD11c+MHCIIhi murine dendritic cells (DCs) have been shown to carry antigens from the lung through the afferent lymphatics to mediastinal lymph nodes (MLN). We compared the responses of these two DC populations in neonatal and adult mice following intranasal infection with respiratory syncytial virus. The response in neonates was dominated by functionally-limited CD103+ DCs, while CD11b+ DCs were diminished in both number and function compared to adults. Infecting mice at intervals through the first three weeks of life revealed an evolution in DC phenotype and function during early life. Using TCR transgenic T cells with two different specificities to measure the ability of CD103+ DC to induce epitope-specific CD8+ T cell responses, we found that neonatal CD103+ DCs stimulate proliferation in a pattern distinct from adult CD103+ DCs. Blocking CD28-mediated costimulatory signals during adult infection demonstrated that signals from this costimulatory pathway influence the hierarchy of the CD8+ T cell response to RSV, suggesting that limited costimulation provided by neonatal CD103+ DCs is one mechanism whereby neonates generate a distinct CD8+ T cell response from that of adults. PMID:24550729

  12. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model.

    PubMed

    Bonfield, Tracey L; Koloze, Mary; Lennon, Donald P; Zuchowski, Brandon; Yang, Sung Eun; Caplan, Arnold I

    2010-12-01

    Allogeneic human mesenchymal stem cells (hMSCs) introduced intravenously can have profound anti-inflammatory activity resulting in suppression of graft vs. host disease as well as regenerative events in the case of stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of these diseases. hMSCs produce bioactive factors that provide molecular cuing for: 1) immunosuppression of T cells; 2) antiscarring; 3) angiogenesis; 4) antiapoptosis; and 5) regeneration (i.e., mitotic for host-derived progenitor cells). Studies have shown that hMSCs have profound effects on the immune system and are well-tolerated and therapeutically active in immunocompetent rodent models of multiple sclerosis and stroke. Furthermore, intravenous administration of MSCs results in pulmonary localization. Asthma is a major debilitating pulmonary disease that impacts in excess of 150 million people in the world with uncontrolled asthma potentially leading to death. In addition, the socioeconomic impact of asthma-associated illnesses at the pediatric and adult level are in the millions of dollars in healthcare costs and lost days of work. hMSCs may provide a viable multiaction therapeutic for this inflammatory lung disease by secreting bioactive factors or directing cellular activity. Our studies show the effectiveness and specificity of the hMSCs on decreasing chronic airway inflammation associated with the murine ovalbumin model of asthma. In addition, the results from these studies verify the in vivo immunoeffectiveness of hMSCs in rodents and support the potential therapeutic use of hMSCs for the treatment of airway inflammation associated with chronic asthma. PMID:20817776

  13. Association of environmental tobacco smoke at work and forced expiratory lung function among never smoking asthmatics and non-asthmatics. The SAPALDIA-Team. Swiss Study on Air Pollution and Lung Disease in Adults.

    PubMed

    Künzli, N; Schwartz, J; Stutz, E Z; Ackermann-Liebrich, U; Leuenberger, P

    2000-01-01

    Inconsistencies across studies on the association of environmental tobacco smoke (ETS) and pulmonary function may be clarified addressing potentially susceptible subgroups. We determined the association of ETS exposure at work with FVC, FEV1, and FEF25-75% in life-time never smokers (N = 3534) of the SAPALDIA random population sample (age 18-60). We considered sex, bronchial reactivity, and asthma status as a priori indicators to identify susceptible riskgroups. The multivariate regression models adjusted for height, age, education, dust/aerosol exposure, region, and ETS at home. Overall, ETS was not significantly associated with FVC (0.7%; -0.4 to +1.8), FEV1 (-0.1%; 95% CI: -1.3 to +1.1) or FEF25-75% (-1.9%; -4.2 to +0.5). Effects were observed among asthmatics (n = 325), FEV1 (-4.8%; 0 to -9.2); FEF25-75% (-12.4%; -3.7 to -20.4); FVC: (-1.7%; +2.1 to -5.5), particularly in asthmatic women (n = 183): FVC -4.4% (-9.6 to +1.1); FEV1: -8.7% (-14.5 to -2.5); FEF25-75%: -20.8% (-32 to -7.6), where duration of ETS exposure at work was associated with lung function (FEV1 -6% per hour of ETS exposure at work (p = 0.01); FEF25-75%: -3.4%/h (p < 0.05). In non-asthmatic women (n = 1963) and in men no significant effect was observed. The size of the observed effect among susceptible subgroups has to be considered clinically relevant. However, due to inherent limitations of this cross-sectional analysis, selection or information biases may not be fully controlled. For example, asthmatic women reported higher ETS exposure at work than asthmatic men. Given the public health importance to identify susceptible subgroups, these results ought to be replicated. PMID:11081239

  14. Dual function of pneumolysin in the early pathogenesis of murine pneumococcal pneumonia.

    PubMed Central

    Rubins, J B; Charboneau, D; Paton, J C; Mitchell, T J; Andrew, P W; Janoff, E N

    1995-01-01

    Streptococcus pneumoniae is one of the most common etiologic agents of community-acquired pneumonia, particularly bacteremic pneumonia. Pneumolysin, a multifunctional cytotoxin, is a putative virulence factor for S. pneumoniae; however, a direct role for pneumolysin in the early pathogenesis of pneumococcal pneumonia has not been confirmed in vivo. We compared the growth of a pneumolysin-deficient (PLY[-]) type 2 S. pneumoniae strain with its isogenic wild-type strain (PLY[+]) after direct endotracheal instillation of bacteria into murine lungs. Compared with PLY(-) bacteria, infection with PLY(+) bacteria produced greater injury to the alveolar-capillary barrier, as assayed by albumin concentrations in alveolar lavage, and substantially greater numbers of PLY(+) bacteria were recovered in alveolar lavages and lung homogenates at 3 and 6 h after infection. The presence of pneumolysin also contributed to the development of bacteremia, which was detected at 3 h after intratracheal instillation of PLY(+) bacteria. The direct effects of pneumolysin on lung injury and on the ability of pneumococci to evade local lung defenses was confirmed by addition of purified recombinant pneumolysin to inocula of PLY(-) pneumococci, which promoted growth of PLY(-) bacteria in the lung to levels comparable to those seen with the PLY(+) strain. We further demonstrated the contributions of both the cytolytic and the complement-activating properties of pneumolysin on enhanced bacterial growth in murine lungs using genetically modified pneumolysin congeners and genetically complement-deficient mice. Thus, pneumolysin facilitates intraalveolar replication of pneumococci, penetration of bacteria from alveoli into the interstitium of the lung, and dissemination of pneumococci into the bloodstream during experimental pneumonia. Moreover, both the cytotoxic and the complement-activating activities of pneumolysin may contribute independently to the acute pulmonary injury and the high rates of

  15. Murine Typhus, Reunion, France, 2011–2013

    PubMed Central

    Camuset, Guillaume; Socolovschi, Cristina; Moiton, Marie-Pierre; Kuli, Barbara; Foucher, Aurélie; Poubeau, Patrice; Borgherini, Gianandrea; Wartel, Guillaume; Audin, Héla; Raoult, Didier; Filleul, Laurent; Parola, Philippe; Pagès, Fréderic

    2015-01-01

    Murine typhus case was initially identified in Reunion, France, in 2012 in a tourist. Our investigation confirmed 8 autochthonous cases that occurred during January 2011–January 2013 in Reunion. Murine typhus should be considered in local patients and in travelers returning from Reunion who have fevers of unknown origin. PMID:25625653

  16. Lung transplantation

    PubMed Central

    2013-01-01

    Lung transplantation may be the only intervention that can prolong survival and improve quality of life for those individuals with advanced lung disease who are acceptable candidates for the procedure. However, these candidates may be extremely ill and require ventilator and/or circulatory support as a bridge to transplantation, and lung transplantation recipients are at risk of numerous post-transplant complications that include surgical complications, primary graft dysfunction, acute rejection, opportunistic infection, and chronic lung allograft dysfunction (CLAD), which may be caused by chronic rejection. Many advances in pre- and post-transplant management have led to improved outcomes over the past decade. These include the creation of sound guidelines for candidate selection, improved surgical techniques, advances in donor lung preservation, an improving ability to suppress and treat allograft rejection, the development of prophylaxis protocols to decrease the incidence of opportunistic infection, more effective therapies for treating infectious complications, and the development of novel therapies to treat and manage CLAD. A major obstacle to prolonged survival beyond the early post-operative time period is the development of bronchiolitis obliterans syndrome (BOS), which is the most common form of CLAD. This manuscript discusses recent and evolving advances in the field of lung transplantation. PMID:23710330

  17. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma.

    PubMed

    Firinci, Fatih; Karaman, Meral; Baran, Yusuf; Bagriyanik, Alper; Ayyildiz, Zeynep Arikan; Kiray, Muge; Kozanoglu, Ilknur; Yilmaz, Osman; Uzuner, Nevin; Karaman, Ozkan

    2011-08-01

    Asthma therapies are effective in reducing inflammation but airway remodeling is poorly responsive to these agents. New therapeutic options that have fewer side effects and reverse chronic changes in the lungs are essential. Mesenchymal stem cells (MSCs) are promising for the development of novel therapies in regenerative medicine. This study aimed to examine the efficacy of MSCs on lung histopathology in a murine model of chronic asthma. BALB/c mice were divided into four groups: Group 1 (control group, n=6), Group 2 (ovalbumin induced asthma only, n=10), Group 3 (ovalbumin induced asthma + MSCs, n=10), and Group 4 (MSCs only, n=10). Histological findings (basement membrane, epithelium, subepithelial smooth muscle thickness, numbers of goblet and mast cells) of the airways and MSC migration were evaluated by light, electron, and confocal microscopes. In Group 3, all early histopathological changes except epithelial thickness and all of the chronic changes were significantly ameliorated when compared with Group 2. Evaluation with confocal microscopy showed that no noteworthy amount of MSCs were present in the lung tissues of Group 4 while significant amount of MSCs was detected in Group 3. Serum NO levels in Group 3, were significantly lower than Group 2. The results of this study revealed that MSCs migrated to lung tissue and ameliorated bronchial asthma in murine model. Further studies are needed to evaluate the efficacy of MSCs for the treatment of asthma. PMID:21439399

  18. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model.

    PubMed

    von Bismarck, Philipp; Winoto-Morbach, Supandi; Herzberg, Mona; Uhlig, Ulrike; Schütze, Stefan; Lucius, Ralph; Krause, Martin F

    2012-06-01

    Airway epithelial NF-κB is a key regulator of host defence in bacterial infections and has recently evolved as a target for therapeutical approaches. Evidence is accumulating that ceramide, generated by acid sphingomyelinase (aSMase), and sphingosine-1-phosphate (S1-P) are important mediators in host defence as well as in pathologic processes of acute lung injury. Little is known about the regulatory mechanisms of pulmonary sphingolipid metabolism in bacterial infections of the lung. The objective of this study was to evaluate the influence of NF-κB on sphingolipid metabolism in Pseudomonas aeruginosa LPS-induced pulmonary inflammation. In a murine acute lung injury model with intranasal Pseudomonas aeruginosa LPS we investigated TNF-α, KC (murine IL-8), IL-6, MCP-1 and neutrophilic infiltration next to aSMase activity and ceramide and S1-P lung tissue concentrations. Airway epithelial NF-κB was inhibited by topically applied IKK NBD, a cell penetrating NEMO binding peptide. This treatment resulted in significantly reduced inflammation and suppression of aSMase activity along with decreased ceramide and S1-P tissue concentrations down to levels observed in healthy animals. In conclusion our results confirm that changes in sphingolipid metabolim due to Pseudomonas aeruginosa LPS inhalation are regulated by NF-κB translocation. This confirms the critical role of airway epithelial NF-κB pathway for the inflammatory response to bacterial pathogens and underlines the impact of sphingolipids in inflammatory host defence mechanisms. PMID:22469869

  19. Synthesis of phosphatidylcholines in ozone-exposed alveolar type II cells isolated from adult rat lung: is glycerolphosphate acyltransferase a rate-limiting enzyme

    SciTech Connect

    Haagsman, H.P.; Schuurmans, E.A.; Batenburg, J.J.; van Golde, L.M.

    1988-01-01

    Type II cells were exposed to ozone by gas diffusion through the thin Teflon bottom of culture dishes. The rate of phosphatidylcholine synthesis by type II cells, monitored by the incorporation of (Me-/sup 14/C)choline, was impaired by ozone at concentrations that did not affect other cellular parameters. The enzymes choline kinase and cholinephosphate cytidylyltransferase were not susceptible to inactivation by ozone at concentrations at which the activity of glycerolphosphate acyltransferase was decreased. The enzyme activity of lactate dehydrogenase increased after ozone exposure. The specific activity of choline kinase in the cytosolic fraction of type II cells was fivefold that in whole lung. The metabolism of (Me-/sup 14/C)choline was studied as a function of the choline concentration. Maximal rates of phosphatidylcholine synthesis were already attained at a concentration of 20 microM choline. Exposure of type II cells to ozone did not affect the recovery of label from (Me-/sup 14/C)choline in choline phosphate and CDP choline. However, the maximal rate of phosphatidylcholine synthesis decreased after ozone exposure, which indicates that the decreased apparent activity of glycerolphosphate acyltransferase limits the supply of diacylglycerols and thereby the rate of phosphatidylcholine synthesis. If the flux through the diacylglycerol pathway was stimulated by the addition of palmitic acid, a higher maximal rate of phosphatidylcholine synthesis was observed. The uptake of (Me-/sup 14/C)choline and the recovery of label in CDPcholine were not altered by the addition of different concentrations of palmitate. It is concluded that type II cells take up choline very efficiently, probably due to the high specific activity of choline kinase. At low choline concentrations the rate of phosphatidylcholine synthesis is determined by the supply of CDPcholine.

  20. Regulation of Immunoproteasome Function in the Lung

    PubMed Central

    Keller, Ilona E.; Vosyka, Oliver; Takenaka, Shinji; Kloß, Alexander; Dahlmann, Burkhardt; Willems, Lianne I.; Verdoes, Martijn; Overkleeft, Hermen S.; Marcos, Elisabeth; Adnot, Serge; Hauck, Stefanie M.; Ruppert, Clemens; Günther, Andreas; Herold, Susanne; Ohno, Shinji; Adler, Heiko; Eickelberg, Oliver; Meiners, Silke

    2015-01-01

    Impaired immune function contributes to the development of chronic obstructive pulmonary disease (COPD). Disease progression is further exacerbated by pathogen infections due to impaired immune responses. Elimination of infected cells is achieved by cytotoxic CD8+  T cells that are activated by MHC I-mediated presentation of pathogen-derived antigenic peptides. The immunoproteasome, a specialized form of the proteasome, improves generation of antigenic peptides for MHC I presentation thereby facilitating anti-viral immune responses. However, immunoproteasome function in the lung has not been investigated in detail yet. In this study, we comprehensively characterized the function of immunoproteasomes in the human and murine lung. Parenchymal cells of the lung express low constitutive levels of immunoproteasomes, while they are highly and specifically expressed in alveolar macrophages. Immunoproteasome expression is not altered in whole lung tissue of COPD patients. Novel activity-based probes and native gel analysis revealed that immunoproteasome activities are specifically and rapidly induced by IFNγ treatment in respiratory cells in vitro and by virus infection of the lung in mice. Our results suggest that the lung is potentially capable of mounting an immunoproteasome-mediated efficient adaptive immune response to intracellular infections. PMID:25989070

  1. Cloning of the murine counterpart of the tumor-associated antigen H-L6: Epitope mapping of the human and murine L6 antigens

    SciTech Connect

    Edwards, C.P.; Farr, A.G.; Marken, J.S. |

    1995-10-03

    The murine monoclonal antibody (mAb) L6 was raised against human lung carcinoma cells and found to recognize an antigen which is highly expressed on lung, breast, colon, and ovarian carcinomas. Promising results in phase 1 clinical studies with this antibody or its chimerized counterpart suggest the antigen recognized by mAb L6 (H-L6) is an attractive target for monoclonal antibody-based cancer therapy. Further development of L6 as an anti-tumor-targeting agent would benefit from the development of a murine model. However, initial attempts to develop such a model were hampered by our inability to generate antibodies against the murine homologue of the L6 antigen, M-L6. Here we describe the preparation of the mAb 12A8, which was raised against murine thymic epithelial cells, the tissue distribution of the murine antigen recognized by 12A8, the cloning of a cDNA encoding the 12A8 target antigen, and the demonstration that this antigen is M-L6. Using H-L6/M-L6 chimeric proteins, we show that the region of the M-L6 protein recognized by mAb 12A8 corresponds to the region of H-L6 recognized by mAb L6. There are five amino acid differences in the regions of the H-L6 and M-L6 proteins recognized by L6 and 12A8, respectively. We further mapped the protein epitope recognized by L6 by individually exchanging each of these residues in H-L6 with the corresponding residue found in M-L6. Substitution of the single H-L6 residue Leu122 with Ser resulted in the H-L6 mutant HL6-L122S which failed to bind L6. The HL6-L122S mutant also failed to bind 12A8. Substituting residue Ser122 in M-L6 with Leu did not prevent 12A8 binding and did not result in L6 binding. The availability of mAb 12A8 and the finding that it recognizes the same region of M-L6 that is recognized by L6 on H-L6 might allow the development of a murine tumor model in which the L6 antigen can be further evaluated as a therapeutic target. 31 refs., 7 figs.

  2. Lung Injury Combined with Loss of Regulatory T Cells Leads to De Novo Lung-Restricted Autoimmunity.

    PubMed

    Chiu, Stephen; Fernandez, Ramiro; Subramanian, Vijay; Sun, Haiying; DeCamp, Malcolm M; Kreisel, Daniel; Perlman, Harris; Budinger, G R Scott; Mohanakumar, Thalachallour; Bharat, Ankit

    2016-07-01

    More than one third of patients with chronic lung disease undergoing lung transplantation have pre-existing Abs against lung-restricted self-Ags, collagen type V (ColV), and k-α1 tubulin (KAT). These Abs can also develop de novo after lung transplantation and mediate allograft rejection. However, the mechanisms leading to lung-restricted autoimmunity remain unknown. Because these self-Ags are normally sequestered, tissue injury is required to expose them to the immune system. We previously showed that respiratory viruses can induce apoptosis in CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), the key mediators of self-tolerance. Therefore, we hypothesized that lung-tissue injury can lead to lung-restricted immunity if it occurs in a setting when Tregs are impaired. We found that human lung recipients who suffer respiratory viral infections experienced a decrease in peripheral Tregs. Pre-existing lung allograft injury from donor-directed Abs or gastroesophageal reflux led to new ColV and KAT Abs post respiratory viral infection. Similarly, murine parainfluenza (Sendai) respiratory viral infection caused a decrease in Tregs. Intratracheal instillation of anti-MHC class I Abs, but not isotype control, followed by murine Sendai virus infection led to development of Abs against ColV and KAT, but not collagen type II (ColII), a cartilaginous protein. This was associated with expansion of IFN-γ-producing CD4(+) T cells specific to ColV and KAT, but not ColII. Intratracheal anti-MHC class I Abs or hydrochloric acid in Foxp3-DTR mice induced ColV and KAT, but not ColII, immunity, only if Tregs were depleted using diphtheria toxin. We conclude that tissue injury combined with loss of Tregs can lead to lung-tissue-restricted immunity. PMID:27194786

  3. Epithelial inactivation of Yy1 abrogates lung branching morphogenesis.

    PubMed

    Boucherat, Olivier; Landry-Truchon, Kim; Bérubé-Simard, Félix-Antoine; Houde, Nicolas; Beuret, Laurent; Lezmi, Guillaume; Foulkes, William D; Delacourt, Christophe; Charron, Jean; Jeannotte, Lucie

    2015-09-01

    Yin Yang 1 (YY1) is a multifunctional zinc-finger-containing transcription factor that plays crucial roles in numerous biological processes by selectively activating or repressing transcription, depending upon promoter contextual differences and specific protein interactions. In mice, Yy1 null mutants die early in gestation whereas Yy1 hypomorphs die at birth from lung defects. We studied how the epithelial-specific inactivation of Yy1 impacts on lung development. The Yy1 mutation in lung epithelium resulted in neonatal death due to respiratory failure. It impaired tracheal cartilage formation, altered cell differentiation, abrogated lung branching and caused airway dilation similar to that seen in human congenital cystic lung diseases. The cystic lung phenotype in Yy1 mutants can be partly explained by the reduced expression of Shh, a transcriptional target of YY1, in lung endoderm, and the subsequent derepression of mesenchymal Fgf10 expression. Accordingly, SHH supplementation partially rescued the lung phenotype in vitro. Analysis of human lung tissues revealed decreased YY1 expression in children with pleuropulmonary blastoma (PPB), a rare pediatric lung tumor arising during fetal development and associated with DICER1 mutations. No evidence for a potential genetic interplay between murine Dicer and Yy1 genes during lung morphogenesis was observed. However, the cystic lung phenotype resulting from the epithelial inactivation of Dicer function mimics the Yy1 lung malformations with similar changes in Shh and Fgf10 expression. Together, our data demonstrate the crucial requirement for YY1 in lung morphogenesis and identify Yy1 mutant mice as a potential model for studying the genetic basis of PPB. PMID:26329601

  4. Rheumatoid lung disease

    MedlinePlus

    Lung disease - rheumatoid arthritis; Rheumatoid nodules; Rheumatoid lung ... Lung problems are common in rheumatoid arthritis. They often cause no symptoms. The cause of lung disease associated with rheumatoid arthritis is unknown. Sometimes, the medicines used to ...

  5. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  6. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  7. Interstitial Lung Diseases

    MedlinePlus

    Interstitial lung disease is the name for a large group of diseases that inflame or scar the lungs. The inflammation and ... is responsible for some types of interstitial lung diseases. Specific types include Black lung disease among coal ...

  8. Tsunami lung.

    PubMed

    Inoue, Yoshihiro; Fujino, Yasuhisa; Onodera, Makoto; Kikuchi, Satoshi; Shozushima, Tatsuyori; Ogino, Nobuyoshi; Mori, Kiyoshi; Oikawa, Hirotaka; Koeda, Yorihiko; Ueda, Hironobu; Takahashi, Tomohiro; Terui, Katsutoshi; Nakadate, Toshihide; Aoki, Hidehiko; Endo, Shigeatsu

    2012-04-01

    We encountered three cases of lung disorders caused by drowning in the recent large tsunami that struck following the Great East Japan Earthquake. All three were females, and two of them were old elderly. All segments of both lungs were involved in all the three patients, necessitating ICU admission and endotracheal intubation and mechanical ventilation. All three died within 3 weeks. In at least two cases, misswallowing of oil was suspected from the features noted at the time of the detection. Sputum culture for bacteria yielded isolation of Stenotrophomonas maltophilia, Legionella pneumophila, Burkholderia cepacia, and Pseudomonas aeruginosa. The cause of tsunami lung may be a combination of chemical induced pneumonia and bacterial pneumonia. PMID:22057370

  9. IL-10 regulates murine lupus.

    PubMed

    Yin, Zhinan; Bahtiyar, Gul; Zhang, Na; Liu, Lanzhen; Zhu, Ping; Robert, Marie E; McNiff, Jennifer; Madaio, Michael P; Craft, Joe

    2002-08-15

    MRL/MpJ-Tnfrsf6(lpr) (MRL/MpJ-Fas(lpr); MRL-Fas(lpr)) mice develop a spontaneous lupus syndrome closely resembling human systemic lupus erythematosus. To define the role of IL-10 in the regulation of murine lupus, IL-10 gene-deficient (IL-10(-/-)) MRL-Fas(lpr) (MRL-Fas(lpr) IL-10(-/-)) mice were generated and their disease phenotype was compared with littermates with one or two copies of an intact IL-10 locus (MRL-Fas(lpr) IL-10(+/-) and MRL-Fas(lpr) IL-10(+/+) mice, respectively). MRL-Fas(lpr) IL-10(-/-) mice developed severe lupus, with earlier appearance of skin lesions, increased lymphadenopathy, more severe glomerulonephritis, and higher mortality than their IL-10-intact littermate controls. The increased severity of lupus in MRL-Fas(lpr) IL-10(-/-) mice was closely associated with enhanced IFN-gamma production by both CD4(+) and CD8(+) cells and increased serum concentration of IgG2a anti-dsDNA autoantibodies. The protective effect of IL-10 in this lupus model was further supported by the observation that administration of rIL-10 reduced IgG2a anti-dsDNA autoantibody production in wild-type MRL-Fas(lpr) animals. In summary, our results provide evidence that IL-10 can down-modulate murine lupus through inhibition of pathogenic Th1 cytokine responses. Modulation of the level of IL-10 may be of potential therapeutic benefit for human lupus. PMID:12165544

  10. Quercetin Aglycone Is Bioavailable in Murine Pancreas and Pancreatic Xenografts

    PubMed Central

    Zhang, Lifeng; Angst, Eliane; Park, Jenny L.; Moro, Aune; Dawson, David W.; Reber, Howard A.; Eibl, Guido; Hines, O. Joe; Go, Vay-Liang W.; Lu, Qing-Yi

    2010-01-01

    Quercetin is a potential chemopreventive and chemotherapeutic agent for pancreatic and other cancers. This study was to examine the distribution of quercetin in plasma, lung, liver, pancreas and pancreatic cancer xenografts in a murine in vivo model and the uptake of quercetin in pancreatic cancer MiaPaCa-2 cells in cellular in vitro model. Mice were randomly allocated to control diet, 0.2 and 1% quercetin diet groups utilizing the AIN93G-based diet (n=12 per group) for 6 weeks. In addition, 6 mice from each group were injected weekly with chemotherapeutic drug gemcitabine (120 mg/kg mouse, i.p.). MiaPaCa cells were collected from culture medium after cells were exposed to 30 µM of quercetin for 0.5, 1, 2, 4, 8, and 24 hrs. Levels of quercetin and 3-O’-methyl-quercetin in mice tissues and MiaPaCa-2 cells were measured by high-pressure liquid chromatography following enzymatic hydrolysis and then extraction. Our study showed that quercetin is accumulated in pancreatic cancer cells, and is absorbed in the circulating system, tumors and tissues of pancreas, liver and lung in vivo. A higher proportion of total quercetin found in tumors and pancreas are aglycones. Gemcitabine co-treatment with quercetin reduced absorption of quercetin in mice circulatory system and liver. Results from the study provide important information on the interpretation of chemo-therapeutic efficacy of quercetin. PMID:20499918

  11. Lung Transplantation

    MedlinePlus

    ... years. Their conditions are so severe that other treatments, such as medicines or breathing devices, no longer work. Lung transplants most often are used to treat people who have severe COPD Cystic fibrosis Idiopathic pulmonary fibrosis Alpha-1 antitrypsin deficiency Pulmonary ...

  12. Characterization of the murine 5T4 oncofoetal antigen: a target for immunotherapy in cancer.

    PubMed Central

    Woods, Andrew M; Wang, Who W; Shaw, David M; Ward, Christopher M; Carroll, Miles W; Rees, Buddug R; Stern, Peter L

    2002-01-01

    Human 5T4 oncofoetal antigen defined by the murine 5T4 monoclonal antibody is a highly glycosylated protein expressed by trophoblast and a few specialized adult epithelia. Up-regulation of 5T4 expression in some cancers is associated with poor clinical outcome; overexpression of human 5T4 cDNA in epithelial cells can alter their morphology and motility, supporting a role for such functions in cancer and development. A murine model to study 5T4 biology and tumour immunology would be useful. The production of m5T4-specific antibodies, their use in establishing transfected cells and documenting their biological properties in vitro are described. A rat monoclonal antibody specific for mouse 5T4 molecules by ELISA, flow cytometry, immunohistochemistry and immunoprecipitation was isolated and epitope mapped. Similar to its human counterpart, murine 5T4 antigen is a 72 kDa glycoprotein (immunoprecipitation and Western blot analysis) and exhibits punctate cell surface expression, dependent upon the integrity of the actin cytoskeleton. Likewise, overexpression of autologous murine 5T4 by B16 F10 melanoma cells and A9 L fibroblasts accentuates the 5T4 phenotype, which is characterized by a spindle-like morphology, increased motility, and reduced adhesion and proliferation rate. Immunohistochemical analysis of adult mouse tissues shows a restricted pattern of expression similar to that of human 5T4 antigen. The murine 5T4 antigen-expressing cell lines and antibody reagents are now being used to explore novel immunotherapies in pre-clinical models and the biology of 5T4 in development. PMID:12003637

  13. Characterization of the murine 5T4 oncofoetal antigen: a target for immunotherapy in cancer.

    PubMed

    Woods, Andrew M; Wang, Who W; Shaw, David M; Ward, Christopher M; Carroll, Miles W; Rees, Buddug R; Stern, Peter L

    2002-08-15

    Human 5T4 oncofoetal antigen defined by the murine 5T4 monoclonal antibody is a highly glycosylated protein expressed by trophoblast and a few specialized adult epithelia. Up-regulation of 5T4 expression in some cancers is associated with poor clinical outcome; overexpression of human 5T4 cDNA in epithelial cells can alter their morphology and motility, supporting a role for such functions in cancer and development. A murine model to study 5T4 biology and tumour immunology would be useful. The production of m5T4-specific antibodies, their use in establishing transfected cells and documenting their biological properties in vitro are described. A rat monoclonal antibody specific for mouse 5T4 molecules by ELISA, flow cytometry, immunohistochemistry and immunoprecipitation was isolated and epitope mapped. Similar to its human counterpart, murine 5T4 antigen is a 72 kDa glycoprotein (immunoprecipitation and Western blot analysis) and exhibits punctate cell surface expression, dependent upon the integrity of the actin cytoskeleton. Likewise, overexpression of autologous murine 5T4 by B16 F10 melanoma cells and A9 L fibroblasts accentuates the 5T4 phenotype, which is characterized by a spindle-like morphology, increased motility, and reduced adhesion and proliferation rate. Immunohistochemical analysis of adult mouse tissues shows a restricted pattern of expression similar to that of human 5T4 antigen. The murine 5T4 antigen-expressing cell lines and antibody reagents are now being used to explore novel immunotherapies in pre-clinical models and the biology of 5T4 in development. PMID:12003637

  14. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling

    PubMed Central

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-01-01

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells. PMID:26396176

  15. Murine membranous nephropathy: immunization with α3(IV) collagen fragment induces subepithelial immune complexes and FcγR-independent nephrotic syndrome.

    PubMed

    Zhang, Jun-Jun; Malekpour, Mahdi; Luo, Wentian; Ge, Linna; Olaru, Florina; Wang, Xu-Ping; Bah, Maimouna; Sado, Yoshikazu; Heidet, Laurence; Kleinau, Sandra; Fogo, Agnes B; Borza, Dorin-Bogdan

    2012-04-01

    Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and a significant cause of end-stage renal disease, yet current therapies are nonspecific, toxic, and often ineffective. The development of novel targeted therapies requires a detailed understanding of the pathogenic mechanisms, but progress is hampered by the lack of a robust mouse model of disease. We report that DBA/1 mice as well as congenic FcγRIII(-/-) and FcRγ(-/-) mice immunized with a fragment of α3(IV) collagen developed massive albuminuria and nephrotic syndrome, because of subepithelial deposits of mouse IgG and C3 with corresponding basement membrane reaction and podocyte foot process effacement. The clinical presentation and histopathologic findings were characteristic of MN. Although immunized mice produced genuine anti-α3NC1 autoantibodies that bound to kidney and lung basement membranes, neither crescentic glomerulonephritis nor alveolitis ensued, likely because of the predominance of mouse IgG1 over IgG2a and IgG2b autoantibodies. The ablation of activating IgG Fc receptors did not ameliorate injury, implicating subepithelial deposition of immune complexes and consequent complement activation as a major effector pathway. We have thus established an active model of murine MN. This model, leveraged by the availability of genetically engineered mice and mouse-specific reagents, will be instrumental in studying the pathogenesis of MN and evaluating the efficacy of novel experimental therapies. PMID:22371398

  16. Developing EZH2-Targeted Therapy for Lung Cancer.

    PubMed

    Frankel, Arthur E; Liu, Xin; Minna, John D

    2016-09-01

    Epigenetic targets are exciting new avenues for cancer drug discovery. Zhang and colleagues have designed the open-source EZH2 inhibitor JQEZ5 and shown antitumor efficacy in vitro and in vivo in preclinical studies in murine and human lung adenocarcinoma models expressing high levels of EZH2. Cancer Discov; 6(9); 949-52. ©2016 AACRSee related article by Zhang and colleagues, p. 1006. PMID:27587466

  17. Implantation of fibrin gel on mouse lung to study lung-specific angiogenesis.

    PubMed

    Mammoto, Tadanori; Mammoto, Akiko

    2014-01-01

    Recent significant advances in stem cell research and bioengineering techniques have made great progress in utilizing biomaterials to regenerate and repair damage in simple tissues in the orthopedic and periodontal fields. However, attempts to regenerate the structures and functions of more complex three-dimensional (3D) organs such as lungs have not been very successful because the biological processes of organ regeneration have not been well explored. It is becoming clear that angiogenesis, the formation of new blood vessels, plays key roles in organ regeneration. Newly formed vasculatures not only deliver oxygen, nutrients and various cell components that are required for organ regeneration but also provide instructive signals to the regenerating local tissues. Therefore, to successfully regenerate lungs in an adult, it is necessary to recapitulate the lung-specific microenvironments in which angiogenesis drives regeneration of local lung tissues. Although conventional in vivo angiogenesis assays, such as subcutaneous implantation of extracellular matrix (ECM)-rich hydrogels (e.g., fibrin or collagen gels or Matrigel - ECM protein mixture secreted by Engelbreth-Holm-Swarm mouse sarcoma cells), are extensively utilized to explore the general mechanisms of angiogenesis, lung-specific angiogenesis has not been well characterized because methods for orthotopic implantation of biomaterials in the lung have not been well established. The goal of this protocol is to introduce a unique method to implant fibrin gel on the lung surface of living adult mouse, allowing for the successful recapitulation of host lung-derived angiogenesis inside the gel. This approach enables researchers to explore the mechanisms by which the lung-specific microenvironment controls angiogenesis and alveolar regeneration in both normal and pathological conditions. Since implanted biomaterials release and supply physical and chemical signals to adjacent lung tissues, implantation of these

  18. Impact of Environmental Chemicals on Lung Development

    PubMed Central

    Miller, Mark D.; Marty, Melanie A.

    2010-01-01

    Background Disruption of fundamental biologic processes and associated signaling events may result in clinically significant alterations in lung development. Objectives We reviewed evidence on the impact of environmental chemicals on lung development and key signaling events in lung morphogenesis, and the relevance of potential outcomes to public health and regulatory science. Data sources We evaluated the peer-reviewed literature on developmental lung biology and toxicology, mechanistic studies, and supporting epidemiology. Data synthesis Lung function in infancy predicts pulmonary function throughout life. In utero and early postnatal exposures influence both childhood and adult lung structure and function and may predispose individuals to chronic obstructive lung disease and other disorders. The nutritional and endogenous chemical environment affects development of the lung and can result in altered function in the adult. Studies now suggest that similar adverse impacts may occur in animals and humans after exposure to environmentally relevant doses of certain xenobiotics during critical windows in early life. Potential mechanisms include interference with highly conserved factors in developmental processes such as gene regulation, molecular signaling, and growth factors involved in branching morphogenesis and alveolarization. Conclusions Assessment of environmental chemical impacts on the lung requires studies that evaluate specific alterations in structure or function—end points not regularly assessed in standard toxicity tests. Identifying effects on important signaling events may inform protocols of developmental toxicology studies. Such knowledge may enable policies promoting true primary prevention of lung diseases. Evidence of relevant signaling disruption in the absence of adequate developmental toxicology data should influence the size of the uncertainty factors used in risk assessments. PMID:20444669

  19. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes

    PubMed Central

    Qian, Li; Huang, Yu; Spencer, C. Ian; Foley, Amy; Vedantham, Vasanth; Liu, Lei; Conway, Simon J.; Fu, Ji-dong; Srivastava, Deepak

    2012-01-01

    SUMMARY The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here, we use genetic lineage-tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became bi-nucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast activating peptide, Thymosin β4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes. PMID:22522929

  20. Apoptosis in irradiated murine tumors.

    PubMed

    Stephens, L C; Ang, K K; Schultheiss, T E; Milas, L; Meyn, R E

    1991-09-01

    Early radiation responses of transplantable murine ovarian (OCaI) and hepatocellular (HCaI) carcinomas were examined at 6, 24, 48, 96, and 144 h after single photon doses of 25, 35, or 45 Gy. Previous studies using tumor growth delay and tumor radiocurability assays had shown OCaI tumors to be relatively radiosensitive and HCaI tumors to be radioresistant. At 6 h, approximately 20% of nuclei in OCaI tumors showed aberrations characteristic of cell death by apoptosis. This contrasted to an incidence of 3% in HCaI tumors. Mitotic activity was eliminated in OCaI tumors but was only transiently suppressed in HCaI tumors. At 24-96 h, OCaI tumors continued to display apoptosis and progressive necrosis, whereas HCaI tumors responded by exhibiting marked pleomorphism. Factors other than mitotic activity may influence tumor radiosensitivity, and one of these may be susceptibility to induction of apoptosis (programmed cell death), because this was a prominent early radiation response by the radiosensitive OCaI tumors. PMID:1886987

  1. Chemoimmunotherapy of murine bladder cancer.

    PubMed

    Stogdill, B J; Lamm, D L; Livingston, R B

    1981-11-01

    The lethality of invasive transitional cell carcinoma (TCC) has prompted a search for effective, minimally toxic, adjuvant therapy. Such agents were evaluated in a murine bladder cancer (MBT2) model which parallels the clinical disease. One hundred C3H/He mice were inoculated i.d. with 2.5 x 10(4) viable MBT2 tumor cells and randomized to receive either normal saline (control), cis-Platinum (CPT), cyclophosphamide (CY), methotrexate (MTX), BCG, (CY + MTX), or (CY + MTX + BCG). Chemotherapy was given intraperitoneally weekly starting on day 7 after inoculation. Immunotherapy was given intralesionally on days 1 and 10 only. All mice were treated for 5 weeks followed by 5 weeks of observation. At 5 weeks, tumors of mice receiving cyclophosphamide alone or either of the combinations of therapy were smaller (P less than 0.01) than tumors of controls or other single agents alone. Each regimen increased survival, but only the combination regimen increase survival significantly (P less than 0.01). In the doses and schedule used in this model. Combination chemotherapy and chemoimmunotherapy significantly delay tumor growth and increase duration of survival (P less than 0.01) when compared with controls or single agent groups. PMID:7298287

  2. Regional differences in alveolar density in the human lung are related to lung height.

    PubMed

    McDonough, John E; Knudsen, Lars; Wright, Alexander C; Elliott, W Mark; Ochs, Matthias; Hogg, James C

    2015-06-01

    The gravity-dependent pleural pressure gradient within the thorax produces regional differences in lung inflation that have a profound effect on the distribution of ventilation within the lung. This study examines the hypothesis that gravitationally induced differences in stress within the thorax also influence alveolar density in terms of the number of alveoli contained per unit volume of lung. To test this hypothesis, we measured the number of alveoli within known volumes of lung located at regular intervals between the apex and base of four normal adult human lungs that were rapidly frozen at a constant transpulmonary pressure, and used microcomputed tomographic imaging to measure alveolar density (number alveoli/mm3) at regular intervals between the lung apex and base. These results show that at total lung capacity, alveolar density in the lung apex is 31.6 ± 3.4 alveoli/mm3, with 15 ± 6% of parenchymal tissue consisting of alveolar duct. The base of the lung had an alveolar density of 21.2 ± 1.6 alveoli/mm3 and alveolar duct volume fraction of 29 ± 6%. The difference in alveolar density can be negated by factoring in the effects of alveolar compression due to the pleural pressure gradient at the base of the lung in vivo and at functional residual capacity. PMID:25882386

  3. Tumor-Associated Neutrophils Show Phenotypic and Functional Divergence in Human Lung Cancer.

    PubMed

    Saha, Shilpi; Biswas, Subhra K

    2016-07-11

    Studies in murine cancer models have demonstrated the phenotypic and functional divergence of neutrophils; however, their role in pro- or anti-tumor responses in human remains elusive. In this issue of Cancer Cell, Singhal et al. report the existence of specialized subsets of neutrophils in human lung cancer with diverging functions. PMID:27411583

  4. Use of endobronchial valves for native lung hyperinflation associated with respiratory failure in a single-lung transplant recipient for emphysema.

    PubMed

    Crespo, Maria M; Johnson, Bruce A; McCurry, Kenneth R; Landreneau, Rodney J; Sciurba, Frank C

    2007-01-01

    Emphysema is a common indication for adult pulmonary transplantation. Double-lung transplantation is increasingly the preferred approach because severe posttransplant native lung hyperinflation (NLH) following single-lung transplantation may compromise allograft lung function. We describe successful emergency use of bronchoscopic lung volume reduction using endobronchial valves (EBVs) [Zephyr; Emphasys Medical; Redwood, CA] in a single-lung transplant recipient who was critically ill with ventilator dependence from complications of NLH and at excessive risk for lung volume reduction surgery or pneumonectomy. Following placement of 17 valves in all segments of the native lung, atelectasis of the native lung was accompanied by volume expansion of the allograft. Immediately following valve placement, peak airway pressure decreased and alveolar ventilation increased. The patient was subsequently weaned from mechanical ventilation. This report suggests the need for clinical trials to evaluate the effectiveness of EBVs in single-lung transplant recipients with less critical functional impairment associated with NLH. PMID:17218578

  5. Murine Dendritic Cells Pulsed with Whole Tumor Lysates Mediate Potent Antitumor Immune Responses in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Fields, R. C.; Shimizu, K.; Mule, J. J.

    1998-08-01

    The highly efficient nature of dendritic cells (DC) as antigen-presenting cells raises the possibility of uncovering in tumor-bearing hosts very low levels of T cell reactivity to poorly immunogenic tumors that are virtually undetectable by other means. Here, we demonstrate the in vitro and in vivo capacities of murine bone marrow-derived, cytokine-driven DC to elicit potent and specific anti-tumor responses when pulsed with whole tumor lysates. Stimulation of naive spleen-derived T cells by tumor lysate-pulsed DC generated tumor-specific proliferative cytokine release and cytolytic reactivities in vitro. In addition, in two separate strains of mice with histologically distinct tumors, s.c. injections of DC pulsed with whole tumor lysates effectively primed these animals to reject subsequent lethal challenges with viable parental tumor cells and, important to note, also mediated significant reductions in the number of metastases established in the lungs. Tumor rejection depended on host-derived CD8+ T cells and, to a lesser extent, CD4+ T cells. Spleens from mice that had rejected their tumors contained specific precursor cytotoxic T lymphocytes. The use of whole tumor lysates as a source of tumor-associated antigen(s) for pulsing of DC circumvents several limitations encountered with other methods as well as provides certain distinct advantages, which are discussed. These data serve as rationale for our recent initiation of a phase I clinical trial of immunization with autologous tumor lysate-pulsed DC in adult and pediatric cancer patients.

  6. Roflumilast Prevents the Metabolic Effects of Bleomycin-Induced Fibrosis in a Murine Model

    PubMed Central

    Milara, Javier; Morcillo, Esteban; Monleon, Daniel; Tenor, Herman; Cortijo, Julio

    2015-01-01

    Fibrotic remodeling is a process common to chronic lung diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, acute respiratory distress syndrome and asthma. Based on preclinical studies phosphodiesterase 4 (PDE4) inhibitors may exhibit beneficial anti-inflammatory and anti-remodeling properties for the treatment of these respiratory disorders. Effects of PDE4 inhibitors on changes in the lung metabolome in models of pulmonary fibrotic remodeling have not yet been explored. This work studies the effects of the PDE4 inhibitor roflumilast on changes in the lung metabolome in the common murine model of bleomycin-induced lung fibrosis by nuclear magnetic resonance (NMR) metabolic profiling of intact lung tissue. Metabolic profiling reveals strong differences between fibrotic and non-fibrotic tissue. These differences include increases in proline, glycine, lactate, taurine, phosphocholine and total glutathione and decreases in global fatty acids. In parallel, there was a loss in plasma BH4. This profile suggests that bleomycin produces alterations in the oxidative equilibrium, a strong inflammatory response and activation of the collagen synthesis among others. Roflumilast prevented most of these metabolic effects associated to pulmonary fibrosis suggesting a favorable anti-fibrotic profile. PMID:26192616

  7. Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma.

    PubMed

    Piyadasa, Hadeesha; Altieri, Anthony; Basu, Sujata; Schwartz, Jacquie; Halayko, Andrew J; Mookherjee, Neeloffer

    2016-01-01

    House dust mite (HDM) challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge. In this murine model, we used repeated HDM challenge for two weeks which induced hallmarks of allergic asthma seen in humans, including airway hyper-responsiveness (AHR) and elevated levels of circulating total and HDM-specific IgE and IgG1. Kinetic studies showed that at least 24 h after last HDM challenge results in significant AHR along with eosinophil infiltration in the lungs. Histologic assessment of lung revealed increased epithelial thickness and goblet cell hyperplasia, in the absence of airway wall collagen deposition, suggesting ongoing tissue repair concomitant with acute allergic lung inflammation. Thus, this model may be suitable to delineate airway inflammation processes that precede airway remodeling and development of fixed airway obstruction. We observed that a panel of cytokines e.g. IFN-γ, IL-1β, IL-4, IL-5, IL-6, KC, TNF-α, IL-13, IL-33, MDC and TARC were elevated in lung tissue and bronchoalveolar fluid, indicating local lung inflammation. However, levels of these cytokines remained unchanged in serum, reflecting lack of systemic inflammation in this model. Based on these findings, we further monitored the expression of 84 selected genes in lung tissues by quantitative real-time PCR array, and identified 31 mRNAs that were significantly up-regulated in lung tissue from HDM-challenged mice. These included genes associated with human asthma (e.g. clca3, ear11, il-13, il-13ra2, il-10, il-21, arg1 and chia1) and leukocyte recruitment in the lungs (e.g. ccl11, ccl12 and ccl24). This study describes a biosignature to enable broad and systematic interrogation of molecular mechanisms and intervention strategies for

  8. Pulmonary administration of a water-soluble curcumin complex reduces severity of acute lung injury.

    PubMed

    Suresh, Madathilparambil V; Wagner, Matthew C; Rosania, Gus R; Stringer, Kathleen A; Min, Kyoung Ah; Risler, Linda; Shen, Danny D; Georges, George E; Reddy, Aravind T; Parkkinen, Jaakko; Reddy, Raju C

    2012-09-01

    Local or systemic inflammation can result in acute lung injury (ALI), and is associated with capillary leakage, reduced lung compliance, and hypoxemia. Curcumin, a plant-derived polyphenolic compound, exhibits potent anti-inflammatory properties, but its poor solubility and limited oral bioavailability reduce its therapeutic potential. A novel curcumin formulation (CDC) was developed by complexing the compound with hydroxypropyl-γ-cyclodextrin (CD). This results in greatly enhanced water solubility and stability that facilitate direct pulmonary delivery. In vitro studies demonstrated that CDC increased curcumin's association with and transport across Calu-3 human airway epithelial cell monolayers, compared with uncomplexed curcumin solubilized using DMSO or ethanol. Importantly, Calu-3 cell monolayer integrity was preserved after CDC exposure, whereas it was disrupted by equivalent uncomplexed curcumin solutions. We then tested whether direct delivery of CDC to the lung would reduce severity of ALI in a murine model. Fluorescence microscopic examination revealed an association of curcumin with cells throughout the lung. The administration of CDC after LPS attenuated multiple markers of inflammation and injury, including pulmonary edema and neutrophils in bronchoalveolar lavage fluid and lung tissue. CDC also reduced oxidant stress in the lungs and activation of the proinflammatory transcription factor NF-κB. These results demonstrate the efficacy of CDC in a murine model of lung inflammation and injury, and support the feasibility of developing a lung-targeted, curcumin-based therapy for the treatment of patients with ALI. PMID:22312018

  9. INCREASED SUSCEPTIBILITY TO PARATHION POISONING FOLLOWING MURINE CYTOMEGALOVIRUS INFECTION

    EPA Science Inventory

    Increased Susceptibility to Parathion Poisoning Following Murine Cytomegalovirus Infection. Fifty to 100 percent mortality occurred in mice treated with ordinarily sublethal doses of parathion 2 to 5 days post infection with murine cytomegalovirus (MCMV). These mortalities appear...

  10. Lung diffusion testing

    MedlinePlus

    ... as: Emphysema Interstitial fibrosis Pulmonary embolism Pulmonary hypertension Sarcoidosis Lung hemorrhage Asthma Risks There are no significant ... Read More Asbestosis Interstitial lung disease Lung disease Sarcoidosis Update Date 11/19/2015 Updated by: Denis ...

  11. How Lungs Work

    MedlinePlus

    ... Health and Diseases > How Lungs Work How Lungs Work The Respiratory System Your lungs are part of ... Parts of the Respiratory System and How They Work Airways SINUSES are hollow spaces in the bones ...

  12. Lung Carcinoid Tumor: Surgery

    MedlinePlus

    ... for lung carcinoid tumor symptoms Surgery to treat lung carcinoid tumors Surgery is the main treatment for ... often be cured by surgery alone. Types of lung surgery Different operations can be used to treat ( ...

  13. Lung diffusion testing

    MedlinePlus

    Lung diffusion testing measures how well the lungs exchange gases. This is an important part of lung testing , because ... Gender Height Hemoglobin (the protein in red blood cells that carries oxygen) level

  14. Stem Cells in the Lung

    PubMed Central

    Liu, Xiaoming; Driskell, Ryan R.; Engelhardt, John F.

    2007-01-01

    The lung is composed of two major anatomically distinct regions—the conducting airways and gas-exchanging airspaces. From a cell biology standpoint, the conducting airways can be further divided into two major compartments, the tracheobronchial and bronchiolar airways, while the alveolar regions of the lung make up the gas-exchanging airspaces. Each of these regions consists of distinct epithelial cell types with unique cellular physiologies and stem cell compartments. This chapter focuses on model systems with which to study stem cells in the adult tracheobronchial airways, als