Science.gov

Sample records for adult murine model

  1. Fate Analysis of Adult Hippocampal Progenitors in a Murine Model of Fetal Alcohol Spectrum Disorder (FASD)

    PubMed Central

    Kajimoto, Kenta; Allan, Andrea; Cunningham, Lee Anna

    2013-01-01

    Prenatal alcohol exposure can lead to fetal alcohol spectrum disorder (FASD) and associated behavioral impairments that may be linked to disruptions in adult hippocampal neurogenesis. Social and physical enrichment has been proposed as a potential therapeutic approach toward reversing behavioral deficits associated with FASD and is also a potent stimulator of adult hippocampal neurogenesis. In the present study, we utilized a genetic fate mapping approach in nestin-CreERT2/YFP bitransgenic mice to identify the stage-specific impact of prenatal alcohol exposure on the stepwise maturation of adult hippocampal progenitors. Using a limited alcohol access “drinking-in-the-dark” model of FASD, we confirm previous findings that moderate prenatal alcohol exposure has no effect on adult neurogenesis under standard housing conditions, but abolishes the neurogenic response to enriched environment (EE). Furthermore, we demonstrate that this effect is primarily due to failed EE-mediated survival of postmitotic neurons. Finally, we demonstrate that the neurogenic deficit is associated with impaired spatial pattern recognition, as demonstrated by delayed learning of FASD-EE mice in an A–B contextual discrimination task. These results identify a potential maturational stage-specific mechanism(s) underlying impaired neurogenic function in a preclinical model of FASD, and provide a basis for testing regulatory pathways in this model through conditional and inducible manipulation of gene expression in the adult hippocampal progenitor population. PMID:24040071

  2. Fate analysis of adult hippocampal progenitors in a murine model of fetal alcohol spectrum disorder (FASD).

    PubMed

    Kajimoto, Kenta; Allan, Andrea; Cunningham, Lee Anna

    2013-01-01

    Prenatal alcohol exposure can lead to fetal alcohol spectrum disorder (FASD) and associated behavioral impairments that may be linked to disruptions in adult hippocampal neurogenesis. Social and physical enrichment has been proposed as a potential therapeutic approach toward reversing behavioral deficits associated with FASD and is also a potent stimulator of adult hippocampal neurogenesis. In the present study, we utilized a genetic fate mapping approach in nestin-CreER(T2)/YFP bitransgenic mice to identify the stage-specific impact of prenatal alcohol exposure on the stepwise maturation of adult hippocampal progenitors. Using a limited alcohol access "drinking-in-the-dark" model of FASD, we confirm previous findings that moderate prenatal alcohol exposure has no effect on adult neurogenesis under standard housing conditions, but abolishes the neurogenic response to enriched environment (EE). Furthermore, we demonstrate that this effect is primarily due to failed EE-mediated survival of postmitotic neurons. Finally, we demonstrate that the neurogenic deficit is associated with impaired spatial pattern recognition, as demonstrated by delayed learning of FASD-EE mice in an A-B contextual discrimination task. These results identify a potential maturational stage-specific mechanism(s) underlying impaired neurogenic function in a preclinical model of FASD, and provide a basis for testing regulatory pathways in this model through conditional and inducible manipulation of gene expression in the adult hippocampal progenitor population. PMID:24040071

  3. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis.

    PubMed

    López-Hidalgo, Rosa; Ballestín, Raul; Vega, Jessica; Blasco-Ibáñez, José M; Crespo, Carlos; Gilabert-Juan, Javier; Nácher, Juan; Varea, Emilio

    2016-01-01

    Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5'BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5'BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice. PMID

  4. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis

    PubMed Central

    López-Hidalgo, Rosa; Ballestín, Raul; Vega, Jessica; Blasco-Ibáñez, José M.; Crespo, Carlos; Gilabert-Juan, Javier; Nácher, Juan; Varea, Emilio

    2016-01-01

    Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5′BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5′BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice

  5. Murine neonatal intravascular injections: Modeling newborn disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to perform murine neonatal intravascular injections likely will prove useful in studying many newborn-specific disease states that are modeled in mice. Unfortunately, effective intravascular injection in the neonatal mouse has been limited by developmental immaturity and small size. To e...

  6. Irradiation Design for an Experimental Murine Model

    SciTech Connect

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Celis, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Rubio-Osornio, M. C.; Custodio-Ramirez, V.; Paz, C.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  7. MURINE CYTOMEGALOVIRUS HOST RESISTANCE MODELS

    EPA Science Inventory

    Mouse cytomegalovirus (MCMV) is a well developed and extremely useful and relevant host resistance model for immunotoxicity testing. at cytomegalovirus (RCMV) is currently under development and may have similar applications. ytomegaloviruses are species specific; RCMV is a distin...

  8. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta.

    PubMed

    Panaroni, Cristina; Gioia, Roberta; Lupi, Anna; Besio, Roberta; Goldstein, Steven A; Kreider, Jaclynn; Leikin, Sergey; Vera, Juan Carlos; Mertz, Edward L; Perilli, Egon; Baruffaldi, Fabio; Villa, Isabella; Farina, Aurora; Casasco, Marco; Cetta, Giuseppe; Rossi, Antonio; Frattini, Annalisa; Marini, Joan C; Vezzoni, Paolo; Forlino, Antonella

    2009-07-01

    Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [alpha1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases. PMID:19414862

  9. A murine model of smoke inhalation.

    PubMed

    Matthew, E; Warden, G; Dedman, J

    2001-04-01

    The United States has one of the world's largest per capita fire death rates. House fires alone kill >9,000 Americans annually, and smoke inhalation is the leading cause of mortality from structural fires. Animal models are needed to develop therapies to combat this problem. We have developed a murine model of smoke inhalation through the design, construction, and use of a controlled-environment smoke chamber. There is a direct relationship between the quantity of wood combusted and mortality in mice. As with human victims, the primary cause of death from smoke inhalation is an elevated blood carboxyhemoglobin level. Lethal (78%) and sublethal (50%) carboxyhemoglobin levels were obtained in mice subjected to varying amounts of smoke. Mice exposed to wood smoke demonstrated more dramatic pathology than mice exposed to cotton or polyurethane smoke. A CD-1 model of wood smoke exposure was developed, demonstrating type II cell hypertrophy, cytoplasmic blebbing, cytoplasmic vacuolization, sloughing, hemorrhage, edema, macrophage infiltration, and lymphocyte infiltration. The bronchoalveolar lavage fluid of smoke-exposed mice demonstrated a significant increase in total cell counts compared with those in control mice. These findings are comparable to the lung tissue response observed in human victims of smoke inhalation. PMID:11238012

  10. A murine model of urinary tract infection

    PubMed Central

    Hung, Chia-Suei; Dodson, Karen W; Hultgren, Scott J

    2010-01-01

    Urinary tract infections (UTIs) inflict extreme pain and discomfort to those affected and have profound medical and socioeconomic impact. Although acute UTIs are often treatable with antibiotics, a large proportion of patients suffer from multiple recurrent infections. Here, we describe and provide a protocol for a robust murine UTI model that allows for the study of uropathogens in an ideal setting. The infections in the urinary tract can be monitored quantitatively by determining the bacterial loads at different times post-infection. In addition, the simple bladder architecture allows observation of disease progression and the uropathogenic virulence cascade using a variety of microscopic techniques. This mouse UTI model is extremely flexible, allowing the study of different bacterial strains and species of uropathogens in a broad range of mouse genetic backgrounds. We have used this protocol to identify important aspects of the host-pathogen interaction that determine the outcome of infection. The time required to complete the entire procedure will depend on the number of bacterial strains and mice included in the study. Nevertheless, one should expect 4 h of hands-on time, including inoculum preparation on the day of infection, transurethral inoculation, tissue harvest and post-harvest processing for a small group of mice (e.g., 5 mice). PMID:19644462

  11. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    SciTech Connect

    Weinberger, Florian Mehrkens, Dennis Starbatty, Jutta Nicol, Philipp Eschenhagen, Thomas

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  12. Preclinical Murine Models for Lung Cancer: Clinical Trial Applications

    PubMed Central

    Kellar, Amelia; Egan, Cay; Morris, Don

    2015-01-01

    Murine models for the study of lung cancer have historically been the backbone of preliminary preclinical data to support early human clinical trials. However, the availability of multiple experimental systems leads to debate concerning which model, if any, is best suited for a particular therapeutic strategy. It is imperative that these models accurately predict clinical benefit of therapy. This review provides an overview of the current murine models used to study lung cancer and the advantages and limitations of each model, as well as a retrospective evaluation of the uses of each model with respect to accuracy in predicting clinical benefit of therapy. A better understanding of murine models and their uses, as well as their limitations may aid future research concerning the development and implementation of new targeted therapies and chemotherapeutic agents for lung cancer. PMID:26064932

  13. Murine models of cardiovascular comorbidity in chronic obstructive pulmonary disease.

    PubMed

    Khedoe, P Padmini S J; Rensen, Patrick C N; Berbée, Jimmy F P; Hiemstra, Pieter S

    2016-06-01

    Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascular disease (CVD). Currently, COPD patients with atherosclerosis (i.e., the most important underlying cause of CVD) receive COPD therapy complemented with standard CVD therapy. This may, however, not be the most optimal treatment. To investigate the link between COPD and atherosclerosis and to develop specific therapeutic strategies for COPD patients with atherosclerosis, a substantial number of preclinical studies using murine models have been performed. In this review, we summarize the currently used murine models of COPD and atherosclerosis, both individually and combined, and discuss the relevance of these models for studying the pathogenesis and development of new treatments for COPD patients with atherosclerosis. Murine and clinical studies have provided complementary information showing a prominent role for systemic inflammation and oxidative stress in the link between COPD and atherosclerosis. These and other studies showed that murine models for COPD and atherosclerosis are useful tools and can provide important insights relevant to understanding the link between COPD and CVD. More importantly, murine studies provide good platforms for studying the potential of promising (new) therapeutic strategies for COPD patients with CVD. PMID:26993520

  14. Characterization of eosinophilic esophagitis murine models using optical coherence tomography

    PubMed Central

    Alex, Aneesh; Noti, Mario; Wojno, Elia D. Tait; Artis, David; Zhou, Chao

    2014-01-01

    Pre-clinical studies using murine models are critical for understanding the pathophysiological mechanisms underlying immune-mediated disorders such as Eosinophilic esophagitis (EoE). In this study, an optical coherence tomography (OCT) system capable of providing three-dimensional images with axial and transverse resolutions of 5 µm and 10 µm, respectively, was utilized to obtain esophageal images from a murine model of EoE-like disease ex vivo. Structural changes in the esophagus of wild-type (Tslpr+/+) and mutant (Tslpr−/−) mice with EoE-like disease were quantitatively evaluated and food impaction sites in the esophagus of diseased mice were monitored using OCT. Here, the capability of OCT as a label-free imaging tool devoid of tissue-processing artifacts to effectively characterize murine EoE-like disease models has been demonstrated. PMID:24575353

  15. Differential expression of murine adult hemoglobins in early ontogeny

    SciTech Connect

    Wawrzyniak, C.J.; Lewis, S.E.; Popp, R.A.

    1985-01-01

    A hemoglobin mutation is described that permits study of the expression of the two adult ..beta..-globin genes throughout fetal and postnatal development. Mice with a mutation at the Hbb/sup s/, ..beta..-globin locus, were used to study the relative levels of ..beta..-s2major and ..beta..-sminor globins specified by the mutant Hbb/sup s2/ haplotype during development. At 11.5 days of gestation ..beta..-sminor comprised over 80% and ..beta..-s2major under 20% of the adult beta-globin. The relative level of ..beta..-sminor decreased through fetal development; at birth ..beta..-sminor represented 33.7% of the ..beta..-globin. The adult values of 71.0% ..beta..-s2major and 29.0% ..beta..-sminor globin are expressed in mice six days after birth. Because the two ..beta..-globin genes are expressed in mice of the Hbb/sup 2s/ haplotype, both the ..beta..-smajor and ..beta..-sminor genes must be expressed in mice of the Hbb/sup s/ haplotype. Expression of the ..beta..-sminor gene is elevated to 35.6% in Hbb/sup s2/ mice that have been bled repeatedly. Thus, the 5' ..beta..-s2major and 3' ..beta..-sminor genes of the Hbb/sup s2/ haplotype and, presumably the 5' ..beta..-smajor and 3' ..beta..-sminor genes of the Hbb/sup s/ haplotype, are regulated independently and are homologous to the 5' ..beta..-dmajor and 3' ..beta..-dminor genes of the Hbb/sup d/ haplotype. Mice of the Hbb/sup s2/ haplotype are better than mice of the Hbb/sup d/ haplotytpe for studying the mechanisms of hemoglobin switching because the Hbb/sup s2/ each of the three embryonic and two adult hemoglobins can be separated by electrophoresis. 17 refs., 3 figs.

  16. Label-Retaining Cells in the Adult Murine Salivary Glands Possess Characteristics of Adult Progenitor Cells

    PubMed Central

    Chibly, Alejandro M.; Querin, Lauren; Harris, Zoey; Limesand, Kirsten H.

    2014-01-01

    Radiotherapy is the primary treatment for patients with head and neck cancer, which account for roughly 500,000 annual cases worldwide. Dysfunction of the salivary glands and associated conditions like xerostomia and dysphagia are often developed by these patients, greatly diminishing their life quality. Current preventative and palliative care fail to deliver an improvement in the quality of life, thus accentuating the need for regenerative therapies. In this study, a model of label retaining cells (LRCs) in murine salivary glands was developed, in which LRCs demonstrated proliferative potential and possessed markers of putative salivary progenitors. Mice were labeled with 5-Ethynyl-2′-deoxyuridine (EdU) at postnatal day 10 and chased for 8 weeks. Tissue sections from salivary glands obtained at the end of chase demonstrated co-localization between LRCs and the salivary progenitor markers keratin 5 and keratin 14, as well as kit mRNA, indicating that LRCs encompass a heterogeneous population of salivary progenitors. Proliferative potential of LRCs was demonstrated by a sphere assay, in which LRCs were found in primary and secondary spheres and they co-localized with the proliferation marker Ki67 throughout sphere formation. Surprisingly, LRCs were shown to be radio-resistant and evade apoptosis following radiation treatment. The clinical significance of these findings lie in the potential of this model to study the mechanisms that prevent salivary progenitors from maintaining homeostasis upon exposure to radiation, which will in turn facilitate the development of regenerative therapies for salivary gland dysfunction. PMID:25238060

  17. Topical Apigenin Alleviates Cutaneous Inflammation in Murine Models

    PubMed Central

    Man, Mao-Qiang; Hupe, Melanie; Sun, Richard; Man, George; Mauro, Theodora M.; Elias, Peter M.

    2012-01-01

    Herbal medicines have been used in preventing and treating skin disorders for centuries. It has been demonstrated that systemic administration of chrysanthemum extract exhibits anti-inflammatory properties. However, whether topical applications of apigenin, a constituent of chrysanthemum extract, influence cutaneous inflammation is still unclear. In the present study, we first tested whether topical applications of apigenin alleviate cutaneous inflammation in murine models of acute dermatitis. The murine models of acute allergic contact dermatitis and acute irritant contact dermatitis were established by topical application of oxazolone and phorbol 12-myristate 13-acetate (TPA), respectively. Inflammation was assessed in both dermatitis models by measuring ear thickness. Additionally, the effect of apigenin on stratum corneum function in a murine subacute allergic contact dermatitis model was assessed with an MPA5 physiology monitor. Our results demonstrate that topical applications of apigenin exhibit therapeutic effects in both acute irritant contact dermatitis and allergic contact dermatitis models. Moreover, in comparison with the vehicle treatment, topical apigenin treatment significantly reduced transepidermal water loss, lowered skin surface pH, and increased stratum corneum hydration in a subacute murine allergic contact dermatitis model. Together, these results suggest that topical application of apigenin could provide an alternative regimen for the treatment of dermatitis. PMID:23304222

  18. Effective treatment of a murine model of adult T-cell leukemia using 211At-7G7/B6 and its combination with unmodified anti-Tac (daclizumab) directed toward CD25.

    PubMed

    Zhang, Zhuo; Zhang, Meili; Garmestani, Kayhan; Talanov, Vladimir S; Plascjak, Paul S; Beck, Barbara; Goldman, Carolyn; Brechbiel, Martin W; Waldmann, Thomas A

    2006-08-01

    Adult T-cell leukemia (ATL) consists of an overabundance of T cells, which express CD25. Therapeutic efficacy of astatine-211 ((211)At)-labeled murine monoclonal antibody 7G7/B6 alone and in combination with daclizumab was evaluated in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice given injections of MET-1 human T-cell leukemia cells. Daclizumab and 7G7/B6 are directed toward different epitopes of CD25. Either a single dose of 12 microCi (0.444 MBq) (211)At-7G7/B6 per mouse given intravenously or receptor-saturating doses of daclizumab given at 100 microg weekly for 4 weeks intravenously inhibited tumor growth as monitored by serum levels of human beta-2 microglobulin (beta(2)mu) and by prolonged survival of leukemia-bearing mice compared with the control groups (P < .001). The combination of 2 agents enhanced the antitumor effect when compared with groups treated with 12 microCi (0.444 MBq) of (211)At-7G7/B6 (P < .05) or daclizumab alone (P < .05). The median survival duration of the PBS group was 62.6 days and 61.5 days in the radiolabeled nonspecific antibody (211)At-11F11-treated group. In contrast, 91% of mice in the combination group survived through day 94. These results that demonstrate a significantly improved therapeutic efficacy by combining (211)At-7G7/B6 with daclizumab support a clinical trial of this regimen in patients with ATL. PMID:16569769

  19. Induced murine models of systemic lupus erythematosus.

    PubMed

    Xu, Yuan; Zeumer, Leilani; Reeves, Westley H; Morel, Laurence

    2014-01-01

    Induced mouse models of systemic lupus erythematosus (SLE) have been developed to complement the spontaneous models. This chapter describes the methods used in the pristane-induced model and the chronic graft-versus-host disease (cGVHD) model, both of which have been extensively used. We will also outline the specific mechanisms of systemic autoimmunity that can be best characterized using each of these models. PMID:24497358

  20. Evaluation of a Murine Single-Blood-Injection SAH Model

    PubMed Central

    Sommer, Clemens; Steiger, Hans-Jakob; Schneider, Toni; Hänggi, Daniel

    2014-01-01

    The molecular pathways underlying the pathogenesis after subarachnoid haemorrhage (SAH) are poorly understood and continue to be a matter of debate. A valid murine SAH injection model is not yet available but would be the prerequisite for further transgenic studies assessing the mechanisms following SAH. Using the murine single injection model, we examined the effects of SAH on regional cerebral blood flow (rCBF) in the somatosensory (S1) and cerebellar cortex, neuro-behavioural and morphological integrity and changes in quantitative electrocorticographic and electrocardiographic parameters. Micro CT imaging verified successful blood delivery into the cisterna magna. An acute impairment of rCBF was observed immediately after injection in the SAH and after 6, 12 and 24 hours in the S1 and 6 and 12 hours after SAH in the cerebellum. Injection of blood into the foramen magnum reduced telemetric recorded total ECoG power by an average of 65%. Spectral analysis of ECoGs revealed significantly increased absolute delta power, i.e., slowing, cortical depolarisations and changes in ripples and fast ripple oscillations 12 hours and 24 hours after SAH. Therefore, murine single-blood-injection SAH model is suitable for pathophysiological and further molecular analysis following SAH. PMID:25545775

  1. Diagnostic imaging advances in murine models of colitis

    PubMed Central

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-01

    Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD. PMID:26811642

  2. Morphology and growth of murine cell lines on model biomaterials.

    PubMed

    Godek, Marisha L; Duchsherer, Nichole L; McElwee, Quinn; Grainger, David W

    2004-01-01

    All biomaterial implants are assaulted by the host "foreign body" immune response. Understanding the complex, dynamic relationship between cells, biomaterials and milieu is an important first step towards controlling this reaction. Material surface chemistry dictates protein adsorption, and thus subsequent cell interactions. The cell-implant is a microenvironment involving 1) proteins that coat the surface and 2) cells that interact with these proteins. Macrophages and fibroblasts are two cell types that interact with proteins on biomaterials surfaces and play different related, but equally important, roles in biomaterials rejection and implant failure. Growth characteristics of four murine cell lines on model biomaterials surfaces were examined. Murine monocyte-macrophages (RAW 264.7 and J774A.1), murine macrophage (IC-21) and murine fibroblast (NIH 3T3) cell lines were tested to determine whether differences exist in adhesion, proliferation, differentiation, spreading, and fusion (macrophage lineages only) on these surfaces. Differences were observed in the ability of cells to adhere to and subsequently proliferate on polymer surfaces. (Monocyte-) macrophages grew well on all surfaces tested and growth rates were measured on three representative polymer biomaterials surfaces: tissue culture polystyrene (TCPS), polystyrene, and Teflon-AF. J774A.1 cultures grown on TCPS and treated with exogenous cytokines IL-4 and GM-CSF were observed to contain multinucleate cells with unusual morphologies. Thus, (monocyte-) macrophage cell lines were found to effectively attach to and interrogate each surface presented, with evidence of extensive spreading on Teflon-AF surfaces, particularly in the IC-21 cultures. The J774A.1 line was able to proliferate and/or differentiate to more specialized cell types (multinucleate/dendritic-like cells) in the presence of soluble chemokine cues. PMID:15133927

  3. Differential Secreted Proteome Approach in Murine Model for Candidate Biomarker Discovery in Colon Cancer

    PubMed Central

    Rangiah, Kannan; Tippornwong, Montri; Sangar, Vineet; Austin, David; Tétreault, Marie-Pier; Rustgi, Anil K.; Blair, Ian A.; Yu, Kenneth H.

    2009-01-01

    The complexity and heterogeneity of the plasma proteome have presented significant challenges in the identification of protein changes associated with tumor development. We used cell culture as a model system and identified differentially expressed, secreted proteins which may constitute serological biomarkers. A stable isotope labeling by amino acids in cell culture (SILAC) approach was used to label the entire secreted proteomes of the CT26 murine colon cancer cell line and normal young adult mouse colon (YAMC) cell line, thereby creating a stable isotope labeled proteome (SILAP) standard. This SILAP standard was added to unlabeled murine CT26 colon cancer cell or normal murine YAMC colon epithelial cell secreted proteome samples. A multidimensional approach combining isoelectric focusing (IEF), strong cation exchange (SCX) followed by reversed phase liquid chromatography was used for extensive protein and peptide separation. A total of 614 and 929 proteins were identified from the YAMC and CT26 cell lines, with 418 proteins common to both cell lines. Twenty highly abundant differentially expressed proteins from these groups were selected for liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS) analysis in sera. Differential secretion into the serum was observed for several proteins when Apcmin mice were compared with control mice. These findings were then confirmed by Western blot analysis. PMID:19769411

  4. Murine Models of Epstein-Barr Virus-Associated Lymphomagenesis.

    PubMed

    Ahmed, Elshafa Hassan; Baiocchi, Robert A

    2016-01-01

    The Epstein-Barr virus (EBV) is a B-lymphotropic gamma herpes virus associated with a number of malignancies. Most EBV-related cancers present complex medical management challenges; thus it has been essential to develop preclinical in vivo models allowing for the study of pathogenesis, prevention, and treatment of these diseases. Early in vivo models used nonhuman primates; however, such models were limited by the inability of EBV to achieve viral latency, availability, and cost. Immunodeficient mouse strains emerged as efficient models that allow for engraftment of human mononuclear cells and controlled evaluation of EBV-driven lymphoproliferative disease (EBV-LPD). By using highly immunodeficient strains of mice such as severe combined immune deficiency (SCID) and NOD/LtSz-scid ILrg(-/-)(NOG) mice, investigators have developed efficient platforms for evaluating pathogenesis of benign (HLH) and malignant (EBV-LPD) diseases associated with EBV. Humanized murine chimeric models have been essential tools for evaluating preventive strategies with vaccine and adoptive cellular approaches, as well as development of experimental therapeutic strategies. Manipulation of the human immune cells before engraftment or mutation of viral lytic and latent genes has enhanced our understanding of the oncogenic nature of EBV and the complexity of human immune responses to EBV. In this review, we discuss how the EBV murine models have evolved to become essential tools for studying the virology of EBV as it relates to human EBV-LPD pathogenesis, the immunobiology of innate and adaptive responses, and limitations of these models. PMID:27034395

  5. Murine models of Aspergillosis: Role of collectins in host defense.

    PubMed

    Singh, Mamta; Mahajan, Lakshna; Chaudhary, Neelkamal; Kaur, Savneet; Madan, Taruna; Sarma, P Usha

    2015-11-01

    Aspergillus fumigatus, a ubiquitous fungus, causes a wide spectrum of clinical conditions ranging from allergic to invasive aspergillosis depending upon the hosts' immune status. Several animal models have been generated to mimic the human clinical conditions in allergic and invasive aspergillosis. The onset, duration and severity of the disease developed in models varied depending on the animal strain/fungal isolate, quantity and mode of administration of fungal antigens/spores, duration of the treatment, and type of immunosuppressive agent used. These models provide insight into host and pathogen factors and prove to be useful for evaluation of diagnostic markers and effective therapies. A series of studies established the protective role of collectins in murine models of Allergic Bronchopulmonary Aspergillosis and Invasive Pulmonary Aspergillosis. Collectins, namely surfactant protein A (SP-A), surfactant protein D (SP-D) and mannan binding lectin (MBL), are pattern recognition molecules regulating both innate and adaptive immune response against pathogens. In the present review, we discussed various murine models of allergic and invasive aspergillosis and the role of collectins in host defense against aspergillosis. PMID:26669011

  6. Optimization of murine model for Besnoitia caprae.

    PubMed

    Oryan, A; Sadoughifar, R; Namavari, M

    2016-09-01

    It has been shown that mice, particularly the BALB/c ones, are susceptible to infection by some of the apicomplexan parasites. To compare the susceptibility of the inbred BALB/c, outbred BALB/c and C57 BL/6 to Besnoitia caprae inoculation and to determine LD50, 30 male inbred BALB/c, 30 outbred BALB/c and 30 C57 BL/6 mice were assigned into 18 groups of 5 mice. Each group was inoculated intraperitoneally with 12.5 × 10(3), 25 × 10(3), 5 × 10(4), 1 × 10(5), 2 × 10(5) tachyzoites and a control inoculum of DMEM, respectively. The inbred BALB/c was found the most susceptible strain among the experienced mice strains so the LD50 per inbred BALB/c mouse was calculated as 12.5 × 10(3.6) tachyzoites while the LD50 for the outbred BALB/c and C57 BL/6 was 25 × 10(3.4) and 5 × 10(4) tachyzoites per mouse, respectively. To investigate the impact of different routes of inoculation in the most susceptible mice strain, another seventy five male inbred BALB/c mice were inoculated with 2 × 10(5) tachyzoites of B. caprae via various inoculation routes including: subcutaneous, intramuscular, intraperitoneal, infraorbital and oral. All the mice in the oral and infraorbital groups survived for 60 days, whereas the IM group showed quicker death and more severe pathologic lesions, which was then followed by SC and IP groups. Therefore, BALB/c mouse is a proper laboratory model and IM inoculation is an ideal method in besnoitiosis induction and a candidate in treatment, prevention and testing the efficacy of vaccines for besnoitiosis. PMID:27605770

  7. Characterization of a Novel Murine Model to Study Zika Virus.

    PubMed

    Rossi, Shannan L; Tesh, Robert B; Azar, Sasha R; Muruato, Antonio E; Hanley, Kathryn A; Auguste, Albert J; Langsjoen, Rose M; Paessler, Slobodan; Vasilakis, Nikos; Weaver, Scott C

    2016-06-01

    The mosquito-borne Zika virus (ZIKV) is responsible for an explosive ongoing outbreak of febrile illness across the Americas. ZIKV was previously thought to cause only a mild, flu-like illness, but during the current outbreak, an association with Guillain-Barré syndrome and microcephaly in neonates has been detected. A previous study showed that ZIKV requires murine adaptation to generate reproducible murine disease. In our study, a low-passage Cambodian isolate caused disease and mortality in mice lacking the interferon (IFN) alpha receptor (A129 mice) in an age-dependent manner, but not in similarly aged immunocompetent mice. In A129 mice, viremia peaked at ∼10(7) plaque-forming units/mL by day 2 postinfection (PI) and reached high titers in the spleen by day 1. ZIKV was detected in the brain on day 3 PI and caused signs of neurologic disease, including tremors, by day 6. Robust replication was also noted in the testis. In this model, all mice infected at the youngest age (3 weeks) succumbed to illness by day 7 PI. Older mice (11 weeks) showed signs of illness, viremia, and weight loss but recovered starting on day 8. In addition, AG129 mice, which lack both type I and II IFN responses, supported similar infection kinetics to A129 mice, but with exaggerated disease signs. This characterization of an Asian lineage ZIKV strain in a murine model, and one of the few studies reporting a model of Zika disease and demonstrating age-dependent morbidity and mortality, could provide a platform for testing the efficacy of antivirals and vaccines. PMID:27022155

  8. Characterization of a Novel Murine Model to Study Zika Virus

    PubMed Central

    Rossi, Shannan L.; Tesh, Robert B.; Azar, Sasha R.; Muruato, Antonio E.; Hanley, Kathryn A.; Auguste, Albert J.; Langsjoen, Rose M.; Paessler, Slobodan; Vasilakis, Nikos; Weaver, Scott C.

    2016-01-01

    The mosquito-borne Zika virus (ZIKV) is responsible for an explosive ongoing outbreak of febrile illness across the Americas. ZIKV was previously thought to cause only a mild, flu-like illness, but during the current outbreak, an association with Guillain–Barré syndrome and microcephaly in neonates has been detected. A previous study showed that ZIKV requires murine adaptation to generate reproducible murine disease. In our study, a low-passage Cambodian isolate caused disease and mortality in mice lacking the interferon (IFN) alpha receptor (A129 mice) in an age-dependent manner, but not in similarly aged immunocompetent mice. In A129 mice, viremia peaked at ∼107 plaque-forming units/mL by day 2 postinfection (PI) and reached high titers in the spleen by day 1. ZIKV was detected in the brain on day 3 PI and caused signs of neurologic disease, including tremors, by day 6. Robust replication was also noted in the testis. In this model, all mice infected at the youngest age (3 weeks) succumbed to illness by day 7 PI. Older mice (11 weeks) showed signs of illness, viremia, and weight loss but recovered starting on day 8. In addition, AG129 mice, which lack both type I and II IFN responses, supported similar infection kinetics to A129 mice, but with exaggerated disease signs. This characterization of an Asian lineage ZIKV strain in a murine model, and one of the few studies reporting a model of Zika disease and demonstrating age-dependent morbidity and mortality, could provide a platform for testing the efficacy of antivirals and vaccines. PMID:27022155

  9. Sperm protein 17 is an oncofetal antigen: a lesson from a murine model.

    PubMed

    Arnaboldi, F; Menon, A; Menegola, E; Di Renzo, F; Mirandola, L; Grizzi, F; Figueroa, J A; Cobos, E; Jenkins, M; Barajon, I; Chiriva-Internati, Maurizio

    2014-10-01

    Sperm protein 17 (Sp17) was originally identified in the flagellum of spermatozoa and subsequently included in the subfamily of tumor-associated antigens known as cancer-testes antigens (CTA). Sp17 has been associated with the motility and migratory capacity in tumor cells, representing a link between gene expression patterns in germinal and tumor cells of different histological origins. Here we review the relevance of Sp17 expression in the mouse embryo and cancerous tissues, and present additional data demonstrating Sp17 complex expression pattern in this murine model. The expression of Sp17 in embryonic as well as adult neoplastic cells, but not normal tissues, suggests this protein should be considered an "oncofetal antigen." Further investigations are necessary to elucidate the mechanisms and functional significance of Sp17 aberrant expression in human adult cells and its implication in the pathobiology of cancer. PMID:24811209

  10. Fluorescence tomography in a murine model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Raymond, Scott B.; Kumar, Anand T. N.; Dunn, Andrew K.; Boas, David A.; Bacskai, Brian J.

    2007-02-01

    Noninvasive molecular imaging of amyloid plaques in murine Alzheimer's disease models would accelerate drug development and basic Alzheimer's research. Amyloid plaques differ from traditional fluorescent targets in size and spatial distribution and therefore present a unique challenge for biomarker development and tomography. To study imaging feasibility and establish biomarker criteria, we developed a digital mouse head model from a 100 μm-resolution, digital, segmented mouse atlas1. The cortical region of the brain was filled with a spatially uniform distribution of plaques that had different fluorescent properties from the surrounding brain tissue, similar to current transgenic mouse models of Alzheimer's disease. Fluorescence was simulated with a Monte Carlo algorithm using different plaque densities, detection geometries, and background fluorescence. Our preliminary results demonstrated that shielding effects might require nonlinear reconstruction algorithms and that background fluorescence would seriously hinder quantitative burden estimation. The Monte Carlo based approach presented here offers a powerful way to study the feasibility of non-invasive imaging in murine Alzheimer's models and to optimize experimental conditions.

  11. Surgical Modification of the Murine Calvaria Osteolysis Model

    PubMed Central

    Al-quhali, Ali Mohammed; Sun, Yu; Bai, Xizhuang; Jin, Zhe; Yu, Guibo

    2015-01-01

    The murine calvaria model has been adopted for evaluation of osteolysis and inflammation induced by polyethylene (PE) or metal wear debris. However, this model suffers from several complications. The purpose of our study is to introduce a surgical modification with lower complication rates, thus providing more accurate results. Forty C57/BL6 mice were divided into two groups, both receiving polyethylene particles. Surgical modifications were performed in group 1, and group 2 underwent traditional surgeries. The incidence of fluid leakage was recorded on the operative day. Curst formation, wound dehiscence, and bone exposure were recorded on day 7. Histological osteolysis was demonstrated by HE staining of tissue slices. Micro-CT was used for quantifying evaluation of osteolysis in two groups. Intraoperative fluid leakage was significantly reduced in group 1. Postoperative crust formation, wound dehiscence, and bone exposure were also significantly decreased in group 1. HE staining results revealed obvious osteolysis in group 1 and more obvious osteolysis in group 2. Bone volume fraction (BVF) was (0.32 ± 0.03) in group 1 compared to group 2 (0.24 ± 0.05). Bone mineral density (BMD) was (1.11 ± 0.03) in group 1 compared to group 2 (1.01 ± 0.02). Surgical modifications provide a reliable way for establishment of the murine calvaria osteolysis model. PMID:26769571

  12. Surface Contaminants Inhibit Osseointegration in a Novel Murine Model

    PubMed Central

    Bonsignore, Lindsay A.; Colbrunn, Robb W.; Tatro, Joscelyn M.; Messerschmitt, Patrick J.; Hernandez, Christopher J.; Goldberg, Victor M.; Stewart, Matthew C.; Greenfield, Edward M.

    2011-01-01

    Surface contaminants, such as bacterial debris and manufacturing residues, may remain on orthopaedic implants after sterilization procedures and affect osseointegration. The goals of this study were to develop a murine model of osseointegration in order to determine whether removing surface contaminants enhances osseointegration. To develop the murine model, titanium alloy implants were implanted into a unicortical pilot hole in the mid-diaphysis of the femur and osseointegration was measured over a five week time course. Histology, backscatter scanning electron microscopy and x-ray energy dispersive spectroscopy showed areas of bone in intimate physical contact with the implant, confirming osseointegration. Histomorphometric quantification of bone-to-implant contact and peri-implant bone and biomechanical pullout quantification of ultimate force, stiffness and work to failure increased significantly over time, also demonstrating successful osseointegration. We also found that a rigorous cleaning procedure significantly enhances bone-to-implant contact and biomechanical pullout measures by two-fold compared with implants that were autoclaved, as recommended by the manufacturer. The most likely interpretation of these results is that surface contaminants inhibit osseointegration. The results of this study justify the need for the development of better detection and removal techniques for contaminants on orthopaedic implants and other medical devices. PMID:21801863

  13. Identification and enrichment of colony-forming cells from the adult murine pituitary

    SciTech Connect

    Lepore, D.A.; Roeszler, K.; Wagner, J.; Ross, S.A.; Bauer, K.; Thomas, P.Q. , E-Mail: paul.thomas@mcri.edu.au

    2005-08-01

    Stem and progenitor cells have been identified in many adult tissues including bone marrow, the central nervous system, and skin. While there is direct evidence to indicate the activity of a progenitor cell population in the pituitary gland, this putative subpopulation has not yet been identified. Herein we describe the isolation and characterization of a novel clonogenic cell type in the adult murine pituitary, which we have termed Pituitary Colony-Forming Cells (PCFCs). PCFCs constitute 0.2% of pituitary cells, and generate heterogeneous colonies from single cells. PCFCs exhibit variable proliferative potential, and may exceed 11 population doublings in 14 days. Enrichment of PCFCs to 61.5-fold with 100% recovery can be obtained through the active uptake of the fluorescent dipeptide, {beta}-Ala-Lys-N{epsilon}-AMCA. PCFCs are mostly contained within the large, agranular subpopulation of AMCA{sup +} cells, and constitute 28% of this fraction, corresponding to 140.5-fold enrichment. Interestingly, the AMCA{sup +} population contains rare cells that are GH{sup +} or PRL{sup +}. GH{sup +} cells were also identified in PCFC single cell colonies, suggesting that PCFCs have the potential to differentiate into GH{sup +} cells. Together, these data show that the pituitary contains a rare clonogenic population which may correspond to the somatotrope/lactotrope progenitors suggested by previous experiments.

  14. Alternatively activated macrophages determine repair of the infarcted adult murine heart

    PubMed Central

    Shiraishi, Manabu; Shintani, Yasunori; Shintani, Yusuke; Ishida, Hidekazu; Saba, Rie; Yamaguchi, Atsushi; Adachi, Hideo; Yashiro, Kenta

    2016-01-01

    Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1–/–), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1–/– mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1–/– mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI. PMID:27140396

  15. Long-Term Survival of Photoreceptors Transplanted into the Adult Murine Neural Retina Requires Immune Modulation

    PubMed Central

    West, Emma L.; Pearson, Rachael A.; Barker, Susie E.; Luhmann, Ulrich F. O.; Maclaren, Robert E.; Barber, Amanda C.; Duran, Yanai; Smith, Alexander J.; Sowden, Jane C.; Ali, Robin R.

    2012-01-01

    Stem cell therapy presents an opportunity to replace photoreceptors that are lost as a result of inherited and age-related degenerative disease. We have previously shown that murine postmitotic rod photoreceptor precursor cells, identified by expression of the rod-specific transcription factor Nrl, are able to migrate into and integrate within the adult murine neural retina. However, their long-term survival has yet to be determined. Here, we found that integrated Nrl.gfp+ve photoreceptors were present up to 12 months post-transplantation, albeit in significantly reduced numbers. Surviving cells had rod-like morphology, including inner/outer segments and spherule synapses. In a minority of eyes, we observed an early, marked reduction in integrated photoreceptors within 1 month post-transplantation, which correlated with increased numbers of amoeboid macrophages, indicating acute loss of transplanted cells due to an inflammatory response. In the majority of transplants, similar numbers of integrated cells were observed between 1 and 2 months post-transplantation. By 4 months, however, we observed a significant decrease in integrated cell survival. Macrophages and T cells were present around the transplantation site, indicating a chronic immune response. Immune suppression of recipients significantly increased transplanted photoreceptor survival, indicating that the loss observed in unsuppressed recipients resulted from T cell-mediated host immune responses. Thus, if immune responses are modulated, correctly integrated transplanted photoreceptors can survive for extended periods of time in hosts with partially mismatched H-2 haplotypes. These findings suggest that autologous donor cells are optimal for therapeutic approaches to repair the neural retina, though with immune suppression nonautologous donors may be effective. PMID:20857496

  16. Murine Tumor Models for Oncolytic Rhabdo-Virotherapy.

    PubMed

    Falls, Theresa; Roy, Dominic Guy; Bell, John Cameron; Bourgeois-Daigneault, Marie-Claude

    2016-01-01

    The preclinical optimization and validation of novel treatments for cancer therapy requires the use of laboratory animals. Although in vitro experiments using tumor cell lines and ex vivo treatment of patient tumor samples provide a remarkable first-line tool for the initial study of tumoricidal potential, tumor-bearing animals remain the primary option to study delivery, efficacy, and safety of therapies in the context of a complete tumor microenvironment and functional immune system. In this review, we will describe the use of murine tumor models for oncolytic virotherapy using vesicular stomatitis virus. We will discuss studies using immunocompetent and immunodeficient models with respect to toxicity and therapeutic treatments, as well as the various techniques and tools available to study cancer therapy with Rhabdoviruses. PMID:27034397

  17. Zika Virus Infection and Development of a Murine Model.

    PubMed

    Shah, Ankit; Kumar, Anil

    2016-08-01

    In view of the recent outbreak of Zika virus (ZIKV), there is an urgent need to investigate the pathogenesis of the symptoms associated with ZIKV infection. Since the first identification of the virus in 1947, the pathologies associated with ZIKV infection were thought to be limited with mild illness that presented fever, rashes, muscle aches, and weakness. However, ZIKV infection has been shown to cause Guillain-Barré Syndrome, and numerous cases of congenital microcephaly in children have been reported when pregnant females were exposed to the virus. The severity and the rate of spread of ZIKV in the last year has drawn alarming interest among researchers to investigate murine models to study viral pathogenesis and develop candidate vaccines. A recent study by Lazear and colleagues, in the May 2016 issue of cell host and microbe, is an effort to study the pathogenesis of contemporary and historical virus strains in various mouse models. PMID:27260223

  18. A novel inexpensive murine model of oral chronic digitalization.

    PubMed

    Helber, Izo; Kanashiro, Rosemeire M; Alarcon, Ernesto A; Antonio, Ednei L; Tucci, Paulo J F

    2004-01-01

    A novel inexpensive murine model of oral administration of digitoxin (100 micro g/kg per day) added to routine chow is described. Serum digitoxin levels achieved after oral (n = 5; 116 +/- 14 ng/mL) and subcutaneous (n = 5; 124 +/- 11 ng/mL) administration were similar. A significant increase in the maximal left ventricular pressure rise of treated (n = 9) compared with control (n = 6) rats (dP/dt: 8956 +/- 233 vs 7980 +/- 234 mmHg/s, respectively; P = 0.01) characterized the positive inotropic action of digitoxin. In addition, no differences were observed in treated compared with control rats with regard to the electrocardiogram and systolic and diastolic left ventricular pressures. PMID:15191413

  19. Antioxidants as novel therapy in a murine model of colitis.

    PubMed

    Oz, Helieh S; Chen, Theresa S; McClain, Craig J; de Villiers, Willem J S

    2005-05-01

    Reactive oxygen species (ROS) are increased in inflammatory bowel disease (IBD) and have been implicated as mediators of intestinal inflammation. We investigated the hypothesis that antioxidants with diverse properties attenuate disease progression in a murine dextran sodium sulfate (DSS)-induced colitis model. These antioxidants were (A) S-adenosylmethionine, a glutathione (GSH) precursor; (B) green tea polyphenols, a well-known antioxidant; and (C) 2(R,S)-n-propylthiazolidine-4(R)-carboxylic acid (PTCA), a cysteine prodrug, involved in GSH biosynthesis. BALB/c mice were divided into four groups and provided with the above mentioned antioxidants or the vehicle incorporated into chow. The animals were further divided into two subgroups and given normal drinking water (control) or water supplemented with DSS (to induce colitis), and the progression of the disease was studied. DSS-treated mice developed severe colitis as shown by bloody diarrhea, weight loss and pathological involvement (P<.001). However, all the antioxidants significantly improved diarrhea and colon lesions (P<.01), and increased body weights (P<.05). Hematocrits were significantly less affected in DSS-treated animals receiving antioxidants (P<.01). Colon lengths were significantly decreased due to mucosal inflammation in DSS-treated animals, but antioxidant therapy normalized this pathological finding (P<.001). The blood level of reduced GSH was decreased in DSS-treated mice (P<.05) and returned to normal when treated with antioxidants. Serum amyloid A (acute phase protein; P=.0015) and tumor necrosis factor-alpha (TNF-alpha; pro-inflammatory cytokine; P<.01) were significantly increased in DSS-treated animals (161+/-40 pg/ml) and improved with antioxidant treatment (P<.01). Finally, actin cytoskeleton was distorted and fragmented in the mucosa of DSS-treated mice and improved with antioxidant therapy. In conclusion, three structurally dissimilar antioxidants provided protection against DSS

  20. A Novel Population of Cells Expressing Both Hematopoietic and Mesenchymal Markers Is Present in the Normal Adult Bone Marrow and Is Augmented in a Murine Model of Marrow Fibrosis

    PubMed Central

    Ohishi, Masanobu; Ono, Wanida; Ono, Noriaki; Khatri, Richa; Marzia, Marilena; Baker, Emma K.; Root, Sierra H.; Wilson, Tremika Le-Shan; Iwamoto, Yukihide; Kronenberg, Henry M.; Aguila, Hector L.; Purton, Louise E.; Schipani, Ernestina

    2012-01-01

    Bone marrow (BM) fibrosis is a feature of severe hyperparathyroidism. Consistent with this observation, mice expressing constitutively active parathyroid hormone (PTH)/PTH-related peptide receptors (PPR) in osteoblasts (PPR*Tg) display BM fibrosis. To obtain insight into the nature of BM fibrosis in such a model, a double-mutant mouse expressing constitutively active PPR and green fluorescent protein (GFP) under the control of the type I collagen promoter (PPR*Tg/GFP) was generated. Confocal microscopy and flow cytometry revealed the presence of a cell population expressing GFP (GFP+) that was also positive for the hematopoietic marker CD45 in the BM of both PPR*Tg/GFP and control animals. This cell population was expanded in PPR*Tg/GFP. The existence of cells expressing both type I collagen and CD45 in the adult BM was confirmed by IHC and fluorescence-activated cell sorting. An analysis of total RNA extracted from sorted GFP+CD45+ cells showed that these cells produced type I collagen and PTH/PTH-related peptide receptor and receptor activator for NF-κB mRNAs, further supporting their features of being both mesenchymal and hematopoietic lineages. Similar cells, known as fibrocytes, are also present in pathological fibroses. Our findings, thus, indicate that the BM is a permissive microenvironment for the differentiation of fibrocyte-like cells and raise the possibility that these cells could contribute to the pathogenesis of BM fibrosis. PMID:22155108

  1. Mathematical modeling of primary succession of murine intestinal microbiota

    PubMed Central

    Marino, Simeone; Baxter, Nielson T.; Huffnagle, Gary B.; Petrosino, Joseph F.; Schloss, Patrick D.

    2014-01-01

    Understanding the nature of interpopulation interactions in host-associated microbial communities is critical to understanding gut colonization, responses to perturbations, and transitions between health and disease. Characterizing these interactions is complicated by the complexity of these communities and the observation that even if populations can be cultured, their in vitro and in vivo phenotypes differ significantly. Dynamic models are the cornerstone of computational systems biology and a key objective of computational systems biologists is the reconstruction of biological networks (i.e., network inference) from high-throughput data. When such computational models reflect biology, they provide an opportunity to generate testable hypotheses as well as to perform experiments that are impractical or not feasible in vivo or in vitro. We modeled time-series data for murine microbial communities using statistical approaches and systems of ordinary differential equations. To obtain the dense time-series data, we sequenced the 16S ribosomal RNA (rRNA) gene from DNA isolated from the fecal material of germfree mice colonized with cecal contents of conventionally raised animals. The modeling results suggested a lack of mutualistic interactions within the community. Among the members of the Bacteroidetes, there was evidence for closely related pairs of populations to exhibit parasitic interactions. Among the Firmicutes, the interactions were all competitive. These results suggest future animal and in silico experiments. Our modeling approach can be applied to other systems to provide a greater understanding of the dynamics of communities associated with health and disease. PMID:24367073

  2. Current advances of murine models for food allergy.

    PubMed

    Liu, Tiange; Navarro, Severine; Lopata, Andreas L

    2016-02-01

    Food allergy affects an increasing population in Western world but also developing countries. Researchers have been taking great efforts in identifying and characterising food allergens using molecular tools. However, there are still many mechanistic hypotheses that need to be tested using an appropriate in vivo experimental platform. To date, a number of mouse models for food allergy have been established and provided valuable insights into food allergenicity, development of therapies and allergic inflammation mechanisms. Nevertheless, a large diversity of protocols have been developed for the establishment of relevant mouse models. As a result, comparisons of outcomes between different models are very difficult to be conducted. The phenotypes of mouse models are greatly influenced by genetic background, gender, route of allergen exposure, the nature and concentration of food allergens, as well as the usage of adjuvants. This review focuses on IgE-mediated food allergy, compares the differential approaches in developing appropriate murine models for food allergy and details specific findings for three major food allergens, peanut, milk and shellfish. PMID:26759987

  3. Contemporary murine models in preclinical astrocytoma drug development

    PubMed Central

    McNeill, Robert S.; Vitucci, Mark; Wu, Jing; Miller, C. Ryan

    2015-01-01

    Despite 6 decades of research, only 3 drugs have been approved for astrocytomas, the most common malignant primary brain tumors. However, clinical drug development is accelerating with the transition from empirical, cytotoxic therapy to precision, targeted medicine. Preclinical animal model studies are critical for prioritizing drug candidates for clinical development and, ultimately, for their regulatory approval. For decades, only murine models with established tumor cell lines were available for such studies. However, these poorly represent the genomic and biological properties of human astrocytomas, and their preclinical use fails to accurately predict efficacy in clinical trials. Newer models developed over the last 2 decades, including patient-derived xenografts, genetically engineered mice, and genetically engineered cells purified from human brains, more faithfully phenocopy the genomics and biology of human astrocytomas. Harnessing the unique benefits of these models will be required to identify drug targets, define combination therapies that circumvent inherent and acquired resistance mechanisms, and develop molecular biomarkers predictive of drug response and resistance. With increasing recognition of the molecular heterogeneity of astrocytomas, employing multiple, contemporary models in preclinical drug studies promises to increase the efficiency of drug development for specific, molecularly defined subsets of tumors. PMID:25246428

  4. A novel postoperative immobilization model for murine Achilles tendon sutures.

    PubMed

    Shibuya, Yoichiro; Takayama, Yuzo; Kushige, Hiroko; Jacinto, Sandra; Sekido, Mitsuru; Kida, Yasuyuki S

    2016-08-01

    The body's motion and function are all in part effected by a vital tissue, the tendon. Tendon injury often results in limited functioning after postoperative procedures and even for a long time after rehabilitation. Although numerous studies have reported surgical procedures using animal models which have contributed to both basic and clinical research, modeling of tendon sutures or postoperative immobilizations has not been performed on small experimental animals, such as mice. In this study we have developed an easy Achilles tendon suture and postoperative ankle fixation model in a mouse. Right Achilles tendons were incised and 10-0 nylons were passed through the proximal and distal ends using a modified Kessler method. Subsequently, the right ankle was immobilized in a plantarflexed position with novel splints, which were made from readily available extension tubes. Restriction of the tendon using handmade splints reduced swelling, as opposed to fixating with the usual plaster of Paris. Using this method, the usage of the right Achilles tendons began on postoperative days 13.5 ± 4.6, which indicated healing within two weeks. Therefore our simple short-term murine Achilles tendon suture procedure is useful for studying immediate tendon repair mechanisms in various models, including genetically-modified mice. PMID:26678297

  5. Neuroimmunopathology in a murine model of neuropsychiatric lupus

    PubMed Central

    Ballok, David A.

    2008-01-01

    Animal models are extremely useful tools in defining pathogenesis and treatment of human disease. For many years researchers believed that structural damage to the brain of neuropsychiatric (NP) patients lead to abnormal mental function, but this possibility was not extensively explored until recently. Imaging studies of NP-systemic lupus erythematosus (SLE) support the notion that brain cell death accounts for the emergence of neurologic and psychiatric symptoms, and evidence suggests that it is an autoimmunity-induced brain disorder characterized by profound metabolic alterations and progressive neuronal loss. While there are a number of murine models of SLE, this article reviews recent literature on the immunological connections to neurodegeneration and behavioral dysfunction in the Fas-deficient MRL model of NP-SLE. Probable links between spontaneous peripheral immune activation, the subsequent central autoimmune/inflammatory responses in MRL/MpJ-Tnfrsf6lpr (MRL–lpr) mice and the sequential mode of events leading to Fas-independent neurodegenerative autoimmune-induced encephalitis will be reviewed. The role of hormones, alternative mechanisms of cell death, the impact of central dopaminergic degeneration on behavior, and germinal layer lesions on developmental/regenerative capacity of MRL–lpr brains will also be explored. This model can provide direction for future therapeutic interventions in patients with this complex neuroimmunological syndrome. PMID:17223198

  6. A Functional Murine Model of Hind Limb Demand Ischemia

    PubMed Central

    Peck, Michael A.; Crawford, Robert S.; Abularrage, Christopher J.; Patel, Virendra I.; Conrad, Mark F.; Yoo, Jin Hyung; Watkins, Michael T.; Albadawi, Hassan

    2010-01-01

    Introduction To date murine models of treadmill exercise have been used to study general exercise physiology and angiogenesis in ischemic hind limbs. The purpose of these experiments was to develop a murine model of demand ischemia in an ischemic limb to mimic claudication in humans. The primary goal was to determine whether treadmill exercise reflected a hemodynamic picture which might be consistent with the hyperemic response observed in humans. Methods Aged hypercholesterolemic ApoE null mice ( ApoE−/−, n=13) were subjected to Femoral Artery Ligation (FAL), and allowed to recover from the acute ischemic response. Peripheral perfusion of the hind limbs at rest was determined by serial evaluation using laser Doppler imaging (LDI) on days 0, 7, and 14 following FAL. During the duration of the experiments, the mice were also assessed on an established 5 point clinical ischemic score which assessed the degree of digital amputation, necrosis, and cyanosis as compared to the non ischemic contralateral limb. After stabilization of the LDI ratio (ischemic limb flux/contralateral non ischemic limb flux) and clinical ischemic score, mice underwent two days of treadmill training (10 min @ 10 m/min, incline of 10°) followed by 60 minutes daily treadmill exercise (13 m/min, incline of 10°) through day 25. An evaluation of pre-exercise and post exercise perfusion using LDI was performed on two separate occasions following the onset of daily exercise. During the immediate 15 minute post exercise evaluation, LDI scanning was obtained in quadruplicate, to allow identification of peak flux ratios. Statistical analysis included unpaired t-tests and ANOVA. Results After FAL, the LDI Flux ratio reached a nadir between days one and two, then stabilized by day 14 and remained stable through day 25. The clinical ischemic score stabilized at day 7, and remained stable throughout the rest of the experiment. Based on stabilization of both the clinical ischemic score and LDI ratio

  7. A new method for skin grafting in murine model.

    PubMed

    Pakyari, Mohammadreza; Farokhi, Ali; Khosravi-Maharlooei, Mohsen; Kilani, Ruhangiz T; Ghahary, Aziz; Brown, Erin

    2016-07-01

    Skin transplantation provides an excellent potential model to investigate the immunology of allograft rejection and tolerance induction. Despite the theoretical ease of performing skin transplantation, as well as the potential of directly observing the reaction to the transplanted tissue, the poor reliability of skin transplantation in the mouse has largely precluded the use of this model. Furthermore, there is controversy regarding the most appropriate skin graft donor site due to poor success of back skin transplantation, as compared with the thinner ear or tail skin. This study demonstrates a reliable method to successfully perform skin grafts in a mouse model, as well as the clinical and histologic outcome of syngeneic grafts. A total of 287 grafts were performed (in 126 mice) utilizing donor skin from the ear, tail or back. No graft failure or postoperative mortality was observed. Comparison of this technique with two previously established protocols of skin transplantation (5.0 absorbable Suture + tissue glue technique and no-suture technique) demonstrates the significant improvement in the engraftment success of the new technique. In summary, a new technique for murine skin grafting demonstrates improved reliability across donor site locations and strains, increasing the potential for investigating interventions to alter the rejection process. PMID:27197606

  8. Immunocompetent murine models for the study of glioblastoma immunotherapy

    PubMed Central

    2014-01-01

    Glioblastoma remains a lethal diagnosis with a 5-year survival rate of less than 10%. (NEJM 352:987-96, 2005) Although immunotherapy-based approaches are capable of inducing detectable immune responses against tumor-specific antigens, improvements in clinical outcomes are modest, in no small part due to tumor-induced immunosuppressive mechanisms that promote immune escape and immuno-resistance. Immunotherapeutic strategies aimed at bolstering the immune response while neutralizing immunosuppression will play a critical role in improving treatment outcomes for glioblastoma patients. In vivo murine models of glioma provide an invaluable resource to achieving that end, and their use is an essential part of the preclinical workup for novel therapeutics that need to be tested in animal models prior to testing experimental therapies in patients. In this article, we review five contemporary immunocompetent mouse models, GL261 (C57BL/6), GL26 (C57BL/6) CT-2A (C57BL/6), SMA-560 (VM/Dk), and 4C8 (B6D2F1), each of which offer a suitable platform for testing novel immunotherapeutic approaches. PMID:24779345

  9. Virulence characteristics of oral treponemes in a murine model.

    PubMed Central

    Kesavalu, L; Walker, S G; Holt, S C; Crawley, R R; Ebersole, J L

    1997-01-01

    This study was designed to investigate the virulence characteristics of Treponema denticola, T. socranskii, T. pectinovorum, and T. vincentii following challenge infection of mice. These microorganisms induced well-demarcated, dose-dependent, raised subcutaneous (s.c.) abscesses which were similar in time of onset, lesion progression, and duration of healing. Only viable cells were capable of inducing these characteristic s.c. abscesses. Histological examination of the skin lesion 3 and 5 days postinfection revealed abscess formation in the s.c. tissues, and abundant spiral organisms were demonstrated to be present in the abscess. Host resistance modulation by dexamethasone (neutrophil alteration) and cyclophosphamide (neutrophil depletion) pretreatment had a minimal effect on the virulence expression by any of these treponemes. The T. denticola isolates demonstrated significant trypsin-like protease (TLPase) activity, while both T. socranskii and T. vincentii were devoid of this activity. Interestingly, T. pectinovorum strains were heterogeneous with respect to TLPase as high producers, low producers, and nonproducers. However, no differences in lesion formation were noted regardless of whether the species expressed this proteolytic activity or whether treatment with N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) and dithiothreitol was performed. These results showed that (i) a murine model may be used to evaluate virulence expression by oral treponemes; (ii) while TLPase activity varies among the oral treponemes, this protease does not appear to participate in abscess induction in the mouse model; and (iii) T. pectinovorum strains show variation in TLPase activity. PMID:9393801

  10. A pre-clinical murine model of oral implant osseointegration

    PubMed Central

    Mouraret, S.; Hunter, D.J.; Bardet, C.; Brunski, J.B.; Bouchard, P.; Helms, J.A.

    2015-01-01

    Many of our assumptions concerning oral implant osseointegration are extrapolated from experimental models studying skeletal tissue repair in long bones. This disconnect between clinical practice and experimental research hampers our understanding of bone formation around oral implants and how this process can be improved. We postulated that oral implant osseointegration would be fundamentally equivalent to implant osseointegration elsewhere in the body. Mice underwent implant placement in the edentulous ridge anterior to the first molar and peri-implant tissues were evaluated at various timepoints after surgery. Our hypothesis was disproven; oral implant osseointegration is substantially different from osseointegration in long bones. For example, in the maxilla peri-implant pre-osteoblasts are derived from cranial neural crest whereas in the tibia peri-implant osteoblasts are derived from mesoderm. In the maxilla, new osteoid arises from periostea of the maxillary bone but in the tibia the new osteoid arises from the marrow space. Cellular and molecular analyses indicate that osteoblast activity and mineralization proceeds from the surfaces of the native bone and osteoclastic activity is responsible for extensive remodeling of the new peri-implant bone. In addition to histologic features of implant osseointegration, molecular and cellular assays conducted in a murine model provide new insights into the sequelae of implant placement and the process by which bone is generated around implants. PMID:23886841

  11. Predictive Modeling in Adult Education

    ERIC Educational Resources Information Center

    Lindner, Charles L.

    2011-01-01

    The current economic crisis, a growing workforce, the increasing lifespan of workers, and demanding, complex jobs have made organizations highly selective in employee recruitment and retention. It is therefore important, to the adult educator, to develop models of learning that better prepare adult learners for the workplace. The purpose of…

  12. The Proteome of Native Adult Müller Glial Cells From Murine Retina*

    PubMed Central

    Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca

    2016-01-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  13. The Proteome of Native Adult Müller Glial Cells From Murine Retina.

    PubMed

    Grosche, Antje; Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca; von Toerne, Christine; Merl-Pham, Juliane; Hauck, Stefanie M

    2016-02-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  14. Effect of Premedications in a Murine Model of Asparaginase Hypersensitivity

    PubMed Central

    Fernandez, Christian A.; Smith, Colton; Karol, Seth E.; Ramsey, Laura B.; Liu, Chengcheng; Pui, Ching-Hon; Jeha, Sima; Evans, William E.; Finkelman, Fred D.

    2015-01-01

    A murine model was developed that recapitulates key features of clinical hypersensitivity to Escherichia coli asparaginase. Sensitized mice developed high levels of anti-asparaginase IgG antibodies and had immediate hypersensitivity reactions to asparaginase upon challenge. Sensitized mice had complete inhibition of plasma asparaginase activity (P = 4.2 × 10−13) and elevated levels of mouse mast cell protease 1 (P = 6.1 × 10−3) compared with nonsensitized mice. We investigated the influence of pretreatment with triprolidine, cimetidine, the platelet activating factor (PAF) receptor antagonist CV-6209 [2-(2-acetyl-6-methoxy-3,9-dioxo-4,8-dioxa-2,10-diazaoctacos-1-yl)-1-ethyl-pyridinium chloride], or dexamethasone on the severity of asparaginase-induced allergies. Combining triprolidine and CV-6209 was best for mitigating asparaginase-induced hypersensitivity compared with nonpretreated, sensitized mice (P = 1.2 × 10−5). However, pretreatment with oral dexamethasone was the only agent capable of mitigating the severity of the hypersensitivity (P = 0.03) and partially restoring asparaginase activity (P = 8.3 × 10−4). To rescue asparaginase activity in sensitized mice without requiring dexamethasone, a 5-fold greater dose of asparaginase was needed to restore enzyme activity to a similar concentration as in nonsensitized mice. Our results suggest a role of histamine and PAF in asparaginase-induced allergies and indicate that mast cell–derived proteases released during asparaginase allergy may be a useful marker of clinical hypersensitivity. PMID:25573198

  15. Dystrophic Spinal Deformities in a Neurofibromatosis Type 1 Murine Model

    PubMed Central

    Yang, Dalong; Yang, Hao; Chen, Shi; Wu, Xiaohua; Li, Xiaohong; Yang, Xianlin; Mohammad, Khalid S.; Guise, Theresa A.; Bergner, Amanda L.; Stevenson, David A.; Yang, Feng-Chun

    2015-01-01

    Despite the high prevalence and significant morbidity of spinal anomalies in neurofibromatosis type 1 (NF1), the pathogenesis of these defects remains largely unknown. Here, we present two murine models: Nf1flox/−;PeriCre and Nf1flox/−;Col.2.3Cre mice, which recapitulate spinal deformities seen in the human disease. Dynamic histomorphometry and microtomographic studies show recalcitrant bone remodeling and distorted bone microarchitecture within the vertebral spine of Nf1flox/−;PeriCre and Nf1flox/−;Col2.3Cre mice, with analogous histological features present in a human patient with dystrophic scoliosis. Intriguingly, 36–60% of Nf1flox/−;PeriCre and Nf1flox/−;Col2.3Cre mice exhibit segmental vertebral fusion anomalies with boney obliteration of the intervertebral disc (IVD). While analogous findings have not yet been reported in the NF1 patient population, we herein present two case reports of IVD defects and interarticular vertebral fusion in patients with NF1. Collectively, these data provide novel insights regarding the pathophysiology of dystrophic spinal anomalies in NF1, and provide impetus for future radiographic analyses of larger patient cohorts to determine whether IVD and vertebral fusion defects may have been previously overlooked or underreported in the NF1 patient population. PMID:25786243

  16. Dystrophic spinal deformities in a neurofibromatosis type 1 murine model.

    PubMed

    Rhodes, Steven D; Zhang, Wei; Yang, Dalong; Yang, Hao; Chen, Shi; Wu, Xiaohua; Li, Xiaohong; Yang, Xianlin; Mohammad, Khalid S; Guise, Theresa A; Bergner, Amanda L; Stevenson, David A; Yang, Feng-Chun

    2015-01-01

    Despite the high prevalence and significant morbidity of spinal anomalies in neurofibromatosis type 1 (NF1), the pathogenesis of these defects remains largely unknown. Here, we present two murine models: Nf1flox/-;PeriCre and Nf1flox/-;Col.2.3Cre mice, which recapitulate spinal deformities seen in the human disease. Dynamic histomorphometry and microtomographic studies show recalcitrant bone remodeling and distorted bone microarchitecture within the vertebral spine of Nf1flox/-;PeriCre and Nf1flox/-;Col2.3Cre mice, with analogous histological features present in a human patient with dystrophic scoliosis. Intriguingly, 36-60% of Nf1flox/-;PeriCre and Nf1flox/-;Col2.3Cre mice exhibit segmental vertebral fusion anomalies with boney obliteration of the intervertebral disc (IVD). While analogous findings have not yet been reported in the NF1 patient population, we herein present two case reports of IVD defects and interarticular vertebral fusion in patients with NF1. Collectively, these data provide novel insights regarding the pathophysiology of dystrophic spinal anomalies in NF1, and provide impetus for future radiographic analyses of larger patient cohorts to determine whether IVD and vertebral fusion defects may have been previously overlooked or underreported in the NF1 patient population. PMID:25786243

  17. Hydroxymethylnitrofurazone Is Active in a Murine Model of Chagas' Disease▿

    PubMed Central

    Davies, Carolina; Cardozo, Rubén Marino; Negrette, Olga Sánchez; Mora, María Celia; Chung, Man Chin; Basombrío, Miguel Ángel

    2010-01-01

    The addition of a hydroxymethyl group to the antimicrobial drug nitrofurazone generated hydroxymethylnitrofurazone (NFOH), which had reduced toxicity when its activity against Trypanosoma cruzi was tested in a murine model of Chagas' disease. Four groups of 12 Swiss female mice each received 150 mg of body weight/kg/day of NFOH, 150 mg/kg/day of nitrofurazone (parental compound), 60 mg/kg/day of benznidazole (BZL), or the solvent as a placebo. Treatments were administered orally once a day 6 days a week until the completion of 60 doses. NFOH was as effective as BZL in keeping direct parasitemia at undetectable levels, and PCR results were negative. No histopathological lesions were seen 180 days after completion of the treatments, a time when the levels of anti-T. cruzi antibodies were very low in mice treated with either NFOH or BZL. Nitrofurazone was highly toxic, which led to an overall rate of mortality of 75% and necessitated interruption of the treatment. In contrast, the group treated with its hydroxymethyl derivative, NFOH, displayed the lowest mortality (16%), followed by the BZL (33%) and placebo (66%) groups. The findings of histopathological studies were consistent with these results, with the placebo group showing the most severe parasite infiltrates in skeletal muscle and heart tissue and the NFOH group showing the lowest. The present evidence suggests that NFOH is a promising anti-T. cruzi agent. PMID:20566772

  18. Computational models of adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Cecchi, Guillermo A.; Magnasco, Marcelo O.

    2005-10-01

    Experimental results in recent years have shown that adult neurogenesis is a significant phenomenon in the mammalian brain. Little is known, however, about the functional role played by the generation and destruction of neurons in the context of an adult brain. Here, we propose two models where new projection neurons are incorporated. We show that in both models, using incorporation and removal of neurons as a computational tool, it is possible to achieve a higher computational efficiency that in purely static, synapse-learning-driven networks. We also discuss the implication for understanding the role of adult neurogenesis in specific brain areas like the olfactory bulb and the dentate gyrus.

  19. Assay of lapatinib in murine models of cigarette smoke carcinogenesis

    PubMed Central

    Balansky, Roumen; Izzotti, Alberto; D’Agostini, Francesco; Longobardi, Mariagrazia; Micale, Rosanna T.; La Maestra, Sebastiano; Camoirano, Anna; Ganchev, Gancho; Iltcheva, Marietta; Steele, Vernon E.; De Flora, Silvio

    2014-01-01

    Lapatinib, a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), is prescribed for the treatment of patients with metastatic breast cancer overexpressing HER-2. Involvement of this drug in pulmonary carcinogenesis has been poorly investigated. We used murine models suitable to evaluate cigarette smoke-related molecular and histopathological alterations. A total of 481 Swiss H mice were used. The mice were exposed to mainstream cigarette smoke (MCS) during the first four months of life. After 10 weeks, MCS caused an elevation of bulky DNA adducts, oxidative DNA damage and an extensive downregulation of microRNAs in lung. After four months, an increase in micronucleus frequency was observed in peripheral blood erythrocytes. After 7.5 months, histopathological alterations were detected in the lung, also including benign tumors and malignant tumors, and in the urinary tract. A subchronic toxicity study assessed the non-toxic doses of lapatinib, administered daily with the diet after weaning. After 10 weeks, lapatinib significantly attenuated the MCS-related nucleotide changes and upregulated several low-intensity microRNAs in lung. The drug poorly affected the MCS systemic genotoxicity and had modest protective effects on MCS-induced preneoplastic lesions in lung and kidney, when administered under conditions that temporarily mimicked interventions either in current smokers or ex-smokers. On the other hand, it caused some toxicity to the liver. Thus, on the whole, lapatinib appears to have a low impact in the smoke-related lung carcinogenesis models used, especially in terms of tumorigenic response. PMID:25053627

  20. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. PMID:25526737

  1. Space radiation-associated lung injury in a murine model

    PubMed Central

    Pietrofesa, Ralph A.; Arguiri, Evguenia; Schweitzer, Kelly S.; Berdyshev, Evgeny V.; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S.; Yu, Yongjia; Globus, Ruth K.; Solomides, Charalambos C.; Ullrich, Robert L.; Petrache, Irina

    2014-01-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to 137Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u 56Fe ions, or 350 MeV/u 28Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy 56Fe or 28Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. PMID:25526737

  2. Expression of profibrotic genes in the murine remnant kidney model

    PubMed Central

    Yang, Binxia; Vohra, Pawan; Janardhanan, Rajiv; Misra, Khamal D.; Misra, Sanjay

    2011-01-01

    PURPOSE To test the hypothesis that there is increased expression of several profibrotic genes including matrix metalloproteinase–2 (MMP-2), and -9 (MMP-9), and its inhibitors (TIMP-1 and TIMP-2), a disintegrin and metalloproteinase with thrombospondin motif -1 (ADAMTS-1), and fibroblast specific protein-1 (FSP-1) in a murine remnant kidney (RK) model. MATERIALS AND METHODS CKD was created in ten C57BL/6 male mice (20-25 g) by performing a right nephrectomy and ligation of the upper pole of the left kidney (RK). Animals were sacrificed at 42 and 56 days later. Real time polymerase chain reaction (RT-PCR) for MMP-2, MMP-9, TIMP-1, TIMP-2, ADAMTS-1, and FSP-1 was performed in the RK. Histologic evaluation of the RK was performed using Ki-67, α-smooth muscle cell actin (α-SMA), hematoxylin and eosin, and Masson’s trichrome staining. Kidney function was assessed using serum BUN and creatinine. RESULTS The mean serum BUN and creatinine levels at day 42 and 56 were significantly higher than baseline (P <0 .05). By day 42, the mean expression of MMP-2, MMP-9, TIMP-1, ADAMTS-1, and FSP-1 was significantly higher in the RK when compared to normal kidney (P<0.05) and by day 56, only FSP-1 expression increased significantly higher (P<0.05). There was increased fibrosis by Masson’s trichrome, increased Ki-67, with increased α-SMA staining in the RK when compared to normal kidneys. CONCLUSIONS In the RK, there was increased fibrosis with increased α -SMA and Ki-67 staining with significantly increased expression of MMP-2, MMP-9, TIMP-1, ADAMTS-1, and FSP-1. PMID:22030458

  3. Ureaplasma urealyticum Causes Hyperammonemia in an Experimental Immunocompromised Murine Model.

    PubMed

    Wang, Xiaohui; Karau, Melissa J; Greenwood-Quaintance, Kerryl E; Block, Darci R; Mandrekar, Jayawant N; Cunningham, Scott A; Patel, Robin

    2016-01-01

    Hyperammonemia syndrome is an often fatal complication of lung transplantation which has been recently associated with Ureaplasma infection. It has not been definitely established that Ureaplasma species can cause hyperammonemia. We established a novel immunocompromised murine model of Ureaplasma urealyticum infection and used it to confirm that U. urealyticum can cause hyperammonemia. Male C3H mice were pharmacologically immunosuppressed with mycophenolate mofetil, tacrolimus and oral prednisone for seven days, and then challenged intratracheally (IT) and/or intraperitoneally (IP) with 107 CFU U. urealyticum over six days, while continuing immunosuppression. Spent U. urealyticum-free U9 broth was used as a negative control, with uninfected immunocompetent mice, uninfected immunosuppressed mice, and infected immunocompetent mice serving as additional controls. Plasma ammonia concentrations were compared using Wilcoxon ranks sum tests. Plasma ammonia concentrations of immunosuppressed mice challenged IT/IP with spent U9 broth (n = 14) (range 155-330 μmol/L) were similar to those of normal mice (n = 5), uninfected immunosuppressed mice (n = 5), and U. urealyticum IT/IP challenged immunocompetent mice (n = 5) [range 99-340 μmol/L, p = 0.60]. However, immunosuppressed mice challenged with U. urealyticum IT/IP (n = 20) or IP (n = 15) had higher plasma ammonia concentrations (range 225-945 μmol/L and 276-687 μmol/L, respectively) than those challenged IT/IP with spent U9 broth (p<0.001). U. urealyticum administered IT/IP or IP causes hyperammonemia in mice pharmacologically immunosuppressed with a regimen similar to that administered to lung transplant recipients. PMID:27537683

  4. Effect of cyclosporine in a murine model of experimental colitis.

    PubMed

    Banić, Marko; Anić, Branimir; Brkić, Tomislav; Ljubicić, Neven; Plesko, Sanja; Dohoczky, Csaba; Erceg, Damir; Petrovecki, Mladen; Stipancić, Igor; Rotkvić, Ivo

    2002-06-01

    The use of immunosuppressive therapy may be associated with significant toxicity. The aim of this study was to investigate the effect of cyclosporine A (CsA) in murine model of experimental colitis. Experimental colitis was induced in NMRI mice using an enema of 0.2% solution of dinitrofluorobenzene, combined with skin sensitization. After inducing colitis, experimental groups of animals were treated with CsA (1, 3, 5, 10, 25, 50 mg/kg/day) intraperitoneally (i.p.) or intracolonically (i.c.), and control groups were treated with phosphate-buffered saline intraperitoneally or intracolonically, respectively. Colonic inflammatory changes were assessed using a histopathologic score of 0-30, and pooled whole blood samples were processed with monoclonal antibodies for cyclosporine concentration. In addition, two groups of animals with experimental colitis were treated intraperitoneally or intracolonically with 3 mg/kg/day of CsA, and the colons were also taken for immunohistochemistry for CD25. CsA diminished the extent of colitis in groups treated with 3, 5, 10, or 25 mg/kg intraperitoneally or intracolonically, and in groups treated with 1 and 50 mg/kg intracolonically (P < 0.05). The effect of intracolonic application of CsA was not related to whole blood cyclosporine concentrations. In addition, the effect of CsA at 3 mg/kg, applied intraperitoneally or intracolonically was, in part, expressed in decreasing the numbers of CD25+ cells within colonic mucosa/submucosa (P < 0.05). In conclusions, the results of this study indicate the possibility of intracolonic application of cyclosporine in order to widen the therapeutic window for effective, but possibly toxic drug, such as cyclosporine. PMID:12064814

  5. Ureaplasma urealyticum Causes Hyperammonemia in an Experimental Immunocompromised Murine Model

    PubMed Central

    Wang, Xiaohui; Karau, Melissa J.; Greenwood-Quaintance, Kerryl E.; Block, Darci R.; Mandrekar, Jayawant N.; Cunningham, Scott A.

    2016-01-01

    Hyperammonemia syndrome is an often fatal complication of lung transplantation which has been recently associated with Ureaplasma infection. It has not been definitely established that Ureaplasma species can cause hyperammonemia. We established a novel immunocompromised murine model of Ureaplasma urealyticum infection and used it to confirm that U. urealyticum can cause hyperammonemia. Male C3H mice were pharmacologically immunosuppressed with mycophenolate mofetil, tacrolimus and oral prednisone for seven days, and then challenged intratracheally (IT) and/or intraperitoneally (IP) with 107 CFU U. urealyticum over six days, while continuing immunosuppression. Spent U. urealyticum-free U9 broth was used as a negative control, with uninfected immunocompetent mice, uninfected immunosuppressed mice, and infected immunocompetent mice serving as additional controls. Plasma ammonia concentrations were compared using Wilcoxon ranks sum tests. Plasma ammonia concentrations of immunosuppressed mice challenged IT/IP with spent U9 broth (n = 14) (range 155–330 μmol/L) were similar to those of normal mice (n = 5), uninfected immunosuppressed mice (n = 5), and U. urealyticum IT/IP challenged immunocompetent mice (n = 5) [range 99–340 μmol/L, p = 0.60]. However, immunosuppressed mice challenged with U. urealyticum IT/IP (n = 20) or IP (n = 15) had higher plasma ammonia concentrations (range 225–945 μmol/L and 276–687 μmol/L, respectively) than those challenged IT/IP with spent U9 broth (p<0.001). U. urealyticum administered IT/IP or IP causes hyperammonemia in mice pharmacologically immunosuppressed with a regimen similar to that administered to lung transplant recipients. PMID:27537683

  6. Murine model of otitis media with effusion: immunohistochemical demonstration of IL-1 alpha antigen expression.

    PubMed

    Johnson, M D; Contrino, A; Contrino, J; Maxwell, K; Leonard, G; Kreutzer, D

    1994-09-01

    Recent studies have suggested that cytokines likely play a central role in the formation and maintenance of otitis media with effusion (OME). Currently, there is no immunologically defined animal model for the study of cytokines as they contribute to the formation of OME. In the present study, a murine model of OME, using eustachian tube blockage via an external surgical approach, was developed. The murine model temporal bone histology appears to mimic the histology found in chronic otitis media with effusion in humans. Additionally, using this murine model, interleukin-1 alpha (IL-1 alpha) expression was detected in the middle ear using standard immunohistochemical techniques. IL-1 alpha seemed localized to the epithelial lining of the middle ear as well as 5% to 10% of inflammatory cells. This model should provide the necessary tool to further study the immunologic aspects of OME. PMID:8072363

  7. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model

    PubMed Central

    Lavasani, Mitra; Robinson, Andria R.; Lu, Aiping; Song, Minjung; Feduska, Joseph M.; Ahani, Bahar; Tilstra, Jeremy S.; Feldman, Chelsea H.; Robbins, Paul D.; Niedernhofer, Laura J.; Huard, Johnny

    2012-01-01

    With ageing, there is a loss of adult stem cell function. However, there is no direct evidence that this has a causal role in ageing-related decline. We tested this using muscle-derived stem/progenitor cells (MDSPCs) in a murine progeria model. Here we show that MDSPCs from old and progeroid mice are defective in proliferation and multilineage differentiation. Intraperitoneal administration of MDSPCs, isolated from young wild-type mice, to progeroid mice confer significant lifespan and healthspan extension. The transplanted MDSPCs improve degenerative changes and vascularization in tissues where donor cells are not detected, suggesting that their therapeutic effect may be mediated by secreted factor(s). Indeed, young wild-type-MDSPCs rescue proliferation and differentiation defects of aged MDSPCs when co-cultured. These results establish that adult stem/progenitor cell dysfunction contributes to ageing-related degeneration and suggests a therapeutic potential of post-natal stem cells to extend health. PMID:22215083

  8. Murine infection model for maintenance and amplification of Cryptosporidium parvum oocysts.

    PubMed Central

    Petry, F; Robinson, H A; McDonald, V

    1995-01-01

    Propagation of Cryptosporidium parvum is problematic because in vitro development of the parasite is poor and animals are only briefly susceptible as neonates. At present oocysts of the parasite are usually procured by passage in neonatal sheep or cattle. In the present study, large numbers of oocysts of C. parvum could be isolated following infection of dexamethasone-treated adult C57BL/6 mice. The amount of immunosuppressive drug and the regimen of administration were critical for successful maintenance of the parasite, however. Routinely, 10 mice (age, 8 to 12 weeks) were injected four times on alternate days with 1.0 mg of dexamethasone, and the last injection was given on the same day as oral inoculation with 10(6) oocysts. By using a simplified procedure for oocyst purification from mouse feces, approximately 10(9) oocysts were obtained. This model is inexpensive and comparatively safe to handle, and the numbers of animals inoculated can be varied to obtain the required number of oocysts. Thus, this murine infection model would be a suitable alternative to the use of neonatal calves or sheep for efficient oocyst propagation. PMID:7665672

  9. Physeal reconstruction using tissue donated from early postnatal limbs in a murine model

    SciTech Connect

    Cundy, P.J.; Jofe, M.; Zaleske, D.J.; Ehrlich, M.G.; Mankin, H.J. )

    1991-05-01

    Physeal reconstruction was performed in a murine model by transplanting corresponding postnatal tissue from 4-day-old C57B mice to resection defects. The site of the reconstruction, the murine distal femoral epiphysis, is completely cartilaginous and avascular at this stage of development. The tissue transplanted into the defect was demonstrated to have high kinetic activity by its incorporation of tritiated thymidine. The physeal reconstruction as performed restored only 25% of normal growth. While transplanting cell populations is feasible, the method will require a great deal of work before clinical application.

  10. TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA

    EPA Science Inventory

    TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA. J F Regal, ME Mohrman, E Boykin and D Sailstad. Dept. of Pharmacology, University of Minnesota, Duluth, MN, USA and NHEERL, ORD, US EPA, RTP, NC, USA.
    Trimellitic anhydride (TMA) is a small m...

  11. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model.

    PubMed

    Bonfield, Tracey L; Koloze, Mary; Lennon, Donald P; Zuchowski, Brandon; Yang, Sung Eun; Caplan, Arnold I

    2010-12-01

    Allogeneic human mesenchymal stem cells (hMSCs) introduced intravenously can have profound anti-inflammatory activity resulting in suppression of graft vs. host disease as well as regenerative events in the case of stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of these diseases. hMSCs produce bioactive factors that provide molecular cuing for: 1) immunosuppression of T cells; 2) antiscarring; 3) angiogenesis; 4) antiapoptosis; and 5) regeneration (i.e., mitotic for host-derived progenitor cells). Studies have shown that hMSCs have profound effects on the immune system and are well-tolerated and therapeutically active in immunocompetent rodent models of multiple sclerosis and stroke. Furthermore, intravenous administration of MSCs results in pulmonary localization. Asthma is a major debilitating pulmonary disease that impacts in excess of 150 million people in the world with uncontrolled asthma potentially leading to death. In addition, the socioeconomic impact of asthma-associated illnesses at the pediatric and adult level are in the millions of dollars in healthcare costs and lost days of work. hMSCs may provide a viable multiaction therapeutic for this inflammatory lung disease by secreting bioactive factors or directing cellular activity. Our studies show the effectiveness and specificity of the hMSCs on decreasing chronic airway inflammation associated with the murine ovalbumin model of asthma. In addition, the results from these studies verify the in vivo immunoeffectiveness of hMSCs in rodents and support the potential therapeutic use of hMSCs for the treatment of airway inflammation associated with chronic asthma. PMID:20817776

  12. Retinal Inhibition of CCR3 Induces Retinal Cell Death in a Murine Model of Choroidal Neovascularization

    PubMed Central

    Wang, Haibo; Han, Xiaokun; Gambhir, Deeksha; Becker, Silke; Kunz, Eric; Liu, Angelina Jingtong; Hartnett, M. Elizabeth

    2016-01-01

    Inhibition of chemokine C-C motif receptor 3 (CCR3) signaling has been considered as treatment for neovascular age-related macular degeneration (AMD). However, CCR3 is expressed in neural retina from aged human donor eyes. Therefore, broad CCR3 inhibition may be harmful to the retina. We assessed the effects of CCR3 inhibition on retina and choroidal endothelial cells (CECs) that develop into choroidal neovascularization (CNV). In adult murine eyes, CCR3 colocalized with glutamine-synthetase labeled Műller cells. In a murine laser-induced CNV model, CCR3 immunolocalized not only to lectin-stained cells in CNV lesions but also to the retina. Compared to non-lasered controls, CCR3 mRNA was significantly increased in laser-treated retina. An intravitreal injection of a CCR3 inhibitor (CCR3i) significantly reduced CNV compared to DMSO or PBS controls. Both CCR3i and a neutralizing antibody to CCR3 increased TUNEL+ retinal cells overlying CNV, compared to controls. There was no difference in cleaved caspase-3 in laser-induced CNV lesions or in overlying retina between CCR3i- or control-treated eyes. Following CCR3i, apoptotic inducible factor (AIF) was significantly increased and anti-apoptotic factor BCL2 decreased in the retina; there were no differences in retinal vascular endothelial growth factor (VEGF). In cultured human Műller cells exposed to eotaxin (CCL11) and VEGF, CCR3i significantly increased TUNEL+ cells and AIF but decreased BCL2 and brain derived neurotrophic factor, without affecting caspase-3 activity or VEGF. CCR3i significantly decreased AIF in RPE/choroids and immunostaining of phosphorylated VEGF receptor 2 (p-VEGFR2) in CNV with a trend toward reduced VEGF. In cultured CECs treated with CCL11 and/or VEGF, CCR3i decreased p-VEGFR2 and increased BCL2 without increasing TUNEL+ cells and AIF. These findings suggest that inhibition of retinal CCR3 causes retinal cell death and that targeted inhibition of CCR3 in CECs may be a safer if CCR3 inhibition

  13. Retinal Inhibition of CCR3 Induces Retinal Cell Death in a Murine Model of Choroidal Neovascularization.

    PubMed

    Wang, Haibo; Han, Xiaokun; Gambhir, Deeksha; Becker, Silke; Kunz, Eric; Liu, Angelina Jingtong; Hartnett, M Elizabeth

    2016-01-01

    Inhibition of chemokine C-C motif receptor 3 (CCR3) signaling has been considered as treatment for neovascular age-related macular degeneration (AMD). However, CCR3 is expressed in neural retina from aged human donor eyes. Therefore, broad CCR3 inhibition may be harmful to the retina. We assessed the effects of CCR3 inhibition on retina and choroidal endothelial cells (CECs) that develop into choroidal neovascularization (CNV). In adult murine eyes, CCR3 colocalized with glutamine-synthetase labeled Műller cells. In a murine laser-induced CNV model, CCR3 immunolocalized not only to lectin-stained cells in CNV lesions but also to the retina. Compared to non-lasered controls, CCR3 mRNA was significantly increased in laser-treated retina. An intravitreal injection of a CCR3 inhibitor (CCR3i) significantly reduced CNV compared to DMSO or PBS controls. Both CCR3i and a neutralizing antibody to CCR3 increased TUNEL+ retinal cells overlying CNV, compared to controls. There was no difference in cleaved caspase-3 in laser-induced CNV lesions or in overlying retina between CCR3i- or control-treated eyes. Following CCR3i, apoptotic inducible factor (AIF) was significantly increased and anti-apoptotic factor BCL2 decreased in the retina; there were no differences in retinal vascular endothelial growth factor (VEGF). In cultured human Műller cells exposed to eotaxin (CCL11) and VEGF, CCR3i significantly increased TUNEL+ cells and AIF but decreased BCL2 and brain derived neurotrophic factor, without affecting caspase-3 activity or VEGF. CCR3i significantly decreased AIF in RPE/choroids and immunostaining of phosphorylated VEGF receptor 2 (p-VEGFR2) in CNV with a trend toward reduced VEGF. In cultured CECs treated with CCL11 and/or VEGF, CCR3i decreased p-VEGFR2 and increased BCL2 without increasing TUNEL+ cells and AIF. These findings suggest that inhibition of retinal CCR3 causes retinal cell death and that targeted inhibition of CCR3 in CECs may be a safer if CCR3 inhibition

  14. Pharmacokinetics and Pulmonary Disposition of Tedizolid and Linezolid in a Murine Pneumonia Model under Variable Conditions

    PubMed Central

    Keel, Rebecca A.; Crandon, Jared L.

    2012-01-01

    In vivo pharmacokinetics are often evaluated in only one variation of an infection model, and the resulting exposures are assumed to be similar in each model. We evaluated and compared the effect of lung infection and immune status on the murine pharmacokinetics and pulmonary disposition of tedizolid and linezolid. Both factors resulted in differing blood and pulmonary exposure profiles, with similar trends for tedizolid and linezolid. These data highlight the importance of pharmacokinetic confirmation in each model. PMID:22430966

  15. In Vitro Colony Assays for Characterizing Tri-potent Progenitor Cells Isolated from the Adult Murine Pancreas.

    PubMed

    Tremblay, Jacob R; LeBon, Jeanne M; Luo, Angela; Quijano, Janine C; Wedeken, Lena; Jou, Kevin; Riggs, Arthur D; Tirrell, David A; Ku, H Teresa

    2016-01-01

    Stem and progenitor cells from the adult pancreas could be a potential source of therapeutic beta-like cells for treating patients with type 1 diabetes. However, it is still unknown whether stem and progenitor cells exist in the adult pancreas. Research strategies using cre-lox lineage-tracing in adult mice have yielded results that either support or refute the idea that beta cells can be generated from the ducts, the presumed location where adult pancreatic progenitors may reside. These in vivo cre-lox lineage-tracing methods, however, cannot answer the questions of self-renewal and multi-lineage differentiation-two criteria necessary to define a stem cell. To begin addressing this technical gap, we devised 3-dimensional colony assays for pancreatic progenitors. Soon after our initial publication, other laboratories independently developed a similar, but not identical, method called the organoid assay. Compared to the organoid assay, our method employs methylcellulose, which forms viscous solutions that allow the inclusion of extracellular matrix proteins at low concentrations. The methylcellulose-containing assays permit easier detection and analyses of progenitor cells at the single-cell level, which are critical when progenitors constitute a small sub-population, as is the case for many adult organ stem cells. Together, results from several laboratories demonstrate in vitro self-renewal and multi-lineage differentiation of pancreatic progenitor-like cells from mice. The current protocols describe two methylcellulose-based colony assays to characterize mouse pancreatic progenitors; one contains a commercial preparation of murine extracellular matrix proteins and the other an artificial extracellular matrix protein known as a laminin hydrogel. The techniques shown here are 1) dissociation of the pancreas and sorting of CD133(+)Sox9/EGFP(+) ductal cells from adult mice, 2) single cell manipulation of the sorted cells, 3) single colony analyses using microfluidic q

  16. Evaluation of antiobesity and cardioprotective effect of Gymnema sylvestre extract in murine model

    PubMed Central

    Kumar, Vinay; Bhandari, Uma; Tripathi, Chakra Dhar; Khanna, Geetika

    2012-01-01

    Objective: Obesity plays a central role in the insulin resistance syndrome, which is associated with hyperinsulinemia, hypertension, hyperlipidemia, type 2 diabetes mellitus, and an increased risk of atherosclerotic cardiovascular disease. The present study was done to assess the effect of Gymnema sylvestre extract (GSE) in the high fat diet (HFD)-induced cellular obesity and cardiac damage in Wistar rats. Materials and Methods: Adult male Wistar rats (150–200 g body weight) were used in this study. HFD was used to induce obesity. Body mass index, hemodynamic parameters, serum leptin, insulin, glucose, lipids, apolipoprotein levels, myocardial apoptosis, and antioxidant enzymes were assessed. Organ and visceral fat pad weights and histopathological studies were also carried out. Results: Oral feeding of HFD (20 g/day) for a period of 28 days resulted in a significant increase in body mass index, organ weights, visceral fat pad weight, cardiac caspase-3, cardiac DNA laddering (indicating apoptotic inter-nucleosomal DNA fragment), and lipid peroxide levels of cardiac tissues of rats. Further, mean arterial blood pressure, heart rate, serum leptin, insulin, LDH, LDL-C, total cholesterol, triglycerides, and apolipoprotein-B levels were enhanced significantly, whereas serum HDL-C, apoliporotein-A1 levels, and cardiac Na+ K+ ATPase, antioxidant enzymes levels were significantly decreased. Furthermore, treatment with standardized ethanolic GSE (200 m/kg/p.o.) for a period of 28 days resulted in significant reversal of above mentioned changes in the obese Wistar rats. Conclusion: The present study has demonstrated the significant antiobesity potential of GSE in murine model of obesity. PMID:23112423

  17. Accelerated Human Mutant Tau Aggregation by Knocking Out Murine Tau in a Transgenic Mouse Model

    PubMed Central

    Ando, Kunie; Leroy, Karelle; Héraud, Céline; Yilmaz, Zehra; Authelet, Michèle; Suain, Valèrie; De Decker, Robert; Brion, Jean-Pierre

    2011-01-01

    Many models of human tauopathies have been generated in mice by expression of a human mutant tau with maintained expression of mouse endogenous tau. Because murine tau might interfere with the toxic effects of human mutant tau, we generated a model in which a pathogenic human tau protein is expressed in the absence of wild-type tau protein, with the aim of facilitating the study of the pathogenic role of the mutant tau and to reproduce more faithfully a human tauopathy. The Tg30 line is a tau transgenic mouse model overexpressing human 1N4R double-mutant tau (P301S and G272V) that develops Alzheimer's disease-like neurofibrillary tangles in an age-dependent manner. By crossing Tg30 mice with mice invalidated for their endogenous tau gene, we obtained Tg30xtau−/− mice that express only exogenous human double-mutant 1N4R tau. Although Tg30xtau−/− mice express less tau protein compared with Tg30, they exhibit signs of decreased survival, increased proportion of sarkosyl-insoluble tau in the brain and in the spinal cord, increased number of Gallyas-positive neurofibrillary tangles in the hippocampus, increased number of inclusions in the spinal cord, and a more severe motor phenotype. Deletion of murine tau accelerated tau aggregation during aging of this mutant tau transgenic model, suggesting that murine tau could interfere with the development of tau pathology in transgenic models of human tauopathies. PMID:21281813

  18. Survivin suppressor (YM155) enhances chemotherapeutic efficacy against canine histiocytic sarcoma in murine transplantation models.

    PubMed

    Yamazaki, Hiroki; Takagi, Satoshi; Hosoya, Kenji; Okumura, Masahiro

    2015-04-01

    Histiocytic sarcoma (HS) in dogs exhibits aggressive clinical and biological behavior. Currently, no effective treatments are available for dogs with HS. Survivin, a member of a family of apoptosis protein inhibitors, could serve as a potential therapeutic target in several canine cancers. Sepantronium bromide (YM155) has recently been established as a novel survivin-targeting agent. The aim of this study was to use YM155 as a tool for evaluating survivin-targeted therapies against dogs with HS, and to investigate how YM155 treatment affects antitumor and chemotherapeutic efficacies in murine xenograft models using canine HS cells. The results showed that in HS cells with lomustine (CCNU) resistance, YM155 treatment suppressed both the cell-growth potential and cell resistance to CCNU, which essentially increases the chemotherapy efficacy in the murine models. The evidence presented here supports the favorable preclinical evaluation that survivin-targeted therapies might be effective against HS in dogs. PMID:25744435

  19. Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model

    PubMed Central

    Brown, Eric M.; Wlodarska, Marta; Willing, Benjamin P.; Vonaesch, Pascale; Han, Jun; Reynolds, Lisa A.; Arrieta, Marie-Claire; Uhrig, Marco; Scholz, Roland; Partida, Oswaldo; Borchers, Christoph H.; Sansonetti, Philippe J.; Finlay, B. Brett

    2015-01-01

    Environmental enteropathy (EE) is a subclinical chronic inflammatory disease of the small intestine and has a profound impact on the persistence of childhood malnutrition worldwide. However, the aetiology of the disease remains unknown and no animal model exists to date, the creation of which would aid in understanding this complex disease. Here we demonstrate that early-life consumption of a moderately malnourished diet, in combination with iterative oral exposure to commensal Bacteroidales species and Escherichia coli, remodels the murine small intestine to resemble features of EE observed in humans. We further report the profound changes that malnutrition imparts on the small intestinal microbiota, metabolite and intraepithelial lymphocyte composition, along with the susceptibility to enteric infection. Our findings provide evidence indicating that both diet and microbes combine to contribute to the aetiology of EE, and describe a novel murine model that can be used to elucidate the mechanisms behind this understudied disease. PMID:26241678

  20. Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model.

    PubMed

    Brown, Eric M; Wlodarska, Marta; Willing, Benjamin P; Vonaesch, Pascale; Han, Jun; Reynolds, Lisa A; Arrieta, Marie-Claire; Uhrig, Marco; Scholz, Roland; Partida, Oswaldo; Borchers, Christoph H; Sansonetti, Philippe J; Finlay, B Brett

    2015-01-01

    Environmental enteropathy (EE) is a subclinical chronic inflammatory disease of the small intestine and has a profound impact on the persistence of childhood malnutrition worldwide. However, the aetiology of the disease remains unknown and no animal model exists to date, the creation of which would aid in understanding this complex disease. Here we demonstrate that early-life consumption of a moderately malnourished diet, in combination with iterative oral exposure to commensal Bacteroidales species and Escherichia coli, remodels the murine small intestine to resemble features of EE observed in humans. We further report the profound changes that malnutrition imparts on the small intestinal microbiota, metabolite and intraepithelial lymphocyte composition, along with the susceptibility to enteric infection. Our findings provide evidence indicating that both diet and microbes combine to contribute to the aetiology of EE, and describe a novel murine model that can be used to elucidate the mechanisms behind this understudied disease. PMID:26241678

  1. Usefulness of the murine model to study the immune response against Histoplasma capsulatum infection.

    PubMed

    Sahaza, Jorge H; Pérez-Torres, Armando; Zenteno, Edgar; Taylor, Maria Lucia

    2014-05-01

    The present paper is an overview of the primary events that are associated with the histoplasmosis immune response in the murine model. Valuable data that have been recorded in the scientific literature have contributed to an improved understanding of the clinical course of this systemic mycosis, which is caused by the dimorphic fungus Histoplasma capsulatum. Data must be analyzed carefully, given that misinterpretation could be generated because most of the available information is based on experimental host-parasite interactions that used inappropriate proceedings, i.e., the non-natural route of infection with the parasitic and virulent fungal yeast-phase, which is not the usual infective phase of the etiological agent of this mycosis. Thus, due to their versatility, complexity, and similarities with humans, several murine models have played a fundamental role in exploring the host-parasite interaction during H. capsulatum infection. PMID:24766724

  2. Ablating hedgehog signaling in tenocytes during development impairs biomechanics and matrix organization of the adult murine patellar tendon enthesis

    PubMed Central

    Aschbacher‐Smith, Lindsey; Lu, Yinhui; Dyment, Nathaniel A.; Liu, Chia‐Feng; Liu, Han; Wylie, Chris; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Jiang, Rulang; Butler, David L.

    2015-01-01

    ABSTRACT Restoring the native structure of the tendon enthesis, where collagen fibers of the midsubstance are integrated within a fibrocartilaginous structure, is problematic following injury. As current surgical methods fail to restore this region adequately, engineers, biologists, and clinicians are working to understand how this structure forms as a prerequisite to improving repair outcomes. We recently reported on the role of Indian hedgehog (Ihh), a novel enthesis marker, in regulating early postnatal enthesis formation. Here, we investigate how inactivating the Hh pathway in tendon cells affects adult (12‐week) murine patellar tendon (PT) enthesis mechanics, fibrocartilage morphology, and collagen fiber organization. We show that ablating Hh signaling resulted in greater than 100% increased failure insertion strain (0.10 v. 0.05 mm/mm, p<0.01) as well as sub‐failure biomechanical deficiencies. Although collagen fiber orientation appears overtly normal in the midsubstance, ablating Hh signaling reduces mineralized fibrocartilage by 32%, leading to less collagen embedded within mineralized tissue. Ablating Hh signaling also caused collagen fibers to coalesce at the insertion, which may explain in part the increased strains. These results indicate that Ihh signaling plays a critical role in the mineralization process of fibrocartilaginous entheses and may be a novel therapeutic to promote tendon‐to‐bone healing. © 2015 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 33:1142–1151, 2015. PMID:25807894

  3. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells

    PubMed Central

    Kabiri, Zahra; Numata, Akihiko; Kawasaki, Akira; Tenen, Daniel G.

    2015-01-01

    Wnt signaling controls early embryonic hematopoiesis and dysregulated β-catenin is implicated in leukemia. However, the role of Wnts and their source in adult hematopoiesis is still unclear, and is clinically important as upstream Wnt inhibitors enter clinical trials. We blocked Wnt secretion in hematopoietic lineages by targeting Porcn, a membrane-bound O-acyltransferase that is indispensable for the activity and secretion of all vertebrate Wnts. Surprisingly, deletion of Porcn in Rosa-CreERT2/PorcnDel, MX1-Cre/PorcnDel, and Vav-Cre/PorcnDel mice had no effects on proliferation, differentiation, or self-renewal of adult hematopoietic stem cells. Targeting Wnt secretion in the bone marrow niche by treatment with a PORCN inhibitor, C59, similarly had no effect on hematopoiesis. These results exclude a role for hematopoietic PORCN-dependent Wnts in adult hematopoiesis. Clinical use of upstream Wnt inhibitors is not likely to be limited by effects on hematopoiesis. PMID:26089398

  4. A Comparative Study of Lung Host Defense in Murine Obesity Models. Insights into Neutrophil Function.

    PubMed

    Ubags, Niki D J; Burg, Elianne; Antkowiak, Maryellen; Wallace, Aaron M; Dilli, Estee; Bement, Jenna; Wargo, Matthew J; Poynter, Matthew E; Wouters, Emiel F M; Suratt, Benjamin T

    2016-08-01

    We have shown that obesity-associated attenuation of murine acute lung injury is driven, in part, by blunted neutrophil chemotaxis, yet differences were noted between the two models of obesity studied. We hypothesized that obesity-associated impairment of multiple neutrophil functions contributes to increased risk for respiratory infection but that such impairments may vary between murine models of obesity. We examined the most commonly used murine obesity models (diet-induced obesity, db/db, CPE(fat/fat), and ob/ob) using a Klebsiella pneumoniae pneumonia model and LPS-induced pneumonitis. Marrow-derived neutrophils from uninjured lean and obese mice were examined for in vitro functional responses. All obesity models showed impaired clearance of K. pneumoniae, but in differing temporal patterns. Failure to contain infection in obese mice was seen in the db/db model at both 24 and 48 hours, yet this defect was only evident at 24 hours in CPE(fat/fat) and ob/ob models, and at 48 hours in diet-induced obesity. LPS-induced airspace neutrophilia was decreased in all models, and associated with blood neutropenia in the ob/ob model but with leukocytosis in the others. Obese mouse neutrophils from all models demonstrated impaired chemotaxis, whereas neutrophil granulocyte colony-stimulating factor-mediated survival, LPS-induced cytokine transcription, and mitogen-activated protein kinase and signal transducer and activator of transcription 3 activation in response to LPS and granulocyte colony-stimulating factor, respectively, were variably impaired across the four models. Obesity-associated impairment of host response to lung infection is characterized by defects in neutrophil recruitment and survival. However, critical differences exist between commonly used mouse models of obesity and may reflect variable penetrance of elements of the metabolic syndrome, as well as other factors. PMID:27128821

  5. Subepithelial Accumulation of Versican in a Cockroach Antigen-Induced Murine Model of Allergic Asthma.

    PubMed

    Reeves, Stephen R; Kaber, Gernot; Sheih, Alyssa; Cheng, Georgiana; Aronica, Mark A; Merrilees, Mervyn J; Debley, Jason S; Frevert, Charles W; Ziegler, Steven F; Wight, Thomas N

    2016-06-01

    The extracellular matrix (ECM) is an important contributor to the asthmatic phenotype. Recent studies investigating airway inflammation have demonstrated an association between hyaluronan (HA) accumulation and inflammatory cell infiltration of the airways. The ECM proteoglycan versican interacts with HA and is important in the recruitment and activation of leukocytes during inflammation. We investigated the role of versican in the pathogenesis of asthmatic airway inflammation. Using cockroach antigen (CRA)-sensitized murine models of allergic asthma, we demonstrate increased subepithelial versican in the airways of CRA-treated mice that parallels subepithelial increases in HA and leukocyte infiltration. During the acute phase, CRA-treated mice displayed increased gene expression of the four major versican isoforms, as well as increased expression of HA synthases. Furthermore, in a murine model that examines both acute and chronic CRA exposure, versican staining peaked 8 days following CRA challenge and preceded subepithelial leukocyte infiltration. We also assessed versican and HA expression in differentiated primary human airway epithelial cells from asthmatic and healthy children. Increases in the expression of versican isoforms and HA synthases in these epithelial cells were similar to those of the murine model. These data indicate an important role for versican in the establishment of airway inflammation in asthma. PMID:27126823

  6. Expression of indoleamine 2,3-dioxygenase in a murine model of Aspergillus fumigatus keratitis

    PubMed Central

    Jiang, Nan; Zhao, Gui-Qiu; Lin, Jing; Hu, Li-Ting; Che, Cheng-Ye; Li, Cui; Wang, Qian; Xu, Qiang; Zhang, Jie; Peng, Xu-Dong

    2016-01-01

    AIM To observe the presence and expression of indoleamine 2,3-dioxygenase (IDO) during the corneal immunity to Aspergillus fumigatus (A. fumigatus) in the murine models. METHODS The murine model of fungal keratitis was established by smearing with colonies of A. fumigatus after scraping central epithelium of cornea and covering with contact lenses in C57BL/6 mice. The mice were randomly divided into control group, sham group and A. fumigatus keratitis group. The cornea was monitored daily using a slit lamp and recorded disease score after infection. Corneal lesion was detected by immunofluorescence staining. IDO mRNA and protein were also detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. RESULTS The disease score and slit lamp photography indicated that disease severity was consistent with corneal inflammation in the murine models, and the disease scores in A. fumigatus keratitis group were obviously higher than those in the sham group. By immunofluorescence staining, IDO was mainly localized in corneal epithelium and stroma in the murine corneal tissues with A. fumigatus keratitis. Compared with the sham group, IDO mRNA expression was significantly enhanced in corneal epithelium infected by A. fumigatus. Furthermore, IDO protein expression detected by Western blot was in accord with transcript levels of IDO mRNA measured by qRT-PCR. IDO protein expression was enhanced after A. fumigatus infection compared with the sham group. CONCLUSION IDO is detected in corneal epithelium and stroma locally, which indicates IDO takes part in the pathogenesis of A. fumigatus keratitis and plays a key role in immune regulation at the early stage. PMID:27162718

  7. Mechano-rheological properties of the murine thrombus determined via nanoindentation and finite element modeling.

    PubMed

    Slaboch, Constance L; Alber, Mark S; Rosen, Elliot D; Ovaert, Timothy C

    2012-06-01

    Deep vein thrombosis, pulmonary embolism, and abdominal aortic aneurysms are blood-related diseases that represent a major public health problem. These diseases are characterized by the formation of a thrombus (i.e., blood clot) that either blocks a major artery or causes an aortic rupture. Identifying the mechanical properties of thrombi can help determine when these incidents will occur. In this investigation, a murine thrombus, formed from platelet-rich plasma, calcium, and thrombin, was nanoindented and the elastic modulus was estimated via elastic contact theory. This information was used as input to an inverse finite element simulation, which determined optimal values for the elastic modulus and viscosity of the thrombus using a viscoelastic material model. A sensitivity analysis was also performed to determine which material parameters have the greatest affect on the simulation. Results from this investigation demonstrate the feasibility of the mechanical characterization of a murine thrombus using nanoindentation. PMID:22520420

  8. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia

    PubMed Central

    Ramsey, Laura B.; Janke, Laura J.; Payton, Monique A.; Cai, Xiangjun; Paugh, Steven W.; Karol, Seth E.; Kamdem, Landry Kamdem; Cheng, Cheng; Williams, Richard T.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia. PMID:26252865

  9. Differential Toll-Like Receptor-Signalling of Burkholderia pseudomallei Lipopolysaccharide in Murine and Human Models

    PubMed Central

    Weehuizen, Tassili A. F.; Prior, Joann L.; van der Vaart, Thomas W.; Ngugi, Sarah A.; Nepogodiev, Sergey A.; Field, Robert A.; Kager, Liesbeth M.; van ‘t Veer, Cornelis; de Vos, Alex F.; Wiersinga, W. Joost

    2015-01-01

    The Gram-negative bacterium Burkholderia pseudomallei causes melioidosis and is a CDC category B bioterrorism agent. Toll-like receptor (TLR)-2 impairs host defense during pulmonary B.pseudomallei infection while TLR4 only has limited impact. We investigated the role of TLRs in B.pseudomallei-lipopolysaccharide (LPS) induced inflammation. Purified B.pseudomallei-LPS activated only TLR2-transfected-HEK-cells during short stimulation but both HEK-TLR2 and HEK-TLR4-cells after 24 h. In human blood, an additive effect of TLR2 on TLR4-mediated signalling induced by B.pseudomallei-LPS was observed. In contrast, murine peritoneal macrophages recognized B.pseudomallei-LPS solely through TLR4. Intranasal inoculation of B.pseudomallei-LPS showed that both TLR4-knockout(-/-) and TLR2x4-/-, but not TLR2-/- mice, displayed diminished cytokine responses and neutrophil influx compared to wild-type controls. These data suggest that B.pseudomallei-LPS signalling occurs solely through murine TLR4, while in human models TLR2 plays an additional role, highlighting important differences between specificity of human and murine models that may have important consequences for B.pseudomallei-LPS sensing by TLRs and subsequent susceptibility to melioidosis. PMID:26689559

  10. Development of a radiofrequency ablation platform in a clinically relevant murine model of hepatocellular cancer.

    PubMed

    Qi, Xiaoqiang; Li, Guangfu; Liu, Dai; Motamarry, Anjan; Huang, Xiangwei; Wolfe, A Marissa; Helke, Kristi L; Haemmerich, Dieter; Staveley-O'Carroll, Kevin F; Kimchi, Eric T

    2015-01-01

    RFA is used in treatment of patients with hepatocellular cancer (HCC); however, tumor location and size often limit therapeutic efficacy. The absence of a realistic animal model and a radiofrequency ablation (RFA) suitable for small animals presents significant obstacles in developing new strategies. To establish a realistic RFA platform that allows the development of effective RFA-integrated treatment in an orthotopic murine model of HCC, a human cardiac radiofrequency generator was modified for murine use. Parameters were optimized and RFA was then performed in normal murine livers and HCCs. The effects of RFA were monitored by measuring the ablation zone and transaminases. The survival of tumor-bearing mice with and without RFA was monitored, ablated normal liver and HCCs were evaluated macroscopically and histologically. We demonstrated that tissue-mimicking media was able to optimize RFA parameters. Utilizing this information we performed RFA in normal and HCC-bearing mice. RFA was applied to hepatic parenchyma and completely destroyed small tumors and part of large tumors. Localized healing of the ablation and normalization of transaminases occurred within 7 days post RFA. RFA treatment extended the survival of small tumor-bearing mice. They survived at least 5 months longer than the controls; however, mice with larger tumors only had a slight therapeutic effect after RFA. Collectively, we performed RFA in murine HCCs and observed a significant therapeutic effect in small tumor-bearing mice. The quick recovery of tumor-bearing mice receiving RFA mimics observations in human subjects. This platform provides us a unique opportunity to study RFA in HCC treatment. PMID:26537481

  11. Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models

    PubMed Central

    Lever, Teresa E.; Braun, Sabrina M.; Brooks, Ryan T.; Harris, Rebecca A.; Littrell, Loren L.; Neff, Ryan M.; Hinkel, Cameron J.; Allen, Mitchell J.; Ulsas, Mollie A.

    2015-01-01

    This study adapted human videofluoroscopic swallowing study (VFSS) methods for use with murine disease models for the purpose of facilitating translational dysphagia research. Successful outcomes are dependent upon three critical components: test chambers that permit self-feeding while standing unrestrained in a confined space, recipes that mask the aversive taste/odor of commercially-available oral contrast agents, and a step-by-step test protocol that permits quantification of swallow physiology. Elimination of one or more of these components will have a detrimental impact on the study results. Moreover, the energy level capability of the fluoroscopy system will determine which swallow parameters can be investigated. Most research centers have high energy fluoroscopes designed for use with people and larger animals, which results in exceptionally poor image quality when testing mice and other small rodents. Despite this limitation, we have identified seven VFSS parameters that are consistently quantifiable in mice when using a high energy fluoroscope in combination with the new murine VFSS protocol. We recently obtained a low energy fluoroscopy system with exceptionally high imaging resolution and magnification capabilities that was designed for use with mice and other small rodents. Preliminary work using this new system, in combination with the new murine VFSS protocol, has identified 13 swallow parameters that are consistently quantifiable in mice, which is nearly double the number obtained using conventional (i.e., high energy) fluoroscopes. Identification of additional swallow parameters is expected as we optimize the capabilities of this new system. Results thus far demonstrate the utility of using a low energy fluoroscopy system to detect and quantify subtle changes in swallow physiology that may otherwise be overlooked when using high energy fluoroscopes to investigate murine disease models. PMID:25866882

  12. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium

    PubMed Central

    Noseda, Michela; Harada, Mutsuo; McSweeney, Sara; Leja, Thomas; Belian, Elisa; Stuckey, Daniel J.; Abreu Paiva, Marta S.; Habib, Josef; Macaulay, Iain; de Smith, Adam J.; al-Beidh, Farah; Sampson, Robert; Lumbers, R. Thomas; Rao, Pulivarthi; Harding, Sian E.; Blakemore, Alexandra I. F.; Eirik Jacobsen, Sten; Barahona, Mauricio; Schneider, Michael D.

    2015-01-01

    Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT–PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα+ cells. Clonal progeny of single Sca1+ SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα− cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα+/CD31− cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα−/CD31+ cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1+ stem/progenitor cell. PMID:25980517

  13. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium.

    PubMed

    Noseda, Michela; Harada, Mutsuo; McSweeney, Sara; Leja, Thomas; Belian, Elisa; Stuckey, Daniel J; Abreu Paiva, Marta S; Habib, Josef; Macaulay, Iain; de Smith, Adam J; al-Beidh, Farah; Sampson, Robert; Lumbers, R Thomas; Rao, Pulivarthi; Harding, Sian E; Blakemore, Alexandra I F; Jacobsen, Sten Eirik; Barahona, Mauricio; Schneider, Michael D

    2015-01-01

    Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT-PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα(+) cells. Clonal progeny of single Sca1(+) SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα(-) cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα(+)/CD31(-) cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα(-)/CD31(+) cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1(+) stem/progenitor cell. PMID:25980517

  14. Differential vascular permeability along the forebrain ventricular neurogenic niche in the adult murine brain.

    PubMed

    Colín-Castelán, Dannia; Ramírez-Santos, Jesús; Gutiérrez-Ospina, Gabriel

    2016-02-01

    Adult neurogenesis is influenced by blood-borne factors. In this context, greater or lesser vascular permeability along neurogenic niches would expose differentially neural stem cells (NSCs), transit amplifying cells (TACs), and neuroblasts to such factors. Here we evaluate endothelial cell morphology and vascular permeability along the forebrain neurogenic niche in the adult brain. Our results confirm that the subventricular zone (SVZ) contains highly permeable, discontinuous blood vessels, some of which allow the extravasation of molecules larger than those previously reported. In contrast, the rostral migratory stream (RMS) and the olfactory bulb core (OBc) display mostly impermeable, continuous blood vessels. These results imply that NSCs, TACs, and neuroblasts located within the SVZ are exposed more readily to blood-borne molecules, including those with very high molecular weights, than those positioned along the RMS and the OBc, subregions in which every stage of neurogenesis also takes place. These observations suggest that the existence of specialized vascular niches is not a precondition for neurogenesis to occur; specialized vascular beds might be essential for keeping high rates of proliferation and/or differential differentiation of neural precursors located at distinct domains. PMID:26492830

  15. Non-invasive Loading Model of Murine Osteoarthritis.

    PubMed

    Poulet, Blandine

    2016-07-01

    Osteoarthritis is the commonest degenerative joint disease, leading to joint pain and disability. The mouse has been the primary animal used for research, due to its size, relatively short lifespan, and the availability of genetically modified animals. Importantly, they show pathogenesis similar to osteoarthritis in humans. Mechanical loading is a major risk factor for osteoarthritis, and various mouse models have been developed to study the role and effects of mechanics on health and disease in various joints. This review describes the main mouse models used to non-invasively apply mechanical loads on joints. Most of the mouse models of osteoarthritis target the knee, including repetitive loading and joint injury such as ligament rupture, but a few studies have also characterised models for elbow, temporomandibular joint, and whole-body vibration spinal loading. These models are a great opportunity to dissect the influences of various types of mechanical input on joint health and disease. PMID:27177901

  16. Murine Models to Evaluate Novel and Conventional Therapeutic Strategies for Cancer

    PubMed Central

    Talmadge, James E.; Singh, Rakesh K.; Fidler, Isaiah J.; Raz, Avraham

    2007-01-01

    Animal models, by definition, are an approximation of reality, and their use in developing anti-cancer drugs is controversial. Positive retrospective clinical correlations have been identified with several animal models, in addition to limitations and a need for improvement. Model inadequacies include experimental designs that do not incorporate biological concepts, drug pharmacology, or toxicity. Ascites models have been found to identify drugs active against rapidly dividing tumors; however, neither ascitic nor transplantable subcutaneous tumors are predictive of activity for solid tumors. In contrast, primary human tumor xenografts have identified responsive tumor histiotypes if relevant pharmacodynamic and toxicological parameters were considered. Murine toxicology studies are also fundamental because they identify safe starting doses for phase I protocols. We recommend that future studies incorporate orthotopic and spontaneous metastasis models (syngeneic and xenogenic) because they incorporate microenvironmental interactions, in addition to confirmatory autochthonous models and/or genetically engineered models, for molecular therapeutics. Collectively, murine models are critical in drug development, but require a rational and hierarchical approach beginning with toxicology and pharmacology studies, progressing to human primary tumors to identify therapeutic targets and models of metastatic disease from resected orthotopic, primary tumors to compare drugs using rigorous, clinically relevant outcome parameters. PMID:17322365

  17. Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways.

    PubMed

    Gianotti, Ambra; Ferrera, Loretta; Philp, Amber R; Caci, Emanuela; Zegarra-Moran, Olga; Galietta, Luis J V; Flores, Carlos A

    2016-06-15

    Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice. PMID:27063443

  18. Prenatal exposure to lipopolysaccharide results in myocardial remodelling in adult murine offspring

    PubMed Central

    2013-01-01

    Background The epigenetic plasticity hypothesis indicates that pregnancy exposure may result in adult-onset diseases, including hypertension, diabetes and cardiovascular disease, in offspring. In a previous study, we discovered that prenatal exposure to inflammatory stimulants, such as lipopolysaccharides (LPS), could lead to hypertension in adult rat offspring. In the present study, we further demonstrate that maternal inflammation induces cardiac hypertrophy and dysfunction via ectopic over-expression of nuclear transcription factor κB (NF- κB), and pyrrolidine dithiocarbamate (PDTC) can protect cardiac function by reducing maternal inflammation. Methods Pregnant SD rats were randomly divided into three groups and intraperitoneally injected with a vehicle, LPS (0.79 mg/kg), or LPS (0.79 mg/kg) plus PDTC (100 mg/kg) at 8 to 12 days of gestation. The offspring were raised until 4 and 8 months old, at which point an echocardiographic study was performed. The left ventricular (LV) mass index and apoptosis were examined. Results At 4 months of age, the LPS offspring exhibited augmented posterior wall thickness. These rats displayed left ventricle (LV) hypertrophy and LV diastolic dysfunction as well as a higher apoptotic index, a higher level of Bax and a lower level of Bcl-2 at 8 months of age. The protein levels of NF-κB (p65) in the myocardium of the offspring were measured at this time. NF-κB protein levels were higher in the myocardium of LPS offspring. The offspring that were prenatally treated with PDTC displayed improved signs of blood pressure (BP) and LV hypertrophy. Conclusions Maternal inflammation can induce cardiac hypertrophy in offspring during aging accompanied with hypertension emergence and can be rescued by the maternal administration of PDTC (the inhibitor of NF-κB). PMID:24764457

  19. A Murine Model for Infection with Burkholderia cepacia with Sustained Persistence in the Spleen

    PubMed Central

    Speert, David P.; Steen, Barbara; Halsey, Keith; Kwan, Eddie

    1999-01-01

    Burkholderia cepacia is an opportunistic pathogen that causes severe systemic infections in patients with chronic granulomatous disease (CGD) or with cystic fibrosis (CF), but its mechanisms of virulence are poorly understood. We developed a murine model of systemic infection in wild-type (WT) and gamma interferon knockout (GKO) BALB/c mice to facilitate dissection of components of pathogenicity and host defense. Both WT and GKO mice were susceptible to chronic splenic infection with B. cepacia, but not with Pseudomonas aeruginosa. B. cepacia strains from patients with CGD persisted longer than those from CF patients. C57BL/6 mice were the most susceptible murine strain; bacteria persisted in the spleen for 2 months. DBA/2, BALB/c, and A/J strains of mice were relatively resistant to infection. Certain strains of B. cepacia complex can persist in the murine spleen after systemic infection; this may provide clues to its virulence in compromised hosts, such as those with CGD and CF. PMID:10417170

  20. Murine Models of Nonalcoholic Fatty Liver Disease and Steatohepatitis

    PubMed Central

    Ninomiya, Masashi; Kondo, Yasuteru; Shimosegawa, Tooru

    2013-01-01

    In 1980, Ludwig et al. first reported patients of steatohepatitis who lacked a history of excessive alcohol consumption but showed liver histology resembling alcoholic hepatitis and progression to cirrhosis of the liver accompanied by inflammation and fibrosis. The development of nonalcoholic steatohepatitis (NASH) is associated with obesity, diabetes mellitus, insulin resistance, and hyperlipidemia. However, the pathogenesis of NASH remains incomplete. A “multiple-hit” hypothesis for the pathogenesis of NASH based on an animal model has been proposed and remains a foundation for research in this field. We review the important dietary and genetic animal models and discuss the pathogenesis of NASH. PMID:27335818

  1. AN IN VITRO MODEL FOR MURINE URETERIC EPITHELIAL CELLS

    EPA Science Inventory

    This report presents a model developed to study growth and differentiation of primary cultures of ureteric epithelial cells from embryonic C57BL/6N mouse urinary tracts. Single cells were resuspended in medium and plated onto transwells coated with collagen IV and laminin. Basa...

  2. Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors.

    PubMed

    Swetha, G; Chandra, Vikash; Phadnis, Smruti; Bhonde, Ramesh

    2011-02-01

    Glomerular parietal epithelial cells (GPECs) are known to revert to embryonic phenotype in response to renal injury. However, the mechanism of de-differentiation in GPECs and the underlying cellular processes are not fully understood. In the present study, we show that cultured GPECs of adult murine kidney undergo epithelial-mesenchymal transition (EMT) to generate cells, which express CD24, CD44 and CD29 surface antigens. Characterization by qRT-PCR and immunostaining of these clonogenic cells demonstrate that they exhibit metastable phenotype with co-expression of both epithelial (cytokeratin-18) and mesenchymal (vimentin) markers. Transcript analysis by qRT-PCR revealed high expression of metanephric mesenchymal (Pax-2, WT-1, Six-1, Eya-1, GDNF) and uteric bud (Hoxb-7, C-Ret) genes in these cells, indicating their bipotent progenitor status. Incubation of GPECs with EMT blocker Prostaglandin E2, resulted in low expression of renal progenitor markers reflecting the correlation between EMT and acquired stemness in these cells. Additional in vitro renal commitment assays confirmed their functional staminality. When injected into E13.5 kidney rudiments, the cells incorporated into the developing kidney primordia and co-culture with E13.5 spinal cord resulted in branching and tubulogenesis in these cells. When implanted under renal capsule of unilaterally nephrectomized mice, these cells differentiated into immature glomeruli and vascular ducts. Our study demonstrates that EMT plays a major role in imparting plasticity to terminally differentiated GPECs by producing metastable cells with traits of kidney progenitors. The present study would improve our understanding on epithelial cell plasticity, furthering our knowledge of its role in renal repair and regeneration. PMID:19840197

  3. Radiation-induced myeloid leukemia in murine models

    PubMed Central

    2014-01-01

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included. PMID:25062865

  4. Murine Model of Intestinal Ischemia-reperfusion Injury.

    PubMed

    Gubernatorova, Ekaterina O; Perez-Chanona, Ernesto; Koroleva, Ekaterina P; Jobin, Christian; Tumanov, Alexei V

    2016-01-01

    Intestinal ischemia is a life-threatening condition associated with a broad range of clinical conditions including atherosclerosis, thrombosis, hypotension, necrotizing enterocolitis, bowel transplantation, trauma and chronic inflammation. Intestinal ischemia-reperfusion (IR) injury is a consequence of acute mesenteric ischemia, caused by inadequate blood flow through the mesenteric vessels, resulting in intestinal damage. Reperfusion following ischemia can further exacerbate damage of the intestine. The mechanisms of IR injury are complex and poorly understood. Therefore, experimental small animal models are critical for understanding the pathophysiology of IR injury and the development of novel therapies. Here we describe a mouse model of acute intestinal IR injury that provides reproducible injury of the small intestine without mortality. This is achieved by inducing ischemia in the region of the distal ileum by temporally occluding the peripheral and terminal collateral branches of the superior mesenteric artery for 60 min using microvascular clips. Reperfusion for 1 hr, or 2 hr after injury results in reproducible injury of the intestine examined by histological analysis. Proper position of the microvascular clips is critical for the procedure. Therefore the video clip provides a detailed visual step-by-step description of this technique. This model of intestinal IR injury can be utilized to study the cellular and molecular mechanisms of injury and regeneration. PMID:27213580

  5. LAD-Ligation: A Murine Model of Myocardial Infarction

    PubMed Central

    Kolk, Mandy V.V.; Meyberg, Danja; Deuse, Tobias; Tang-Quan, Karis R.; Robbins, Robert C.; Reichenspurner, Hermann; Schrepfer, Sonja

    2009-01-01

    Research models of infarction and myocardial ischemia are essential to investigate the acute and chronic pathobiological and pathophysiological processes in myocardial ischemia and to develop and optimize future treatment. Two different methods of creating myocardial ischemia are performed in laboratory rodents. The first method is to create cryo infarction, a fast but inaccurate technique, where a cryo-pen is applied on the surface of the heart (1-3). Using this method the scientist can not guarantee that the cryo-scar leads to ischemia, also a vast myocardial injury is created that shows pathophysiological side effects that are not related to myocardial infarction. The second method is the permanent ligation of the left anterior descending artery (LAD). Here the LAD is ligated with one single stitch, forming an ischemia that can be seen almost immediately. By closing the LAD, no further blood flow is permitted in that area, while the surrounding myocardial tissue is nearly not affected. This surgical procedure imitates the pathobiological and pathophysiological aspects occurring in infarction-related myocardial ischemia. The method introduced in this video demonstrates the surgical procedure of a mouse infarction model by ligating the LAD. This model is convenient for pathobiological and pathophysiological as well as immunobiological studies on cardiac infarction. The shown technique provides high accuracy and correlates well with histological sections. PMID:19829290

  6. A New Murine Model of Endovascular Aortic Aneurysm Repair

    PubMed Central

    Rouer, Martin; Meilhac, Olivier; Delbosc, Sandrine; Louedec, Liliane; Pavon-Djavid, Graciela; Cross, Jane; Legagneux, Josette; Bouilliant-Linet, Maxime; Michel, Jean-Baptiste; Alsac, Jean-Marc

    2013-01-01

    Endovascular aneurysm exclusion is a validated technique to prevent aneurysm rupture. Long-term results highlight technique limitations and new aspects of Abdominal aortic aneurysm (AAA) pathophysiology. There is no abdominal aortic aneurysm endograft exclusion model cheap and reproducible, which would allow deep investigations of AAA before and after treatment. We hereby describe how to induce, and then to exclude with a covered coronary stentgraft an abdominal aortic aneurysm in a rat. The well known elastase induced AAA model was first reported in 19901 in a rat, then described in mice2. Elastin degradation leads to dilation of the aorta with inflammatory infiltration of the abdominal wall and intra luminal thrombus, matching with human AAA. Endovascular exclusion with small covered stentgraft is then performed, excluding any interactions between circulating blood and the aneurysm thrombus. Appropriate exclusion and stentgraft patency is confirmed before euthanasia by an angiography thought the left carotid artery. Partial control of elastase diffusion makes aneurysm shape different for each animal. It is difficult to create an aneurysm, which will allow an appropriate length of aorta below the aneurysm for an easy stentgraft introduction, and with adequate proximal and distal neck to prevent endoleaks. Lots of failure can result to stentgraft introduction which sometimes lead to aorta tear with pain and troubles to stitch it, and endothelial damage with post op aorta thrombosis. Giving aspirin to rats before stentgraft implantation decreases failure rate without major hemorrhage. Clamping time activates neutrophils, endothelium and platelets, and may interfere with biological analysis. PMID:23851958

  7. Ochronosis in a murine model of alkaptonuria is synonymous to that in the human condition

    PubMed Central

    Taylor, A.M.; Preston, A.J.; Paulk, N.K.; Sutherland, H.; Keenan, C.M.; Wilson, P.J.M.; Wlodarski, B.; Grompe, M.; Ranganath, L.R.; Gallagher, J.A.; Jarvis, J.C.

    2012-01-01

    Objective Alkaptonuria (AKU) is a rare genetic disease which results in severe early onset osteoarthropathy. It has recently been shown that the subchondral interface is of key significance in disease pathogenesis. Human surgical tissues are often beyond this initial stage and there is no published murine model of pathogenesis, to study the natural history of the disease. The murine genotype exists but it has been reported not to demonstrate ochronotic osteoarthropathy consistent with the human disease. Recent anecdotal evidence of macroscopic renal ochronosis in a mouse model of tyrosinaemia led us to perform histological analysis of tissues of these mice that are known to be affected in human AKU. Design The homogentisate 1,2-dioxygenase Hgd+/−Fah−/− mouse can model either hereditary tyrosinaemia type I (HT1) or AKU depending on selection conditions. Mice having undergone Hgd reversion were sacrificed at various time points, and their tissues taken for histological analysis. Sections were stained with haematoxylin eosin (H&E) and Schmorl’s reagent. Results Early time point observations at 8 months showed no sign of macroscopic ochronosis of tissues. Macroscopic examination at 13 months revealed ochronosis of the kidneys. Microscopic analysis of the kidneys revealed large pigmented nodules displaying distinct ochre colouration. Close microscopic examination of the distal femur and proximal fibula at the subchondral junctions revealed the presence of numerous pigmented chondrocytes. Conclusions Here we present the first data showing ochronosis of tissues in a murine model of AKU. These preliminary histological observations provide a stimulus for further studies into the natural history of the disease to provide a greater understanding of this class of arthropathy. PMID:22542924

  8. Murine models of acute leukemia: important tools in current pediatric leukemia research.

    PubMed

    Jacoby, Elad; Chien, Christopher D; Fry, Terry J

    2014-01-01

    Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies. PMID:24847444

  9. microRNA-222 modulates liver fibrosis in a murine model of biliary atresia

    SciTech Connect

    Shen, Wen-jun; Dong, Rui; Chen, Gong Zheng, Shan

    2014-03-28

    Highlights: • The RRV infected group showed cholestasis, retardation and extrahepatic biliary atresia. • miR-222 was highly expressed, and PPP2R2A was inhibited in the murine biliary atresia model. • miR-222 profoundly modulated the process of fibrosis in the murine biliary atresia model. • miR-222 might represent a potential target for improving biliary atresia prognosis. - Abstract: microRNA-222 (miR-222) has been shown to initiate the activation of hepatic stellate cells, which plays an important role in the pathogenesis of liver fibrosis. The aim of our study was to evaluate the role of miR-22 in a mouse model of biliary atresia (BA) induced by Rhesus Rotavirus (RRV) infection. New-born Balb/c mice were randomized into control and RRV infected groups. The extrahepatic bile ducts were evaluated. The experimental group was divided into BA group and negative group based on histology. The expression of miR-222, protein phosphatase 2 regulatory subunit B alpha (PPP2R2A), proliferating cell nuclear antigen (PCNA) and phospho-Akt were detected. We found that the experimental group showed signs of cholestasis, retardation and extrahepatic biliary atresia. No abnormalities were found in the control group. In the BA group, miR-222, PCNA and Akt were highly expressed, and PPP2R2A expression was significantly inhibited. Our findings suggest that miR-222 profoundly modulated the process of fibrosis in the murine BA model, which might represent a potential target for improving BA prognosis.

  10. Murine Models of Acute Leukemia: Important Tools in Current Pediatric Leukemia Research

    PubMed Central

    Jacoby, Elad; Chien, Christopher D.; Fry, Terry J.

    2014-01-01

    Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies. PMID:24847444

  11. Multiscale analysis of the murine intestine for modeling human diseases

    PubMed Central

    Lyons, Jesse; Herring, Charles A.; Banerjee, Amrita; Simmons, Alan J.

    2015-01-01

    When functioning properly, the intestine is one of the key interfaces between the human body and its environment. It is responsible for extracting nutrients from our food and excreting our waste products. It provides an environment for a host of healthful microbes and serves as a first defense against pathogenic ones. These processes require tight homeostatic controls, which are provided by the interactions of a complex mix of epithelial, stromal, neural and immune cells, as well as the resident microflora. This homeostasis can be disrupted by invasive microbes, genetic lesions, and carcinogens, resulting in diseases such Clostridium difficile infection, inflammatory bowel disease (IBD) and cancer. Enormous strides have been made in understanding how this important organ functions in health and disease using everything from cell culture systems to animal models to human tissue samples. This has resulted in better therapies for all of these diseases, but there is still significant room for improvement. In the United States alone, 14000 people per year die of C. difficile, up to 1.6 million people suffer from IBD, and more than 50000 people die every year from colon cancer. Because these and other intestinal diseases arise from complex interactions between the different components of the gut ecosystem, we propose that systems approaches that address this complexity in an integrative manner may eventually lead to improved therapeutics that deliver lasting cures. This review will discuss the use of systems biology for studying intestinal diseases in vivo with particular emphasis on mouse models. Additionally, it will focus on established experimental techniques that have been used to drive this systems-level analysis, and emerging techniques that will push this field forward in the future. PMID:26040649

  12. Intranasal curcumin and its evaluation in murine model of asthma.

    PubMed

    Subhashini; Chauhan, Preeti S; Kumari, Sharda; Kumar, Jarajana Pradeep; Chawla, Ruchi; Dash, D; Singh, Mandavi; Singh, Rashmi

    2013-11-01

    Curcumin, a phytochemical present in turmeric, rhizome of Curcuma longa, has been shown to have a wide variety of pharmacological activities including anti-inflammatory, anti-allergic and anti-asthmatic properties. Curcumin is known for its low systemic bioavailability and rapid metabolization through oral route and has limited its applications. Over the recent decades, the interest in intranasal delivery as a non-invasive route for drugs has increased as target tissue for drug delivery since nasal mucosa offers numerous benefits. In this study, we evaluated intranasal curcumin following its absorption through nasal mucosa by a sensitive and validated high-performance liquid chromatography (HPLC) method for the determination of intranasal curcumin in mouse blood plasma and lung tissue. Intranasal curcumin has been detected in plasma after 15 min to 3 h at pharmacological dose (5 mg/kg, i.n.), which has shown anti-asthmatic potential by inhibiting bronchoconstriction and inflammatory cell recruitment to the lungs. At considerably lower doses has proved better than standard drug disodium cromoglycate (DSCG 50 mg/kg, i.p.) by affecting inflammatory cell infiltration and histamine release in mouse model of asthma. HPLC detection revealed that curcumin absorption in lungs has started after 30 min following intranasal administration and retained till 3h then declines. Present investigations suggest that intranasal curcumin (5.0 mg/kg, i.n.) has effectively being absorbed and detected in plasma and lungs both and suppressed airway inflammations at lower doses than the earlier doses used for detection (100-200 mg/kg, i.p.) for pharmacological studies (10-20 mg/kg, i.p.) in mouse model of asthma. Present study may prove the possibility of curcumin as complementary medication in the development of nasal drops to prevent airway inflammations and bronchoconstrictions in asthma without any side effect. PMID:24021755

  13. Persistent Salmonellosis Causes Pancreatitis in a Murine Model of Infection

    PubMed Central

    Hall, Jason C.; Thotakura, Gangadaar; Crawford, Howard C.; van der Velden, Adrianus W. M.

    2014-01-01

    Pancreatitis, a known risk factor for the development of pancreatic ductal adenocarcinoma, is a serious, widespread medical condition usually caused by alcohol abuse or gallstone-mediated ductal obstruction. However, many cases of pancreatitis are of an unknown etiology. Pancreatitis has been linked to bacterial infection, but causality has yet to be established. Here, we found that persistent infection of mice with the bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) was sufficient to induce pancreatitis reminiscent of the human disease. Specifically, we found that pancreatitis induced by persistent S. Typhimurium infection was characterized by a loss of pancreatic acinar cells, acinar-to-ductal metaplasia, fibrosis and accumulation of inflammatory cells, including CD11b+ F4/80+, CD11b+ Ly6Cint Ly6G+ and CD11b+ Ly6Chi Ly6G− cells. Furthermore, we found that S. Typhimurium colonized and persisted in the pancreas, associated with pancreatic acinar cells in vivo, and could invade cultured pancreatic acinar cells in vitro. Thus, persistent infection of mice with S. Typhimurium may serve as a useful model for the study of pancreatitis as it relates to bacterial infection. Increased knowledge of how pathogenic bacteria can cause pancreatitis will provide a more integrated picture of the etiology of the disease and could lead to the development of new therapeutic approaches for treatment and prevention of pancreatitis and pancreatic ductal adenocarcinoma. PMID:24717768

  14. Regional brain metabolism in a murine systemic lupus erythematosus model.

    PubMed

    Vo, An; Volpe, Bruce T; Tang, Chris C; Schiffer, Wynne K; Kowal, Czeslawa; Huerta, Patricio T; Uluğ, Aziz M; Dewey, Stephen L; Eidelberg, David; Diamond, Betty

    2014-08-01

    Systemic lupus erythematosus (SLE) is characterized by multiorgan inflammation, neuropsychiatric disorders (NPSLE), and anti-nuclear antibodies. We previously identified a subset of anti-DNA antibodies (DNRAb) cross-reactive with the N-methyl-D-aspartate receptor, present in 30% to 40% of patients, able to enhance excitatory post-synaptic potentials and trigger neuronal apoptosis. DNRAb+ mice exhibit memory impairment or altered fear response, depending on whether the antibody penetrates the hippocampus or amygdala. Here, we used 18F-fluorodeoxyglucose (FDG) microPET to plot changes in brain metabolism after regional blood-brain barrier (BBB) breach. In DNRAb+ mice, metabolism declined at the site of BBB breach in the first 2 weeks and increased over the next 2 weeks. In contrast, DNRAb- mice exhibited metabolic increases in these regions over the 4 weeks after the insult. Memory impairment was present in DNRAb+ animals with hippocampal BBB breach and altered fear conditioning in DNRAb+ mice with amygdala BBB breach. In DNRAb+ mice, we observed an inverse relationship between neuron number and regional metabolism, while a positive correlation was observed in DNRAb- mice. These findings suggest that local metabolic alterations in this model take place through different mechanisms with distinct time courses, with important implications for the interpretation of imaging data in SLE subjects. PMID:24824914

  15. Thrombospondin-1 in a Murine Model of Colorectal Carcinogenesis

    PubMed Central

    Lopez-Dee, Zenaida P.; Chittur, Sridar V.; Patel, Hiral; Chinikaylo, Aleona; Lippert, Brittany; Patel, Bhumi; Lawler, Jack; Gutierrez, Linda S.

    2015-01-01

    Colorectal Cancer (CRC) is one of the late complications observed in patients suffering from inflammatory bowel diseases (IBD). Carcinogenesis is promoted by persistent chronic inflammation occurring in IBD. Understanding the mechanisms involved is essential in order to ameliorate inflammation and prevent CRC. Thrombospondin 1 (TSP-1) is a multidomain glycoprotein with important roles in angiogenesis. The effects of TSP-1 in colonic tumor formation and growth were analyzed in a model of inflammation-induced carcinogenesis. WT and TSP-1 deficient mice (TSP-1-/-) of the C57BL/6 strain received a single injection of azoxymethane (AOM) and multiple cycles of dextran sodium sulfate (DSS) to induce chronic inflammation-related cancers. Proliferation and angiogenesis were histologically analyzed in tumors. The intestinal transcriptome was also analyzed using a gene microarray approach. When the area containing tumors was compared with the entire colonic area of each mouse, the tumor burden was decreased in AOM/DSS-treated TSP-1-/- versus wild type (WT) mice. However, these lesions displayed more angiogenesis and proliferation rates when compared with the WT tumors. AOM-DSS treatment of TSP-1-/- mice resulted in significant deregulation of genes involved in transcription, canonical Wnt signaling, transport, defense response, regulation of epithelial cell proliferation and metabolism. Microarray analyses of these tumors showed down-regulation of 18 microRNAs in TSP-1-/- tumors. These results contribute new insights on the controversial role of TSP-1 in cancer and offer a better understanding of the genetics and pathogenesis of CRC. PMID:26461935

  16. Murine mentors: transgenic and knockout models of surgical disease.

    PubMed Central

    Arbeit, J M; Hirose, R

    1999-01-01

    OBJECTIVE: Transgenic and knockout technologies have emerged from the "molecular biology revolution" as unprecedented techniques for manipulating gene function in intact mice. The goals of this review are to outline the techniques of creating transgenic and knockout mice, and to demonstrate their use in elucidation of the molecular mechanisms underlying common surgical diseases. SUMMARY BACKGROUND DATA: Gain of gene function is created by transgenic technology, whereas gene function is ablated using gene knockouts. Each technique has distinctive applications and drawbacks. A unique feature of genetically manipulated mice is that combinatorial genetic experiments can be executed that precisely define the functional contribution of a gene to disease progression. Transgenic and knockout mouse models of wound healing, cardiovascular disease, transplant immunology, gut motility and inflammatory bowel disease, and oncology are beginning to illuminate the precise molecular regulation of these diseases. Transgenic technology has also been extended to larger mammals such as pigs, with the goal of using genetic manipulation of the xenogenic immune response to increase the availability of transplant organs. Continual refinements in gene manipulation technology in mice offer the opportunity to turn genes on or off at precise time intervals and in particular tissues, according to the needs of the investigator. Ultimately, investigation of disease development and progression in genetically manipulated mammals may delineate new molecular targets for drug discovery and provide novel platforms for drug efficacy screens. CONCLUSIONS: Emulation of human disease and therapy using genetically manipulated mammals fulfills a promise of molecular medicine: fusion of molecular biochemistry with "classical" biology and physiology. Surgeons have unique skills spanning both worlds that can facilitate their success in this expanding arena. PMID:9923797

  17. Cardiac Conduction System Anomalies and Sudden Cardiac Death: Insights from Murine Models

    PubMed Central

    Aránega, Amelia; De La Rosa, Angel J.; Franco, Diego

    2012-01-01

    The cardiac conduction system (CCS) is composed of a group of myocardial tissues that control and coordinate the heart. Alterations in the CCS – especially in the His–Purkinje system, have been identified as a major cause of lethal arrhythmias. Unstable arrhythmias secondary to channelopathies significantly increase the risk of sudden cardiac death (SCD). SCD is a major contributor to mortality in industrialized countries, and most cases of SCD in the young are related to inherited ion channel diseases. In this paper, we review a series of studies with murine transgenic models that revealed that some arrhythmias are associated with the CCS and may lead to SCD PMID:22783196

  18. Protective Role of Lung Surfactant Protein D in a Murine Model of Invasive Pulmonary Aspergillosis

    PubMed Central

    Madan, Taruna; Kishore, Uday; Singh, Mamta; Strong, Peter; Hussain, Ejaj M.; Reid, Kenneth B. M.; Sarma, P. Usha

    2001-01-01

    The protective effects of intranasal administration of amphotericin B (AmB), human SP-A, SP-D and a 60-kDa fragment of SP-D (rSP-D) were examined in a murine model of invasive pulmonary aspergillosis (IPA). The untreated group of IPA mice showed no survival at 7 days postinfection. Treatment with AmB, SP-D, and rSP-D increased the survival rate to 80, 60, and 80%, respectively, suggesting that SP-D (and rSP-D) can protect immunosuppressed mice from an otherwise fatal challenge with Aspergillus fumigatus conidia. PMID:11254642

  19. Fluorescence and reflectance spectral imaging system for a murine mammary window chamber model

    PubMed Central

    Leung, Hui Min; Gmitro, Arthur F.

    2015-01-01

    A spectral imaging system was developed to study the development of breast cancer xenografts in a murine mammary window chamber model. The instrument is configured to work with either a laser to excite fluorescence or a broadband light source for diffuse reflectance imaging. Two applications were demonstrated. First, spectral imaging of fluorescence signals was demonstrated with a GFP-breast cancer tumor and fluorescein injection. Second, based on the principles of broadband reflectance spectroscopy, the instrument was used to monitor dynamic changes of tissue absorbance to yield tissue oxygenation maps at different time points during tumor progression. PMID:26309753

  20. Retinal Ultrastructure of Murine Models of Dry Age-related Macular Degeneration (AMD)

    PubMed Central

    Ramkumar, Hema L.; Zhang, Jun; Chan, Chi-Chao

    2010-01-01

    Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. The pathology of dry AMD consists of degeneration of photoreceptors and the RPE, lipofuscin (A2E) accumulation, and drusen formation. Mice have been widely used for generating models that simulate human AMD features for investigating the pathogenesis, treatment and prevention of the disease. Although the mouse has no macula, focal atrophy of photorecptors and RPE, lipofuscin accumulation, and increased A2E can develop in aged mouse eyes. However, drusen are rarely seen in mice because of their simpler Bruch’s membrane and different process of lipofuscin extrusion compared with humans. Thus, analyzing basal deposits at the ultrastructural level and understanding the ultrastructural pathologic differences between various mouse AMD models are critical to comprehending the significance of research findings and response to possible therapeutic options for dry AMD. Based on the multifactorial pathogenesis of AMD, murine dry AMD models can be classified into three groups. First, genetically engineered mice that target genes related to juvenile macular dystrophies are the most common models, and they include abcr−/− (Stargardt disease), transgenic ELOVL4 (Stargardt-3 dominant inheritary disease), Efemp1R345W/R345W (Doyne honeycomb retinal dystrophy), and Timp3S156C/S156C (Sorsby fundus dystrophy) mice. Other murine models target genes relevant to AMD, including inflammatory genes such as Cfh−/−, Ccl2−/−, Ccr2−/−, Cx3cr1−/−, and Ccl2−/−/cx3cr1−/−, oxidative stress associated genes such as Sod1−/− and Sod2 knockdown, metabolic pathway genes such as neprilysin −/− (amyloid β), transgenic mcd/mcd (cathepsin D), Cp−/−/Heph−/Y (ferroxidase ceruloplasmin/hepaestin, iron metabolism), and transgenic ApoE4 on high fat and high cholesterol diet (lipid metabolism). Second, mice have also been immunologically

  1. Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: Role of cytochrome P450.

    PubMed

    Zong, Cai; Garner, C Edwin; Huang, Chinyen; Zhang, Xiao; Zhang, Lingyi; Chang, Jie; Toyokuni, Shinya; Ito, Hidenori; Kato, Masashi; Sakurai, Toshihiro; Ichihara, Sahoko; Ichihara, Gaku

    2016-09-01

    Neurotoxicity of 1-bromopropane (1-BP) has been reported in both human cases and animal studies. To date, neurotoxicity of 1-BP has been induced in rats but not in mice due to the lethal hepatotoxicity of 1-BP. Oxidization by cytochromes P450 and conjugation with glutathione (GSH) are two critical metabolism pathways of 1-BP and play important roles in toxicity of 1-BP. The aim of the present study was to establish a murine model of 1-BP neurotoxicity, by reducing the hepatotoxicity of 1-BP with 1-aminobenzotriazole (1-ABT); a commonly used nonspecific P450s inhibitor. The results showed that subcutaneous or intraperitoneal injection of 1-ABT at 50mg/kg body weight BID (100mg/kg BW/day) for 3days, inhibited about 92-96% of hepatic microsomal CYP2E1 activity, but only inhibited about 62-64% of CYP2E1 activity in brain microsomes. Mice treated with 1-ABT survived even after exposure to 1200ppm 1-BP for 4 weeks and histopathological studies showed that treatment with 1-ABT protected mice from 1-BP-induced hepatic necrosis, hepatocyte degeneration, and hemorrhage. After 4-week exposure to 1-BP, the brain weight of 1-ABT(+)/1200ppm 1-BP group was decreased significantly. In 1-ABT-treated groups, expression of hippocampal Ran protein and cerebral cortical GRP78 was dose-dependently increased by exposure to 1-BP. We conclude that the control of hepatic P450 activity allows the observation of effects of 1-BP on the murine brain at a higher concentration by reduction of hepatotoxicity. The study suggests that further experiments with liver-specific control of P450 activity using gene technology might provide better murine models for 1-bromopropane-induced neurotoxicity. PMID:27421776

  2. Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies.

    PubMed

    Sanmamed, M F; Chester, C; Melero, I; Kohrt, H

    2016-07-01

    The recent success of checkpoint blockers to treat cancer has demonstrated that the immune system is a critical player in the war against cancer. Historically, anticancer therapeutics have been tested in syngeneic mouse models (with a fully murine immune system) or in immunodeficient mice that allow the engraftment of human xenografts. Animal models with functioning human immune systems are critically needed to more accurately recapitulate the complexity of the human tumor microenvironment. Such models are integral to better predict tumor responses to both immunomodulatory agents and directly antineoplastic therapies. In this regard, the development of humanized models is a promising, novel strategy that offers the possibility of testing checkpoint blockers' capacity and their combination with other antitumor drugs. In this review, we discuss the strengths and weaknesses of the available animal models regarding their capacity to evaluate checkpoint blockers and checkpoint blocker-based combination immunotherapy. PMID:26912558

  3. Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV.

    PubMed

    Venugopal, Bhuvarahamurthy; Browning, Marsha F; Curcio-Morelli, Cyntia; Varro, Andrea; Michaud, Norman; Nanthakumar, Nanda; Walkley, Steven U; Pickel, James; Slaugenhaupt, Susan A

    2007-11-01

    Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder caused by mutations in the MCOLN1 gene, which encodes the 65-kDa protein mucolipin-1. The most common clinical features of patients with MLIV include severe mental retardation, delayed motor milestones, ophthalmologic abnormalities, constitutive achlorhydria, and elevated plasma gastrin levels. Here, we describe the first murine model for MLIV, which accurately replicates the phenotype of patients with MLIV. The Mcoln1(-/-) mice present with numerous dense inclusion bodies in all cell types in brain and particularly in neurons, elevated plasma gastrin, vacuolization in parietal cells, and retinal degeneration. Neurobehavioral assessments, including analysis of gait and clasping, confirm the presence of a neurological defect. Gait deficits progress to complete hind-limb paralysis and death at age ~8 mo. The Mcoln1(-/-) mice are born in Mendelian ratios, and both male and female Mcoln1(-/-) mice are fertile and can breed to produce progeny. The creation of the first murine model for human MLIV provides an excellent system for elucidating disease pathogenesis. In addition, this model provides an invaluable resource for testing treatment strategies and potential therapies aimed at preventing or ameliorating the abnormal lysosomal storage in this devastating neurological disorder. PMID:17924347

  4. Safety and antidiarrheal activity of Priva adhaerens aqueous leaf extract in a murine model

    PubMed Central

    Nansunga, Miriam; Barasa, Ambrose; Abimana, Justus; Alele, Paul E.; Kasolo, Josephine

    2014-01-01

    Ethnopharmacological relevance Priva adhaerens (Forssk.) Chiov., a wildly growing plant, is reported in central Uganda to be an effective traditional remedy for diarrhea. The objective of this study was to provide a scientific basis for the ethnopharmacological utility of this plant whose aqueous leaf and shoot extract was evaluated for acute toxicity and antidiarrheal activity using a murine model. Materials and methods Acute toxicity of the aqueous leaf and shoot extract was assessed after determining the major phytochemicals present in the extract. The aqueous leaf and shoot extract was assayed against castor oil-induced diarrhea, transit time, and enteropooling, in comparison to loperamide, a standard drug. Results The oral LD50 value obtained for Priva adhaerens aqueous extract was greater than 5000 mg/kg in rats; the aqueous leaf and shoot extract possessed several important phytochemicals. Furthermore, the aqueous extract significantly, and dose-dependently, reduced frequency of stooling in castor oil-induced diarrhea, intestinal motility, and castor oil-induced enteropooling in rats. Conclusion This murine model shows that it is relatively safe to orally use the aqueous leaf and shoot extract of Priva adhaerens . The aqueous extract contains phytochemicals that are active for the treatment of diarrhea in a rat model. PMID:25304198

  5. A Simplified Murine Intimal Hyperplasia Model Founded on a Focal Carotid Stenosis

    PubMed Central

    Tao, Ming; Mauro, Christine R.; Yu, Peng; Favreau, John T.; Nguyen, Binh; Gaudette, Glenn R.; Ozaki, C. Keith

    2014-01-01

    Murine models offer a powerful tool for unraveling the mechanisms of intimal hyperplasia and vascular remodeling, although their technical complexity increases experimental variability and limits widespread application. We describe a simple and clinically relevant mouse model of arterial intimal hyperplasia and remodeling. Focal left carotid artery (LCA) stenosis was created by placing 9-0 nylon suture around the artery using an external 35-gauge mandrel needle (middle or distal location), which was then removed. The effect of adjunctive diet-induced obesity was defined. Flowmetry, wall strain analyses, biomicroscopy, and histology were completed. LCA blood flow sharply decreased by ∼85%, followed by a responsive right carotid artery increase of ∼71%. Circumferential strain decreased by ∼2.1% proximal to the stenosis in both dietary groups. At 28 days, morphologic adaptations included proximal LCA intimal hyperplasia, which was exacerbated by diet-induced obesity. The proximal and distal LCA underwent outward and negative inward remodeling, respectively, in the mid-focal stenosis (remodeling indexes, 1.10 and 0.53). A simple, defined common carotid focal stenosis yields reproducible murine intimal hyperplasia and substantial differentials in arterial wall adaptations. This model offers a tool for investigating mechanisms of hemodynamically driven intimal hyperplasia and arterial wall remodeling. PMID:23159527

  6. Rotavirus Infection of Human Cholangiocytes Parallels the Murine Model of Biliary Atresia

    PubMed Central

    Coots, Abigail; Donnelly, Bryan; Mohanty, Sujit K; McNeal, Monica; Sestak, Karol; Tiao, Greg

    2012-01-01

    Introduction Biliary atresia (BA) is the leading indication for liver transplantation in the pediatric population. The murine model of BA supports a viral etiology as infection of neonatal mice with rhesus rotavirus (RRV) results in biliary obstruction. Viral infection targets the biliary epithelium and development of the model is viral strain dependent. No study has yet determined if human cholangiocytes are also susceptible to rotaviral infection. We established an in vitro human model utilizing an immortalized human cholangiocyte cell line and primary human cholangiocytes obtained from explanted livers to determine human cholangiocyte susceptibility to rotavirus infection. Methods Replication and binding assays were performed on immortalized mouse (mCL) and human (H69) cells using six different strains of rotavirus. Primary human cholangiocytes were isolated from cadaveric livers, characterized in culture, and infected with RRV which causes BA in mice and another simian strain, TUCH which does not cause BA in mice. Results Immortalized mouse and human cholangiocytes demonstrated similar patterns of infectivity and binding with different strains of rotavirus. Both cell lines produced a significantly higher viral yield with RRV infection than with the other strains tested. In primary human cholangiocytes, which maintained their epithelial characteristics as demonstrated by cytokeratin staining, RRV replicated to a yield 1000 fold higher than TUCH. Conclusions Both immortalized and primary human cholangiocytes are susceptible to RRV infection in a fashion similar to murine cholangiocytes. These novel findings suggest rotavirus infection could have a potential role in the pathogenesis of human BA. PMID:22785360

  7. Dendritic Cell-Based Vaccination in Cancer: Therapeutic Implications Emerging from Murine Models

    PubMed Central

    Mac Keon, Soledad; Ruiz, María Sol; Gazzaniga, Silvina; Wainstok, Rosa

    2015-01-01

    Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment. PMID:26042126

  8. Membrane configuration optimization for a murine in vitro blood-brain barrier model.

    PubMed

    Wuest, Diane M; Wing, Allison M; Lee, Kelvin H

    2013-01-30

    A powerful experimental tool used to study the dynamic functions of the blood-brain barrier (BBB) is an in vitro cellular based system utilizing cell culture inserts in multi-well plates. Currently, usage of divergent model configurations without explanation of selected variable set points renders data comparisons difficult and limits widespread understanding. This work presents for the first time in literature a comprehensive screening study to optimize membrane configuration, with aims to unveil influential membrane effects on the ability of cerebral endothelial cells to form a tight monolayer. First, primary murine brain endothelial cells and astrocytes were co-cultured in contact and non-contact orientations on membranes of pore diameter sizes ranging from 0.4 μm to 8.0 μm, and the non-contact orientation and smallest pore diameter size were shown to support a significantly tighter monolayer formation. Then, membranes made from polyethylene terephthalate (PET) and polycarbonate (PC) purchased from three different commercial sources were compared, and PET membranes purchased from two manufacturers facilitated a significantly tighter monolayer formation. Models were characterized by transendothelial electrical resistance (TEER), sodium fluorescein permeability, and immunocytochemical labeling of tight junction proteins. Finally, a murine brain endothelial cell line, bEnd.3, was grown on the different membranes, and similar results were obtained with respect to optimal membrane configuration selection. The results and methodology presented here on high throughput 24-well plate inserts can be translated to other BBB systems to advance model understanding. PMID:23131353

  9. Murine Model Imitating Chronic Wound Infections for Evaluation of Antimicrobial Photodynamic Therapy Efficacy.

    PubMed

    Fila, Grzegorz; Kasimova, Kamola; Arenas, Yaxal; Nakonieczna, Joanna; Grinholc, Mariusz; Bielawski, Krzysztof P; Lilge, Lothar

    2016-01-01

    It is generally acknowledged that the age of antibiotics could come to an end, due to their widespread, and inappropriate use. Particularly for chronic wounds alternatives are being thought. Antimicrobial Photodynamic Therapy (APDT) is a potential candidate, and while approved for some indications, such as periodontitis, chronic sinusitis and other niche indications, its use in chronic wounds is not established. To further facilitate the development of APDT in chronic wounds we present an easy to use animal model exhibiting the key hallmarks of chronic wounds, based on full-thickness skin wounds paired with an optically transparent cover. The moisture-retaining wound exhibited rapid expansion of pathogen colonies up to 8 days while not jeopardizing the host survival. Use of two bioluminescent pathogens; methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa permits real time monitoring of the pathogens. The murine model was employed to evaluate the performance of four different photosensitizers as mediators in Photodynamic Therapy. While all four photosensitizers, Rose Bengal, porphyrin TMPyP, New Methylene Blue, and TLD1411 demonstrated good to excellent antimicrobial efficacy in planktonic solutions at 1 to 50 μM concentrations, whereas in in vivo the growth delay was limited with 24-48 h delay in pathogen expansion for MRSA, and we noticed longer growth suppression of P. aeruginosa with TLD1411 mediated Photodynamic Therapy. The murine model will enable developing new strategies for enhancement of APDT for chronic wound infections. PMID:27555843

  10. Murine Model Imitating Chronic Wound Infections for Evaluation of Antimicrobial Photodynamic Therapy Efficacy

    PubMed Central

    Fila, Grzegorz; Kasimova, Kamola; Arenas, Yaxal; Nakonieczna, Joanna; Grinholc, Mariusz; Bielawski, Krzysztof P.; Lilge, Lothar

    2016-01-01

    It is generally acknowledged that the age of antibiotics could come to an end, due to their widespread, and inappropriate use. Particularly for chronic wounds alternatives are being thought. Antimicrobial Photodynamic Therapy (APDT) is a potential candidate, and while approved for some indications, such as periodontitis, chronic sinusitis and other niche indications, its use in chronic wounds is not established. To further facilitate the development of APDT in chronic wounds we present an easy to use animal model exhibiting the key hallmarks of chronic wounds, based on full-thickness skin wounds paired with an optically transparent cover. The moisture-retaining wound exhibited rapid expansion of pathogen colonies up to 8 days while not jeopardizing the host survival. Use of two bioluminescent pathogens; methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa permits real time monitoring of the pathogens. The murine model was employed to evaluate the performance of four different photosensitizers as mediators in Photodynamic Therapy. While all four photosensitizers, Rose Bengal, porphyrin TMPyP, New Methylene Blue, and TLD1411 demonstrated good to excellent antimicrobial efficacy in planktonic solutions at 1 to 50 μM concentrations, whereas in in vivo the growth delay was limited with 24–48 h delay in pathogen expansion for MRSA, and we noticed longer growth suppression of P. aeruginosa with TLD1411 mediated Photodynamic Therapy. The murine model will enable developing new strategies for enhancement of APDT for chronic wound infections. PMID:27555843

  11. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model

    PubMed Central

    Silva-Santos, Sara; van Woerden, Geeske M.; Bruinsma, Caroline F.; Mientjes, Edwin; Jolfaei, Mehrnoush Aghadavoud; Distel, Ben; Kushner, Steven A.; Elgersma, Ype

    2015-01-01

    Angelman syndrome (AS) is a severe neurodevelopmental disorder that results from loss of function of the maternal ubiquitin protein ligase E3A (UBE3A) allele. Due to neuron-specific imprinting, the paternal UBE3A copy is silenced. Previous studies in murine models have demonstrated that strategies to activate the paternal Ube3a allele are feasible; however, a recent study showed that pharmacological Ube3a gene reactivation in adulthood failed to rescue the majority of neurocognitive phenotypes in a murine AS model. Here, we performed a systematic study to investigate the possibility that neurocognitive rescue can be achieved by reinstating Ube3a during earlier neurodevelopmental windows. We developed an AS model that allows for temporally controlled Cre-dependent induction of the maternal Ube3a allele and determined that there are distinct neurodevelopmental windows during which Ube3a restoration can rescue AS-relevant phenotypes. Motor deficits were rescued by Ube3a reinstatement in adolescent mice, whereas anxiety, repetitive behavior, and epilepsy were only rescued when Ube3a was reinstated during early development. In contrast, hippocampal synaptic plasticity could be restored at any age. Together, these findings suggest that Ube3a reinstatement early in development may be necessary to prevent or rescue most AS-associated phenotypes and should be considered in future clinical trial design. PMID:25866966

  12. Immunotoxicity and allergic potential induced by topical application of dimethyl carbonate (DMC) in a murine model.

    PubMed

    Anderson, Stacey E; Franko, Jennifer; Anderson, Katie L; Munson, Albert E; Lukomska, Ewa; Meade, B Jean

    2013-01-01

    Dimethyl carbonate (DMC) is an industrial chemical, used as a paint and adhesive solvent, with the potential for significant increases in production. Using select immune function assays, the purpose of these studies was to evaluate the immunotoxicity of DMC following dermal exposure using a murine model. Following a 28-day exposure, DMC produced a significant decrease in thymus weight at concentrations of 75% and greater. No effects on body weight, hematological parameters (erythrocytes, leukocytes, and their differentials), or immune cell phenotyping (B-cells, T-cells, and T-cell sub-sets) were identified. The IgM antibody response to sheep red blood cell (SRBC) was significantly reduced in the spleen but not the serum. DMC was not identified to be an irritant and evaluation of the sensitization potential, conducted using the local lymph node assay (LLNA) at concentrations ranging from 50-100%, did not identify increases in lymphocyte proliferation. These results demonstrate that dermal exposure to DMC induces immune suppression in a murine model and raise concern about potential human exposure and the need for occupational exposure regulations. PMID:22953780

  13. Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast

    NASA Astrophysics Data System (ADS)

    Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.

    2014-11-01

    Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.

  14. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    SciTech Connect

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  15. A Novel Murine Model for Localized Radiation Necrosis and its Characterization Using Advanced Magnetic Resonance Imaging

    SciTech Connect

    Jost, Sarah C.; Hope, Andrew; Kiehl, Erich; Perry, Arie; Travers, Sarah; Garbow, Joel R.

    2009-10-01

    Purpose: To develop a murine model of radiation necrosis using fractionated, subtotal cranial irradiation; and to investigate the imaging signature of radiation-induced tissue damage using advanced magnetic resonance imaging techniques. Methods and Materials: Twenty-four mice each received 60 Gy of hemispheric (left) irradiation in 10 equal fractions. Magnetic resonance images at 4.7 T were subsequently collected using T1-, T2-, and diffusion sequences at selected time points after irradiation. After imaging, animals were killed and their brains fixed for correlative histologic analysis. Results: Contrast-enhanced T1- and T2-weighted magnetic resonance images at months 2, 3, and 4 showed changes consistent with progressive radiation necrosis. Quantitatively, mean diffusivity was significantly higher (mean = 0.86, 1.13, and 1.24 {mu}m{sup 2}/ms at 2, 3, and 4 months, respectively) in radiated brain, compared with contralateral untreated brain tissue (mean = 0.78, 0.82, and 0.83 {mu}m{sup 2}/ms) (p < 0.0001). Histology reflected changes typically seen in radiation necrosis. Conclusions: This murine model of radiation necrosis will facilitate investigation of imaging biomarkers that distinguish between radiation necrosis and tumor recurrence. In addition, this preclinical study supports clinical data suggesting that diffusion-weighted imaging may be helpful in answering this diagnostic question in clinical settings.

  16. Immunomodulatory Effects of Deokgu Thermomineral Water Balneotherapy on Oxazolone-Induced Atopic Dermatitis Murine Model

    PubMed Central

    Lee, Young Bok; Kim, Su Jin; Park, Sae Mi; Lee, Kyung Ho; Han, Hyung Jin; Yu, Dong Soo; Woo, So Youn; Yun, Seong Taek; Hamm, Se-Yeong; Kim, Hong Jig

    2016-01-01

    Background Although the therapeutic mechanism of balneotherapy for atopic dermatitis has not been clarified, many atopic patients who visit thermomineral springs have shown clinical improvements. Objective This study was aimed to evaluate the immunomodulatory effect of thermomineral water balneotherapy on the atopic dermatitis murine model. Methods The oxazolone-induced atopic dermatitis murine model was used to evaluate the therapeutic effect of balneotherapy with Deokgu thermomineral water compared with distilled water. Histologic evaluation and confocal microscopic imaging were performed to analyze the lesional expression of cluster-of-differentiation (CD)4 and forkhead box p3 (Foxp3). Lesional mRNA expression of interleukin (IL) 33, thymic stromal lymphopoietin (TSLP), and Foxp3 was evaluated by real-time reverse transcription polymerase chain reaction. Results Compared with the distilled water bath group, confocal microscopic evaluation of CD4 and Foxp3 merged images showed increased expression of regulatory T cells in the thermomineral balneotherapy group. The lesional mRNA level of IL-33 showed a reduced trend in the thermomineral balneotherapy group, whereas the level of mRNA of Foxp3 was increased. TSLP showed a decreased trend in both distilled water and thermomineral water bath groups. There was a trend of reduced expression in lesional IL-33 mRNA but increased cell count of CD4+ Foxp3+ regulatory T cells in thermomineral balneotherapy compared with distilled water bath. Conclusion Therefore, thermomineral balneotherapy can be an effective and safe adjuvant therapeutic option for atopic dermatitis. PMID:27081266

  17. Tumor control by human cytomegalovirus in a murine model of hepatocellular carcinoma

    PubMed Central

    Kumar, Amit; Coquard, Laurie; Pasquereau, Sébastien; Russo, Laetitia; Valmary-Degano, Séverine; Borg, Christophe; Pothier, Pierre; Herbein, Georges

    2016-01-01

    Although viruses can cause cancer, other studies reported the regression of human tumors upon viral infections. We investigated the cytoreductive potential of human cytomegalovirus (HCMV) in a murine model of human hepatocellular carcinoma (HCC) in severe-immunodeficient mice. Infection of HepG2 cells with HCMV resulted in the absence of tumor or in a limited tumor growth following injection of cells subcutaneously. By contrast all mice injected with uninfected HepG2 cells and with HepG2 cells infected with UV-treated HCMV did develop tumors without any significant restriction. Analysis of tumors indicated that in mice injected with HCMV-infected-HepG2 cells, but not in controls, a restricted cellular proliferation was observed parallel to a limited activation of the STAT3-cyclin D1 axis, decreased formation of colonies in soft agar, and activation of the intrinsic apoptotic pathway. We conclude that HCMV can provide antitumoral effects in a murine model of HCC which requires replicative virus at some stages that results in limitation of tumor cell proliferation and enhanced apoptosis mediated through the intrinsic caspase pathway. PMID:27626063

  18. Oral administration of IL-12 suppresses anaphylactic reactions in a murine model of peanut hypersensitivity.

    PubMed

    Lee, S Y; Huang, C K; Zhang, T F; Schofield, B H; Burks, A W; Bannon, G A; Sampson, H A; Li, X M

    2001-11-01

    There is no satisfactory therapeutic intervention for peanut allergy, which accounts for most life-threatening food allergic reactions. Since IL-12 has been found to inhibit allergic airway responses in a mouse model of asthma and to cure Th2 cytokine-mediated murine schistosomiasis, we hypothesized that IL-12 treatment might also inhibit peanut allergic reactions. Consequently, we investigated the effects of oral IL-12 treatment in a murine model of peanut allergy and found that oral administration of liposome encapsulated rIL-12 could both prevent and reverse peanut hypersensitivity and could reduce histamine release, peanut-specific serum IgE and IgG1, and fecal IgA levels. Oral IL-12 treatment also increased IFN-gamma but did not decrease IL-4 or IL-5 levels. We conclude that oral rIL-12 treatment has therapeutic as well as preventive effects on peanut allergy, which are associated with increased IFN-gamma production. PMID:11683581

  19. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma.

    PubMed

    Firinci, Fatih; Karaman, Meral; Baran, Yusuf; Bagriyanik, Alper; Ayyildiz, Zeynep Arikan; Kiray, Muge; Kozanoglu, Ilknur; Yilmaz, Osman; Uzuner, Nevin; Karaman, Ozkan

    2011-08-01

    Asthma therapies are effective in reducing inflammation but airway remodeling is poorly responsive to these agents. New therapeutic options that have fewer side effects and reverse chronic changes in the lungs are essential. Mesenchymal stem cells (MSCs) are promising for the development of novel therapies in regenerative medicine. This study aimed to examine the efficacy of MSCs on lung histopathology in a murine model of chronic asthma. BALB/c mice were divided into four groups: Group 1 (control group, n=6), Group 2 (ovalbumin induced asthma only, n=10), Group 3 (ovalbumin induced asthma + MSCs, n=10), and Group 4 (MSCs only, n=10). Histological findings (basement membrane, epithelium, subepithelial smooth muscle thickness, numbers of goblet and mast cells) of the airways and MSC migration were evaluated by light, electron, and confocal microscopes. In Group 3, all early histopathological changes except epithelial thickness and all of the chronic changes were significantly ameliorated when compared with Group 2. Evaluation with confocal microscopy showed that no noteworthy amount of MSCs were present in the lung tissues of Group 4 while significant amount of MSCs was detected in Group 3. Serum NO levels in Group 3, were significantly lower than Group 2. The results of this study revealed that MSCs migrated to lung tissue and ameliorated bronchial asthma in murine model. Further studies are needed to evaluate the efficacy of MSCs for the treatment of asthma. PMID:21439399

  20. In vivo measurement of epidermal thickness changes associated with tumor promotion in murine models

    PubMed Central

    Phillips, Kevin G.; Samatham, Ravikant; Choudhury, Niloy; Gladish, James C.; Thuillier, Philippe; Jacques, Steven L.

    2010-01-01

    The characterization of tissue morphology in murine models of pathogenesis has traditionally been carried out by excision of affected tissues with subsequent immunohistological examination. Excision-based histology provides a limited two-dimensional presentation of tissue morphology at the cost of halting disease progression at a single time point and sacrifice of the animal. We investigate the use of noninvasive reflectance mode confocal scanning laser microscopy (rCSLM) as an alternative tool to biopsy in documenting epidermal hyperplasia in murine models exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). An automated technique utilizing average axial rCSLM reflectance profiles is used to extract epidermal thickness values from rCSLM data cubes. In comparisons to epidermal thicknesses determined from hematoxylin and eosin (H&E) stained tissue sections, we find no significant correlation to rCSLM-derived thickness values. This results from method-specific artifacts: physical alterations of tissue during H&E preparation in standard histology and specimen-induced abberations in rCSLM imaging. Despite their disagreement, both histology and rCSLM methods reliably measure statistically significant thickness changes in response to TPA exposure. Our results demonstrate that in vivo rCSLM imaging provides epithelial biologists an accurate noninvasive means to monitor cutaneous pathogenesis. PMID:20799792

  1. Tumor control by human cytomegalovirus in a murine model of hepatocellular carcinoma.

    PubMed

    Kumar, Amit; Coquard, Laurie; Pasquereau, Sébastien; Russo, Laetitia; Valmary-Degano, Séverine; Borg, Christophe; Pothier, Pierre; Herbein, Georges

    2016-01-01

    Although viruses can cause cancer, other studies reported the regression of human tumors upon viral infections. We investigated the cytoreductive potential of human cytomegalovirus (HCMV) in a murine model of human hepatocellular carcinoma (HCC) in severe-immunodeficient mice. Infection of HepG2 cells with HCMV resulted in the absence of tumor or in a limited tumor growth following injection of cells subcutaneously. By contrast all mice injected with uninfected HepG2 cells and with HepG2 cells infected with UV-treated HCMV did develop tumors without any significant restriction. Analysis of tumors indicated that in mice injected with HCMV-infected-HepG2 cells, but not in controls, a restricted cellular proliferation was observed parallel to a limited activation of the STAT3-cyclin D1 axis, decreased formation of colonies in soft agar, and activation of the intrinsic apoptotic pathway. We conclude that HCMV can provide antitumoral effects in a murine model of HCC which requires replicative virus at some stages that results in limitation of tumor cell proliferation and enhanced apoptosis mediated through the intrinsic caspase pathway. PMID:27626063

  2. The Effects of Simulated Weightlessness on Susceptibility to Viral and Bacterial Infections Using a Murine Model

    NASA Technical Reports Server (NTRS)

    Gould, C. L.

    1985-01-01

    Certain immunological responses may be compromised as a result of changes in environmental conditions, such as the physiological adaptation to and from the weightlessness which occurs during space flight and recovery. A murine antiorthostatic model was developed to simulate weightlessness. Using this model, the proposed study will determine if differences in susceptibility to viral and bacterial infections exist among mice suspended in an antiorthostatic orientation to simulate weightlessness, mice suspended in an orthostatic orientation to provide a stressful situation without the condition of weightlessness simulation, and non-suspended control mice. Inbred mouse strains which are resistant to the diabetogenic effects of the D variant of encephalomyocarditis virus (EMC-D) and the lethal effects of Salmonella typhimurium will be evaluated. Glucose tolerance tests will be performed on all EMC-D-infected and non-infected control groups. The incidence of EMC-D-induced diabetes and the percentage survival of S. typhimurium-infected animals will be determined in each group. An additional study will determine the effects of simulated weightlessness on murine responses to exogenous interferon.

  3. Peptidylarginine Deiminase Inhibition Reduces Vascular Damage and Modulates Innate Immune Responses in Murine Models of Atherosclerosis

    PubMed Central

    Knight, Jason S.; Luo, Wei; O’Dell, Alexander A.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C.; Thompson, Paul R.; Eitzman, Daniel T.; Kaplan, Mariana J.

    2014-01-01

    Rationale Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. Objective To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Methods and Results Apolipoprotein-E (Apoe)−/− mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe−/− mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Conclusions Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses. PMID:24425713

  4. Development of a non-invasive murine infection model for acute otitis media.

    PubMed

    Stol, K; van Selm, S; van den Berg, S; Bootsma, H J; Blokx, W A M; Graamans, K; Tonnaer, E L G M; Hermans, P W M

    2009-12-01

    Otitis media (OM) is one of the most frequent diseases in childhood, and Streptococcus pneumoniae is among the main causative bacterial agents. Since current experimental models used to study the bacterial pathogenesis of OM have several limitations, such as the invasiveness of the experimental procedures, we developed a non-invasive murine OM model. In our model, adapted from a previously developed rat OM model, a pressure cabin is used in which a 40 kPa pressure increase is applied to translocate pneumococci from the nasopharyngeal cavity into both mouse middle ears. Wild-type pneumococci were found to persist in the middle ear cavity for 144 h after infection, with a maximum bacterial load at 96 h. Inflammation was confirmed at 96 and 144 h post-infection by IL-1beta and TNF-alpha cytokine analysis and histopathology. Subsequently, we investigated the contribution of two surface-associated pneumococcal proteins, the streptococcal lipoprotein rotamase A (SlrA) and the putative proteinase maturation protein A (PpmA), to experimental OM in our model. Pneumococci lacking the slrA gene, but not those lacking the ppmA gene, were significantly reduced in virulence in the OM model. Importantly, pneumococci lacking both genes were significantly more attenuated than the DeltaslrA single mutant. This additive effect suggests that SlrA and PpmA exert complementary functions during experimental OM. In conclusion, we have developed a highly reproducible and non-invasive murine infection model for pneumococcal OM using a pressure cabin, which is very suitable to study pneumococcal pathogenesis and virulence in vivo. PMID:19762437

  5. Histological and In Vivo Microscopic Analysis of the Bone Marrow Microenvironment in a Murine Model of Chronic Myelogenous Leukemia.

    PubMed

    Weissenberger, Eva S; Krause, Daniela S

    2016-01-01

    Imaging of the leukemic bone marrow microenvironment, also called the leukemic bone marrow niche, is an essential method to determine and to evaluate the progression of chronic myelogenous leukemia (CML) and other leukemias in murine models. In this chapter we introduce the murine model of CML primarily used in our laboratory by describing blood and bone marrow analysis as well as the method of histological sectioning and immunohistochemistry in combination with various stainings that can help to understand the complex interaction between leukemic cells, their normal hematopoietic counterparts, and the bone marrow microenvironment. We conclude with describing how to image the bone marrow niche using in vivo microscopy. PMID:27581139

  6. A novel fibroblast growth factor receptor 1 inhibitor protects against cartilage degradation in a murine model of osteoarthritis

    PubMed Central

    Xu, Wei; Xie, Yangli; Wang, Quan; Wang, Xiaofeng; Luo, Fengtao; Zhou, Siru; Wang, Zuqiang; Huang, Junlan; Tan, Qiaoyan; Jin, Min; Qi, Huabing; Tang, Junzhou; Chen, Liang; Du, Xiaolan; Zhao, Chengguang; Liang, Guang; Chen, Lin

    2016-01-01

    The attenuated degradation of articular cartilage by cartilage-specific deletion of fibroblast growth factor receptor 1 (FGFR1) in adult mice suggests that FGFR1 is a potential target for treating osteoarthritis (OA). The goal of the current study was to investigate the effect of a novel non-ATP-competitive FGFR1 inhibitor, G141, on the catabolic events in human articular chondrocytes and cartilage explants and on the progression of cartilage degradation in a murine model of OA. G141 was screened and identified via cell-free kinase-inhibition assay. In the in vitro study, G141 decreased the mRNA levels of catabolic markers ADAMTS-5 and MMP-13, the phosphorylation of Erk1/2, JNK and p38 MAPK, and the protein level of MMP-13 in human articular chondrocytes. In the ex vivo study, proteoglycan loss was markedly reduced in G141 treated human cartilage explants. For the in vivo study, intra-articular injection of G141 attenuated the surgical destabilization of the medial meniscus (DMM) induced cartilage destruction and chondrocyte hypertrophy and apoptosis in mice. Our data suggest that pharmacologically antagonize FGFR1 using G141 protects articular cartilage from osteoarthritic changes, and intra-articular injection of G141 is potentially an effective therapy to alleviate OA progression. PMID:27041213

  7. Exploring the translational disconnect between the murine and human inflammatory response: analysis of LPS dose–response relationship in murine versus human cell lines and implications for translation into murine models of sepsis

    PubMed Central

    McCarron, Eamon P; Williams, Dominic P; Antoine, Daniel J; Kipar, Anja; Lemm, Jana; Stehr, Sebastian; Welters, Ingeborg D

    2015-01-01

    Background Inflammation forms an important part of the human innate immune system and is largely dependent on the activation of the “classical” NF-κB pathway through Toll-like receptors (TLRs). Understanding this has allowed researchers to explore roles of therapeutic targets in managing conditions such as sepsis. Recapitulating an inflammatory response using lipopolysaccharide (LPS), a “sterile” technique, can provide information that is dissimilar to the clinical condition. By examining NF-κB activation (through immunoblotting of the p65 subunit) in two separate cell lines (murine and human) and analyzing two murine models of sepsis (intraperitoneal [IP] LPS and IP stool inoculation), an evaluation of the translational disconnect between experimental and clinical sepsis can be made. Methods THP-1 (human) cells and RAW 264.7 (murine) cells were dosed with concentrations of LPS (human, 1 pg/mL to 100 ng/mL; murine, 30 pg/mL to 1,000 ng/mL) and nuclear actin and p65 were immunoblotted to measure changes in nuclear density. In vivo, C57BL/6 mice received either IP injection of stool suspension (5 µL/g) or LPS (25 mg/kg) or saline (1 mL/kg). Animals were culled at 6 hours and tissues were analyzed. Results An increase in basal p65:actin density in THP-1 cells (mean 0.214, standard error of the mean 0.024) was seen at doses as small as 0.1 ng/mL (0.519±0.064). In contrast to RAW 264.7 cells, basal increases (0.170±0.025) were only seen when a dose of 3 ng/mL (0.387±0.078) was used. Dose–response analysis of p65:actin ratio showed that THP-1 cells respond to lower doses of LPS than RAW 264.7 cells and lower doses produce a greater fold increase in the nuclear p65 density. Both in vivo models showed evidence of neutrophil (NL) recruitment into tissues (which was more intense after LPS treatment). IP stool inoculation resulted in an acute suppurative peritonitis and more substantial evidence of NL recruitment into adipose tissue and skeletal muscle

  8. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model.

    PubMed

    von Bismarck, Philipp; Winoto-Morbach, Supandi; Herzberg, Mona; Uhlig, Ulrike; Schütze, Stefan; Lucius, Ralph; Krause, Martin F

    2012-06-01

    Airway epithelial NF-κB is a key regulator of host defence in bacterial infections and has recently evolved as a target for therapeutical approaches. Evidence is accumulating that ceramide, generated by acid sphingomyelinase (aSMase), and sphingosine-1-phosphate (S1-P) are important mediators in host defence as well as in pathologic processes of acute lung injury. Little is known about the regulatory mechanisms of pulmonary sphingolipid metabolism in bacterial infections of the lung. The objective of this study was to evaluate the influence of NF-κB on sphingolipid metabolism in Pseudomonas aeruginosa LPS-induced pulmonary inflammation. In a murine acute lung injury model with intranasal Pseudomonas aeruginosa LPS we investigated TNF-α, KC (murine IL-8), IL-6, MCP-1 and neutrophilic infiltration next to aSMase activity and ceramide and S1-P lung tissue concentrations. Airway epithelial NF-κB was inhibited by topically applied IKK NBD, a cell penetrating NEMO binding peptide. This treatment resulted in significantly reduced inflammation and suppression of aSMase activity along with decreased ceramide and S1-P tissue concentrations down to levels observed in healthy animals. In conclusion our results confirm that changes in sphingolipid metabolim due to Pseudomonas aeruginosa LPS inhalation are regulated by NF-κB translocation. This confirms the critical role of airway epithelial NF-κB pathway for the inflammatory response to bacterial pathogens and underlines the impact of sphingolipids in inflammatory host defence mechanisms. PMID:22469869

  9. Α1-giardin based live heterologous vaccine protects against Giardia lamblia infection in a murine model.

    PubMed

    Jenikova, Gabriela; Hruz, Petr; Andersson, Mattias K; Tejman-Yarden, Noa; Ferreira, Patricia C D; Andersen, Yolanda S; Davids, Barbara J; Gillin, Frances D; Svärd, Staffan G; Curtiss, Roy; Eckmann, Lars

    2011-11-28

    Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide, yet preventive medical strategies are not available. A crude veterinary vaccine has been licensed for cats and dogs, but no defined human vaccine is available. We tested the vaccine potential of three conserved antigens previously identified in human and murine giardiasis, α1-giardin, α-enolase, and ornithine carbamoyl transferase, in a murine model of G. lamblia infection. Live recombinant attenuated Salmonella enterica Serovar Typhimurium vaccine strains were constructed that stably expressed each antigen, maintained colonization capacity, and sustained total attenuation in the host. Oral administration of the vaccine strains induced antigen-specific serum IgG, particularly IgG(2A), and mucosal IgA for α1-giardin and α-enolase, but not for ornithine carbamoyl transferase. Immunization with the α1-giardin vaccine induced significant protection against subsequent G. lamblia challenge, which was further enhanced by boosting with cholera toxin or sublingual α1-giardin administration. The α-enolase vaccine afforded no protection. Analysis of α1-giardin from divergent assemblage A and B isolates of G. lamblia revealed >97% amino acid sequence conservation and immunological cross-reactivity, further supporting the potential utility of this antigen in vaccine development. Together. These results indicate that α1-giardin is a suitable candidate antigen for a vaccine against giardiasis. PMID:22001876

  10. Femur Window Chamber Model for In Vivo Cell Tracking in the Murine Bone Marrow.

    PubMed

    Chen, Yonghong; Maeda, Azusa; Bu, Jiachuan; DaCosta, Ralph

    2016-01-01

    Bone marrow is a complex organ that contains various hematopoietic and non-hematopoietic cells. These cells are involved in many biological processes, including hematopoiesis, immune regulation and tumor regulation. Commonly used methods for understanding cellular actions in the bone marrow, such as histology and blood counts, provide static information rather than capturing the dynamic action of multiple cellular components in vivo. To complement the standard methods, a window chamber (WC)-based model was developed to enable serial in vivo imaging of cells and structures in the murine bone marrow. This protocol describes a surgical procedure for installing the WC in the femur, in order to facilitate long-term optical access to the femoral bone marrow. In particular, to demonstrate its experimental utility, this WC approach was used to image and track neutrophils within the vascular network of the femur, thereby providing a novel method to visualize and quantify immune cell trafficking and regulation in the bone marrow. This method can be applied to study various biological processes in the murine bone marrow, such as hematopoiesis, stem cell transplantation, and immune responses in pathological conditions, including cancer. PMID:27500928

  11. A murine model of stress controllability attenuates Th2-dominant airway inflammatory responses

    PubMed Central

    Deshmukh, Aniket; Kim, Byung-Jin; Gonzales, Xavier; Caffrey, James; Vishwanatha, Jamboor; Jones, Harlan P.

    2010-01-01

    Epidemiological and experimental studies suggest a positive correlation between chronic respiratory inflammatory disease and the ability to cope with adverse stress. Interactions between neuroendocrine and immune systems are believed to provide insight toward the biological mechanisms of action. The utility of an experimental murine model was employed to investigate the immunological consequences of stress-controllability and ovalbumin-induced airway inflammation. Pre-conditioned uncontrollable stress exacerbated OVA-induced lung histopathological changes that were typical of Th2-predominant inflammatory response along respiratory tissues. Importantly, mice given the ability to exert control over aversive stress attenuated inflammatory responses and reduced lung pathology. This model represents a means of investigating the neuro-immune axis in defining mechanisms of stress and respiratory disease. PMID:20462642

  12. Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer's Disease

    PubMed Central

    Chadwick, Wayne; Brenneman, Randall; Martin, Bronwen; Maudsley, Stuart

    2010-01-01

    Various animal models of Alzheimer's disease (AD) have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins. We have used mass analytical techniques and multiple bioinformatic approaches to better appreciate the intricate interactions of these multifunctional proteins in the 3xTgAD murine model of AD. Our results show that there are significant alterations in numerous receptor/cell signaling proteins in cortical lipid rafts isolated from 3xTgAD mice. PMID:21151659

  13. Effects of Analgesic Use on Inflammation and Hematology in a Murine Model of Venous Thrombosis

    PubMed Central

    Hish, Gerald A; Diaz, Jose A; Hawley, Angela E; Myers, Daniel D; Lester, Patrick A

    2014-01-01

    Venous thrombosis (VT) is a significant cause of morbidity and mortality in humans. Surgical animal models are crucial in studies investigating the pathogenesis of this disease and evaluating VT therapies. Because inflammation is critical to both the development and resolution of VT, analgesic medications have the potential to adversely affect multiple parameters of interest in VT research. The objective of this study was to determine how several common analgesics affect key variables in a murine ligation model of deep vein thrombosis. Male C57BL/6 mice were randomly assigned to receive either local (bupivacaine) or systemic parenteral analgesia (buprenorphine, tramadol, or carprofen) or 0.9% NaCl (control). All mice underwent laparotomy and ligation of the inferior vena cava, and treatment was continued until euthanasia at 6 or 48 h after surgery. Analysis of harvested tissues and blood included: hematology, thrombus weight, serum and vein-wall cytokines (IL1β, IL6, IL10, TNFα), soluble P-selectin, and vein-wall leukocyte infiltration. Compared with 0.9% NaCl, all of the analgesics affected multiple parameters important to VT research. Carprofen and tramadol affected the most parameters and should not be used in murine models of VT. Although they affected fewer parameters, a single dose of bupivacaine increased thrombus weight at 6 h, and buprenorphine was associated with reduced vein wall macrophages at 48 h. Although we cannot recommend the use of any of the evaluated analgesic dosages in this mouse model of VT, buprenorphine merits additional investigation to ensure the highest level of laboratory animal care and welfare. PMID:25255071

  14. AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models.

    PubMed

    Chang, Edwin; Pohling, Christoph; Natarajan, Arutselvan; Witney, Timothy H; Kaur, Jasdeep; Xu, Lingyun; Gowrishankar, Gayatri; D'Souza, Aloma L; Murty, Surya; Schick, Sophie; Chen, Liyin; Wu, Nicholas; Khaw, Phoo; Mischel, Paul; Abbasi, Taher; Usmani, Shahabuddin; Mallick, Parag; Gambhir, Sanjiv S

    2016-01-01

    Glioblastoma multiforme (GBM) is an aggressive, malignant cancer Johnson and O'Neill (J Neurooncol 107: 359-364, 2012). An extract from the winter cherry plant (Withania somnifera ), AshwaMAX, is concentrated (4.3 %) for Withaferin A; a steroidal lactone that inhibits cancer cells Vanden Berghe et al. (Cancer Epidemiol Biomark Prev 23: 1985-1996, 2014). We hypothesized that AshwaMAX could treat GBM and that bioluminescence imaging (BLI) could track oral therapy in orthotopic murine models of glioblastoma. Human parietal-cortical glioblastoma cells (GBM2, GBM39) were isolated from primary tumors while U87-MG was obtained commercially. GBM2 was transduced with lentiviral vectors that express Green Fluorescent Protein (GFP)/firefly luciferase fusion proteins. Mutational, expression and proliferative status of GBMs were studied. Intracranial xenografts of glioblastomas were grown in the right frontal regions of female, nude mice (n = 3-5 per experiment). Tumor growth was followed through BLI. Neurosphere cultures (U87-MG, GBM2 and GBM39) were inhibited by AshwaMAX at IC50 of 1.4, 0.19 and 0.22 µM equivalent respectively and by Withaferin A with IC50 of 0.31, 0.28 and 0.25 µM respectively. Oral gavage, every other day, of AshwaMAX (40 mg/kg per day) significantly reduced bioluminescence signal (n = 3 mice, p < 0.02, four parameter non-linear regression analysis) in preclinical models. After 30 days of treatment, bioluminescent signal increased suggesting onset of resistance. BLI signal for control, vehicle-treated mice increased and then plateaued. Bioluminescent imaging revealed diffuse growth of GBM2 xenografts. With AshwaMAX, GBM neurospheres collapsed at nanomolar concentrations. Oral treatment studies on murine models confirmed that AshwaMAX is effective against orthotopic GBM. AshwaMAX is thus a promising candidate for future clinical translation in patients with GBM. PMID:26650066

  15. A MURINE MODEL FOR LOW MOLECULAR WEIGHT CHEMICALS: DIFFERENTIATION OF RESPIRATORY SENSITIZERS (TMA) FROM CONTACT SENSITIZERS (DNFB)

    EPA Science Inventory

    Exposure to low molecular weight (LMW) chemicals contributes to both dermal and respiratory sensitization and is an important occupational health problem. Our goal was to establish an in vivo murine model for hazard identification of LMW chemicals that have the potential to indu...

  16. Anti-CD45 radioimmunotherapy using 211At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model

    SciTech Connect

    Orozco, Johnnie J.; Back, Tom; Kenoyer, Aimee L.; Balkin, Ethan R.; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Frayo, Shani; Hylarides, Mark; Green, Damian J.; Gopal, Ajay K.; Press, Oliver W.; Pagel, John M.

    2013-05-15

    Anti-CD45 Radioimmunotherapy using an Alpha-Emitting Radionuclide 211At Combined with Bone Marrow Transplantation Prolongs Survival in a Disseminated Murine Leukemia Model ABSTRACT Despite aggressive chemotherapy combined with hematopoietic cell transplant (HCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using antibodies (Ab) labeled primarily with beta-emitting radionuclides has been explored to reduce relapse.

  17. Foxp3+ cells control Th2 responses in a murine model of atopic dermatitis.

    PubMed

    Fyhrquist, Nanna; Lehtimäki, Sari; Lahl, Katharina; Savinko, Terhi; Lappeteläinen, Anna-Mari; Sparwasser, Tim; Wolff, Henrik; Lauerma, Antti; Alenius, Harri

    2012-06-01

    The role of Foxp3+ regulatory T (Treg) cells in atopic dermatitis (AD) is still unclear. In a murine AD model, the number of Foxp3+ cells increased in the allergen-exposed skin area and in the secondary lymphoid organs. Both Foxp3+ and Foxp3- IL-10+ T cells accumulated at the site of allergen exposure, and CD103+ effector/memory Foxp3+ Treg cells expanded gradually in the lymph nodes throughout the sensitization protocol. The depletion of Foxp3+ Treg cells led to significantly exacerbated skin inflammation, including increased recruitment of inflammatory cells and expression of T helper type 2 cytokines, as well as elevated serum IgE levels. The effect of depleting Treg cells during epicutaneous sensitization was mirrored off by a stronger inflammatory response also in the lungs following airway challenge. Thus, Treg cells have an important role in controlling AD-like inflammation and the transfer of allergic skin inflammation to the lungs. PMID:22402436

  18. In vivo studies of 5-arylethenylbenzofuroxans in acute murine models of Chagas' disease.

    PubMed

    Boiani, Lucía; Davies, Carolina; Arredondo, Carolina; Porcal, Williams; Merlino, Alicia; Gerpe, Alejandra; Boiani, Mariana; Pacheco, José Pedro; Basombrío, Miguel Angel; Cerecetto, Hugo; González, Mercedes

    2008-10-01

    5-arylethenylbenzofuroxan derivatives with high in vitro anti-Trypanosoma cruzi activity were studied in vivo using acute murine models of Chagas' disease. The selected compounds, as pure isomeric forms, 1, 2, 3 and 4, or as equimolecular mixture of geometric isomers, 1:2, 3:4, 5:6 were studied against different T. cruzi strains. Consequently, Tulahuen 2 strain, Colombiana strain (resistant to Nifurtimox and Benznidazole), and two different wild strains, one isolated from the wild reservoir Didelphis marsupialis and another one from Uruguayan patients, were selected. No relevant signs of in vivo toxicity were observed with the benzofuroxans orally administered. Compound 1 and the mixture of isomers 1:2 were the best for treating infection against the four studied strains. PMID:18255195

  19. Liposomal prednisolone inhibits vascular inflammation and enhances venous outward remodeling in a murine arteriovenous fistula model

    PubMed Central

    Wong, ChunYu; Bezhaeva, Taisiya; Rothuizen, Tonia C.; Metselaar, Josbert M.; de Vries, Margreet R.; Verbeek, Floris P. R.; Vahrmeijer, Alexander L.; Wezel, Anouk; van Zonneveld, Anton-Jan; Rabelink, Ton J.; Quax, Paul H. A.; Rotmans, Joris I.

    2016-01-01

    Arteriovenous fistulas (AVF) for hemodialysis access have a 1-year primary patency rate of only 60%, mainly as a result of maturation failure that is caused by insufficient outward remodeling and intimal hyperplasia. The exact pathophysiology remains unknown, but the inflammatory vascular response is thought to play an important role. In the present study we demonstrate that targeted liposomal delivery of prednisolone increases outward remodeling of the AVF in a murine model. Liposomes accumulate in the post-anastomotic area of the venous outflow tract in which the vascular pathology is most prominent in failed AVFs. On a histological level, we observed a reduction of lymphocytes and granulocytes in the vascular wall. In addition, a strong anti-inflammatory effect of liposomal prednisolone on macrophages was demonstrated in vitro. Therefore, treatment with liposomal prednisolone might be a valuable strategy to improve AVF maturation. PMID:27460883

  20. Liposomal prednisolone inhibits vascular inflammation and enhances venous outward remodeling in a murine arteriovenous fistula model.

    PubMed

    Wong, ChunYu; Bezhaeva, Taisiya; Rothuizen, Tonia C; Metselaar, Josbert M; de Vries, Margreet R; Verbeek, Floris P R; Vahrmeijer, Alexander L; Wezel, Anouk; van Zonneveld, Anton-Jan; Rabelink, Ton J; Quax, Paul H A; Rotmans, Joris I

    2016-01-01

    Arteriovenous fistulas (AVF) for hemodialysis access have a 1-year primary patency rate of only 60%, mainly as a result of maturation failure that is caused by insufficient outward remodeling and intimal hyperplasia. The exact pathophysiology remains unknown, but the inflammatory vascular response is thought to play an important role. In the present study we demonstrate that targeted liposomal delivery of prednisolone increases outward remodeling of the AVF in a murine model. Liposomes accumulate in the post-anastomotic area of the venous outflow tract in which the vascular pathology is most prominent in failed AVFs. On a histological level, we observed a reduction of lymphocytes and granulocytes in the vascular wall. In addition, a strong anti-inflammatory effect of liposomal prednisolone on macrophages was demonstrated in vitro. Therefore, treatment with liposomal prednisolone might be a valuable strategy to improve AVF maturation. PMID:27460883

  1. Induction of protection in murine experimental models against Trichinella spiralis: an up-to-date review.

    PubMed

    Ortega-Pierres, G; Vaquero-Vera, A; Fonseca-Liñán, R; Bermúdez-Cruz, R M; Argüello-García, R

    2015-09-01

    The parasitic nematode Trichinella spiralis, an aetiological agent of the disease known as trichinellosis, infects wild and domestic animals through contaminated pig meat, which is the major source for Trichinella transmission. Prevention of this disease by interrupting parasite transmission includes vaccine development for livestock; however, major challenges to this strategy are the complexity of the T. spiralis life cycle, diversity of stage-specific antigens, immune-evasion strategies and the modulatory effect of host responses. Different approaches have been taken to induce protective immune responses by T. spiralis immunogens. These include the use of whole extracts or excretory-secretory antigens, as well as recombinant proteins or synthesized epitopes, using murine experimental models for trichinellosis. Here these schemes are reviewed and discussed, and new proposals envisioned to block the zoonotic transmission of this parasite. PMID:25761655

  2. Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease.

    PubMed

    Eames, Hayley L; Corbin, Alastair L; Udalova, Irina A

    2016-01-01

    Interferon regulatory factor 5 (IRF5) has been demonstrated as a key transcription factor of the immune system, playing important roles in modulating inflammatory immune responses in numerous cell types including dendritic cells, macrophages, and B cells. As well as driving the expression of type I interferon in antiviral responses, IRF5 is also crucial for driving macrophages toward a proinflammatory phenotype by regulating cytokine and chemokine expression and modulating B-cell maturity and antibody production. This review highlights the functional importance of IRF5 in a disease setting, by discussing polymorphic mutations at the human Irf5 locus that lead to susceptibility to systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. In concordance with this, we also discuss lessons in IRF5 functionality learned from murine in vivo models of autoimmune disease and inflammation and hypothesize that modulation of IRF5 activity and expression could provide potential therapeutic benefits in the clinic. PMID:26207886

  3. Efficacy of Posaconazole in a Murine Model of Systemic Infection by Saprochaete capitata

    PubMed Central

    Thomson, Pamela; Guarro, Josep; Mayayo, Emilio

    2015-01-01

    The fungus Saprochaete capitata causes opportunistic human infections, mainly in immunocompromised patients with hematological malignancies. The best therapy for this severe infection is still unknown. We evaluated the in vitro killing activity and the in vivo efficacy of posaconazole at 5, 10, or 20 mg/kg twice a day (BID) in a murine neutropenic model of systemic infection with S. capitata by testing a set of six clinical isolates. Posaconazole showed fungistatic activity against all of the isolates tested. The different doses of the drug, especially the highest one, showed good efficacy, measured by prolonged survival, reduction of (1-3)-β-d-glucan levels in serum, tissue burden reduction, and histopathology. PMID:26392490

  4. A Novel Murine Model for Localized Radiation Necrosis and its Characterization using Advanced Magnetic Resonance Imaging

    PubMed Central

    Jost, Sarah C.; Hope, Andrew; Kiehl, Erich; Perry, Arie; Travers, Sarah; Garbow, Joel R.

    2013-01-01

    Introduction Magnetic resonance (MR) images following external beam radiotherapy for brain tumors often display signal changes characteristic of either tumor progression and/or radiation injury. No non-invasive diagnostic biomarkers have been identified that clearly distinguish between these two disease processes. This study’s objective was to develop a murine model of radiation necrosis using fractionated, sub-total cranial irradiation and to investigate the imaging signature of radiation-induced tissue damage using advanced MR imaging techniques. Methods Twenty four mice each received 60 Gy of hemispheric (left) irradiation in ten equal fractions. MR images at 4.7 T were subsequently collected using T1-, T2- and diffusion-sequences at selected time points following irradiation or implantation. Following imaging, animals were euthanized and their brains were fixed for correlative histology. Results Contrast-enhanced T1- and T2-weighted MR images at months 2, 3, and 4 showed changes consistent with progressive radiation necrosis. Quantitatively, mean diffusivity was significantly higher (mean = 0.86, 1.13, and 1.24 μm2/ms at 2, 3, and 4 months, respectively) in radiated brain, compared with contralateral untreated brain tissue (mean = 0.78, 0.82, and 0.83 μm2/ms) (p<0.0001). Histology reflected changes typically seen in radiation necrosis. Conclusions This murine model of radiation necrosis will facilitate investigation of imaging biomarkers that distinguish between radiation necrosis and tumor recurrence. In addition, this preclinical study supports clinical data suggesting that DWI may be helpful in answering this diagnostic question in clinical settings. PMID:19735877

  5. Hyaluronan deposition and correlation with inflammation in a murine ovalbumin model of asthma

    PubMed Central

    Cheng, Georgiana; Swaidani, Shadi; Sharma, Manisha; Lauer, Mark E.; Hascall, Vincent C.; Aronica, Mark A.

    2011-01-01

    Asthma is a chronic inflammatory disease of the airways characterized by airway remodeling, which includes changes in the extracellular matrix (ECM). However the role of the ECM in mediating these changes is poorly understood. Hyaluronan (HA), a major component of the ECM, has been implicated in asthma as well as in many other biological processes. Our study investigates the processes involved in HA synthesis, deposition, localization and degradation during an acute and chronic murine model of ovalbumin (OVA)-induced allergic pulmonary inflammation. Mice were sensitized, challenged to OVA and sacrificed at various time points during an 8-week challenge protocol. Bronchoalveolar lavage (BAL) fluids, blood, and lung tissue were collected for study. RNA, HA, protein and histopathology were analyzed. Analyses of lung sections and BAL fluids revealed an early deposition and an increase in HA levels within 24 hours of antigen exposure. HA levels peaked at day 8 in BAL, while inflammatory cell recovery peaked at day 6. Hyaluronan synthase (HAS)1 and HAS2 on RNA levels peaked within 2 hours of antigen exposure, while hyaluronidase (HYAL)1 and HYAL2 on RNA levels decreased. Both inflammatory cell infiltrates and collagen deposition co-localized with HA deposition within the lungs. These data support a role for HA in the pathogenesis of inflammation and airway remodeling in a murine model of asthma. HA deposition appears largely due to up regulation of HAS1 and HAS2. In addition, HA appears to provide the scaffolding for inflammatory cell accumulation as well as for new collagen synthesis and deposition. PMID:21251977

  6. Dynamic Tumor Growth Patterns in a Novel Murine Model of Colorectal Cancer

    PubMed Central

    Olson, Terrah J. Paul; Hadac, Jamie N.; Sievers, Chelsie K.; Leystra, Alyssa A.; Deming, Dustin A.; Zahm, Christopher D.; Albrecht, Dawn M.; Nomura, Alice; Nettekoven, Laura A.; Plesh, Lauren K.; Clipson, Linda; Sullivan, Ruth; Newton, Michael A.; Schelman, William R.; Halberg, Richard B.

    2014-01-01

    Colorectal cancer (CRC) often arises from adenomatous colonic polyps. Polyps can grow and progress to cancer, but may also remain static in size, regress, or resolve. Predicting which progress and which remain benign is difficult. We developed a novel long-lived murine model of CRC with tumors that can be followed by colonoscopy. Our aim was to assess whether these tumors have similar growth patterns and histologic fates to human colorectal polyps to identify features to aid in risk-stratification of colonic tumors. Long-lived ApcMin/+ mice were treated with dextran sodium sulfate to promote colonic tumorigenesis. Tumor growth patterns were characterized by serial colonoscopy with biopsies obtained for immunohistochemistry and gene expression profiling. Tumors grew, remained static, regressed, or resolved over time with different relative frequencies. Newly developed tumors demonstrated higher rates of growth and resolution than more established tumors that tended to remain static in size. Colonic tumors were hyperplastic lesions (3%), adenomas (73%), intramucosal carcinomas (20%), or adenocarcinomas (3%). Interestingly, the level of β-catenin was higher in adenomas that became intratumoral carcinomas as compared to those that failed to progress. In addition, differentially expressed genes between adenomas and intramucosal carcinomas were identified. This novel murine model of intestinal tumorigenesis develops colonic tumors that can be monitored by serial colonoscopy, mirror growth patterns seen in human colorectal polyps, and progress to CRC. Further characterization of cellular and molecular features are needed to determine which features can be used to risk-stratify polyps for progression to CRC and potentially guide prevention strategies. PMID:24196829

  7. Therapeutic effect of CTLA4-Ig on a murine model of primary biliary cirrhosis

    PubMed Central

    Dhirapong, Amy; Yang, Guo-Xiang; Nadler, Steven; Zhang, Weici; Tsuneyama, Koichi; Leung, Patrick; Knechtle, Stuart; Ansari, Aftab A.; Coppel, Ross L.; Liu, Fu-Tong; He, Xiao-Song; Gershwin, M. Eric

    2012-01-01

    Collectively, the data in both humans and murine models of human primary biliary cirrhosis (PBC) suggest that activated T cells, particularly CD8 T cells, play a critical role in biliary cell destruction. Under physiological conditions, T cell activation involves two critical signals that involve the MHC and a set of co-stimulatory molecules which include a receptor on T cells coined cytotoxic T lymphocyte antigen 4 (CTLA-4). Germane to the studies reported herein, signaling via CTLA-4 has the potential to modulate co-stimulation and induce inhibitory signals. In this study we have taken advantage of our well-defined murine model of PBC in which mice are immunized with 2-octynoic acid coupled to BSA, leading to the production of high titer anti-mitochondrial autoantibodies and portal cellular infiltrates. To investigate the potential of CTLA-4 Ig as an immunotherapeutic agent, we treated mice both before and after induction of autoimmune cholangitis. Firstly, we demonstrate that CTLA-4 Ig treatment begun one day before 2-OA-BSA immunization, completely inhibits the manifestations of cholangitis, including AMA production, intra-hepatic T cell infiltrates and bile duct damage. However, and more critically, treatment with CTLA-4 Ig initiated after the development of autoimmune cholangitis in previously immunized mice, also resulted in significant therapeutic benefit, including reduced intra-hepatic T cell infiltrates and biliary cell damage, although AMA levels were not altered. These data suggest that an optimized regimen with CTLA-4 Ig has the potential to serve as an investigative therapeutic tool in patients with PBC. PMID:22996325

  8. Patterns of gene expression among murine models of hemorrhagic shock/trauma and sepsis.

    PubMed

    Mira, Juan C; Szpila, Benjamin E; Nacionales, Dina C; Lopez, Maria-Cecilia; Gentile, Lori F; Mathias, Brittany J; Vanzant, Erin L; Ungaro, Ricardo; Holden, David; Rosenthal, Martin D; Rincon, Jaimar; Verdugo, Patrick T; Larson, Shawn D; Moore, Frederick A; Brakenridge, Scott C; Mohr, Alicia M; Baker, Henry V; Moldawer, Lyle L; Efron, Philip A

    2016-02-01

    Controversy remains whether the leukocyte genomic response to trauma or sepsis is dependent upon the initiating stimulus. Previous work illustrated poor correlations between historical models of murine trauma and sepsis (i.e., trauma-hemorrhage and lipopolysaccharide injection, respectively). The aim of this study is to examine the early genomic response in improved murine models of sepsis [cecal ligation and puncture (CLP)] and trauma [polytrauma (PT)] with and without pneumonia (PT+Pp). Groups of naïve, CLP, PT, and PT+Pp mice were killed at 2 h, 1 or 3 days. Total leukocytes were isolated for genome-wide expression analysis, and genes that were found to differ from control (false discovery rate adjusted P < 0.001) were assessed for fold-change differences. Spearman correlations were also performed. For all time points combined (CLP, PT, PT+Pp), there were 10,426 total genes that were found to significantly differ from naïve controls. At 2 h, the transcriptomic changes between CLP and PT showed a positive correlation (rs) of 0.446 (P < 0.0001) but were less positive thereafter. Correlations were significantly improved when we limited the analysis to common genes whose expression differed by a 1.5 fold-change. Both pathway and upstream analyses revealed the activation of genes known to be associated with pathogen-associated and damage-associated molecular pattern signaling, and early activation patterns of expression were very similar between polytrauma and sepsis at the earliest time points. This study demonstrates that the early leukocyte genomic response to sepsis and trauma are very similar in mice. PMID:26578697

  9. Genetic and Functional Studies of the Intervertebral Disc: A Novel Murine Intervertebral Disc Model

    PubMed Central

    Pelle, Dominic W.; Peacock, Jacqueline D.; Schmidt, Courtney L.; Kampfschulte, Kevin; Scholten, Donald J.; Russo, Scott S.; Easton, Kenneth J.; Steensma, Matthew R.

    2014-01-01

    Intervertebral disc (IVD) homeostasis is mediated through a combination of micro-environmental and biomechanical factors, all of which are subject to genetic influences. The aim of this study is to develop and characterize a genetically tractable, ex vivo organ culture model that can be used to further elucidate mechanisms of intervertebral disc disease. Specifically, we demonstrate that IVD disc explants (1) maintain their native phenotype in prolonged culture, (2) are responsive to exogenous stimuli, and (3) that relevant homeostatic regulatory mechanisms can be modulated through ex-vivo genetic recombination. We present a novel technique for isolation of murine IVD explants with demonstration of explant viability (CMFDA/propidium iodide staining), disc anatomy (H&E), maintenance of extracellular matrix (ECM) (Alcian Blue staining), and native expression profile (qRT-PCR) as well as ex vivo genetic recombination (mT/mG reporter mice; AdCre) following 14 days of culture in DMEM media containing 10% fetal bovine serum, 1% L-glutamine, and 1% penicillin/streptomycin. IVD explants maintained their micro-anatomic integrity, ECM proteoglycan content, viability, and gene expression profile consistent with a homeostatic drive in culture. Treatment of genetically engineered explants with cre-expressing adenovirus efficaciously induced ex vivo genetic recombination in a variety of genetically engineered mouse models. Exogenous administration of IL-1ß and TGF-ß3 resulted in predicted catabolic and anabolic responses, respectively. Genetic recombination of TGFBR1fl/fl explants resulted in constitutively active TGF-ß signaling that matched that of exogenously administered TGF-ß3. Our results illustrate the utility of the murine intervertebral disc explant to investigate mechanisms of intervertebral disc degeneration. PMID:25474689

  10. A Metabolomic Analysis of Two Intravenous Lipid Emulsions in a Murine Model

    PubMed Central

    Kalish, Brian T.; Le, Hau D.; Gura, Kathleen M.; Bistrian, Bruce R.; Puder, Mark

    2013-01-01

    Background Parenteral nutrition (PN), including intravenous lipid administration, is a life-saving therapy but can be complicated by cholestasis and liver disease. The administration of intravenous soy bean oil (SO) has been associated with the development of liver disease, while the administration of intravenous fish oil (FO) has been associated with the resolution of liver disease. The biochemical mechanism of this differential effect is unclear. This study compares SO and FO lipid emulsions in a murine model of hepatic steatosis, one of the first hits in PN-associated liver disease. Methods We established a murine model of hepatic steatosis in which liver injury is induced by orally feeding mice a PN solution. C57BL/6J mice were randomized to receive PN alone (a high carbohydrate diet (HCD)), PN plus intravenous FO (Omegaven®; Fresenius Kabi AG, Bad Homburg VDH, Germany), PN plus intravenous SO (Intralipid®; Fresenius Kabi AG, Bad Homburg v.d.H., Germany, for Baxter Healthcare, Deerfield, IL), or a chow diet. After 19 days, liver tissue was harvested from all animals and subjected to metabolomic profiling. Results The administration of an oral HCD without lipid induced profound hepatic steatosis. SO was associated with macro- and microvesicular hepatic steatosis, while FO largely prevented the development of steatosis. 321 detectable compounds were identified in the metabolomic analysis. HCD induced de novo fatty acid synthesis and oxidative stress. Both FO and SO relieved some of the metabolic shift towards de novo lipogenesis, but FO offered additional advantages in terms of lipid peroxidation and the generation of inflammatory precursors. Conclusions Improved lipid metabolism combined with reduced oxidative stress may explain the protective effect offered by intravenous FO in vivo. PMID:23565157

  11. Hyperglycemia impedes lung bacterial clearance in a murine model of cystic fibrosis-related diabetes

    PubMed Central

    Hunt, William R.; Zughaier, Susu M.; Guentert, Dana E.; Shenep, Melissa A.; Koval, Michael; McCarty, Nael A.

    2013-01-01

    Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity associated with cystic fibrosis (CF), impacting more than half of patients over age 30. CFRD is clinically significant, portending accelerated decline in lung function, more frequent pulmonary exacerbations, and increased mortality. Despite the profound morbidity associated with CFRD, little is known about the underlying CFRD-related pulmonary pathology. Our aim was to develop a murine model of CFRD to explore the hypothesis that elevated glucose in CFRD is associated with reduced lung bacterial clearance. A diabetic phenotype was induced in gut-corrected CF transmembrane conductance regulator (CFTR) knockout mice (CFKO) and their CFTR-expressing wild-type littermates (WT) utilizing streptozotocin. Mice were subsequently challenged with an intratracheal inoculation of Pseudomonas aeruginosa (PAO1) (75 μl of 1–5 × 106 cfu/ml) for 18 h. Bronchoalveolar lavage fluid was collected for glucose concentration and cell counts. A portion of the lung was homogenized and cultured as a measure of the remaining viable PAO1 inoculum. Diabetic mice had increased airway glucose compared with nondiabetic mice. The ability to clear bacteria from the lung was significantly reduced in diabetic WT mice and control CFKO mice. Critically, bacterial clearance by diabetic CFKO mice was significantly more diminished compared with nondiabetic CFKO mice, despite an even more robust recruitment of neutrophils to the airways. This finding that CFRD mice boast an exaggerated, but less effective, inflammatory cell response to intratracheal PAO1 challenge presents a novel and useful murine model to help identify therapeutic strategies that promote bacterial clearance in CFRD. PMID:24097557

  12. Hyperglycemia impedes lung bacterial clearance in a murine model of cystic fibrosis-related diabetes.

    PubMed

    Hunt, William R; Zughaier, Susu M; Guentert, Dana E; Shenep, Melissa A; Koval, Michael; McCarty, Nael A; Hansen, Jason M

    2014-01-01

    Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity associated with cystic fibrosis (CF), impacting more than half of patients over age 30. CFRD is clinically significant, portending accelerated decline in lung function, more frequent pulmonary exacerbations, and increased mortality. Despite the profound morbidity associated with CFRD, little is known about the underlying CFRD-related pulmonary pathology. Our aim was to develop a murine model of CFRD to explore the hypothesis that elevated glucose in CFRD is associated with reduced lung bacterial clearance. A diabetic phenotype was induced in gut-corrected CF transmembrane conductance regulator (CFTR) knockout mice (CFKO) and their CFTR-expressing wild-type littermates (WT) utilizing streptozotocin. Mice were subsequently challenged with an intratracheal inoculation of Pseudomonas aeruginosa (PAO1) (75 μl of 1-5 × 10(6) cfu/ml) for 18 h. Bronchoalveolar lavage fluid was collected for glucose concentration and cell counts. A portion of the lung was homogenized and cultured as a measure of the remaining viable PAO1 inoculum. Diabetic mice had increased airway glucose compared with nondiabetic mice. The ability to clear bacteria from the lung was significantly reduced in diabetic WT mice and control CFKO mice. Critically, bacterial clearance by diabetic CFKO mice was significantly more diminished compared with nondiabetic CFKO mice, despite an even more robust recruitment of neutrophils to the airways. This finding that CFRD mice boast an exaggerated, but less effective, inflammatory cell response to intratracheal PAO1 challenge presents a novel and useful murine model to help identify therapeutic strategies that promote bacterial clearance in CFRD. PMID:24097557

  13. Quantifying mechanical properties in a murine fracture healing system using inverse modeling: preliminary work

    NASA Astrophysics Data System (ADS)

    Miga, Michael I.; Weis, Jared A.; Granero-Molto, Froilan; Spagnoli, Anna

    2010-03-01

    Understanding bone remodeling and mechanical property characteristics is important for assessing treatments to accelerate healing or in developing diagnostics to evaluate successful return to function. The murine system whereby mid-diaphaseal tibia fractures are imparted on the subject and fracture healing is assessed at different time points and under different therapeutic conditions is a particularly useful model to study. In this work, a novel inverse geometric nonlinear elasticity modeling framework is proposed that can reconstruct multiple mechanical properties from uniaxial testing data. To test this framework, the Lame' constants were reconstructed within the context of a murine cohort (n=6) where there were no differences in treatment post tibia fracture except that half of the mice were allowed to heal 4 days longer (10 day, and 14 day healing time point, respectively). The properties reconstructed were a shear modulus of G=511.2 +/- 295.6 kPa, and 833.3+/- 352.3 kPa for the 10 day, and 14 day time points respectively. The second Lame' constant reconstructed at λ=1002.9 +/-42.9 kPa, and 14893.7 +/- 863.3 kPa for the 10 day, and 14 day time points respectively. An unpaired Student t-test was used to test for statistically significant differences among the groups. While the shear modulus did not meet our criteria for significance, the second Lame' constant did at a value p<0.0001. Traditional metrics that are commonly used within the bone fracture healing research community were not found to be statistically significant.

  14. In Vivo MRI Assessment of Hepatic and Splenic Disease in a Murine Model of Schistosmiasis

    PubMed Central

    Laprie, Caroline; Dessein, Helia; Bernard, Monique; Dessein, Alain; Viola, Angèle

    2015-01-01

    Background Schistosomiasis (or bilharzia), a major parasitic disease, affects more than 260 million people worldwide. In chronic cases of intestinal schistosomiasis caused by trematodes of the Schistosoma genus, hepatic fibrosis develops as a host immune response to the helminth eggs, followed by potentially lethal portal hypertension. In this study, we characterized hepatic and splenic features of a murine model of intestinal schistosomiasis using in vivo magnetic resonance imaging (MRI) and evaluated the transverse relaxation time T2 as a non-invasive imaging biomarker for monitoring hepatic fibrogenesis. Methodology/Principal Findings CBA/J mice were imaged at 11.75T two, six and ten weeks after percutaneous infection with Schistosoma mansoni. In vivo imaging studies were completed with histology at the last two time points. Anatomical MRI allowed detection of typical manifestations of the intestinal disease such as significant hepato- and splenomegaly, and dilation of the portal vein as early as six weeks, with further aggravation at 10 weeks after infection. Liver multifocal lesions observed by MRI in infected animals at 10 weeks post infection corresponded to granulomatous inflammation and intergranulomatous fibrosis with METAVIR scores up to A2F2. While most healthy hepatic tissue showed T2 values below 14 ms, these lesions were characterized by a T2 greater than 16 ms. The area fraction of increased T2 correlated (rS = 0.83) with the area fraction of Sirius Red stained collagen in histological sections. A continuous liver T2* decrease was also measured while brown pigments in macrophages were detected at histology. These findings suggest accumulation of hematin in infected livers. Conclusions/Significance Our multiparametric MRI approach confirms that this murine model replicates hepatic and splenic manifestations of human intestinal schistosomiasis. Quantitative T2 mapping proved sensitive to assess liver fibrogenesis non-invasively and may therefore

  15. A novel murine model for evaluating bovine papillomavirus prophylactics/therapeutics for equine sarcoid-like tumours

    PubMed Central

    Bogaert, Lies; Woodham, Andrew W.; Da Silva, Diane M.; Martens, Ann; Meyer, Evelyne

    2015-01-01

    Equine sarcoids are highly recurrent bovine papillomavirus (BPV)-induced fibroblastic neoplasms that are the most common skin tumours in horses. In order to facilitate the study of potential equine sarcoid prophylactics or therapeutics, which can be a slow and costly process in equines, a murine model for BPV-1 protein-expressing equine sarcoid-like tumours was developed in mice through stable transfection of BPV-1 E5 and E6 in a murine fibroblast tumour cell line (K-BALB). Like equine sarcoids, these murine tumour cells (BPV-KB) were of fibroblast origin, were tumorigenic and expressed BPV-1 proteins. As an initial investigation of the preclinical potential of this tumour model for equine sarcoids prophylactics, mice were immunized with BPV-1 E5E6 Venezuelan equine encephalitis virus replicon particles, prior to BPV-KB challenge, which resulted in an increased tumour-free period compared with controls, indicating that the BPV-KB murine model may be a valuable preclinical alternative to equine clinical trials. PMID:26044793

  16. Murine Models of Acute Alcoholic Hepatitis and Their Relevance to Human Disease.

    PubMed

    Wilkin, Richard J W; Lalor, Patricia F; Parker, Richard; Newsome, Philip N

    2016-04-01

    Alcohol-induced liver damage is a major burden for most societies, and murine studies can provide a means to better understand its pathogenesis and test new therapies. However, there are many models reported with widely differing phenotypes, not all of which fully regenerate the spectrum of human disease. Thus, it is important to understand the implications of these variations to efficiently model human disease. This review critically appraises key articles in the field, detailing the spectrum of liver damage seen in different models, and how they relate to the phenotype of disease seen in patients. A range of different methods of alcohol administration have been studied, ranging from ad libitum consumption of alcohol and water to modified diets (eg, Lieber deCarli liquid diet). Other feeding regimens have taken more invasive routes using intragastric feeding tubes to infuse alcohol directly into the stomach. Notably, models using wild-type mice generally produce a milder phenotype of liver damage than those using genetically modified mice, with the exception of the chronic binge-feeding model. We recommend panels of tests for consideration to standardize end points for the evaluation of the severity of liver damage-key for comparison of models of injury, testing of new therapies, and subsequent translation of findings into clinical practice. PMID:26835538

  17. Adult Children of Alcoholics: A Counseling Model.

    ERIC Educational Resources Information Center

    Crawford, Robert L.; Phyfer, Ann Quinn

    1988-01-01

    Notes that adult children of alcoholics attending college present unique problems and opportunities to the college counselor. Presents a treatment model for serving such students which identifies four survivor roles and their manifestations, and suggests counseling techniques for each role. (Author/NB)

  18. Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model.

    PubMed

    Becker, Jeffrey M; Kauffman, Sarah J; Hauser, Melinda; Huang, Liyin; Lin, Molly; Sillaots, Susan; Jiang, Bo; Xu, Deming; Roemer, Terry

    2010-12-21

    One potentially rich source of possible targets for antifungal therapy are those Candida albicans genes deemed essential for growth under the standard culture (i.e., in vitro) conditions; however, these genes are largely unexplored as drug targets because essential genes are not experimentally amenable to conventional gene deletion and virulence studies. Using tetracycline-regulatable promoter-based conditional mutants, we investigated a murine model of candidiasis in which repressing essential genes in the host was achieved. By adding doxycycline to the drinking water starting 3 days prior to (dox - 3D) or 2 days post (dox + 2D) infection, the phenotypic consequences of temporal gene inactivation were assessed by monitoring animal survival and fungal burden in prophylaxis and acute infection settings. Of 177 selected conditional shut-off strains tested, the virulence of 102 was blocked under both repressing conditions, suggesting that the corresponding genes are essential for growth and survival in a murine host across early and established infection periods. Among these genes were those previously identified as antifungal drug targets (i.e., FKS1, ERG1, and ERG11), verifying that this methodology can be used to validate potential new targets. We also identify genes either conditionally essential or dispensable for in vitro growth but required for survival and virulence, including those in late stage ergosterol synthesis, or early steps in fatty acid or riboflavin biosynthesis. This study evaluates the role of essential genes with respect to pathogen virulence in a large-scale, systems biology context, and provides a general method for gene target validation and for uncovering unexpected antimicrobial targets. PMID:21135205

  19. Dopamine receptor antagonist thioridazine inhibits tumor growth in a murine breast cancer model.

    PubMed

    Yin, Tao; He, Sisi; Shen, Guobo; Ye, Tinghong; Guo, Fuchun; Wang, Yongsheng

    2015-09-01

    Neuropsychological factors have been shown to influence tumor progression and therapeutic response. The present study investigated the effect of the dopamine receptor antagonist thioridazine on murine breast cancer. The anti‑tumor efficacy of thioridazine was assessed using a murine breast cancer model. Cell apoptosis and proliferation were analyzed in vitro using flow cytometry (FCM) and the MTT assay, respectively. Western blot analysis was performed to assess Akt, phosphorylated (p)‑Akt, signal transducer and activator of transcription (STAT) 3, p‑STAT3 and p‑p65 in tumor cells following treatment with thioridazine. The Ki67 index and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)‑positive apoptotic cells were assessed in the tumor sections. Thioridazine was found to reduce tumor growth, inhibit tumor cell proliferation and induce apoptosis in a dose‑ and time‑dependent manner in vitro. Thioridazine was also found to markedly inhibit tumor proliferation and induce tumor cell apoptosis in vivo as shown by the lower Ki67 index and increase in TUNEL‑positive cells. In addition, thioridazine was observed to inhibit the activation of the canonical nuclear factor κ‑light‑chain‑enhancer of activated B cells pathway and exert anti‑tumor effects by remodeling the tumor stroma, as well as inhibit angiogenesis in the tumor microenvironment. In conclusion, thioridazine was found to significantly inhibit breast tumor growth and the potential for thioridazine to be used in cancer therapy may be re‑evaluated and investigated in clinical settings. PMID:26095429

  20. Murine corneal transplantation: a model to study the most common form of solid organ transplantation.

    PubMed

    Yin, Xiao-Tang; Tajfirouz, Deena A; Stuart, Patrick M

    2014-01-01

    Corneal transplantation is the most common form of organ transplantation in the United States with between 45,000 and 55,000 procedures performed each year. While several animal models exist for this procedure and mice are the species that is most commonly used. The reasons for using mice are the relative cost of using this species, the existence of many genetically defined strains that allow for the study of immune responses, and the existence of an extensive array of reagents that can be used to further define responses in this species. This model has been used to define factors in the cornea that are responsible for the relative immune privilege status of this tissue that enables corneal allografts to survive acute rejection in the absence of immunosuppressive therapy. It has also been used to define those factors that are most important in rejection of such allografts. Consequently, much of what we know concerning mechanisms of both corneal allograft acceptance and rejection are due to studies using a murine model of corneal transplantation. In addition to describing a model for acute corneal allograft rejection, we also present for the first time a model of late-term corneal allograft rejection. PMID:25490741

  1. Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma.

    PubMed

    Piyadasa, Hadeesha; Altieri, Anthony; Basu, Sujata; Schwartz, Jacquie; Halayko, Andrew J; Mookherjee, Neeloffer

    2016-01-01

    House dust mite (HDM) challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge. In this murine model, we used repeated HDM challenge for two weeks which induced hallmarks of allergic asthma seen in humans, including airway hyper-responsiveness (AHR) and elevated levels of circulating total and HDM-specific IgE and IgG1. Kinetic studies showed that at least 24 h after last HDM challenge results in significant AHR along with eosinophil infiltration in the lungs. Histologic assessment of lung revealed increased epithelial thickness and goblet cell hyperplasia, in the absence of airway wall collagen deposition, suggesting ongoing tissue repair concomitant with acute allergic lung inflammation. Thus, this model may be suitable to delineate airway inflammation processes that precede airway remodeling and development of fixed airway obstruction. We observed that a panel of cytokines e.g. IFN-γ, IL-1β, IL-4, IL-5, IL-6, KC, TNF-α, IL-13, IL-33, MDC and TARC were elevated in lung tissue and bronchoalveolar fluid, indicating local lung inflammation. However, levels of these cytokines remained unchanged in serum, reflecting lack of systemic inflammation in this model. Based on these findings, we further monitored the expression of 84 selected genes in lung tissues by quantitative real-time PCR array, and identified 31 mRNAs that were significantly up-regulated in lung tissue from HDM-challenged mice. These included genes associated with human asthma (e.g. clca3, ear11, il-13, il-13ra2, il-10, il-21, arg1 and chia1) and leukocyte recruitment in the lungs (e.g. ccl11, ccl12 and ccl24). This study describes a biosignature to enable broad and systematic interrogation of molecular mechanisms and intervention strategies for

  2. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    NASA Astrophysics Data System (ADS)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  3. Herpes Murine Model as a Biological Assay to Test Dialyzable Leukocyte Extracts Activity

    PubMed Central

    Salinas-Jazmín, Nohemí; Estrada-Parra, Sergio; Becerril-García, Miguel Angel; Limón-Flores, Alberto Yairh; Vázquez-Leyva, Said; Pavón, Lenin; Velasco-Velázquez, Marco Antonio; Pérez-Tapia, Sonia Mayra

    2015-01-01

    Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that are released on disruption of peripheral blood leukocytes from healthy donors. DLEs improve clinical responses in infections, allergies, cancer, and immunodeficiencies. Transferon is a human DLE that has been registered as a hemoderivate by Mexican health authorities and commercialized nationally. To develop an animal model that could be used routinely as a quality control assay for Transferon, we standardized and validated a murine model of cutaneous HSV-1 infection. Using this model, we evaluated the activity of 27 Transferon batches. All batches improved the survival of HSV-1-infected mice, wherein average survival rose from 20.9% in control mice to 59.6% in Transferon-treated mice. The activity of Transferon correlated with increased serum levels of IFN-γ and reduced IL-6 and TNF-α concentrations. Our results demonstrate that (i) this mouse model of cutaneous herpes can be used to examine the activity of DLEs, such as Transferon; (ii) the assay can be used as a routine test for batch release; (iii) Transferon is produced with high homogeneity between batches; (iv) Transferon does not have direct virucidal, cytoprotective, or antireplicative effects; and (v) the protective effect of Transferon in vivo correlates with changes in serum cytokines. PMID:25984538

  4. An improved syngeneic orthotopic murine model of human breast cancer progression.

    PubMed

    Rashid, Omar M; Nagahashi, Masayuki; Ramachandran, Suburamaniam; Dumur, Catherine; Schaum, Julia; Yamada, Akimitsu; Terracina, Krista P; Milstien, Sheldon; Spiegel, Sarah; Takabe, Kazuaki

    2014-10-01

    Breast cancer drug development costs nearly $610 million and 37 months in preclinical mouse model trials with minimal success rates. Despite these inefficiencies, there are still no consensus breast cancer preclinical models. Murine mammary adenocarcinoma 4T1-luc2 cells were implanted subcutaneous (SQ) or orthotopically percutaneous (OP) injection in the area of the nipple, or surgically into the chest 2nd mammary fat pad under direct vision (ODV) in Balb/c immunocompetent mice. Tumor progression was followed by in vivo bioluminescence and direct measurements, pathology and survival determined, and tumor gene expression analyzed by genome-wide microarrays. ODV produced less variable-sized tumors and was a reliable method of implantation. ODV implantation into the chest 2nd mammary pad rather than into the abdominal 4th mammary pad, the most common implantation site, better mimicked human breast cancer progression pattern, which correlated with bioluminescent tumor burden and survival. Compared to SQ, ODV produced tumors that differentially expressed genes whose interaction networks are of importance in cancer research. qPCR validation of 10 specific target genes of interest in ongoing clinical trials demonstrated significant differences in expression. ODV implantation into the chest 2nd mammary pad provides the most reliable model that mimics human breast cancer compared from subcutaneous implantation that produces tumors with different genome expression profiles of clinical significance. Increased understanding of the limitations of the different preclinical models in use will help guide new investigations and may improve the efficiency of breast cancer drug development . PMID:25200444

  5. Anti-tumor angiogenesis effect of genetic fusion vaccine encoding murine beta-defensin 2 and tumor endothelial marker-8 in a CT-26 murine colorectal carcinoma model

    PubMed Central

    Liu, Ping; Xie, Ganfeng; Geng, Peiliang; Zheng, Chenhong; Li, Jianjun; Pan, Feng; Ruan, Zhihua; Liang, Houjie

    2015-01-01

    Tumor endothelial marker 8 (TEM8) is an endothelial-specific marker that is upregulated during tumor angiogenesis. We previously demonstrated that DNA-based vaccine encoding xenogeneic TEM8 can potentiate anti-angiogenesis immunotherapy of malignancy; nevertheless, it remains to be improved in minimizing immune tolerance. Recently, it has been reported that murine beta-defensin 2 (MBD2) is chemotactic for immature dendritic cells and plays a pivotal role in breaking immune tolerance. Herein, we constructed a genetic fusion vaccine encoding murine TEM8 and MBD2 to investigate whether the novel vaccine preferentially elicits therapeutic antitumor immune responses and suppresses cancerous angiogenesis in mouse models. The anti-angiogenesis effect was determined by microvessel density (MVD) using immunohistochemical staining. The efficacy of the fusion vaccine was primarily assessed by detecting cytotoxic T lymphocyte activity (51Cr-release assay). Enzyme-linked immunosorbent spot (ELISpot) assay was used to detect TEM8-specific INF-γ production, and the activity of CTL was further verified by a depletion of CD8+ T cells via anti-CD8 monoclonal antibody. Our results showed that the DNA fusion vaccine possessed an enhanced therapeutic antitumor immunity through anti-angiogenesis in BALB/c mice inoculated with CT26 cells, and this effect was generally attributed to stimulation of an antigen specific CD8+ T-cell response against mTEM8. In conclusion, our study demonstrated that the fusion vaccine based on mTEM8 and MBD2 induced autoimmunity against endothelial cells, resulting in deceleration of tumor growth, and could be potential therapeutical application in clinic. PMID:26064415

  6. The combination of cannabidiol and Δ9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model.

    PubMed

    Scott, Katherine A; Dalgleish, Angus G; Liu, Wai M

    2014-12-01

    High-grade glioma is one of the most aggressive cancers in adult humans and long-term survival rates are very low as standard treatments for glioma remain largely unsuccessful. Cannabinoids have been shown to specifically inhibit glioma growth as well as neutralize oncogenic processes such as angiogenesis. In an attempt to improve treatment outcome, we have investigated the effect of Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) both alone and in combination with radiotherapy in a number of glioma cell lines (T98G, U87MG, and GL261). Cannabinoids were used in two forms, pure (P) and as a botanical drug substance (BDS). Results demonstrated a duration- and dose-dependent reduction in cell viability with each cannabinoid and suggested that THC-BDS was more efficacious than THC-P, whereas, conversely, CBD-P was more efficacious than CBD-BDS. Median effect analysis revealed all combinations to be hyperadditive [T98G 48-hour combination index (CI) at FU50, 0.77-1.09]. Similarly, pretreating cells with THC-P and CBD-P together for 4 hours before irradiation increased their radiosensitivity when compared with pretreating with either of the cannabinoids individually. The increase in radiosensitivity was associated with an increase in markers of autophagy and apoptosis. These in vitro results were recapitulated in an orthotopic murine model for glioma, which showed dramatic reductions in tumor volumes when both cannabinoids were used with irradiation (day 21: 5.5 ± 2.2 mm(3) vs. 48.7 ± 24.9 mm(3) in the control group; P < 0.01). Taken together, our data highlight the possibility that these cannabinoids can prime glioma cells to respond better to ionizing radiation, and suggest a potential clinical benefit for glioma patients by using these two treatment modalities. PMID:25398831

  7. Characterization of the Invasive, Multidrug Resistant Non-typhoidal Salmonella Strain D23580 in a Murine Model of Infection.

    PubMed

    Yang, Jiseon; Barrila, Jennifer; Roland, Kenneth L; Kilbourne, Jacquelyn; Ott, C Mark; Forsyth, Rebecca J; Nickerson, Cheryl A

    2015-06-01

    A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of the more human-restricted pathogen, Salmonella enterica serovar Typhi. It has since been shown through tissue distribution studies that D23580 is able to establish an invasive infection in chickens. However, it remains unclear whether ST313 can cause lethal disease in a non-human host following a natural course of infection. Herein we report that D23580 causes lethal and invasive disease in a murine model of infection following peroral challenge. The LD50 of D23580 in female BALB/c mice was 4.7 x 10(5) CFU. Tissue distribution studies performed 3 and 5 days post-infection confirmed that D23580 was able to more rapidly colonize the spleen, mesenteric lymph nodes and gall bladder in mice when compared to the well-characterized S. Typhimurium strain SL1344. D23580 exhibited enhanced resistance to acid stress relative to SL1344, which may lend towards increased capability to survive passage through the gastrointestinal tract as well as during its intracellular lifecycle. Interestingly, D23580 also displayed higher swimming motility relative to SL1344, S. Typhi strain Ty2, and the ST313 strain A130. Biochemical tests revealed that D23580 shares many similar metabolic features with SL1344, with several notable differences in the Voges-Proskauer and catalase tests, as well alterations in melibiose, and inositol utilization. These results represent the first full duration infection study using an ST313 strain following the entire natural course of disease progression, and serve as a benchmark for ongoing and future studies into the pathogenesis of D23580. PMID:26091096

  8. Characterization of the Invasive, Multidrug Resistant Non-typhoidal Salmonella Strain D23580 in a Murine Model of Infection

    PubMed Central

    Roland, Kenneth L.; Kilbourne, Jacquelyn; Ott, C. Mark; Forsyth, Rebecca J.; Nickerson, Cheryl A.

    2015-01-01

    A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of the more human-restricted pathogen, Salmonella enterica serovar Typhi. It has since been shown through tissue distribution studies that D23580 is able to establish an invasive infection in chickens. However, it remains unclear whether ST313 can cause lethal disease in a non-human host following a natural course of infection. Herein we report that D23580 causes lethal and invasive disease in a murine model of infection following peroral challenge. The LD50 of D23580 in female BALB/c mice was 4.7 x 105 CFU. Tissue distribution studies performed 3 and 5 days post-infection confirmed that D23580 was able to more rapidly colonize the spleen, mesenteric lymph nodes and gall bladder in mice when compared to the well-characterized S. Typhimurium strain SL1344. D23580 exhibited enhanced resistance to acid stress relative to SL1344, which may lend towards increased capability to survive passage through the gastrointestinal tract as well as during its intracellular lifecycle. Interestingly, D23580 also displayed higher swimming motility relative to SL1344, S. Typhi strain Ty2, and the ST313 strain A130. Biochemical tests revealed that D23580 shares many similar metabolic features with SL1344, with several notable differences in the Voges-Proskauer and catalase tests, as well alterations in melibiose, and inositol utilization. These results represent the first full duration infection study using an ST313 strain following the entire natural course of disease progression, and serve as a benchmark for ongoing and future studies into the pathogenesis of D23580. PMID:26091096

  9. A Murine Closed-chest Model of Myocardial Ischemia and Reperfusion

    PubMed Central

    Kim, Se-Chan; Boehm, Olaf; Meyer, Rainer; Hoeft, Andreas; Knüfermann, Pascal; Baumgarten, Georg

    2012-01-01

    Surgical trauma by thoracotomy in open-chest models of coronary ligation induces an immune response which modifies different mechanisms involved in ischemia and reperfusion. Immune response includes cytokine expression and release or secretion of endogenous ligands of innate immune receptors. Activation of innate immunity can potentially modulate infarct size. We have modified an existing murine closed-chest model using hanging weights which could be useful for studying myocardial pre- and postconditioning and the role of innate immunity in myocardial ischemia and reperfusion. This model allows animals to recover from surgical trauma before onset of myocardial ischemia. Volatile anesthetics have been intensely studied and their preconditioning effect for the ischemic heart is well known. However, this protective effect precludes its use in open chest models of coronary artery ligation. Thus, another advantage could be the use of the well controllable volatile anesthetics for instrumentation in a chronic closed-chest model, since their preconditioning effect lasts up to 72 hours. Chronic heart diseases with intermittent ischemia and multiple hit models are other possible applications of this model. For the chronic closed-chest model, intubated and ventilated mice undergo a lateral blunt thoracotomy via the 4th intercostal space. Following identification of the left anterior descending a ligature is passed underneath the vessel and both suture ends are threaded through an occluder. Then, both suture ends are passed through the chest wall, knotted to form a loop and left in the subcutaneous tissue. After chest closure and recovery for 5 days, mice are anesthetized again, chest skin is reopened and hanging weights are hooked up to the loop under ECG control. At the end of the ischemia/reperfusion protocol, hearts can be stained with TTC for infarct size assessment or undergo perfusion fixation to allow morphometric studies in addition to histology and

  10. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response

    PubMed Central

    Nash, Evelyn E.; Peters, Brian M.; Lilly, Elizabeth A.; Noverr, Mairi C.; Fidel, Paul L.

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation. PMID:26807975

  11. Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome[S

    PubMed Central

    Kiebish, Michael A.; Yang, Kui; Liu, Xinping; Mancuso, David J.; Guan, Shaoping; Zhao, Zhongdan; Sims, Harold F.; Cerqua, Rebekah; Cade, W. Todd; Han, Xianlin; Gross, Richard W.

    2013-01-01

    Barth syndrome is a complex metabolic disorder caused by mutations in the mitochondrial transacylase tafazzin. Recently, an inducible tafazzin shRNA knockdown mouse model was generated to deconvolute the complex bioenergetic phenotype of this disease. To investigate the underlying cause of hemodynamic dysfunction in Barth syndrome, we interrogated the cardiac structural and signaling lipidome of this mouse model as well as its myocardial bioenergetic phenotype. A decrease in the distribution of cardiolipin molecular species and robust increases in monolysocardiolipin and dilysocardiolipin were demonstrated. Additionally, the contents of choline and ethanolamine glycerophospholipid molecular species containing precursors for lipid signaling at the sn-2 position were altered. Lipidomic analyses revealed specific dysregulation of HETEs and prostanoids, as well as oxidized linoleic and docosahexaenoic metabolites. Bioenergetic interrogation uncovered differential substrate utilization as well as decreases in Complex III and V activities. Transgenic expression of cardiolipin synthase or iPLA2γ ablation in tafazzin-deficient mice did not rescue the observed phenotype. These results underscore the complex nature of alterations in cardiolipin metabolism mediated by tafazzin loss of function. Collectively, we identified specific lipidomic, bioenergetic, and signaling alterations in a murine model that parallel those of Barth syndrome thereby providing novel insights into the pathophysiology of this debilitating disease. PMID:23410936

  12. Acute and chronic exposure to Tyrophagus putrescentiae induces allergic pulmonary response in a murine model

    PubMed Central

    Nuñez, Nailê Karine; dos Santos Dutra, Moisés; Barbosa, Gustavo Leivas; Morassutti, Alessandra Loureiro; de Souza, Rodrigo Godinho; Vargas, Mauro Henrique Moraes; Antunes, Géssica Luana; Silveira, Josiane Silva; da Silva, Guilherme Liberato; Pitrez, Paulo Márcio

    2016-01-01

    Background Tyrophagus putrescentiae (Tp) is a source of aeroallergen that causes allergic diseases. Objective To describe an acute and chronic murine model of allergic asthma with Tp extract with no systemic sensitization and no use of adjuvant. Methods Mites from dust sample were cultured and a raw extract was produced. Female BALB/c mice (6-8 weeks) were challenged intranasally with Tp extract or Dulbecco's phosphate-buffered saline, for 10 consecutive days (acute protocol) or for 6 weeks (chronic protocol). Twenty-four hours after the last intranasal challenge, bronchoalveolar lavage fluid (BALF) was performed for total and differential cells count, cytokine analysis, and eosinophil peroxidase activity. Lung tissue was also removed for histopathologic analysis. Results Tp extract has shown a significant increase in total cells count from BALF as well as an increase in absolute eosinophils count, eosinophil peroxidase activity, interleukin (IL)-5 and IL-13 levels, in both acute and chronic protocols. Peribronchovascular infiltrate, goblet cells hyperplasia and collagen deposition were shown in the airways of acute and chronic Tp-exposed mice. Conclusion Our data suggest that the intranasal exposure to Tp extract, with no systemic sensitization and no use of adjuvants, induces a robust allergic inflammation in the lungs of mice, in both acute and chronic models. Our Tp extract seems to be a potent allergen extract which may be used in asthma model studies. PMID:26844220

  13. 4D optical coherence tomography of aortic valve dynamics in a murine mouse model ex vivo

    NASA Astrophysics Data System (ADS)

    Schnabel, Christian; Jannasch, Anett; Faak, Saskia; Waldow, Thomas; Koch, Edmund

    2015-07-01

    The heart and its mechanical components, especially the heart valves and leaflets, are under enormous strain during lifetime. Like all highly stressed materials, also these biological components undergo fatigue and signs of wear, which impinge upon cardiac output and in the end on health and living comfort of affected patients. Thereby pathophysiological changes of the aortic valve leading to calcific aortic valve stenosis (AVS) as most frequent heart valve disease in humans are of particular interest. The knowledge about changes of the dynamic behavior during the course of this disease and the possibility of early stage diagnosis could lead to the development of new treatment strategies and drug-based options of prevention or therapy. ApoE-/- mice as established model of AVS versus wildtype mice were introduced in an ex vivo artificially stimulated heart model. 4D optical coherence tomography (OCT) in combination with high-speed video microscopy were applied to characterize dynamic behavior of the murine aortic valve and to characterize dynamic properties during artificial stimulation. OCT and high-speed video microscopy with high spatial and temporal resolution represent promising tools for the investigation of dynamic behavior and their changes in calcific aortic stenosis disease models in mice.

  14. Murine Model of Chemotherapy-Induced Extraintestinal Pathogenic Escherichia coli Translocation

    PubMed Central

    Green, Sabrina I.; Ajami, Nadim J.; Ma, Li; Poole, Nina M.; Price, Roger E.; Petrosino, Joseph F.

    2015-01-01

    Escherichia coli is a major cause of life-threatening infections in patients with neutropenia, particularly those receiving chemotherapy for the treatment of cancer. In most cases, these infections originate from opportunistic strains living within the patient's gastrointestinal tract which then translocate to major organ systems. There are no animal models that faithfully recapitulate these infections, and, as such, the host or bacterial factors that govern this process remain unidentified. We present here a novel model of chemotherapy-induced bacterial translocation of E. coli. Oral gavage of BALB/c mice with a clinical isolate of extraintestinal pathogenic E. coli (ExPEC) leads to stable and long-term colonization of the murine intestine. Following the induction of neutropenia with the chemotherapeutic drug cyclophosphamide, ExPEC translocates from the intestine to the lungs, liver, spleen, and kidneys with concomitant morbidity in infected animals. Translocation can also occur in mice bearing mammary tumors, even in the absence of chemotherapy. Translocation of ExPEC is also associated with an increase of the diversity of bacterial DNA detected in the blood. This is the first report of a chemotherapy-based animal model of ExPEC translocation in cancerous mice, a system that can be readily used to identify important virulence factors for this process. PMID:26034214

  15. Murine Model of Buckwheat Allergy by Intragastric Sensitization with Fresh Buckwheat Flour Extract

    PubMed Central

    Oh, Sejo; Lee, Kisun; Jang, Young-Ju; Sohn, Myung-Hyun; Lee, Kyoung-En; Kim, Kyu-Earn

    2005-01-01

    Food allergies affect about 4% of the Korean population, and buckwheat allergy is one of the most severe food allergies in Korea. The purpose of the present study was to develop a murine model of IgE-mediated buckwheat hypersensitivity induced by intragastric sensitization. Young female C3H/HeJ mice were sensitized and challenged intragastricly with fresh buckwheat flour (1, 5, 25 mg/dose of proteins) mixed in cholera toxin, followed by intragastric challenge. Anaphylactic reactions, antigen-specific antibodies, splenocytes proliferation assays and cytokine productions were evaluated. Oral buckwheat challenges of sensitized mice provoked anaphylactic reactions such as severe scratch, perioral/periorbital swellings, or decreased activity. Reactions were associated with elevated levels of buckwheat-specific IgE antibodies. Splenocytes from buckwheat allergic mice exhibited significantly greater proliferative responses to buckwheat than non-allergic mice. Buckwheat-stimulated IL-4, IL-5, and INF-γ productions were associated with elevated levels of buckwheat-specific IgE in sensitized mice. In this model, 1 mg and 5 mg dose of sensitization produced almost the same degree of Th2-directed immune response, however, a 25 mg dose showed blunted antibody responses. In conclusion, we developed IgE-mediated buckwheat allergy by intragastric sensitization and challenge, and this model could provide a good tool for future studies. PMID:16100445

  16. Excisional Wound Healing Is Delayed in a Murine Model of Chronic Kidney Disease

    PubMed Central

    Seth, Akhil K.; De la Garza, Mauricio; Fang, Robert C.; Hong, Seok J.; Galiano, Robert D.

    2013-01-01

    Background Approximately 15% of the United States population suffers from chronic kidney disease (CKD), often demonstrating an associated impairment in wound healing. This study outlines the development of a surgical murine model of CKD in order to investigate the mechanisms underlying this impairment. Methods CKD was induced in mice by partial cauterization of one kidney cortex and contralateral nephrectomy, modifying a previously published technique. After a minimum of 6-weeks, splinted, dorsal excisional wounds were created to permit assessment of wound healing parameters. Wounds were harvested on postoperative days (POD) 0, 3, 7, and 14 for histological, immunofluorescent, and quantitative PCR (qPCR). Results CKD mice exhibited deranged blood chemistry and hematology profiles, including profound uremia and anemia. Significant decreases in re-epithelialization and granulation tissue deposition rates were found in uremic mice wounds relative to controls. On immunofluorescent analysis, uremic mice demonstrated significant reductions in cellular proliferation (BrdU) and angiogenesis (CD31), with a concurrent increase in inflammation (CD45) as compared to controls. CKD mice also displayed differential expression of wound healing-related genes (VEGF, IL-1β, eNOS, iNOS) on qPCR. Conclusions These findings represent the first reported investigation of cutaneous healing in a CKD animal model. Ongoing studies of this significantly delayed wound healing phenotype include the establishment of renal failure model in diabetic strains to study the combined effects of CKD and diabetes. PMID:23536900

  17. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response.

    PubMed

    Nash, Evelyn E; Peters, Brian M; Lilly, Elizabeth A; Noverr, Mairi C; Fidel, Paul L

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation. PMID:26807975

  18. Increased longevity and metabolic correction following syngeneic BMT in a murine model of mucopolysaccharidosis type I.

    PubMed

    Wolf, D A; Lenander, A W; Nan, Z; Braunlin, E A; Podetz-Pedersen, K M; Whitley, C B; Gupta, P; Low, W C; McIvor, R S

    2012-09-01

    Mucopolysaccharidosis type I (MPS I) is an autosomal recessive inherited disease caused by deficiency of the glycosidase α-L-iduronidase (IDUA). Deficiency of IDUA leads to lysosomal accumulation of glycosaminoglycans (GAG) heparan and dermatan sulfate and associated multi-systemic disease, the most severe form of which is known as Hurler syndrome. Since 1981, the treatment of Hurler patients has often included allogeneic BMT from a matched donor. However, mouse models of the disease were not developed until 1997. To further characterize the MPS-I mouse model and to study the effectiveness of BMT in these animals, we engrafted a cohort (n=33) of 4-8-week-old Idua(-/-) animals with high levels (88.4±10.3%) of wild-type donor marrow. Engrafted animals displayed an increased lifespan, preserved cardiac function, partially restored IDUA activity in peripheral organs and decreased GAG accumulation in both peripheral organs and in the brain. However, levels of GAG and GM3 ganglioside in the brain remained elevated in comparison to unaffected animals. As these results are similar to those observed in Hurler patients following BMT, this murine-transplantation model can be used to evaluate the effects of novel, more effective methods of delivering IDUA to the brain as an adjunct to BMT. PMID:22179554

  19. High and low frequency subharmonic imaging of angiogenesis in a murine breast cancer model.

    PubMed

    Dahibawkar, Manasi; Forsberg, Mark A; Gupta, Aditi; Jaffe, Samantha; Dulin, Kelly; Eisenbrey, John R; Halldorsdottir, Valgerdur G; Forsberg, Anya I; Dave, Jaydev K; Marshall, Andrew; Machado, Priscilla; Fox, Traci B; Liu, Ji-Bin; Forsberg, Flemming

    2015-09-01

    This project compared quantifiable measures of tumor vascularity obtained from contrast-enhanced high frequency (HF) and low frequency (LF) subharmonic ultrasound imaging (SHI) to 3 immunohistochemical markers of angiogenesis in a murine breast cancer model (since angiogenesis is an important marker of malignancy and the target of many novel cancer treatments). Nineteen athymic, nude, female rats were implanted with 5×10(6) breast cancer cells (MDA-MB-231) in the mammary fat pad. The contrast agent Definity (Lantheus Medical Imaging, N Billerica, MA) was injected in a tail vein (dose: 180μl/kg) and LF pulse-inversion SHI was performed with a modified Sonix RP scanner (Analogic Ultrasound, Richmond, BC, Canada) using a L9-4 linear array (transmitting/receiving at 8/4MHz in SHI mode) followed by HF imaging with a Vevo 2100 scanner (Visualsonics, Toronto, ON, Canada) using a MS250 linear array transmitting and receiving at 24MHz. The radiofrequency data was filtered using a 4th order IIR Butterworth bandpass filter (11-13MHz) to isolate the subharmonic signal. After the experiments, specimens were stained for endothelial cells (CD31), vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). Fractional tumor vascularity was calculated as contrast-enhanced pixels over all tumor pixels for SHI, while the relative area stained over total tumor area was calculated from specimens. Results were compared using linear regression analysis. Out of 19 rats, 16 showed tumor growth (84%) and 11 of them were successfully imaged. HF SHI demonstrated better resolution, but weaker signals than LF SHI (0.06±0.017 vs. 0.39±0.059; p<0.001). The strongest overall correlation in this breast cancer model was between HF SHI and VEGF (r=-0.38; p=0.03). In conclusion, quantifiable measures of tumor neovascularity derived from contrast-enhanced HF SHI appear to be a better method than LF SHI for monitoring angiogenesis in a murine xenograft model of breast cancer

  20. A murine model of appendicitis and the impact of inflammation on appendiceal lymphocyte constituents

    PubMed Central

    Watson Ng, W S; Hampartzoumian, T; Lloyd, A R; Grimm, M C

    2007-01-01

    Data indicate that appendicectomy for intra-abdominal inflammation protects against inflammatory bowel disease (IBD). This suggests an important role for the appendix in mucosal immunity. There is no established model of appendicitis. We therefore developed a murine model of appendicitis and examined the effect of inflammation on appendiceal lymphocyte constituents. The caecal patch of specific pathogen-free (SPF)-Balb/c mice was transformed into an obstructed ‘appendiceal pouch’ by standardized suction and band ligation. Mice were killed and ‘pouches’ removed for histology and phenotypic analysis of leucocytes by flow cytometry. Serum C-reactive protein (CRP) was determined by enzyme-linked immunosorbent assay. All ‘pouches’ developed features resembling human appendicitis – mucosal ulceration, transmural inflammation with neutrophils, lymphocytes and occasional eosinophils, and serositis. These changes were most evident between days 7 and 10. There was significant elevation of serum CRP (8·0 ± 0·3 ng/ml to 40·0 ± 3·1 ng/ml; P < 0·01), indicating systemic inflammation. Following the initial neutrophil-predominant response, there was an increase in CD4− (15·3% ± 1·2% to 31·0 ± 2·0%; P < 0·01) and CD8− T lymphocytes (3·7% ± 0·6% to 9·2 ± 0·8%; P < 0·01). CD25− forkhead box P3 (FoxP3)− regulatory T lymphocytes were increased by 66% (P < 0·01). Furthermore, significant increases in CD8− FoxP3− regulatory T lymphocytes were restricted to younger mice (age < 10 weeks, P < 0·003). This is the first description of a murine model of appendicitis. Inflammation resulted in T lymphocyte accumulation associated with an increase in regulatory T lymphocytes, which might explain the age-dependent protective phenomenon. Further exploration will provide insights into the mechanisms of intestinal immune homeostasis and the immunopathogenesis of IBD. PMID:17680826

  1. Pharmacokinetic-pharmacodynamic assessment of faropenem in a lethal murine Bacillus anthracis inhalation postexposure prophylaxis model.

    PubMed

    Gill, Stanley C; Rubino, Christopher M; Bassett, Jennifer; Miller, Lynda; Ambrose, Paul G; Bhavnani, Sujata M; Beaudry, Amber; Li, Jinfang; Stone, Kimberly Clawson; Critchley, Ian; Janjic, Nebojsa; Heine, Henry S

    2010-05-01

    There are few options for prophylaxis after exposure to Bacillus anthracis, especially in children and women of childbearing potential. Faropenem is a beta-lactam in the penem subclass that is being developed as an oral prodrug, faropenem medoxomil, for the treatment of respiratory tract infections. Faropenem was shown to have in vitro activity against B. anthracis strains that variably express the bla1 beta-lactamase (MIC range, murine postexposure prophylaxis inhalation model. The plasma PKs and PKs-PDs of faropenem were evaluated in BALB/c mice following the intraperitoneal (i.p.) administration of doses ranging from 2.5 to 160 mg/kg of body weight. For the evaluation of efficacy, mice received by inhalation aerosol doses of B. anthracis (Ames strain; faropenem MIC, 0.06 microg/ml) at 100 times the 50% lethal dose. The faropenem dosing regimens (10, 20, 40, and 80 mg/kg/day) were administered i.p. at 24 h postchallenge at 4-, 6-, and 12-h intervals for 14 days. The sigmoid maximum-threshold-of-efficacy (E(max)) model fit the survival data, in which the free-drug area under the concentration-time curve (fAUC)/MIC ratio, the maximum concentration of free drug in plasma (fC(max))/MIC ratio, and the cumulative percentage of a 24-h period that the free-drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (f %T(MIC)) were each evaluated. Assessment of f %T(MIC) demonstrated the strongest correlation with survival (R(2) = 0.967) compared to the correlations achieved by assessment of fAUC/MIC or fC(max)/MIC, for which minimal correlations were observed. The 50% effective dose (ED(50)), ED(90), and ED(99) corresponded to f %T(MIC) values of 10.6, 13.4, and 16.4%, respectively, and E(max) was 89.3%. Overall, faropenem demonstrated a high

  2. Interleukin-17A and Neutrophils in a Murine Model of Bird-Related Hypersensitivity Pneumonitis

    PubMed Central

    Ishizuka, Masahiro; Miyazaki, Yasunari; Masuo, Masahiro; Suhara, Kozo; Tateishi, Tomoya; Yasui, Makito; Inase, Naohiko

    2015-01-01

    Hypersensitivity pneumonitis (HP) is an immune mediated lung disease induced by the repeated inhalation of a wide variety of antigens. Bird-related hypersensitivity pneumonitis (BRHP) is one of the most common forms of HP in human and results from the inhalation of avian antigens. The findings of a recent clinical analysis suggest that in addition to Th1 factors, the levels of interleukin(IL)-17 and IL-17-associated transcripts are increased in the setting of HP, and that both IL-17A and neutrophils are crucial for the development of pulmonary inflammation in murine models of HP. Our objectives were to investigate the roles of IL-17A and neutrophils in granuloma-forming inflammation in an acute HP model. We developed a mouse model of acute BRHP using pigeon dropping extract. We evaluated the process of granuloma formation and the roles of both IL-17A and neutrophils in a model. We found that the neutralization of IL-17A by the antibody attenuated granuloma formation and the recruitment of neutrophils, and also decreased the expression level of chemokine(C-X-C motif) ligand 5 (CXCL5) in the acute HP model. We confirmed that most of the neutrophils in the acute HP model exhibited immunoreactivity to the anti-IL-17 antibody. We have identified the central roles of both IL-17A and neutrophils in the pathogenesis of granuloma formation in acute HP. We have also assumed that neutrophils are an important source of IL-17A in an acute HP model, and that the IL-17A-CXCL5 pathway may be responsible for the recruitment of neutrophils. PMID:26367130

  3. Effect of charred Radix et Rhizoma Rhei in a laser-induced choroidal neovascularization murine model.

    PubMed

    Han, Dongmei; Yao, Yuan; Sun, Yong; Gong, Yuanyuan; Wu, Xingwei

    2015-04-01

    A pharmaceutical composition (patent no. WO2012079419) exhibited favorable outcomes in a clinical trial of wet age‑related macular degeneration. The aims of the present study were to explore the effects of one composition component, charred Radix et Rhizoma Rhei (CRRR), in a laser‑induced choroidal neovascularization (CNV) murine model. A total of 30 eight‑week‑old C57BL/6 mice were subjected to diode laser treatment, and CNV was induced by rupturing the Bruch's membrane. The mice were then randomly divided into two groups: the CRRR‑treated group that was administered CRRR water extract (concentration, 0.6 g/100 ml; dose, 1 ml/0.1 kg twice a day for 21 days); and the control group that was treated with saline (dose, 1 ml/0.1 kg twice a day for 21 days). The retinal tissue was subjected to quantitative polymerase chain reaction (qPCR) and western blot analysis to determine the expression levels of interleukin‑10 (IL‑10) and vascular epithelial growth factor (VEGF) at day seven following laser treatment. At weeks 2 and 3 after laser treatment, fundus fluorescein angiography was performed and graded to assess the severity of lesion leakage. Retinal flat mounts were prepared for three‑dimensional confocal microscopy at day 22 after laser treatment. At days 14 and 21 after laser treatment, no statistically significant differences were observed between the clinically relevant lesions of the CRRR‑treated and control mice. CNV volumes were not found to be significantly different between the CRRR‑treated and control mice. The expression levels of IL‑10 were significantly increased in the CRRR‑treated mice (P<0.05). However, no statistically significant differences were observed between the VEGF expression levels of the CRRR‑treated and control mice. In conclusion, CRRR did not appear to significantly inhibit CNV in this murine model. The function of CRRR in the pharmaceutical composition may be due to the effects of IL‑10 and a synergistic effect

  4. A mammary adenocarcinoma murine model suitable for the study of cancer immunoediting

    PubMed Central

    2014-01-01

    Background Cancer immunoediting is a dynamic process composed of three phases: elimination (EL), equilibrium (EQ) and escape (ES) that encompasses the potential host-protective and tumor-sculpting functions of the immune system throughout tumor development. Animal models are useful tools for studying diseases such as cancer. The present study was designed to characterize the interaction between mammary adenocarcinoma M-406 and CBi, CBi− and CBi/L inbred mice lines. Results The mammary adenocarcinoma M-406 developed spontaneously in a CBi mouse. CBi/L and CBi− mice were artificially selected for body conformation from CBi. When CBi mice are s.c. challenged with M-406, tumor growths exponentially in 100% of animals, while in CBi− the tumor growths briefly and then begins a rejection process in 100% of the animals. In CBi/L the growth of the tumor shows the three phases: 51.6% in ES, 18.5% in EQ and 29.8% in EL. Conclusions The results obtained support the conclusion that the system M-406 plus the inbred mouse lines CBi, CBi− and CBi/L, is a good murine model to study the process of tumor immunoediting. PMID:24885995

  5. Roflumilast Prevents the Metabolic Effects of Bleomycin-Induced Fibrosis in a Murine Model

    PubMed Central

    Milara, Javier; Morcillo, Esteban; Monleon, Daniel; Tenor, Herman; Cortijo, Julio

    2015-01-01

    Fibrotic remodeling is a process common to chronic lung diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, acute respiratory distress syndrome and asthma. Based on preclinical studies phosphodiesterase 4 (PDE4) inhibitors may exhibit beneficial anti-inflammatory and anti-remodeling properties for the treatment of these respiratory disorders. Effects of PDE4 inhibitors on changes in the lung metabolome in models of pulmonary fibrotic remodeling have not yet been explored. This work studies the effects of the PDE4 inhibitor roflumilast on changes in the lung metabolome in the common murine model of bleomycin-induced lung fibrosis by nuclear magnetic resonance (NMR) metabolic profiling of intact lung tissue. Metabolic profiling reveals strong differences between fibrotic and non-fibrotic tissue. These differences include increases in proline, glycine, lactate, taurine, phosphocholine and total glutathione and decreases in global fatty acids. In parallel, there was a loss in plasma BH4. This profile suggests that bleomycin produces alterations in the oxidative equilibrium, a strong inflammatory response and activation of the collagen synthesis among others. Roflumilast prevented most of these metabolic effects associated to pulmonary fibrosis suggesting a favorable anti-fibrotic profile. PMID:26192616

  6. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-08-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumour-specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60 nm near-monodisperse nanoparticles that increased the systemic exposure of PTX by sevenfold compared with free drug and twofold compared with the Food and Drug Administration-approved taxane nanoformulation (Abraxane). The tumour uptake of the CP-PTX nanoparticle was fivefold greater than free drug and twofold greater than Abraxane. In a murine cancer model of human triple-negative breast cancer and prostate cancer, CP-PTX induced near-complete tumour regression after a single dose in both tumour models, whereas at the same dose, no mice treated with Abraxane survived for >80 days (breast) and 60 days (prostate), respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for PTX delivery.

  7. Surgical Debridement Is Superior to Sole Antibiotic Therapy in a Novel Murine Posttraumatic Osteomyelitis Model

    PubMed Central

    Wallner, Christoph; Ismer, Britta; Schira, Jessica; Abraham, Stephanie; Harati, Kamran; Lehnhardt, Marcus; Behr, Björn

    2016-01-01

    Introduction Bone infections after trauma, i.e. posttraumatic osteomyelitis, pose one of the biggest problems of orthopedic surgery. Even after sufficient clinical therapy including vast debridement of infected bone and antibiotic treatment, regeneration of postinfectious bone seems to be restricted. One explanation includes the large sized defects resulting from sufficient debridement. Furthermore, it remains unclear if inflammatory processes after bone infection do affect bone regeneration. For continuing studies in this field, an animal model is needed where bone regeneration after sufficient treatment can be studied in detail. Methods For this purpose we created a stable infection in murine tibiae by Staphylococcus aureus inoculation. Thereafter, osteomyelitic bones were debrided thoroughly and animals were subsequently treated with antibiotics. Controls included debrided, non-infected, as well as infected animals exclusively treated with antibiotics. To verify sufficient treatment of infected bone, different assessments detecting S. aureus were utilized: agar plates, histology and RT-qPCR. Results All three detection methods revealed massive reduction or eradication of S. aureus within debrided bones 1 and 2 weeks postoperatively, whereas sole antibiotic therapy could not provide sufficient treatment of osteomyelitic bones. Debrided, previously infected bones showed significantly decreased bone formation, compared to debrided, non-infected controls. Discussion Thus, the animal model presented herein provides a reliable and fascinating tool to study posttraumatic osteomyelitis for clinical therapies. PMID:26872128

  8. Berberine inhibits human tongue squamous carcinoma cancer tumor growth in a murine xenograft model.

    PubMed

    Ho, Yung-Tsuan; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Jo-Hua; Li, Tsai-Chung; Lin, Jen-Jyh; Lai, Kuang-Chi; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2009-09-01

    Our primary studies showed that berberine induced apoptosis in human tongue cancer SCC-4 cells in vitro. But there is no report to show berberine inhibited SCC-4 cancer cells in vivo on a murine xenograft animal model. SCC-4 tumor cells were implanted into mice and groups of mice were treated with vehicle, berberine (10mg/kg of body weight) and doxorubicin (4mg/kg of body weight). The tested agents were injected once per four days intraperitoneally (i.p.), with treatment starting 4 weeks prior to cells inoculation. Treatment with 4mg/kg of doxorubicin or with 10mg/kg of berberine resulted in a reduction in tumor incidence. Tumor size in xenograft mice treated with 10mg/kg berberine was significantly smaller than that in the control group. Our findings indicated that berbeirne inhibits tumor growth in a xenograft animal model. Therefore, berberine may represent a tongue cancer preventive agent and can be used in clinic. PMID:19303753

  9. Curative haploidentical BMT in a murine model of X-linked chronic granulomatous disease.

    PubMed

    Takeuchi, Yasuo; Takeuchi, Emiko; Ishida, Takashi; Onodera, Masafumi; Nakauchi, Hiromitsu; Otsu, Makoto

    2015-07-01

    Chronic granulomatous disease (CGD) is a primary immunodeficiency disorder characterized by defective microbial killing in phagocytes. Long-term prognosis for CGD patients is generally poor, highlighting the need to develop minimally toxic, curative therapeutic approaches. We here describe the establishment of a mouse model in which X-linked CGD can be cured by allogeneic bone marrow transplantation. Using a combination of non-myeloablative-dose total body irradiation and a single injection of anti-CD40 ligand monoclonal antibody, transplantation of whole bone marrow cells achieved long-lasting mixed chimerism in X-linked CGD mice in a haploidentical transplantation setting. Stable mixed chimerism was maintained for up to 1 year even at a low range (<20 % donor cells), indicating induction of donor-specific tolerance. The regimen induced mild myelosuppression without severe acute complications. Stable chimerism was therapeutic, as it suppressed cutaneous granuloma formation in an in vivo test suited for evaluation of treatment efficacy in murine CGD models. These results warrant future development of a simplified allogeneic hematopoietic cell transplantation regimen that would benefit CGD patients by allowing the use of haploidentical donor grafts without serious concerns of severe treatment-related toxicity. PMID:25921405

  10. Resident alveolar macrophages suppress while recruited monocytes promote allergic lung inflammation in murine models of asthma

    PubMed Central

    Zasłona, Zbigniew; Przybranowski, Sally; Wilke, Carol; van Rooijen, Nico; Teitz-Tennenbaum, Seagal; Osterholzer, John J.; Wilkinson, John E.; Moore, Bethany B.; Peters-Golden, Marc

    2014-01-01

    The role and origin of alveolar macrophages (AMs) in asthma are incompletely defined. We sought to clarify these issues in the context of acute allergic lung inflammation utilizing house dust mite and ovalbumin murine models. Use of liposomal clodronate to deplete resident AMs (rAMs) resulted in increased levels of inflammatory cytokines and eosinophil numbers in lavage fluid and augmented histopathologic evidence of lung inflammation, suggesting a suppressive role of rAMs. Lung digests of asthmatic mice revealed an increased percentage of Ly6Chigh/CD11bpos inflammatory monocytes. Clodronate depletion of circulating monocytes, by contrast, resulted in an attenuation of allergic inflammation. A CD45.1/CD45.2 chimera model demonstrated that recruitment at least partially contributes to the AM pool in irradiated non-asthmatic mice, but its contribution was no greater in asthma. Ki-67 staining of AMs supported a role for local proliferation, which was increased in asthma. Our data demonstrate that rAMs dampen, while circulating monocytes promote, early events in allergic lung inflammation. Moreover, maintenance of the AM pool in the early stages of asthmatic inflammation depends on local proliferation but not recruitment. PMID:25225663

  11. A Paclitaxel-Loaded Recombinant Polypeptide Nanoparticle Outperforms Abraxane in Multiple Murine Cancer Models

    PubMed Central

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-01-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumor specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60-nm diameter near-monodisperse nanoparticles that increased the systemic exposure of PTX by 7-fold compared to free drug and 2-fold compared to the FDA approved taxane nanoformulation (Abraxane®). The tumor uptake of the CP-PTX nanoparticle was 5-fold greater than free drug and 2-fold greater than Abraxane. In a murine cancer model of human triple negative breast cancer and prostate cancer, CP-PTX induced near complete tumor regression after a single dose in both tumor models, whereas at the same dose, no mice treated with Abraxane survived for more than 80 days (breast) and 60 days (prostate) respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for paclitaxel delivery. PMID:26239362

  12. Transcutaneous photodynamic therapy delays the onset of paralysis in a murine multiple sclerosis model

    NASA Astrophysics Data System (ADS)

    Hunt, David W. C.; Leong, Simon; Levy, Julia G.; Chan, Agnes H.

    1995-03-01

    Photodynamic therapy (PDT) using benzoporphyrin derivative (BPD, Verteporfin) and whole body irradiation, can affect the course of adoptively transferred experimental allergic (autoimmune) encephalomyelitis (EAE) in PL mice. Murine EAE is a T cell-mediated autoimmune disease which serves as a model for human multiple sclerosis. Using a novel disease induction protocol, we found that mice characteristically developed EAE within 3 weeks of receipt of myelin basic protein (MBP)-sensitized, in vitro-cultured spleen or lymph node cells. However, if animals were treated with PDT (1 mg BPD/kg bodyweight and exposed to whole body 15 Joules cm2 of LED light) 24 hours after receiving these cells, disease onset time was significantly delayed. PDT-treated mice developed disease symptoms 45 +/- 3 days following cell administration whereas untreated controls were affected within 23 +/- 2 days. In contrast, application of PDT 48 or 120 hours following injection of the pathogenic cells had no significant effect upon the development of EAE. Experiments are in progress to account for the protective effect of PDT in this animal model. These studies should provide evidence on the feasibility of PDT as a treatment for human autoimmune disease.

  13. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects

    PubMed Central

    Boscolo, Elisa; Limaye, Nisha; Huang, Lan; Kang, Kyu-Tae; Soblet, Julie; Uebelhoer, Melanie; Mendola, Antonella; Natynki, Marjut; Seront, Emmanuel; Dupont, Sophie; Hammer, Jennifer; Legrand, Catherine; Brugnara, Carlo; Eklund, Lauri; Vikkula, Miikka; Bischoff, Joyce; Boon, Laurence M.

    2015-01-01

    Venous malformations (VMs) are composed of ectatic veins with scarce smooth muscle cell coverage. Activating mutations in the endothelial cell tyrosine kinase receptor TIE2 are a common cause of these lesions. VMs cause deformity, pain, and local intravascular coagulopathy, and they expand with time. Targeted pharmacological therapies are not available for this condition. Here, we generated a model of VMs by injecting HUVECs expressing the most frequent VM-causing TIE2 mutation, TIE2-L914F, into immune-deficient mice. TIE2-L914F–expressing HUVECs formed VMs with ectatic blood-filled channels that enlarged over time. We tested both rapamycin and a TIE2 tyrosine kinase inhibitor (TIE2-TKI) for their effects on murine VM expansion and for their ability to inhibit mutant TIE2 signaling. Rapamycin prevented VM growth, while TIE2-TKI had no effect. In cultured TIE2-L914F–expressing HUVECs, rapamycin effectively reduced mutant TIE2-induced AKT signaling and, though TIE2-TKI did target the WT receptor, it only weakly suppressed mutant-induced AKT signaling. In a prospective clinical pilot study, we analyzed the effects of rapamycin in 6 patients with difficult–to-treat venous anomalies. Rapamycin reduced pain, bleeding, lesion size, functional and esthetic impairment, and intravascular coagulopathy. This study provides a VM model that allows evaluation of potential therapeutic strategies and demonstrates that rapamycin provides clinical improvement in patients with venous malformation. PMID:26258417

  14. Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury.

    PubMed

    Zhao, Wen-Yu; Zhang, Lei; Sui, Ming-Xing; Zhu, You-Hua; Zeng, Li

    2016-01-01

    Acute kidney injury (AKI) is a rapid loss of kidney function characterized by damage to renal tubular cells driven by mitochondrial dysregulation and oxidative stress. Here, we used a murine caecal ligation and puncture (CLP) model of sepsis-induced AKI to study the role of sirtuin 3 (SIRT3), a NAD(+) dependent deacetylase critical for the maintenance of mitochondrial viability, in AKI-related renal tubular cell damage and explored the underlying mechanisms. CLP induced alterations in kidney function and morphology were associated with SIRT3 downregulation, and SIRT3 deletion exacerbated CLP-induced kidney dysfunction, renal tubular cell injury and apoptosis, mitochondrial alterations, and ROS production in a knockout mouse model. SIRT3 deletion increased the CLP-induced upregulation of the NLRP3 inflammasome and apoptosis-associated speck-like protein, resulting in the activation of oxidative stress, increased production of the proinflammatory cytokines interleukin (IL)-1β and IL-18, and the enhancement of apoptosis, and these effects were reversed by antioxidant NAC. Our results suggest that SIRT3 plays a protective role against mitochondrial damage in the kidney by attenuating ROS production, inhibiting the NRLP3 inflammasome, attenuating oxidative stress, and downregulating IL-1β and IL-18. PMID:27620507

  15. Evaluation of VT-1161 for Treatment of Coccidioidomycosis in Murine Infection Models

    PubMed Central

    Trinh, Hien T.; Galgiani, John N.; Lewis, Maria L.; Fothergill, Annette W.; Wiederhold, Nathan P.; Barker, Bridget M.; Lewis, Eric R. G.; Doyle, Adina L.; Hoekstra, William J.; Schotzinger, Robert J.; Garvey, Edward P.

    2015-01-01

    Coccidioidomycosis, or valley fever, is a growing health concern endemic to the southwestern United States. Safer, more effective, and more easily administered drugs are needed especially for severe, chronic, or unresponsive infections. The novel fungal CYP51 inhibitor VT-1161 demonstrated in vitro antifungal activity, with MIC50 and MIC90 values of 1 and 2 μg/ml, respectively, against 52 Coccidioides clinical isolates. In the initial animal study, oral doses of 10 and 50 mg/kg VT-1161 significantly reduced fungal burdens and increased survival time in a lethal respiratory model in comparison with treatment with a placebo (P < 0.001). Oral doses of 25 and 50 mg/kg VT-1161 were similarly efficacious in the murine central nervous system (CNS) model compared to placebo treatment (P < 0.001). All comparisons with the positive-control drug, fluconazole at 50 mg/kg per day, demonstrated either statistical equivalence or superiority of VT-1161. VT-1161 treatment also prevented dissemination of infection from the original inoculation site to a greater extent than fluconazole. Many of these in vivo results can be explained by the long half-life of VT-1161 leading to sustained high plasma levels. Thus, the efficacy and pharmacokinetics of VT-1161 are attractive characteristics for long-term treatment of this serious fungal infection. PMID:26369964

  16. Evaluation of VT-1161 for Treatment of Coccidioidomycosis in Murine Infection Models.

    PubMed

    Shubitz, Lisa F; Trinh, Hien T; Galgiani, John N; Lewis, Maria L; Fothergill, Annette W; Wiederhold, Nathan P; Barker, Bridget M; Lewis, Eric R G; Doyle, Adina L; Hoekstra, William J; Schotzinger, Robert J; Garvey, Edward P

    2015-12-01

    Coccidioidomycosis, or valley fever, is a growing health concern endemic to the southwestern United States. Safer, more effective, and more easily administered drugs are needed especially for severe, chronic, or unresponsive infections. The novel fungal CYP51 inhibitor VT-1161 demonstrated in vitro antifungal activity, with MIC50 and MIC90 values of 1 and 2 μg/ml, respectively, against 52 Coccidioides clinical isolates. In the initial animal study, oral doses of 10 and 50 mg/kg VT-1161 significantly reduced fungal burdens and increased survival time in a lethal respiratory model in comparison with treatment with a placebo (P < 0.001). Oral doses of 25 and 50 mg/kg VT-1161 were similarly efficacious in the murine central nervous system (CNS) model compared to placebo treatment (P < 0.001). All comparisons with the positive-control drug, fluconazole at 50 mg/kg per day, demonstrated either statistical equivalence or superiority of VT-1161. VT-1161 treatment also prevented dissemination of infection from the original inoculation site to a greater extent than fluconazole. Many of these in vivo results can be explained by the long half-life of VT-1161 leading to sustained high plasma levels. Thus, the efficacy and pharmacokinetics of VT-1161 are attractive characteristics for long-term treatment of this serious fungal infection. PMID:26369964

  17. Altered brain development in an early-onset murine model of Alzheimer's disease.

    PubMed

    Allemang-Grand, R; Scholz, J; Ellegood, J; Cahill, L S; Laliberté, C; Fraser, P E; Josselyn, S A; Sled, J G; Lerch, J P

    2015-02-01

    Murine models of Alzheimer's disease (AD) have been used to draw associations between atrophy of neural tissue and underlying pathology. In this study, the early-onset TgCRND8 mouse model of AD and littermate controls were scanned longitudinally with in vivo manganese-enhanced MRI (MEMRI) before and after the onset of amyloid plaque deposition at 12 weeks of age. Separate cohorts of mice were scanned at 1 week (ex vivo imaging) and 4 weeks (MEMRI) of age to investigate early life alterations in the brain. Contrary to our expectations, differences in neuroanatomy were found in early post-natal life, preceding plaque deposition by as much as 11 weeks. Many of these differences remained at all imaging time points, suggesting that they were programmed early in life and were unaffected by the onset of pathology. Furthermore, rather than showing atrophy, many regions of the TgCRND8 brain grew at a faster rate compared to controls. These regions contained the greatest density of amyloid plaques and reactive astrocytes. Our findings suggest that pathological processes as well as an alteration in brain development influence the TgCRND8 neuroanatomy throughout the lifespan. PMID:25311279

  18. The Hen or the Egg: Inflammatory Aspects of Murine MPN Models

    PubMed Central

    Jutzi, Jonas S.; Pahl, Heike L.

    2015-01-01

    It has been known for some time that solid tumors, especially gastrointestinal tumors, can arise on the basis of chronic inflammation. However, the role of inflammation in the genesis of hematological malignancies has not been extensively studied. Recent evidence clearly shows that changes in the bone marrow niche can suffice to induce myeloid diseases. Nonetheless, while it has been demonstrated that myeloproliferative neoplasms (MPN) are associated with a proinflammatory state, it is not clear whether inflammatory processes contribute to the induction or maintenance of MPN. More provocatively stated: which comes first, the hen or the egg, inflammation or MPN? In other words, can chronic inflammation itself trigger an MPN? In this review, we will describe the evidence supporting a role for inflammation in initiating and promoting MPN development. Furthermore, we will compare and contrast the data obtained in gastrointestinal tumors with observations in MPN patients and models, pointing out the opportunities provided by novel murine MPN models to address fundamental questions regarding the role of inflammatory stimuli in the molecular pathogenesis of MPN. PMID:26543325

  19. Afzelin attenuates asthma phenotypes by downregulation of GATA3 in a murine model of asthma.

    PubMed

    Zhou, Wenbo; Nie, Xiuhong

    2015-07-01

    Asthma is a serious health problem causing significant mortality and morbidity globally. Persistent airway inflammation, airway hyperresponsiveness, increased immunoglobulin E (IgE) levels and mucus hypersecretion are key characteristics of the condition. Asthma is mediated via a dominant T-helper 2 (Th2) immune response, causing enhanced expression of Th2 cytokines. These cytokines are responsible for the various pathological changes associated with allergic asthma. To investigate the anti-asthmatic potential of afzelin, as well as the underlying mechanisms involved, its anti-asthmatic potential were investigated in a murine model of asthma. In the present study, BALB/c mice were systemically sensitized using ovalbumin (OVA) followed by aerosol allergen challenges. The effect of afzelin on airway hyperresponsiveness, eosinophilic infiltration, Th2 cytokine and OVA‑specific IgE production in a mouse model of asthma were investigated. It was found that afzelin‑treated groups suppressed eosinophil infiltration, allergic airway inflammation, airway hyperresponsiveness, OVA-specific IgE and Th2 cytokine secretion. The results of the present study suggested that the therapeutic mechanism by which afzelin effectively treats asthma is based on reduction of Th2 cytokine via inhibition of GATA-binding protein 3 transcription factor, which is the master regulator of Th2 cytokine differentiation and production. PMID:25738969

  20. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects.

    PubMed

    Boscolo, Elisa; Limaye, Nisha; Huang, Lan; Kang, Kyu-Tae; Soblet, Julie; Uebelhoer, Melanie; Mendola, Antonella; Natynki, Marjut; Seront, Emmanuel; Dupont, Sophie; Hammer, Jennifer; Legrand, Catherine; Brugnara, Carlo; Eklund, Lauri; Vikkula, Miikka; Bischoff, Joyce; Boon, Laurence M

    2015-09-01

    Venous malformations (VMs) are composed of ectatic veins with scarce smooth muscle cell coverage. Activating mutations in the endothelial cell tyrosine kinase receptor TIE2 are a common cause of these lesions. VMs cause deformity, pain, and local intravascular coagulopathy, and they expand with time. Targeted pharmacological therapies are not available for this condition. Here, we generated a model of VMs by injecting HUVECs expressing the most frequent VM-causing TIE2 mutation, TIE2-L914F, into immune-deficient mice. TIE2-L914F-expressing HUVECs formed VMs with ectatic blood-filled channels that enlarged over time. We tested both rapamycin and a TIE2 tyrosine kinase inhibitor (TIE2-TKI) for their effects on murine VM expansion and for their ability to inhibit mutant TIE2 signaling. Rapamycin prevented VM growth, while TIE2-TKI had no effect. In cultured TIE2-L914F-expressing HUVECs, rapamycin effectively reduced mutant TIE2-induced AKT signaling and, though TIE2-TKI did target the WT receptor, it only weakly suppressed mutant-induced AKT signaling. In a prospective clinical pilot study, we analyzed the effects of rapamycin in 6 patients with difficult-to-treat venous anomalies. Rapamycin reduced pain, bleeding, lesion size, functional and esthetic impairment, and intravascular coagulopathy. This study provides a VM model that allows evaluation of potential therapeutic strategies and demonstrates that rapamycin provides clinical improvement in patients with venous malformation. PMID:26258417

  1. Establishment and characterization of a novel murine model for pollen allergy.

    PubMed

    Murakami, Shiho; Nakayama, Sayuri; Hattori, Makoto; Yoshida, Tadashi

    2015-01-01

    Although there have been many studies revealing the mechanism and establishing the therapeutical method for allergic rhinitis, no suitable animal models for allergic rhinitis, especially for pollen allergy, are currently available. We therefore aimed in this study to develop a murine model producing IgE in response to an inhaled antigen without using any adjuvants. Ovalbumin (OVA)-specific T cell receptor transgenic mice (DO11.10) inhaled an OVA solution for one h, twice a week, for six weeks. The resulting increase of OVA-specific IgE in the serum was observed depending on the times of inhalation. Spleen cells from mice that had inhaled the antigen produced more IL-4 and less IFN-γ than those from the control mice in vitro. These results indicate that inhaled antigen enhanced the Th2-type responses and induced IgE production in a T cell-mediated manner. Our findings would contribute to studies on prevention and treatment of pollen allergy. PMID:26011678

  2. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays

    PubMed Central

    Welkos, Susan L.; Klimko, Christopher P.; Kern, Steven J.; Bearss, Jeremy J.; Bozue, Joel A.; Bernhards, Robert C.; Trevino, Sylvia R.; Waag, David M.; Amemiya, Kei; Worsham, Patricia L.; Cote, Christopher K.

    2015-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the

  3. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    SciTech Connect

    Liu Junyan; Qiu Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D.

    2011-09-01

    The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. - Graphical abstract: Display Omitted Research Highlights: > Anti-microbial triclocarban (TCC) is anti-inflammatory in a murine model. > TCC significantly shifted the oxylipin profile in vivo as expected from a sEHI. > TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. > TCC significantly repressed LPS-induced increased release of inflammatory cytokines.

  4. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    PubMed Central

    Liu, Jun-Yan; Qiu, Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2011-01-01

    The increasing use of the anti-microbial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. PMID:21741984

  5. Genome Sequences of Four Strains of Mycobacterium avium subsp. hominissuis, Isolated from Swine and Humans, Differing in Virulence in a Murine Intranasal Infection Model.

    PubMed

    Bruffaerts, N; Vluggen, C; Duytschaever, L; Mathys, V; Saegerman, C; Chapeira, O; Huygen, K

    2016-01-01

    This paper announces the genome sequences of four strains of Mycobacterium avium subsp. hominissuis, isolated from cases of lymphadenopathy in swine and humans, differing in virulence in a murine intranasal infection model. PMID:27313293

  6. Genome Sequences of Four Strains of Mycobacterium avium subsp. hominissuis, Isolated from Swine and Humans, Differing in Virulence in a Murine Intranasal Infection Model

    PubMed Central

    Bruffaerts, N.; Vluggen, C.; Duytschaever, L.; Mathys, V.; Saegerman, C.; Chapeira, O.

    2016-01-01

    This paper announces the genome sequences of four strains of Mycobacterium avium subsp. hominissuis, isolated from cases of lymphadenopathy in swine and humans, differing in virulence in a murine intranasal infection model. PMID:27313293

  7. Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models

    PubMed Central

    Nguyen, Liem H.; Robinton, Daisy A.; Seligson, Marc; Wu, Linwei; Li, Lin; Rakheja, Dinesh; Comerford, Sarah; Ramezani, Saleh; Sun, Xiankai; Parikh, Monisha; Yang, Erin; Powers, John T.; Shinoda, Gen; Shah, Samar; Hammer, Robert; Daley, George Q.; Zhu, Hao

    2014-01-01

    SUMMARY Lin28a/b are RNA-binding proteins that influence stem cell maintenance, metabolism, and oncogenesis. Poorly differentiated, aggressive cancers often overexpress Lin28, but its role in tumor initiation or maintenance has not been definitively addressed. We report that LIN28B overexpression is sufficient to initiate hepatoblastoma and hepatocellular carcinoma in murine models. We also detected Lin28b overexpression in MYC-driven hepatoblastomas, and liver-specific deletion of Lin28a/b reduced tumor burden, extended latency, and prolonged survival. Both intravenous siRNA against Lin28b and conditional Lin28b deletion reduced tumor burden and prolonged survival. Igf2bp proteins are upregulated and Igf2bp3 is required in the context of LIN28B overexpression to promote growth. Thus, multiple murine models demonstrate that Lin28b is both sufficient to initiate liver cancer and necessary for its maintenance. PMID:25117712

  8. A New Murine Model of Osteoblastic/Osteolytic Lesions from Human Androgen-Resistant Prostate Cancer

    PubMed Central

    Depalle, Baptiste; Serre, Claire Marie; Farlay, Delphine; Turtoi, Andrei; Bellahcene, Akeila; Follet, Hélène; Castronovo, Vincent; Clézardin, Philippe; Bonnelye, Edith

    2013-01-01

    Background Up to 80% of patients dying from prostate carcinoma have developed bone metastases that are incurable. Castration is commonly used to treat prostate cancer. Although the disease initially responds to androgen blockade strategies, it often becomes castration-resistant (CRPC for Castration Resistant Prostate Cancer). Most of the murine models of mixed lesions derived from prostate cancer cells are androgen sensitive. Thus, we established a new model of CRPC (androgen receptor (AR) negative) that causes mixed lesions in bone. Methods PC3 and its derived new cell clone PC3c cells were directly injected into the tibiae of SCID male mice. Tumor growth was analyzed by radiography and histology. Direct effects of conditioned medium of both cell lines were tested on osteoclasts, osteoblasts and osteocytes. Results We found that PC3c cells induced mixed lesions 10 weeks after intratibial injection. In vitro, PC3c conditioned medium was able to stimulate tartrate resistant acid phosphatase (TRAP)-positive osteoclasts. Osteoprotegerin (OPG) and endothelin-1 (ET1) were highly expressed by PC3c while dikkopf-1 (DKK1) expression was decreased. Finally, PC3c highly expressed bone associated markers osteopontin (OPN), Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP) and produced mineralized matrix in vitro in osteogenic conditions. Conclusions We have established a new CRPC cell line as a useful system for modeling human metastatic prostate cancer which presents the mixed phenotype of bone metastases that is commonly observed in prostate cancer patients with advanced disease. This model will help to understand androgen-independent mechanisms involved in the progression of prostate cancer in bone and provides a preclinical model for testing the effects of new treatments for bone metastases. PMID:24069383

  9. Single-Limb Irradiation Induces Local and Systemic Bone Loss in a Murine Model.

    PubMed

    Wright, Laura E; Buijs, Jeroen T; Kim, Hun-Soo; Coats, Laura E; Scheidler, Anne M; John, Sutha K; She, Yun; Murthy, Sreemala; Ma, Ning; Chin-Sinex, Helen J; Bellido, Teresita M; Bateman, Ted A; Mendonca, Marc S; Mohammad, Khalid S; Guise, Theresa A

    2015-07-01

    Increased fracture risk is commonly reported in cancer patients receiving radiotherapy, particularly at sites within the field of treatment. The direct and systemic effects of ionizing radiation on bone at a therapeutic dose are not well-characterized in clinically relevant animal models. Using 20-week-old male C57Bl/6 mice, effects of irradiation (right hindlimb; 2 Gy) on bone volume and microarchitecture were evaluated prospectively by microcomputed tomography and histomorphometry and compared to contralateral-shielded bone (left hindlimb) and non-irradiated control bone. One week postirradiation, trabecular bone volume declined in irradiated tibias (-22%; p < 0.0001) and femurs (-14%; p = 0.0586) and microarchitectural parameters were compromised. Trabecular bone volume declined in contralateral tibias (-17%; p = 0.003), and no loss was detected at the femur. Osteoclast number, apoptotic osteocyte number, and marrow adiposity were increased in irradiated bone relative to contralateral and non-irradiated bone, whereas osteoblast number was unchanged. Despite no change in osteoblast number 1 week postirradiation, dynamic bone formation indices revealed a reduction in mineralized bone surface and a concomitant increase in unmineralized osteoid surface area in irradiated bone relative to contralateral and non-irradiated control bone. Further, dose-dependent and time-dependent calvarial culture and in vitro assays confirmed that calvarial osteoblasts and osteoblast-like MC3T3 cells were relatively radioresistant, whereas calvarial osteocyte and osteocyte-like MLO-Y4 cell apoptosis was induced as early as 48 hours postirradiation (4 Gy). In osteoclastogenesis assays, radiation exposure (8 Gy) stimulated murine macrophage RAW264.7 cell differentiation, and coculture of irradiated RAW264.7 cells with MLO-Y4 or murine bone marrow cells enhanced this effect. These studies highlight the multifaceted nature of radiation-induced bone loss by demonstrating direct

  10. Single-Limb Irradiation Induces Local and Systemic Bone Loss in a Murine Model

    PubMed Central

    Wright, Laura E.; Buijs, Jeroen T.; Kim, Hun-Soo; Coats, Laura E.; Scheidler, Anne M.; John, Sutha K.; She, Yun; Murthy, Sreemala; Ma, Ning; Chin-Sinex, Helen J.; Bellido, Teresita M.; Bateman, Ted A.; Mendonca, Marc S.; Mohammad, Khalid S.; Guise, Theresa A.

    2015-01-01

    Increased fracture risk is commonly reported in cancer patients receiving radiotherapy, particularly at sites within the field of treatment. The direct and systemic effects of ionizing radiation on bone at a therapeutic dose are not well characterized in clinically relevant animal models. Using twenty-week male C57Bl/6 mice, effects of irradiation (right hindlimb; 2 Gy) on bone volume and microarchitecture were evaluated prospectively by microcomputed tomography and histomorphometry and compared to contralateral-shielded bone (left hindlimb) and non-irradiated control bone. One-week post-irradiation, trabecular bone volume declined in irradiated tibiae (−22%; p<0.0001) and femora (−14%; p=0.0586) and microarchitectural parameters were compromised. Trabecular bone volume declined in contralateral tibiae (−17%; p=0.003), and no loss was detected at the femur. Osteoclast number, apoptotic osteocyte number and marrow adiposity were increased in irradiated bone relative to contralateral and non-irradiated bone, while osteoblast number was unchanged. Despite no change in osteoblast number one-week post-irradiation, dynamic bone formation indices revealed a reduction in mineralized bone surface and a concomitant increase in unmineralized osteoid surface area in irradiated bone relative to contralateral and non-irradiated control bone. Further, dose- and time-dependent calvarial culture and in vitro assays confirmed that calvarial osteoblasts and osteoblast-like MC3T3 cells were relatively radioresistant, while calvarial osteocyte and osteocyte-like MLO-Y4 cell apoptosis was induced as early as 48h post-irradiation (4 Gy). In osteoclastogenesis assays, radiation exposure (8 Gy) stimulated murine macrophage RAW264.7 cell differentiation and co-culture of irradiated RAW264.7 cells with MLO-Y4 or murine bone marrow cells enhanced this effect. These studies highlight the multi-faceted nature of radiation-induced bone loss by demonstrating direct and systemic effects on

  11. High-Dose Menaquinone-7 Supplementation Reduces Cardiovascular Calcification in a Murine Model of Extraosseous Calcification

    PubMed Central

    Scheiber, Daniel; Veulemans, Verena; Horn, Patrick; Chatrou, Martijn L.; Potthoff, Sebastian A.; Kelm, Malte; Schurgers, Leon J.; Westenfeld, Ralf

    2015-01-01

    Cardiovascular calcification is prevalent in the aging population and in patients with chronic kidney disease (CKD) and diabetes mellitus, giving rise to substantial morbidity and mortality. Vitamin K-dependent matrix Gla-protein (MGP) is an important inhibitor of calcification. The aim of this study was to evaluate the impact of high-dose menaquinone-7 (MK-7) supplementation (100 µg/g diet) on the development of extraosseous calcification in a murine model. Calcification was induced by 5/6 nephrectomy combined with high phosphate diet in rats. Sham operated animals served as controls. Animals received high or low MK-7 diets for 12 weeks. We assessed vital parameters, serum chemistry, creatinine clearance, and cardiac function. CKD provoked increased aortic (1.3 fold; p < 0.05) and myocardial (2.4 fold; p < 0.05) calcification in line with increased alkaline phosphatase levels (2.2 fold; p < 0.01). MK-7 supplementation inhibited cardiovascular calcification and decreased aortic alkaline phosphatase tissue concentrations. Furthermore, MK-7 supplementation increased aortic MGP messenger ribonucleic acid (mRNA) expression (10-fold; p < 0.05). CKD-induced arterial hypertension with secondary myocardial hypertrophy and increased elastic fiber breaking points in the arterial tunica media did not change with MK-7 supplementation. Our results show that high-dose MK-7 supplementation inhibits the development of cardiovascular calcification. The protective effect of MK-7 may be related to the inhibition of secondary mineralization of damaged vascular structures. PMID:26295257

  12. Constitutive JAK3 activation induces lymphoproliferative syndromes in murine bone marrow transplantation models

    PubMed Central

    Cornejo, Melanie G.; Kharas, Michael G.; Werneck, Miriam B.; Bras, Séverine Le; Moore, Sandra A.; Ball, Brian; Beylot-Barry, Marie; Rodig, Scott J.; Aster, Jon C.; Lee, Benjamin H.; Cantor, Harvey; Merlio, Jean-Philippe

    2009-01-01

    The tyrosine kinase JAK3 plays a well-established role during normal lymphocyte development and is constitutively phosphorylated in several lymphoid malignancies. However, its contribution to lymphomagenesis remains elusive. In this study, we used the newly identified activating JAK3A572V mutation to elucidate the effect of constitutive JAK3 signaling on murine lymphopoiesis. In a bone marrow transplantation model, JAK3A572V induces an aggressive, fatal, and transplantable lymphoproliferative disorder characterized by the expansion of CD8+TCRαβ+CD44+CD122+Ly-6C+ T cellsthat closely resemble an effector/memory T-cell subtype. Compared with wild-type counterparts, these cells show increased proliferative capacities in response to polyclonal stimulation, enhanced survival rates with elevated expression of Bcl-2, and increased production of interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα), correlating with enhanced cytotoxic abilities against allogeneic target cells. Of interest, the JAK3A572V disease is epidermotropic and produces intraepidermal microabscesses. Taken together, these clinical features are reminiscent of those observed in an uncommon but aggressive subset of CD8+ human cutaneous T-cell lymphomas (CTCLs). However, we also observed a CD4+ CTCL-like phenotype when cells are transplanted in an MHC-I–deficient background. These data demonstrate that constitutive JAK3 activation disrupts T-cell homeostasis and induces lymphoproliferative diseases in mice. PMID:19139084

  13. Fecal Microbiota Transplant Restores Mucosal Integrity in a Murine Model of Burn Injury.

    PubMed

    Kuethe, Joshua W; Armocida, Stephanie M; Midura, Emily F; Rice, Teresa C; Hildeman, David A; Healy, Daniel P; Caldwell, Charles C

    2016-06-01

    The gut microbiome is a community of commensal organisms that are known to play a role in nutrient production as well as gut homeostasis. The composition of the gut flora can be affected by many factors; however, the impact of burn injury on the microbiome is not fully known. Here, we hypothesized that burn-induced changes to the microbiome would impact overall colon health. After scald-burn injury, cecal samples were analyzed for aerobic and anaerobic colony forming units, bacterial community, and butyrate levels. In addition, colon and total intestinal permeabilities were determined. These parameters were further determined in a germ-reduced murine model. Following both burn injury and germ reduction, we observed decreases in aerobic and anaerobic bacteria, increased colon permeability and no change to small intestinal permeability. After burn injury, we further observed a significant decrease in the butyrate producing bacteria R. Gnavus, C. Eutactus, and Roseburia species as well as decreases in colonic butyrate. Finally, in mice that underwent burn followed by fecal microbiota transplant, bacteria levels and mucosal integrity were restored. Altogether our data demonstrate that burn injury can alter the microbiome leading to decreased butyrate levels and increased colon permeability. Of interest, fecal microbiota transplant treatment was able to ameliorate the burn-induced changes in colon permeability. Thus, fecal transplantation may represent a novel therapy in restoring colon health after burn injury. PMID:26682948

  14. Experimental infection of Phlebotomus perniciosus by bioluminescent Leishmania infantum using murine model and artificial feeder

    PubMed Central

    Cannet, Arnaud; Akhoundi, Mohammad; Michel, Gregory; Marty, Pierre; Delaunay, Pascal

    2016-01-01

    Leishmaniasis is a vector-borne disease that is transmitted by sandflies and caused by obligate intracellular protozoa of the genus Leishmania. In the present study, we carried out a screening on the experimental infection of Phlebotomus pernioucus by bioluminescent Leishmania infantum using murine model and artificial feeder. We developed a real-time polymerase chain reaction (RT-PCR)-based method to determine individually the number of Leishmania promastigotes fed by infected flies. Among 1840 new emerged female sand flies, 428 were fed on the infected mice. After their death, they were analysed individually by RT-PCR. Our results demonstrated just a single Leishmania positive female at sixth day post meal. A total of 1070 female sand flies were exposed in contact with artificial feeder containing the human blood with two different quantities of Leishmania parasites: 2.106/mL and 1.107/mL. A blood meal including 1.107/mL LUC-promastigotes was proposed to 270 females and 75 (28%) flies were engorged. Among them, 44 (59%) were positive by RT-PCR analysis, with a relative average of 50551 Leishmania parasites. In case of blood feeding of females with 2.106/mL promastigotes, 57 out of 800 (7%) females succeed to feed from artificial feeder which 22 (39%) were positive with a relative average of 6487 parasites. PMID:27439032

  15. Ovarian Aging-Like Phenotype in the Hyperandrogenism-Induced Murine Model of Polycystic Ovary

    PubMed Central

    Rezvanfar, Mohammad Amin; Shojaei Saadi, Habib A.; Gooshe, Maziar; Abdolghaffari, Amir Hosein; Baeeri, Maryam; Abdollahi, Mohammad

    2014-01-01

    There are prominently similar symptoms, effectors, and commonalities in the majority of characteristics between ovarian aging and polycystic ovarian syndrome (PCOS). Despite the approved role of oxidative stress in the pathogenesis of PCOS and aging, to our knowledge, the link between the PCO(S) and aging has not been investigated yet. In this study we investigated the possible exhibition of ovarian aging phenotype in murine model of PCO induced by daily oral administration of letrozole (1 mg/kg body weight) for 21 consecutive days in the female Wistar rats. Hyperandrogenization showed irregular cycles and histopathological characteristics of PCO which was associated with a significant increase in lipid peroxidation (LPO) and reactive oxygen species (ROS) and decrease in total antioxidant capacity (TAC) in serum and ovary. Moreover, serum testosterone, insulin and tumor necrosis factor-alpha (TNF-α) levels, and ovarian matrix metalloproteinase-2 (MMP-2) were increased in PCO rats compared with healthy controls, while estradiol and progesterone diminished. Almost all of these findings are interestingly found to be common with the characteristics identified with (ovarian) aging showing that hyperandrogenism-induced PCO in rat is associated with ovarian aging-like phenotypes. To our knowledge, this is the first report that provides evidence regarding the phenomenon of aging in PCO. PMID:24693338

  16. Stimulation of Respiratory Motor Output and Ventilation in a Murine Model of Pompe Disease by Ampakines.

    PubMed

    ElMallah, Mai K; Pagliardini, Silvia; Turner, Sara M; Cerreta, Anthony J; Falk, Darin J; Byrne, Barry J; Greer, John J; Fuller, David D

    2015-09-01

    Pompe disease results from a mutation in the acid α-glucosidase gene leading to lysosomal glycogen accumulation. Respiratory insufficiency is common, and the current U.S. Food and Drug Administration-approved treatment, enzyme replacement, has limited effectiveness. Ampakines are drugs that enhance α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor responses and can increase respiratory motor drive. Recent work indicates that respiratory motor drive can be blunted in Pompe disease, and thus pharmacologic stimulation of breathing may be beneficial. Using a murine Pompe model with the most severe clinical genotype (the Gaa(-/-) mouse), our primary objective was to test the hypothesis that ampakines can stimulate respiratory motor output and increase ventilation. Our second objective was to confirm that neuropathology was present in Pompe mouse medullary respiratory control neurons. The impact of ampakine CX717 on breathing was determined via phrenic and hypoglossal nerve recordings in anesthetized mice and whole-body plethysmography in unanesthetized mice. The medulla was examined using standard histological methods coupled with immunochemical markers of respiratory control neurons. Ampakine CX717 robustly increased phrenic and hypoglossal inspiratory bursting and reduced respiratory cycle variability in anesthetized Pompe mice, and it increased inspiratory tidal volume in unanesthetized Pompe mice. CX717 did not significantly alter these variables in wild-type mice. Medullary respiratory neurons showed extensive histopathology in Pompe mice. Ampakines stimulate respiratory neuromotor output and ventilation in Pompe mice, and therefore they have potential as an adjunctive therapy in Pompe disease. PMID:25569118

  17. Low thyroid hormone levels improve survival in murine model for ocular melanoma

    PubMed Central

    Fabian, Ido Didi; Rosner, Mordechai; Fabian, Ina; Vishnevskia-Dai, Vicktoria; Zloto, Ofira; Maman, Elena Shinderman; Cohen, Keren; Ellis, Martin; Lin, Hung-Yun; Hercbergs, Aleck; Davis, Paul J.; Ashur-Fabian, Osnat

    2015-01-01

    Uveal melanoma is highly metastatic, prognosis is poor and there are no effective treatments to extend survival. Accumulating evidence suggests that thyroid hormones have a mitogenic effect via binding to αvβ3 integrin. We aimed to examine the impact of thyroid status on survival in a murine B16F10 model for ocular melanoma, highly expressing the integrin. In two independent experiments oral propylthiouracil (PTU) was used to induce hypothyroidism (n=9), thyroxine to induce hyperthyroidism (n=11) and mice given plain water served as control (n=8). At day 21, the subretinal space was inoculated with 102 B16F10 cells. In non-inoculated mice (n=6 of each group) serum free T4 (FT4) levels were measured and additional non-inoculated mice (3 given PTU and 4 given thyroxine or water) served as internal control to demonstrate the impact of the dissolved substance. The PTU-inoculated mice showed clinical evidence of intraocular tumor growth significantly later than the thyroxine mice (P=0.003) and survival time was significantly longer (P<0.001). FT4 levels differed significantly between groups (P<0.001) and with no signs of illness in the internal control group. Our findings suggest that hyperthyroidism shortens survival, whereas relative hypothyroidism may have a protective role in metastatic ocular melanoma. PMID:25868390

  18. B7-H3 protein expression in a murine model of osteosarcoma

    PubMed Central

    ZHAO, JIA-LI; CHEN, FENG-LI; ZHOU, QUAN; PAN, WEI; WANG, XIN-HONG; XU, JIN; ZHANG, SHAO-XIAN; NI, LI; YANG, HUI-LIN

    2016-01-01

    Osteosarcoma is an aggressive type of bone tumor that commonly occurs in pediatric age groups. The complete molecular mechanisms behind osteosarcoma formation and progression require elucidation. B7-H3 is a protein of the B7 family that acts as a co-stimulatory molecule with a significant role in adaptive immune responses. The link between B7-H3 expression and its role in different types of cancer remains unclear. B7-H3 protein exhibits different functional roles in in vivo and in vitro conditions that remain controversial. In the present study, a murine model of osteosarcoma was successfully established using a modified protocol so as to easily obtain a low grade and metastatic form of osteosarcoma tissue without complication. Histological data showed that a less organized and highly proliferative mass of cells was observed in the osteosarcoma tissue. A higher expression level of B7-H3 protein was also observed at each advanced stage of osteosarcoma, which indicated the contributory role of the protein in the development of the primary and metastatic forms of osteosarcoma. Immunohistochemistry was performed, which showed that the overexpression of B7-H3 protein in the metastatic form of osteosarcoma may be associated with its migration and invasion. PMID:27347155

  19. Neutropenia exacerbates infection by Acinetobacter baumannii clinical isolates in a murine wound model

    PubMed Central

    Grguric-Smith, Laryssa M.; Lee, Hiu H.; Gandhi, Jay A.; Brennan, Melissa B.; DeLeon-Rodriguez, Carlos M.; Coelho, Carolina; Han, George; Martinez, Luis R.

    2015-01-01

    The Gram negative coccobacillus Acinetobacter baumannii has become an increasingly prevalent cause of hospital-acquired infections in recent years. The majority of clinical A. baumannii isolates display high-level resistance to antimicrobials, which severely compromises our capacity to care for patients with A. baumannii disease. Neutrophils are of major importance in the host defense against microbial infections. However, the contribution of these cells of innate immunity in host resistance to cutaneous A. baumannii infection has not been directly investigated. Hence, we hypothesized that depletion of neutrophils increases severity of bacterial disease in an experimental A. baumannii murine wound model. In this study, the Ly-6G-specific monoclonal antibody (mAb), 1A8, was used to generate neutropenic mice and the pathogenesis of several A. baumannii clinical isolates on wounded cutaneous tissue was investigated. We demonstrated that neutrophil depletion enhances bacterial burden using colony forming unit determinations. Also, mAb 1A8 reduces global measurements of wound healing in A. baumannii-infected animals. Interestingly, histological analysis of cutaneous tissue excised from A. baumannii-infected animals treated with mAb 1A8 displays enhanced collagen deposition. Furthermore, neutropenia and A. baumannii infection alter pro-inflammatory cytokine release leading to severe microbial disease. Our findings provide a better understanding of the impact of these innate immune cells in controlling A. baumannii skin infections. PMID:26528277

  20. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: human and murine models.

    PubMed

    Marianecci, Carlotta; Rinaldi, Federica; Mastriota, Marica; Pieretti, Stefano; Trapasso, Elena; Paolino, Donatella; Carafa, Maria

    2012-11-28

    Today there is a very great deal of interest among members of the global natural products community in investigating new plant constituents. Recent studies demonstrate that liquorice extracts are useful in the treatment of dermatitis, eczema, and psoriasis, with an efficacy comparable to that of corticosteroids. In this work, niosomes made up of surfactants (Tween 85 and Span 20) and cholesterol at various concentrations were prepared to investigate the potential application of niosomes for the delivery of ammonium glycyrrhizinate (AG), useful for the treatment of various inflammatory based diseases. Vesicles were characterized evaluating dimensions, ζ potential, anisotropy, drug entrapment efficiency, stability, cytotoxicity evaluation and skin tolerability. Release profiles of ammonium glycyrrhizinate/niosomes were evaluated in vitro using cellulose membranes. The best formulation was used to evaluate the in vitro/in vivo efficacy of the ammonium glycyrrhizinate/niosomes in murine and human models of inflammation. The AG-loaded non-ionic surfactant vesicles showed no toxicity, good skin tolerability and were able to improve the drug anti-inflammatory activity in mice. Furthermore, an improvement of the anti-inflammatory activity of the niosome delivered drug was observed on chemically induced skin erythema in humans. PMID:23041542

  1. In Vivo Characterization of Neutrophil Extracellular Traps in Various Organs of a Murine Sepsis Model

    PubMed Central

    Tanaka, Koji; Koike, Yuhki; Shimura, Tadanobu; Okigami, Masato; Ide, Shozo; Toiyama, Yuji; Okugawa, Yoshinaga; Inoue, Yasuhiro; Araki, Toshimitsu; Uchida, Keiichi; Mohri, Yasuhiko; Mizoguchi, Akira; Kusunoki, Masato

    2014-01-01

    Neutrophil extracellular traps (NETs) represent extracellular microbial trapping and killing. Recently, it has been implicated in thrombogenesis, autoimmune disease, and cancer progression. The aim of this study was to characterize NETs in various organs of a murine sepsis model in vivo and to investigate their associations with platelets, leukocytes, or vascular endothelium. NETs were classified as two distinct forms; cell-free NETs that were released away from neutrophils and anchored NETs that were anchored to neutrophils. Circulating cell-free NETs were characterized as fragmented or cotton-like structures, while anchored NETs were characterized as linear, reticular, membranous, or spot-like structures. In septic mice, both anchored and cell-free NETs were significantly increased in postcapillary venules of the cecum and hepatic sinusoids with increased leukocyte-endothelial interactions. NETs were also observed in both alveolar space and pulmonary capillaries of the lung. The interactions of NETs with platelet aggregates, leukocyte-platelet aggregates or vascular endothelium of arterioles and venules were observed in the microcirculation of septic mice. Microvessel occlusions which may be caused by platelet aggregates or leukocyte-platelet aggregates and heterogeneously decreased blood flow were also observed in septic mice. NETs appeared to be associated with the formation of platelet aggregates or leukocyte-platelet aggregates. These observational findings may suggest the adverse effect of intravascular NETs on the host during a sepsis. PMID:25372699

  2. Immunological characterization of a chimeric form of Schistosoma mansoni aquaporin in the murine model.

    PubMed

    Figueiredo, Barbara Castro Pimentel; De Assis, Natan Raimundo Gonçalves; De Morais, Suellen Batistoni; Martins, Vicente Paulo; Ricci, Natasha Delaqua; Bicalho, Rodrigo Marques; Pinheiro, Carina Da Silva; Oliveira, Sergio Costa

    2014-09-01

    Aquaporin (SmAQP) is the most abundant transmembrane protein in the tegument of Schistosoma mansoni. This protein is expressed in all developmental stages and seems to be essential in parasite survival since it plays a crucial role in osmoregulation, nutrient transport and drug uptake. In this study, we utilized the murine model to evaluate whether this protein was able to induce protection against challenge infection with S. mansoni cercariae. A chimeric (c) SmAQP was formulated with Freund's adjuvant for vaccination trial and evaluation of the host's immune response was performed. Our results demonstrated that immunization with cSmAQP induced the production of high levels of specific anti-cSmAQP IgG antibodies and a Th1/Th17 type of immune response characterized by IFN-γ, TNF-α and IL-17 cytokines. However, vaccination of mice with cSmAQP failed to reduce S. mansoni worm burden and liver pathology. Finally, we were unable to detect humoral immune response anti-cSmAQP in the sera of S. mansoni-infected human patients. Our results lead us to believe that SmAQP, as formulated in this study, may not be a good target in the search for an anti-schistosomiasis vaccine. PMID:24786243

  3. Imidazolium salts as small-molecule urinary bladder exfoliants in a murine model.

    PubMed

    Wagers, Patrick O; Tiemann, Kristin M; Shelton, Kerri L; Kofron, William G; Panzner, Matthew J; Wooley, Karen L; Youngs, Wiley J; Hunstad, David A

    2015-09-01

    We present a novel family of small-molecule urinary bladder exfoliants that are expected to be of great value in preclinical studies of urologic conditions and have improved potential for translation compared with prior agents. There is broad urologic interest in the therapeutic potential of such exfoliating agents. The primary agent used in preclinical models, the cationic peptide protamine sulfate (PS), has limited translational potential due to concerns including systemic adverse reactions and bladder tissue injury. Intravesical application of a safe, systemically nontoxic exfoliant would have potential utility in the eradication of Escherichia coli and other uropathogens that reside in the bladder epithelium following cystitis, as well as in chronic bladder pain and bladder cancer. Here, we introduce a family of imidazolium salts with potent and focused exfoliating activity on the bladder epithelium. Synthesis and purification were straightforward and scalable, and the compounds exhibited prolonged stability in lyophilized form. Most members of the compound family were cytotoxic to cultured uroepithelial cells, with >10-fold differences in potency across the series. Upon topical (intravesical) administration of selected compounds to the murine bladder, complete epithelial exfoliation was achieved with physiologically relevant imidazolium concentrations and brief contact times. The exfoliative activity of these compounds was markedly improved in comparison to PS, as assessed by microscopy, immunofluorescence, and immunoblotting for uroplakins. Bladder uroepithelium regenerated within days to yield a histologically normal appearance, and no toxicity was observed. Finally, the chemical scaffold offers an opportunity for inclusion of antimicrobials or conjugation with chemotherapeutic or other moieties. PMID:26124168

  4. Pharmacokinetics/pharmacodynamic correlations of fluconazole in murine model of cryptococcosis.

    PubMed

    Santos, Julliana Ribeiro Alves; César, Isabela Costa; Costa, Marliete Carvalho; Ribeiro, Noelly Queiroz; Holanda, Rodrigo Assunção; Ramos, Lais Hott; Freitas, Gustavo José Cota; Paixão, Tatiane Alves; Pianetti, Gerson Antônio; Santos, Daniel Assis

    2016-09-20

    The emergence of fluconazole-resistant Cryptococcus gattii is a global concern, since this azole is the main antifungal used worldwide to treat patients with cryptococcosis. Although pharmacokinetic (PK) and pharmacodynamic (PD) indices are useful predictive factors for therapeutic outcomes, there is a scarcity of data regarding PK/PD analysis of antifungals in cryptococcosis caused by resistant strains. In this study, PK/PD parameters were determined in a murine model of cryptococcosis caused by resistant C. gattii. We developed and validated a suitable liquid chromatography-electrospray ionization tandem mass spectrometry method for PK studies of fluconazole in the serum, lungs, and brain of uninfected mice. Mice were infected with susceptible or resistant C. gattii, and the effects of different doses of fluconazole on the pulmonary and central nervous system fungal burden were determined. The peak levels in the serum, lungs, and brain were achieved within 0.5h. The AUC/MIC index (area under the curve/minimum inhibitory concentration) was associated with the outcome of anti-cryptococcal therapy. Interestingly, the maximum concentration of fluconazole in the brain was lower than the MIC for both strains. In addition, the treatment of mice infected with the resistant strain was ineffective even when high doses of fluconazole were used or when amphotericin B was tested, confirming the cross-resistance between these drugs. Altogether, our novel data provide the correlation of PK/PD parameters with antifungal therapy during cryptococcosis caused by resistant C. gattii. PMID:27235581

  5. Fecal Microbiota Transplantation Eliminates Clostridium difficile in a Murine Model of Relapsing Disease

    PubMed Central

    Seekatz, Anna M.; Theriot, Casey M.; Molloy, Caitlyn T.; Wozniak, Katherine L.; Bergin, Ingrid L.

    2015-01-01

    Recurrent Clostridium difficile infection (CDI) is of particular concern among health care-associated infections. The role of the microbiota in disease recovery is apparent given the success of fecal microbiota transplantation (FMT) for recurrent CDI. Here, we present a murine model of CDI relapse to further define the microbiota recovery following FMT. Cefoperazone-treated mice were infected with C. difficile 630 spores and treated with vancomycin after development of clinical disease. Vancomycin treatment suppressed both C. difficile colonization and cytotoxin titers. However, C. difficile counts increased within 7 days of completing treatment, accompanied by relapse of clinical signs. The administration of FMT immediately after vancomycin cleared C. difficile and decreased cytotoxicity within 1 week. The effects of FMT on the gut microbiota community were detectable in recipients 1-day posttransplant. Conversely, mice not treated with FMT remained persistently colonized with high levels of C. difficile, and the gut microbiota in these mice persisted at low diversity. These results suggest that full recovery of colonization resistance against C. difficile requires the restoration of a specific community structure. PMID:26169276

  6. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease.

    PubMed

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients. PMID:24269813

  7. Ovarian aging-like phenotype in the hyperandrogenism-induced murine model of polycystic ovary.

    PubMed

    Rezvanfar, Mohammad Amin; Shojaei Saadi, Habib A; Gooshe, Maziar; Abdolghaffari, Amir Hosein; Baeeri, Maryam; Abdollahi, Mohammad

    2014-01-01

    There are prominently similar symptoms, effectors, and commonalities in the majority of characteristics between ovarian aging and polycystic ovarian syndrome (PCOS). Despite the approved role of oxidative stress in the pathogenesis of PCOS and aging, to our knowledge, the link between the PCO(S) and aging has not been investigated yet. In this study we investigated the possible exhibition of ovarian aging phenotype in murine model of PCO induced by daily oral administration of letrozole (1 mg/kg body weight) for 21 consecutive days in the female Wistar rats. Hyperandrogenization showed irregular cycles and histopathological characteristics of PCO which was associated with a significant increase in lipid peroxidation (LPO) and reactive oxygen species (ROS) and decrease in total antioxidant capacity (TAC) in serum and ovary. Moreover, serum testosterone, insulin and tumor necrosis factor-alpha (TNF-α) levels, and ovarian matrix metalloproteinase-2 (MMP-2) were increased in PCO rats compared with healthy controls, while estradiol and progesterone diminished. Almost all of these findings are interestingly found to be common with the characteristics identified with (ovarian) aging showing that hyperandrogenism-induced PCO in rat is associated with ovarian aging-like phenotypes. To our knowledge, this is the first report that provides evidence regarding the phenomenon of aging in PCO. PMID:24693338

  8. Generation and Characterization of a Murine Model of Bietti Crystalline Dystrophy

    PubMed Central

    Lockhart, Catherine M.; Nakano, Mariko; Rettie, Allan E.; Kelly, Edward J.

    2014-01-01

    Purpose. Bietti crystalline dystrophy (BCD) is a rare, autosomal recessive, progressive, degenerative eye disease caused by mutations in the CYP4V2 gene, for which no treatments are currently available. Cyp4v3 is the murine ortholog to CYP4V2, and to better understand the molecular pathogenesis of this disease we have established a Cyp4v3-null mouse line. Methods. Cyp4v3−/− mice were generated by homologous recombination in embryonic stem cells. Ocular morphologic characteristics were evaluated via fundus imaging, plasma lipid profiling, and histologic analysis via Oil Red O reactivity, hematoxylin and eosin staining, and transmission electron microscopy. Results. The Cyp4v3−/− mouse recapitulates the characteristic features of corneoretinal crystal accumulation and systemic dyslipidemia seen in BCD. The Cyp4v3−/− mice behave normally and are viable and fertile when maintained under specific pathogen-free (SPF) housing conditions. Conclusions. Cyp4v3−/− mice represent a promising preclinical model that may be used to better understand the disease etiology and to evaluate pharmacotherapies for this devastating condition. PMID:25118264

  9. 3D Raman imaging of systemic endothelial dysfunction in the murine model of metastatic breast cancer.

    PubMed

    Pacia, Marta Z; Buczek, Elzbieta; Blazejczyk, Agnieszka; Gregorius, Aleksandra; Wietrzyk, Joanna; Chlopicki, Stefan; Baranska, Malgorzata; Kaczor, Agnieszka

    2016-05-01

    It was recently reported in the murine model of metastatic breast cancer (4T1) that tumor progression and development of metastasis is associated with systemic endothelial dysfunction characterized by impaired nitric oxide (NO) production. Using Raman 3D confocal imaging with the analysis of the individual layers of the vascular wall combined with AFM endothelial surface imaging, we demonstrated that metastasis-induced systemic endothelial dysfunction resulted in distinct chemical changes in the endothelium of the aorta. These changes, manifested as a significant increase in the protein content (18 %) and a slight decrease in the lipid content (4 %), were limited to the endothelium and did not occur in the deeper layers of the vascular wall. The altered lipid to protein ratio in the endothelium, although more pronounced in the fixed vascular wall, was also observed in the freshly isolated unfixed vascular wall samples in the aqueous environment (12 and 7 % change of protein and lipid content, respectively). Our results support the finding that the metastasis induces systemic endothelial dysfunction that may contribute to cancer progression. Graphical Abstract Schematic illustration of methodology of sample preparation and measurement. PMID:26935932

  10. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma.

    PubMed

    Yao, Jing; Jiang, Mingzi; Zhang, Yunshi; Liu, Xing; Du, Qiang; Feng, Ganzhu

    2016-03-01

    Asthma is a chronic airway inflammatory disorder and progresses mainly due to airway remodeling. Chrysin, a natural flavonoid, has been reported to possess multiple biologic activities, including anti-inflammation, anti-oxidation and anti-proliferation. The present study aimed to investigate whether chrysin could relieve allergic airway inflammation and remodeling in a murine model of chronic asthma and the mechanism involved. The female BALB/c mice sensitized and challenged with ovalbumin (OVA) successfully developed airway hyperresponsiveness (AHR), inflammation and remodeling. The experimental data showed that chrysin could alleviate OVA-induced AHR. Chrysin could also reduce OVA-induced increases in the number of inflammatory cells, especially eosinophils, interleukin (IL) -4, and IL-13 in bronchoalveolar lavage fluid (BALF) and total IgE in serum. The decreased interferon-γ (IFN-γ) level in BALF was also upregulated by chrysin. In addition, inflammatory cell infiltration, goblet cell hyperplasia and the expression of α-smooth muscle actin (α-SMA) around bronchioles were suppressed by chrysin. Furthermore, the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) could be decreased by chrysin, which are associated with airway smooth muscle cell (ASMC) proliferation. These results indicate the promising therapeutic effect of chrysin on chronic asthma, especially the progression of airway remodeling. PMID:26780233

  11. Detection of Spontaneous Schwannomas by MRI in a Transgenic Murine Model of Neurofibromatosis Type 21

    PubMed Central

    Messerli, SM; Tang, Y; Giovannini, M; Bronsonx, R; Weissleder, R; Breakefield, XO

    2002-01-01

    Abstract Spontaneous schwannomas were detected by magnetic resonance imaging (MRI) in a transgenic murine model of neurofibromatosis type 2 (NF2) expressing a dominant mutant form of merlin under the Schwann cell-specific P0 promoter. Approximately 85% of the investigated mice showed putative tumors by 24 months of age. Specifically, 21% of the mice showed tumors in the intercostal muscles, 14% in the limb muscles, 7% in the spinal cord and spinal ganglia, 7% in the external ear, 14% in the muscle of the abdominal region, and 7% in the intestine; 66% of the female mice had uterine tumors. Multiple tumors were detected by MRI in 21% of mice. The tumors were isointense with muscle by T1-weighted MRI, showed strong enhancement following administration of gadolinium-DTPA, and were markedly hyperintense by T2-weighted MRI, all hallmarks of the clinical manifestation. Hematoxylin and eosin staining and immunohistochemistry indicated that the tumors consisted of schwannomas and Schwann cell hyperplasias. The lesions stained positively for S-100 protein and a marker antigen for the mutated transgenic NF2 protein, confirming that the imaged tumors and areas of hyperplasia were of Schwann cell origin and expressed the mutated NF2 protein. Tumors were highly infectable with a recombinant herpes simplex virus type 1 vector, hrR3, which contains the reporter gene, lacZ. The ability to develop schwannoma growth with a noninvasive imaging technique will allow assessment of therapeutic interventions. PMID:12407444

  12. Nonessential Role for the NLRP1 Inflammasome Complex in a Murine Model of Traumatic Brain Injury.

    PubMed

    Brickler, Thomas; Gresham, Kisha; Meza, Armand; Coutermarsh-Ott, Sheryl; Williams, Tere M; Rothschild, Daniel E; Allen, Irving C; Theus, Michelle H

    2016-01-01

    Traumatic brain injury (TBI) elicits the immediate production of proinflammatory cytokines which participate in regulating the immune response. While the mechanisms of adaptive immunity in secondary injury are well characterized, the role of the innate response is unclear. Recently, the NLR inflammasome has been shown to become activated following TBI, causing processing and release of interleukin-1β (IL-1β). The inflammasome is a multiprotein complex consisting of nucleotide-binding domain and leucine-rich repeat containing proteins (NLR), caspase-1, and apoptosis-associated speck-like protein (ASC). ASC is upregulated after TBI and is critical in coupling the proteins during complex formation resulting in IL-1β cleavage. To directly test whether inflammasome activation contributes to acute TBI-induced damage, we assessed IL-1β, IL-18, and IL-6 expression, contusion volume, hippocampal cell death, and motor behavior recovery in Nlrp1(-/-), Asc(-/-), and wild type mice after moderate controlled cortical impact (CCI) injury. Although IL-1β expression is significantly attenuated in the cortex of Nlrp1(-/-) and Asc(-/-) mice following CCI injury, no difference in motor recovery, cell death, or contusion volume is observed compared to wild type. These findings indicate that inflammasome activation does not significantly contribute to acute neural injury in the murine model of moderate CCI injury. PMID:27199506

  13. Nonessential Role for the NLRP1 Inflammasome Complex in a Murine Model of Traumatic Brain Injury

    PubMed Central

    Brickler, Thomas; Gresham, Kisha; Meza, Armand; Coutermarsh-Ott, Sheryl; Williams, Tere M.; Rothschild, Daniel E.; Allen, Irving C.; Theus, Michelle H.

    2016-01-01

    Traumatic brain injury (TBI) elicits the immediate production of proinflammatory cytokines which participate in regulating the immune response. While the mechanisms of adaptive immunity in secondary injury are well characterized, the role of the innate response is unclear. Recently, the NLR inflammasome has been shown to become activated following TBI, causing processing and release of interleukin-1β (IL-1β). The inflammasome is a multiprotein complex consisting of nucleotide-binding domain and leucine-rich repeat containing proteins (NLR), caspase-1, and apoptosis-associated speck-like protein (ASC). ASC is upregulated after TBI and is critical in coupling the proteins during complex formation resulting in IL-1β cleavage. To directly test whether inflammasome activation contributes to acute TBI-induced damage, we assessed IL-1β, IL-18, and IL-6 expression, contusion volume, hippocampal cell death, and motor behavior recovery in Nlrp1−/−, Asc−/−, and wild type mice after moderate controlled cortical impact (CCI) injury. Although IL-1β expression is significantly attenuated in the cortex of Nlrp1−/− and Asc−/− mice following CCI injury, no difference in motor recovery, cell death, or contusion volume is observed compared to wild type. These findings indicate that inflammasome activation does not significantly contribute to acute neural injury in the murine model of moderate CCI injury. PMID:27199506

  14. Pathobiology of human RH strain induced experimental toxoplasmosis in murine model.

    PubMed

    Sudan, Vikrant; Tewari, A K; Singh, Harkirat; Singh, R

    2016-09-01

    Of late, toxoplasmosis has gained immense importance as an opportunist parasite in immunocompromised patients. In immunocompromised subjects, the disease is supposed to occur in acute form and causes acute toxoplasmic encephalitis. However, the exact pathogenesis of other vital organs, particularly in acute form of infection, is still a matter of debate. Therefore, an attempt was made to study the pathogenesis of acute form of toxoplasmosis using cryopreserved human RH strain of the parasite in murine models. For this, 100 tachyzoites were given to individual mice and upon the setup of acute form of infection, the mice were euthanized and the organs were processed for histopathology. Histopathology revealed tachyzoites in liver only while severe necrosis due to multiplication of tachyzoites were visible in liver, spleen, lungs and brain. Kidneys and heart appeared more or less normal. Finally, the pathology of disease in these organs is described in detail. The present research has generated some vital information regarding necrotic changes in tissues due to acute toxoplasmosis and will defiantly help the researchers in the better understanding of disease particularly in humans and putting up of suitable treatment regime for human subjects infected with acute toxoplasmosis. PMID:27605794

  15. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury

    PubMed Central

    Su, Enming J.; Fredriksson, Linda; Kanzawa, Mia; Moore, Shannon; Folestad, Erika; Stevenson, Tamara K.; Nilsson, Ingrid; Sashindranath, Maithili; Schielke, Gerald P.; Warnock, Mark; Ragsdale, Margaret; Mann, Kris; Lawrence, Anna-Lisa E.; Medcalf, Robert L.; Eriksson, Ulf; Murphy, Geoffrey G.; Lawrence, Daniel A.

    2015-01-01

    Current therapies for Traumatic brain injury (TBI) focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB) integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC) within the brain can promote BBB permeability through PDGF receptor α (PDGFRα) signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 min after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 h, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC) measurements, and with the preservation of cognitive function. Finally, analysis of cerebrospinal fluid (CSF) from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα. PMID:26500491

  16. Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency.

    PubMed

    Carmo, Marlene; Risma, Kimberly A; Arumugam, Paritha; Tiwari, Swati; Hontz, Adrianne E; Montiel-Equihua, Claudia A; Alonso-Ferrero, Maria E; Blundell, Michael P; Schambach, Axel; Baum, Christopher; Malik, Punam; Thrasher, Adrian J; Jordan, Michael B; Gaspar, H Bobby

    2015-04-01

    Defects in perforin lead to the failure of T and NK cell cytotoxicity, hypercytokinemia, and the immune dysregulatory condition known as familial hemophagocytic lymphohistiocytosis (FHL). The only curative treatment is allogeneic hematopoietic stem cell transplantation which carries substantial risks. We used lentiviral vectors (LV) expressing the human perforin gene, under the transcriptional control of the ubiquitous phosphoglycerate kinase promoter or a lineage-specific perforin promoter, to correct the defect in different murine models. Following LV-mediated gene transfer into progenitor cells from perforin-deficient mice, we observed perforin expression in mature T and NK cells, and there was no evidence of progenitor cell toxicity when transplanted into irradiated recipients. The resulting perforin-reconstituted NK cells showed partial recovery of cytotoxicity, and we observed full recovery of cytotoxicity in polyclonal CD8(+) T cells. Furthermore, reconstituted T cells with defined antigen specificity displayed normal cytotoxic function against peptide-loaded targets. Reconstituted CD8(+) lymphoblasts had reduced interferon-γ secretion following stimulation in vitro, suggesting restoration of normal immune regulation. Finally, upon viral challenge, mice with >30% engraftment of gene-modified cells exhibited reduction of cytokine hypersecretion and cytopenias. This study demonstrates the potential of hematopoietic stem cell gene therapy as a curative treatment for perforin-deficient FHL. PMID:25523759

  17. Nephroprotective Effect of Ursolic Acid in a Murine Model of Gentamicin-Induced Renal Damage

    PubMed Central

    Pai, Preethi G.; Chamari Nawarathna, Savindika; Kulkarni, Avdhooth; Habeeba, Umma; Reddy C., Sudarshan; Teerthanath, Srinivas; Shenoy, Jnaneshwara P.

    2012-01-01

    The present study evaluates the nephroprotective effects of ursolic acid in a murine model of gentamicin induced renal damage. Wistar albino rats of either sex, weighing 150–200 g were divided into 5 groups; normal saline, gentamicin 80 mg/kg, intraperitoneally for 8 days, ursolic acid at 2, 5, and 10 mg/kg, per oral for 8 days, ursolic acid administered 3 days prior and concurrently with gentamicin for 5 days. Blood urea, serum creatinine, uric acid and blood urea nitrogen analyses and microscopic examination of kidney were performed. Gentamicin treatment caused nephrotoxicity as evidenced by marked elevation in serum urea, serum uric acid, serum creatinine and blood urea nitrogen (162.33 ± 9.92 mg/dL, 3.13 ± 0.12 mg/dL, 6.85 ± 0.35 mg/dL and 75.86 ± 4.64 mg/dL; resp.) when compared to the saline treated groups. Co-administration of ursolic acid with gentamicin decreased the rise in these parameters in a dose dependent manner. Histopathological analysis revealed epithelial loss with intense granular degeneration in gentamicin treated rats, whereas ursolic acid mitigated the severity of gentamicin-induced renal damage. To conclude, our data suggest that ursolic acid exhibits renoprotective effect in gentamicin induced renal damage and further studies on its mechanis of action are warranted. PMID:22811930

  18. Biological reaction to polyethylene particles in a murine calvarial model is highly influenced by age.

    PubMed

    Langlois, Jean; Zaoui, Amine; Bichara, David A; Nich, Christophe; Bensidhoum, Morad; Petite, Hervé; Muratoglu, Orhun K; Hamadouche, Moussa

    2016-04-01

    Particle-induced osteolysis is driven by multiple factors including bone metabolism, inflammation, and age. The objective of this study was to determine the influence of age on polyethylene (PE) particle-induced osteolysis in a murine calvarial model comparing 2-month-old (young) versus 24-month-old (old) mice. After PE particle implantation, calvaria were assessed at days (D) 3, D7, D14, and D21 via chemoluminescent imaging for inflammation (L-012 probe). In addition micro-computed tomography (micro-CT) and histomorphometry end points addressed the bone reaction. Inflammation peaked at D7 in young mice and D14 in old mice. Using micro-CT, a nadir of mature bone was recorded at D7 for young mice, versus D21 for old mice. Besides, regenerating bone peaked at distinct timepoints: D7 for young mice versus D21 for old mice. In the young mice group, the histomorphometric findings correlated with micro-CT regenerating bone findings at D7, associated with ample osteoïd deposition. No osteoïd could be histologically quantified in the old mice group at D7. This study demonstrated that the biological reaction to polyethylene particles is highly influenced by age. PMID:26375608

  19. A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models

    PubMed Central

    Dai, Xuezhi; James, Richard G.; Habib, Tania; Singh, Swati; Jackson, Shaun; Khim, Socheath; Moon, Randall T.; Liggitt, Denny; Wolf-Yadlin, Alejandro; Buckner, Jane H.; Rawlings, David J.

    2013-01-01

    Multiple autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, Graves disease, and systemic lupus erythematosus, are associated with an allelic variant of protein tyrosine phosphatase nonreceptor 22 (PTPN22), which encodes the protein LYP. To model the human disease-linked variant LYP-R620W, we generated knockin mice expressing the analogous mutation, R619W, in the murine ortholog PEST domain phosphatase (PEP). In contrast with a previous report, we found that this variant exhibits normal protein stability, but significantly alters lymphocyte function. Aged knockin mice exhibited effector T cell expansion and transitional, germinal center, and age-related B cell expansion as well as the development of autoantibodies and systemic autoimmunity. Further, PEP-R619W affected B cell selection and B lineage–restricted variant expression and was sufficient to promote autoimmunity. Consistent with these features, PEP-R619W lymphocytes were hyperresponsive to antigen-receptor engagement with a distinct profile of tyrosine-phosphorylated substrates. Thus, PEP-R619W uniquely modulates T and B cell homeostasis, leading to a loss in tolerance and autoimmunity. PMID:23619366

  20. Autologous apoptotic cells preceding transplantation enhance survival in lethal murine graft-versus-host models

    PubMed Central

    Florek, Mareike; Sega, Emanuela I.; Leveson-Gower, Dennis B.; Baker, Jeanette; Müller, Antonia M. S.; Schneidawind, Dominik; Meyer, Everett

    2014-01-01

    Acute graft-versus-host disease (GVHD) is induced by alloreactivity of donor T cells toward host antigens presented on antigen-presenting cells (APCs). Apoptotic cells are capable of inducing tolerance by altering APC maturation. Apoptosis can be induced by extracorporeal photopheresis (ECP). We demonstrate that the use of ECP as a prophylaxis prior to conditioning significantly improves survival (P < .0001) after bone marrow transplantation (BMT) by inhibiting the initiation phase of acute GVHD in a murine BMT model. ECP-treated autologous splenocytes resulted in immune tolerance in the host, including reduced dendritic cell activation with decreased nuclear factor-κB engagement, increased regulatory T-cell (Treg) numbers with enhanced expression of cytolytic T lymphocyte-associated antigen 4, potentiating their suppressive function. The protective effect required host production of interleukin-10 and host Tregs. Conventional T cells that entered this tolerant environment experienced reduced proliferation, as well as a reduction of tissue homing and expression of activation markers. The induction of this tolerant state by ECP was obviated by cotreatment with lipopolysaccharide, suggesting that the inflammatory state of the recipient prior to treatment would play a role in potential clinical translation. The use of prophylactic ECP may provide an alternative and safe method for immunosuppression in the bone marrow transplant setting. PMID:25030062

  1. Autologous apoptotic cells preceding transplantation enhance survival in lethal murine graft-versus-host models.

    PubMed

    Florek, Mareike; Sega, Emanuela I; Leveson-Gower, Dennis B; Baker, Jeanette; Müller, Antonia M S; Schneidawind, Dominik; Meyer, Everett; Negrin, Robert S

    2014-09-11

    Acute graft-versus-host disease (GVHD) is induced by alloreactivity of donor T cells toward host antigens presented on antigen-presenting cells (APCs). Apoptotic cells are capable of inducing tolerance by altering APC maturation. Apoptosis can be induced by extracorporeal photopheresis (ECP). We demonstrate that the use of ECP as a prophylaxis prior to conditioning significantly improves survival (P < .0001) after bone marrow transplantation (BMT) by inhibiting the initiation phase of acute GVHD in a murine BMT model. ECP-treated autologous splenocytes resulted in immune tolerance in the host, including reduced dendritic cell activation with decreased nuclear factor-κB engagement, increased regulatory T-cell (Treg) numbers with enhanced expression of cytolytic T lymphocyte-associated antigen 4, potentiating their suppressive function. The protective effect required host production of interleukin-10 and host Tregs. Conventional T cells that entered this tolerant environment experienced reduced proliferation, as well as a reduction of tissue homing and expression of activation markers. The induction of this tolerant state by ECP was obviated by cotreatment with lipopolysaccharide, suggesting that the inflammatory state of the recipient prior to treatment would play a role in potential clinical translation. The use of prophylactic ECP may provide an alternative and safe method for immunosuppression in the bone marrow transplant setting. PMID:25030062

  2. Therapeutic effect of Broussonetia papyrifera and Lonicera japonica in ovalbumin-induced murine asthma model.

    PubMed

    Hong, Seong-Ho; Kwon, Jung-Taek; Shin, Ji-Young; Kim, Ji-Eun; Minai-Tehrani, Arash; Yu, Kyeong-Nam; Lee, Somin; Park, Sung-Jin; Chang, Seung-Hee; Jiang, Hu-Lin; Vibin, M; Han, Kiwon; Son, Kun-Ho; Kwak, Wie-Jong; Chae, Chanhee; Bang, Sung-Hye; Cho, Myung-Haing

    2013-11-01

    Broussonetia papyrifera (L.) Vent. and Lonicera japonica Thunb. have been used in recent medicinal research for their antioxidative and anti-inflammatory properties. The present study investigated the therapeutic efficacy of B. papyrifera and L. japonica ethanolic extracts in a murine model of ovalbumin-induced asthma, in which intra-peritoneal (IP) injections and aerosol ovalbumin delivery were used to induce allergic asthma. Bronchioalveolar lavage fluid (BALF), serum samples, lungs and livers were collected from the experimental groups. In the groups treated with B. papyrifera and L. japonica extracts, CD3, CD4, serum IgE and IL-4 levels; activities of matrix metalloproteinase (MMP)-2 and MMP-9; and eotaxin levels in the BALF significantly decreased to near normal levels. Results of a histopathological analysis showed that the level of inflammation and mucous secretions reduced in the treated groups compared to the corresponding levels in the other groups. Moreover, results of a serum enzymatic analysis showed the non-toxic nature of the extracts in the B. papyrifera and L. japonica treated groups. Taken together, these results clearly indicate that the B. papyrifera and L. japonica extracts may be very effective against asthma and inflammation related diseases. PMID:24427953

  3. Heat Shock Response Associated with Hepatocarcinogenesis in a Murine Model of Hereditary Tyrosinemia Type I

    PubMed Central

    Angileri, Francesca; Morrow, Geneviève; Roy, Vincent; Orejuela, Diana; Tanguay, Robert M.

    2014-01-01

    Hereditary Tyrosinemia type 1 (HT1) is a metabolic liver disease caused by genetic defects of fumarylacetoacetate hydrolase (FAH), an enzyme necessary to complete the breakdown of tyrosine. The severe hepatic dysfunction caused by the lack of this enzyme is prevented by the therapeutic use of NTBC (2-[2-nitro-4-(trifluoromethyl)benzoyl]cyclohexane-1,3-dione). However despite the treatment, chronic hepatopathy and development of hepatocellular carcinoma (HCC) are still observed in some HT1 patients. Growing evidence show the important role of heat shock proteins (HSPs) in many cellular processes and their involvement in pathological diseases including cancer. Their survival-promoting effect by modulation of the apoptotic machinery is often correlated with poor prognosis and resistance to therapy in a number of cancers. Here, we sought to gain insight into the pathophysiological mechanisms associated with liver dysfunction and tumor development in a murine model of HT1. Differential gene expression patterns in livers of mice under HT1 stress, induced by drug retrieval, have shown deregulation of stress and cell death resistance genes. Among them, genes coding for HSPB and HSPA members, and for anti-apoptotic BCL-2 related mitochondrial proteins were associated with the hepatocarcinogenetic process. Our data highlight the variation of stress pathways related to HT1 hepatocarcinogenesis suggesting the role of HSPs in rendering tyrosinemia-affected liver susceptible to the development of HCC. PMID:24762634

  4. Prolactin, systemic lupus erythematosus, and autoreactive B cells: lessons learnt from murine models.

    PubMed

    Saha, Subhrajit; Tieng, Arlene; Pepeljugoski, K Peter; Zandamn-Goddard, Gisele; Peeva, Elena

    2011-02-01

    The predominant prevalence of autoimmune diseases in women of reproductive age has led to the investigation of the effects of sex hormones on immune regulation and in autoimmune diseases, in particular the prototypic systemic autoimmune disease lupus. The female hormone prolactin has receptors beyond the reproductive axis including immune cells, and it is thought to promote autoimmunity in human and murine lupus. Induced hyperprolactinemia in experimental lupus models, regardless of gender, exacerbates disease activity and leads to premature death. Prolactin treatment in mice that are not prone to develop lupus leads to the development of a lupus-like phenotype. Persistent mild-moderate hyperprolactinemia alters the selection of the naïve B cell repertoire. Recent studies demonstrate that prolactin impairs all three mechanisms of B cell tolerance induction (negative selection, receptor editing, and anergy) and thereby contributes to the pathogenesis of autoimmunity. The effects of prolactin are genetically determined as shown by the differential response to the hormone in the different mice strains. Bromocriptine, a drug that inhibits prolactin secretion, abrogates some of the immune effects of this hormone. Further research is required to elucidate molecular mechanisms involved in immune effects of prolactin and to develop novel targeted treatments for SLE patients with prolactin-responsive disease. PMID:19937157

  5. C-kit signaling promotes proliferation and invasion of colorectal mucinous adenocarcinoma in a murine model

    PubMed Central

    Tan, Jun; Yang, Shu; Shen, Ping; Sun, Haimei; Xiao, Jie; Wang, Yaxi; Wu, Bo; Ji, Fengqing; Yan, Jihong; Xue, Hong; Zhou, Deshan

    2015-01-01

    It was reported that the receptor tyrosine kinase (RTK) family often highly expressed in several mucinous carcinomas. In the present study, we established a murine model of colorectal mucinous adenocardinoma (CRMAC) by treating C57 mice [both wild type (WT) and loss-of-function c-kit mutant type (Wads−/−)] with AOM+DSS for 37 weeks and found that c-kit, a member of RTK family, clearly enhanced the tumor cell proliferation by decreasing p53 and increasing cyclin D1 through AKT pathway. Significantly, c-kit strongly promoted tumor cell invasiveness by increasing ETV4, which induced MMP7 expression and epithelial-mesenchymal transition (EMT) via ERK pathway. In vitro up- or down-regulating c-kit activation in human colorectal cancer HCT-116 cells further consolidated these results. In conclusion, our data suggested that the c-kit signaling obviously promoted proliferation and invasion of CRMAC. Therefore, targeting the c-kit signaling and its downstream molecules might provide the potential strategies for treatment of patients suffering from CRMAC in the future. PMID:26356816

  6. Imidazolium Salts as Small-Molecule Urinary Bladder Exfoliants in a Murine Model

    PubMed Central

    Wagers, Patrick O.; Tiemann, Kristin M.; Shelton, Kerri L.; Kofron, William G.; Panzner, Matthew J.; Wooley, Karen L.; Youngs, Wiley J.

    2015-01-01

    We present a novel family of small-molecule urinary bladder exfoliants that are expected to be of great value in preclinical studies of urologic conditions and have improved potential for translation compared with prior agents. There is broad urologic interest in the therapeutic potential of such exfoliating agents. The primary agent used in preclinical models, the cationic peptide protamine sulfate (PS), has limited translational potential due to concerns including systemic adverse reactions and bladder tissue injury. Intravesical application of a safe, systemically nontoxic exfoliant would have potential utility in the eradication of Escherichia coli and other uropathogens that reside in the bladder epithelium following cystitis, as well as in chronic bladder pain and bladder cancer. Here, we introduce a family of imidazolium salts with potent and focused exfoliating activity on the bladder epithelium. Synthesis and purification were straightforward and scalable, and the compounds exhibited prolonged stability in lyophilized form. Most members of the compound family were cytotoxic to cultured uroepithelial cells, with >10-fold differences in potency across the series. Upon topical (intravesical) administration of selected compounds to the murine bladder, complete epithelial exfoliation was achieved with physiologically relevant imidazolium concentrations and brief contact times. The exfoliative activity of these compounds was markedly improved in comparison to PS, as assessed by microscopy, immunofluorescence, and immunoblotting for uroplakins. Bladder uroepithelium regenerated within days to yield a histologically normal appearance, and no toxicity was observed. Finally, the chemical scaffold offers an opportunity for inclusion of antimicrobials or conjugation with chemotherapeutic or other moieties. PMID:26124168

  7. Thalidomide attenuates airway hyperresponsiveness and eosinophilic inflammation in a murine model of allergic asthma.

    PubMed

    Asano, Toshiaki; Kume, Hiroaki; Taki, Fumitaka; Ito, Satoru; Hasegawa, Yoshinori

    2010-01-01

    Asthma is characterized by chronic eosinophilic inflammation and hyperresponsiveness of the airways. We hypothesized that thalidomide, which has numerous immunomodulatory properties, may have anti-inflammatory effects in allergic asthma. BALB/c mice sensitized and challenged with ovalbumin (OVA) were treated orally with thalidomide (30, 100, or 300 mg/kg) or a vehicle. When thalidomide was administered to OVA-challenged mice, the number of eosinophils in bronchoalveolar lavage fluid (BALF) was significantly decreased. The numbers of inflammatory cells other than eosinophils were not reduced by thalidomide. Thalidomide inhibited the elevated levels of interleukin-5 (IL-5) and tumor necrosis factor-alpha (TNF-alpha) in BALF by OVA challenges. Histological analysis of the lung revealed that both the infiltration of inflammatory cells and the hyperplasia of goblet cells were significantly suppressed by thalidomide treatment. Furthermore, thalidomide significantly inhibited the response to methacholine induced by OVA challenges. Taken together, thalidomide treatment decreased airway inflammation and hyperresponsiveness in a murine model of allergic asthma. These results might provide an opportunity for the development of novel therapeutics to treat severe asthma. PMID:20522972

  8. Intraventricular injections of mesenchymal stem cells activate endogenous functional remyelination in a chronic demyelinating murine model

    PubMed Central

    Cruz-Martinez, P; González-Granero, S; Molina-Navarro, M M; Pacheco-Torres, J; García-Verdugo, J M; Geijo-Barrientos, E; Jones, J; Martinez, S

    2016-01-01

    Current treatments for demyelinating diseases are generally only capable of ameliorating the symptoms, with little to no effect in decreasing myelin loss nor promoting functional recovery. Mesenchymal stem cells (MSCs) have been shown by many researchers to be a potential therapeutic tool in treating various neurodegenerative diseases, including demyelinating disorders. However, in the majority of the cases, the effect was only observed locally, in the area surrounding the graft. Thus, in order to achieve general remyelination in various brain structures simultaneously, bone marrow-derived MSCs were transplanted into the lateral ventricles (LVs) of the cuprizone murine model. In this manner, the cells may secrete soluble factors into the cerebrospinal fluid (CSF) and boost the endogenous oligodendrogenic potential of the subventricular zone (SVZ). As a result, oligodendrocyte progenitor cells (OPCs) were recruited within the corpus callosum (CC) over time, correlating with an increased myelin content. Electrophysiological studies, together with electron microscopy (EM) analysis, indicated that the newly formed myelin correctly enveloped the demyelinated axons and increased signal transduction through the CC. Moreover, increased neural stem progenitor cell (NSPC) proliferation was observed in the SVZ, possibly due to the tropic factors released by the MSCs. In conclusion, the findings of this study revealed that intraventricular injections of MSCs is a feasible method to elicit a paracrine effect in the oligodendrogenic niche of the SVZ, which is prone to respond to the factors secreted into the CSF and therefore promoting oligodendrogenesis and functional remyelination. PMID:27171265

  9. Optoacoustic characterization of prostate cancer in an in vivo transgenic murine model

    NASA Astrophysics Data System (ADS)

    Patterson, Michelle P.; Riley, Christopher B.; Kolios, Michael C.; Whelan, William M.

    2014-05-01

    Optoacoustic (OA) imaging was employed to distinguish normal from neoplastic tissues in a transgenic murine model of prostate cancer. OA images of five tumor-bearing mice and five age-matched controls across a 14 mm×14 mm region of interest (ROI) on the lower abdomen were acquired using a reverse-mode OA imaging system (Seno Medical Instruments Inc., San Antonio, Texas). Neoplastic prostate tissue was identified based on the OA signal amplitude in combination with spectral analysis of the OA radio frequency (RF) data. Integration of the signal amplitude images was performed to construct two-dimensional images of the ROI. The prostate tumors generated higher amplitude signals than those of the surrounding tissues, with contrast ratios ranging from 31 to 36 dB. The RF spectrum analysis showed significant differences between the tumor and the control mice. The midband fit was higher by 5 dB (62%), the intercept higher by 4 dB (57%) and the spectral slope higher by 0.4 dB/MHz (50%) for neoplastic prostate tissue compared to normal tissues in the control mice. The results demonstrate that OA offers high contrast imaging of prostate cancer in vivo.

  10. Aryl-alkyl-lysines: Membrane-Active Small Molecules Active against Murine Model of Burn Infection.

    PubMed

    Ghosh, Chandradhish; Manjunath, Goutham B; Konai, Mohini M; Uppu, Divakara S S M; Paramanandham, Krishnamoorthy; Shome, Bibek R; Ravikumar, Raju; Haldar, Jayanta

    2016-02-12

    Infections caused by drug-resistant Gram-negative pathogens continue to be significant contributors to human morbidity. The recent advent of New Delhi metallo-β-lactamase-1 (blaNDM-1) producing pathogens, against which few drugs remain active, has aggravated the problem even further. This paper shows that aryl-alkyl-lysines, membrane-active small molecules, are effective in treating infections caused by Gram-negative pathogens. One of the compounds of the study was effective in killing planktonic cells as well as dispersing biofilms of Gram-negative pathogens. The compound was extremely effective in disrupting preformed biofilms and did not select resistant bacteria in multiple passages. The compound retained activity in different physiological conditions and did not induce any toxic effect in female Balb/c mice until concentrations of 17.5 mg/kg. In a murine model of Acinetobacter baumannii burn infection, the compound was able to bring the bacterial burden down significantly upon topical application for 7 days. PMID:27624962

  11. Behavioral Phenotyping of Murine Disease Models with the Integrated Behavioral Station (INBEST)

    PubMed Central

    Sakic, Boris; Cooper, Marcella P. A.; Taylor, Sarah E.; Stojanovic, Milica; Zagorac, Bosa; Kapadia, Minesh

    2015-01-01

    Due to rapid advances in genetic engineering, small rodents have become the preferred subjects in many disciplines of biomedical research. In studies of chronic CNS disorders, there is an increasing demand for murine models with high validity at the behavioral level. However, multiple pathogenic mechanisms and complex functional deficits often impose challenges to reliably measure and interpret behavior of chronically sick mice. Therefore, the assessment of peripheral pathology and a behavioral profile at several time points using a battery of tests are required. Video-tracking, behavioral spectroscopy, and remote acquisition of physiological measures are emerging technologies that allow for comprehensive, accurate, and unbiased behavioral analysis in a home-base-like setting. This report describes a refined phenotyping protocol, which includes a custom-made monitoring apparatus (Integrated Behavioral Station, INBEST) that focuses on prolonged measurements of basic functional outputs, such as spontaneous activity, food/water intake and motivated behavior in a relatively stress-free environment. Technical and conceptual improvements in INBEST design may further promote reproducibility and standardization of behavioral studies. PMID:25938737

  12. Treatment with tetrahydrobiopterin overcomes brain death-associated injury in a murine model of pancreas transplantation.

    PubMed

    Oberhuber, R; Ritschl, P; Fabritius, C; Nguyen, A-V; Hermann, M; Obrist, P; Werner, E R; Maglione, M; Flörchinger, B; Ebner, S; Resch, T; Pratschke, J; Kotsch, K

    2015-11-01

    Brain death (BD) has been associated with an immunological priming of donor organs and is thought to exacerbate ischemia reperfusion injury (IRI). Recently, we showed that the essential nitric oxide synthase co-factor tetrahydrobiopterin (BH4) abrogates IRI following experimental pancreas transplantation. We therefore studied the effects of BD in a murine model of syngeneic pancreas transplantation and tested the therapeutic potential of BH4 treatment. Compared with sham-operated controls, donor BD resulted in intragraft inflammation reflected by induced IL-1ß, IL-6, VCAM-1, and P-selectin mRNA expression levels and impaired microcirculation after reperfusion (p < 0.05), whereas pretreatment of the BD donor with BH4 significantly improved microcirculation after reperfusion (p < 0.05). Moreover, BD had a devastating impact on cell viability, whereas BH4-treated grafts showed a significantly higher percentage of viable cells (p < 0.001). Early parenchymal damage in pancreatic grafts was significantly more pronounced in organs from BD donors than from sham or non-BD donors (p < 0.05), but BH4 pretreatment significantly ameliorated necrotic lesions in BD organs (p < 0.05). Pretreatment of the BD donor with BH4 resulted in significant recipient survival (p < 0.05). Our data provide novel insights into the impact of BD on pancreatic isografts, further demonstrating the potential of donor pretreatment strategies including BH4 for preventing BD-associated injury after transplantation. PMID:26104062

  13. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI.

    PubMed

    Kadayakkara, Deepak K; Ranganathan, Sarangarajan; Young, Won-Bin; Ahrens, Eric T

    2012-04-01

    Macrophages have an important role in the pathogenesis of most chronic inflammatory diseases. A means of non-invasively quantifying macrophage migration would contribute significantly towards our understanding of chronic inflammatory processes and aid the evaluation of novel therapeutic strategies. We describe the use of a perfluorocarbon tracer reagent and in vivo (19)F magnetic resonance imaging (MRI) to quantify macrophage burden longitudinally. We apply these methods to evaluate the severity and three-dimensional distribution of macrophages in a murine model of inflammatory bowel disease (IBD). MRI results were validated by histological analysis, immunofluorescence and quantitative real-time polymerase chain reaction. Selective depletion of macrophages in vivo was also performed, further validating that macrophage accumulation of perfluorocarbon tracers was the basis of (19)F MRI signals observed in the bowel. We tested the effects of two common clinical drugs, dexamethasone and cyclosporine A, on IBD progression. Whereas cyclosporine A provided mild therapeutic effect, unexpectedly dexamethasone enhanced colon inflammation, especially in the descending colon. Overall, (19)F MRI can be used to evaluate early-stage inflammation in IBD and is suitable for evaluating putative therapeutics. Due to its high macrophage specificity and quantitative ability, we envisage (19)F MRI having an important role in evaluating a wide range of chronic inflammatory conditions mediated by macrophages. PMID:22330343

  14. Rosmarinic Acid Attenuates Airway Inflammation and Hyperresponsiveness in a Murine Model of Asthma.

    PubMed

    Liang, Zhengmin; Xu, Yangfeng; Wen, Xuemei; Nie, Haiying; Hu, Tingjun; Yang, Xiaofeng; Chu, Xiao; Yang, Jian; Deng, Xuming; He, Jiakang

    2016-01-01

    Rosmarinic acid (RA) has numerous pharmacologic effects, including anti-oxidant, anti-inflammatory, and analgesic effects. This study aimed to evaluate the preventive activity of RA in a murine model of asthma and to investigate its possible molecular mechanisms. Female BALB/c mice sensitized and challenged with ovalbumin (Ova) were pretreated with RA (5, 10 or 20 mg/kg) at 1 h before Ova challenge. The results demonstrated that RA markedly inhibited increases in inflammatory cells and Th2 cytokines in the bronchoalveolar lavage fluid (BALF), significantly reduced the total IgE and Ova-specific IgE concentrations, and greatly ameliorated airway hyperresponsiveness (AHR) compared with the control Ova-induced mice. Histological analyses showed that RA substantially decreased the number of inflammatory cells and mucus hypersecretion in the airway. In addition, our results suggested that the protective effects of RA might be mediated by the suppression of ERK, JNK and p38 phosphorylation and activation of nuclear factor-κB (NF-κB). Furthermore, RA pretreatment resulted in a noticeable reduction in AMCase, CCL11, CCR3, Ym2 and E-selectin mRNA expression in lung tissues. These findings suggest that RA may effectively delay the progression of airway inflammation. PMID:27304950

  15. Differences in Host Innate Responses among Coccidioides Isolates in a Murine Model of Pulmonary Coccidioidomycosis

    PubMed Central

    Lewis, Eric R. G.; David, Victoria R.; Doyle, Adina L.; Rajabi, Khadijeh; Kiefer, Jeffrey A.; Pirrotte, Patrick

    2015-01-01

    Coccidioides immitis and Coccidioides posadasii are soil-dwelling fungi and the causative agents of coccidioidomycosis, a mycosis endemic to certain semiarid regions in the Americas. The most common route of infection is by inhalation of airborne Coccidioides arthroconidia. Once a susceptible host inhales the conidia, a transition to mature endosporulated spherules can occur within the first 5 days of infection. For this study, we examined the host response in a murine model of coccidioidomycosis during a time period of infection that has not been well characterized. We collected lung tissue and bronchoalveolar lavage fluid (BALF) from BALB/c mice that were infected with a C. immitis pure strain, a C. immitis hybrid strain, or a C. posadasii strain as well as uninfected mice. We compared the host responses to the Coccidioides strains used in this study by assessing the level of transcription of selected cytokine genes in lung tissues and characterized host and fungal proteins present in BALF. Host response varied depending on the Coccidioides strain that was used and did not appear to be overly robust. This study provides a foundation to begin to dissect the host immune response early in infection, to detect abundant Coccidioides proteins, and to develop diagnostics that target these early time points of infection. PMID:26275879

  16. Multivariate models of adult Pacific salmon returns.

    PubMed

    Burke, Brian J; Peterson, William T; Beckman, Brian R; Morgan, Cheryl; Daly, Elizabeth A; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  17. Multivariate Models of Adult Pacific Salmon Returns

    PubMed Central

    Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  18. Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis.

    PubMed

    Das, Rupali; Guan, Peng; Sprague, Leslee; Verbist, Katherine; Tedrick, Paige; An, Qi Angel; Cheng, Cheng; Kurachi, Makoto; Levine, Ross; Wherry, E John; Canna, Scott W; Behrens, Edward M; Nichols, Kim E

    2016-03-31

    Hemophagocytic lymphohistiocytosis (HLH) comprises an emerging spectrum of inherited and noninherited disorders of the immune system characterized by the excessive production of cytokines, including interferon-γ and interleukins 2, 6, and 10 (IL-2, IL-6, and IL-10). The Janus kinases (JAKs) transduce signals initiated following engagement of specific receptors that bind a broad array of cytokines, including those overproduced in HLH. Based on the central role for cytokines in the pathogenesis of HLH, we sought to examine whether the inhibition of JAK function might lessen inflammation in murine models of the disease. Toward this end, we examined the effects of JAK inhibition using a model of primary (inherited) HLH in which perforin-deficient (Prf1(-∕-)) mice are infected with lymphocytic choriomeningitis virus (LCMV) and secondary (noninherited) HLH in which C57BL/6 mice receive repeated injections of CpG DNA. In both models, treatment with the JAK1/2 inhibitor ruxolitinib significantly lessened the clinical and laboratory manifestations of HLH, including weight loss, organomegaly, anemia, thrombocytopenia, hypercytokinemia, and tissue inflammation. Importantly, ruxolitinib treatment also significantly improved the survival of LCMV-infectedPrf1(-∕-)mice. Mechanistic studies revealed that in vivo exposure to ruxolitinib inhibited signal transducer and activation of transcription 1-dependent gene expression, limited CD8(+)T-cell expansion, and greatly reduced proinflammatory cytokine production, without effecting degranulation and cytotoxic function. Collectively, these findings highlight the JAKs as novel, druggable targets for mitigating the cytokine-driven hyperinflammation that occurs in HLH. These observations also support the incorporation of JAK inhibitors such as ruxolitinib into future clinical trials for patients with these life-threatening disorders. PMID:26825707

  19. Clinical Features of Bacterial Vaginosis in a Murine Model of Vaginal Infection with Gardnerella vaginalis

    PubMed Central

    Gilbert, Nicole M.; Lewis, Warren G.; Lewis, Amanda L.

    2013-01-01

    Bacterial vaginosis (BV) is a dysbiosis of the vaginal flora characterized by a shift from a Lactobacillus-dominant environment to a polymicrobial mixture including Actinobacteria and Gram-negative bacilli. BV is a common vaginal condition in women and is associated with increased risk of sexually transmitted infection and adverse pregnancy outcomes such as preterm birth. Gardnerella vaginalis is one of the most frequently isolated bacterial species in BV. However, there has been much debate in the literature concerning the contribution of G. vaginalis to the etiology of BV, since it is also present in a significant proportion of healthy women. Here we present a new murine vaginal infection model with a clinical isolate of G. vaginalis. Our data demonstrate that this model displays key features used clinically to diagnose BV, including the presence of sialidase activity and exfoliated epithelial cells with adherent bacteria (reminiscent of clue cells). G. vaginalis was capable of ascending uterine infection, which correlated with the degree of vaginal infection and level of vaginal sialidase activity. The host response to G. vaginalis infection was characterized by robust vaginal epithelial cell exfoliation in the absence of histological inflammation. Our analyses of clinical specimens from women with BV revealed a measureable epithelial exfoliation response compared to women with normal flora, a phenotype that, to our knowledge, is measured here for the first time. The results of this study demonstrate that G. vaginalis is sufficient to cause BV phenotypes and suggest that this organism may contribute to BV etiology and associated complications. This is the first time vaginal infection by a BV associated bacterium in an animal has been shown to parallel the human disease with regard to clinical diagnostic features. Future studies with this model should facilitate investigation of important questions regarding BV etiology, pathogenesis and associated complications

  20. Roflumilast Ameliorates Airway Hyperresponsiveness Caused by Diet-Induced Obesity in a Murine Model.

    PubMed

    Park, Hye Jung; Lee, Jae-Hyun; Park, Yoon Hee; Han, Heejae; Sim, Da Woon; Park, Kyung Hee; Park, Jung-Won

    2016-07-01

    Obese patients with asthma respond poorly to conventional asthma medications, resulting in severe symptoms and poor prognosis. Roflumilast, a phosphodiesterase-4 inhibitor that lowers the levels of various substances that are implicated in obese subjects with asthma, may be effective in the treatment of those subjects. We evaluated the potential of roflumilast as a novel therapeutic agent for obese subjects with asthma. We designed three models: diet-induced obesity (DIO); DIO with ovalbumin (OVA); and OVA. We fed C57BL/6J mice a high-fat diet for 3 months with or without OVA sensitization and challenge. Roflumilast or dexamethasone was administered orally three times at 2-day intervals in the last experimental week. Airway hyperresponsiveness resulting from DIO significantly improved in the roflumilast-treated group compared with the dexamethasone-treated groups. Although DIO did not affect the cell proliferation in bronchoalveolar lavage fluid, increased fibrosis was seen in the DIO group, which significantly improved from treatment with roflumilast. DIO-induced changes in adiponectin and leptin levels were improved by roflumilast, whereas dexamethasone aggravated them. mRNA levels and proteins of TNF-α, transforming growth factor-β, IL-1β, and IFN-γ increased in the DIO group and decreased with roflumilast. The reactive oxygen species levels were also increased in the DIO group and decreased by roflumilast. In the DIO plus OVA and OVA models, roflumilast improved Th1 and Th2 cell activation to a greater extent than dexamethasone. Roflumilast is significantly more effective than dexamethasone against airway hyperresponsiveness caused by DIO in the murine model. Roflumilast may represent a promising therapeutic agent for the treatment of obese patients with asthma. PMID:26756251

  1. A murine model of coxsackievirus A16 infection for anti-viral evaluation.

    PubMed

    Liu, Qingwei; Shi, Jinping; Huang, Xulin; Liu, Fei; Cai, Yicun; Lan, Ke; Huang, Zhong

    2014-05-01

    Coxsackievirus A16 (CA16) is one of the main causative agents of hand, foot and mouth disease (HFMD), which is a common infectious disease in children. CA16 infection may lead to severe nervous system damage and even death in humans. However, study of the pathogenesis of CA16 infection and development of vaccines and anti-viral agents are hindered partly by the lack of an appropriate small animal model. In the present study, we developed and characterized a murine model of CA16 infection. We show that neonatal mice are susceptible to CA16 infection via intraperitoneal inoculation. One-day-old mice infected with 2×10(6)TCID50 of CA16/SZ05 strain consistently exhibited clinical signs, including reduced mobility, and limb weakness and paralysis. About 57% of the mice died within 14days after infection. Significant damage in the brainstem, limb muscles and intestines of the infected mice in the moribund state was observed by histological examination, and the presence of CA16 in neurons of the brainstem was demonstrated by immunohistochemical staining with a CA16-specific polyclonal antibody, strongly suggesting the involvement of the central nervous system in CA16 infection. Analysis of virus titers in various organs/tissues collected at 3, 6 and 9days post-infection, showed that skeletal muscle was the major site of virus replication at the early stage of infection, while the virus mainly accumulated in the brain at the late stage. In addition, susceptibility of mice to CA16 infection was found to be age dependent. Moreover, different CA16 strains could exhibit varied virulence in vivo. Importantly, we demonstrated that post-exposure treatment with an anti-CA16 monoclonal antibody fully protected mice against lethal CA16 infection. Collectively, these results indicate the successful development of a CA16 infection mouse model for anti-viral evaluation. PMID:24583030

  2. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome

    PubMed Central

    Balderman, Sophia R.; Li, Allison J.; Hoffman, Corey M.; Frisch, Benjamin J.; Goodman, Alexandra N.; LaMere, Mark W.; Georger, Mary A.; Evans, Andrew G.; Liesveld, Jane L.; Becker, Michael W.

    2016-01-01

    In vitro evidence suggests that the bone marrow microenvironment (BMME) is altered in myelodysplastic syndromes (MDSs). Here, we study the BMME in MDS in vivo using a transgenic murine model of MDS with hematopoietic expression of the translocation product NUP98-HOXD13 (NHD13). This model exhibits a prolonged period of cytopenias prior to transformation to leukemia and is therefore ideal to interrogate the role of the BMME in MDS. In this model, hematopoietic stem and progenitor cells (HSPCs) were decreased in NHD13 mice by flow cytometric analysis. The reduction in the total phenotypic HSPC pool in NHD13 mice was confirmed functionally with transplantation assays. Marrow microenvironmental cellular components of the NHD13 BMME were found to be abnormal, including increases in endothelial cells and in dysfunctional mesenchymal and osteoblastic populations, whereas megakaryocytes were decreased. Both CC chemokine ligand 3 and vascular endothelial growth factor, previously shown to be increased in human MDS, were increased in NHD13 mice. To assess whether the BMME contributes to disease progression in NHD13 mice, we performed transplantation of NHD13 marrow into NHD13 mice or their wild-type (WT) littermates. WT recipients as compared with NHD13 recipients of NHD13 marrow had a lower rate of the combined outcome of progression to leukemia and death. Moreover, hematopoietic function was superior in a WT BMME as compared with an NHD13 BMME. Our data therefore demonstrate a contributory role of the BMME to disease progression in MDS and support a therapeutic strategy whereby manipulation of the MDS microenvironment may improve hematopoietic function and overall survival. PMID:26637787

  3. Development of a sarcoidosis murine lung granuloma model using Mycobacterium superoxide dismutase A peptide.

    PubMed

    Swaisgood, Carmen M; Oswald-Richter, Kyra; Moeller, Stephen D; Klemenc, Jennifer M; Ruple, Lisa M; Farver, Carol F; Drake, John M; Culver, Daniel A; Drake, Wonder P

    2011-02-01

    Sarcoidosis is characterized by noncaseating granulomas containing CD4(+) T cells with a Th1 immunophenotype. Although the causative antigens remain unknown, independent studies noted molecular and immunologic evidence of mycobacterial virulence factors in sarcoidosis specimens. A major limiting factor in discovering new insights into the pathogenesis of sarcoidosis is the lack of an animal model. Using a distinct superoxide dismutase A peptide (sodA) associated with sarcoidosis granulomas, we developed a pulmonary model of sarcoidosis granulomatous inflammation. Mice were sensitized by a subcutaneous injection of sodA, incorporated in incomplete Freund's adjuvant (IFA). Control subjects consisted of mice with no sensitization (ConNS), sensitized with IFA only (ConIFA), or with Schistosoma mansoni eggs. Fourteen days later, sensitized mice were challenged by tail-vein injection of naked beads, covalently coupled to sodA peptides or to schistosome egg antigens (SEA). Histologic analysis revealed hilar lymphadenopathy and noncaseating granulomas in the lungs of sodA-treated or SEA-treated mice. Flow cytometry of bronchoalveolar lavage (BAL) demonstrated CD4(+) T-cell responses against sodA peptide in the sodA-sensitized mice only. Cytometric bead analysis revealed significant differences in IL-2 and IFN-γ secretion in the BAL fluid of sodA-treated mice, compared with mice that received SEA or naked beads (P = 0.008, Wilcoxon rank sum test). ConNS and ConIFA mice demonstrated no significant formation of granuloma, and no Th1 immunophenotype. The use of microbial peptides distinct for sarcoidosis reveals a histologic and immunologic profile in the murine model that correlates well with those profiles noted in human sarcoidosis, providing the framework to investigate the molecular basis for the progression or resolution of sarcoidosis. PMID:20348207

  4. Correlation of Klebsiella pneumoniae comparative genetic analyses with virulence profiles in a murine respiratory disease model.

    PubMed

    Fodah, Ramy A; Scott, Jacob B; Tam, Hok-Hei; Yan, Pearlly; Pfeffer, Tia L; Bundschuh, Ralf; Warawa, Jonathan M

    2014-01-01

    Klebsiella pneumoniae is a bacterial pathogen of worldwide importance and a significant contributor to multiple disease presentations associated with both nosocomial and community acquired disease. ATCC 43816 is a well-studied K. pneumoniae strain which is capable of causing an acute respiratory disease in surrogate animal models. In this study, we performed sequencing of the ATCC 43816 genome to support future efforts characterizing genetic elements required for disease. Furthermore, we performed comparative genetic analyses to the previously sequenced genomes from NTUH-K2044 and MGH 78578 to gain an understanding of the conservation of known virulence determinants amongst the three strains. We found that ATCC 43816 and NTUH-K2044 both possess the known virulence determinant for yersiniabactin, as well as a Type 4 secretion system (T4SS), CRISPR system, and an acetonin catabolism locus, all absent from MGH 78578. While both NTUH-K2044 and MGH 78578 are clinical isolates, little is known about the disease potential of these strains in cell culture and animal models. Thus, we also performed functional analyses in the murine macrophage cell lines RAW264.7 and J774A.1 and found that MGH 78578 (K52 serotype) was internalized at higher levels than ATCC 43816 (K2) and NTUH-K2044 (K1), consistent with previous characterization of the antiphagocytic properties of K1 and K2 serotype capsules. We also examined the three K. pneumoniae strains in a novel BALB/c respiratory disease model and found that ATCC 43816 and NTUH-K2044 are highly virulent (LD50<100 CFU) while MGH 78578 is relatively avirulent. PMID:25203254

  5. Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome

    PubMed Central

    De Felice, Claudio; Della Ragione, Floriana; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Ciccoli, Lucia; Scalabrì, Francesco; Marracino, Federico; Madonna, Michele; Belmonte, Giuseppe; Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni; Valacchi, Giuseppe; Durand, Thierry; Galano, Jean-Marie; Oger, Camille; Guy, Alexandre; Bultel-Poncé, Valérie; Guy, Jacky; Filosa, Stefania; Hayek, Joussef; D'Esposito, Maurizio

    2014-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. PMID:24769161

  6. Regression of Established Hepatocellular Carcinoma Is Induced by Chemo-immunotherapy in an Orthotopic Murine Model

    PubMed Central

    Avella, Diego M.; Li, Guangfu; Schell, Todd D.; Liu, Dai; Zhang, Samuel Shao-Min; Lou, Xi; Berg, Arthur; Kimchi, Eric T.; Tagaram, Hephzibah Rani S.; Yang, Qing; Shereef, Serene; Garcia, Luis S.; Kester, Mark; Isom, Harriet C.; Rountree, C. Bart; Staveley-O’Carroll, Kevin F.

    2011-01-01

    The high rate of mortality and frequent incidence of recurrence associated with hepatocellular carcinoma (HCC) reveal the need for new therapeutic approaches. In this report, we evaluated the efficacy of a novel chemo-immunotherapeutic strategy to control HCC and investigated the underlying mechanism that increased the antitumor immune response. We developed a novel orthotopic mouse model of HCC through seeding of tumorigenic hepatocytes from SV40 T antigen (Tag) transgenic MTD2 mice into the livers of syngeneic C57BL/6 mice. These MTD2-derived hepatocytes form Tag expressing HCC tumors specifically within the liver. This approach provides a platform to test therapeutic strategies and antigen specific immune-directed therapy in an immunocompetent murine model. Using this model, we tested the efficacy of a combination of oral sunitinib, a small molecule multi-targeted receptor tyrosine kinase (RTK) inhibitor, and adoptive transfer of tumor antigen-specific CD8+ T cells to eliminate HCC. Sunitinib treatment alone promoted a transient reduction in tumor size. Sunitinib treatment combined with adoptive transfer of tumor antigen-specific CD8+ T cells led to elimination of established tumors without recurrence. In vitro studies revealed that HCC growth was inhibited through suppression of STAT3 signaling. In addition, sunitinib treatment of tumor-bearing mice was associated with suppression of STAT3 and a block in T cell tolerance. Conclusion These findings indicate that sunitinib inhibits HCC tumor growth directly through the STAT3 pathway and prevents tumor antigen-specific CD8+ T cell tolerance, thus defining a synergistic chemo-immunotherapeutic approach for HCC. PMID:21898502

  7. Creation of a murine orthotopic hepatoma model with intra-abdominal metastasis

    PubMed Central

    Harris, Jamie; Kajdacsy-Balla, Andre; Chiu, Bill

    2016-01-01

    Aim: To create an orthotopic hepatoma model with local metastasis monitored with ultrasound could be created as a platform for testing new treatments. Background: Hepatoma accounts for 25% of liver tumors in children with poor overall survival. Intraabdominal metastasis are present in 35% of patients at time of diagnosis. We hypothesized that an orthotopic tumor model with local metastasis could be created as a platform for testing treatment modalities and could be monitored with ultrasound. Patients and methods: One million human hepatoma cells (Hep3B) were injected into the left lobe of the liver of immunocompromised mice. Tumor volume was monitored with high frequency-ultrasound until it reached 1,000mm3. At that time animals were sacrificed and examined for gross metastatic disease. Tumor sections were analyzed with hematoxylin and eosin (H&E) staining. Results: Tumor formed in 8/15 mice. The tumor was detected as small as 19.59mm3 on ultrasound. Of the forming tumors, tumor size was 145±177.93mm3 at 60 days post-injection, 665±650.39mm3 at 67 days, and reached >1000mm3 by 76.6±9.9 days. At necropsy, four mice (50%) had tumor only within the liver, four (50%) had additional tumors in omentum, pelvis and peritoneum. H&E showed tumor within the normal liver parenchyma, with multiple mitotic figures, small areas of necrosis, and hemorrhage within the tumor. Conclusion: We have successfully established an orthotopic hepatoma murine model, with a local metastatic rate of 50%. Non-invasive tumor monitoring is feasible via ultrasound. PMID:27458509

  8. Evaluation of pulsed high intensity focused ultrasound exposures on metastasis in a murine model.

    PubMed

    Hancock, Hilary; Dreher, Matthew R; Crawford, Nigel; Pollock, Claire B; Shih, Jennifer; Wood, Bradford J; Hunter, Kent; Frenkel, Victor

    2009-01-01

    High intensity focused ultrasound (HIFU) may be employed in two ways: continuous exposures for thermal ablation of tissue (> 60 degrees C), and pulsed-exposures for non-ablative effects, including low temperature hyperthermia (37-45 degrees C), and non thermal effects (e.g. acoustic cavitation and radiation forces). Pulsed-HIFU effects may enhance the tissue's permeability for improved delivery of drugs and genes, for example, by opening up gaps between cells in the vasculature and parenchyma. Inducing these effects may improve local targeting of therapeutic agents, however; concerns exist that pulsed exposures could theoretically also facilitate dissemination of tumor cells and exacerbate metastases. In the present study, the influence of pulsed-HIFU exposures on increasing metastatic burden was evaluated in a murine model with metastatic breast cancer. A preliminary study was carried out to validate the model and determine optimal timing for treatment and growth of lung metastases. Next, the effect of pulsed-HIFU on the metastatic burden was evaluated using quantitative image processing of whole-lung histological sections. Compared to untreated controls (2/15), a greater number of mice treated with pulsed-HIFU were found to have lungs "overgrown" with metastases (7/15), where individual metastases grew together such that they could not accurately be counted. Furthermore, area fraction of lung metastases (area of metastases/area of lungs) was approximately 30% greater in mice treated with pulsed-HIFU; however, these differences were not statistically significant. The present study details the development of an animal model for investigating the influence of interventional techniques or exposures (such as pulsed HIFU) on metastatic burden. PMID:19517258

  9. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis.

    PubMed

    Jilling, Tamas; Simon, Dyan; Lu, Jing; Meng, Fan Jing; Li, Dan; Schy, Robert; Thomson, Richard B; Soliman, Antoine; Arditi, Moshe; Caplan, Michael S

    2006-09-01

    Bacteria are thought to contribute to the pathogenesis of necrotizing enterocolitis (NEC), but it is unknown whether their interaction with the epithelium can participate in the initiation of mucosal injury or they can act only following translocation across a damaged intestinal barrier. Our aims were to determine whether bacteria and intestinal epithelial TLR4 play roles in a well-established neonatal rat model and a novel neonatal murine model of NEC. Neonatal rats, C57BL/6J, C3HeB/FeJ (TLR4 wild type), and C3H/HeJ (TLR4 mutant) mice were delivered by Cesarean section and were subjected to formula feeding and cold asphyxia stress or were delivered naturally and were mother-fed. NEC incidence was evaluated by histological scoring, and gene expression was quantified using quantitative real-time PCR from cDNA generated from intestinal total RNA or from RNA obtained by laser capture microdissection. Spontaneous feeding catheter colonization or supplementation of cultured bacterial isolates to formula increased the incidence of experimental NEC. During the first 72 h of life, i.e., the time frame of NEC development in this model, intestinal TLR4 mRNA gradually decreases in mother-fed but increases in formula feeding and cold asphyxia stress, correlating with induced inducible NO synthase. TLR4, inducible NO synthase, and inflammatory cytokine induction occurred in the intestinal epithelium but not in the submucosa. NEC incidence was diminished in C3H/HeJ mice, compared with C3HeB/FeJ mice. In summary, bacteria and TLR4 play significant roles in experimental NEC, likely via an interaction of intraluminal bacteria and aberrantly overexpressed TLR4 in enterocytes. PMID:16920968

  10. Murine mesenchymal stem cells transplanted to the central nervous system of neonatal versus adult mice exhibit distinct engraftment kinetics and express receptors that guide neuronal cell migration.

    PubMed

    Phinney, Donald G; Baddoo, Melody; Dutreil, Maria; Gaupp, Dina; Lai, Wen Tzu; Isakova, Iryna A

    2006-06-01

    Mesenchymal stem cells (MSCs) have demonstrated efficacy as cellular vectors for treating a variety of nervous system disorders. Nevertheless, few studies have quantified MSC engraftment levels or explored the mechanisms that promote their survival and migration in nervous tissue. In this study, we compared the engraftment kinetics and anatomical distribution of murine, male MSCs injected intracranially into neonatal versus adult female mice using a real-time PCR assay that targets the mouse SRY gene. These analyses revealed that MSCs exhibited low but equivalent engraftment levels in the central nervous system (CNS) of neonatal and adult transplant recipients at 12 days post-injection. However, MSC engraftment levels were significantly greater at 60 and 150 days post-transplantation in neonates as compared to adults. Despite these differences, engrafted MSCs were widely distributed along the neuraxis of the CNS in both transplant groups. Collectively, these data indicate that proliferation, but not engraftment and migration, of MSCs in brain are regulated by the host microenvironment. Using a genomics approach, we also identified MSC subpopulations that express neural adhesion proteins and receptors that regulate neuronal cell migration in brain, including cadherin 2, neurexin 1, ninjurin 1, neogenin 1, neuropilin 2, and roundabout homolog 1 and 4. Functional studies indicate these proteins confer cell adhesion and migration of MSCs in response to the appropriate chemoattractant. On the basis of these findings, we conclude that the unique molecular composition of MSC subpopulations imparts to them an inherent capacity to engraft and migrate in brain. These subpopulations may represent more potent cellular vectors for treating CNS disorders. PMID:16846379

  11. Comparative pharmacodynamics of posaconazole in neutropenic murine models of invasive pulmonary aspergillosis and mucormycosis.

    PubMed

    Lewis, Russell E; Albert, Nathaniel D; Kontoyiannis, Dimitrios P

    2014-11-01

    We used two established neutropenic murine models of pulmonary aspergillosis and mucormycosis to explore the association between the posaconazole area under the concentration-time curve (AUC)-to-MIC ratio (AUC/MIC) and treatment outcome. Posaconazole serum pharmacokinetics were verified in infected mice to ensure that the studied doses reflected human exposures with the oral suspension, delayed-release tablet, and intravenous formulations of posaconazole. Sinopulmonary infections were then induced in groups of neutropenic mice with Aspergillus fumigatus strain 293 (posaconazole MIC, 0.5 mg/liter) or Rhizopus oryzae strain 969 (posaconazole MIC, 2 mg/liter) and treated with escalating daily dosages of oral posaconazole, which was designed to achieve AUCs ranging from 1.10 to 392 mg · h/liter. After 5 days of treatment, lung fungal burden was analyzed by quantitative real-time PCR. The relationships of the total drug AUC/MIC and the treatment response were similar in both models, with 90% effective concentrations (EC90s) corresponding to an AUC/MIC threshold of 76 (95% confidence interval [CI], 46 to 102) for strain 293 versus 87 (95% CI, 66 to 101) for strain 969. Using a provisional AUC/MIC target of >100, these exposures correlated with minimum serum posaconazole concentrations (Cmins) of 1.25 mg/liter for strain 293 and 4.0 mg/liter for strain 969. The addition of deferasirox, but not liposomal amphotericin or caspofungin, improved the activity of a suboptimal posaconazole regimen (AUC/MIC, 33) in animals with pulmonary mucormycosis. However, no combination was as effective as the high-dose posaconazole monotherapy regimen (AUC/MIC, 184). Our analysis suggests that posaconazole pharmacodynamics are similar for A. fumigatus and R. oryzae when indexed to pathogen MICs. PMID:25182639

  12. Experimental Reactivation of Pulmonary Mycobacterium avium Complex Infection in a Modified Cornell-Like Murine Model

    PubMed Central

    Kim, Woo Sik; Kim, Jong-Seok; Kim, Hong Min; Kwon, Kee Woong; Cho, Sang-Nae; Shin, Sung Jae; Koh, Won-Jung

    2015-01-01

    The latency and reactivation of Mycobacterium tuberculosis infection has been well studied. However, there have been few studies of the latency and reactivation of Mycobacterium avium complex (MAC), the most common etiological non-tuberculous Mycobacterium species next to M. tuberculosis in humans worldwide. We hypothesized that latent MAC infections can be reactivated following immunosuppression after combination chemotherapy with clarithromycin and rifampicin under experimental conditions. To this end, we employed a modified Cornell-like murine model of tuberculosis and investigated six strains consisting of two type strains and four clinical isolates of M. avium and M. intracellulare. After aerosol infection of each MAC strain, five to six mice per group were euthanized at 2, 4, 10, 18, 28 and 35 weeks post-infection, and lungs were sampled to analyze bacterial burden and histopathology. One strain of each species maintained a culture-negative state for 10 weeks after completion of 6 weeks of chemotherapy, but was reactivated after 5 weeks of immunosuppression in the lungs with dexamethasone (three out of six mice in M. avium infection) or sulfasalazine (four out of six mice in both M. avium and M. intracellulare infection). The four remaining MAC strains exhibited decreased bacterial loads in response to chemotherapy; however, they remained at detectable levels and underwent regrowth after immunosuppression. In addition, the exacerbated lung pathology demonstrated a correlation with bacterial burden after reactivation. In conclusion, our results suggest the possibility of MAC reactivation in an experimental mouse model, and experimentally demonstrate that a compromised immune status can induce reactivation and/or regrowth of MAC infection. PMID:26406237

  13. Pharmacokinetic-Pharmacodynamic Analysis of Spiroindolone Analogs and KAE609 in a Murine Malaria Model

    PubMed Central

    Freymond, Céline; Fischli, Christoph; Yu, Jing; Weber, Sebastian; Goh, Anne; Yeung, Bryan K. S.; Ho, Paul C.; Dartois, Véronique; Diagana, Thierry T.; Rottmann, Matthias

    2014-01-01

    Limited information is available on the pharmacokinetic (PK) and pharmacodynamic (PD) parameters driving the efficacy of antimalarial drugs. Our objective in this study was to determine dose-response relationships of a panel of related spiroindolone analogs and identify the PK-PD index that correlates best with the efficacy of KAE609, a selected class representative. The dose-response efficacy studies were conducted in the Plasmodium berghei murine malaria model, and the relationship between dose and efficacy (i.e., reduction in parasitemia) was examined. All spiroindolone analogs studied displayed a maximum reduction in parasitemia, with 90% effective dose (ED90) values ranging between 6 and 38 mg/kg of body weight. Further, dose fractionation studies were conducted for KAE609, and the relationship between PK-PD indices and efficacy was analyzed. The PK-PD indices were calculated using the in vitro potency against P. berghei (2× the 99% inhibitory concentration [IC99]) as a threshold (TRE). The percentage of the time in which KAE609 plasma concentrations remained at >2× the IC99 within 48 h (%T>TRE) and the area under the concentration-time curve from 0 to 48 h (AUC0–48)/TRE ratio correlated well with parasite reduction (R2 = 0.97 and 0.95, respectively) but less so for the maximum concentration of drug in serum (Cmax)/TRE ratio (R2 = 0.88). The present results suggest that for KAE609 and, supposedly, for its analogs, the dosing regimens covering a T>TRE of 100%, AUC0–48/TRE ratio of 587, and a Cmax/TRE ratio of 30 are likely to result in the maximum reduction in parasitemia in the P. berghei malaria mouse model. This information could be used to prioritize analogs within the same class of compounds and contribute to the design of efficacy studies, thereby facilitating early drug discovery and lead optimization programs. PMID:25487807

  14. A novel murine model of Clostridium sordellii myonecrosis: Insights into the pathogenesis of disease.

    PubMed

    Aldape, Michael J; Bayer, Clifford R; Bryant, Amy E; Stevens, Dennis L

    2016-04-01

    Clostridium sordellii infections have been reported in women following natural childbirth and spontaneous or medically-induced abortion, injection drug users and patients with trauma. Death is rapid and mortality ranges from 70 to 100%. Clinical features include an extreme leukemoid reaction, the absence of fever, and only minimal pain or erythema at the infected site. In the current study, we developed a murine model of C. sordellii soft tissue infection to elucidate the pathogenic mechanisms. Mice received 0.5, 1.0 or 2.0 × 10(6) CFU C. sordellii (ATCC 9714 type strain) in the right thigh muscle. All doses caused fatal infection characterized by intense swelling of the infected limb but no erythema or visible perfusion deficits. Survival rates and time to death were inoculum dose-dependent. Mice developed a granulocytic leukocytosis with left shift, the onset of which directly correlated with disease severity. Histopathology of infected tissue showed widespread edema, moderate muscle damage and minimal neutrophil infiltration. Circulating levels of granulocyte colony-stimulating factor (G-CSF), soluble tumor necrosis factor receptor I (sTNF-RI) and interlukin-6 (IL-6) were significantly increased in infected animals, while TNF-α, and IL-1β levels were only mildly elevated, suggesting these host factors likely mediate the leukocytosis and innate immune dysfunction characteristic of this infection. Thus, this model mimics many of the salient features of this infection in humans and has allowed us to identify novel targets for intervention. PMID:26805011

  15. Propylthiouracil prevents cutaneous and pulmonary fibrosis in the reactive oxygen species murine model of systemic sclerosis

    PubMed Central

    2013-01-01

    Introduction Recent advances suggest that the cellular redox state may play a significant role in the progression of fibrosis in systemic sclerosis (SSc). Another, and as yet poorly accounted for, feature of SSc is its overlap with thyroid abnormalities. Previous reports demonstrate that hypothyroidism reduces oxidant stress. The aim of this study was therefore to evaluate the effect of propylthiouracil (PTU), and of the hypothyroidism induced by it, on the development of cutaneous and pulmonary fibrosis in the oxidant stress murine model of SSc. Methods Chronic oxidant stress SSc was induced in BALB/c mice by daily subcutaneous injections of hypochlorous acid (HOCl) for 6 weeks. Mice (n = 25) were randomized into three arms: HOCl (n = 10), HOCl plus PTU (n = 10) or vehicle alone (n = 5). PTU administration was initiated 30 minutes after HOCl subcutaneous injection and continued daily for 6 weeks. Skin and lung fibrosis were evaluated by histologic methods. Immunohistochemical staining for alpha-smooth muscle actin (α-SMA) in cutaneous and pulmonary tissues was performed to evaluate myofibroblast differentiation. Lung and skin concentrations of vascular endothelial growth factor (VEGF), extracellular signal-related kinase (ERK), rat sarcoma protein (Ras), Ras homolog gene family (Rho), and transforming growth factor (TGF) β were analyzed by Western blot. Results Injections of HOCl induced cutaneous and lung fibrosis in BALB/c mice. PTU treatment prevented both dermal and pulmonary fibrosis. Myofibroblast differentiation was also inhibited by PTU in the skin and lung. The increase in cutaneous and pulmonary expression of VEGF, ERK, Ras, and Rho in mice treated with HOCl was significantly prevented in mice co-administered ////with PTU. Conclusions PTU, probably through its direct effect on reactive oxygen species or indirectly through thyroid function inhibition, prevents the development of cutaneous and pulmonary fibrosis by blocking the activation of the Ras

  16. Algorithms to predict cerebral malaria in murine models using the SHIRPA protocol

    PubMed Central

    2010-01-01

    Background Plasmodium berghei ANKA infection in C57Bl/6 mice induces cerebral malaria (CM), which reproduces, to a large extent, the pathological features of human CM. However, experimental CM incidence is variable (50-100%) and the period of incidence may present a range as wide as 6-12 days post-infection. The poor predictability of which and when infected mice will develop CM can make it difficult to determine the causal relationship of early pathological changes and outcome. With the purpose of contributing to solving these problems, algorithms for CM prediction were built. Methods Seventy-eight P. berghei-infected mice were daily evaluated using the primary SHIRPA protocol. Mice were classified as CM+ or CM- according to development of neurological signs on days 6-12 post-infection. Logistic regression was used to build predictive models for CM based on the results of SHIRPA tests and parasitaemia. Results The overall CM incidence was 54% occurring on days 6-10. Some algorithms had a very good performance in predicting CM, with the area under the receiver operator characteristic (auROC) curve ≥ 80% and positive predictive values (PV+) ≥ 95, and correctly predicted time of death due to CM between 24 and 72 hours before development of the neurological syndrome (auROC = 77-93%; PV+ = 100% using high cut off values). Inclusion of parasitaemia data slightly improved algorithm performance. Conclusion These algorithms work with data from a simple, inexpensive, reproducible and fast protocol. Most importantly, they can predict CM development very early, estimate time of death, and might be a valuable tool for research using CM murine models. PMID:20334682

  17. Modeling synergistic drug inhibition of Mycobacterium tuberculosis growth in murine macrophages.

    PubMed

    Fang, Xin; Wallqvist, Anders; Reifman, Jaques

    2011-09-01

    We developed a metabolism-based systems biology framework to model drug-induced growth inhibition of Mycobacterium tuberculosis in murine macrophage cells. We used it to simulate ex vivo bacterial growth inhibition due to 3-nitropropionate (3-NP) and calculated the corresponding time- and drug concentration-dependent dose-response curves. 3-NP targets the isocitrate lyase 1 (ICL1) and ICL2 enzymes in the glyoxylate shunt, an essential component in carbon metabolism of many important prokaryotic organisms. We used the framework to in silico mimic drugging additional enzymes in combination with 3-NP to understand how synergy can arise among metabolic enzyme targets. In particular, we focused on exploring additional targets among the central carbon metabolism pathways and ascertaining the impact of jointly inhibiting these targets and the ICL1/ICL2 enzymes. Thus, additionally inhibiting the malate synthase (MS) enzyme in the glyoxylate shunt did not produce synergistic effects, whereas additional inhibition of the glycerol-3-phosphate dehydrogenase (G3PD) enzyme showed a reduction in bacterial growth beyond what each single inhibition could achieve. Whereas the ICL1/ICL2-MS pair essentially works on the same branch of the metabolic pathway processing lipids as carbon sources (the glyoxylate shunt), the ICL1/ICL2-G3PD pair inhibition targets different branches among the lipid utilization pathways. This allowed the ICL1/ICL2-G3PD drug combination to synergistically inhibit carbon processing and ultimately affect cellular growth. Our previously developed model for in vitro conditions failed to capture these effects, highlighting the importance of constructing accurate representations of the experimental ex vivo macrophage system. PMID:21713281

  18. Efficacy of Astaxanthin for the Treatment of Atopic Dermatitis in a Murine Model.

    PubMed

    Yoshihisa, Yoko; Andoh, Tsugunobu; Matsunaga, Kenji; Rehman, Mati Ur; Maoka, Takashi; Shimizu, Tadamichi

    2016-01-01

    Atopic dermatitis (AD) is a common chronic inflammatory skin disease associated with various factors, including immunological abnormalities and exposure to allergens. Astaxanthin (AST) is a xanthophyll carotenoid that has recently been demonstrated to have anti-inflammatory effects and to regulate the expression of inflammatory cytokines. Thus, we investigated whether AST could improve the dermatitis and pruritus in a murine model of AD using NC/Nga mice. In addition to a behavioral evaluation, the effects of AST on the AD were determined by the clinical skin severity score, serum IgE level, histological analyses of skin, and by reverse transcription-PCR and Western blotting analyses for the expression of inflammation-related factors. AST (100 mg/kg) or vehicle (olive oil) was orally administered once day and three times a week for 26 days. When compared with vehicle-treated group, the administration of AST significantly reduced the clinical skin severity score. In addition, the spontaneous scratching in AD model mice was reduced by AST administration. Moreover, the serum IgE level was markedly decreased by the oral administration of AST compared to that in vehicle-treated mice. The number of eosinophils, total and degranulated mast cells all significantly decreased in the skin of AST-treated mice compared with vehicle-treated mice. The mRNA and protein levels of eotaxin, MIF, IL-4, IL-5 and L-histidine decarboxylase were significantly decreased in the skin of AST-treated mice compared with vehicle-treated mice. These results suggest that AST improves the dermatitis and pruritus in AD via the regulation of the inflammatory effects and the expression of inflammatory cytokines. PMID:27023003

  19. Establishing a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome

    PubMed Central

    Plett, P. Artur; Sampson, Carol H.; Chua, Hui Lin; Joshi, Mandar; Booth, Catherine; Gough, Alec; Johnson, Cynthia S.; Katz, Barry P.; Farese, Ann M.; Parker, Jeffrey; MacVittie, Thomas J.; Orschell, Christie M.

    2012-01-01

    We have developed a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS) for efficacy testing of medical countermeasures (MCM) against radiation according to the FDA Animal Rule. Ten to 12 week old male and female C57BL/6 mice were exposed to the LD50/30-LD70/30 dose of total body irradiation (TBI, 137Cs, 0.62-0.67 Gy min-1) in the morning hours when mice were determined to be most radiosensitive, and assessed for 30 day survival and mean survival time (MST). Antibiotics were delivered in the drinking water on days 4-30 post-TBI at a concentration based on the amount of water that lethally-irradiated mice were found to consume. The fluoroquinolones, ciprofloxacin and levofloxacin, and the tetracycline doxycycline and aminoglycoside neomycin, all significantly increased MST of decedent mice, while ciprofloxacin (p=0.061) and doxycycline + neomycin (p=0.005) showed at least some efficacy to increase 30 day survival. Blood sampling (30uL/mouse every 5th day) was found to negatively impact 30 day survival. Histopathology of tissues harvested from non-moribund mice showed expected effects of lethal irradiation, while moribund mice were largely septicemic with a preponderance of enteric organisms. Kinetics of loss and recovery of peripheral blood cells in untreated mice and those treated with two MCM, granulocyte-colony stimulating factor and Amifostine, further characterized and validated our model for use in screening studies and pivotal efficacy studies of candidate MCM for licensure to treat irradiated individuals suffering from H-ARS. PMID:22929467

  20. Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer.

    PubMed

    Jones, Lee W; Antonelli, Jodi; Masko, Elizabeth M; Broadwater, Gloria; Lascola, Christopher D; Fels, Diane; Dewhirst, Mark W; Dyck, Jason R B; Nagendran, Jeevan; Flores, Catherine T; Betof, Allison S; Nelson, Erik R; Pollak, Michael; Dash, Rajesh C; Young, Martin E; Freedland, Stephen J

    2012-07-01

    The purpose of this study is to investigate the effects of exercise on cancer progression, metastasis, and underlying mechanisms in an orthotopic model of murine prostate cancer. C57BL/6 male mice (6-8 wk of age) were orthotopically injected with transgenic adenocarcinoma of mouse prostate C-1 cells (5 × 10(5)) and randomly assigned to exercise (n = 28) or a non-intervention control (n = 31) groups. The exercise group was given voluntary access to a wheel 24 h/day for the duration of the study. Four mice per group were serially killed on days 14, 31, and 36; the remaining 38 mice (exercise, n = 18; control, n = 20) were killed on day 53. Before death, MRI was performed to assess tumor blood perfusion. Primary tumor growth rate was comparable between groups, but expression of prometastatic genes was significantly modulated in exercising animals with a shift toward reduced metastasis. Exercise was associated with increased activity of protein kinases within the MEK/MAPK and PI3K/mTOR signaling cascades with subsequent increased intratumoral protein levels of HIF-1α and VEGF. This was associated with improved tumor vascularization. Multiplex ELISAs revealed distinct reductions in plasma concentrations of several angiogenic cytokines in the exercise group, which was associated with increased expression of angiogenic and metabolic genes in the skeletal muscle. Exercise-induced stabilization of HIF-1α and subsequent upregulation of VEGF was associated with "productive" tumor vascularization with a shift toward suppressed metastasis in an orthotopic model of prostate cancer. PMID:22604887

  1. Mucociliary clearance defects in a murine in vitro model of pneumococcal airway infection.

    PubMed

    Fliegauf, Manfred; Sonnen, Andreas F-P; Kremer, Bernhard; Henneke, Philipp

    2013-01-01

    Mucociliary airway clearance is an innate defense mechanism that protects the lung from harmful effects of inhaled pathogens. In order to escape mechanical clearance, airway pathogens including Streptococcus pneumoniae (pneumococcus) are thought to inactivate mucociliary clearance by mechanisms such as slowing of ciliary beating and lytic damage of epithelial cells. Pore-forming toxins like pneumolysin, may be instrumental in these processes. In a murine in vitro airway infection model using tracheal epithelial cells grown in air-liquid interface cultures, we investigated the functional consequences on the ciliated respiratory epithelium when the first contact with pneumococci is established. High-speed video microscopy and live-cell imaging showed that the apical infection with both wildtype and pneumolysin-deficient pneumococci caused insufficient fluid flow along the epithelial surface and loss of efficient clearance, whereas ciliary beat frequency remained within the normal range. Three-dimensional confocal microscopy demonstrated that pneumococci caused specific morphologic aberrations of two key elements in the F-actin cytoskeleton: the junctional F-actin at the apical cortex of the lateral cell borders and the apical F-actin, localized within the planes of the apical cell sides at the ciliary bases. The lesions affected the columnar shape of the polarized respiratory epithelial cells. In addition, the planar architecture of the entire ciliated respiratory epithelium was irregularly distorted. Our observations indicate that the mechanical supports essential for both effective cilia strokes and stability of the epithelial barrier were weakened. We provide a new model, where--in pneumococcal infection--persistent ciliary beating generates turbulent fluid flow at non-planar distorted epithelial surface areas, which enables pneumococci to resist mechanical cilia-mediated clearance. PMID:23527286

  2. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model

    PubMed Central

    2011-01-01

    Background Human exposure to nanoparticles (NPs) and environmental bacteria can occur simultaneously. NPs induce inflammatory responses and oxidative stress but may also have immune-suppressive effects, impairing macrophage function and altering epithelial barrier functions. The purpose of this study was to assess the potential pulmonary effects of inhalation and instillation exposure to copper (Cu) NPs using a model of lung inflammation and host defense. Methods We used Klebsiella pneumoniae (K.p.) in a murine lung infection model to determine if pulmonary bacterial clearance is enhanced or impaired by Cu NP exposure. Two different exposure modes were tested: sub-acute inhalation (4 hr/day, 5 d/week for 2 weeks, 3.5 mg/m3) and intratracheal instillation (24 hr post-exposure, 3, 35, and 100 μg/mouse). Pulmonary responses were evaluated by lung histopathology plus measurement of differential cell counts, total protein, lactate dehydrogenase (LDH) activity, and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid. Results Cu NP exposure induced inflammatory responses with increased recruitment of total cells and neutrophils to the lungs as well as increased total protein and LDH activity in BAL fluid. Both inhalation and instillation exposure to Cu NPs significantly decreased the pulmonary clearance of K.p.-exposed mice measured 24 hr after bacterial infection following Cu NP exposure versus sham-exposed mice also challenged with K.p (1.4 × 105 bacteria/mouse). Conclusions Cu NP exposure impaired host defense against bacterial lung infections and induced a dose-dependent decrease in bacterial clearance in which even our lowest dose demonstrated significantly lower clearance than observed in sham-exposed mice. Thus, exposure to Cu NPs may increase the risk of pulmonary infection. PMID:21943386

  3. Efficacy of Astaxanthin for the Treatment of Atopic Dermatitis in a Murine Model

    PubMed Central

    Yoshihisa, Yoko; Andoh, Tsugunobu; Matsunaga, Kenji; Rehman, Mati Ur; Maoka, Takashi; Shimizu, Tadamichi

    2016-01-01

    Atopic dermatitis (AD) is a common chronic inflammatory skin disease associated with various factors, including immunological abnormalities and exposure to allergens. Astaxanthin (AST) is a xanthophyll carotenoid that has recently been demonstrated to have anti-inflammatory effects and to regulate the expression of inflammatory cytokines. Thus, we investigated whether AST could improve the dermatitis and pruritus in a murine model of AD using NC/Nga mice. In addition to a behavioral evaluation, the effects of AST on the AD were determined by the clinical skin severity score, serum IgE level, histological analyses of skin, and by reverse transcription-PCR and Western blotting analyses for the expression of inflammation-related factors. AST (100 mg/kg) or vehicle (olive oil) was orally administered once day and three times a week for 26 days. When compared with vehicle-treated group, the administration of AST significantly reduced the clinical skin severity score. In addition, the spontaneous scratching in AD model mice was reduced by AST administration. Moreover, the serum IgE level was markedly decreased by the oral administration of AST compared to that in vehicle-treated mice. The number of eosinophils, total and degranulated mast cells all significantly decreased in the skin of AST-treated mice compared with vehicle-treated mice. The mRNA and protein levels of eotaxin, MIF, IL-4, IL-5 and L-histidine decarboxylase were significantly decreased in the skin of AST-treated mice compared with vehicle-treated mice. These results suggest that AST improves the dermatitis and pruritus in AD via the regulation of the inflammatory effects and the expression of inflammatory cytokines. PMID:27023003

  4. Cannabidiol increases survival and promotes rescue of cognitive function in a murine model of cerebral malaria.

    PubMed

    Campos, A C; Brant, F; Miranda, A S; Machado, F S; Teixeira, A L

    2015-03-19

    Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection that might cause permanent neurological deficits. Cannabidiol (CBD) is a nonpsychotomimetic compound of Cannabis sativa with neuroprotective properties. In the present work, we evaluated the effects of CBD in a murine model of CM. Female mice were infected with Plasmodium berghei ANKA (PbA) and treated with CBD (30mg/kg/day - 3 or 7days i.p.) or vehicle. On 5th day-post-infection (dpi), at the peak of the disease), animals were treated with single or repeated doses of Artesunate, an antimalarial drug. All groups were tested for memory impairment (Novel Object Recognition or Morris Water Maze) and anxiety-like behaviors (Open field or elevated plus maze test) in different stages of the disease (at the peak or after the complete clearance of the disease). Th1/Th2 cytokines and neurotrophins (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) were measured in the prefrontal cortex and hippocampus of experimental groups. PbA-infected mice displayed memory deficits and exhibited increase in anxiety-like behaviors on the 5dpi or after the clearance of the parasitemia, effects prevented by CBD treatment. On 5dpi, TNF-α and IL-6 increased in the hippocampus, while only IL-6 increased in the prefrontal cortex. CBD treatment resulted in an increase in BDNF expression in the hippocampus and decreased levels of proinflammatory cytokines in the hippocampus (TNF-α) and prefrontal cortex (IL-6). Our results indicate that CBD exhibits neuroprotective effects in CM model and might be useful as an adjunctive therapy to prevent neurological symptoms following this disease. PMID:25595981

  5. A murine inhalation model to characterize pulmonary exposure to dry Aspergillus fumigatus conidia.

    PubMed

    Buskirk, Amanda D; Green, Brett J; Lemons, Angela R; Nayak, Ajay P; Goldsmith, W Travis; Kashon, Michael L; Anderson, Stacey E; Hettick, Justin M; Templeton, Steven P; Germolec, Dori R; Beezhold, Donald H

    2014-01-01

    Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation have only recently been described. In this study, we aimed to characterize pulmonary immune responses following repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus wild-type (WT) or a melanin-deficient (Δalb1) strain. Conidia were aerosolized and delivered to mice at an estimated deposition dose of 1×105 twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed 4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8+ IL17+ (Tc17) cells were significantly higher in BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to intracellular proteins while Δalb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation exposures may provide a more representative analysis of immune responses following exposures to environmentally and occupationally prevalent fungal contaminants. PMID:25340353

  6. The effect of rhinovirus on airway inflammation in a murine asthma model

    PubMed Central

    Kim, Eugene; Lee, Huisu; Kim, Hyun Sook; Won, Sulmui; Lee, Eu Kyoung; Kim, Hwan Soo; Bang, Kyongwon; Chun, Yoon Hong; Yoon, Jong-Seo; Kim, Jin Tack; Lee, Joon Sung

    2013-01-01

    Purpose The aim of the present study was to investigate the differences in lower airway inflammatory immune responses, including cellular responses and responses in terms of inflammatory mediators in bronchoalveolar lavage fluid (BALF) and the airway, to rhinovirus (RV) infection on asthma exacerbation by comparing a control and a murine asthma model, with or without RV infection. Methods BALB/c mice were intraperitoneally injected with a crude extract of Dermatophagoides farinae (Df) or phosphate buffered saline (PBS) and were subsequently intranasally treated with a crude extract of Df or PBS. Airway responsiveness and cell infiltration, differential cell counts in BALF, and cytokine and chemokine concentrations in BALF were measured 24 hours after intranasal RV1B infection. Results RV infection increased the enhanced pause (Penh) in both the Df sensitized and challenged mice (Df mice) and PBS-treated mice (PBS mice) (P<0.05). Airway eosinophil infiltration increased in Df mice after RV infection (P<0.05). The levels of interleukin (IL) 13, tumor necrosis factor alpha, and regulated on activation, normal T cells expressed and secreted (RANTES) increased in response to RV infection in Df mice, but not in PBS mice (P<0.05). The level of IL-10 significantly decreased following RV infection in Df mice (P<0.05). Conclusion Our findings suggest that the augmented induction of proinflammatory cytokines, Th2 cytokines, and chemokines that mediate an eosinophil response and the decreased induction of regulatory cytokines after RV infection may be important manifestations leading to airway inflammation with eosinophil infiltration and changes in airway responsiveness in the asthma model. PMID:24348661

  7. A Murine Inhalation Model to Characterize Pulmonary Exposure to Dry Aspergillus fumigatus Conidia

    PubMed Central

    Buskirk, Amanda D.; Green, Brett J.; Lemons, Angela R.; Nayak, Ajay P.; Goldsmith, W. Travis; Kashon, Michael L.; Anderson, Stacey E.; Hettick, Justin M.; Templeton, Steven P.; Germolec, Dori R.; Beezhold, Donald H.

    2014-01-01

    Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation have only recently been described. In this study, we aimed to characterize pulmonary immune responses following repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus wild-type (WT) or a melanin-deficient (Δalb1) strain. Conidia were aerosolized and delivered to mice at an estimated deposition dose of 1×105 twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed 4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8+ IL17+ (Tc17) cells were significantly higher in BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to intracellular proteins while Δalb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation exposures may provide a more representative analysis of immune responses following exposures to environmentally and occupationally prevalent fungal contaminants. PMID:25340353

  8. Pharmacodynamics of the New Fluoroquinolone Gatifloxacin in Murine Thigh and Lung Infection Models

    PubMed Central

    Andes, D.; Craig, W. A.

    2002-01-01

    Gatifloxacin is a new 8-methoxy fluoroquinolone with enhanced activity against gram-positive cocci. We used the neutropenic murine thigh infection model to characterize the time course of antimicrobial activity of gatifloxacin and determine which pharmacokinetic (PK)-pharmacodynamic (PD) parameter best correlated with efficacy. The thighs of mice were infected with 106.5 to 107.4 CFU of strains of Staphylococcus aureus, Streptococcus pneumoniae, or Escherichia coli, and the mice were then treated for 24 h with 0.29 to 600 mg of gatifloxacin per kg of body weight per day, with the dose fractionated for dosing every 3, 6, 12, and 24 h. Levels in serum were measured by microbiologic assay. In vivo postantibiotic effects (PAEs) were calculated from serial values of the log10 numbers of CFU per thigh 2 to 4 h after the administration of doses of 8 and 32 mg/kg. Nonlinear regression analysis was used to determine which PK-PD parameter best correlated with the numbers of CFU per thigh at 24 h. Pharmacokinetic studies revealed peak/dose values of 0.23 to 0.32, area under the concentration-time curve (AUC)/dose values of 0.47 to 0.62, and half-lives of 0.6 to 1.1 h. Gatifloxacin produced in vivo PAEs of 0.2 to 3.1 h for S. pneumoniae and 0.4 to 2.3 h for S. aureus. The 24-h AUC/MIC was the PK-PD parameter that best correlated with efficacy (R2 = 90 to 94% for the three organisms, whereas R2 = 70 to 81% for peak level/MIC and R2 = 48 to 73% for the time that the concentration in serum was greater than the MIC). There was some reduced activity when dosing every 24 h was used due to the short half-life of gatifloxacin in mice. In subsequent studies we used the neutropenic and nonneutropenic murine thigh and lung infection models to determine if the magnitude of the AUC/MIC needed for the efficacy of gatifloxacin varied among pathogens (including resistant strains) and infection sites. The mice were infected with 106.5 to 107.4 CFU of four isolates of S. aureus (one methicillin

  9. A novel murine model of Fusarium solani keratitis utilizing fluorescent labeled fungi.

    PubMed

    Zhang, Hongmin; Wang, Liya; Li, Zhijie; Liu, Susu; Xie, Yanting; He, Siyu; Deng, Xianming; Yang, Biao; Liu, Hui; Chen, Guoming; Zhao, Huiwen; Zhang, Junjie

    2013-05-01

    Fungal keratitis is a common disease that causes blindness. An effective animal model for fungal keratitis is essential for advancing research on this disease. Our objective is to develop a novel mouse model of Fusarium solani keratitis through the inoculation of fluorescent-labeled fungi into the cornea to facilitate the accurate and early identification and screening of fungal infections. F. solani was used as the model fungus in this study. In in vitro experiment, the effects of Calcofluor White (CFW) staining concentration and duration on the fluorescence intensity of F. solani were determined through the mean fluorescence intensity (MFI); the effects of CFW staining on the growth of F. solani were determined by the colony diameter. In in vivo experiment, the F. solani keratitis mice were induced and divided into a CFW-unlabeled and CFW-labeled groups. The positive rate, corneal lesion score and several positive rate determination methods were measured. The MFIs of F. solani in the 30 μg/ml CFW-30 min, 90 μg/ml CFW-10 min and 90 μg/ml CFW-30 min groups were higher than that in the 10 μg/ml CFW-10 min group (P < 0.01). Compared with the 30 μg/ml CFW-30 min group, only the 90 μg/ml CFW-30 min group showed higher MFI (P < 0.05). No significant difference was observed in the colony diameter in the CFW unstained group compared with that in the 10, 30, 90, 270, or 810 μg/ml CFW groups stained for either 10 or 30 min (P > 0.05). No significant differences (P > 0.05) were observed for the positive rate or the corneal lesion scores between the CFW-unlabeled and the CFW-labeled group. On day 1 and 2, the positive rates of the infected corneas in the scraping group were lower than those in the fluorescence microscopy group (P < 0.05). On day 3, these observe methods showed no significant difference (P > 0.05). Thus, these experiments established a novel murine model of F. solani keratitis utilizing fluorescent labeled fungi. This model

  10. Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model

    PubMed Central

    Csillag, Anikó; Kumar, Brahma V.; Szabó, Krisztina; Szilasi, Mária; Papp, Zsuzsa; Szilasi, Magdolna E.; Pázmándi, Kitti; Boldogh, István; Rajnavölgyi, Éva; Bácsi, Attila; László, János F.

    2014-01-01

    Previous observations suggest that static magnetic field (SMF)-exposure acts on living organisms partly through reactive oxygen species (ROS) reactions. In this study, we aimed to define the impact of SMF-exposure on ragweed pollen extract (RWPE)-induced allergic inflammation closely associated with oxidative stress. Inhomogeneous SMF was generated with an apparatus validated previously providing a peak-to-peak magnetic induction of the dominant SMF component 389 mT by 39 T m−1 lateral gradient in the in vivo and in vitro experiments, and 192 mT by 19 T m−1 in the human study at the 3 mm target distance. Effects of SMF-exposure were studied in a murine model of allergic inflammation and also in human provoked skin allergy. We found that even a single 30-min exposure of mice to SMF immediately following intranasal RWPE challenge significantly lowered the increase in the total antioxidant capacity of the airways and decreased allergic inflammation. Repeated (on 3 consecutive days) or prolonged (60 min) exposure to SMF after RWPE challenge decreased the severity of allergic responses more efficiently than a single 30-min treatment. SMF-exposure did not alter ROS production by RWPE under cell-free conditions, while diminished RWPE-induced increase in the ROS levels in A549 epithelial cells. Results of the human skin prick tests indicated that SMF-exposure had no significant direct effect on provoked mast cell degranulation. The observed beneficial effects of SMF are likely owing to the mobilization of cellular ROS-eliminating mechanisms rather than direct modulation of ROS production by pollen NAD(P)H oxidases. PMID:24647908

  11. dl-2-Hydroxyisocaproic Acid Attenuates Inflammatory Responses in a Murine Candida albicans Biofilm Model

    PubMed Central

    Nieminen, M. T.; Hernandez, M.; Novak-Frazer, L.; Kuula, H.; Ramage, G.; Bowyer, P.; Warn, P.; Sorsa, T.

    2014-01-01

    Chronic biofilm infections are often accompanied by a chronic inflammatory response, leading to impaired healing and increased, irreversible damage to host tissues. Biofilm formation is a major virulence factor for Candida albicans and a challenge for treatment. Most current antifungals have proved ineffective in eradicating infections attributed to biofilms. The biofilm structure protects Candida species against antifungals and provides a way for them to evade host immune systems. This leads to a very distinct inflammatory response compared to that seen in planktonic infections. Previously, we showed the superior efficacy of dl-2-hydroxyisocaproic acid (HICA) against various bacteria and fungi. However, the immunomodulatory properties of HICA have not been studied. Our aim was to investigate the potential anti-inflammatory response to HICA in vivo. We hypothesized that HICA reduces the levels of immune mediators and attenuates the inflammatory response. In a murine model, a robust biofilm was formed for 5 days in a diffusion chamber implanted underneath mouse skin. The biofilm was treated for 12 h with HICA, while caspofungin and phosphate-buffered saline (PBS) were used as controls. The pathophysiology and immunoexpression in the tissues surrounding the chamber were determined by immunohistochemistry. Histopathological examination showed an attenuated inflammatory response together with reduced expression of matrix metalloproteinase 9 (MMP-9) and myeloperoxidase (MPO) compared to those of chambers containing caspofungin and PBS. Interestingly, the expression of developmental endothelial locus 1 (Del-1), an antagonist of neutrophil extravasation, increased after treatment with HICA. Considering its anti-inflammatory and antimicrobial activity, HICA may have enormous therapeutic potential in the treatment of chronic biofilm infections and inflammation, such as those seen with chronic wounds. PMID:24990903

  12. A Plasminogen Activator Inhibitor-1 Inhibitor Reduces Airway Remodeling in a Murine Model of Chronic Asthma

    PubMed Central

    Lee, Sun H.; Eren, Mesut; Vaughan, Douglas E.; Schleimer, Robert P.

    2012-01-01

    We previously reported that plasminogen activator inhibitor (PAI)-1 deficiency prevents collagen deposition in the airways of ovalbumin (OVA)-challenged mice. In this study, we explored the therapeutic utility of blocking PAI-1 in preventing airway remodeling, using a specific PAI-1 inhibitor, tiplaxtinin. C57BL/6J mice were immunized with intraperitoneal injections of OVA on Days 0, 3, and 6. Starting on Day 11, mice were challenged with phosphate-buffered saline or OVA by nebulization three times per week for 4 weeks. Tiplaxtinin was mixed with chow and administered orally from 1 day before the phosphate-buffered saline or OVA challenge. Lung tissues were harvested after challenge and characterized histologically for infiltrating inflammatory cells, mucus-secreting goblet cells, and collagen deposition. Airway hyperresponsiveness was measured using whole-body plethysmography. Tiplaxtinin treatment significantly decreased levels of PAI-1 activity in bronchoalveolar lavage fluids, which indicates successful blockage of PAI-1 activity in the airways. The number of infiltrated inflammatory cells was reduced by tiplaxtinin treatment in the lungs of the OVA-challenged mice. Furthermore, oral administration of tiplaxtinin significantly attenuated the degree of goblet cell hyperplasia and collagen deposition in the airways of the OVA-challenged mice, and methacholine-induced airway hyperresponsiveness was effectively reduced by tiplaxtinin in these animals. This study supports our previous findings that PAI-1 promotes airway remodeling in a murine model of chronic asthma, and suggests that PAI-1 may be a novel target of treatment of airway remodeling in asthma. PMID:22323366

  13. A plasminogen activator inhibitor-1 inhibitor reduces airway remodeling in a murine model of chronic asthma.

    PubMed

    Lee, Sun H; Eren, Mesut; Vaughan, Douglas E; Schleimer, Robert P; Cho, Seong H

    2012-06-01

    We previously reported that plasminogen activator inhibitor (PAI)-1 deficiency prevents collagen deposition in the airways of ovalbumin (OVA)-challenged mice. In this study, we explored the therapeutic utility of blocking PAI-1 in preventing airway remodeling, using a specific PAI-1 inhibitor, tiplaxtinin. C57BL/6J mice were immunized with intraperitoneal injections of OVA on Days 0, 3, and 6. Starting on Day 11, mice were challenged with phosphate-buffered saline or OVA by nebulization three times per week for 4 weeks. Tiplaxtinin was mixed with chow and administered orally from 1 day before the phosphate-buffered saline or OVA challenge. Lung tissues were harvested after challenge and characterized histologically for infiltrating inflammatory cells, mucus-secreting goblet cells, and collagen deposition. Airway hyperresponsiveness was measured using whole-body plethysmography. Tiplaxtinin treatment significantly decreased levels of PAI-1 activity in bronchoalveolar lavage fluids, which indicates successful blockage of PAI-1 activity in the airways. The number of infiltrated inflammatory cells was reduced by tiplaxtinin treatment in the lungs of the OVA-challenged mice. Furthermore, oral administration of tiplaxtinin significantly attenuated the degree of goblet cell hyperplasia and collagen deposition in the airways of the OVA-challenged mice, and methacholine-induced airway hyperresponsiveness was effectively reduced by tiplaxtinin in these animals. This study supports our previous findings that PAI-1 promotes airway remodeling in a murine model of chronic asthma, and suggests that PAI-1 may be a novel target of treatment of airway remodeling in asthma. PMID:22323366

  14. Hyperoxygenation Attenuated a Murine Model of Atopic Dermatitis through Raising Skin Level of ROS

    PubMed Central

    Choi, Eun-Jeong; Lee, Yeo Kyong; Kie, Jeong-Hae; Jang, Myoung Ho; Seoh, Ju-Young

    2014-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease resulting from excessive stimulation of immune cells. Traditionally, reactive oxygen species (ROS) have been implicated in the progression of inflammatory diseases, but several opposing observations suggest the protective role of ROS in inflammatory disease. Recently, we demonstrated ROS prevented imiquimod-induced psoriatic dermatitis through enhancing regulatory T cell function. Thus, we hypothesized AD might also be attenuated in elevated levels of ROS through tissue hyperoxygenation, such as by hyperbaric oxygen therapy (HBOT) or applying an oxygen-carrying chemical, perfluorodecalin (PFD). Elevated levels of ROS in the skin have been demonstrated directly by staining with dihydroethidum as well as indirectly by immunohistochemistry (IHC) for indoleamine 2,3-dioxygenase (IDO). A murine model of AD was developed by repeated application of a chemical irritant (1% 2,4-dinitrochlorobenzene) and house dust mite (Dermatophagoide farinae) extract on one ear of BALB/c mice. The results showed treatment with HBOT or PFD significantly attenuated AD, comparably with 0.1% prednicarbate without any signs of side effects, such as telangiectasia. The expressions of interleukin-17A and interferon-γ were also decreased in the AD lesions by treatment with HBOT or PFD. Enhanced expression of IDO and reduced level of hypoxia-inducible factor-1α, in association with increased frequency of FoxP3+ regulatory T cells in the AD lesions, might be involved in the underlying mechanism of oxygen therapy. Taken together, it was suggested that tissue hyperoxygenation, by HBOT or treatment with PFD, might attenuate AD through enhancing skin ROS level. PMID:25275529

  15. Hematopoietic Stem and Progenitor Cell Migration After Hypofractionated Radiation Therapy in a Murine Model

    SciTech Connect

    Kane, Jonathan; Krueger, Sarah A.; Dilworth, Joshua T.; Torma, John T.; Wilson, George D.; Marples, Brian; Madlambayan, Gerard J.

    2013-12-01

    Purpose: To characterize the recruitment of bone marrow (BM)-derived hematopoietic stem and progenitor cells (HSPCs) within tumor microenvironment after radiation therapy (RT) in a murine, heterotopic tumor model. Methods and Materials: Lewis lung carcinoma tumors were established in C57BL/6 mice and irradiated with 30 Gy given as 2 fractions over 2 days. Tumors were imaged with positron emission tomography/computed tomography (PET/CT) and measured daily with digital calipers. The HSPC and myelomonocytic cell content was assessed via immunofluorescent staining and flow cytometry. Functionality of tumor-associated HSPCs was verified in vitro using colony-forming cell assays and in vivo by rescuing lethally irradiated C57BL/6 recipients. Results: Irradiation significantly reduced tumor volumes and tumor regrowth rates compared with nonirradiated controls. The number of CD133{sup +} HSPCs present in irradiated tumors was higher than in nonirradiated tumors during all stages of regrowth. CD11b{sup +} counts were similar. PET/CT imaging and growth rate analysis based on standardized uptake value indicated that HSPC recruitment directly correlated to the extent of regrowth and intratumor cell activity after irradiation. The BM-derived tumor-associated HSPCs successfully formed hematopoietic colonies and engrafted irradiated mice. Finally, targeted treatment with a small animal radiation research platform demonstrated localized HSPC recruitment to defined tumor subsites exposed to radiation. Conclusions: Hypofractionated irradiation resulted in a pronounced and targeted recruitment of BM-derived HSPCs, possibly as a mechanism to promote tumor regrowth. These data indicate for the first time that radiation therapy regulates HSPC content within regrowing tumors.

  16. Antiinflammatory Effect of Phytosterols in Experimental Murine Colitis Model: Prevention, Induction, Remission Study

    PubMed Central

    Aldini, Rita; Micucci, Matteo; Cevenini, Monica; Fato, Romana; Bergamini, Christian; Nanni, Cristina; Cont, Massimiliano; Camborata, Cecilia; Spinozzi, Silvia; Montagnani, Marco; Roda, Giulia; D'Errico-Grigioni, Antonia; Rosini, Francesca; Roda, Aldo; Mazzella, Giuseppe; Chiarini, Alberto; Budriesi, Roberta

    2014-01-01

    Phytosterols, besides hypocholesterolemic effect, present anti-inflammatory properties. Little information is available about their efficacy in Inflammatory Bowel Disease (IBD). Therefore, we have evaluated the effect of a mixture of phytosterols on prevention/induction/remission in a murine experimental model of colitis. Phytosterols were administered x os before, during and after colitis induction with Dextran Sodium Sulfate (DSS) in mice. Disease Activity Index (DAI), colon length, histopathology score, 18F-FDG microPET, oxidative stress in the intestinal tissue (ileum and colon) and gallbladder ileum and colon spontaneous and carbachol (CCh) induced motility, plasma lipids and plasma, liver and biliary bile acids (BA) were evaluated. A similar longitudinal study was performed in a DSS colitis control group. Mice treated with DSS developed severe colitis as shown by DAI, colon length, histopathology score, 18F-FDG microPET, oxidative stress. Both spontaneous and induced ileal and colonic motility were severely disturbed. The same was observed with gallbladder. DSS colitis resulted in an increase in plasma cholesterol, and a modification of the BA pattern. Phytosterols feeding did not prevent colitis onset but significantly reduced the severity of the disease and improved clinical and histological remission. It had strong antioxidant effects, almost restored colon, ileal and gallbladder motility. Plasmatic levels of cholesterol were also reduced. DSS induced a modification in the BA pattern consistent with an increase in the intestinal BA deconjugating bacteria, prevented by phytosterols. Phytosterols seem a potential nutraceutical tool for gastrointestinal inflammatory diseases, combining metabolic systematic and local anti-inflammatory effects. PMID:25268769

  17. Particle-size dependent effects in the Balb/c murine model of inhalational melioidosis

    PubMed Central

    Thomas, Richard J.; Davies, C.; Nunez, A.; Hibbs, S.; Eastaugh, L.; Harding, S.; Jordan, J.; Barnes, K.; Oyston, P.; Eley, S.

    2012-01-01

    Deposition of Burkholderia pseudomallei within either the lungs or nasal passages of the Balb/c murine model resulted in different infection kinetics. The infection resulting from the inhalation of B. pseudomallei within a 12 μm particle aerosol was prolonged compared to a 1 μm particle aerosol with a mean time-to-death (MTD) of 174.7 ± 14.9 h and 73.8 ± 11.3 h, respectively. Inhalation of B. pseudomallei within 1 μm or 12 μm particle aerosols resulted in a median lethal dose (MLD) of 4 and 12 cfu, respectively. The 12 μm particle inhalational infection was characterized by a marked involvement of the nasal mucosa and extension of bacterial colonization and inflammatory lesions from the olfactory epithelium through the olfactory nerves (or tracts) to the olfactory bulb (100%), culminating in abscessation of the brain (33%). Initial involvement of the upper respiratory tract lymphoid tissues (nasal-associated lymphoid tissue (NALT) and cervical lymph nodes) was observed in both the 1 and 12 μm particle inhalational infections (80–85%). Necrotising alveolitis and bronchiolitis were evident in both inhalational infections, however, lung pathology was greater after inhalation of the 1 μm particle aerosol with pronounced involvement of the mediastinal lymph node (50%). Terminal disease was characterized by bacteraemia in both inhalational infections with dissemination to the spleen, liver, kidneys, and thymus. Treatment with co-trimoxazole was more effective than treatment with doxycycline irrespective of the size of the particles inhaled. Doxycycline was more effective against the 12 μm particle inhalational infection as evidenced by increased time to death. However, both treatment regimes exhibited significant relapse when therapy was discontinued with massive enlargement and abscessation of the lungs, spleen, and cervical lymph nodes observed. PMID:22919690

  18. Interleukin-6 receptor alpha blockade improves skin lesions in a murine model of systemic lupus erythematosus.

    PubMed

    Birner, Peter; Heider, Susanne; Petzelbauer, Peter; Wolf, Peter; Kornauth, Christoph; Kuroll, Madeleine; Merkel, Olaf; Steiner, Günter; Kishimoto, Tadamitsu; Rose-John, Stefan; Soleiman, Afschin; Moriggl, Richard; Kenner, Lukas

    2016-04-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by antinuclear autoantibodies (ANA) and immunocomplexes, commonly affecting kidneys, skin, heart, lung or even the brain. We have shown that JunB(Δep) mice develop a SLE phenotype linked to increased epidermal Interleukin (IL)-6 secretion. Blocking of IL-6 receptor alpha (IL-6Rα) is considered as therapeutic strategy for the treatment of SLE. JunB(Δep) and wild-type mice were treated for short (5 weeks) or long term (21 weeks) with the IL-6Rα-blocking antibody MR16-1. Skin and kidney of mice were investigated by histology and immunofluorescence, and in addition, kidneys were analysed by electron microscopy. Furthermore, soluble IL-6R (sIL-6R), antihistone and antinucleosome antibodies levels were measured and associated with disease parameters. Treatment with MR16-1 resulted in significant improvement of SLE-like skin lesions in JunB(Δep) mice, compared to untreated mice. The sIL-6R amount upon long-term treatment with MR16-1 was significantly higher in JunB(Δep) versus untreated JunB(Δep) (P = 0.034) or wild-type mice (P = 0.034). MR16-1 treatment over these time spans did not significantly improve kidney pathology of immunoglobulin deposits causing impaired function. Significantly higher antihistone (P = 0.028) and antinucleosome antibody levels (P = 0.028) were measured in MR16-1-treated JunB(Δep) mice after treatment compared to levels before therapy. In conclusion, blockade of IL-6Rα improves skin lesions in a murine SLE model, but does not have a beneficial effect on autoimmune-mediated kidney pathology. Inhibition of IL-6R signalling might be helpful in lupus cases with predominant skin involvement, but combinatorial treatment might be required to restrain autoantibodies. PMID:26739431

  19. Chlamydial infection increases gonococcal colonization in a novel murine coinfection model.

    PubMed

    Vonck, Rachel A; Darville, T; O'Connell, C M; Jerse, Ann E

    2011-04-01

    Genital tract infections caused by Neisseria gonorrhoeae and Chlamydia trachomatis serovars D to K occur at high incidence in many areas of the world. Despite high rates of coinfection with these pathogens, investigations of host-parasite interactions have focused on each pathogen individually. We describe here a coinfection model in which female BALB/c mice were first infected with the mouse Chlamydia species C. muridarum and then inoculated with N. gonorrhoeae following treatment with water-soluble 17β-estradiol to promote long-term gonococcal infection. Viable gonococci and chlamydiae were recovered for an average of 8 to 10 days, and diplococci and chlamydial inclusions were observed in lower genital tract tissue by immunohistochemical staining. Estradiol treatment reduced proinflammatory cytokine and chemokine levels in chlamydia-infected mice; however, coinfected mice had a higher percentage of vaginal neutrophils compared to mice infected with either pathogen alone. We detected no difference in pathogen-specific antibody levels due to coinfection. Interestingly, significantly more gonococci were recovered from coinfected mice compared to mice infected with N. gonorrhoeae alone. We found no evidence that C. muridarum increases gonococcal adherence to, or invasion of, immortalized murine epithelial cells. However, increased vaginal concentrations of inflammatory mediators macrophage inflammatory protein 2 and tumor necrosis factor alpha were detected in C. muridarum-infected mice prior to inoculation with N. gonorrhoeae concurrently with the downregulation of cathelicidin-related antimicrobial peptide and secretory leukocyte peptidase inhibitor genes. We conclude that female mice can be successfully infected with both C. muridarum and N. gonorrhoeae and that chlamydia-induced alterations in host innate responses may enhance gonococcal infection. PMID:21245268

  20. Pulsed focused ultrasound exposures enhance locally administered gene therapy in a murine solid tumor model

    PubMed Central

    Ziadloo, Ali; Xie, Jianwu; Frenkel, Victor

    2013-01-01

    Gene therapy by intratumoral injection is a promising approach for treating solid tumors. However, this approach has limited success due to insufficient distribution of gene vectors used for gene delivery. Previous studies have shown that pulsed-focused ultrasound (pFUS) can enhance both systemic and local delivery of therapeutic agents in solid tumors and other disease models. Here, murine squamous cell carcinoma flank tumors were treated with single intratumoral injection of naked tumor necrosis factor-alpha (TNF-α) plasmid, either with or without a preceding pFUS exposure. The exposures were given at 1 MHz, at a spatial average, temporal peak intensity of 2660 W cm–2, using 50 ms pulses, given at a pulse repetition frequency of 1 Hz. One hundred pulses were given at individual raster points, spaced evenly over the projected surface of the tumor at a distance of 2 mm. Exposures alone had no effect on tumor growth. Significant growth inhibition was observed with injection of TNF-α plasmid, and tumor growth was further inhibited with pFUS. Improved results with pFUS correlated with larger necrotic regions in histological sections and improved distribution and penetration of fluorescent surrogate nanoparticles. Electron microscopy demonstrated enlarged gaps between cells in exposed tissue, and remote acoustic palpation showed decreases in tissue stiffness after pFUS. Combined, these results suggest pFUS effects may be reducing barriers for tissue transport and additionally lowering interstitial fluid pressure to further improve delivery and distribution of injected plasmid for greater therapeutic effects. This suggests that pFUS could potentially be beneficial for improving local gene therapy treatment of human malignancies. PMID:23464051

  1. Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model.

    PubMed

    Cruz, Lissa; Vivas, Angie; Montilla, Marleny; Hernández, Carolina; Flórez, Carolina; Parra, Edgar; Ramírez, Juan David

    2015-01-01

    Chagas disease is an endemic zoonosis in Latin America and caused by the parasite Trypanosoma cruzi. This kinetoplastid displays remarkable genetic variability, allowing its classification into six Discrete Typing Units (DTUs) from TcI to TcVI. T. cruzi I presents the broadest geographical distribution in the continent and has been associated to severe forms of cardiomyopathies. Recently, a particular genotype associated to human infections has been reported and named as TcIDOM (previously named TcIa-b). This genotype shows to be clonal and adapted to the domestic cycle but so far no studies have determined the biological properties of domestic (TcIDOM) and sylvatic TcI strains (previously named TcIc-e). Hence, the aim of this study was to untangle the biological features of these genotypes in murine models. We infected ICR-CD1 mice with five TcI strains (two domestic, two sylvatic and one natural mixture) and determined the course of infection during 91 days (acute and chronic phase of the disease) in terms of parasitemia, tissue tropism, immune response (IgG titers) and tissue invasion by means of histopathology studies. Statistically significant differences were observed in terms of parasitemia curves and prepatent period between domestic (TcIDOM) and sylvatic strains. There were no differences in terms of IgG antibodies response across the mice infected with the five strains. Regarding the histopathology, our results indicate that domestic strains present higher parasitemias and low levels of histopathological damage. In contrast, sylvatic strains showed lower parasitemias and high levels of histopathological damage. These results highlight the sympatric and behavioral differences of domestic and sylvatic TcI strains; the clinical and epidemiological implications are herein discussed. PMID:25461848

  2. Simvastatin prevents vascular complications in the chronic reactive oxygen species murine model of systemic sclerosis.

    PubMed

    Bitto, Alessandra; Bagnato, Gian Luca; Pizzino, Gabriele; Roberts, William Neal; Irrera, Natasha; Minutoli, Letteria; Russo, Giuseppina; Squadrito, Francesco; Saitta, Antonino; Bagnato, Gian Filippo; Altavilla, Domenica

    2016-05-01

    Aims Systemic sclerosis (SSc) is characterized by vasculopathy and organ fibrosis. Although microvascular alterations are very well characterized, structural and functional abnormalities of large vessels are not well defined. Therefore, we evaluated the effect of simvastatin administration on aortic and small renal arteries thickening, and on myofibroblasts differentiation in a murine model of SSc. Methods and results SSc was induced in BALB/c mice by daily subcutaneous injections of hypochlorous acid (HOCl, 100 μl) for 6 weeks. Mice (n = 23) were randomized to receive: HOCl (n = 10); HOCl plus simvastatin (40 mg/kg; n = 8); or vehicle (n = 5). Simvastatin administration started 30 min after HOCl injection, and up to week 6. Aortic and small renal arteries intima-media thickness was evaluated by histological analysis. Immunostaining for α-smooth muscle actin (SMA), vascular endothelial growth factor receptor 2 (VEGFR2), and CD31 in aortic tissues was performed to evaluate myofibroblast differentiation and endothelial markers.In HOCl-treated mice, intima-media thickening with reduced lumen diameter was observed in the aorta and in small renal arteries and simvastatin administration prevented this increase. Aortic and renal myofibroblasts count, as expressed by α-SMA + density, was lower in the group of mice treated with simvastatin compared to HOCl-treated mice. Simvastatin prevented the reduction in VEGFR2 and CD31 expression induced by HOCl. Conclusions The administration of simvastatin regulates collagen deposition in the aortic tissues and in the small renal arteries by modulating myofibroblasts differentiation and vascular markers. Further studies are needed to better address the effect of statins in the macrovascular component of SSc. PMID:26846205

  3. Evaluation of profertility effect of probiotic Lactobacillus plantarum 2621 in a murine model

    PubMed Central

    Bhandari, Praveen; Prabha, Vijay

    2015-01-01

    Background & objectives: Urogenital infections of bacterial origin have a high incidence among the female population at reproductive age, affecting the fertility. Strains of Escherichia coli can colonize the vagina and replace natural microflora. Lactobacillus the predominant vaginal microorganism in healthy women, maintains the acidic vaginal pH which inhibits pathogenic microorganisms. Studies on Lactobacillus have shown that these can inhibit E. coli growth and vaginal colonization. An alternative therapeutic approach to antimicrobial therapy is to re-establish Lactobacillus in this microbiome through probiotic administration to resurge fertility. Therefore, the aim of the present study was to determine the capability of L. plantarum 2621 strain with probiotic properties, to prevent the vaginal colonization of E. coli causing agglutination of sperms and to evaluate its profertility effect in a murine model. Methods: Screened mice were divided into five groups i.e. control group, E. coli group, Lactobacillus group, prophylactic and therapeutic groups. The control group was infused with 20 µl PBS, E.coli group was administered with 106 cfu/20 µl E. coli, and probiotic group was administered with Lactobacillus (108 cfu/20 µl) for 10 consecutive days. In prophylactic group, the vagina was colonized with 10 consecutive doses of Lactobacillus (108 cfu/20 µl). After 24 h, it was followed by 10 day intravaginal infection with E. coli (106 cfu/20 µl) whereas for the therapeutic group vagina was colonized with (106 cfu/20 µl) E. coli for 10 consecutive days, followed by 10 day intravaginal administration with Lactobacillus after 24 h. Results: Upon mating and completion of gestation period, control, probiotic and the therapeutic groups had litters in contrast to the prophylactic group and the group administered with E. coli. Interpretation & conclusions: Results indicated that Lactobacillus intermitted colonization of pathogenic strains that resulted in

  4. Liver injury caused by antibodies against dengue virus nonstructural protein 1 in a murine model.

    PubMed

    Lin, Chiou-Feng; Wan, Shu-Wen; Chen, Mei-Chun; Lin, Shin-Chao; Cheng, Chu-Chen; Chiu, Shu-Chen; Hsiao, Yu-Ling; Lei, Huan-Yao; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Lin, Yee-Shin

    2008-10-01

    Clinical manifestations of severe dengue diseases include thrombocytopenia, vascular leakage, and liver damage. Evidence shows that hepatic injury is involved in the pathogenesis of dengue infection; however, the mechanisms are not fully resolved. Our previous in vitro studies suggested a mechanism of molecular mimicry in which antibodies directed against dengue virus (DV) nonstructural protein 1 (NS1) cross-reacted with endothelial cells and caused inflammatory activation and apoptosis. In this study, the pathogenic effects of anti-DV NS1 antibodies were further examined in a murine model. We found, in liver sections, that anti-DV NS1 antibodies bound to naive mouse vessel endothelium and the binding activity was inhibited by preabsorption of antibodies with DV NS1. Active immunization with DV NS1 resulted in antibody deposition to liver vessel endothelium, and also apoptotic cell death of liver endothelium. Liver tissue damage was observed in DV NS1-immunized mice by histological examination. The serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased in mice either actively immunized with DV NS1 protein or passively immunized with antibodies obtained from DV NS1-immunized mice. Furthermore, histological examination revealed mononuclear phagocyte infiltration and cell apoptosis in mice passively immunized with antibodies obtained from mice immunized with DV NS1. Increased AST and ALT levels were observed in mice passively immunized with purified immunoglobulin G (IgG) from dengue patients compared with normal control human IgG-immunized mice. The increased AST and ALT levels were inhibited when dengue patient serum IgG was preabsorbed with DV NS1. In conclusion, active immunization with DV NS1 protein causes immune-mediated liver injury in mice. Passive immunization provides additional evidence that anti-DV NS1 antibodies may play a role in liver damage, which is a pathologic manifestation in dengue virus disease. PMID

  5. Amifostine Reduces Radiation-Induced Complications in a Murine Model of Expander-Based Breast Reconstruction

    PubMed Central

    Felice, Peter A.; Nelson, Noah S.; Page, Erin E.; Deshpande, Sagar S.; Donneys, Alexis; Rodriguez, José; Buchman, Steven R.

    2014-01-01

    Background Immediate expander-based breast reconstruction after mastectomy is a prevalent option for many women with breast cancer. When coupled with adjuvant radiation, however, radiation-induced skin and soft tissue injury diminish the success of this reconstructive technique. We hypothesize that prophylactic administration of the cytoprotectant Amifostine will reduce soft tissue complications from irradiation, aiding expander-based reconstruction for women battling this disease. Methods Sprague Dawley rats were divided into two experimental groups, Operative Expander Placement (Expander) and Operative Sham (Sham). Expander specimens received a sub-latissimus tissue expander with a 15cc fill volume; Shams underwent identical procedures without expander placement. Experimental groups were further divided into Control specimens receiving no further intervention, XRT specimens receiving human-equivalent radiation, and AMF-XRT specimens receiving both Amifostine and human-equivalent radiation. Animals underwent a 45-day recovery period and were evaluated grossly and via ImageJ analysis for skin and soft tissue complications. Results None of the Control, XRT, or AMF-XRT Sham specimens showed skin and soft tissue complications. For Expander animals, significantly fewer AMF-XRT specimens (4 of 13, 30%) demonstrated skin and soft tissue complications compared to XRT specimens (9 of 13, 69%; p = 0.041). ImageJ evaluation of Expander specimens demonstrated a significant increase in skin and soft tissue necrosis for XRT specimens (12.94%), compared with AMF-XRT animals (6.96%, p = 0.019). Conclusions Amifostine pre-treatment significantly reduced skin and soft-tissue complications in both gross inspection and ImageJ analysis. These findings demonstrate that Amifostine prophylaxis provides protection against radiation-induced skin and soft tissue injury in a murine model of expander-based breast reconstruction. Level of Evidence Animal study, not gradable for level of

  6. Quantitative Histologic Evidence of Amifostine Induced Cytoprotection in an Irradiated Murine Model of Mandibular Distraction Osteogenesis

    PubMed Central

    Tchanque-Fossuo, Catherine N.; Donneys, Alexis; Razdolsky, Elizabeth R.; Monson, Laura; Farberg, Aaron S.; Deshpande, Sagar S.; Sarhaddi, Deniz; Poushanchi, Behdod; Goldstein, Steven A.; Buchman, Steven R.

    2012-01-01

    Background Head and neck cancer (HNC) management requires adjuvant radiation therapy (XRT). The authors have previously demonstrated the damaging effect of a human equivalent dose of radiation (HEDR) on a murine mandibular model of distraction osteogenesis (DO). Utilizing quantitative histomorphometry (QHM), our specific aim is to objectively measure the radio-protective effects of Amifostine (AMF) on the cellular integrity and tissue quality of an irradiated and distracted regenerate. Methods Sprague Dawley rats were randomly assigned into 2 groups: XRT/DO and AMF/XRT/DO, which received AMF prior to XRT. Both groups were given HEDR in 5 fractionated doses and underwent a left mandibular osteotomy with bilateral fixator placement. Distraction to 5.1mm was followed by a 28-day consolidation period. Left hemimandibles were harvested. QHM was performed for osteocyte count (Oc), empty lacunae (EL), Bone Volume/Tissue Volume (BV/TV) and Osteoid Volume/Tissue Volume (OV/TV) ratios. Results AMF/XRT/DO exhibited bony bridging as opposed to XRT/DO fibrous unions. QHM analysis revealed statistically significant higher Oc and BV/TV ratio in AMF-treated mandibles compared with irradiated mandibles. There was a corresponding decrease in EL and the ratio of OV/TV between AMF/XRT/DO and XRT/DO. Conclusion We have successfully established the significant osseous cytoprotective and histoprotective capacity of AMF on DO in the face of XRT. AMF-sparing effect on bone cellularity correlated with an increase in bony union and elimination of fibrous union. We posit that the demonstration of similar efficacy of AMF in the clinic may allow the successful implementation of DO as a viable reconstructive option for HNC in the future. PMID:22878481

  7. Sphingosine Kinase 1 Deficiency Confers Protection against Hyperoxia-Induced Bronchopulmonary Dysplasia in a Murine Model

    PubMed Central

    Harijith, Anantha; Pendyala, Srikanth; Reddy, Narsa M.; Bai, Tao; Usatyuk, Peter V.; Berdyshev, Evgeny; Gorshkova, Irina; Huang, Long Shuang; Mohan, Vijay; Garzon, Steve; Kanteti, Prasad; Reddy, Sekhar P.; Raj, J. Usha; Natarajan, Viswanathan

    2014-01-01

    Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1−/− (Sphk1−/−), sphingosine kinase 2−/− (Sphk2−/−), and S1P lyase+/− (Sgpl1+/−) mice were exposed to hyperoxia (75%) from postnatal day 1 to 7. Sphk1−/−, but not Sphk2−/− or Sgpl1+/−, mice offered protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important role for SphK1-mediated S1P signaling–regulated ROS in the development of hyperoxia-induced lung injury in a murine neonatal model of bronchopulmonary dysplasia. PMID:23933064

  8. Detection and monitoring of localized matrix metalloproteinase upregulation in a murine model of asthma.

    PubMed

    Felsen, Csilla N; Savariar, Elamprakash N; Whitney, Michael; Tsien, Roger Y

    2014-04-15

    Extracellular proteases including matrix metalloproteinases (MMPs) are speculated to play a significant role in chronic lung diseases, such as asthma. Although increased protease expression has been correlated with lung pathogenesis, the relationship between localized enzyme activity and disease progression remains poorly understood. We report the application of MMP-2/9 activatable cell-penetrating peptides (ACPPs) and their ratiometric analogs (RACPPs) for in vivo measurement of protease activity and distribution in the lungs of mice that were challenged with the allergen ovalbumin. MMP-2/9 activity was increased greater than twofold in whole, dissected lungs from acutely challenged mice compared with control mice (P=1.8×10(-4)). This upregulation of MMP-2/9 activity was localized around inflamed airways with 1.6-fold higher protease-dependent ACPP uptake surrounding diseased airways compared with adjacent, pathologically normal lung parenchyma (P=0.03). MMP-2/9 activity detected by ACPP cleavage colocalized with gelatinase activity measured with in situ dye-quenched gelatin. For comparison, neutrophil elastase activity and thrombin activity, detected with elastase- and thrombin-cleavable RACPPs, respectively, were not significantly elevated in acutely allergen-challenged mouse lungs. The results demonstrate that ACPPs, like the MMP-2/9-activated and related ACPPs, allow for real-time detection of protease activity in a murine asthma model, which should improve our understanding of protease activation in asthma disease progression and help elucidate new therapy targets or act as a mechanism for therapeutic drug delivery. PMID:24508733

  9. Defined Nutrient Diets Alter Susceptibility to Clostridium difficile Associated Disease in a Murine Model

    PubMed Central

    Zaenker, Edna I.; Bolick, David T.; Kolling, Glynis L.; van Opstal, Edward; Noronha, Francisco J. D.; De Medeiros, Pedro H. Q. S.; Rodriguez, Raphael S.; Lima, Aldo A.; Guerrant, Richard L.; Warren, Cirle A.

    2015-01-01

    Background Clostridium difficile is a major identifiable and treatable cause of antibiotic-associated diarrhea. Poor nutritional status contributes to mortality through weakened host defenses against various pathogens. The primary goal of this study was to assess the contribution of a reduced protein diet to the outcomes of C. difficile infection in a murine model. Methods C57BL/6 mice were fed a traditional house chow or a defined diet with either 20% protein or 2% protein and infected with C. difficile strain VPI10463. Animals were monitored for disease severity, clostridial shedding and fecal toxin levels. Select intestinal microbiota were measured in stool and C. difficile growth and toxin production were quantified ex vivo in intestinal contents from untreated or antibiotic-treated mice fed with the different diets. Results C. difficile infected mice fed with defined diets, particularly (and unexpectedly) with protein deficient diet, had increased survival, decreased weight loss, and decreased overall disease severity. C. difficile shedding and toxin in the stool of the traditional diet group was increased compared with either defined diet 1 day post infection. Mice fed with traditional diet had an increased intestinal Firmicutes to Bacteroidetes ratio following antibiotic exposure compared with either a 2% or 20% protein defined nutrient diet. Ex vivo inoculation of cecal contents from antibiotic-treated mice showed decreased toxin production and C. difficile growth in both defined diets compared with a traditional diet. Conclusions Low protein diets, and defined nutrient diets in general, were found to be protective against CDI in mice. Associated diet-induced alterations in intestinal microbiota may influence colonization resistance and clostridial toxin production in a defined nutrient diet compared to a traditional diet, leading to increased survival. However, mechanisms which led to survival differences between 2% and 20% protein defined nutrient diets

  10. Etanercept administration prevents the inflammatory response induced by carrageenan in the murine air pouch model.

    PubMed

    Mattei, Rodrigo Antônio; Dalmarco, Eduardo Monguilhott; Fröde, Tânia Silvia

    2015-12-01

    Rheumatoid arthritis (RA) is one of several inflammatory and autoimmune diseases that affect approximately 1% of world's population. The development of TNF inhibitors in the last decade represents a great advance in the treatment of mild and severe forms of RA. Etanercept is one of these drugs that is useful for RA treatment, but the mechanism of inhibition of the signaling pathway of inflammation was not completely elucidated. This study was conducted to evaluate the anti-inflammatory effect of etanercept in comparison to reference drugs (dexamethasone and indomethacin). Inflammation was induced by subcutaneal administration of carrageenan in the Swiss albino mice using the murine air pouch model. Exudation; leukocytes; myeloperoxidase (MPO); adenosine deaminase (ADA); nitric oxide metabolites (NOx); tumor necrosis factor (TNF); interferon gamma (IFN-γ); interleukins (IL) IL-6, IL-17, IL-10, IL-4, and IL-2; nuclear transcription factor kappa B (NF-κB) activation and apoptosis were evaluated 24 h after the induction of inflammation. Treatment with etanercept significantly inhibited exudate concentrations; leukocyte count; MPO and ADA activities; NOx, TNF, IFN-γ, and IL-17 levels; and NF-kappa B activation (p < 0.05). Etanercept induced apoptosis, reducing the number of viable neutrophils without increasing necrosis (p < 0.05). Our results suggest that the anti-inflammatory mechanism of action of etanercept may be via decrease of NF-κB activation. This effect promoted the reduction of pro-inflammatory cytokines and NOx and the induction of neutrophil apoptosis. The effect of etanercept upon neutrophils apoptosis may indicate the use of this drug therapy in the early stage of rheumatoid arthritis disease. PMID:26255064

  11. The Murine Model of Mucopolysaccharidosis IIIB Develops Cardiopathies over Time Leading to Heart Failure

    PubMed Central

    De Pasquale, Valeria; Cocchiaro, Pasquale; Paciello, Orlando; Avallone, Luigi; Belfiore, Maria Paola; Iacobellis, Francesca; Di Napoli, Daniele; Magliulo, Fabio; Perrino, Cinzia; Trimarco, Bruno; Esposito, Giovanni; Di Natale, Paola; Pavone, Luigi Michele

    2015-01-01

    Mucopolysaccharidosis (MPS) IIIB is a lysosomal disease due to the deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU) required for heparan sulfate (HS) degradation. The disease is characterized by mild somatic features and severe neurological disorders. Very little is known on the cardiac dysfunctions in MPS IIIB. In this study, we used the murine model of MPS IIIB (NAGLU knockout mice, NAGLU-/-) in order to investigate the cardiac involvement in the disease. Echocardiographic analysis showed a marked increase in left ventricular (LV) mass, reduced cardiac function and valvular defects in NAGLU-/- mice as compared to wild-type (WT) littermates. The NAGLU-/- mice exhibited a significant increase in aortic and mitral annulus dimension with a progressive elongation and thickening of anterior mitral valve leaflet. A severe mitral regurgitation with reduction in mitral inflow E-wave-to-A-wave ratio was observed in 32-week-old NAGLU-/- mice. Compared to WT mice, NAGLU-/- mice exhibited a significantly lower survival with increased mortality observed in particular after 25 weeks of age. Histopathological analysis revealed a significant increase of myocardial fiber vacuolization, accumulation of HS in the myocardial vacuoles, recruitment of inflammatory cells and collagen deposition within the myocardium, and an increase of LV fibrosis in NAGLU-/- mice compared to WT mice. Biochemical analysis of heart samples from affected mice showed increased expression levels of cardiac failure hallmarks such as calcium/calmodulin-dependent protein kinase II, connexin43, α-smooth muscle actin, α-actinin, atrial and brain natriuretic peptides, and myosin heavy polypeptide 7. Furthermore, heart samples from NAGLU-/- mice showed enhanced expression of the lysosome-associated membrane protein-2 (LAMP2), and the autophagic markers Beclin1 and LC3 isoform II (LC3-II). Overall, our findings demonstrate that NAGLU-/- mice develop heart disease, valvular abnormalities and cardiac

  12. Effects of Enzyme Replacement Therapy Started Late in a Murine Model of Mucopolysaccharidosis Type I

    PubMed Central

    Pasqualim, Gabriela; Baldo, Guilherme; de Carvalho, Talita Giacomet; Tavares, Angela Maria Vicente; Giugliani, Roberto; Matte, Ursula

    2015-01-01

    Mucopolysaccharidosis type I (MPS I) is a progressive disorder caused by deficiency of α-L-iduronidase (IDUA), which leads to storage of heparan and dermatan sulphate. It is suggested that early enzyme replacement therapy (ERT) leads to better outcomes, although many patients are diagnosed late and don’t receive immediate treatment. This study aims to evaluate the effects of late onset ERT in a MPS I murine model. MPS I mice received treatment from 6 to 8 months of age (ERT 6–8mo) with 1.2mg laronidase/kg every 2 weeks and were compared to 8 months-old wild-type (Normal) and untreated animals (MPS I). ERT was effective in reducing urinary and visceral GAG to normal levels. Heart GAG levels and left ventricular (LV) shortening fraction were normalized but cardiac function was not completely improved. While no significant improvements were found on aortic wall width, treatment was able to significantly reduce heart valves thickening. High variability was found in behavior tests, with treated animals presenting intermediate results between normal and affected mice, without correlation with cerebral cortex GAG levels. Cathepsin D activity in cerebral cortex also did not correlate with behavior heterogeneity. All treated animals developed anti-laronidase antibodies but no correlation was found with any parameters analyzed. However, intermediary results from locomotion parameters analyzed are in accordance with intermediary levels of heart function, cathepsin D, activated glia and reduction of TNF-α expression in the cerebral cortex. In conclusion, even if started late, ERT can have beneficial effects on many aspects of the disease and should be considered whenever possible. PMID:25646802

  13. Alpha-melanocyte stimulating hormone ameliorates disease activity in an induced murine lupus-like model.

    PubMed

    Botte, D A C; Noronha, I L; Malheiros, D M A C; Peixoto, T V; de Mello, S B V

    2014-08-01

    Alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide exhibiting anti-inflammatory activity in experimental models of autoimmune diseases. However, no studies thus far have examined the effects of α-MSH on systemic lupus erythematosus (SLE). This study aimed to determine the effects of an α-MSH agonist in induced murine lupus. Here we employed female Balb/cAn mice in which lupus was induced by pristane. Groups of lupus animals were treated daily with the α-MSH analogue [Nle4, DPhe7]-α-MSH (NDP-MSH) (1·25 mg/kg) injected intraperitoneally or saline for 180 days. Normal animals comprised the control group. Arthritis incidence, plasma immunoglobulin (Ig)G isotypes, anti-nuclear antibodies (ANA) and plasma cytokines were evaluated. Renal function was assessed by proteinuria and histopathological lesion. Glomerular levels of IgG, α-smooth muscle actin (α-SMA), inducible nitric oxide synthase (iNOS), C3, CD3, melanocortin receptors (MCR)1, corticotrophin-releasing factor (CRF) and α-MSH was estimated by immunohistochemistry. When compared with normal controls, lupus animals exhibited increased arthritis, IgG levels, ANA, interleukin (IL)-6, IL-10, proteinuria and mesangial cell proliferation together with glomerular expression of α-SMA and iNOS. Glomerular expression of MCR1 was reduced in lupus animals. NDP-MSH treatment reduced arthritis scores by 70% and also diminished IgG1 and IgG2a levels and ANA incidence. In the glomerulus, NDP-MSH treatment reduced cellularity by 50% together with reducing IgG deposits, and expression levels of α-SMA, iNOS and CRF were also all decreased. Taken together, our results suggest for the first time that α-MSH treatment improves several parameters of SLE disease activity in mice, and indicate that this hormone is an interesting potential future treatment option. PMID:24666423

  14. Alpha-melanocyte stimulating hormone ameliorates disease activity in an induced murine lupus-like model

    PubMed Central

    Botte, D A C; Noronha, I L; Malheiros, D M A C; Peixoto, T V; de Mello, S B V

    2014-01-01

    Alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide exhibiting anti-inflammatory activity in experimental models of autoimmune diseases. However, no studies thus far have examined the effects of α-MSH on systemic lupus erythematosus (SLE). This study aimed to determine the effects of an α-MSH agonist in induced murine lupus. Here we employed female Balb/cAn mice in which lupus was induced by pristane. Groups of lupus animals were treated daily with the α-MSH analogue [Nle4, DPhe7]-α-MSH (NDP–MSH) (1·25 mg/kg) injected intraperitoneally or saline for 180 days. Normal animals comprised the control group. Arthritis incidence, plasma immunoglobulin (Ig)G isotypes, anti-nuclear antibodies (ANA) and plasma cytokines were evaluated. Renal function was assessed by proteinuria and histopathological lesion. Glomerular levels of IgG, α-smooth muscle actin (α-SMA), inducible nitric oxide synthase (iNOS), C3, CD3, melanocortin receptors (MCR)1, corticotrophin-releasing factor (CRF) and α-MSH was estimated by immunohistochemistry. When compared with normal controls, lupus animals exhibited increased arthritis, IgG levels, ANA, interleukin (IL)-6, IL-10, proteinuria and mesangial cell proliferation together with glomerular expression of α-SMA and iNOS. Glomerular expression of MCR1 was reduced in lupus animals. NDP-MSH treatment reduced arthritis scores by 70% and also diminished IgG1 and IgG2a levels and ANA incidence. In the glomerulus, NDP–MSH treatment reduced cellularity by 50% together with reducing IgG deposits, and expression levels of α-SMA, iNOS and CRF were also all decreased. Taken together, our results suggest for the first time that α-MSH treatment improves several parameters of SLE disease activity in mice, and indicate that this hormone is an interesting potential future treatment option. PMID:24666423

  15. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  16. Reproduction and Growth in a Murine Model of Early Life-Onset Inflammatory Bowel Disease.

    PubMed

    Nagy, Eniko; Rodriguiz, Ramona M; Wetsel, William C; MacIver, Nancie J; Hale, Laura P

    2016-01-01

    Studies in transgenic murine models have provided insight into the complexity underlying inflammatory bowel disease (IBD), a disease hypothesized to result from an injurious immune response against intestinal microbiota. We recently developed a mouse model of IBD that phenotypically and histologically resembles human childhood-onset ulcerative colitis (UC), using mice that are genetically modified to be deficient in the cytokines TNF and IL-10 ("T/I" mice). Here we report the effects of early life onset of colon inflammation on growth and reproductive performance of T/I mice. T/I dams with colitis often failed to get pregnant or had small litters with pups that failed to thrive. Production was optimized by breeding double homozygous mutant T/I males to females homozygous mutant for TNF deficiency and heterozygous for deficiency of IL-10 ("T/I-het" dams) that were not susceptible to spontaneous colon inflammation. When born to healthy (T/I-het) dams, T/I pups initially gained weight similarly to wild type (WT) pups and to their non-colitis-susceptible T/I-het littermates. However, their growth curves diverged between 8 and 13 weeks, when most T/I mice had developed moderate to severe colitis. The observed growth failure in T/I mice occurred despite a significant increase in their food consumption and in the absence of protein loss in the stool. This was not due to TNF-induced anorexia or altered food consumption due to elevated leptin levels. Metabolic studies demonstrated increased consumption of oxygen and water and increased production of heat and CO2 in T/I mice compared to their T/I-het littermates, without differences in motor activity. Based on the clinical similarities of this early life onset model of IBD in T/I mice to human IBD, these results suggest that mechanisms previously hypothesized to explain growth failure in children with IBD require re-evaluation. The T/I mouse model may be useful for further investigation of such mechanisms and for development

  17. Reproduction and Growth in a Murine Model of Early Life-Onset Inflammatory Bowel Disease

    PubMed Central

    Nagy, Eniko; Rodriguiz, Ramona M.; Wetsel, William C.; MacIver, Nancie J.; Hale, Laura P.

    2016-01-01

    Studies in transgenic murine models have provided insight into the complexity underlying inflammatory bowel disease (IBD), a disease hypothesized to result from an injurious immune response against intestinal microbiota. We recently developed a mouse model of IBD that phenotypically and histologically resembles human childhood-onset ulcerative colitis (UC), using mice that are genetically modified to be deficient in the cytokines TNF and IL-10 (“T/I” mice). Here we report the effects of early life onset of colon inflammation on growth and reproductive performance of T/I mice. T/I dams with colitis often failed to get pregnant or had small litters with pups that failed to thrive. Production was optimized by breeding double homozygous mutant T/I males to females homozygous mutant for TNF deficiency and heterozygous for deficiency of IL-10 (“T/I-het” dams) that were not susceptible to spontaneous colon inflammation. When born to healthy (T/I-het) dams, T/I pups initially gained weight similarly to wild type (WT) pups and to their non-colitis-susceptible T/I-het littermates. However, their growth curves diverged between 8 and 13 weeks, when most T/I mice had developed moderate to severe colitis. The observed growth failure in T/I mice occurred despite a significant increase in their food consumption and in the absence of protein loss in the stool. This was not due to TNF-induced anorexia or altered food consumption due to elevated leptin levels. Metabolic studies demonstrated increased consumption of oxygen and water and increased production of heat and CO2 in T/I mice compared to their T/I-het littermates, without differences in motor activity. Based on the clinical similarities of this early life onset model of IBD in T/I mice to human IBD, these results suggest that mechanisms previously hypothesized to explain growth failure in children with IBD require re-evaluation. The T/I mouse model may be useful for further investigation of such mechanisms and for

  18. Exposure and immunological determinants in a murine model for toluene diisocyanate (TDI) asthma.

    PubMed

    Matheson, Joanna M; Johnson, Victor J; Vallyathan, Velayudhan; Luster, Michael I

    2005-03-01

    Isocyanate-induced asthma, the most commonly reported cause of occupational asthma, has been difficult to diagnose and control, in part, because the biological mechanisms responsible for the disease and the determinants of exposure have been difficult to define. Appropriate animals models of isocyanate asthma will be instrumental to further our understanding of this disease. Previous studies have demonstrated that dermal exposure to isocyanates in mice results in systemic sensitization that leads to eosinophilic airways inflammation upon subsequent airway challenge. We hypothesized that inhalation of vapor phase toluene diisocyante (TDI) will lead to immunologic sensitization in mice and that subsequent challenge will induce pathology and immune system alterations indicative of asthma found in humans. To determine the impact of exposure dose as well as the involvement of immune (allergic) or nonimmune mechanisms, a murine model of TDI asthma was established and characterized following either low-level subchronic or high-dose acute inhalation TDI exposure. C57BL/6 J mice were exposed to TDI by inhalation either subchronically for 6 weeks (20 ppb, 4 h/day, 5 days/week) or by a 2-h acute exposure at 500 ppb. Both groups were challenged 14 days later via inhalation with 20 ppb TDI for 1 h. Mice that underwent the subchronic exposure regimen demonstrated a marked allergic response evidenced by increases in airway inflammation, eosinophilia, goblet cell metaplasia, epithelial cell alterations, airway hyperreponsiveness (AHR), T(H)1/T(H)2 cytokine expression in the lung, elevated levels of serum IgE, and TDI-specific IgG antibodies, as well as the ability to transfer these pathologies to naive mice with lymphocytes or sera from TDI exposed mice. In contrast, mice that received acute TDI exposure demonstrated increased AHR, specific IgG antibodies, and pathology in the lung consistent with asthma, but without the presence of elevated serum IgE, lung eosionophilia, or

  19. Treatment with intranasal iloprost reduces disease manifestations in a murine model of previously established COPD.

    PubMed

    Lammi, Matthew R; Ghonim, Mohamed A; Pyakurel, Kusma; Naura, Amarjit S; Ibba, Salome V; Davis, Christian J; Okpechi, Samuel C; Happel, Kyle I; deBoisblanc, Bennett P; Shellito, Judd; Boulares, A Hamid

    2016-04-01

    Pulmonary endothelial prostacyclin appears to be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The effect of treatment with a prostacyclin analog in animal models of previously established COPD is unknown. We evaluated the short- and long-term effect of iloprost on inflammation and airway hyperresponsiveness (AHR) in a murine model of COPD. Nineteen mice were exposed to LPS/elastase, followed by either three doses of intranasal iloprost or saline. In the long-term treatment experiment, 18 mice were exposed to LPS/elastase and then received 6 wk of iloprost or were left untreated as controls. In the short-term experiment, iloprost did not change AHR but significantly reduced serum IL-5 and IFN-γ. Long-term treatment with iloprost for both 2 and 6 wk significantly improved AHR. After 6 wk of iloprost, there was a reduction in bronchoalveolar lavage (BALF) neutrophils, serum IL-1β (30.0 ± 9.2 vs. 64.8 ± 7.4 pg/ml, P = 0.045), IL-2 (36.5 ± 10.6 vs. 83.8 ± 0.4 pg/ml, P = 0.01), IL-10 (75.7 ± 9.3 vs. 96.5 ± 3.5 pg/ml, P = 0.02), and nitrite (15.1 ± 5.4 vs. 30.5 ± 10.7 μmol, P = 0.01). Smooth muscle actin (SMA) in the lung homogenate was also significantly reduced after iloprost treatment (P = 0.02), and SMA thickness was reduced in the small and medium blood vessels after iloprost (P < 0.001). In summary, short- and long-term treatment with intranasal iloprost significantly reduced systemic inflammation in an LPS/elastase COPD model. Long-term iloprost treatment also reduced AHR, serum nitrite, SMA, and BALF neutrophilia. These data encourage future investigations of prostanoid therapy as a novel treatment for COPD patients. PMID:26851260

  20. Almorexant Promotes Sleep and Exacerbates Cataplexy in a Murine Model of Narcolepsy

    PubMed Central

    Black, Sarah Wurts; Morairty, Stephen R.; Fisher, Simon P.; Chen, Tsui-Ming; Warrier, Deepti R.; Kilduff, Thomas S.

    2013-01-01

    promotes sleep and exacerbates cataplexy in a murine model of narcolepsy. SLEEP 2013;36(3):325-336. PMID:23449602

  1. A mathematical model of adult subventricular neurogenesis

    PubMed Central

    Ashbourn, J. M. A.; Miller, J. J.; Reumers, V.; Baekelandt, V.; Geris, L.

    2012-01-01

    Neurogenesis has been the subject of active research in recent years and many authors have explored the phenomenology of the process, its regulation and its purported purpose. Recent developments in bioluminescent imaging (BLI) allow direct in vivo imaging of neurogenesis, and in order to interpret the experimental results, mathematical models are necessary. This study proposes such a mathematical model that describes adult mammalian neurogenesis occurring in the subventricular zone and the subsequent migration of cells through the rostral migratory stream to the olfactory bulb (OB). This model assumes that a single chemoattractant is responsible for cell migration, secreted both by the OB and in an endocrine fashion by the cells involved in neurogenesis. The solutions to the system of partial differential equations are compared with the physiological rodent process, as previously documented in the literature and quantified through the use of BLI, and a parameter space is described, the corresponding solution to which matches that of the rodent model. A sensitivity analysis shows that this parameter space is stable to perturbation and furthermore that the system as a whole is sloppy. A large number of parameter sets are stochastically generated, and it is found that parameter spaces corresponding to physiologically plausible solutions generally obey constraints similar to the conditions reported in vivo. This further corroborates the model and its underlying assumptions based on the current understanding of the investigated phenomenon. Concomitantly, this leaves room for further quantitative predictions pertinent to the design of future proposed experiments. PMID:22572029

  2. Older Adults in Child Care: A Job-Training Model.

    ERIC Educational Resources Information Center

    Ward, Christopher R.; Smith, Thomas B.

    Recognizing the increasing demand for older adults to work as child care employees, this manual presents the Generations Together model for training older adults at the community college level to work in child care settings. The manual describes the steps necessary to implement a community-college-based, older-adult child care employment training…

  3. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    PubMed Central

    Kumagai, Kenichi; Horikawa, Tatsuya; Shigematsu, Hiroaki; Matsubara, Ryota; Kitaura, Kazutaka; Eguchi, Takanori; Kobayashi, Hiroshi; Nakasone, Yasunari; Sato, Koichiro; Yamada, Hiroyuki; Suzuki, Satsuki; Hamada, Yoshiki; Suzuki, Ryuji

    2016-01-01

    Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK) T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis. PMID:26771600

  4. Development of an Orientia tsutsugamushi Lc-1 Murine Intraperitoneal Challenge Model for Scrub Typhus: Determination of Murine Lethal Dose (MuLD50), Tissue Bacterial Loads, and Clinical Outcomes.

    PubMed

    Lurchachaiwong, Woradee; McCardle, Wesley; Chan, Teik-Chye; Schuster, Anthony L; Richards, Allen L

    2015-09-01

    Currently, no vaccine has been developed to protect humans from naturally acquired heterologous Orientia tsutsugamushi infections. To enhance the validity of vaccine candidates, we are developing a murine chigger challenge model with the O. tsutsugamushi Lc-1-infected Leptotrombidium chiangraiensis Line-1. To this end, an intraperitoneal (i.p.) murine challenge model using an O. tsutsugamushi Lc-1 isolate was developed for eventual validation of the chigger challenge model. We have determined that the murine lethal dose that kills 50% of the challenged mice (MuLD50) of a liver/spleen homogenate developed from O. tsutsugamushi Lc-1-infected ICR Swiss mice to be 10(-6.9). Employing different inoculum doses of this homogenate, the bacterial load using quantitative real-time PCR (qPCR) was determined to range from 60 to 1.6 × 10(5) genome equivalent copies (GEC)/μL of liver and 33.4 to 2.2 × 10(5) GEC/μL of spleen tissue. The clinical outcomes relative to homogenate dose levels followed a dose-dependent pattern. The successful development and characterization of the O. tsutsugamushi Lc-1 i.p. challenge model will assist in the development and validation of a mouse chigger challenge scrub typhus model. PMID:26378973

  5. In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model.

    PubMed

    Andes, D; Marchillo, K; Stamstad, T; Conklin, R

    2003-10-01

    In vivo studies have described the pharmacodynamic (PD) characteristics of several triazoles. These investigations have demonstrated that the 24-h area under the concentration-time curve (AUC)/MIC ratio is the critical pharmacokinetic (PK)-PD parameter associated with treatment efficacy. Further analyses from these in vivo studies have demonstrated that a triazole free drug 24-h AUC/MIC of 20 to 25 is predictive of treatment success. We used a neutropenic murine model of disseminated Candida albicans infection to similarly characterize the PK-PD of the new triazole voriconazole. PK and PD parameters (percentage of time that the concentration remains above the MIC [T > MIC], AUC/MIC ratio, and peak level in serum/MIC ratio) were correlated with in vivo efficacy, as measured by the organism number in kidney cultures after 24 h of therapy. Voriconazole kinetics and protein binding were studied in infected neutropenic mice. Peak level/dose and AUC/dose values ranged from 0.1 to 0.2 and 0.1 to 0.7, respectively. The serum elimination half-life ranged from 0.7 to 2.9 h. The level of protein binding in mouse serum was 78%. Treatment efficacy with the four dosing intervals studied was similar, supporting the AUC/MIC ratio as the PK-PD parameter predictive of efficacy. Nonlinear regression analysis also suggested that the AUC/MIC ratio was strongly predictive of treatment outcomes (R(2) for AUC/MIC ratio = 82%, R(2) for peak level/MIC ratio = 63%, R(2) for T > MIC = 75%). Similar studies were conducted with nine additional C. albicans isolates with various voriconazole susceptibilities (MICs, 0.007 to 0.25 micro g/ml) to determine if a similar 24-h AUC/MIC ratio was associated with efficacy. The voriconazole free drug AUC/MIC ratios were similar for all of the organisms studied (range, 11 to 58; mean +/- standard deviation, 24 +/- 17 [P = 0.45]). These AUC/MIC ratios observed for free drug are similar to those observed for other triazoles in this model. PMID:14506026

  6. In Vivo Pharmacokinetics and Pharmacodynamics of a New Triazole, Voriconazole, in a Murine Candidiasis Model

    PubMed Central

    Andes, D.; Marchillo, K.; Stamstad, T.; Conklin, R.

    2003-01-01

    In vivo studies have described the pharmacodynamic (PD) characteristics of several triazoles. These investigations have demonstrated that the 24-h area under the concentration-time curve (AUC)/MIC ratio is the critical pharmacokinetic (PK)-PD parameter associated with treatment efficacy. Further analyses from these in vivo studies have demonstrated that a triazole free drug 24-h AUC/MIC of 20 to 25 is predictive of treatment success. We used a neutropenic murine model of disseminated Candida albicans infection to similarly characterize the PK-PD of the new triazole voriconazole. PK and PD parameters (percentage of time that the concentration remains above the MIC [T > MIC], AUC/MIC ratio, and peak level in serum/MIC ratio) were correlated with in vivo efficacy, as measured by the organism number in kidney cultures after 24 h of therapy. Voriconazole kinetics and protein binding were studied in infected neutropenic mice. Peak level/dose and AUC/dose values ranged from 0.1 to 0.2 and 0.1 to 0.7, respectively. The serum elimination half-life ranged from 0.7 to 2.9 h. The level of protein binding in mouse serum was 78%. Treatment efficacy with the four dosing intervals studied was similar, supporting the AUC/MIC ratio as the PK-PD parameter predictive of efficacy. Nonlinear regression analysis also suggested that the AUC/MIC ratio was strongly predictive of treatment outcomes (R2 for AUC/MIC ratio = 82%, R2 for peak level/MIC ratio = 63%, R2 for T > MIC = 75%). Similar studies were conducted with nine additional C. albicans isolates with various voriconazole susceptibilities (MICs, 0.007 to 0.25 μg/ml) to determine if a similar 24-h AUC/MIC ratio was associated with efficacy. The voriconazole free drug AUC/MIC ratios were similar for all of the organisms studied (range, 11 to 58; mean ± standard deviation, 24 ± 17 [P = 0.45]). These AUC/MIC ratios observed for free drug are similar to those observed for other triazoles in this model. PMID:14506026

  7. Effects of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis.

    PubMed

    Soriano, Francisco Garcia; Lorigados, Clara Batista; Pacher, Pal; Szabó, Csaba

    2011-06-01

    Excessive free-radical production due to various bacterial components released during bacterial infection has been linked to cell death and tissue injury. Peroxynitrite is a highly reactive oxidant produced by the combination of nitric oxide (NO) and superoxide anion, which has been implicated in cell death and tissue injury in various forms of critical illness. Pharmacological decomposition of peroxynitrite may represent a potential therapeutic approach in diseases associated with the overproduction of NO and superoxide. In the present study, we tested the effect of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Mice were injected i.p. with LPS 40 mg/kg with or without FP15 [Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether)pyridyl porphyrin] (0.1, 0.3, 1, 3, or 10 mg/kg per hour). Mice were killed 12 h later, followed by the harvesting of samples from the lung, liver, and gut for malondialdehyde and myeloperoxidase measurements. In other subsets of animals, blood samples were obtained by cardiac puncture at 1.5, 4, and 8 h after LPS administration for cytokine (TNF-α, IL-1β, and IL-10), nitrite/nitrate, alanine aminotransferase, and blood urea nitrogen measurements. Endotoxemic animals showed an increase in survival from 25% to 80% at the FP15 doses of 0.3 and 1 mg/kg per hour. The same dose of FP15 had no effect on plasma levels of nitrite/nitrate. There was a reduction in liver and lung malondialdehyde in the endotoxemic animals pretreated with FP15, as well as in hepatic myeloperoxidase and biochemical markers of liver and kidney damage (alanine aminotransferase and blood urea nitrogen). In a bacterial model of sepsis induced by cecal ligation and puncture, FP15 treatment (0.3 mg/kg per day) significantly protected against mortality. The current data support the view that peroxynitrite is a critical factor mediating liver, gut, and lung injury in endotoxemia and septic shock: its pharmacological

  8. Competency-Based Adult Education: Florida Model.

    ERIC Educational Resources Information Center

    Singer, Elizabeth

    This compilation of program materials serves as an introduction to Florida's Brevard Community College's (BCC's) Competency-Based Adult High School Completion Project, a multi-year project designed to teach adult administrators, counselors, and teachers how to organize and implement a competency-based adult education (CBAE) program; to critique…

  9. Chemical Modification of Recombinant Interleukin 2 by Polyethylene Glycol Increases Its Potency in the Murine Meth A Sarcoma Model

    NASA Astrophysics Data System (ADS)

    Katre, Nandini V.; Knauf, Michael J.; Laird, Walter J.

    1987-03-01

    Recombinant human interleukin 2 purified from Escherichia coli has limited solubility at neutral pH and a short circulatory half-life. This recombinant interleukin 2 was chemically modified by an active ester of polyethylene glycol. The modified interleukin 2 was purified by hydrophobic interaction chromatography and characterized by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and isoelectric focusing. This conjugate was compared to unmodified recombinant interleukin 2 in vitro and in vivo. Covalent attachment of the hydrophilic polymer polyethylene glycol enhanced the solubility of interleukin 2, decreased its plasma clearance, and increased its antitumor potency in the Meth A murine sarcoma model.

  10. Characterizing In Vivo Pharmacodynamics of Carbapenems against Acinetobacter baumannii in a Murine Thigh Infection Model To Support Breakpoint Determinations

    PubMed Central

    MacVane, Shawn H.; Crandon, Jared L.

    2014-01-01

    Pharmacodynamic profiling data of carbapenems for Acinetobacter spp. are sparse. This study aimed to determine the pharmacodynamic targets of carbapenems for Acinetobacter baumannii based on a range of percentages of the dosing interval in which free drug concentrations remained above the MIC (fT>MIC) in the neutropenic murine thigh infection model. fT>MIC values of 23.7%, 32.8%, and 47.5% resulted in stasis, 1-log reductions, and 2-log reductions in bacterial density after 24 h, respectively. The pharmacodynamic targets of carbapenems for A. baumannii demonstrated in vivo are similar to those of other Gram-negative bacteria. PMID:24165174

  11. Aging and serum MCP-1 are associated with gut microbiome composition in a murine model

    PubMed Central

    Conley, Melissa N.; Wong, Carmen P.; Duyck, Kyle M.; Hord, Norman; Ho, Emily

    2016-01-01

    Introduction. Age is the primary risk factor for major human chronic diseases, including cardiovascular disorders, cancer, type 2 diabetes, and neurodegenerative diseases. Chronic, low-grade, systemic inflammation is associated with aging and the progression of immunosenescence. Immunosenescence may play an important role in the development of age-related chronic disease and the widely observed phenomenon of increased production of inflammatory mediators that accompany this process, referred to as “inflammaging.” While it has been demonstrated that the gut microbiome and immune system interact, the relationship between the gut microbiome and age remains to be clearly defined, particularly in the context of inflammation. The aim of our study was to clarify the associations between age, the gut microbiome, and pro-inflammatory marker serum MCP-1 in a C57BL/6 murine model. Results. We used 16S rRNA gene sequencing to profile the composition of fecal microbiota associated with young and aged mice. Our analysis identified an association between microbiome structure and mouse age and revealed specific groups of taxa whose abundances stratify young and aged mice. This includes the Ruminococcaceae, Clostridiaceae, and Enterobacteriaceae. We also profiled pro-inflammatory serum MCP-1 levels of each mouse and found that aged mice exhibited elevated serum MCP-1, a phenotype consistent with inflammaging. Robust correlation tests identified several taxa whose abundance in the microbiome associates with serum MCP-1 status, indicating that they may interact with the mouse immune system. We find that taxonomically similar organisms can exhibit differing, even opposite, patterns of association with the host immune system. We also find that many of the OTUs that associate with serum MCP-1 stratify individuals by age. Discussion. Our results demonstrate that gut microbiome composition is associated with age and the pro-inflammatory marker, serum MCP-1. The correlation between age

  12. Differential regulation of tissue thiol-disulfide redox status in a murine model of peritonitis

    PubMed Central

    2012-01-01

    Background Glutathione (GSH)/glutathione disulfide (GSSG) and cysteine (Cys)/cystine (CySS) are major redox pools with important roles in cytoprotection. We determined the impact of septic peritonitis on thiol-disulfide redox status in mice. Methods FVB/N mice (6–12 week old; 8/group) underwent laparotomy with cecal ligation and puncture (CLP) or laparotomy alone (control). Sections of ileum, colon, lung and liver were obtained and GSH, GSSG, Cys and CySS concentrations determined by HPLC 24 h after laparotomy. Redox potential [Eh in millivolts (mV)] of the GSH/GSSG and Cys/CySS pools was calculated using the Nernst equation. Data were analyzed by ANOVA (mean ± SE). Results GSH/GSSG Eh in ileum, colon, and liver was significantly oxidized in septic mice versus control mice (ileum: septic −202±4 versus control −228±2 mV; colon: -195±8 versus −214±1 mV; and liver: -194±3 vs. -210±1 mV, all P<0.01). Lung GSH/GSSG redox was similar in each group (−191±3 versus −190±2 mV). In contrast, ileal and colonic Cys/CySS Eh was unchanged with CLP, while liver and lung Cys/CySS Eh became significantly more reducing (liver: septic = −103±3 versus control −90±2 mV; lung: -101±5 versus −81±1 mV, each P<0.05). Conclusions Septic peritonitis induced by CLP oxidizes ileal and colonic GSH/GSSG redox but Cys/CySS Eh remains unchanged in these intestinal tissues. In liver, CLP oxidizes the GSH/GSSG redox pool and CyS/CySS Eh becomes more reducing; in lung, CLP does not alter GSH/GSSG Eh, and Cys/CySS Eh is less oxidized. CLP-induced infection/inflammation differentially regulates major thiol-disulfide redox pools in this murine model. PMID:23033955

  13. Efficacy of irreversible electroporation in human pancreatic adenocarcinoma: advanced murine model.

    PubMed

    Philips, Prejesh; Li, Yan; Li, Suping; St Hill, Charles R; Martin, Robert Cg

    2015-01-01

    Irreversible electroporation (IRE) is a promising cell membrane ablative modality for pancreatic cancer. There have been recent concerns regarding local recurrence and the potential use of IRE as a debulking (partial ablation) modality. We hypothesize that incomplete ablation leads to early recurrence and a more aggressive biology. We created the first ever heterotopic murine model by inoculating BALB/c nude mice in the hindlimb with a subcutaneous injection of Panc-1 cells, an immortalized human pancreatic adenocarcinoma cell line. Tumors were allowed to grow from 0.75 to 1.5 cm and then treated with the goal of complete ablation or partial ablation using standard IRE settings. Animals were recovered and survived for 2 days (n = 6), 7 (n = 6), 14 (n = 6), 21 (n = 6), 30 (n = 8), and 60 (n = 8) days. All 40 animals/tumors underwent successful IRE under general anesthesia with muscle paralysis. The mean tumor volume of the animals undergoing ablation was 1,447.6 mm(3) ± 884). Histologically, in the 14-, 21-, 30-, and 60-day survival groups the entire tumor was nonviable, with a persistent tumor nodule completely replaced fibrosis. In the group treated with partial ablation, incomplete electroporation/recurrences (N = 10 animals) were seen, of which 66% had confluent tumors and this was a significant predictor of recurrence (P < 0.001). Recurrent tumors were also significantly larger (mean 4,578 mm(3) ± SD 877 versus completed electroporated tumors 925.8 ± 277, P < 0.001). Recurrent tumors had a steeper growth curve (slope = 0.73) compared with primary tumors (0.60, P = 0.02). Recurrent tumors also had a significantly higher percentage of EpCAM expression, suggestive of stem cell activation. Tumors that recur after incomplete electroporation demonstrate a biologically aggressive tumor that could be more resistant to standard of care chemotherapy. Clinical correlation of this data is limited, but should be considered when IRE of pancreatic cancer is being

  14. Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis

    PubMed Central

    2014-01-01

    Background Persons with cystic fibrosis (CF) are at-risk for health effects from ambient air pollution but little is known about the interaction of nanoparticles (NP) with CF lungs. Here we study the distribution of inhaled NP in a murine CF model and aim to reveal mechanisms contributing to adverse effects of inhaled particles in susceptible populations. Methods Chloride channel defective CftrTgH (neoim) Hgu mice were used to analyze lung function, lung distribution and whole body biokinetics of inhaled NP, and inflammatory responses after intratracheal administration of NP. Distribution of 20-nm titanium dioxide NP in lungs was assessed on ultrathin sections immediately and 24 h after a one-hour NP inhalation. NP biokinetics was deduced from total and regional lung deposition and from whole body translocation of inhaled 30-nm iridium NP within 24 h after aerosol inhalation. Inflammatory responses were assessed within 7 days after carbon NP instillation. Results Cftr mutant females had moderately reduced lung compliance and slightly increased airway resistance compared to wild type mice. We found no genotype dependent differences in total, regional and head deposition or in secondary-organ translocation of inhaled iridium NP. Titanium dioxide inhalation resulted in higher NP uptake by alveolar epithelial cells in Cftr mutants. Instillation of carbon NP induced a comparable acute and transient inflammatory response in both genotypes. The twofold increase of bronchoalveolar lavage (BAL) neutrophils in Cftr mutant compared to wild type mice at day 3 but not at days 1 and 7, indicated an impaired capacity in inflammation resolution in Cftr mutants. Concomitant to the delayed decline of neutrophils, BAL granulocyte-colony stimulating factor was augmented in Cftr mutant mice. Anti-inflammatory 15-hydroxyeicosatetraenoic acid was generally significantly lower in BAL of Cftr mutant than in wild type mice. Conclusions Despite lacking alterations in lung deposition and

  15. Aging and serum MCP-1 are associated with gut microbiome composition in a murine model.

    PubMed

    Conley, Melissa N; Wong, Carmen P; Duyck, Kyle M; Hord, Norman; Ho, Emily; Sharpton, Thomas J

    2016-01-01

    Introduction. Age is the primary risk factor for major human chronic diseases, including cardiovascular disorders, cancer, type 2 diabetes, and neurodegenerative diseases. Chronic, low-grade, systemic inflammation is associated with aging and the progression of immunosenescence. Immunosenescence may play an important role in the development of age-related chronic disease and the widely observed phenomenon of increased production of inflammatory mediators that accompany this process, referred to as "inflammaging." While it has been demonstrated that the gut microbiome and immune system interact, the relationship between the gut microbiome and age remains to be clearly defined, particularly in the context of inflammation. The aim of our study was to clarify the associations between age, the gut microbiome, and pro-inflammatory marker serum MCP-1 in a C57BL/6 murine model. Results. We used 16S rRNA gene sequencing to profile the composition of fecal microbiota associated with young and aged mice. Our analysis identified an association between microbiome structure and mouse age and revealed specific groups of taxa whose abundances stratify young and aged mice. This includes the Ruminococcaceae, Clostridiaceae, and Enterobacteriaceae. We also profiled pro-inflammatory serum MCP-1 levels of each mouse and found that aged mice exhibited elevated serum MCP-1, a phenotype consistent with inflammaging. Robust correlation tests identified several taxa whose abundance in the microbiome associates with serum MCP-1 status, indicating that they may interact with the mouse immune system. We find that taxonomically similar organisms can exhibit differing, even opposite, patterns of association with the host immune system. We also find that many of the OTUs that associate with serum MCP-1 stratify individuals by age. Discussion. Our results demonstrate that gut microbiome composition is associated with age and the pro-inflammatory marker, serum MCP-1. The correlation between age

  16. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection.

    PubMed

    Reeves, Angela E; Theriot, Casey M; Bergin, Ingrid L; Huffnagle, Gary B; Schloss, Patrick D; Young, Vincent B

    2011-01-01

    Clostridium difficile infection (CDI) arises in the setting of antibiotic administration where disruption of the normal indigenous gut microbiota leads to susceptibility to C. difficile colonization and colitis. Using a murine model of CDI, we demonstrate that changes in the community structure of the indigenous gut microbiota are associated with the loss of colonization resistance against C. difficile. Several antibiotic regimens were tested in combination for the ability to overcome colonization resistance, including a five antibiotic cocktail consisting of kanamycin, gentamicin, colistin, metronidazole, and vancomycin administered in drinking water for three days, a single intraperitoneal dose of clindamycin or 10 days of cefoperazone in drinking water. Following antibiotic treatment animals were challenged with 105 colony forming units of C. difficile strain VPI 10463 via oral gavage. Animals that received the antibiotic cocktail and clindamycin prior to C. difficile challenge followed one of two clinical courses, either becoming clinically ill and moribund within 2-4 days post challenge, or remaining clinically well. Animals that became clinically ill developed histologically severe colitis. These histopathologic findings were significantly less severe in animals that remained clinically well. Analysis of 16S rRNA gene sequences retrieved from gut tissue at necropsy demonstrated that Proteobacteria dominated the gut microbiota in clinically ill animals. In contrast, the gut microbial community of clinically well animals more closely resembled untreated animals, which were dominated by members of the Firmicutes. All animals that received cefoperazone treatment prior to C. difficile challenge were clinically ill and moribund by 2-5 days post challenge in a dose dependent manner. The gut communities in these animals were dominated by C.difficile suggesting that cefoperazone treatment resulted in a greater loss in colonization resistance. Thus, the severity of

  17. Chronic Inflammation and Pain in a TNFR (p55/p75-/-) Dual Deficient Murine Model

    PubMed Central

    Westlund, Karin N.; Zhang, Liping; Ma, Fei; Oz, Helieh S.

    2012-01-01

    Many aspects of tissue damage following acute or chronic inflammatory reactions can be directly attributed to the concomitant biosynthesis and release of inducible early pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). Conversely, systemic inflammation is impacted by consequences of tissue damage. Dysregulated TNFα contributes to numerous pathophysiological conditions including inflammatory bowel disease (IBD) and arthritis. Inflammatory stimuli trigger proteolytic cleavage and shedding of extracellular domains of TNFα receptors giving rise to two soluble fragments (p55 sTNFR1 and p75 sTNFR2) that block further binding, activity and synthesis of TNFα. We hypothesized that absence of sTNFR inhibitory feedback control would result in accumulated high levels of TNFα and other inflammatory factors promoting the cardinal signs of chronic inflammation and pain. The present study reports a translational murine model of chronic arthritis precipitated by two consecutive inflammatory insults. The “double hit” procedures provoke a chronic inflammatory response and pain related behaviors in mice that are dually deficient in p55 (TNFR1) and p75 (TNFR2). The inflammation and pain related behaviors are transient in similarly treated wild type (WT) mice. The complete Freund's adjuvant (CFA) method was used initially to induce knee joint inflammation, tactile mechanical and heat hypersensitivity, and gait disturbance. After these transient effects of the insult were resolved, a recrudescence persisting at least through 23 weeks was promoted by gastrointestinal (GI) insult with dilute intra-colonic mustard oil (MO) only in the mutant mice and was reversed by a P2X7 antagonist. Serum Proteome Profiling analysis revealed high levels of serum inflammatory factors TNFα, RANTES, CXCL9 (MIG), CXCL10 (IP-10), and CCL2 (MCP-1). In conclusion, these data suggest that impaired signaling of TNFα due to deficit of the two protective soluble p55 and p75 sTNFR inhibitory

  18. A murine experimental model for the mechanical behaviour of viable right-ventricular myocardium

    PubMed Central

    Valdez-Jasso, Daniela; Simon, Marc A; Champion, Hunter C; Sacks, Michael S

    2012-01-01

    Although right-ventricular function is an important determinant of cardio-pulmonary performance in health and disease, right ventricular myocardium mechanical behaviour has received relatively little attention. We present a novel experimental method for quantifying the mechanical behaviour of transmurally intact, viable right-ventricular myocardium. Seven murine right ventricular free wall (RVFW) specimens were isolated and biaxial mechanical behaviour measured, along with quantification of the local transmural myofibre and collagen fibre architecture. We developed a complementary strain energy function based method to capture the average biomechanical response. Overall, murine RVFW revealed distinct mechanical anisotropy. The preferential alignment of the myofibres and collagen fibres to the apex-to-outflow-tract direction was consistent with this also being the mechanically stiffer axis. We also observed that the myofibre and collagen fibre orientations were remarkably uniform throughout the entire RVFW thickness. Thus, our findings indicate a close correspondence between the tissue microstructure and biomechanical behaviour of the RVFW myocardium, and are a first step towards elucidating the structure–function of non-contracted murine RVFW myocardium in health and disease. PMID:22848044

  19. A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model

    PubMed Central

    Maeda, Azusa; Conroy, Leigh; McMullen, Jesse D.; Silver, Jason I.; Stapleton, Shawn; Vitkin, Alex; Lindsay, Patricia; Burrell, Kelly; Zadeh, Gelareh; Fehlings, Michael G.; DaCosta, Ralph S.

    2013-01-01

    In vivo and direct imaging of the murine spinal cord and its vasculature using multimodal (optical and acoustic) imaging techniques could significantly advance preclinical studies of the spinal cord. Such intrinsically high resolution and complementary imaging technologies could provide a powerful means of quantitatively monitoring changes in anatomy, structure, physiology and function of the living cord over time after traumatic injury, onset of disease, or therapeutic intervention. However, longitudinal in vivo imaging of the intact spinal cord in rodent models has been challenging, requiring repeated surgeries to expose the cord for imaging or sacrifice of animals at various time points for ex vivo tissue analysis. To address these limitations, we have developed an implantable spinal cord window chamber (SCWC) device and procedures in mice for repeated multimodal intravital microscopic imaging of the cord and its vasculature in situ. We present methodology for using our SCWC to achieve spatially co-registered optical-acoustic imaging performed serially for up to four weeks, without damaging the cord or induction of locomotor deficits in implanted animals. To demonstrate the feasibility, we used the SCWC model to study the response of the normal spinal cord vasculature to ionizing radiation over time using white light and fluorescence microscopy combined with optical coherence tomography (OCT) in vivo. In vivo power Doppler ultrasound and photoacoustics were used to directly visualize the cord and vascular structures and to measure hemoglobin oxygen saturation through the complete spinal cord, respectively. The model was also used for intravital imaging of spinal micrometastases resulting from primary brain tumor using fluorescence and bioluminescence imaging. Our SCWC model overcomes previous in vivo imaging challenges, and our data provide evidence of the broader utility of hybridized optical-acoustic imaging methods for obtaining multiparametric and rich

  20. Acthar gel treatment suppresses acute exacerbations in a murine model of relapsing-remitting multiple sclerosis.

    PubMed

    Cusick, Matthew F; Libbey, Jane E; Oh, Luke; Jordan, Shaun; Fujinami, Robert S

    2015-06-01

    Acthar gel is indicated for the treatment of acute exacerbations of multiple sclerosis (MS) in adults. Its effects on immune cells during a relapse are unknown. This study investigated the effects of Acthar in an animal model of relapsing-remitting MS, using SJL/J mice sensitized with myelin peptide. All animal studies were reviewed and approved by the University of Utah Institutional Animal Care and Use Committee and conducted in accordance with the guidelines prepared by the Committee on Care and Use of Laboratory Animals, Institute of Laboratory Animals Resources, National Research Council. Mice injected with Acthar to treat the second attack had a significantly lower mean clinical score during relapse and a significantly reduced cumulative disease burden compared to Placebo gel-treated mice. Furthermore, Acthar treatment ameliorated inflammation/demyelination in the spinal cord and markedly suppressed ex vivo myelin peptide-induced CD4(+) T cell proliferation. PMID:25410153

  1. In vivo suppressor mutations correct a murine model of hereditary tyrosinemia type I

    PubMed Central

    Manning, Kara; Al-Dhalimy, Muhsen; Finegold, Milton; Grompe, Markus

    1999-01-01

    Hereditary tyrosinemia type I and alkaptonuria are disorders of tyrosine catabolism caused by deficiency of fumarylacetoacetate hydrolase (FAH) and homogentisic acid dioxygenase (HGD), respectively. Tyrosinemia is a severe childhood disease that affects the liver and kidneys, but alkaptonuria is a more benign adult disorder in comparison. Because HGD is upstream of FAH in the tyrosine pathway, mice doubly mutant in both enzymes were found to be protected from the liver and renal damage of tyrosinemia as hypothesized. Mice mutant at the tyrosinemic locus but heterozygous for alkaptonuria spontaneously developed clonal nodules of functionally normal hepatocytes that were able to rescue the livers of some mice with this genotype. This phenotypic rescue was a result of an inactivating mutation of the wild-type homogentisic acid dioxygenase gene, thus presenting an example of an in vivo suppressor mutation in a mammalian model. PMID:10518553

  2. Murine Models of CLL: Role of microRNA-16 in the NZB mouse model

    PubMed Central

    Scaglione, Brian J.; Salerno, Erica; Balan, Murugabaskar; Coffman, Frederick; Landgraf, Pablo; Abbasi, Fatima; Kotenko, Sergei; Marti, Gerald E.; Raveche, Elizabeth S.

    2009-01-01

    Summary Mouse models are valuable tools in the study of human chronic lymphocytic leukemia (CLL). The New Zealand Black (NZB) strain is a naturally occurring model of late-onset CLL characterized by B cell hyperproliferation and autoimmunity early in life, followed by progression to CLL. Other genetically engineered models of CLL that have been developed include (NZB × NZW) F1 mice engineered to express IL5, mice expressing human TCL1A, and mice overexpressing both BCL2 and a tumour necrosis factor receptor associated factor. The applicability to human CLL varies with each model, suggesting that CLL is a multifactorial disease. Our work with the de novo NZB model has revealed many similarities to the human situation, particularly familial CLL. In NZB, the malignant clones express CD5, zap-70, and have chromosomal instability and germline Ig sequence. We also identified a point mutation in the 3’ flanking sequence of Mirn16-1, which resulted in decreased levels of the microRNA, miR-16 in lymphoid tissue. Exogenous restoration of miR-16 to an NZB malignant B-1 cell line resulted in cell cycle alterations, suggesting that the altered expression of Mirn15a/16-1 is an important molecular lesion in CLL. Future studies utilizing the NZB mouse could ascertain the role of environmental triggers, such as low dose radiation and organic chemicals in the augmentation of a pre-existing propensity to develop CLL. PMID:17941951

  3. Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model.

    PubMed

    Hanihara, Mitsuto; Kawataki, Tomoyuki; Oh-Oka, Kyoko; Mitsuka, Kentaro; Nakao, Atsuhito; Kinouchi, Hiroyuki

    2016-06-01

    OBJECT Indoleamine 2,3-dioxygenase (IDO), a key enzyme of tryptophan (Trp) metabolism, is involved in tumor-derived immune suppression through depletion of Trp and accumulation of the metabolite kynurenine, resulting in inactivation of natural killer cells and generation of regulatory T cells (Tregs). It has been reported that high expression of IDO in cancer cells is associated with suppression of the antitumor immune response and is consistent with a poor prognosis. Thus, IDO may be a therapeutic target for malignant cancer. The authors have recently shown that IDO expression is markedly increased in human glioblastoma and secondary glioblastoma with malignant change, suggesting that IDO targeting may also have therapeutic potential for patients with glioma. The aim of this study was to investigate the antitumor effect of IDO inhibition and to examine the synergistic function of IDO inhibitor and temozolomide (TMZ) in a murine glioma model. METHODS Murine glioma GL261 cells and human glioma U87 cells were included in this study. The authors used 3 mouse models to study glioma cell growth: 1) a subcutaneous ectopic model, 2) a syngeneic intracranial orthotopic model, and 3) an allogenic intracranial orthotopic model. IDO inhibition was achieved via knockdown of IDO in GL261 cells using short hairpin RNA (shRNA) and through oral administration of the IDO inhibitor, 1-methyl-l-tryptophan (1-MT). Tumor volume in the subcutaneous model and survival time in the intracranial model were evaluated. RESULTS In the subcutaneous model, oral administration of 1-MT significantly suppressed tumor growth, and synergistic antitumor effects of 1-MT and TMZ were observed (p < 0.01). Mice containing intracranially inoculated IDO knockdown cells had a significantly longer survival period as compared with control mice (p < 0.01). CONCLUSIONS These results suggest that IDO expression is implicated in immunosuppression and tumor progression in glioma cells. Therefore, combining IDO

  4. Effects of granulosa coculture on in-vitro oocyte meiotic maturation within a putatively less competent murine model.

    PubMed

    Heng, Boon Chin; Tong, Guo Qing; Ng, Soon Chye

    2004-09-15

    A less competent murine in vitro maturation (IVM) model was achieved by shortening the standard duration of in vivo PMSG stimulation from 48 to 24 h and selecting only naked/partially naked GV oocytes from a mixture of large and small follicles. Porcine granulosa coculture enhanced meiotic maturation within such a less competent model (37.3% versus 23.1%, P<0.05), while no significant enhancement was observed with macaque and murine granulosa coculture. Culture of porcine granulosa on extracellular matrix (ECM) gel resulted in a more differentiated morphology, but did not significantly further enhance the beneficial effects it already had on meiotic maturation. Increased concentrations of serum as well as the supplementation of gonadotrophins and follicular fluid within the culture milieu did not enhance IVM under both cell-free and coculture conditions. Porcine granulosa-conditioned medium also enhanced meiotic maturation (36.5% versus 26.7%, P<0.05), which was not diminished upon freeze-thawing (35.8% versus 22.6%, P<0.05). Enhancement of meiotic maturation by porcine granulosa coculture did not however translate to significant improvements in developmental competence, as assessed by in vitro fertilization (IVF) and embryo culture to the blastocyst stage, followed by total cell counts. ECM gel had a detrimental effect on fertilization and developmental competence, even though it had no detrimental effect on meiotic maturation itself. PMID:15289048

  5. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model

    PubMed Central

    Basel, Matthew T; Balivada, Sivasai; Wang, Hongwang; Shrestha, Tej B; Seo, Gwi Moon; Pyle, Marla; Abayaweera, Gayani; Dani, Raj; Koper, Olga B; Tamura, Masaaki; Chikan, Viktor; Bossmann, Stefan H; Troyer, Deryl L

    2012-01-01

    Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer. PMID:22287840

  6. Investigations into the Immunotoxicity and Allergic Potential Induced by Topical Application of N-Butylbenzenesulfonamide (NBBS) in a Murine Model

    PubMed Central

    Marrocco, Antonella; Meade, B. Jean; Long, Carrie M.; Lukomska, Ewa; Marshall, Nikki B.; Anderson, Stacey E.

    2015-01-01

    N-Butylbenzene sulfonamide (NBBS) is a commonly used plasticizer found in numerous products. Due to its extensive use, lack of adequate toxicological data, and suspicion of toxicity based on the presence of structural alerts, it was nominated to the National Toxicology Program for comprehensive toxicological testing. The purpose of this study was to evaluate the potential for hypersensitivity and immune suppression following dermal exposure to NBBS using a murine model. NBBS tested negative in a combined irritancy/local lymph node assay (LLNA), classifying it as nonirritating and nonsensitizing. To estimate the immunosuppressive potential of NBBS, assays that assessed immunotoxicity were performed, including the immumnoglobulin (Ig) M response to T-cell-dependent antigen sheep red blood cells (SRBC), using the plaque-forming cell (PFC) assay and immune cell phenotyping. After a 28-d treatment with NBBS, mice exposed to the lowest concentration (25% NBBS) showed a significant increase in IgM-producing B cells in the spleen. No marked changes were identified in immune cell markers in the lymph node. In contrast to body weight, a significant elevation in kidney and liver weight was observed following dermal exposure to all concentrations of NBBS. These results demonstrate that dermal exposure to NBBS, other than liver and kidney toxicity, did not apparently induce immunotoxicity in a murine model. PMID:26291892

  7. Brain Derived Neurotrophic Factor Contributes to the Cardiogenic Potential of Adult Resident Progenitor Cells in Failing Murine Heart

    PubMed Central

    Samal, Rasmita; Ameling, Sabine; Dhople, Vishnu; Sappa, Praveen Kumar; Wenzel, Kristin; Völker, Uwe; Felix, Stephan B.; Hammer, Elke; Könemann, Stephanie

    2015-01-01

    Aims Resident cardiac progenitor cells show homing properties when injected into the injured but not to the healthy myocardium. The molecular background behind this difference in behavior needs to be studied to elucidate how adult progenitor cells can restore cardiac function of the damaged myocardium. Since the brain derived neurotrophic factor (BDNF) moderates cardioprotection in injured hearts, we focused on delineating its regulatory role in the damaged myocardium. Methods and Results Comparative gene expression profiling of freshly isolated undifferentiated Sca-1 progenitor cells derived either from heart failure transgenic αMHC-CyclinT1/Gαq overexpressing mice or wildtype littermates revealed transcriptional variations. Bdnf expression was up regulated 5-fold during heart failure which was verified by qRT-PCR and confirmed at protein level. The migratory capacity of Sca-1 cells from transgenic hearts was improved by 15% in the presence of 25ng/ml BDNF. Furthermore, BDNF-mediated effects on Sca-1 cells were studied via pulsed Stable Isotope Labeling of Amino acids in Cell Culture (pSILAC) proteomics approach. After BDNF treatment significant differences between newly synthesized proteins in Sca-1 cells from control and transgenic hearts were observed for CDK1, SRRT, HDGF, and MAP2K3 which are known to regulate cell cycle, survival and differentiation. Moreover BDNF repressed the proliferation of Sca-1 cells from transgenic hearts. Conclusion Comparative profiling of resident Sca-1 cells revealed elevated BDNF levels in the failing heart. Exogenous BDNF (i) stimulated migration, which might improve the homing ability of Sca-1 cells derived from the failing heart and (ii) repressed the cell cycle progression suggesting its potency to ameliorate heart failure. PMID:25799225

  8. Layer 5 Pyramidal Neurons' Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    PubMed Central

    Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro

    2015-01-01

    This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans. PMID:26064916

  9. Combined PI3K/mTOR and MEK Inhibition Provides Broad Antitumor Activity in Faithful Murine Cancer Models

    PubMed Central

    Roberts, Patrick J.; Usary, Jerry E.; Darr, David B.; Dillon, Patrick M.; Pfefferle, Adam D.; Whittle, Martin C.; Duncan, James S.; Johnson, Soren M.; Combest, Austin J.; Jin, Jian; Zamboni, William C.; Johnson, Gary L.; Perou, Charles M.; Sharpless, Norman E.

    2013-01-01

    Purpose Anticancer drug development is inefficient, but genetically engineered murine models (GEMM) and orthotopic, syngeneic transplants (OST) of cancer may offer advantages to in vitro and xenograft systems. Experimental Design We assessed the activity of 16 treatment regimens in a RAS-driven, Ink4a/Arf-deficient melanoma GEMM. In addition, we tested a subset of treatment regimens in three breast cancer models representing distinct breast cancer subtypes: claudin-low (T11 OST), basal-like (C3-TAg GEMM), and luminal B (MMTV-Neu GEMM). Results Like human RAS-mutant melanoma, the melanoma GEMM was refractory to chemotherapy and single-agent small molecule therapies. Combined treatment with AZD6244 [mitogen-activated protein–extracellular signal-regulated kinase kinase (MEK) inhibitor] and BEZ235 [dual phosphoinositide-3 kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor] was the only treatment regimen to exhibit significant antitumor activity, showed by marked tumor regression and improved survival. Given the surprising activity of the "AZD/BEZ" combination in the melanoma GEMM, we next tested this regimen in the "claudin-low" breast cancer model that shares gene expression features with melanoma. The AZD/BEZ regimen also exhibited significant activity in this model, leading us to testing in even more diverse GEMMs of basal-like and luminal breast cancer. The AZD/BEZ combination was highly active in these distinct breast cancer models, showing equal or greater efficacy compared with any other regimen tested in studies of over 700 tumor-bearing mice. This regimen even exhibited activity in lapatinib-resistant HER2+ tumors. Conclusion These results show the use of credentialed murine models for large-scale efficacy testing of diverse anticancer regimens and predict that combinations of PI3K/mTOR and MEK inhibitors will show antitumor activity in a wide range of human malignancies. PMID:22872574

  10. Human and murine erythropoiesis

    PubMed Central

    An, Xiuli; Schulz, Vincent P.; Mohandas, Narla; Gallagher, Patrick G.

    2015-01-01

    Purpose of review Research into the fundamental mechanisms of erythropoiesis has provided critical insights into inherited and acquired disorders of the erythrocyte. Studies of human erythropoiesis have primarily utilized in-vitro systems, whereas murine models have provided insights from in-vivo studies. This report reviews recent insights into human and murine erythropoiesis gained from transcriptome-based analyses. Recent findings The availability of high-throughput genomic methodologies has allowed attainment of detailed gene expression data from cells at varying developmental and differentiation stages of erythropoiesis. Transcriptome analyses of human and murine reveal both stage and species-specific similarities and differences across terminal erythroid differentiation. Erythroid-specific long noncoding RNAs exhibit poor sequence conservation between human and mouse. Genome-wide analyses of alternative splicing reveal that complex, dynamic, stage-specific programs of alternative splicing program are utilized during terminal erythroid differentiation. Transcriptome data provide a significant resource for understanding mechanisms of normal and perturbed erythropoiesis. Understanding these processes will provide innovative strategies to detect, diagnose, prevent, and treat hematologic disease. Summary Understanding the shared and different mechanisms controlling human and murine erythropoiesis will allow investigators to leverage the best model system to provide insights in normal and perturbed erythropoiesis. PMID:25719574

  11. A Proteomic Investigation of Hepatic Resistance to Ascaris in a Murine Model

    PubMed Central

    Deslyper, Gwendoline; Colgan, Thomas J.; Cooper, Andrew J. R.; Holland, Celia V.; Carolan, James C.

    2016-01-01

    The helminth Ascaris causes ascariasis in both humans and pigs. Humans, especially children, experience significant morbidity including respiratory complications, growth deficits and intestinal obstruction. Given that 800 million people worldwide are infected by Ascaris, this represents a significant global public health concern. The severity of the symptoms and associated morbidity are related to the parasite burden and not all hosts are infected equally. While the pathology of the disease has been extensively examined, our understanding of the molecular mechanisms underlying resistance and susceptibility to this nematode infection is poor. In order to investigate host differences associated with heavy and light parasite burden, an experimental murine model was developed utilising Ascaris-susceptible and -resistant mice strains, C57BL/6J and CBA/Ca, respectively, which experience differential burdens of migratory Ascaris larvae in the host lungs. Previous studies identified the liver as the site where this difference in susceptibility occurs. Using a label free quantitative proteomic approach, we analysed the hepatic proteomes of day four post infection C57BL/6J and CBA/Ca mice with and without Ascaris infection to identify proteins changes potentially linked to both resistance and susceptibility amongst the two strains, respectively. Over 3000 proteins were identified in total and clear intrinsic differences were elucidated between the two strains. These included a higher abundance of mitochondrial proteins, particularly those associated with the oxidative phosphorylation pathway and reactive oxygen species (ROS) production in the relatively resistant CBA/Ca mice. We hypothesise that the increased ROS levels associated with higher levels of mitochondrial activity results in a highly oxidative cellular environment that has a dramatic effect on the nematode’s ability to successfully sustain a parasitic association with its resistant host. Under infection, both

  12. A Proteomic Investigation of Hepatic Resistance to Ascaris in a Murine Model.

    PubMed

    Deslyper, Gwendoline; Colgan, Thomas J; Cooper, Andrew J R; Holland, Celia V; Carolan, James C

    2016-08-01

    The helminth Ascaris causes ascariasis in both humans and pigs. Humans, especially children, experience significant morbidity including respiratory complications, growth deficits and intestinal obstruction. Given that 800 million people worldwide are infected by Ascaris, this represents a significant global public health concern. The severity of the symptoms and associated morbidity are related to the parasite burden and not all hosts are infected equally. While the pathology of the disease has been extensively examined, our understanding of the molecular mechanisms underlying resistance and susceptibility to this nematode infection is poor. In order to investigate host differences associated with heavy and light parasite burden, an experimental murine model was developed utilising Ascaris-susceptible and -resistant mice strains, C57BL/6J and CBA/Ca, respectively, which experience differential burdens of migratory Ascaris larvae in the host lungs. Previous studies identified the liver as the site where this difference in susceptibility occurs. Using a label free quantitative proteomic approach, we analysed the hepatic proteomes of day four post infection C57BL/6J and CBA/Ca mice with and without Ascaris infection to identify proteins changes potentially linked to both resistance and susceptibility amongst the two strains, respectively. Over 3000 proteins were identified in total and clear intrinsic differences were elucidated between the two strains. These included a higher abundance of mitochondrial proteins, particularly those associated with the oxidative phosphorylation pathway and reactive oxygen species (ROS) production in the relatively resistant CBA/Ca mice. We hypothesise that the increased ROS levels associated with higher levels of mitochondrial activity results in a highly oxidative cellular environment that has a dramatic effect on the nematode's ability to successfully sustain a parasitic association with its resistant host. Under infection, both

  13. Treatment of murine tumors using dual-frequency ultrasound in an experimental in vivo model.

    PubMed

    Barati, Amir H; Mokhtari-Dizaji, Manijhe; Mozdarani, Hossein; Bathaie, S Zahra; Hassan, Zuhair M

    2009-05-01

    Acoustic inertia cavitation is the primary mechanism underlying sonochemical reactions and has potential for use in tumor treatment. In in vitro experiments that were performed previously and are thus not included in this paper, we found that the ultrasonically-induced chemical reactions are greatly accelerated when ultrasound is simultaneously applied at frequencies of 1 MHz and 150 kHz.. In this study, the in vivo anti-tumor effect of the simultaneous dual-frequency ultrasound at low level intensity (I(SPTA) <6 W/cm(2)) was investigated in a murine model of breast adenocarcinoma in Balb/c mice. The tumor-bearing mice were divided into five groups: those treated with combined dual-frequency ultrasound in continuous mode (1 MHz(con)+150 kH(zcon)) for 30 and 15 min (C and D), those treated with dual-frequency ultrasound in which the source of 1 MHz was in pulse mode (duty cycle of 80%) and that of 150 kHz was in continuous mode for 30 min (E), and untreated control and sham groups (A and B). The tumor growth parameters evaluated to assess delay include tumor volume, relative tumor volume, and T(5) and T(2), which are the time needed for each tumor to reach 5 and 2 times its initial volume, respectively. The survival period and percent of tumor growth inhibition ratio and were measured at various times after treatment. The results show that treatment with a combined continuous mode of 1 MHz(con)+150 kHz(con) and a pulse mode of 1 MHz(pl,80%)+150 kHz(con) effectively delayed tumor growth and increased the tumor growth inhibitory ratio compared to the sham group. When the tumor volume growth and relative volume of tumors in treated groups C, D and E were examined, an anti-tumor effect was observed in groups E and C. There is a significant difference between groups E and C and the sham group 12 d after treatment for tumor volume growth and 18 d after treatment for relative tumor volume (p < 0.05). The mean survival periods for animals in groups C and E were 16% and 17

  14. Multistage histopathological image segmentation of Iba1-stained murine microglias in a focal ischemia model: methodological workflow and expert validation.

    PubMed

    Valous, Nektarios A; Lahrmann, Bernd; Zhou, Wei; Veltkamp, Roland; Grabe, Niels

    2013-03-15

    A multistage workflow was developed for segmenting and counting murine microglias from histopathological brightfield images, in a permanent focal cerebral ischemia model. Automated counts are useful, since for the assessment of inflammatory mechanisms in ischemic stroke there is a need to quantify the brain's responses to post-ischemia, which primarily is the rapid activation of microglial cells. Permanent middle cerebral artery occlusion was induced in murine brain tissue samples. Positive cells were quantified by immunohistochemistry for the ionized calcium-binding adaptor molecule-1 (Iba1) as the microglia marker. Microglia cells were segmented in seven sequential steps: (i) contrast boosting using quaternion operations, (ii) intensity outlier normalization, (iii) nonlocal total variation denoising, (iv) histogram specification and contrast stretching, (v) homomorphic filtering, (vi) global thresholding, and (vii) morphological filtering. Workflow counts were validated on an image subset, with ground-truth data acquired from manual counts conducted by a neuropathologist. Automated workflow matched ground-truth counts pretty well; 80-90% accuracy was achieved, as regards to time after pMCAO and correspondence to ischemic/non-ischemic tissue. PMID:23274945

  15. Anti-CD45 radioimmunotherapy using 211At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model

    PubMed Central

    Orozco, Johnnie J.; Bäck, Tom; Kenoyer, Aimee; Balkin, Ethan R.; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Frayo, Shani L.; Hylarides, Mark D.; Green, Damian J.; Gopal, Ajay K.; Press, Oliver W.

    2013-01-01

    Despite aggressive chemotherapy combined with hematopoietic stem cell transplantation (HSCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using monoclonal antibodies labeled with β-emitting radionuclides has been explored to reduce relapse. β emitters are limited by lower energies and nonspecific cytotoxicity from longer path lengths compared with α emitters such as 211At, which has a higher energy profile and shorter path length. We evaluated the efficacy and toxicity of anti-CD45 RIT using 211At in a disseminated murine AML model. Biodistribution studies in leukemic SJL/J mice showed excellent localization of 211At-anti-murine CD45 mAb (30F11) to marrow and spleen within 24 hours (18% and 79% injected dose per gram of tissue [ID/g], respectively), with lower kidney and lung uptake (8.4% and 14% ID/g, respectively). In syngeneic HSCT studies, 211At-B10-30F11 RIT improved the median survival of leukemic mice in a dose-dependent fashion (123, 101, 61, and 37 days given 24, 20, 12, and 0 µCi, respectively). This approach had minimal toxicity with nadir white blood cell counts >2.7 K/µL 2 weeks after HSCT and recovery by 4 weeks. These data suggest that 211At-anti-CD45 RIT in conjunction with HSCT may be a promising therapeutic option for AML. PMID:23471305

  16. Anti-CD45 radioimmunotherapy using (211)At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model.

    PubMed

    Orozco, Johnnie J; Bäck, Tom; Kenoyer, Aimee; Balkin, Ethan R; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Frayo, Shani L; Hylarides, Mark D; Green, Damian J; Gopal, Ajay K; Press, Oliver W; Pagel, John M

    2013-05-01

    Despite aggressive chemotherapy combined with hematopoietic stem cell transplantation (HSCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using monoclonal antibodies labeled with β-emitting radionuclides has been explored to reduce relapse. β emitters are limited by lower energies and nonspecific cytotoxicity from longer path lengths compared with α emitters such as (211)At, which has a higher energy profile and shorter path length. We evaluated the efficacy and toxicity of anti-CD45 RIT using (211)At in a disseminated murine AML model. Biodistribution studies in leukemic SJL/J mice showed excellent localization of (211)At-anti-murine CD45 mAb (30F11) to marrow and spleen within 24 hours (18% and 79% injected dose per gram of tissue [ID/g], respectively), with lower kidney and lung uptake (8.4% and 14% ID/g, respectively). In syngeneic HSCT studies, (211)At-B10-30F11 RIT improved the median survival of leukemic mice in a dose-dependent fashion (123, 101, 61, and 37 days given 24, 20, 12, and 0 µCi, respectively). This approach had minimal toxicity with nadir white blood cell counts >2.7 K/µL 2 weeks after HSCT and recovery by 4 weeks. These data suggest that (211)At-anti-CD45 RIT in conjunction with HSCT may be a promising therapeutic option for AML. PMID:23471305

  17. Improving oral implant osseointegration in a murine model via Wnt signal amplification

    PubMed Central

    Mouraret, Sylvain; Hunter, Daniel J.; Bardet, Claire; Popelut, Antoine; Brunski, John B.; Chaussain, Catherine; Bouchard, Philippe; Helms, Jill A.

    2016-01-01

    Aim To determine the key biological events occurring during implant failure and then we use this knowledge to develop new biology-based strategies that improve osseointegration. Materials and Methods Wild-type and Axin2LacZ/LacZ adult male mice underwent oral implant placement, with and without primary stability. Peri-implant tissues were evaluated using histology, alkaline phosphatase (ALP) activity, tartrate resistant acid phosphatase (TRAP) activity and TUNEL staining. In addition, mineralization sites, collagenous matrix organization and the expression of bone markers in the peri-implant tissues were assessed. Results Maxillary implants lacking primary stability show histological evidence of persistent fibrous encapsulation and mobility, which recapitulates the clinical problems of implant failure. Despite histological and molecular evidence of fibrous encapsulation, osteoblasts in the gap interface exhibit robust ALP activity. This mineralization activity is counteracted by osteoclast activity that resorbs any new bony matrix and consequently, the fibrous encapsulation remains. Using a genetic mouse model, we show that implants lacking primary stability undergo osseointegration, provided that Wnt signalling is amplified. Conclusions In a mouse model of oral implant failure caused by a lack of primary stability, we find evidence of active mineralization. This mineralization, however, is outpaced by robust bone resorption, which culminates in persistent fibrous encapsulation of the implant. Fibrous encapsulation can be prevented and osseointegration assured if Wnt signalling is elevated at the time of implant placement. PMID:24164629

  18. Murine Typhus

    PubMed Central

    Dzul-Rosado, Karla R; Zavala Velázquez, Jorge Ernesto; Zavala-Castro, Jorge

    2012-01-01

    Rickettsia typhi: is an intracellular bacteria who causes murine typhus. His importance is reflected in the high frequency founding specific antibodies against Rickettsia typhi in several worldwide seroepidemiological studies, the seroprevalence ranging between 3-36%. Natural reservoirs of R. typhi are rats (some species belonging the Rattus Genus) and fleas (Xenopsylla cheopis) are his vector. This infection is associated with overcrowding, pollution and poor hygiene. Typically presents fever, headache, rash on trunk and extremities, in some cases may occur organ-specific complications, affecting liver, kidney, lung or brain. Initially the disease is very similar to other diseases, is very common to confuse the murine typhus with Dengue fever, therefore, ignorance of the disease is a factor related to complications or non-specific treatments for the resolution of this infection. This paper presents the most relevant information to consider about the rickettsiosis caused by Rickettsia typhi. PMID:24893060

  19. Phenotypic non-equivalence of murine (monocyte-) macrophage cells in biomaterial and inflammatory models.

    PubMed

    Chamberlain, Lisa M; Godek, Marisha L; Gonzalez-Juarrero, Mercedes; Grainger, David W

    2009-03-15

    Cells of the mononuclear phagocytic system including monocytes and macrophages (e.g., pooled human monocytes, bone marrow-derived macrophages, etc.) are often employed for in vitro assessment of novel biomaterials and to assay anti-inflammatory drug activity. In this context, numerous macrophage cells are treated interchangeably in the literature despite a lack of demonstrated equivalence among immortalized cell lines and further, between cell lines and primary-derived macrophages of different species. Three murine (monocyte-) macrophage cell lines (IC-21, J774A.1, and RAW 264.7), commonly utilizedin biomaterial and pharmaceutical screening research, have been compared with primary-derived murine bone marrow macrophages. Significant differences were discovered in the expression of cell surface proteins requisite for cell adhesion and activation among cell lines and primary-derived cells as well as between the different cell lines. Results demonstrate activation but with reduced cytokine expression to chemical stimulus (lipopolysaccharide) by cell lines compared with that of primary-derived macrophages. Limited correlation between cultured primary and immortalized cells in cytokine production, phenotype and intrinsic activation states has relevance to fidelity for in vitro testing. These differences warrant justification for selection of various cell lines for specific assay purposes, and merit caution if comparisons to primary cell types (i.e., for biocompatibility) are required. PMID:18357567

  20. Distribution of radiolabeled human and mouse monoclonal IgM antibodies in murine models

    SciTech Connect

    Halpern, S.E.; Hagan, P.L.; Chen, A.; Birdwell, C.R.; Bartholomew, R.M.; Burnett, K.G.; David, G.S.; Poggenburg, K.; Merchant, B.; Carlo, D.J.

    1988-10-01

    The distribution and kinetics of six human and one murine monoclonal IgM antibodies (MoAb) were studied in BALB/c mice. Labeling was with /sup 111/In, /sup 75/Se, and /sup 125/I. The monomers and pentamers of certain MoAbs were studied. Human distribution studies were also performed. The serum containing (/sup 111/In)MoAb was obtained from one of the patients 24 hr after administration and injected into mice which were then killed and assayed for /sup 111/In distribution. In general, the (/sup 75/Se) and (/sup 111/In)MoAbs had distribution and kinetic patterns that were similar while the /sup 125/I-labeled MoAbs dehalogenated after 4 hr. Monomers and pentamers had highly similar distributions suggesting that the distribution of IgMs may be based on factors other than molecular size. The murine IgM showed a somewhat different distribution in mice than did human IgMs. Serum from the patient containing (/sup 111/In)MoAb had a distribution in mice similar to that of the patient with high liver and gastrointestinal uptake. The human imaging indicates that it is possible to target tumor with human IgM MoAbs, but significant problems remain in regard to their clinical use.

  1. Type III Collagen Directs Stromal Organization and Limits Metastasis in a Murine Model of Breast Cancer

    PubMed Central

    Brisson, Becky K.; Mauldin, Elizabeth A.; Lei, Weiwei; Vogel, Laurie K.; Power, Ashley M.; Lo, Albert; Dopkin, Derek; Khanna, Chand; Wells, Rebecca G.; Puré, Ellen; Volk, Susan W.

    2016-01-01

    Breast cancer metastasis is the leading cause of cancer-related deaths in women worldwide. Collagen in the tumor microenvironment plays a crucial role in regulating tumor progression. We have shown that type III collagen (Col3), a component of tumor stroma, regulates myofibroblast differentiation and scar formation after cutaneous injury. During the course of these wound-healing studies, we noted that tumors developed at a higher frequency in Col3+/− mice compared to wild-type littermate controls. We, therefore, examined the effect of Col3 deficiency on tumor behavior, using the murine mammary carcinoma cell line 4T1. Notably, tumor volume and pulmonary metastatic burden after orthotopic injection of 4T1 cells were increased in Col3+/− mice compared to Col3+/+ littermates. By using murine (4T1) and human (MDA-MB-231) breast cancer cells grown in Col3-poor and Col3-enriched microenvironments in vitro, we found that several major events of the metastatic process were suppressed by Col3, including adhesion, invasion, and migration. In addition, Col3 deficiency increased proliferation and decreased apoptosis of 4T1 cells both in vitro and in primary tumors in vivo. Mechanistically, Col3 suppresses the procarcinogenic microenvironment by regulating stromal organization, including density and alignment of fibrillar collagen and myofibroblasts. We propose that Col3 plays an important role in the tumor microenvironment by suppressing metastasis-promoting characteristics of the tumor-associated stroma. PMID:25795282

  2. Targeting the inhibitory receptor CTLA-4 on T cells increased abscopal effects in murine mesothelioma model

    PubMed Central

    Wu, Licun; Wu, Matthew Onn; De la Maza, Luis; Yun, Zhihong; Yu, Julie; Zhao, Yidan; Cho, John; de Perrot, Marc

    2015-01-01

    We previously demonstrated that blockade of immune suppressive CTLA-4 resulted in tumor growth delay when combined with chemotherapy in murine mesothelioma. Tumor-infiltrating T cells (TIT) after local radiotherapy (LRT) play critical roles in abscopal effect against cancer. We attempt to improve the local and abscopal effect by modulating T cell immunity with systemic blockade of CTLA-4 signal. The growth of primary tumors was significantly inhibited by LRT while CTLA-4 antibody enhanced the antitumor effect. Growth delay of the second tumors was achieved when the primary tumor was radiated. LRT resulted in more T cell infiltration into both tumors, including Treg and cytotoxic T cells. Interestingly, the proportion of Treg over effector T cells in both tumors was reversed after CTLA-4 blockade, while CD8 T cells were further activated. The expression of the immune-related genes was upregulated and cytokine production was significantly increased. LRT resulted in an increase of TIT, while CTLA-4 blockade led to significant reduction of Tregs and increase of cytotoxic T cells in both tumors. The abscopal effect is enhanced by targeting the immune checkpoints through modulation of T cell immune response in murine mesothelioma. PMID:25980578

  3. Comparison of 3 Real-Time, Quantitative Murine Models of Staphylococcal Biofilm Infection by Using In Vivo Bioluminescent Imaging

    PubMed Central

    Walton, Kelly D; Lord, Allison; Kendall, Lon V; Dow, Steven W

    2014-01-01

    Biofilm formation represents a unique mechanism by which Staphylococcus aureus and other microorganisms avoid antimicrobial clearance and establish chronic infections. Treatment of these infections can be challenging, because the bacteria in the biofilm state are often resistant to therapies that are effective against planktonic bacteria of the same species. Effective animal models for the study of biofilm infections and novel therapeutics are needed. In addition, there is substantial interest in the use of noninvasive, in vivo data collection techniques to decrease the animal numbers required for the execution of infectious disease studies. To address these needs, we evaluated 3 murine models of implant-associated biofilm infection by using in vivo bioluminescent imaging techniques. The goal of these studies was to identify the model that was most amenable to development of sustained infections that could be imaged repeatedly in vivo by using bioluminescent technology. We found that the subcutaneous mesh and tibial intramedullary pin models both maintained consistent levels of bioluminescence for as long as 35 d after infection, with no implant loss experienced in either model. In contrast, a subcutaneous catheter model demonstrated significant incidence of incisional abscessation and implant loss by day 20 after infection. The correlation of bioluminescent measurements and bacterial enumeration was strongest with the subcutaneous mesh model. Among the 3 models we evaluated, the subcutaneous mesh model is the most appropriate animal model for prolonged study of biofilm infections by using bioluminescent imaging. PMID:24512958

  4. Dimethylarginine Dimethylaminohydrolase1 Is an Organ-Specific Mediator of End Organ Damage in a Murine Model of Hypertension

    PubMed Central

    Sydow, Karsten; Schmitz, Christine; von Leitner, Eike-Christin; von Leitner, Robin; Klinke, Anna; Atzler, Dorothee; Krebs, Christian; Wieboldt, Hartwig; Ehmke, Heimo; Schwedhelm, Edzard; Meinertz, Thomas; Blankenberg, Stefan; Böger, Rainer H.; Magnus, Tim

    2012-01-01

    Background The endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) is an independent predictor of cardiovascular and overall mortality. Moreover, elevated ADMA plasma concentrations are associated with the extent of hypertension. However, data from small-sized clinical trials and experimental approaches using murine transgenic models have revealed conflicting results regarding the impact of ADMA and its metabolizing enzyme dimethylarginine dimethylaminohydrolase (DDAH) in the pathogenesis of hypertension. Methodology/Principal Findings Therefore, we investigated the role of ADMA and DDAH1 in hypertension-induced end organ damage using the uninephrectomized, deoxycorticosterone actetate salt, and angiotensin II-induced hypertension model in human DDAH1 (hDDAH1) overexpressing and wild-type (WT) mice. ADMA plasma concentrations differed significantly between hDDAH1 and WT mice at baseline, but did not significantly change during the induction of hypertension. hDDAH1 overexpression did not protect against hypertension-induced cardiac fibrosis and hypertrophy. In addition, the hypertension-induced impairment of the endothelium-dependent vasorelaxation of aortic segments ex vivo was not significantly attenuated by hDDAH1 overexpression. However, hDDAH1 mice displayed an attenuated hypertensive inflammatory response in renal tissue, resulting in less hypertensive renal injury. Conclusion/Significance Our data reveal that hDDAH1 organ-specifically modulates the inflammatory response in this murine model of hypertension. The lack of protection in cardiac and aortic tissues may be due to DDAH1 tissue selectivity and/or the extent of hypertension by the used combined model. However, our study underlines the potency of hDDAH1 overexpression in modulating inflammatory processes as a crucial step in the pathogenesis of hypertension, which needs further experimental and clinical investigation. PMID:23110194

  5. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia

    PubMed Central

    Lee, Benjamin H.; Tothova, Zuzana; Levine, Ross L.; Anderson, Kristina; Buza-Vidas, Natalija; Cullen, Dana E.; McDowell, Elizabeth P.; Adelsperger, Jennifer; Fröhling, Stefan; Huntly, Brian J.P.; Beran, Miloslav; Jacobsen, Sten Eirik; Gilliland, D. Gary

    2007-01-01

    SUMMARY Despite their known transforming properties, the effects of leukemogenic FLT3-ITD mutations on hematopoietic stem and multipotent progenitor cells and on hematopoietic differentiation are not well understood. We report a mouse model harboring an ITD in the murine Flt3 locus that develops myeloproliferative disease resembling CMML and further identified FLT3-ITD mutations in a subset of human CMML. These findings correlated with an increase in number, cell cycling and survival of multipotent stem and progenitor cells in an ITD dose-dependent manner in animals that exhibited alterations within their myeloid progenitor compartments and a block in normal B-cell development. This model provides insights into the consequences of constitutive signaling by an oncogenic tyrosine kinase on hematopoietic progenitor quiescence, function, and cell fate. SIGNIFICANCE Activating FLT3 mutations are among the most common genetic events in AML and confer a poor clinical prognosis. Essential to our understanding of how these lesions contribute to myeloid leukemia is the development of a Flt3-ITD ‘knock-in’ murine model that has allowed examination of the consequences of constitutive FLT3 signaling on primitive hematopoietic progenitors when expressed at appropriate physiologic levels. These animals informed us to the existence of FLT3-ITD-positive human CMML, which has clinical importance given the availability of FLT3 small molecule inhibitors. This model will not only serve as a powerful biological tool to identify mutations that cooperate with FLT3 in leukemogenesis, but also to assess molecular therapies that target either FLT3 or components of its signaling pathways. PMID:17936561

  6. Non-contact scanning diffuse correlation tomography system for three-dimensional blood flow imaging in a murine bone graft model.

    PubMed

    Han, Songfeng; Johansson, Johannes; Mireles, Miguel; Proctor, Ashley R; Hoffman, Michael D; Vella, Joseph B; Benoit, Danielle S W; Durduran, Turgut; Choe, Regine

    2015-07-01

    A non-contact galvanometer-based optical scanning system for diffuse correlation tomography was developed for monitoring bone graft healing in a murine femur model. A linear image reconstruction algorithm for diffuse correlation tomography was tested using finite-element method based simulated data and experimental data from a femur or a tube suspended in a homogeneous liquid phantom. Finally, the non-contact system was utilized to monitor in vivo blood flow changes prior to and one week after bone graft transplantation within murine femurs. Localized blood flow changes were observed in three mice, demonstrating a potential for quantification of longitudinal blood flow associated with bone graft healing. PMID:26203392

  7. Non-contact scanning diffuse correlation tomography system for three-dimensional blood flow imaging in a murine bone graft model

    PubMed Central

    Han, Songfeng; Johansson, Johannes; Mireles, Miguel; Proctor, Ashley R.; Hoffman, Michael D.; Vella, Joseph B.; Benoit, Danielle S. W.; Durduran, Turgut; Choe, Regine

    2015-01-01

    A non-contact galvanometer-based optical scanning system for diffuse correlation tomography was developed for monitoring bone graft healing in a murine femur model. A linear image reconstruction algorithm for diffuse correlation tomography was tested using finite-element method based simulated data and experimental data from a femur or a tube suspended in a homogeneous liquid phantom. Finally, the non-contact system was utilized to monitor in vivo blood flow changes prior to and one week after bone graft transplantation within murine femurs. Localized blood flow changes were observed in three mice, demonstrating a potential for quantification of longitudinal blood flow associated with bone graft healing. PMID:26203392

  8. Biodistribution of Infused Human Umbilical Cord Blood Cells in Alzheimer's Disease-Like Murine Model.

    PubMed

    Ehrhart, Jared; Darlington, Donna; Kuzmin-Nichols, Nicole; Sanberg, Cyndy D; Sawmiller, Darrell R; Sanberg, Paul R; Tan, Jun

    2016-01-01

    Human umbilical cord blood cells (HUCBCs), a prolific source of non-embryonic or adult stem cells, have emerged as effective and relatively safe immunomodulators and neuroprotectors, reducing behavioral impairment in animal models of Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, traumatic brain injury, spinal cord injury, and stroke. In this report, we followed the bioavailability of HUCBCs in AD-like transgenic PSAPP mice and nontransgenic Sprague-Dawley rats. HUCBCs were injected into tail veins of mice or rats at a single dose of 1 × 10(6) or 2.2 × 10(6) cells, respectively, prior to harvesting of tissues at 24 h, 7 days, and 30 days after injection. For determination of HUCBC distribution, tissues from both species were subjected to total DNA isolation and polymerase chain reaction (PCR) amplification of the gene for human glycerol-3-phosphate dehydrogenase. Our results show a relatively similar biodistribution and retention of HUCBCs in both mouse and rat organs. HUCBCs were broadly detected both in the brain and several peripheral organs, including the liver, kidney, and bone marrow, of both species, starting within 7 days and continuing up to 30 days posttransplantation. No HUCBCs were recovered in the peripheral circulation, even at 24 h posttransplantation. Therefore, HUCBCs reach several tissues including the brain following a single intravenous treatment, suggesting that this route can be a viable method of administration of these cells for the treatment of neurodegenerative diseases. PMID:26414627

  9. Intratumoral mediated immunosuppression is prognostic in genetically engineered murine models of glioma and correlates to immune therapeutic responses

    PubMed Central

    Kong, Ling-Yuan; Wu, Adam S.; Doucette, Tiffany; Wei, Jun; Priebe, Waldemar; Fuller, Gregory N.; Qiao, Wei; Sawaya, Raymond; Rao, Ganesh; Heimberger, Amy B.

    2010-01-01

    Purpose Pre-clinical murine model systems used for the assessment of therapeutics have not been predictive of human clinical responses, primarily because their clonotypic nature does not recapitulate the heterogeneous biology and immunosuppressive mechanisms of humans. Relevant model systems with mice that are immunologically competent are needed to evaluate the efficacy of therapeutic agents, especially immunotherapeutics. Experimental Design Using the RCAS/Ntv-a system, mice were engineered to co-express platelet-derived growth factor receptor (PDGF)-B + B-cell lymphoma (Bcl)-2 under the control of the glioneuronal-specific Nestin promoter. The degree and type of tumor-mediated immunosuppression was determined in these endogenously arising gliomas based upon the presence of macrophages and regulatory T cells (Tregs). The immunotherapeutic agent, WP1066, was tested in vivo to assess therapeutic efficacy and immune modulation. Results N-tva mice were injected with RCAS vectors to express PDGF-B + Bcl-2, resulting in both low- and high-grade gliomas. Consistent with observations in human high-grade gliomas, mice with high-grade gliomas also developed a marked intratumoral influx of macrophages that was influenced by tumor signal transducer and activator of transduction (STAT) 3 expression. The presence of intratumoral F4/80 macrophages was a negative prognosticator for long-term survival. In mice expressing both PDGF-B + Bcl-2 that were treated with WP1066, there was 55.5% increase in median survival time (P< 0.01), with an associated inhibition of intratumoral STAT3 and macrophages. Conclusions Although randomization is necessary for including mice in a therapeutic trial, these murine model systems are more suitable for testing therapeutics, and especially immune therapeutics, in the context of translational studies. PMID:20921210

  10. A natural human IgM that binds to gangliosides is therapeutic in murine models of amyotrophic lateral sclerosis

    PubMed Central

    Xu, Xiaohua; Denic, Aleksandar; Jordan, Luke R.; Wittenberg, Nathan J.; Warrington, Arthur E.; Wootla, Bharath; Papke, Louisa M.; Zoecklein, Laurie J.; Yoo, Daehan; Shaver, Jonah; Oh, Sang-Hyun; Pease, Larry R.; Rodriguez, Moses

    2015-01-01

    ABSTRACT Amyotrophic lateral sclerosis (ALS) is a devastating, fatal neurological disease that primarily affects spinal cord anterior horn cells and their axons for which there is no treatment. Here we report the use of a recombinant natural human IgM that binds to the surface of neurons and supports neurite extension, rHIgM12, as a therapeutic strategy in murine models of human ALS. A single 200 µg intraperitoneal dose of rHIgM12 increases survival in two independent genetic-based mutant SOD1 mouse strains (SOD1G86R and SOD1G93A) by 8 and 10 days, delays the onset of neurological deficits by 16 days, delays the onset of weight loss by 5 days, and preserves spinal cord axons and anterior horn neurons. Immuno-overlay of thin layer chromatography and surface plasmon resonance show that rHIgM12 binds with high affinity to the complex gangliosides GD1a and GT1b. Addition of rHIgM12 to neurons in culture increases α-tubulin tyrosination levels, suggesting an alteration of microtubule dynamics. We previously reported that a single peripheral dose of rHIgM12 preserved neurological function in a murine model of demyelination with axon loss. Because rHIgM12 improves three different models of neurological disease, we propose that the IgM might act late in the cascade of neuronal stress and/or death by a broad mechanism. PMID:26035393

  11. Expression of intronic miRNAs and their host gene Igf2 in a murine unilateral ureteral obstruction model

    PubMed Central

    Li, N.Q.; Yang, J.; Cui, L.; Ma, N.; Zhang, L.; Hao, L.R.

    2015-01-01

    The objective of this study was to determine the expression of miR-483 and miR-483* and the relationship among them, their host gene (Igf2), and other cytokines in a murine model of renal fibrosis. The extent of renal fibrosis was visualized using Masson staining, and fibrosis was scored 3 days and 1 and 2 weeks after unilateral ureteral obstruction (UUO). Expression of miR-483, miR-483* and various cytokine mRNAs was detected by real-time polymerase chain reaction (PCR). Expression of miR-483 and miR-483* was significantly upregulated in the UUO model, particularly miR-483 expression was the greatest 2 weeks after surgery. Additionally, miR-483 and miR-483* expression negatively correlated with Bmp7 expression and positively correlated with Igf2, Tgfβ, Hgf, and Ctgf expression, as determined by Pearson's correlation analysis. Hgf expression significantly increased at 1 and 2 weeks after the surgery compared to the control group. This study showed that miR-483 and miR-483* expression was upregulated in a murine UUO model. These data suggest that miR-483 and miR-483* play a role in renal fibrosis and that miR-483* may interact with miR-483 in renal fibrosis. Thus, these miRNAs may play a role in the pathogenesis of renal fibrosis and coexpression of their host gene Igf2. PMID:25831208

  12. CD27 costimulation is not critical for the development of asthma and respiratory tolerance in a murine model.

    PubMed

    Behrendt, Ann-Kathrin; Hansen, Gesine

    2010-09-01

    CD27 is a costimulatory molecule of the TNFR family strongly expressed on activated CD4(+) and CD8(+) T lymphocytes. Binding with its ligand CD70, present on lymphocytes and DCs, leads to enhanced T cell activation and proliferation. Several other costimulatory molecules of the TNFR family like CD30, CD134 (OX40) or CD137 (4-1BB) have been shown to be critically involved in the development of asthma and/or respiratory tolerance. However, the role of CD27/CD70 signalling in these disease models has not been studied intensively. The aim of this study was to directly investigate the role of CD27 for the development of asthma and respiratory tolerance by comparative analysis of wild type (WT) and CD27(-/-) mice in the corresponding murine models. Ovalbumin (OVA)-sensitized and challenged CD27(-/-) mice developed comparably increased airway hyperreactivity (AHR), eosinophilic airway inflammation, mucus hypersecretion and elevated OVA-specific serum IgE levels in response to OVA sensitization as WT mice. In addition, Th2 cytokine production in spleen cell culture supernatants and proliferation of splenocytes after in vitro OVA restimulation was equally enhanced when derived from WT and CD27(-/-) mice. Furthermore, the absence of CD27 had no decisive impact on tolerance induction, so that WT and CD27(-/-) mice were comparably protected from asthma development by mucosal antigen application before sensitization. Our results suggest that CD27 costimulation is dispensable for a Th2 cell mediated allergic asthma response and respiratory tolerance induction in murine models. PMID:20600327

  13. A natural human IgM that binds to gangliosides is therapeutic in murine models of amyotrophic lateral sclerosis.

    PubMed

    Xu, Xiaohua; Denic, Aleksandar; Jordan, Luke R; Wittenberg, Nathan J; Warrington, Arthur E; Wootla, Bharath; Papke, Louisa M; Zoecklein, Laurie J; Yoo, Daehan; Shaver, Jonah; Oh, Sang-Hyun; Pease, Larry R; Rodriguez, Moses

    2015-08-01

    Amyotrophic lateral sclerosis (ALS) is a devastating, fatal neurological disease that primarily affects spinal cord anterior horn cells and their axons for which there is no treatment. Here we report the use of a recombinant natural human IgM that binds to the surface of neurons and supports neurite extension, rHIgM12, as a therapeutic strategy in murine models of human ALS. A single 200 µg intraperitoneal dose of rHIgM12 increases survival in two independent genetic-based mutant SOD1 mouse strains (SOD1G86R and SOD1G93A) by 8 and 10 days, delays the onset of neurological deficits by 16 days, delays the onset of weight loss by 5 days, and preserves spinal cord axons and anterior horn neurons. Immuno-overlay of thin layer chromatography and surface plasmon resonance show that rHIgM12 binds with high affinity to the complex gangliosides GD1a and GT1b. Addition of rHIgM12 to neurons in culture increases α-tubulin tyrosination levels, suggesting an alteration of microtubule dynamics. We previously reported that a single peripheral dose of rHIgM12 preserved neurological function in a murine model of demyelination with axon loss. Because rHIgM12 improves three different models of neurological disease, we propose that the IgM might act late in the cascade of neuronal stress and/or death by a broad mechanism. PMID:26035393

  14. Radical Reeducation: Alcoholics Anonymous as a Model in Adult Education.

    ERIC Educational Resources Information Center

    Crossman, Lenard H.

    1980-01-01

    The peer self-help group approach used by Alcoholics Anonymous can be a model for other types of adult learning. The group's power, solidarity, experience sharing, and values clarification can provide positive social and educational experiences to others such as the chronically unemployed, illiterate adults, and high school dropouts. (SK)

  15. Adult Community Education: A Model for Regional Policy Development.

    ERIC Educational Resources Information Center

    Jones, Peter

    1998-01-01

    The adult community education (ACE) sector in the state of Victoria provides an example of best practice in regional rural policy in Australia that may serve as a model for other areas of government effort. In 1997, 309,000 Victorians enrolled in adult and community education courses, such as business and technical skills development, literacy and…

  16. A MODEL INFORMATION SYSTEM FOR THE ADULT EDUCATION PROFESSION.

    ERIC Educational Resources Information Center

    DECROW, ROGER

    A MODEL OF INFORMATION SERVICES FOR THE ADULT EDUCATION PROFESSION PROVIDES FOR--(1) ACCESS TO THE LITERATURE THROUGH BIBLIOGRAPHIES, REVIEWS, AND MECHANIZED RETRIEVAL, (2) PHYSICAL ACCESS (MAINLY IN MICROFORM), (3) SPECIALIZED INFORMATION SERVICES LINKED WITH ONE ANOTHER AND THE ERIC CLEARINGHOUSE ON ADULT EDUCATION, (4) COORDINATION, RESEARCH,…

  17. Building a Data Based Model for Senior Adult Basic Education.

    ERIC Educational Resources Information Center

    Courtenay, Bradley C.; And Others

    Research shows that developing a curriculum model for senior adult education requires consideration of at least four important factors: (1) the heterogeneous nature of the senior adult population; (2) their specific information and interest needs; (3) the specific nature of the learning activities; and (4) the specific barriers and facilitators…

  18. Infant Imitation from Televised Peer and Adult Models

    ERIC Educational Resources Information Center

    Seehagen, Sabine; Herbert, Jane S.

    2011-01-01

    Developmental changes in learning from peers and adults during the second year of life were assessed using an imitation paradigm. Independent groups of 15- and 24-month-old infants watched a prerecorded video of an unfamiliar child or adult model demonstrating a series of actions with objects. When learning was assessed immediately, 15-month-old…

  19. Isolation and (111)In-Oxine Labeling of Murine NK Cells for Assessment of Cell Trafficking in Orthotopic Lung Tumor Model.

    PubMed

    Malviya, Gaurav; Nayak, Tapan; Gerdes, Christian; Dierckx, Rudi A J O; Signore, Alberto; de Vries, Erik F J

    2016-04-01

    A noninvasive in vivo imaging method for NK cell trafficking is essential to gain further understanding of the pathogenesis of NK cell mediated immune response to the novel cancer treatment strategies, and to discover the homing sites and physiological distribution of NK cells. Although human NK cells can be labeled for in vivo imaging, little is known about the murine NK cell labeling and its application in animal models. This study describes the isolation and ex vivo radiolabeling of murine NK cells for the evaluation of cell trafficking in an orthotopic model of human lung cancer in mice. Scid-Tg(FCGR3A)Blt transgenic SCID mice were used to isolate NK cells from mouse splenocytes using the CD49b (DX5) MicroBeads positive selection method. The purity and viability of the isolated NK cells were confirmed by FACS analysis. Different labeling buffers and incubation times were evaluated to optimize (111)In-oxine labeling conditions. Functionality of the radiolabeled NK cell was assessed by (51)Cr-release assay. We evaluated physiological distribution of (111)In-oxine labeled murine NK cells in normal SCID mice and biodistribution in irradiated and nonirradiated SCID mice with orthotopic A549 human lung tumor lesions. Imaging findings were confirmed by histology. Results showed that incubation with 0.011 MBq of (111)In-oxine per million murine NK cells in PBS (pH 7.4) for 20 min is the best condition that provides optimum labeling efficiency without affecting cell viability and functionality. Physiological distribution in normal SCID mice demonstrated NK cells homing mainly in the spleen, while (111)In released from NK cells was excreted via kidneys into urine. Biodistribution studies demonstrated a higher lung uptake in orthotopic lung tumor-bearing mice than control mice. In irradiated mice, lung tumor uptake of radiolabeled murine NK cells decreased between 24 h and 72 h postinjection (p.i.), which was accompanied by tumor regression, while in nonirradiated mice

  20. Neurobehavioral Alterations in a Genetic Murine Model of Feingold Syndrome 2.

    PubMed

    Fiori, E; Babicola, L; Andolina, D; Coassin, A; Pascucci, T; Patella, L; Han, Y-C; Ventura, A; Ventura, R

    2015-09-01

    Feingold syndrome (FS) is an autosomal dominant disorder characterized by microcephaly, short stature, digital anomalies, esophageal/duodenal atresia, facial dysmorphism, and various learning disabilities. Heterozygous deletion of the miR-17-92 cluster is responsible for a subset of FS (Feingold syndrome type 2, FS2), and the developmental abnormalities that characterize this disorder are partially recapitulated in mice that harbor a heterozygous deletion of this cluster (miR-17-92∆/+ mice). Although Feingold patients develop a wide array of learning disabilities, no scientific description of learning/cognitive disabilities, intellectual deficiency, and brain alterations have been described in humans and animal models of FS2. The aim of this study was to draw a behavioral profile, during development and in adulthood, of miR-17-92∆/+ mice, a genetic mouse model of FS2. Moreover, dopamine, norepinephrine and serotonin tissue levels in the medial prefrontal cortex (mpFC), and Hippocampus (Hip) of miR-17-92∆/+ mice were analyzed.Our data showed decreased body growth and reduced vocalization during development. Moreover, selective deficits in spatial ability, social novelty recognition and memory span were evident in adult miR-17-92∆/+ mice compared with healthy controls (WT). Finally, we found altered dopamine as well as serotonin tissue levels, in the mpFC and Hip, respectively, of miR-17-92∆/+ in comparison with WT mice, thus suggesting a possible link between cognitive deficits and altered brain neurotransmission. PMID:26026879

  1. PD-1 Blockade and OX40 Triggering Synergistically Protects against Tumor Growth in a Murine Model of Ovarian Cancer

    PubMed Central

    Guo, Zhiqiang; Wang, Xin; Cheng, Dali; Xia, Zhijun; Luan, Meng; Zhang, Shulan

    2014-01-01

    The co-inhibitory receptor Programmed Death-1 (PD-1) curtails immune responses and prevent autoimmunity, however, tumors exploit this pathway to escape from immune destruction. The co-stimulatory receptor OX40 is upregulated on T cells following activation and increases their clonal expansion, survival and cytokine production when engaged. Although antagonistic anti-PD-1 or agonistic anti-OX40 antibodies can promote the rejection of several murine tumors, some poorly immunogenic tumors were refractory to this treatment. In the present study, we evaluated the antitumor effects and mechanisms of combinatorial PD-1 blockade and OX40 triggering in a murine ID8 ovarian cancer model. Although individual anti-PD-1 or OX40 mAb treatment was ineffective in tumor protection against 10-day established ID8 tumor, combined anti-PD-1/OX40 mAb treatment markedly inhibited tumor outgrowth with 60% of mice tumor free 90 days after tumor inoculation. Tumor protection was associated with a systemic immune response with memory and antigen specificity and required CD4+ cells and CD8+ T cells. The anti-PD-1/OX40 mAb treatment increased CD4+ and CD8+ cells and decreased immunosuppressive CD4+FoxP3+ regulatory T (Treg) cells and CD11b+Gr-1+ myeloid suppressor cells (MDSC), giving rise to significantly higher ratios of both effector CD4+ and CD8+ cells to Treg and MDSC in peritoneal cavity; Quantitative RT-PCR data further demonstrated the induction of a local immunostimulatory milieu by anti-PD-1/OX40 mAb treatment. The splenic CD8+ T cells from combined mAb treated mice produced high levels of IFN-γ upon tumor antigen stimulation and exhibited antigen-specific cytolytic activity. To our knowledge, this is the first study testing the antitumor effects of combined anti-PD-1/OX40 mAb in a murine ovarian cancer model, and our results provide a rationale for clinical trials evaluating ovarian cancer immunotherapy using this combination of mAb. PMID:24586709

  2. TGF-β-dependent dendritic cell chemokinesis in murine models of airway disease

    PubMed Central

    Hashimoto, Mitsuo; Yanagisawa, Haruhiko; Minagawa, Shunsuke; Sen, Debasish; Ma, Royce; Murray, Lynne A.; Tsui, Ping; Lou, Jianlong; Marks, James D.; Baron, Jody L.; Krummel, Matthew F.; Nishimura, Stephen L.

    2015-01-01

    Small airway chronic inflammation is a major pathologic feature of chronic obstructive pulmonary disease (COPD) and is refractory to current treatments. Dendritic cells (DCs) accumulate around small airways in COPD. DCs are critical mediators of antigen surveillance and antigen presentation and amplify adaptive immune responses. How DCs accumulate around airways remains largely unknown. We use 2-photon DC imaging of living murine lung sections to directly visualize the dynamic movement of living DCs around airways in response to either soluble mediators (IL-1β) or environmental stimuli (cigarette smoke or TLR3 ligands) implicated in COPD pathogenesis. We find that DCs accumulate around murine airways primarily by increasing velocity (chemokinesis) rather than directional migration (chemotaxis) in response to all three stimuli. DC accumulation maximally occurs in a specific zone located 26-50 μm from small airways, which overlaps with zones of maximal DC velocity. Our data suggest that increased accumulation of DCs around airways results from increased numbers of highly chemokinetic DCs entering the lung from the circulation with balanced rates of immigration and emigration. Increases in DC accumulation and chemokinesis are partially dependent on ccr6, a crucial DC chemokine receptor, and fibroblast expression of the integrin αvβ8, a critical activator of TGF-β αvβ8-mediated TGF-β activation is known to enhance IL-1β-dependent fibroblast expression of the only known endogenous ccr6 chemokine ligand, ccl20. Taken together, these data suggest a mechanism by which αvβ8, ccl20 and ccr6 interact to lead to DC accumulation around airways in response to COPD-relevant stimuli. PMID:26109638

  3. Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection

    PubMed Central

    McCaughey, Laura C.; Ritchie, Neil. D.; Douce, Gillian R.; Evans, Thomas J.; Walker, Daniel

    2016-01-01

    Protein antibiotics, known as bacteriocins, are widely produced by bacteria for intraspecies competition. The potency and targeted action of bacteriocins suggests that they could be developed into clinically useful antibiotics against highly drug resistant Gram-negative pathogens for which there are few therapeutic options. Here we show that Pseudomonas aeruginosa specific bacteriocins, known as pyocins, show strong efficacy in a murine model of P. aeruginosa lung infection, with the concentration of pyocin S5 required to afford protection from a lethal infection at least 100-fold lower than the most commonly used inhaled antibiotic tobramycin. Additionally, pyocins are stable in the lung, poorly immunogenic at high concentrations and efficacy is maintained in the presence of pyocin specific antibodies after repeated pyocin administration. Bacteriocin encoding genes are frequently found in microbial genomes and could therefore offer a ready supply of highly targeted and potent antibiotics active against problematic Gram-negative pathogens. PMID:27444885

  4. Immunization with recombinant prion protein leads to partial protection in a murine model of TSEs through a novel mechanism.

    PubMed

    Xanthopoulos, Konstantinos; Lagoudaki, Rosa; Kontana, Anastasia; Kyratsous, Christos; Panagiotidis, Christos; Grigoriadis, Nikolaos; Yiangou, Minas; Sklaviadis, Theodoros

    2013-01-01

    Transmissible spongiform encephalopathies are neurodegenerative diseases, which despite fervent research remain incurable. Immunization approaches have shown great potential at providing protection, however tolerance effects hamper active immunization protocols. In this study we evaluated the antigenic potential of various forms of recombinant murine prion protein and estimated their protective efficacy in a mouse model of prion diseases. One of the forms tested provided a significant elongation of survival interval. The elongation was mediated via an acute depletion of mature follicular dendritic cells, which are associated with propagation of the prion infectious agent in the periphery and in part to the development of humoral immunity against prion protein. This unprecedented result could offer new strategies for protection against transmissible encephalopathies as well as other diseases associated with follicular dendritic cells. PMID:23554984

  5. Anti-asthmatic activities of an ethanol extract of Aster yomena in an ovalbumin-induced murine asthma model.

    PubMed

    Sim, Ji Hyun; Lee, Hyun Seung; Lee, Sunkyung; Park, Dae Eun; Oh, Keunhee; Hwang, Kyung-A; Kang, Hye-Ryun; Ye, Sang-Kyu; Kim, Hang-Rae

    2014-05-01

    Aster yomena is used in traditional remedies to treat cough, asthma and insect bites; however, its therapeutic mechanism is not completely understood. To elucidate the anti-asthmatic effect of A. yomena, we investigated the anti-asthmatic characteristics of an alcohol extract of A. yomena in an ovalbumin (OVA)-induced murine asthma model. In this study, we showed that A. yomena extract inhibited the overall pathophysiological features of asthma by suppressing Th2 responses and enzymes associated with the production of inflammatory mediators. This suppression resulted in decreased Th2 type cytokines and eosinophils in the bronchoalveolar lavage fluid and OVA-specific IgE in serum. Additionally, A. yomena extract significantly decreased airway hyperresponsiveness and abrogated the histopathological changes in the lungs, which reached normal levels in the OVA-challenged mice treated with A. yomena extract. These findings suggest that A. yomena could be a promising natural agent for treating bronchial asthma in humans. PMID:24738663

  6. Immunization with Recombinant Prion Protein Leads to Partial Protection in a Murine Model of TSEs through a Novel Mechanism

    PubMed Central

    Xanthopoulos, Konstantinos; Lagoudaki, Rosa; Kontana, Anastasia; Kyratsous, Christos; Panagiotidis, Christos; Grigoriadis, Nikolaos; Yiangou, Minas; Sklaviadis, Theodoros

    2013-01-01

    Transmissible spongiform encephalopathies are neurodegenerative diseases, which despite fervent research remain incurable. Immunization approaches have shown great potential at providing protection, however tolerance effects hamper active immunization protocols. In this study we evaluated the antigenic potential of various forms of recombinant murine prion protein and estimated their protective efficacy in a mouse model of prion diseases. One of the forms tested provided a significant elongation of survival interval. The elongation was mediated via an acute depletion of mature follicular dendritic cells, which are associated with propagation of the prion infectious agent in the periphery and in part to the development of humoral immunity against prion protein. This unprecedented result could offer new strategies for protection against transmissible encephalopathies as well as other diseases associated with follicular dendritic cells. PMID:23554984

  7. From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies.

    PubMed

    Ottewell, P D; Coleman, R E; Holen, I

    2006-03-01

    Numerous mouse models of mammary cancer have been developed that mimic selective aspects of human disease. The use of these models has enabled preclinical chemotherapeutic, chemoprevention, and genetic therapy studies in vivo, the testing of gene delivery systems, and the identification of tumour and metastasis suppressor and inducer genes. This review has discussed the most abundantly used murine models of mammary cancer including: spontaneous tumours, chemically induced tumours, orthotopic and syngeneic tumour transplantation, injected tumours, and genetically engineered mice with a predisposition to neoplasia. Each model has been discussed with regards to its merits and limitations for investigating the genetic and phenotypic alterations involved in the human disease as well as its potential usefulness for the development of new treatment strategies. To date no single mouse model is available with the ability to replicate the entire disease process, however, existing models continue to provide invaluable insights into breast cancer induction and progression that would be impossible to obtain using in vitro models alone. PMID:16319986

  8. Coadministration of doxorubicin and etoposide loaded in camel milk phospholipids liposomes showed increased antitumor activity in a murine model.

    PubMed

    Maswadeh, Hamzah M; Aljarbou, Ahmed N; Alorainy, Mohammed S; Rahmani, Arshad H; Khan, Masood A

    2015-01-01

    Small unilamellar vesicles from camel milk phospholipids (CML) mixture or from 1,2 dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) were prepared, and anticancer drugs doxorubicin (Dox) or etoposide (ETP) were loaded. Liposomal formulations were used against fibrosarcoma in a murine model. Results showed a very high percentage of Dox encapsulation (~98%) in liposomes (Lip) prepared from CML-Lip or DPPC-Lip, whereas the percentage of encapsulations of ETP was on the lower side, 22% of CML-Lip and 18% for DPPC-Lip. Differential scanning calorimetry curves show that Dox enhances the lamellar formation in CML-Lip, whereas ETP enhances the nonlamellar formation. Differential scanning calorimetry curves also showed that the presence of Dox and ETP together into DPPC-Lip produced the interdigitation effect. The in vivo anticancer activity of liposomal formulations of Dox or ETP or a combination of both was assessed against benzopyrene (BAP)-induced fibrosarcoma in a murine model. Tumor-bearing mice treated with a combination of Dox and ETP loaded into CML-Lip showed increased survival and reduced tumor growth compared to other groups, including the combination of Dox and ETP in DPPC-Lip. Fibrosarcoma-bearing mice treated with a combination of free (Dox + ETP) showed much higher tumor growth compared to those groups treated with CML-Lip-(Dox + ETP) or DPPC-Lip-(Dox + ETP). Immunohistochemical study was also performed to show the expression of tumor-suppressor PTEN, and it was found that the tumor tissues from the group of mice treated with a combination of free (Dox + ETP) showed greater loss of cytoplasmic PTEN than tumor tissues obtained from the groups of mice treated with CML-Lip-(Dox + ETP) or DPPC-Lip-(Dox + ETP). PMID:25926730

  9. Limitations of Murine Models for Assessment of Antibody-Mediated Therapies or Vaccine Candidates against Staphylococcus epidermidis Bloodstream Infection.

    PubMed

    Cole, Leah E; Zhang, Jinrong; Kesselly, Augustus; Anosova, Natalie G; Lam, Hubert; Kleanthous, Harry; Yethon, Jeremy A

    2016-04-01

    Staphylococcus epidermidis is normally a commensal colonizer of human skin and mucus membranes, but, due to its ability to form biofilms on indwelling medical devices, it has emerged as a leading cause of nosocomial infections. Bacteremia or bloodstream infection is a frequent and costly complication resulting from biofilm fouling of medical devices. Our goal was to develop a murine model of S. epidermidis infection to identify potential vaccine targets for the prevention of S. epidermidis bacteremia. However, assessing the contribution of adaptive immunity to protection against S. epidermidis challenge was complicated by a highly efficacious innate immune response in mice. Naive mice rapidly cleared S. epidermidis infections from blood and solid organs, even when the animals were immunocompromised. Cyclophosphamide-mediated leukopenia reduced the size of the bacterial challenge dose required to cause lethality but did not impair clearance after a nonlethal challenge. Nonspecific innate immune stimulation, such as treatment with a Toll-like receptor 4 (TLR4) agonist, enhanced bacterial clearance. TLR2 signaling was confirmed to accelerate the clearance of S. epidermidis bacteremia, but TLR2(-/-)mice could still resolve a bloodstream infection. Furthermore, TLR2 signaling played no role in the clearance of bacteria from the spleen. In conclusion, these data suggest that S. epidermidis bloodstream infection is cleared in a highly efficient manner that is mediated by both TLR2-dependent and -independent innate immune mechanisms. The inability to establish a persistent infection in mice, even in immunocompromised animals, rendered these murine models unsuitable for meaningful assessment of antibody-mediated therapies or vaccine candidates. PMID:26857577

  10. Limitations of Murine Models for Assessment of Antibody-Mediated Therapies or Vaccine Candidates against Staphylococcus epidermidis Bloodstream Infection

    PubMed Central

    Zhang, Jinrong; Kesselly, Augustus; Lam, Hubert; Kleanthous, Harry; Yethon, Jeremy A.

    2016-01-01

    Staphylococcus epidermidis is normally a commensal colonizer of human skin and mucus membranes, but, due to its ability to form biofilms on indwelling medical devices, it has emerged as a leading cause of nosocomial infections. Bacteremia or bloodstream infection is a frequent and costly complication resulting from biofilm fouling of medical devices. Our goal was to develop a murine model of S. epidermidis infection to identify potential vaccine targets for the prevention of S. epidermidis bacteremia. However, assessing the contribution of adaptive immunity to protection against S. epidermidis challenge was complicated by a highly efficacious innate immune response in mice. Naive mice rapidly cleared S. epidermidis infections from blood and solid organs, even when the animals were immunocompromised. Cyclophosphamide-mediated leukopenia reduced the size of the bacterial challenge dose required to cause lethality but did not impair clearance after a nonlethal challenge. Nonspecific innate immune stimulation, such as treatment with a Toll-like receptor 4 (TLR4) agonist, enhanced bacterial clearance. TLR2 signaling was confirmed to accelerate the clearance of S. epidermidis bacteremia, but TLR2−/− mice could still resolve a bloodstream infection. Furthermore, TLR2 signaling played no role in the clearance of bacteria from the spleen. In conclusion, these data suggest that S. epidermidis bloodstream infection is cleared in a highly efficient manner that is mediated by both TLR2-dependent and -independent innate immune mechanisms. The inability to establish a persistent infection in mice, even in immunocompromised animals, rendered these murine models unsuitable for meaningful assessment of antibody-mediated therapies or vaccine candidates. PMID:26857577

  11. The JAK-3 inhibitor CP-690550 is a potent anti-inflammatory agent in a murine model of pulmonary eosinophilia.

    PubMed

    Kudlacz, Elizabeth; Conklyn, Maryrose; Andresen, Catharine; Whitney-Pickett, Carrie; Changelian, Paul

    2008-03-17

    Janus kinase 3 (JAK-3) is a tyrosine kinase that has been shown to participate in the signaling of several cytokines that are believed to play a role in allergic airway disease, e.g. IL-2, 4 and 9. The current study describes the immunosuppressive effects of CP-690550, a novel, small molecule inhibitor of JAK-3, in a murine model of allergic pulmonary inflammation. In vitro, CP-690550 potently inhibited IL-4 induced upregulation of CD23 (IC(50)=57 nM) and class II major histocompatibility complex (MHCII) expression (IC(50)=71 nM) on murine B cells. Repeat aerosol exposure to ovalbumin in wild-type mice sensitized to the antigen resulted in preferential recruitment of Th2-like cells (IL-4+ and IL-5+) into bronchoalveolar lavage fluid (BAL). The importance of IL-4 in the development of pulmonary eosinophilia was supported by a marked (90%) reduction in the influx of these cells in IL-4KO mice similarly sensitized and ovalbumin exposed. Animals dosed with CP-690550 (15 mg/kg/d) during the period of antigen sensitization and boost demonstrated marked reductions in BAL eosinophils and levels of IL-13 and eotaxin following ovalbumin aerosol exposure. The JAK-3 inhibitor (1.5-15 mg/kg/d) also effectively reduced the same parameters when administered during the period of antigen challenge. In contrast, the calcineurin inhibitor tacrolimus (10 mg/kg) was effective only when administered during the period of ovalbumin aerosol exposure. These data support the participation of JAK-3 in processes that contribute to pulmonary eosinophilia in the allergic mouse model. CP-690550 represents an intriguing novel therapy for treatment of allergic conditions associated with airway eosinophilia including asthma and rhinitis. PMID:18242596

  12. Comparison of postoperative corneal changes between dry eye and non-dry eye in a murine cataract surgery model

    PubMed Central

    Kwon, Jin Woo; Chung, Yeon Woong; Choi, Jin A; La, Tae Yoon; Jee, Dong Hyun; Cho, Yang Kyung

    2016-01-01

    AIM To compare the effects of the surgical insult of cataract surgery on corneal inflammatory infiltration, neovascularization (NV) and lymphangiogenesis (LY) between the dry eye and non-dry eye in murine cataract surgery models. METHODS We established two groups of animals, one with normal eyes (non-dry eye) and the second with induced dry eyes. In both groups, we used surgical insults to mimic human cataract surgery, which consisted of lens extraction, corneal incision and suture. After harvesting of corneas on the 9th postoperative day and immunohistochemical staining, we compared NV, LY and CD11b+ cell infiltration in the corneas. RESULTS Dry eye group had significantly more inflammatory infiltration (21.75%±7.17% vs 3.65%±1.49%; P=0.049). The dry eye group showed significantly more NV (48.21%±4.02% vs 26.24%±6.01%; P=0.016) and greater levels of LY (9.27%±0.48% vs 4.84%±1.15%; P=0.007). In corneas on which no surgery was performed, there was no induction of NV in both the dry and non-dry group, but dry eye group demonstrated more CD11b+ cells infiltration than the non-dry eye group (0.360%±0.160% vs 0.023%±0.006%; P=0.068). Dry eye group showed more NV than non-dry eye group in both topical PBS application and subconjunctival PBS injection (P=0.020 and 0.000, respectively). CONCLUSION In a murine cataract surgery model, preexisting dry eye can induce more postoperative NV, LY, and inflammation in corneal tissue. PMID:26949638

  13. Dexamethasone Attenuates VEGF Expression and Inflammation but Not Barrier Dysfunction in a Murine Model of Ventilator–Induced Lung Injury

    PubMed Central

    Hegeman, Maria A.; Hennus, Marije P.; Cobelens, Pieter M.; Kavelaars, Annemieke; Jansen, Nicolaas J. G.; Schultz, Marcus J.; van Vught, Adrianus J.; Heijnen, Cobi J.

    2013-01-01

    Background Ventilator–induced lung injury (VILI) is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF) has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar–capillary barrier dysfunction in an established murine model of VILI. Methods Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O (“lower” tidal volumes of ∼7.5 ml/kg; LVT) or 18 cmH2O (“higher” tidal volumes of ∼15 ml/kg; HVT). Dexamethasone was intravenously administered at the initiation of HVT–ventilation. Non–ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. Results Particularly HVT–ventilation led to alveolar–capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro–inflammatory response in lungs of HVT–ventilated mice, without improving alveolar–capillary permeability, gas exchange and pulmonary edema formation. Conclusions Dexamethasone treatment completely abolishes ventilator–induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar–capillary barrier dysfunction in an established murine model of VILI. PMID:23451215

  14. Effect of Control-released Basic Fibroblast Growth Factor Incorporated in β-Tricalcium Phosphate for Murine Cranial Model

    PubMed Central

    Shimizu, Azusa; Tajima, Satoshi; Tobita, Morikuni; Tanaka, Rica; Tabata, Yasuhiko

    2014-01-01

    Background: β-Tricalcium phosphate (β-TCP) is used clinically as a bone substitute, but complete osteoinduction is slow. Basic fibroblast growth factor (bFGF) is important in bone regeneration, but the biological effects are very limited because of the short half-life of the free form. Incorporation in gelatin allows slow release of growth factors during degradation. The present study evaluated whether control-released bFGF incorporated in β-TCP can promote bone regeneration in a murine cranial defect model. Methods: Bilateral cranial defects of 4 mm in diameter were made in 10-week-old male Sprague-Dawley rats treated as follows: group 1, 20 μl saline as control; group 2, β-TCP disk in 20 μl saline; group 3, β-TCP disk in 50 μg bFGF solution; and group 4, β-TCP disk in 50 μg bFGF-containing gelatin hydrogel (n = 6 each). Histological and imaging analyses were performed at 1, 2, and 4 weeks after surgery. Results: The computed tomography value was lower in groups 3 and 4, whereas the rate of osteogenesis was higher histologically in group 4 than in the other groups. The appearance of tartrate-resistant acid phosphate–positive cells and osteocalcin-positive cells and disappearance of osteopontin-positive cells occurred earlier in group 4 than in the other groups. Conclusions: These findings suggest that control-released bFGF incorporated in β-TCP can accelerate bone regeneration in the murine cranial defect model and may be promising for the clinical treatment of cranial defects. PMID:25289319

  15. In vivo efficacy and pharmacokinetics of biapenem in a murine model of ventilator-associated pneumonia with Pseudomonas aeruginosa.

    PubMed

    Yamada, Koichi; Yamamoto, Yoshihiro; Yanagihara, Katsunori; Araki, Nobuko; Harada, Yosuke; Morinaga, Yoshitomo; Izumikawa, Koichi; Kakeya, Hiroshi; Hasegawa, Hiroo; Kohno, Shigeru; Kamihira, Shimeru

    2012-08-01

    Biapenem (BIPM) has high bactericidal activity against Pseudomonas aeruginosa and similar activity in vitro as meropenem (MEPM). We used a murine model to examine the efficacy of biapenem against ventilator-associated pneumonia (VAP) caused by P. aeruginosa. Mice were treated by intraperitoneal injection with 100 mg/kg BIPM or MEPM every 12 h beginning 12 h after inoculation with P. aeruginosa. Survival was evaluated for 7 days, and 24 h after infection, lung histopathology was analyzed and the number of viable bacteria in the lungs and blood was counted. In addition, the pharmacokinetics of BIPM and MEPM were analyzed after the initial treatment. BIPM and MEPM significantly prolonged survival compared to control (P < 0.05). The lungs of mice treated with BIPM or MEPM had significantly fewer viable bacteria (3.54 ± 0.28 vs. 3.77 ± 0.14 log(10) CFU/ml) than in the lungs of control mice (6.65 ± 0.57 log(10) CFU/ml) (P < 0.05). Furthermore, viable bacteria were not detected in the blood of mice treated with BIPM or MEPM (control 2.85 ± 0.85 log(10) CFU/ml) (P < 0.05). Histopathological examination of lung specimens indicated that BIPM and MEPM prevent the progression of lung inflammation, including alveolar neutrophil infiltration and hemorrhage. The % time above MIC for BIPM and MEPM was 15.4% and 18.3% in plasma and 19.8% and 19.8% in lungs, respectively. These results show that BIPM and MEPM significantly prolongs survival and reduces the number of viable bacteria in a murine model of VAP caused by P. aeruginosa. Therefore, BIPM might be a potent and effective treatment for VAP caused by this bacterium. PMID:22215228

  16. Limited efficacy of BMS-911543 in a murine model of Janus kinase 2 V617F myeloproliferative neoplasm

    PubMed Central

    Pomicter, Anthony D.; Eiring, Anna M.; Senina, Anna V.; Zabriskie, Matthew S.; Marvin, James E.; Prchal, Josef T.; O’Hare, Thomas; Deininger, Michael W.

    2015-01-01

    Activation of JAK2, frequently as a result of the JAK2V617F mutation, is a characteristic feature of the classical myeloproliferative neoplasms (MPN) polycythemia vera, essential thrombocythemia and myelofibrosis and is thought to be responsible for the constitutional symptoms associated with these diseases. BMS-911543 is a JAK2 selective inhibitor that induces apoptosis in JAK2-dependent cell lines and inhibits the growth of CD34+ progenitor cells from patients with JAK2V617F - positive MPN. To explore the clinical potential of this inhibitor, we tested BMS-911543 in a murine retroviral transduction – transplantation model of JAK2V617F MPN. Treatment was initiated at two dose levels (3 mg/kg and 10 mg/kg) when the hematocrit exceeded 70%. Following the first week, white blood cell counts were reduced to normal in the high dose group and were maintained well below the vehicle-treated mice throughout the study. However, BMS-911543 had no effect on red blood cell parameters. After 42 days of treatment, the proportion of JAK2V617F - positive cells in hematopoietic tissues was identical or slightly increased compared to controls. Plasma concentrations of IL-6, IL-15, and TNFα were elevated in MPN mice and reduced in the high dose treatment group, while other cytokines were unchanged. Inhibitor activity after dosing was confirmed in a cell culture assay using the plasma of dosed mice and pSTAT5 flow cytometry. Collectively, these results show that BMS-911543 has limited activity in this murine model of JAK2V617F – driven MPN and suggest that targeting JAK2 alone may be insufficient to achieve effective disease control. PMID:25912019

  17. Schistosoma mansoni antigens modulate the allergic response in a murine model of ovalbumin-induced airway inflammation.

    PubMed

    Cardoso, L S; Oliveira, S C; Góes, A M; Oliveira, R R; Pacífico, L G; Marinho, F V; Fonseca, C T; Cardoso, F C; Carvalho, E M; Araujo, M I

    2010-05-01

    Schistosoma mansoni infection has been associated with protection against allergies. The mechanisms underlying this association may involve regulatory cells and cytokines. We evaluated the immune response induced by the S. mansoni antigens Sm22.6, PIII and Sm29 in a murine model of ovalbumin (OVA)-induced airway inflammation. BALB/c mice were sensitized with subcutaneously injected OVA-alum and challenged with aerolized OVA. Mice were given three doses of the different S. mansoni antigens. Lung histopathology, cellularity of bronchoalveolar lavage (BAL) and eosinophil peroxidase activity in lung were evaluated. Immunoglobulin (Ig)E levels in serum and cytokines in BAL were also measured. Additionally, we evaluated the frequency of CD4+forkhead box P3 (FoxP3)+ T cells in cultures stimulated with OVA and the expression of interleukin (IL)-10 by these cells. The number of total cells and eosinophils in BAL and the levels of OVA-specific IgE were reduced in the immunized mice. Also, the levels of IL-4 and IL-5 in the BAL of mice immunized with PIII and Sm22.6 were decreased, while the levels of IL-10 were higher in mice immunized with Sm22.6 compared to the non-immunized mice. The frequency of CD4+FoxP3+ T cells was higher in the groups of mice who received Sm22.6, Sm29 and PIII, being the expression of IL-10 by these cells only higher in mice immunized with Sm22.6. We concluded that the S. mansoni antigens used in this study are able to down-modulate allergic inflammatory mediators in a murine model of airway inflammation and that the CD4+FoxP3+ T cells, even in the absence of IL-10 expression, might play an important role in this process. PMID:20132231

  18. Schistosoma mansoni antigens modulate the allergic response in a murine model of ovalbumin-induced airway inflammation

    PubMed Central

    Cardoso, L S; Oliveira, S C; Góes, A M; Oliveira, R R; Pacífico, L G; Marinho, F V; Fonseca, C T; Cardoso, F C; Carvalho, E M; Araujo, M I

    2010-01-01

    Schistosoma mansoni infection has been associated with protection against allergies. The mechanisms underlying this association may involve regulatory cells and cytokines. We evaluated the immune response induced by the S. mansoni antigens Sm22·6, PIII and Sm29 in a murine model of ovalbumin (OVA)-induced airway inflammation. BALB/c mice were sensitized with subcutaneously injected OVA-alum and challenged with aerolized OVA. Mice were given three doses of the different S. mansoni antigens. Lung histopathology, cellularity of bronchoalveolar lavage (BAL) and eosinophil peroxidase activity in lung were evaluated. Immunoglobulin (Ig)E levels in serum and cytokines in BAL were also measured. Additionally, we evaluated the frequency of CD4+forkhead box P3 (FoxP3)+ T cells in cultures stimulated with OVA and the expression of interleukin (IL)-10 by these cells. The number of total cells and eosinophils in BAL and the levels of OVA-specific IgE were reduced in the immunized mice. Also, the levels of IL-4 and IL-5 in the BAL of mice immunized with PIII and Sm22·6 were decreased, while the levels of IL-10 were higher in mice immunized with Sm22·6 compared to the non-immunized mice. The frequency of CD4+FoxP3+ T cells was higher in the groups of mice who received Sm22·6, Sm29 and PIII, being the expression of IL-10 by these cells only higher in mice immunized with Sm22·6. We concluded that the S. mansoni antigens used in this study are able to down-modulate allergic inflammatory mediators in a murine model of airway inflammation and that the CD4+FoxP3+ T cells, even in the absence of IL-10 expression, might play an important role in this process. PMID:20132231

  19. Bone marrow stem cells assuage radiation-induced damage in a murine model of distraction osteogenesis: A histomorphometric evaluation.

    PubMed

    Zheutlin, Alexander R; Deshpande, Sagar S; Nelson, Noah S; Kang, Stephen Y; Gallagher, Kathleen K; Polyatskaya, Yekaterina; Rodriguez, Jose J; Donneys, Alexis; Ranganathan, Kavitha; Buchman, Steven R

    2016-05-01

    The purpose of this study is to determine if intraoperatively placed bone marrow stem cells (BMSCs) will permit successful osteocyte and mature bone regeneration in an isogenic murine model of distraction osteogenesis (DO) following radiation therapy (XRT). Lewis rats were split into three groups, DO only (Control), XRT followed by DO (xDO) and XRT followed by DO with intraoperatively placed BMSCs (xDO-BMSC). Coronal sections from the distraction site were obtained, stained and analyzed via statistical analysis with analysis of variance (ANOVA) and subsequent Tukey or Games-Howell post-hoc tests. Comparison of the xDO-BMSC and xDO groups demonstrated significantly improved osteocyte count (87.15 ± 10.19 vs. 67.88 ± 15.38, P = 0.00), and empty lacunae number (2.18 ± 0.79 vs 12.34 ± 6.61, P = 0.00). Quantitative analysis revealed a significant decrease in immature osteoid volume relative to total volume (P = 0.00) and improved the ratio of mature woven bone to immature osteoid (P = 0.02) in the xDO-BMSC compared with the xDO group. No significant differences were found between the Control and xDO-BMSC groups. In an isogenic murine model of DO, BMSC therapy assuaged XRT-induced cellular depletion, resulting in a significant improvement in histological and histomorphometric outcomes. PMID:27059203

  20. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, α particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by γH2AX

  1. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, α particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by γH2AX

  2. Factors that affect postnatal bone growth retardation in the twitcher murine model of Krabbe disease

    PubMed Central

    Contreras, Miguel Agustin; Ries, William Louis; Shanmugarajan, Srinivasan; Arboleda, Gonzalo; Singh, Inderjit; Singh, Avtar Kaur

    2010-01-01

    Krabbe disease is an inherited lysosomal disorder in which galactosylsphingosine (psychosine) accumulates mainly in the central nervous system. To gain insight into the possible mechanism(s) that may be participating in the inhibition of the postnatal somatic growth described in the animal model of this disease (twitcher mouse, twi), we studied their femora. This study reports that twi femora are smaller than of those of wild type (wt), and present with abnormality of marrow cellularity, bone deposition (osteoblastic function), and osteoclastic activity. Furthermore, lipidomic analysis indicates altered sphingolipid homeostasis, but without significant changes in the levels of sphingolipid-derived intermediates of cell death (ceramide) or the levels of the osteoclast-osteoblast coupling factor (sphingosine-1-phosphate). However, there was significant accumulation of psychosine in the femora of adult twi animals as compared to wt, without induction of tumor necrosis factor-alpha or interleukin-6. Analysis of insulin-like growth factor-1 (IGF-1) plasma levels, a liver secreted hormone known to play a role in bone growth, indicated a drastic reduction in twi animals when compared to wt. To identify the cause of the decrease, we examined the IGF-1 mRNA expression and protein levels in the liver. The results indicated a significant reduction of IGF-1 mRNA as well as protein levels in the liver from twi as compared to wt littermates. Our data suggest that a combination of endogenous (psychosine) and endocrine (IGF-1) factors play a role in the inhibition of postnatal bone growth in twi mice; and further suggest that derangements of liver function may be contributing, at least in part, to this alteration. PMID:20441793

  3. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies

    PubMed Central

    Robertis, Mariangela De; Massi, Emanuela; Poeta, Maria Luana; Carotti, Simone; Morini, Sergio; Cecchetelli, Loredana; Signori, Emanuela; Fazio, Vito Michele

    2011-01-01

    Colorectal cancer (CRC) is a major health problem in industrialized countries. Although inflammation-linked carcinogenesis is a well accepted concept and is often observed within the gastrointestinal tract, the underlying mechanisms remain to be elucidated. Inflammation can indeed provide initiating and promoting stimuli and mediators, generating a tumour-prone microenvironment. Many murine models of sporadic and inflammation-related colon carcinogenesis have been developed in the last decade, including chemically induced CRC models, genetically engineered mouse models, and xenoplants. Among the chemically induced CRC models, the combination of a single hit of azoxymethane (AOM) with 1 week exposure to the inflammatory agent dextran sodium sulphate (DSS) in rodents has proven to dramatically shorten the latency time for induction of CRC and to rapidly recapitulate the aberrant crypt foci–adenoma–carcinoma sequence that occurs in human CRC. Because of its high reproducibility and potency, as well as the simple and affordable mode of application, the AOM/DSS has become an outstanding model for studying colon carcinogenesis and a powerful platform for chemopreventive intervention studies. In this article we highlight the histopathological and molecular features and describe the principal genetic and epigenetic alterations and inflammatory pathways involved in carcinogenesis in AOM/DSS–treated mice; we also present a general overview of recent experimental applications and preclinical testing of novel therapeutics in the AOM/DSS model. PMID:21483655

  4. Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma

    PubMed Central

    2011-01-01

    Background Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR. Methods To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization. Results Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models. Conclusions This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes

  5. Sustained activation of fibroblast transforming growth factor-beta/Smad signaling in a murine model of scleroderma.

    PubMed

    Takagawa, Shinsuke; Lakos, Gabriella; Mori, Yasuji; Yamamoto, Toshiyuki; Nishioka, Kiyoshi; Varga, John

    2003-07-01

    Transforming growth factor-beta is responsible for triggering a cascade of events leading to fibrosis in scleroderma. The Smads are intracellular signal transducers recently shown to mediate fibroblast activation and other profibrotic responses elicited by transforming growth factor-betain vitro. To understand better the involvement of Smads in the pathogenesis of fibrosis, we examined Smad expression and activation in situ in a murine model of scleroderma. Bleomycin injections induced striking dermal infiltration with macrophages by 3 d, and progressive fibrosis by 2 wk. Infiltrating macrophages and resident fibroblasts expressed Smad3, the positive mediator for transforming growth factor-beta responses. Importantly, in bleomycin-injected skin, fibroblasts showed predominantly nuclear localization of Smad3 and intense staining for phospho-Smad2/3. Furthermore, phosphorylated Smad2/3 in fibroblasts was detected even after the resolution of inflammation. Expression of Smad7, the endogenous inhibitor of transforming growth factor-beta/Smad signaling, was strongly induced in dermal cells by transforming growth factor-beta, but not by bleomycin injections. Collectively, these results indicate that bleomycin-induced murine scleroderma is associated with rapid and sustained induction of transforming growth factor-beta/Smad signaling in resident dermal fibroblasts. Despite apparent activation of the intracellular transforming growth factor-beta signaling pathway in the lesional dermis, the expression of transforming growth factor-beta-inducible Smad7 was not upregulated. In light of the critical function of Smad7 as an endogenous inhibitor of Smad signaling that restricts the duration and magnitude of transforming growth factor-beta responses, and as a mediator of apoptosis, relative Smad7 deficiency observed in the present studies may account for sustained activation of transforming growth factor-beta/Smad signaling in lesional tissues. These findings raise the

  6. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis.

    PubMed

    Afonso, Marta B; Rodrigues, Pedro M; Carvalho, Tânia; Caridade, Marta; Borralho, Paula; Cortez-Pinto, Helena; Castro, Rui E; Rodrigues, Cecília M P

    2015-10-01

    Hepatocyte cell death, inflammation and oxidative stress constitute key pathogenic mechanisms underlying non-alcoholic fatty liver disease (NAFLD). We aimed to investigate the role of necroptosis in human and experimental NAFLD and its association with tumour necrosis factor α (TNF-α) and oxidative stress. Serum markers of necrosis, liver receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like (MLKL) were evaluated in control individuals and patients with NAFLD. C57BL/6 wild-type (WT) or RIP3-deficient (RIP3(-/-)) mice were fed a high-fat choline-deficient (HFCD) or methionine and choline-deficient (MCD) diet, with subsequent histological and biochemical analysis of hepatic damage. In primary murine hepatocytes, necroptosis and oxidative stress were also assessed after necrostatin-1 (Nec-1) treatment or RIP3 silencing. We show that circulating markers of necrosis and TNF-α, as well as liver RIP3 and MLKL phosphorylation were increased in NAFLD. Likewise, RIP3 and MLKL protein levels and TNF-α expression were increased in the liver of HFCD and MCD diet-fed mice. Moreover, RIP3 and MLKL sequestration in the insoluble protein fraction of NASH (non-alcoholic steatohepatitis) mice liver lysates represented an early event during stetatohepatitis progression. Functional studies in primary murine hepatocytes established the association between TNF-α-induced RIP3 expression, activation of necroptosis and oxidative stress. Strikingly, RIP3 deficiency attenuated MCD diet-induced liver injury, steatosis, inflammation, fibrosis and oxidative stress. In conclusion, necroptosis is increased in the liver of NAFLD patients and in experimental models of NASH. Further, TNF-α triggers RIP3-dependent oxidative stress during hepatocyte necroptosis. As such, targeting necroptosis appears to arrest or at least impair NAFLD progression. PMID:26201023

  7. Targeted disruption of the murine Facc gene: Towards the establishment of a mouse model for Fanconi anemia

    SciTech Connect

    Chen, M.; Auerbach, W.; Buchwald, M.

    1994-09-01

    Fanconi anemia (FA) is an autosomal recessive disease characterized by bone marrow failure, congenital malformations and predisposition to malignancies. The gene responsible for the defect in FA group C has been cloned and designated the Fanconi Anemia Complementation Group C gene (FACC). A murine cDNA for this gene (Facc) was also cloned. Here we report our progress in the establishment of a mouse model for FA. The mouse Facc cDNA was used as probe to screen a genomic library of mouse strain 129. More than twenty positive clones were isolated. Three of them were mapped and found to be overlapping clones, encompassing the genomic region from exon 8 to the end of the 3{prime} UTR of the mouse cDNA. A targeting vector was constructed using the most 5{prime} mouse genomic sequence available. The end result of the homologous recombination is that exon 8 is deleted and the neo gene is inserted. The last exon, exon 14, is essential for the complementing function of the FACC gene product; the disruption in the middle of the murine Facc gene should render this locus biologically inactive. This targeting vector was linearized and electroporated into R1 embryonic stem (ES) cells which were derived from the 129 mouse. Of 102 clones screened, 19 positive cell lines were identified. Four targeted cell lines have been used to produce chimeric mice. 129-derived ES cells were aggregated ex vivo into the morulas derived from CD1 mice and then implanted into foster mothers. 22 chimeras have been obtained. Moderately and strongly chimeric mice have been bred to test for germline transmission. Progeny with the expected coat color derived from 2 chimeras are currently being examined to confirm transmission of the targeted allele.

  8. DETC Induces Leishmania Parasite Killing in Human In Vitro and Murine In Vivo Models: A Promising Therapeutic Alternative in Leishmaniasis

    PubMed Central

    Khouri, Ricardo; Novais, Fernanda; Santana, Gisélia; de Oliveira, Camila Indiani; Vannier dos Santos, Marcos André; Barral, Aldina; Barral-Netto, Manoel; Van Weyenbergh, Johan

    2010-01-01

    Background Chemotherapy remains the primary tool for treatment and control of human leishmaniasis. However, currently available drugs present serious problems regarding side-effects, variable efficacy, and cost. Affordable and less toxic drugs are urgently needed for leishmaniasis. Methodology/Principal Findings We demonstrate, by microscopy and viability assays, that superoxide dismutase inhibitor diethyldithiocarbamate (DETC) dose-dependently induces parasite killing (p<0.001) and is able to “sterilize” Leishmania amazonensis infection at 2 mM in human macrophages in vitro. We also show that DETC-induced superoxide production (p<0.001) and parasite destruction (p<0.05) were reverted by the addition of the antioxidant N-acetylcysteine, indicating that DETC-induced killing occurs through oxidative damage. Furthermore, ultrastructural analysis by electron microscopy demonstrates a rapid and highly selective destruction of amastigotes in the phagosome upon DETC treatment, without any apparent damage to the host cell, including its mitochondria. In addition, DETC significantly induced parasite killing in Leishmania promastigotes in axenic culture. In murine macrophages infected with Leishmania braziliensis, DETC significantly induced in vitro superoxide production (p = 0.0049) and parasite killing (p = 0.0043). In vivo treatment with DETC in BALB/C mice infected with Leishmania braziliensis caused a significant decrease in lesion size (p<0.0001), paralleled by a 100-fold decrease (p = 0.0087) in parasite burden. Conclusions/Significance Due to its strong leishmanicidal effect in human macrophages in vitro, its in vivo effectiveness in a murine model, and its previously demonstrated in vivo safety profile in HIV treatment, DETC treatment might be considered as a valuable therapeutic option in human leishmaniasis, including HIV/Leishmania co-infection. PMID:21200432

  9. Interferon-Inducible CXC Chemokines Directly Contribute to Host Defense against Inhalational Anthrax in a Murine Model of Infection

    PubMed Central

    Crawford, Matthew A.; Burdick, Marie D.; Glomski, Ian J.; Boyer, Anne E.; Barr, John R.; Mehrad, Borna; Strieter, Robert M.; Hughes, Molly A.

    2010-01-01

    Chemokines have been found to exert direct, defensin-like antimicrobial activity in vitro, suggesting that, in addition to orchestrating cellular accumulation and activation, chemokines may contribute directly to the innate host response against infection. No observations have been made, however, demonstrating direct chemokine-mediated promotion of host defense in vivo. Here, we show that the murine interferon-inducible CXC chemokines CXCL9, CXCL10, and CXCL11 each exert direct antimicrobial effects in vitro against Bacillus anthracis Sterne strain spores and bacilli including disruptions in spore germination and marked reductions in spore and bacilli viability as assessed using CFU determination and a fluorometric assay of metabolic activity. Similar chemokine-mediated antimicrobial activity was also observed against fully virulent Ames strain spores and encapsulated bacilli. Moreover, antibody-mediated neutralization of these CXC chemokines in vivo was found to significantly increase host susceptibility to pulmonary B. anthracis infection in a murine model of inhalational anthrax with disease progression characterized by systemic bacterial dissemination, toxemia, and host death. Neutralization of the shared chemokine receptor CXCR3, responsible for mediating cellular recruitment in response to CXCL9, CXCL10, and CXCL11, was not found to increase host susceptibility to inhalational anthrax. Taken together, our data demonstrate a novel, receptor-independent antimicrobial role for the interferon-inducible CXC chemokines in pulmonary innate immunity in vivo. These data also support an immunomodulatory approach for effectively treating and/or preventing pulmonary B. anthracis infection, as well as infections caused by pathogenic and potentially, multi-drug resistant bacteria including other spore-forming organisms. PMID:21124994

  10. Comparison of Effects of Ivabradine versus Carvedilol in Murine Model with the Coxsackievirus B3-Induced Viral Myocarditis

    PubMed Central

    Yue-Chun, Li; Teng, Zhang; Na-Dan, Zhou; Li-Sha, Ge; Qin, Luo; Xue-Qiang, Guan; Jia-Feng, Lin

    2012-01-01

    Background Elevated heart rate is associated with increased cardiovascular morbidity. The selective If current inhibitor ivabradine reduces heart rate without affecting cardiac contractility, and has been shown to be cardioprotective in the failing heart. Ivabradine also exerts some of its beneficial effects by decreasing cardiac proinflammatory cytokines and inhibiting peroxidants and collagen accumulation in atherosclerosis or congestive heart failure. However, the effects of ivabradine in the setting of acute viral myocarditis and on the cytokines, oxidative stress and cardiomyocyte apoptosis have not been investigated. Methodology/Principal Findings The study was designed to compare the effects of ivabradine and carvedilol in acute viral myocarditis. In a coxsackievirus B3 murine myocarditis model (Balb/c), effects of ivabradine and carvedilol (a nonselective β-adrenoceptor antagonist) on myocardial histopathological changes, cardiac function, plasma noradrenaline, cytokine levels, cardiomyocyte apoptosis, malondialdehyde and superoxide dismutase contents were studied. Both ivabradine and carvedilol similarly and significantly reduced heart rate, attenuated myocardial lesions and improved the impairment of left ventricular function. In addition, ivabradine treatment as well as carvedilol treatment showed significant effects on altered myocardial cytokines with a decrease in the amount of plasma noradrenaline. The increased myocardial MCP-1, IL-6, and TNF-α. in the infected mice was significantly attenuated in the ivabradine treatment group. Only carvedilol had significant anti-oxidative and anti-apoptoic effects in coxsackievirus B3-infected mice. Conclusions/Significance These results show that the protective effects of heart rate reduction with ivabradine and carvedilol observed in the acute phase of coxsackievirus B3 murine myocarditis may be due not only to the heart rate reduction itself but also to the downregulation of inflammatory cytokines. PMID

  11. ICAM-1–expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia

    PubMed Central

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R.; Hordijk, Peter L.; Hogg, Nancy

    2016-01-01

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1–deficient mice were defective in these effector functions. Mechanistically, ICAM-1–mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  12. Prevention of Helicobacter pylori infection by lactobacilli in a gnotobiotic murine model.

    PubMed Central

    Kabir, A M; Aiba, Y; Takagi, A; Kamiya, S; Miwa, T; Koga, Y

    1997-01-01

    BACKGROUND: Helicobacter pylori is a bacterium which causes gastric inflammatory diseases. Oral inoculation of H pylori usually results in only a temporary colonisation without a successful infection in the stomach of conventional mice in which lactobacilli are the predominant indigenous bacteria. AIM: To determine whether lactobacilli exert an inhibitory effect on colonisation by H pylori in the stomach. METHODS: The effects of H pylori on attachment to murine and human gastric epithelial cells and the H pylori mediated release of interleukin-8 (IL-8) by these cells were examined in vitro. Lactobacillus salivarius infected gnotobiotic BALB/c mice and control germ free mice were inoculated orally with H pylori to examine whether L salivarius can inhibit colonisation by H pylori. RESULTS: L salivarius inhibited both the attachment and IL-8 release in vitro. H pylori could not colonise the stomach of L salivarius infected gnotobiotic BALB/c mice, but colonised in large numbers and subsequently caused active gastritis in germ free mice. In addition, L salivarius given after H pylori implantation could eliminate colonisation by H pylori. CONCLUSION: These findings suggest the possibility of lactobacilli being used as probiotic agents against H pylori. Images PMID:9274471

  13. Antimyocarditic activity of the guanine derivative BIOLF-70 in a coxsackievirus B3 murine model.

    PubMed Central

    Gauntt, C J; Arizpe, H M; Kung, J T; Ogilvie, K K; Cheriyan, U O

    1985-01-01

    Prophylactic administration of a nontoxic dose of 9-[[2-benzyloxyl-1-(benzyloxymethyl)ethoxy]methyl]-6-chlo roguanine (BIOLF-70) to mice reduced the number of myocarditic lesions induced by coxsackievirus B3 (CVB3). BIOLF-70 exhibited minimal antiviral activity against CVB3 in HeLa cells and murine neonatal skin fibroblasts and minimally reduced CVB3 yields in heart tissues. The drug had no effect on serum anti-CVB3 neutralizing antibody titers and did not induce the production of interferon. Flow microfluorometric analyses of splenic lymphocytes taken from BIOLF-70-treated, CVB3-inoculated mice at 7 days postinoculation showed that the proportion of T lymphocytes was increased, as measured by fluorescent staining of Thy-1 and Lyt-2 surface markers, compared with the proportion of T lymphocytes in splenic cells from virus-inoculated or BIOLF-70-treated or normal groups of mice. Splenic lymphocytes from BIOLF-70-treated, CVB3-inoculated mice showed reduced cytotoxic activity against CVB3-infected target fibroblasts. Splenic cells from BIOLF-70-treated, CVB3-inoculated mice had slightly higher natural killer cell activity than did those from the other three groups of mice, which had comparatively similar levels of natural killer cell activity. The data suggest that BIOLF-70 exerts antimyocarditic activity perhaps by some antiviral activity in heart tissues and by immunomodulatory mechanisms which appear to involve T suppressor or T cytotoxic lymphocyte subpopulations and natural killer cells. PMID:2580480

  14. Reduced synaptic activity in neuronal networks derived from embryonic stem cells of murine Rett syndrome model

    PubMed Central

    Barth, Lydia; Sütterlin, Rosmarie; Nenniger, Markus; Vogt, Kaspar E.

    2014-01-01

    Neurodevelopmental diseases such as the Rett syndrome (RTT) have received renewed attention, since the mechanisms involved may underlie a broad range of neuropsychiatric disorders such as schizophrenia and autism. In vertebrates early stages in the functional development of neurons and neuronal networks are difficult to study. Embryonic stem cell-derived neurons provide an easily accessible tool to investigate neuronal differentiation and early network formation. We used in vitro cultures of neurons derived from murine embryonic stem cells missing the methyl-CpG-binding protein 2 (MECP2) gene (MeCP2-/y) and from wild type cells of the corresponding background. Cultures were assessed using whole-cell patch-clamp electrophysiology and immunofluorescence. We studied the functional maturation of developing neurons and the activity of the synaptic connections they formed. Neurons exhibited minor differences in the developmental patterns for their intrinsic parameters, such as resting membrane potential and excitability; with the MeCP2-/y cells showing a slightly accelerated development, with shorter action potential half-widths at early stages. There was no difference in the early phase of synapse development, but as the cultures matured, significant deficits became apparent, particularly for inhibitory synaptic activity. MeCP2-/y embryonic stem cell-derived neuronal cultures show clear developmental deficits that match phenotypes observed in slice preparations and thus provide a compelling tool to further investigate the mechanisms behind RTT pathophysiology. PMID:24723848

  15. Evaluation of therapeutic potential of nanosilver particles synthesised using aloin in experimental murine mastitis model.

    PubMed

    Chaitanya Kumar, Thota Venkata; Muralidhar, Yegireddy; Prasad, Pagadala Eswara; Prasad, Tollamadugu Naga Venkata Krishna Vara; Alpha Raj, Mekapogu

    2013-09-01

    Nanobiotechnology is an emerging biological branch of nanotechnology. Application of nanoparticles with specific size and shape in biology has already shown unforeseen and interesting results. A study was conducted to evaluate the therapeutic potential of phytogenically derived aloin mediated nanosilver particles (AAgNPs), prepared by reduction of silver nitrate with aloin, in Staphylococcus aureus induced murine mastitis. A total of 40 female mice were divided into five groups of eight animals each. Group I served as lactating control, groups II-V were inoculated with 20 μl of 24 h broth culture of S. aureus containing 4.0 × 105 cfu/quarter under ketamine anaesthesia. After 6 h post inoculation, groups III and IV received 20 μl of aloin nanosilver (AAgNPs) through intramammary and intraperitoneal routes, respectively. Group V received antibiotic cefepime at 1 mg/kg body weight through the intra-peritoneal route. After 18 h post-treatment, serum C reactive protein, weights of mammary glands, mammary gland bacterial load, thiobarbituric acid reactive substances content, reduced glutathione content, superoxide dismutase activity and catalase activity and histopathology were determined. The compound showed a minimum inhibitory concentration of 21.8 ng/ml against S. aureus. Significant reduction (98%) in poly-morpho nuclear cell infiltration was observed with AAgNPs than antibiotic (50%). PMID:24028805

  16. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia.

    PubMed

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R; Hordijk, Peter L; Hogg, Nancy; Nourshargh, Sussan

    2016-02-18

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  17. Reduced synaptic activity in neuronal networks derived from embryonic stem cells of murine Rett syndrome model.

    PubMed

    Barth, Lydia; Sütterlin, Rosmarie; Nenniger, Markus; Vogt, Kaspar E

    2014-01-01

    Neurodevelopmental diseases such as the Rett syndrome (RTT) have received renewed attention, since the mechanisms involved may underlie a broad range of neuropsychiatric disorders such as schizophrenia and autism. In vertebrates early stages in the functional development of neurons and neuronal networks are difficult to study. Embryonic stem cell-derived neurons provide an easily accessible tool to investigate neuronal differentiation and early network formation. We used in vitro cultures of neurons derived from murine embryonic stem cells missing the methyl-CpG-binding protein 2 (MECP2) gene (MeCP2-/y) and from wild type cells of the corresponding background. Cultures were assessed using whole-cell patch-clamp electrophysiology and immunofluorescence. We studied the functional maturation of developing neurons and the activity of the synaptic connections they formed. Neurons exhibited minor differences in the developmental patterns for their intrinsic parameters, such as resting membrane potential and excitability; with the MeCP2-/y cells showing a slightly accelerated development, with shorter action potential half-widths at early stages. There was no difference in the early phase of synapse development, but as the cultures matured, significant deficits became apparent, particularly for inhibitory synaptic activity. MeCP2-/y embryonic stem cell-derived neuronal cultures show clear developmental deficits that match phenotypes observed in slice preparations and thus provide a compelling tool to further investigate the mechanisms behind RTT pathophysiology. PMID:24723848

  18. Adoptive transfer of dendritic cells modulates immunogenesis and tolerogenesis in a neonatal model of murine cutaneous leishmaniasis

    PubMed Central

    Ponce, Loida V; Corado, José; Díaz, Nilka L; Tapia, Felix J

    2005-01-01

    We evaluated the adoptive transfer of DCs on Leishmania (L.) mexicana-infected neonatal BALB/c mice. DCs were isolated and purified from the spleens of the following donor groups: a) Adult BALB/c mice infected during adulthood with L. (L) mexicana; b) Adult BALB/c mice infected during neonatal life; c) Healthy neonatal BALB/c mice; d) Healthy adult BALB/c mice. A neonatal model of infection, generated after inoculation with 5 × 105 promastigotes of L. (L) mexicana, was used as the infection control group. Sixteen hours after intraperitoneal transfer of DCs (1 × 103, 1 × 105, or 1 × 106 cells/ml), neonatal recipient BALB/c mice were infected. The adoptive transfer of DCs diminished disease progression in neonatal mice. This reduction depends on the quantity and provenance of transferred DCs, since the effect was more evident with high numbers of DCs from adult mice infected during adulthood and healthy neonatal mice. Protection was significantly reduced in animals receiving DCs from healthy adult mice but it was absent in mice receiving DCs from adult mice infected during neonatal life. These results suggest that genetic susceptibility to Leishmania infection can be modified during neonatal life, and that the period of life when antigens are encountered is crucial in influencing the capacity of DCs to induce resistance or tolerance. PMID:15670331

  19. Examining a Model of Life Satisfaction among Unemployed Adults

    ERIC Educational Resources Information Center

    Duffy, Ryan D.; Bott, Elizabeth M.; Allan, Blake A.; Torrey, Carrie L.

    2013-01-01

    The present study examined a model of life satisfaction among a diverse sample of 184 adults who had been unemployed for an average of 10.60 months. Using the Lent (2004) model of life satisfaction as a framework, a model was tested with 5 hypothesized predictor variables: optimism, job search self-efficacy, job search support, job search…

  20. A Coping Model for Adult Survivors of Childhood Sexual Abuse.

    ERIC Educational Resources Information Center

    Draucker, Claire B.

    1995-01-01

    A group of 149 adult survivors of childhood sexual abuse was tested using a causal model that identifies relationships among sexual abuse situation characteristics, the accomplishment of cognitive coping tasks, and long-term effects. Results indicated the model did not fit the data. A revised model is proposed and examined. (JBJ)

  1. The Changing Nature of Adult Education in the Age of Transnational Migration: Toward a Model of Recognitive Adult Education

    ERIC Educational Resources Information Center

    Guo, Shibao

    2015-01-01

    This chapter examines the changing nature of adult education in the age of transnational migration and proposes recognitive adult education as an inclusive model that acknowledges and affirms cultural difference and diversity as positive and desirable assets.

  2. Efficacy of Lysophosphatidylcholine in Combination with Antimicrobial Agents against Acinetobacter baumannii in Experimental Murine Peritoneal Sepsis and Pneumonia Models.

    PubMed

    Parra Millán, R; Jiménez Mejías, M E; Sánchez Encinales, V; Ayerbe Algaba, R; Gutiérrez Valencia, A; Pachón Ibáñez, M E; Díaz, C; Pérez Del Palacio, J; López Cortés, L F; Pachón, J; Smani, Y

    2016-08-01

    Immune response stimulation to prevent infection progression may be an adjuvant to antimicrobial treatment. Lysophosphatidylcholine (LPC) is an immunomodulator involved in immune cell recruitment and activation. In this study, we aimed to evaluate the efficacy of LPC in combination with colistin, tigecycline, or imipenem in experimental murine models of peritoneal sepsis and pneumonia. We used Acinetobacter baumannii strain Ab9, which is susceptible to colistin, tigecycline, and imipenem, and multidrug-resistant strain A