Science.gov

Sample records for adult murine offspring

  1. The effect of maternal pravastatin therapy on adverse sensorimotor outcomes of the offspring in a murine model of preeclampsia.

    PubMed

    Carver, Alissa R; Tamayo, Esther; Perez-Polo, J Regino; Saade, George R; Hankins, Gary D V; Costantine, Maged M

    2014-04-01

    Animal and human studies show that in-utero exposure to preeclampsia alters fetal programming and results in long-term adverse cardiovascular outcomes in the offspring. Human epidemiologic data also suggest that offspring born to preeclamptic mothers are also at risk of adverse long term neurodevelopmental outcomes. Pravastatin, a hydrophilic lipid-lowering drug with pleiotropic properties, was found to prevent the altered cardiovascular phenotype of preeclampsia and restore fetal growth in animal models, providing biological plausibility for its use as a preventive agent for preeclampsia. In this study, we used a murine model of preeclampsia based on adenovirus over-expression of the anti-angiogenic factor soluble Fms-like tyrosine kinase 1, and demonstrated that adult offspring born to preeclamptic dams perform poorly on assays testing vestibular function, balance, and coordination, and that prenatal pravastatin treatment prevents impairment of fetal programming.

  2. Maternal exercise during pregnancy promotes physical activity in adult offspring

    USDA-ARS?s Scientific Manuscript database

    Previous rodent studies have shown that maternal voluntary exercise during pregnancy leads to metabolic changes in adult offspring. We set out to test whether maternal voluntary exercise during pregnancy also induces persistent changes in voluntary physical activity in the offspring. Adult C57BL/6J ...

  3. Perinatal exercise improves glucose homeostasis in adult offspring

    PubMed Central

    Carter, Lindsay G.; Lewis, Kaitlyn N.; Wilkerson, Donald C.; Tobia, Christine M.; Ngo Tenlep, Sara Y.; Shridas, Preetha; Garcia-Cazarin, Mary L.; Wolff, Gretchen; Andrade, Francisco H.; Charnigo, Richard J.; Esser, Karyn A.; Egan, Josephine M.; de Cabo, Rafael

    2012-01-01

    Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P < 0.05 for both). Blood glucose concentrations were reduced to lower values in response to an intraperitoneal insulin tolerance test for both female and male adult offspring of parents with access to running wheels (P < 0.05 and P < 0.01, respectively). Male offspring from exercised dams showed increased percent lean mass and decreased fat mass percent compared with male offspring from sedentary dams (P < 0.01 for both), but these parameters were unchanged in female offspring. These data suggest that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long-term glucose homeostasis in offspring. PMID:22932781

  4. Perinatal exercise improves glucose homeostasis in adult offspring.

    PubMed

    Carter, Lindsay G; Lewis, Kaitlyn N; Wilkerson, Donald C; Tobia, Christine M; Ngo Tenlep, Sara Y; Shridas, Preetha; Garcia-Cazarin, Mary L; Wolff, Gretchen; Andrade, Francisco H; Charnigo, Richard J; Esser, Karyn A; Egan, Josephine M; de Cabo, Rafael; Pearson, Kevin J

    2012-10-15

    Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P < 0.05 for both). Blood glucose concentrations were reduced to lower values in response to an intraperitoneal insulin tolerance test for both female and male adult offspring of parents with access to running wheels (P < 0.05 and P < 0.01, respectively). Male offspring from exercised dams showed increased percent lean mass and decreased fat mass percent compared with male offspring from sedentary dams (P < 0.01 for both), but these parameters were unchanged in female offspring. These data suggest that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long-term glucose homeostasis in offspring.

  5. Maternal exercise during pregnancy promotes physical activity in adult offspring.

    PubMed

    Eclarinal, Jesse D; Zhu, Shaoyu; Baker, Maria S; Piyarathna, Danthasinghe B; Coarfa, Cristian; Fiorotto, Marta L; Waterland, Robert A

    2016-07-01

    Previous rodent studies have shown that maternal voluntary exercise during pregnancy leads to metabolic changes in adult offspring. We set out to test whether maternal voluntary exercise during pregnancy also induces persistent changes in voluntary physical activity in the offspring. Adult C57BL/6J female mice were randomly assigned to be caged with an unlocked (U) or locked (L) running wheel before and during pregnancy. Maternal running behavior was monitored during pregnancy, and body weight, body composition, food intake, energy expenditure, total cage activity, and running wheel activity were measured in the offspring at various ages. U offspring were slightly heavier at birth, but no group differences in body weight or composition were observed at later ages (when mice were caged without access to running wheels). Consistent with our hypothesis, U offspring were more physically active as adults. This effect was observed earlier in female offspring (at sexual maturation). Remarkably, at 300 d of age, U females achieved greater fat loss in response to a 3-wk voluntary exercise program. Our findings show for the first time that maternal physical activity during pregnancy affects the offspring's lifelong propensity for physical activity and may have important implications for combating the worldwide epidemic of physical inactivity and obesity.-Eclarinal, J. D., Zhu, S., Baker, M. S., Piyarathna, D. B., Coarfa, C., Fiorotto, M. L., Waterland, R. A. Maternal exercise during pregnancy promotes physical activity in adult offspring. © FASEB.

  6. Perceived parental control in childhood and sexual preferences of adult offspring.

    PubMed

    Khaleque, Abdul

    2003-06-01

    To assess the relation between perceived parental control during childhood and sexual preferences of offspring during adulthood, 80 adult offspring of heterosexual orientation reported significantly lower parental control during childhood than 7 adult offspring with nonheterosexual orientation.

  7. Maternal glucose intolerance reduces offspring nephron endowment and increases glomerular volume in adult offspring.

    PubMed

    Hokke, Stacey; Arias, Nicole; Armitage, James A; Puelles, Victor G; Fong, Karen; Geraci, Stefania; Gretz, Norbert; Bertram, John F; Cullen-McEwen, Luise A

    2016-11-01

    Animal studies report a nephron deficit in offspring exposed to maternal diabetes, yet are limited to models of severe hyperglycaemia which do not reflect the typical clinical condition and which are associated with foetal growth restriction that may confound nephron endowment. We aimed to assess renal morphology and function in offspring of leptin receptor deficient mice (Lepr(db) /+) and hypothesized that exposure to impaired maternal glucose tolerance (IGT) would be detrimental to the developing kidney. Nephron endowment was assessed in offspring of C57BKS/J Lepr(db) /+ and +/+ mice at embryonic day (E)18 and postnatal day (PN)21 using design-based stereology. Transcutaneous measurement of renal function and total glomerular volume were assessed in 6-month-old offspring. Only +/+ offspring of Lepr(db) /+ dams were analysed. Compared with +/+ dams, Lepr(db) /+ dams had a 20% and 35% decrease in glucose tolerance prior to pregnancy and at E17.5 respectively. Offspring of IGT Lepr(db) /+ dams had approximately 15% fewer nephrons at E18.5 and PN21 than offspring of +/+ dams. There was no difference in offspring bodyweight. Despite normal renal function, total glomerular volume was 13% greater in 6-month-old offspring of IGT Lepr(db) /+ dams than in +/+ offspring. IGT throughout gestation resulted in a nephron deficit that was established early in renal development. Maternal IGT was associated with glomerular hypertrophy in adult offspring, likely a compensatory response to maintain normal renal function. Given the increasing prevalence of IGT, monitoring glucose from early in gestation may be important to prevent altered kidney morphology. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. PRENATAL COCAINE EXPOSURE DIFFERENTIALLY CAUSES VASCULAR DYSFUNCTION IN ADULT OFFSPRING

    PubMed Central

    Xiao, DaLiao; Huang, Xiaohui; Xu, Zhice; Yang, Shumei; Zhang, Lubo

    2009-01-01

    Epidemiological studies have shown a clear association of adverse intrauterine environment and an increased risk of cardiovascular diseases and hypertension in adult life. The present study tested the hypothesis that prenatal cocaine exposure causes reprogramming of vascular reactivity, leading to an increased risk of hypertension in adult offspring. Pregnant rats received cocaine (30 mgkg-1day-1) or saline from days 15 to 21 of gestational age and experiments were conducted in 3-month-old offspring. Cocaine had no effect on the baseline blood pressure, but significantly increased norepinephrine-stimulated blood pressure and decreased the baroreflex sensitivity in male but not female offspring. The cocaine treatment significantly increased norepinephrine-induced contractions in pressurized resistance-sized mesenteric arteries but not in aortas, which was primarily due to a loss of eNOS-mediated inhibition and an enhanced Ca2+ sensitivity in mesenteric arteries. Additionally, the cocaine treatment significantly attenuated the endothelium-dependent relaxation in mesenteric arteries in male but not female offspring. eNOS protein levels in aortas but not mesenteric arteries were significantly increased in the cocaine-treated animals. However, cocaine significantly decreased phosphorylation levels of eNOS in both aortas and mesenteric arteries. The results suggest that prenatal cocaine exposure programs vascular contractility via changes in eNOS-regulated Ca2+ sensitivity of myofilaments in the sex- and tissue-dependent manners in resistance arteries leading to an increased risk of hypertension in male offspring. PMID:19380615

  9. Do copper tolerant fathead minnows produce copper tolerant adult offspring?

    PubMed Central

    Kolok, Alan S.; L’Etoile-Lopes, Darcy

    2009-01-01

    The objective of this study was to determine if the relative Cu tolerance of fathead minnow parents determines the, relative Cu tolerance of their adult offspring. It was hypothesized that the adult offspring of Cu-tolerant minnows would inherit Cu tolerance from their parents. The relative Cu tolerance of 96 adult fish was determined based upon their reduction in swim performance following a sublethal exposure to 150 μg Cu/l. Control, Cu-tolerant and Cu-susceptible lines of fish were produced and fish within each line were allowed to breed. The offspring were raised to adults, then exposed to one of two sublethal Cu concentrations (150 or 225 (μg Cu/l) for 8 days. There were no significant differences in relative Cu tolerance, as measured by reduction in swim performance, among the three lines of fish at either dose. However, significant differences in whole body Na+ occurred among the fish lines after exposure to 150 μg Cu/l, but not after exposure to 225 μg Cu/l. Significant differences in whole body Cu occurred between Cu-tolerant and Cu-susceptible fish lines after exposure to either Cu dose. The offspring did not inherit the relative Cu tolerance of their parents, however, the selection lines had diverged from each other, particularly with respect to their whole body Cu concentrations after exposure. PMID:15820103

  10. Mother's exercise during pregnancy programmes vasomotor function in adult offspring.

    PubMed

    Bahls, Martin; Sheldon, Ryan D; Taheripour, Pardis; Clifford, Kerry A; Foust, Kallie B; Breslin, Emily D; Marchant-Forde, Jeremy N; Cabot, Ryan A; Harold Laughlin, M; Bidwell, Christopher A; Newcomer, Sean C

    2014-01-01

    The intrauterine environment is influenced by maternal behaviour and programmes atherosclerotic disease susceptibility in offspring. The aim of this investigation was to test the hypothesis that mothers' exercise during pregnancy improves endothelial function in 3-, 5- and 9-month-old porcine offspring. The pregnant sows in the exercise group ran for an average of 39.35 ± 0.75 min at 4.81 ± 0.35 km h(-1) each day for 5 days per week for all but the last week of gestation. This induced a significant reduction in resting heart rate (exercised group, 89.3 ± 3.5 beats min(-1); sedentary group, 102.1 ± 3.1 beats min(-1); P < 0.05) but no significant differences in gestational weight gain (65.8 ± 2.1 versus 63.3 ± 1.9%). No significant effect on bradykinin-induced vasorelaxation with and without l-NAME was observed. A significant main effect was identified on sodium nitroprusside-induced vasorelaxation (P = 0.01), manifested by a reduced response in femoral arteries of all age groups from exercised-trained swine. Nitric oxide signalling was not affected by maternal exercise. Protein expression of MYPT1 was reduced in femoral arteries from 3-month-old offspring of exercised animals. A significant interaction was observed for PPP1R14A (P < 0.05) transcript abundance and its protein product CPI-17. In conclusion, pregnant swine are able to complete an exercise-training protocol that matches the current recommendations for pregnant women. Gestational exercise is a potent stimulus for programming vascular smooth muscle relaxation in adult offspring. Specifically, exercise training for the finite duration of pregnancy decreases vascular smooth muscle responsiveness in adult offspring to an exogenous nitric oxide donor.

  11. Maternal smoking during pregnancy and criminal offending among adult offspring.

    PubMed

    Paradis, Angela D; Fitzmaurice, Garrett M; Koenen, Karestan C; Buka, Stephen L

    2011-12-01

    Although a number of previous studies have reported an association between maternal smoking during pregnancy (MSP) and externalising behaviour problems among offspring, it has been suggested that this relationship is spurious due to the failure of these studies to properly account for important confounding factors. The relationship between MSP and adult criminal offending was examined using data from 3766 members of the Providence, Rhode Island, cohort of the Collaborative Perinatal Project. Information on MSP and most potential confounders was collected prospectively throughout pregnancy. In 1999-2000 all offspring had reached 33 years of age and an adult criminal record check was performed. Because previous research has been criticised for not properly accounting for confounding influences, our primary aim was to determine whether the MSP-criminal offending relationship held after efficiently adjusting for a wide range of sociodemographic and family background characteristics using propensity score methods. The association between MSP and adult criminal offending remained after controlling for propensity scores. Offspring of mothers who smoked heavily during pregnancy (≥20 cigarettes per day) had the greatest odds of an adult arrest record (OR 1.31, 95% CI 1.06 to 1.62). Findings also suggest that MSP may be an independent risk factor for adult criminal histories marked by multiple arrests. Lastly, our findings show that the impact of MSP operates similarly across both genders. Results from this study provide evidence of an association between heavy MSP and long-term criminal offending. Any causal association is likely to be weak to moderate in strength.

  12. Levels of maternal care in dogs affect adult offspring temperament

    PubMed Central

    Foyer, Pernilla; Wilsson, Erik; Jensen, Per

    2016-01-01

    Dog puppies are born in a state of large neural immaturity; therefore, the nervous system is sensitive to environmental influences early in life. In primates and rodents, early experiences, such as maternal care, have been shown to have profound and lasting effects on the later behaviour and physiology of offspring. We hypothesised that this would also be the case for dogs with important implications for the breeding of working dogs. In the present study, variation in the mother-offspring interactions of German Shepherd dogs within the Swedish breeding program for military working dogs was studied by video recording 22 mothers with their litters during the first three weeks postpartum. The aim was to classify mothers with respect to their level of maternal care and to investigate the effect of this care on pup behaviour in a standardised temperament test carried out at approximately 18 months of age. The results show that females differed consistently in their level of maternal care, which significantly affected the adult behaviour of the offspring, mainly with respect to behaviours classified as Physical and Social Engagement, as well as Aggression. Taking maternal quality into account in breeding programs may therefore improve the process of selecting working dogs. PMID:26758076

  13. Levels of maternal care in dogs affect adult offspring temperament

    NASA Astrophysics Data System (ADS)

    Foyer, Pernilla; Wilsson, Erik; Jensen, Per

    2016-01-01

    Dog puppies are born in a state of large neural immaturity; therefore, the nervous system is sensitive to environmental influences early in life. In primates and rodents, early experiences, such as maternal care, have been shown to have profound and lasting effects on the later behaviour and physiology of offspring. We hypothesised that this would also be the case for dogs with important implications for the breeding of working dogs. In the present study, variation in the mother-offspring interactions of German Shepherd dogs within the Swedish breeding program for military working dogs was studied by video recording 22 mothers with their litters during the first three weeks postpartum. The aim was to classify mothers with respect to their level of maternal care and to investigate the effect of this care on pup behaviour in a standardised temperament test carried out at approximately 18 months of age. The results show that females differed consistently in their level of maternal care, which significantly affected the adult behaviour of the offspring, mainly with respect to behaviours classified as Physical and Social Engagement, as well as Aggression. Taking maternal quality into account in breeding programs may therefore improve the process of selecting working dogs.

  14. Levels of maternal care in dogs affect adult offspring temperament.

    PubMed

    Foyer, Pernilla; Wilsson, Erik; Jensen, Per

    2016-01-13

    Dog puppies are born in a state of large neural immaturity; therefore, the nervous system is sensitive to environmental influences early in life. In primates and rodents, early experiences, such as maternal care, have been shown to have profound and lasting effects on the later behaviour and physiology of offspring. We hypothesised that this would also be the case for dogs with important implications for the breeding of working dogs. In the present study, variation in the mother-offspring interactions of German Shepherd dogs within the Swedish breeding program for military working dogs was studied by video recording 22 mothers with their litters during the first three weeks postpartum. The aim was to classify mothers with respect to their level of maternal care and to investigate the effect of this care on pup behaviour in a standardised temperament test carried out at approximately 18 months of age. The results show that females differed consistently in their level of maternal care, which significantly affected the adult behaviour of the offspring, mainly with respect to behaviours classified as Physical and Social Engagement, as well as Aggression. Taking maternal quality into account in breeding programs may therefore improve the process of selecting working dogs.

  15. Hyperleptinemia During Pregnancy Decreases Adult Weight of Offspring and Is Associated With Increased Offspring Locomotor Activity in Mice.

    PubMed

    Pollock, Kelly E; Stevens, Damaiyah; Pennington, Kathleen A; Thaisrivongs, Rose; Kaiser, Jennifer; Ellersieck, Mark R; Miller, Dennis K; Schulz, Laura Clamon

    2015-10-01

    Pregnant women who are obese or have gestational diabetes mellitus have elevated leptin levels and their children have an increased risk for child and adult obesity. The goals of this study were to determine whether offspring weights are altered by maternal hyperleptinemia, and whether this occurs via behavioral changes that influence energy balance. We used 2 hyperleptinemic mouse models. The first was females heterozygous for a leptin receptor mutation (DB/+), which were severely hyperleptinemic, and that were compared with wild-type females. The second model was wild-type females infused with leptin (LEP), which were moderately hyperleptinemic, and were compared with wild-type females infused with saline (SAL). Total food consumption, food preference, locomotor activity, coordinated motor skills, and anxiety-like behaviors were assessed in wild-type offspring from each maternal group at 3 postnatal ages: 4-6, 11-13, and 19-21 weeks. Half the offspring from each group were then placed on a high-fat diet, and behaviors were reassessed. Adult offspring from both groups of hyperleptinemic dams weighed less than their respective controls beginning at 23 weeks of age, independent of diet or sex. Weight differences were not explained by food consumption or preference, because female offspring from hyperleptinemic dams tended to consume more food and had reduced preference for palatable, high-fat and sugar, food compared with controls. Offspring from DB/+ dams were more active than offspring of controls, as were female offspring of LEP dams. Maternal hyperleptinemia during pregnancy did not predispose offspring to obesity, and in fact, reduced weight gain.

  16. Loss of glycogen synthase kinase 3 isoforms during murine oocyte growth induces offspring cardiac dysfunction.

    PubMed

    Monteiro da Rocha, André; Ding, Jun; Slawny, Nicole; Wolf, Amber M; Smith, Gary D

    2015-05-01

    Glycogen synthase kinase-3 (GSK3) is a constitutively active serine threonine kinase with 1) two isoforms (GSK3A and GSK3B) that have unique and overlapping functions, 2) multiple molecular intracellular mechanisms that involve phosphorylation of diverse substrates, and 3) implications in pathogenesis of many diseases. Insulin causes phosphorylation and inactivation of GSK3 and mammalian oocytes have a functional insulin-signaling pathway whereby prolonged elevated insulin during follicle/oocyte development causes GSK3 hyperphosphorylation, reduced GSK3 activity, and altered oocyte chromatin remodeling. Periconceptional diabetes and chronic hyperinsulinemia are associated with congenital malformations and onset of adult diseases of cardiovascular origin. Objectives were to produce transgenic mice with individual or concomitant loss of GSK3A and/or GSK3B and investigate the in vivo role of oocyte GSK3 on fertility, fetal development, and offspring health. Wild-type males bred to females with individual or concomitant loss of oocyte GSK3 isoforms did not have reduced fertility. However, concomitant loss of GSK3A and GSK3B in the oocyte significantly increased neonatal death rate due to congestive heart failure secondary to ventricular hyperplasia. Individual loss of oocyte GSK3A or GSK3B did not induce this lethal phenotype. In conclusion, absence of oocyte GSK3 in the periconceptional period does not alter fertility yet causes offspring cardiac hyperplasia, cardiovascular defects, and significant neonatal death. These results support a developmental mechanism by which periconceptional hyperinsulinemia associated with maternal metabolic syndrome, obesity, and/or diabetes can act on the oocyte and affect offspring cardiovascular development, function, and congenital heart malformation.

  17. Japanese macaque (Macaca fuscata) mothers huddle with their young offspring instead of adult females for thermoregulation.

    PubMed

    Ueno, Masataka; Nakamichi, Masayuki

    2016-08-01

    It is unclear whom animals select to huddle with for thermoregulation. In this study, we investigated whom Japanese macaque (Macaca fuscata) mothers huddled with-their young offspring or other adult group members-when there is need for thermoregulation. We used a focal-animal sampling method, targeting 17 females at Katsuyama, Okayama Prefecture, Japan. A majority of huddling among adult females was recorded during winter season (December, January, and February). Females who had young (0- or 1-year-old) offspring huddled less frequently with other adult females compared to females who did not have young offspring in winter. However, including young offspring, the frequency of huddling with any other individuals did not differ by whether females had young offspring. Moreover, the females who did not have young offspring huddled with other adult females more often in cloudy than in sunny weather during winter season. In contrast, females who had young offspring increased huddling with their young offspring in cloudy than in sunny weather, but did not do so with other adult females. This study indicates that Japanese macaque mothers huddle with their young offspring instead of other adult females when there is need for thermoregulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Autobiographical memory in adult offspring of traumatized parents with and without posttraumatic stress symptoms.

    PubMed

    Wittekind, Charlotte E; Jelinek, Lena; Moritz, Steffen; Muhtz, Christoph; Berna, Fabrice

    2016-08-30

    The present study examined potential transgenerational effects of trauma on autobiographical memory in adult offspring of elderly participants with and without PTSD symptoms who were exposed to an early trauma during childhood. As traumatization is associated with reduced memory specificity for past events, we hypothesized that offspring of traumatized parents might be exposed to a less elaborative narrative style, which, in turn, might result in less specific autobiographical memories in the offspring. Results show that autobiographical memory specificity did not differ significantly between adult offspring of traumatized elderly participants with PTSD symptoms, without PTSD symptoms, and non-traumatized elderly participants.

  19. The influence of hypoxia during different pregnancy stages on cardiac collagen accumulation in the adult offspring.

    PubMed

    Wang, Lingxing; Li, Meimei; Huang, Ziyang; Wang, Zhenhua

    2014-01-01

    We evaluated whether the timing of maternal hypoxia during pregnancy influenced cardiac extracellular matrix accumulation in the adult offspring. Rats in different periods of pregnancy were assigned to maternal hypoxia or control groups. Maternal hypoxia from day 3 to 21 of pregnancy or day 9 to 21 of pregnancy increased collagen I and collagen III expression in the left ventricle of adult offspring (both P<0.05). Maternal hypoxia from day 15 to 21 of pregnancy had no effect on adult collagen levels. Our results indicate that maternal hypoxia at critical windows of cardiovascular development can induce pathological cardiac remodeling in the adult rat offspring.

  20. Parental Depression as a Moderator of Secondary Deficits of Depression in Adult Offspring

    ERIC Educational Resources Information Center

    Timko, Christine; Cronkite, Ruth C.; Swindle, Ralph; Robinson, Rebecca L.; Sutkowi, Anne; Moos, Rudolf H.

    2009-01-01

    This study examined whether having a depressed parent intensifies the secondary deficits that often co-occur with offspring's depression symptoms. The sample was adult offspring of parents who had been diagnosed with depression 23 years earlier (N = 143) and demographically matched nondepressed parents (N = 197). Respondents completed mailed…

  1. Semen quality of young adult ICSI offspring: the first results.

    PubMed

    Belva, F; Bonduelle, M; Roelants, M; Michielsen, D; Van Steirteghem, A; Verheyen, G; Tournaye, H

    2016-12-01

    What is the semen quality of young adult men who were conceived 18-22 years ago by ICSI for male infertility? In this cohort of 54 young adult ICSI men, median sperm concentration, total sperm count and total motile sperm count were significantly lower than in spontaneously conceived peers. The oldest ICSI offspring cohort worldwide has recently reached adulthood. Hence, their reproductive health can now be investigated. Since these children were conceived by ICSI because of severe male-factor infertility, there is reasonable concern that male offspring have inherited the deficient spermatogenesis from their fathers. Previously normal pubertal development and adequate Sertoli and Leydig cell function have been described in pubertal ICSI boys; however, no information on their sperm quality is currently available. This study was conducted at UZ Brussel between March 2013 and April 2016 and is part of a large follow-up project focussing on reproductive and metabolic health of young adults, between 18 and 22 years and conceived after ICSI with ejaculated sperm. Results of both a physical examination and semen analysis were compared between young ICSI men being part of a longitudinally followed cohort and spontaneously conceived controls who were recruited cross-sectionally. Results of a single semen sample in 54 young adult ICSI men and 57 spontaneously conceived men are reported. All young adults were individually assessed, and the results of their physical examination were completed by questionnaires. Data were analysed by multiple linear and logistic regression, adjusted for covariates. In addition, semen parameters of the ICSI fathers dating back from their ICSI treatment application were analysed for correlations. Young ICSI adults had a lower median sperm concentration (17.7 million/ml), lower median total sperm count (31.9 million) and lower median total motile sperm count (12.7 million) in comparison to spontaneously conceived peers (37.0 million/ml; 86

  2. Adult cardiorenal benefits from postnatal fish oil supplement in rat offspring of low-protein pregnancies.

    PubMed

    Catta-Preta, Mariana; Oliveira, Daniel Alves; Mandarim-de-Lacerda, Carlos Alberto; Aguila, Marcia Barbosa

    2006-12-23

    We investigated the effect of fish oil (FO) treatment on cardiorenal structure of adult offspring from low-protein pregnancies. Three month old offspring were assigned to eight groups (four male groups and four female groups, n=8 each) (NP=normal-protein diet, LP=low-protein diet): NP, LP, NP plus FO, and LP plus FO. Left ventricle and kidney were analyzed with light microscopy and stereology. The both sexes of LP offspring showed 30% lower birth weights than the respective NP offspring and high blood pressure (BP) levels in adulthood which was efficiently reduced by FO treatment. In the heart, FO treated the cardiomyocyte hypertrophy, the vascularization impairment, and decreased the cardiomyocyte loss usually observed in adult LP offspring. In the kidney, FO treated, in the male, the imbalance of the cortex-to-medulla ratio observed in both sexes of LP offspring, and reduced the glomeruli loss in the LP offspring. The positive correlation between the number of cardiomyocyte nuclei later in life and the body mass (BM) at birth was significant only in both sexes of LP offspring and this correlation disappeared in LP plus fish oil offspring. The positive correlation between the number of glomeruli later in life and the BM at birth was significant in NP male offspring and in both sexes of LP offspring. In conclusion, FO supplement, which is a rich source of n-3 fatty acids (DHA and EPA), has beneficial effects on BP control and cardiac and renal adverse remodeling usually seen in offspring of the LP pregnancies.

  3. Gestational exercise protects adult male offspring from high-fat diet induced hepatic steatosis

    PubMed Central

    Sheldon, Ryan D.; Blaize, A. Nicole; Fletcher, Justin A.; Pearson, Kevin J.; Donkin, Shawn; Newcomer, Sean C.; Rector, R. Scott

    2015-01-01

    Background & Aims Mounting evidence indicates that maternal exercise confers protection to adult offspring against various diseases. Here we hypothesized that maternal exercise during gestation would reduce high fat diet (HFD) induced hepatic steatosis in adult rat offspring. Methods Following conception, pregnant dams were divided into either voluntary wheel running exercise (GE) or wheel-locked sedentary (GS) groups throughout gestation (days 4-21). Post-weaning, offspring received either normal chow diet (ND; 10% fat, 70% carbohydrate, 20% protein) or high-fat diet (HFD; 45% fat, 35% carbohydrate, and 20% protein) until sacrifice at 4-or 8-months of age. Results GE did not affect offspring birth weight or litter size. HFD feeding in offspring increased weight gain, % body fat, and glucose tolerance test area under the curve (GTT-AUC). Male offspring from GE dams had reduced % body fat across all ages (p < 0.05). In addition, 8-mo male offspring from GE dams were protected against HFD-induced hepatic steatosis, which was associated with increased markers of hepatic mitochondrial biogenesis (PGC-1α and TFAM), autophagic potential (ATG12:ATG5 conjugation) and hepatic triacylglycerol secretion (MTTP). Conclusions The current study provides the first evidence that gestational exercise can reduce susceptibility to high fat diet induced hepatic steatosis in adult male offspring. PMID:26325536

  4. Maternal Smoke Exposure Impairs the Long-Term Fertility of Female Offspring in a Murine Model.

    PubMed

    Camlin, Nicole J; Sobinoff, Alexander P; Sutherland, Jessie M; Beckett, Emma L; Jarnicki, Andrew G; Vanders, Rebecca L; Hansbro, Philip M; McLaughlin, Eileen A; Holt, Janet E

    2016-02-01

    The theory of fetal origins of adult disease was first proposed in 1989, and in the decades since, a wide range of other diseases from obesity to asthma have been found to originate in early development. Because mammalian oocyte development begins in fetal life it has been suggested that environmental and lifestyle factors of the mother could directly impact the fertility of subsequent generations. Cigarette smoke is a known ovotoxicant in active smokers, yet disturbingly 13% of Australian and 12% of US women continue to smoke throughout pregnancy. The focus of our investigation was to characterize the adverse effects of smoking on ovary and oocyte quality in female offspring exposed in utero. Pregnant mice were nasally exposed to cigarette smoke for 12 wk throughout pregnancy/lactation, and ovary and oocyte quality of the F1 (maternal smoke exposed) generation was examined. Neonatal ovaries displayed abnormal somatic cell proliferation and increased apoptosis, leading to a reduction in follicle numbers. Further investigation found that altered somatic cell proliferation and reduced follicle number continued into adulthood; however, apoptosis did not. This reduction in follicles resulted in decreased oocyte numbers, with these oocytes found to have elevated levels of oxidative stress, altered metaphase II spindle, and reduced sperm-egg interaction. These ovarian and oocyte changes ultimately lead to subfertility, with maternal smoke-exposed animals having smaller litters and also taking longer to conceive. In conclusion, our results demonstrate that in utero and lactational exposure to cigarette smoke can have long-lasting effects on the fertility of the next generation of females.

  5. OXIDATIVE STRESS CONTRIBUTES TO SEX DIFFERENCES IN BLOOD PRESSURE IN ADULT GROWTH RESTRICTED OFFSPRING

    PubMed Central

    Ojeda, Norma B.; Hennington, Bettye Sue; Williamson, Danielle T.; Hill, Melanie L.; Betson, Nicole E.E.; Sartori-Valinotti, Julio C.; Reckelhoff, Jane F.; Royals, Thomas P.; Alexander, Barbara T.

    2013-01-01

    Numerous experimental studies suggest that oxidative stress contributes to the pathophysiology of hypertension and importantly, that oxidative stress plays a more definitive role in mediating hypertension in males than in females. Intrauterine growth-restriction induced by reduced uterine perfusion initiated at day 14 of gestation in the rat programs hypertension in adult male growth-restricted offspring; yet, female growth-restricted offspring are normotensive. The mechanisms mediating sex differences in blood pressure in adult growth-restricted offspring are not clear. Thus, this study tested the hypothesis that sex specific differences in renal oxidative stress contribute to the regulation of blood pressure in adult growth-restricted offspring. A significant increase in blood pressure measured by telemetry in male growth-restricted offspring (P<0.05) was associated with a marked increase in renal markers of oxidative stress (P<0.05). Chronic treatment with the antioxidant tempol had no effect on blood pressure in male control offspring, but it normalized blood pressure (P<0.05) and renal markers of oxidative stress (P<0.05) in male growth-restricted relative to male control. Renal markers of oxidative stress were not elevated in female growth-restricted offspring; however, renal activity of the antioxidant catalase was significantly elevated relative to female control (P<0.05). Chronic treatment with tempol did not significantly alter oxidative stress or blood pressure measured by telemetry in female offspring. Thus, these data suggest that sex differences in renal oxidative stress and antioxidant activity are present in adult growth-restricted offspring, and that oxidative stress may play a more important role in modulating blood pressure in male, but not female growth-restricted offspring. PMID:22585945

  6. Associations of parental age with health and social factors in adult offspring. Methodological pitfalls and possibilities

    PubMed Central

    Carslake, David; Tynelius, Per; van den Berg, Gerard; Davey Smith, George; Rasmussen, Finn

    2017-01-01

    Parental age is increasing rapidly in many countries. Analysis of this potentially important influence on offspring well-being is hampered by strong secular trends and socioeconomic patterning and by a shortage of follow-up data for adult offspring. We used Swedish national data on up to 3,653,938 offspring to consider the associations of parental age with a suite of outcomes in adult offspring, comparing the results from an array of statistical methods for optimal causal inference. The offspring of older mothers had higher BMI, blood pressure, height, intelligence, non-cognitive ability and socioeconomic position. They were less likely to smoke or to be left-handed. Associations with paternal age were strongly, but not completely, attenuated by adjustment for maternal age. Estimates from the commonly-used sibling comparison method were driven primarily by a pathway mediated by offspring date of birth when outcomes showed strong secular trends. These results suggest that the intra-uterine and early life environments provided by older mothers may be detrimental to offspring cardiovascular health, but that their greater life experience and social position may bring intellectual and social advantages to their offspring. The analysis of parental age presents particular challenges, and further methodological developments are needed. PMID:28345590

  7. Associations of parental age with health and social factors in adult offspring. Methodological pitfalls and possibilities.

    PubMed

    Carslake, David; Tynelius, Per; van den Berg, Gerard; Davey Smith, George; Rasmussen, Finn

    2017-03-27

    Parental age is increasing rapidly in many countries. Analysis of this potentially important influence on offspring well-being is hampered by strong secular trends and socioeconomic patterning and by a shortage of follow-up data for adult offspring. We used Swedish national data on up to 3,653,938 offspring to consider the associations of parental age with a suite of outcomes in adult offspring, comparing the results from an array of statistical methods for optimal causal inference. The offspring of older mothers had higher BMI, blood pressure, height, intelligence, non-cognitive ability and socioeconomic position. They were less likely to smoke or to be left-handed. Associations with paternal age were strongly, but not completely, attenuated by adjustment for maternal age. Estimates from the commonly-used sibling comparison method were driven primarily by a pathway mediated by offspring date of birth when outcomes showed strong secular trends. These results suggest that the intra-uterine and early life environments provided by older mothers may be detrimental to offspring cardiovascular health, but that their greater life experience and social position may bring intellectual and social advantages to their offspring. The analysis of parental age presents particular challenges, and further methodological developments are needed.

  8. Mothers' exercise during pregnancy programs vasomotor function in adult offspring

    USDA-ARS?s Scientific Manuscript database

    Background: The intrauterine environment is influenced by maternal behavior and known to influence lifelong atherosclerotic disease susceptibility in offspring. The purpose of this investigation was to test the hypothesis that maternal exercise during pregnancy increases endothelial function in offs...

  9. The Effects of Parental Health Shocks on Adult Offspring Smoking Behavior and Self-Assessed Health.

    PubMed

    Darden, Michael; Gilleskie, Donna

    2016-08-01

    An important avenue for smoking deterrence may be through familial ties if adult smokers respond to parental health shocks. In this paper, we merge the Original Cohort and the Offspring Cohort of the Framingham Heart Study to study how adult offspring smoking behavior and subjective health assessments vary with elder parent smoking behavior and health outcomes. These data allow us to model the smoking behavior of adult offspring over a 30-year period contemporaneously with parental behaviors and outcomes. We find strong 'like father, like son' and 'like mother, like daughter' correlations in smoking behavior. We find that adult offspring significantly curtail their own smoking following an own health shock; however, we find limited evidence that offspring smoking behavior is sensitive to parent health, with the notable exception that women significantly reduce both their smoking participation and intensity following a smoking-related cardiovascular event of a parent. We also model the subjective health assessment of adult offspring as a function of parent health, and we find that women report significantly worse health following the smoking-related death of a parent. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Maternal Fructose Exposure Programs Metabolic Syndrome-Associated Bladder Overactivity in Young Adult Offspring

    PubMed Central

    Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L. H.; Leu, Steve; Chan, Julie Y. H.

    2016-01-01

    Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M2-, M3-muscarinic and P2X1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE. PMID:27703194

  11. Antenatal Antioxidant Prevents Nicotine-Mediated Hypertensive Response in Rat Adult Offspring.

    PubMed

    Xiao, DaLiao; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Wang, Lei; Zhang, Lubo

    2015-09-01

    Previous studies have demonstrated that perinatal nicotine exposure increased blood pressure (BP) in adult offspring. However, the underlying mechanisms were unclear. The present study tested the hypothesis that perinatal nicotine-induced programming of hypertensive response is mediated by enhanced reactive oxygen species (ROS) in the vasculature. Nicotine was administered to pregnant rats via subcutaneous osmotic mini-pumps from Day 4 of gestation to Day 10 after birth, in the absence or presence of the ROS inhibitor N-acetyl-cysteine (NAC) in the drinking water. Experiments were conducted in 8-mo-old male offspring. Perinatal nicotine treatment resulted in a significant increase in arterial ROS production in offspring, which was abrogated by NAC. Angiotensin II (Ang II)-induced BP responses were significantly higher in nicotine-treated group than in saline-treated control group, and NAC treatment blocked the nicotine-induced increase in BP response. Consistent with that, the nicotine treatment significantly increased both Ang II-induced and phorbol [12, 13]-dibutyrate (PDBu, a Prkc activator)-induced arterial contractions in adult offspring, which were blocked by NAC treatment. In addition, perinatal nicotine treatment significantly attenuated acetylcholine-induced arterial relaxation in offspring, which was also inhibited by NAC treatment. Results demonstrate that inhibition of ROS blocks the nicotine-induced increase in arterial reactivity and BP response to vasoconstrictors in adult offspring, suggesting a key role for increased oxidative stress in nicotine-induced developmental programming of hypertensive phenotype in male offspring.

  12. Parental divorce, parental depression, and gender differences in adult offspring suicide attempt.

    PubMed

    Lizardi, Dana; Thompson, Ronald G; Keyes, Katherine; Hasin, Deborah

    2009-12-01

    Research suggests parental divorce during childhood increases risk of suicide attempt for male but not female offspring. The negative impact on offspring associated with parental divorce may be better explained by parental psychopathology, such as depression. We examined whether adult offspring of parental divorce experience elevated risk of suicide attempt, controlling for parental history of depression, and whether the risk varies by the gender of the offspring. Using the 2001 to 2002 National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), the sample consists of respondents who experienced parental divorce (N = 4895). Multivariable regressions controlled for age, race/ethnicity, income, marital status, and parental history of depression. Females living with their fathers were significantly more likely to report lifetime suicide attempts than females living with their mothers, even after controlling for parental depression. Findings suggest that childhood/adolescent parental divorce may have a stronger impact on suicide attempt risk in female offspring than previously recognized.

  13. Suicidal ideation in adult offspring of depressed and matched control parents: childhood and concurrent predictors.

    PubMed

    Valenstein, Helen; Cronkite, Ruth C; Moos, Rudolf H; Snipes, Cassandra; Timko, Christine

    2012-10-01

    Suicidal ideation predicts suicide behaviors; however, research is needed on risk factors for suicidal ideation in adults, a common developmental period for first suicide attempts. To examine childhood and concurrent predictors of suicidal ideation among 340 adult offspring of depressed and matched control parents. Parents were assessed at baseline, and adult offspring were assessed 23 years later. Offspring who reported past-month suicidal ideation (7%) had parents who, 23 years earlier, reported suicidal ideation, psychological inflexibility and use of avoidance coping. Offspring experiencing suicidal ideation were more likely to be unemployed and more depressed, consumed more alcohol and had more drinking problems. They were more anxious and inflexible, had weaker social ties and less cohesive families and had more negative life events and used more avoidance coping. A childhood risk index predicted offspring's suicidal ideation above and beyond concurrent factors. Along with concurrent risk factors, poor parental functioning may confer long-term risk for adult suicidal ideation. Interventions to prevent the transmission of suicidal ideation to offspring should focus on ameliorating parental risk factors.

  14. Physical exercise during pregnancy improves object recognition memory in adult offspring.

    PubMed

    Robinson, A M; Bucci, D J

    2014-01-03

    Exercising during pregnancy has been shown to improve spatial learning and short-term memory, as well as increase brain-derived neurotrophic factor mRNA levels and hippocampal cell survival in juvenile offspring. However, it remains unknown if these effects endure into adulthood. In addition, few studies have considered how maternal exercise can impact cognitive functions that do not rely on the hippocampus. To address these issues, the present study tested the effects of maternal exercise during pregnancy on object recognition memory, which relies on the perirhinal cortex (PER), in adult offspring. Pregnant rats were given access to a running wheel throughout gestation and the adult male offspring were subsequently tested in an object recognition memory task at three different time points, each spaced 2-weeks apart, beginning at 60 days of age. At each time point, offspring from exercising mothers were able to successfully discriminate between novel and familiar objects in that they spent more time exploring the novel object than the familiar object. The offspring of non-exercising mothers were not able to successfully discriminate between objects and spent an equal amount of time with both objects. A subset of rats was euthanized 1h after the final object recognition test to assess c-FOS expression in the PER. The offspring of exercising mothers had more c-FOS expression in the PER than the offspring of non-exercising mothers. By comparison, c-FOS levels in the adjacent auditory cortex did not differ between groups. These results indicate that maternal exercise during pregnancy can improve object recognition memory in adult male offspring and increase c-FOS expression in the PER; suggesting that exercise during the gestational period may enhance brain function of the offspring. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Physical Exercise During Pregnancy Improves Object Recognition Memory in Adult Offspring

    PubMed Central

    Robinson, Andrea M.; Bucci, David J.

    2013-01-01

    Exercising during pregnancy has been shown to improve spatial learning and short-term memory, as well as increase BDNF mRNA levels and hippocampal cell survival in juvenile offspring. However, it remains unknown if these effects endure into adulthood. In addition, few studies have considered how maternal exercise can impact cognitive functions that do not rely on the hippocampus. To address these issues, the present study tested the effects of maternal exercise during pregnancy on object recognition memory, which relies on the perirhinal cortex (PER), in adult offspring. Pregnant rats were given access to a running wheel throughout gestation and the adult male offspring were subsequently tested in an object recognition memory task at three different time points, each spaced 2-weeks apart, beginning at 60 days of age. At each time point, offspring from exercising mothers were able to successfully discriminate between novel and familiar objects in that they spent more time exploring the novel object than the familiar object. The offspring of non-exercising mothers were not able to successfully discriminate between objects and spent an equal amount of time with both objects. A subset of rats was euthanized 1 hr after the final object recognition test to assess c-FOS expression in the PER. The offspring of exercising mothers had more c-FOS expression in the PER than the offspring of non-exercising mothers. By comparison, c-FOS levels in the adjacent auditory cortex did not differ between groups. These results indicate that maternal exercise during pregnancy can improve object recognition memory in adult male offspring and increase c-FOS expression in the PER; suggesting that exercise during the gestational period may enhance brain function of the offspring. PMID:24157927

  16. Maternal High Fat Diet Alters Skeletal Muscle Mitochondrial Catalytic Activity in Adult Male Rat Offspring

    PubMed Central

    Pileggi, Chantal A.; Hedges, Christopher P.; Segovia, Stephanie A.; Markworth, James F.; Durainayagam, Brenan R.; Gray, Clint; Zhang, Xiaoyuan D.; Barnett, Matthew P. G.; Vickers, Mark H.; Hickey, Anthony J. R.; Reynolds, Clare M.; Cameron-Smith, David

    2016-01-01

    A maternal high-fat (HF) diet during pregnancy can lead to metabolic compromise, such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat) or a high fat diet (HFD; 45% kcal from fat) for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1) and mitochondrial transcription factor A (mtTFA) were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS) respiratory complex subunits were suppressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%), which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%). Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle. PMID:27917127

  17. Maternal undernutrition programs the apelinergic system of adipose tissue in adult male rat offspring.

    PubMed

    Lecoutre, S; Marousez, L; Drougard, A; Knauf, C; Guinez, C; Eberlé, D; Laborie, C; Vieau, D; Lesage, J; Breton, C

    2017-02-01

    Based on the Developmental Origin of Health and Disease concept, maternal undernutrition has been shown to sensitize adult offspring to metabolic pathologies such as obesity. Using a model of maternal 70% food restriction in pregnant female rats throughout gestation (called FR30), we previously reported that obesity-prone adult male rat offspring displayed hyperleptinemia with modifications in leptin and leptin receptor messenger RNA (mRNA) levels in white adipose tissue (WAT). Apelin is a member of the adipokine family that regulates various aspects of energy metabolism and WAT functionality. We investigated whether apelin and its receptor APJ could be a target of maternal undernutrition. Adult male rat offspring from FR30 dams showed increased plasma apelin levels and apelin gene expression in WAT. Post-weaning high-fat diet led to marked increase in APJ mRNA and protein levels in offspring's WAT. We demonstrate that maternal undernutrition and post-weaning diet have long-term consequences on the apelinergic system of adult male rat offspring.

  18. Mediators of Aggression Among Young Adult Offspring of Depressed Mothers

    PubMed Central

    Keenan-Miller, Danielle; Hammen, Constance; Brennan, Patricia A.

    2010-01-01

    The current paper explores the connection between maternal depression and offspring aggression during the transition to adulthood, expanding the scope of prior research on this topic. Both family-level factors (including parent-child relationship quality and maternal relationship quality) and youth factors (including depression history and social functioning in mid-adolescence) were tested as potential mediators in a longitudinal community sample of 710 youth at ages 15 and 20. The results suggest that maternal depression confers a risk for higher levels of aggressive behavior by offspring at age 20. Structural Equation Models suggested that the association between maternal depression and youth aggression is fully mediated by youth history of depression by mid-adolescence, even when accounting for the stability of aggression between ages 15 and 20. Parent-child relationship quality, youth social functioning, and maternal relationship quality were not unique mediators of this association. Limitations and implications are discussed. PMID:20919790

  19. Effect of prenatal exposure to waterpipe tobacco smoke on learning and memory of adult offspring rats.

    PubMed

    Al-Sawalha, Nour; Alzoubi, Karem; Khabour, Omar; Alyacoub, Weam; Almahmmod, Yehya; Eissenberg, Thomas

    2017-06-20

    Waterpipe tobacco smoking has increased in prevalence worldwide, including among pregnant women. In this study, we investigated the effect of prenatal maternal waterpipe tobacco smoke (WTS) exposure during different stages of pregnancy on learning and memory of adult offspring rats. Pregnant rats received either fresh air or mainstream WTS (two hours daily) during early, mid, late, or whole gestational period. Male offspring rats were followed through 20 weeks. Outcomes included 1) spatial learning and memory using the radial arm water maze (RAWM), 2) levels of brain derived neurotrophic factor (BDNF) in the hippocampus, and 3) oxidative stress biomarkers (superoxide dismutase, catalase, glutathione peroxidase and thiobarbituric acid reactive substances). Relative to offspring whose mothers were exposed to fresh air, prenatal exposure to WTS at any stage of pregnancy resulted in short- and long-term memory impairment in adult offspring rats (P < 0.05). This impairment was associated with reduced levels of BDNF in hippocampus (P < 0.05). However, prenatal WTS did not affect the level of oxidative stress biomarkers in hippocampus. Prenatal WTS during late gestation increased the activity of catalase as compared to control. Prenatal maternal WTS exposure can impair the memory of adult male offspring. These results support development of interventions that target pregnant women who smoke waterpipe during pregnancy. We examined for the first time the effect of prenatal waterpipe tobacco smoke exposure on learning and memory of offspring. The results showed that in utero exposure to waterpipe tobacco smoke was associated with impaired memory and decreased brain derived neurotrophic factor in hippocampus of adult male offspring rats.

  20. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    SciTech Connect

    Ronco, Ana Maria; Montenegro, Marcela; Castillo, Paula; Urrutia, Manuel; Saez, Daniel; Hirsch, Sandra; Zepeda, Ramiro; Llanos, Miguel N.

    2011-03-01

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remained unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.

  1. Maternal immune activation affects litter success, size and neuroendocrine responses related to behavior in adult offspring.

    PubMed

    French, Susannah S; Chester, Emily M; Demas, Gregory E

    2013-07-02

    It is increasingly evident that influences other than genetics can contribute to offspring phenotype. In particular, maternal influences are an important contributing factor to offspring survival, development, physiology and behavior. Common environmental pathogens such as viral or bacterial microorganisms can induce maternal immune responses, which have the potential to alter the prenatal environment via multiple independent pathways. The effects of maternal immune activation on endocrine responses and behavior are less well studied and provide the basis for the current study. Our approach in the current study was two-pronged: 1) quantify sickness responses during pregnancy in adult female hamsters experiencing varying severity of immune responsiveness (i.e., differing doses of lipopolysaccharide [LPS]), and 2) assess the effects of maternal immune activation on offspring development, immunocompetence, hormone profiles, and social behavior during adulthood. Pregnancy success decreased with increasing doses of LPS, and litter size was reduced in LPS dams that managed to successfully reproduce. Unexpectedly, pregnant females treated with LPS showed a hypothermic response in addition to the more typical anorexic and body mass changes associated with sickness. Significant endocrine changes related to behavior were observed in the offspring of LPS-treated dams; these effects were apparent in adulthood. Specifically, offspring from LPS treated dams showed significantly greater cortisol responses to stressful resident-intruder encounters compared with offspring from control dams. Post-behavior cortisol was elevated in male LPS offspring relative to the offspring of control dams, and was positively correlated with the frequency of bites during agonistic interactions, and cortisol levels in both sexes were related to defensive behaviors, suggesting that changes in hypothalamo-pituitary-adrenal axis responsiveness may play a regulatory role in the observed behavioral

  2. Sugared water consumption by adult offspring of mothers fed a protein-restricted diet during pregnancy results in increased offspring adiposity: the second hit effect.

    PubMed

    Cervantes-Rodríguez, M; Martínez-Gómez, M; Cuevas, E; Nicolás, L; Castelán, F; Nathanielsz, P W; Zambrano, E; Rodríguez-Antolín, J

    2014-02-01

    Poor maternal nutrition predisposes offspring to metabolic disease. This predisposition is modified by various postnatal factors. We hypothesised that coupled to the initial effects of developmental programming due to a maternal low-protein diet, a second hit resulting from increased offspring postnatal sugar consumption would lead to additional changes in metabolism and adipose tissue function. The objective of the present study was to determine the effects of sugared water consumption (5% sucrose in the drinking-water) on adult offspring adiposity as a 'second hit' following exposure to maternal protein restriction during pregnancy. We studied four offspring groups: (1) offspring of mothers fed the control diet (C); (2) offspring of mothers fed the restricted protein diet (R); (3) offspring of control mothers that drank sugared water (C-S); (4) offspring of restricted mothers that drank sugared water (R-S). Maternal diet in pregnancy was considered the first factor and sugared water consumption as the second factor - the second hit. Body weight and total energy consumption, before and after sugared water consumption, were similar in all the groups. Sugared water consumption increased TAG, insulin and cholesterol concentrations in both the sexes of the C-S and R-S offspring. Sugared water consumption increased leptin concentrations in the R-S females and males but not in the R offspring. There was also an interaction between sugared water and maternal diet in males. Sugared water consumption increased adipocyte size and adiposity index in both females and males, but the interaction with maternal diet was observed only in females. Adiposity index and plasma leptin concentrations were positively correlated in both the sexes. The present study shows that a second hit during adulthood can amplify the effects of higher adiposity arising due to poor maternal pregnancy diet in an offspring sex dependent fashion.

  3. Chronic social instability in adult female rats alters social behavior, maternal aggression and offspring development.

    PubMed

    Pittet, Florent; Babb, Jessica A; Carini, Lindsay; Nephew, Benjamin C

    2017-04-01

    We investigated the consequences of chronic social instability (CSI) during adulthood on social and maternal behavior in females and social behavior of their offspring in a rat model. CSI consisted of changing the social partners of adult females every 2-3 days for 28 days, 2 weeks prior to mating. Females exposed to CSI behaved less aggressively and more pro-socially towards unfamiliar female intruders. Maternal care was not affected by CSI in a standard testing environment, but maternal behavior of CSI females was less disrupted by a male intruder. CSI females were quicker to attack prey and did not differ from control females in their saccharin consumption indicating, respectively, no stress-induced sensory-motor or reward system impairments. Offspring of CSI females exhibited slower growth and expressed more anxiety in social encounters. This study demonstrates continued adult vulnerability to social challenges with an impact specific to social situations for mothers and offspring.

  4. Prenatal nicotine exposure results in the myocardial fibrosis in the adult male offspring rats.

    PubMed

    Yu, Feng; Zheng, Aiqiang; Qian, Jin; Li, Yuexia; Wu, Lei; Yang, Jian; Gao, Xiren

    2016-09-01

    Our previous study showed that prenatal nicotine exposure could increase the heart rate of adult male offspring rats, but little is known about the mechanism. The aim of this study was to investigate the mechanism. Nicotine was subcutaneously administered to pregnant rats at a dose of 1.5mgkg(-1) from the gestational days 3-21; the control group received the same volume of saline by the same route. The offsprings' heart weight, ejection function, ultrastructure, and blood hormones were determined. The present study exhibited that prenatal nicotine exposure significantly decreased the offsprings' heart and body weight at gestational day 21 and at day 15 after birth, but had no effect on the heart and body weight at 90 days after birth. The hearts were fibrosed in the nicotine exposed male offsprings, and the heart ejection functions of the nicotine male offsprings at 90 days after birth were decreased, including SV, FS and EF. In addition, prenatal nicotine exposure significantly increased the offspring's blood adrenaline and norepinephrine levels. These data suggest that the increased heart rate caused by prenatal nicotine exposure may be a result of myocardial fibrosis, which leads to heart function decreases, and these data imply a myocardial fibrosis risk of prenatal nicotine exposure. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Dietary Intake Influences Adult Fertility and Offspring Fitness in Zebrafish

    PubMed Central

    Jhinku, Noel; Meier, Michael; Horsfield, Julia

    2016-01-01

    The burden of malnutrition, including both over- and undernutrition, is a major public health concern. Here we used a zebrafish model of diet-induced obesity to analyze the impact of dietary intake on fertility and the phenotype of the next generation. Over an eight-week period, one group received 60 mg of food each day (60 mg arm), while another received 5 mg (5 mg arm). At the end of the diet, the body mass index of the 60 mg arm was 1.5 fold greater than the 5 mg arm. The intervention also had a marked impact on fertility; breeding success and egg production in the 60 mg arm were increased 2.1- and 6.2-fold compared to the 5 mg arm, respectively. Transcriptome analysis of eggs revealed that transcripts involved in metabolic biological processes differed according to dietary intake. The progeny from the differentially fed fish were more likely to survive when the parents had access to more food. An intergenerational crossover study revealed that while parental diet did not influence weight gain in the offspring, the progeny of well-fed parents had increased levels of physical activity when exposed again to high nutrient availability. We conclude that dietary intake has an important influence on fertility and the subsequent fitness of offspring, even prior to breeding. PMID:27870856

  6. Dietary Intake Influences Adult Fertility and Offspring Fitness in Zebrafish.

    PubMed

    Newman, Trent; Jhinku, Noel; Meier, Michael; Horsfield, Julia

    2016-01-01

    The burden of malnutrition, including both over- and undernutrition, is a major public health concern. Here we used a zebrafish model of diet-induced obesity to analyze the impact of dietary intake on fertility and the phenotype of the next generation. Over an eight-week period, one group received 60 mg of food each day (60 mg arm), while another received 5 mg (5 mg arm). At the end of the diet, the body mass index of the 60 mg arm was 1.5 fold greater than the 5 mg arm. The intervention also had a marked impact on fertility; breeding success and egg production in the 60 mg arm were increased 2.1- and 6.2-fold compared to the 5 mg arm, respectively. Transcriptome analysis of eggs revealed that transcripts involved in metabolic biological processes differed according to dietary intake. The progeny from the differentially fed fish were more likely to survive when the parents had access to more food. An intergenerational crossover study revealed that while parental diet did not influence weight gain in the offspring, the progeny of well-fed parents had increased levels of physical activity when exposed again to high nutrient availability. We conclude that dietary intake has an important influence on fertility and the subsequent fitness of offspring, even prior to breeding.

  7. Maternal periodontal disease in rats decreases insulin sensitivity and insulin signaling in adult offspring.

    PubMed

    Shirakashi, Daisy J; Leal, Rosana P; Colombo, Natalia H; Chiba, Fernando Y; Garbin, Cléa A S; Jardim, Elerson G; Antoniali, Cristina; Sumida, Doris H

    2013-03-01

    Periodontal disease during pregnancy has been recognized as one of the causes of preterm and low-birth-weight (PLBW) babies. Several studies have demonstrated that PLBW babies are prone to developing insulin resistance as adults. Although there is controversy over the association between periodontal disease and PLBW, the phenomenon known as programming can translate any stimulus or aggression experienced during intrauterine growth into physiologic and metabolic alterations in adulthood. The purpose of the present study is to investigate whether the offspring of rats with periodontal disease develop insulin resistance in adulthood. Ten female Wistar rats were divided into periodontal disease (PED) and control (CN) groups. All rats were mated at 7 days after induction of periodontal disease. Male offspring were divided into two groups: 1) periodontal disease offspring (PEDO; n = 24); and 2) control offspring (CNO; n = 24). Offspring body weight was measured from birth until 75 days. When the offspring reached 75 days old, the following parameters were measured: 1) plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and tumor necrosis factor-α (TNF-α); 2) insulin sensitivity (IS); and 3) insulin signal transduction (IST) in insulin-sensitive tissues. Low birth weight was not detected in the PEDO group. However, plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and TNF-α were increased and IS and IST were reduced (P <0.05) in the PEDO group compared with the CNO group. Maternal periodontal disease may induce insulin resistance and reduce IST in adult offspring, but such alterations are not attributable to low birth weight.

  8. Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype.

    PubMed

    Hayward, Lisa S; Wingfield, John C

    2004-02-01

    Many environmental perturbations may elevate plasma corticosterone in laying birds, including disease, poor body condition, high predator density, anthropogenic disturbance, and/or food scarcity. When adverse conditions are not dire enough to dictate foregoing reproduction, maternal corticosterone in egg yolk may phenotypically engineer offspring so as to maximize success under the constraints of the local environment. We tested the hypotheses that corticosterone in avian egg yolk should correlate with corticosterone in maternal circulation at the time of laying, and that high corticosterone in yolk should then influence offspring development and adult phenotype. We implanted female Japanese quail (Coturnix coturnix japonica) with corticosterone-filled or empty implants and measured concentrations of corticosterone in the yolk of their eggs. Then we incubated the eggs and raised the chicks to test for effects on growth and hypothalamo-pituitary-adrenal response to capture and restraint in adult offspring. We found that corticosterone implants significantly increased corticosterone in yolk. Furthermore, chicks of corticosterone-implanted mothers grew more slowly than controls and showed higher activity of the hypothalamo-adrenal axis in response to capture and restraint as adults. These results suggest that stress experienced by a laying bird has significant effects on offspring development and adult phenotype, possibly mediated by the transfer of maternal corticosterone to yolk.

  9. Perinatal Resveratrol Supplementation to Spontaneously Hypertensive Rat Dams Mitigates the Development of Hypertension in Adult Offspring.

    PubMed

    Care, Alison S; Sung, Miranda M; Panahi, Sareh; Gragasin, Ferrante S; Dyck, Jason R B; Davidge, Sandra T; Bourque, Stephane L

    2016-05-01

    This study was undertaken to determine whether perinatal maternal resveratrol (Resv)--a phytoalexin known to confer cardiovascular protection--could prevent the development of hypertension and improve vascular function in adult spontaneously hypertensive rat offspring. Dams were fed either a control or Resv-supplemented diet (4 g/kg diet) from gestational day 0.5 until postnatal day 21. Indwelling catheters were used to assess blood pressure and vascular function in vivo; wire myography was used to assess vascular reactivity ex vivo. Perinatal Resv supplementation in dams had no effect on fetal body weights, albeit continued maternal treatment postnatally resulted in growth restriction in offspring by postnatal day 21; growth restriction was no longer evident after 5 weeks of age. Maternal perinatal Resv supplementation prevented the onset of hypertension in adult offspring (-18 mm Hg; P=0.007), and nitric oxide synthase inhibition (with L-NG-nitroarginine methyl ester) normalized these blood pressure differences, suggesting improved nitric oxide bioavailability underlies the hemodynamic alterations in the Resv-treated offspring. In vivo and ex vivo, vascular responses to methylcholine were not different between treatment groups, but prior treatment with L-NG-nitroarginine methyl ester attenuated the vasodilation in untreated, but not Resv-treated adult offspring, suggesting a shift toward nitric oxide-independent vascular control mechanisms in the treated group. Finally, bioconversion of the inactive precursor big endothelin-1 to active endothelin-1 in isolated mesenteric arteries was reduced in Resv-treated offspring (-28%; P<0.05), and this difference could be normalized by L-NG-nitroarginine methyl ester treatment. In conclusion, perinatal maternal Resv supplementation mitigated the development of hypertension and causes persistent alterations in vascular responsiveness in spontaneously hypertensive rats.

  10. Epigenomic and metabolic responses of hypothalamic POMC neurons to gestational nicotine exposure in adult offspring.

    PubMed

    Silva, Jose P; Lambert, Guerline; van Booven, Derek; Wahlestedt, Claes

    2016-09-08

    , 19 of which involved coding genes regulating neural development and/or function, and revealed expression of several previously unidentified metabolic, neuroendocrine, and neurodevelopment pathways in POMC neurons. PNE does not result in obesity and type 2 diabetes but instead enhances leptin-melanocortinergic feeding and body weight regulation via POMC neurons in adult offspring. PNE leads to selective upregulation of Gm15851, a lncRNA, in adult offspring POMC neurons. POMC neurons express several lncRNAs and pathways possibly regulating POMC neuronal development and/or function.

  11. Maternal high fat diet programs stress-induced behavioral disorder in adult offspring.

    PubMed

    Lin, ChengCheng; Shao, Bei; Huang, HuanJie; Zhou, YuLei; Lin, YuanShao

    2015-12-01

    Early life exposure to specific environmental factors can contribute to development of behavioral disorders in adulthood. Although maternal high fat diet (HFD) consumption during the perinatal period has been reported to program offspring behavior, the underlying mechanisms remain to be elucidated. The present study was designed to evaluate the influence of maternal HFD on offspring behavior under nonstressed and stressful conditions, using male Sprague-Dawley offspring, which mothers were fed with HFD or normal diet (ND), receiving chronic unpredictable mild stress (CUMS) in the adulthood. We found that although the detrimental effects of maternal HFD consumption on offspring depressive behavior did not persist into adulthood, it markedly aggravated the behavioral disorder response to stressful challenge in adult offspring. Moreover, calcitonin gene-related peptide (CGRP) concentration in CSF and hippocampus were increased in the HFD+CUMS rats, compared to the ND+CUMS subjects. Another separate groups were fitted with intracerebroventricular (icv) cannulae. Central infusion of αCGRP8-37, a CGRP antagonist, produced antidepressant effects in HFD+CUMS rats, implying that the programming of maternal HFD on offspring behavior responses to stress may be mediated partially by endogenous central CGRP signaling. Moreover, we found that maternal HFD significantly exacerbated HPA profile response to acute restraint stress and attenuated the habituation of HPA responses to repeated restraint stress, suggesting that maternal HFD may program the changes of HPA-regulatory mechanisms. Overall, our findings suggest that maternal HFD influence adult depressive disorder response to stressful challenge, through the modulation of endogenous central CGRP signaling and HPA-regulatory components. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Perinatal Nicotine Exposure Increases Obesity Susceptibility in Adult Male Rat Offspring by Altering Early Adipogenesis.

    PubMed

    Fan, Jie; Zhang, Wan-Xia; Rao, Yi-Song; Xue, Jing-Ling; Wang, Fei-Fei; Zhang, Li; Yan, You-E

    2016-11-01

    The present study aims to evaluate whether perinatal nicotine (NIC) exposure increases obesity susceptibility in adult male rat offspring by altering early adipogenesis. NIC was sc administered (2.0 mg/kg per day) to pregnant rats from gestational day 9 to the time of weaning (postnatal day 28). At weaning, NIC-exposed male pups had an increased body weight and inguinal sc fat mass and a decreased average cell area of adipocyte, which was accompanied by an overexpression of adipogenic and lipogenic genes in the epididymal white adipose tissue. Additionally, the hepatic lipogenic gene levels from NIC-exposed male pups were also affected. At 12 and 26 weeks of age, body weight and fat mass were increased, whereas there was no change in food intake in NIC-exposed male offspring. Adipogenic and lipogenic genes, glucose transporter 4, and leptin mRNA levels were increased, whereas adiponectin mRNA levels were decreased in the epididymal white adipose tissue of NIC-exposed males. The hepatic lipogenic gene expression of NIC-exposed males was increased. NIC-exposed male offspring showed normal glycemia and a higher serum insulin level, homeostasis model assessment of insulin resistance, and homeostasis model assessment of β-cell function. Furthermore, the NIC-exposed male offspring showed higher serum lipids and Castelli index I and lower nonesterified fatty acid. At 26 weeks, in the ip glucose and insulin tolerance tests, the glucose clearance was delayed, and the area under the curve was higher in the NIC-exposed male offspring. In conclusion, perinatal NIC exposure increased obesity susceptibility in adult male rat offspring by altering early adipogenesis.

  13. Maternal nicotine exposure leads to higher liver oxidative stress and steatosis in adult rat offspring.

    PubMed

    Conceição, E P; Peixoto-Silva, N; Pinheiro, C R; Oliveira, E; Moura, E G; Lisboa, P C

    2015-04-01

    Early nicotine exposure causes future obesity and insulin resistance. We evaluated the long-term effect of the maternal nicotine exposure during lactation in liver oxidative status, insulin sensitivity and morphology in adult offspring. Two days after birth, osmotic minipumps were implanted in the dams: nicotine (N), 6 mg/kg/day for 14 days or saline (C). Offspring were killed at 180 days. Protein content of superoxide dismutase, glutathione peroxidase, catalase, nitrotyrosine, 4HNE, IRS1, Akt1 and PPARs were measured. MDA, bound protein carbonyl content, SOD, GPx and catalase activities were determined in liver and plasma. Hepatic morphology and triglycerides content were evaluated. Albumin and bilirubin were determined. In plasma, N offspring had higher catalase activity, and SOD/GPx ratio, albumin and bilirubin levels but lower MDA content. In liver, they presented higher MDA and 4HNE levels, bound protein carbonyl content, SOD activity but lower GPx activity. N offspring presented an increase of lipid droplet, higher triglyceride content and a trend to lower PPARα in liver despite unchanged insulin signaling pathway. Early nicotine exposure causes oxidative stress in liver at adulthood, while protect against oxidative stress at plasma level. In addition, N offspring develop liver microsteatosis, which is related to oxidative stress but not to insulin resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Does maternal body mass index during pregnancy influence risk of schizophrenia in the adult offspring?

    PubMed

    Khandaker, G M; Dibben, C R M; Jones, P B

    2012-06-01

    Maternal obesity in pregnancy has been linked with several adverse outcomes in offspring including schizophrenia. The rising prevalence of obesity may contribute to an increase in the number of schizophrenia cases in the near future; therefore, it warrants further exploration. We reviewed current evidence regarding maternal body mass index (BMI) in pregnancy and risk of schizophrenia in adult offspring. We searched PubMed and Embase databases and included studies that were based on large and representative population-based datasets. A qualitative review was undertaken due to heterogeneity between studies. Four studies with 305 cases of schizophrenia and 24,442 controls were included. Maternal obesity (pre-pregnant BMI over 29 or 30 compared with mothers with low or average BMI) was associated with two- to threefold increased risk of schizophrenia in the adult offspring in two birth cohorts. High maternal BMI at both early and late pregnancy also increased risk of schizophrenia in the offspring. Discrepant findings from one study could be attributable to sample characteristics and other factors. The area needs more research. Future studies should take into account obstetric complications, diabetes, maternal infections and immune responses that might potentially mediate this association.

  15. Does maternal body mass index during pregnancy influence risk of schizophrenia in the adult offspring?

    PubMed Central

    Khandaker, G M; Dibben, C R M; Jones, P B

    2012-01-01

    Summary Maternal obesity in pregnancy has been linked with several adverse outcomes in offspring including schizophrenia. The rising prevalence of obesity may contribute to an increase in the number of schizophrenia cases in the near future; therefore, it warrants further exploration. We reviewed current evidence regarding maternal body mass index (BMI) in pregnancy and risk of schizophrenia in adult offspring. We searched PubMed and Embase databases and included studies that were based on large and representative population-based datasets. A qualitative review was undertaken due to heterogeneity between studies. Four studies with 305 cases of schizophrenia and 24,442 controls were included. Maternal obesity (pre-pregnant BMI over 29 or 30 compared with mothers with low or average BMI) was associated with two- to threefold increased risk of schizophrenia in the adult offspring in two birth cohorts. High maternal BMI at both early and late pregnancy also increased risk of schizophrenia in the offspring. Discrepant findings from one study could be attributable to sample characteristics and other factors. The area needs more research. Future studies should take into account obstetric complications, diabetes, maternal infections and immune responses that might potentially mediate this association. PMID:22188548

  16. Parental Involvement in Residential Care and Perceptions of their Offspring's Life Satisfaction in Residential Facilities for Adults with Intellectual Disability

    ERIC Educational Resources Information Center

    Schwartz, Chaya

    2005-01-01

    Background: This study examined parental involvement in relocation and post-placement care of offspring in residential facilities for adults with intellectual disability, as well as the characteristics of residents, parents, and residential institutions and the effect of those variables on parental perceptions of their offspring's life…

  17. Effects of maternal stress and perinatal fluoxetine exposure on behavioral outcomes of adult male offspring.

    PubMed

    Kiryanova, V; Meunier, S J; Vecchiarelli, H A; Hill, M N; Dyck, R H

    2016-04-21

    Women of child-bearing age are the population group at highest risk for depression. In pregnant women, fluoxetine (Flx) is the most widely prescribed selective serotonin reuptake inhibitor (SSRI) used for the treatment of depression. While maternal stress, depression, and Flx exposure have been shown to effect neurodevelopment of the offspring, separately, combined effects of maternal stress and Flx exposure have not been extensively examined. The present study investigated the effects of prenatal maternal stress and perinatal exposure to the SSRI Flx on the behavior of male mice as adults. C57BL/6 dams exposed to chronic unpredictable stress from embryonic (E) day 4 to E18 and non-stressed dams were administered Flx (25 mg/kg/d) in the drinking water from E15 to postnatal day 12. A separate control group consisted of animals that were not exposed to stress or Flx. At 12 days of age, brain levels of serotonin were assessed in the male offspring. At two months of age, the male offspring of mothers exposed to prenatal stress (PS), perinatal Flx, PS and Flx, or neither PS or Flx, went through a comprehensive behavioral test battery. At the end of testing brain-derived neurotropic factor (BDNF) levels were assessed in the frontal cortex of the offspring. Maternal behavior was not altered by either stress or Flx treatment. Treatment of the mother with Flx led to detectible Flx and NorFlx levels and lead to a decrease in serotonin levels in pup brains. In the adult male offspring, while perinatal exposure to Flx increased aggressive behavior, prenatal maternal stress decreased aggressive behavior. Interestingly, the combined effects of stress and Flx normalized aggressive behavior. Furthermore, perinatal Flx treatment led to a decrease in anxiety-like behavior in male offspring. PS led to hyperactivity and a decrease in BDNF levels in the frontal cortex regardless of Flx exposure. Neither maternal stress or Flx altered offspring performance in tests of cognitive

  18. Additive effects of maternal iron deficiency and prenatal immune activation on adult behaviors in rat offspring.

    PubMed

    Harvey, Louise; Boksa, Patricia

    2014-08-01

    Both iron deficiency (ID) and infection are common during pregnancy and studies have described altered brain development in offspring as a result of these individual maternal exposures. Given their high global incidence, these two insults may occur simultaneously during pregnancy. We recently described a rat model which pairs dietary ID during pregnancy and prenatal immune activation. Pregnant rats were placed on iron sufficient (IS) or ID diets from embryonic day 2 (E2) until postnatal day 7, and administered the bacterial endotoxin, lipopolysaccharide (LPS) or saline on E15/16. In this model, LPS administration on E15 caused greater induction of the pro-inflammatory cytokines, interleukin-6 and tumor necrosis factor-α, in ID dams compared to IS dams. This suggested that the combination of prenatal immune activation on a background of maternal ID might have more adverse neurodevelopmental consequences for the offspring than exposure to either insult alone. In this study we used this model to determine whether combined exposure to maternal ID and prenatal immune activation interact to affect juvenile and adult behaviors in the offspring. We assessed behaviors relevant to deficits in humans or animals that have been associated with exposure to either maternal ID or prenatal immune activation alone. Adult offspring from ID dams displayed significant deficits in pre-pulse inhibition of acoustic startle and in passive avoidance learning, together with increases in cytochrome oxidase immunohistochemistry, a marker of metabolic activity, in the ventral hippocampus immediately after passive avoidance testing. Offspring from LPS treated dams showed a significant increase in social behavior with unfamiliar rats, and subtle locomotor changes during exploration in an open field and in response to amphetamine. Surprisingly, there was no interaction between effects of the two insults on the behaviors assessed, and few observed alterations in juvenile behavior. Our findings

  19. Adult and offspring size in the ocean: a database of size metrics and conversion factors.

    PubMed

    Neuheimer, Anna B; Hartvig, Martin; Heuschele, Jan; Hylander, Samuel; Kiørboe, Thomas; Olsson, Karin H; Sainmont, Julie; Andersen, Ken H

    2016-04-01

    The purpose of this dataset was to compile adult and offspring size estimates for marine organisms. Adult and offspring size estimates of 408 species were compiled from the literature covering >17 orders of magnitude in body mass and including Cephalopoda (ink fish), Cnidaria ("jelly" fish), Crustaceans, Ctenophora (comb jellies), Elasmobranchii (cartilaginous fish), Mammalia (mammals), Sagittoidea (arrow worms) and Teleost (i.e., Actinopterygii, bony fish). Individual size estimates were converted to standardized size estimates (carbon weight, g) to allow for among-group comparisons. This required a number of size estimates to be converted and a compilation of conversion factors obtained from the literature are also presented. © 2016 by the Ecological Society of America.

  20. Maternal allergy acts synergistically with cigarette smoke exposure during pregnancy to induce hepatic fibrosis in adult male offspring.

    PubMed

    Allina, Jorge; Grabowski, Jacquelin; Doherty-Lyons, Shannon; Fiel, M Isabel; Jackson, Christine E; Zelikoff, Judith T; Odin, Joseph A

    2011-01-01

    Maternal environmental exposures during pregnancy are known to affect disease onset in adult offspring. For example, maternal asthma exacerbations during pregnancy can worsen adult asthma in the offspring. Cigarette smoking during pregnancy is associated with future onset of cardiovascular disease, obesity and diabetes. However, little is known about the effect of maternal environmental exposures on offspring susceptibility to liver disease. This pilot study examined the long-term effect of maternal allergen challenge and/or cigarette smoking during pregnancy on hepatic inflammation and fibrosis in adult mouse offspring. Ovalbumin (OVA) or phosphate-buffered saline (PBS)-sensitized/challenged CD-1 dams were exposed to mainstream cigarette smoke (MCS) or filtered air from gestational day 4 until parturition. Eight weeks postnatally, offspring were sacrificed for comparison of hepatic histology and mRNA expression. Adult male offspring of OVA-sensitized/challenged dams exposed to MCS (OSM) displayed significantly increased liver fibrosis (9.2% collagen content vs. <4% for all other treatment groups). These mice also had 1.8-fold greater collagen 1A1 mRNA levels. From the results here, we concluded that maternal allergen challenge in combination with cigarette smoke exposure during pregnancy may be an important risk factor for liver disease in adult male offspring.

  1. DDE and PCB serum concentration in maternal blood and their adult female offspring.

    PubMed

    Hsu, Wei-Wen; Osuch, Janet Rose; Todem, David; Taffe, Bonita; O'Keefe, Michael; Adera, Selamawit; Karmaus, Wilfried

    2014-07-01

    Dichlorodiphenyl dichloroethylene (DDE) and polychlorinated biphenyls (PCBs) can be passed from mother to offspring through placental transfer or breastfeeding. Unknown is whether maternal levels can predict concentrations in adult offspring. To test the association between maternal blood levels of DDE and PCBs and adult female offspring levels of these compounds using data from the Michigan Fisheaters'Cohort. DDE and PCB concentrations were determined in 132 adult daughters from 84 mothers. Prenatal exposures were estimated based on maternal DDE and PCB serum levels measured between 1973 and 1991. Levels in adult daughters were regressed on maternal and estimated prenatal exposure levels, adjusting for potential confounders using linear mixed models. Confounders included daughter's age, birth order, birth weight, number of pregnancies, the length of time the daughter was breast-fed, the length of time the daughter breast-fed her own children, last year fish-eating status, body mass index, and lipid weight. The median age of the participants was 40.4 years (range 18.4-65.4, 5-95 percentiles 22.5-54.6%, respectively). Controlling for confounders and intra-familial associations, DDE and PCB concentrations in adult daughters were significantly positively associated with estimated prenatal levels and with maternal concentrations. The proportion of variance in the adult daughters' organochlorine concentrations explained by the maternal exposure levels is approximately 23% for DDE and 43% for PCBs. The equivalent of a median of 3.67 μg/L prenatal DDE and a median of 2.56 μg/L PCBs were 15.64 and 10.49 years of fish consumption, respectively. When controlling for effects of the shared environment (e.g., fish diet) by using a subsample of paternal levels measured during the same time frames (n=53 and n=37), we determined that the direct maternal transfer remains important. Estimated intra-uterine DDE and PCB levels predicted concentrations in adult female offspring 40

  2. Maternal flaxseed diet during lactation changes adrenal function in adult male rat offspring.

    PubMed

    Figueiredo, Mariana Sarto; da Conceição, Ellen Paula Santos; de Oliveira, Elaine; Lisboa, Patricia Cristina; de Moura, Egberto Gaspar

    2015-10-14

    Flaxseed (Linum usitatissimum L.) has been a focus of interest in the field of functional foods because of its potential health benefits. However, we hypothesised that maternal flaxseed intake during lactation could induce several metabolic dysfunctions in adult offspring. In the present study, we aimed to characterise the adrenal function of adult offspring whose dams were supplemented with whole flaxseed during lactation. At birth, lactating Wistar rats were divided into two groups: rats from dams fed the flaxseed diet (FLAX) with 25% of flaxseed and controls dams. Pups received standard diet after weaning and male offspring were killed at age 180 days old to collect blood and tissues. We evaluated body weight and food intake during development, corticosteronaemia, adrenal catecholamine content, hepatic cholesterol, TAG and glycogen contents, and the protein expression of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), 11-β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and adrenaline β2 receptor at postnatal day 180 (PN180). After weaning, pups from the FLAX group had a higher body weight (+10 %) and food intake (+10%). At PN180, the FLAX offspring exhibited higher serum corticosterone (+48%) and lower adrenal catecholamine ( - 23%) contents, lower glycogen ( - 30%), higher cholesterol (4-fold increase) and TAG (3-fold-increase) contents in the liver, and higher 11β-HSD1 (+62%) protein expression. Although the protein expression of hypothalamic CRH was unaffected, the FLAX offspring had lower protein expression of pituitary ACTH ( - 34%). Therefore, induction of hypercorticosteronaemia by dietary flaxseed during lactation may be due to an increased hepatic activation of 11β-HSD1 and suppression of ACTH. The changes in the liver fat content of the FLAX group are suggestive of steatosis, in which hypercorticosteronaemia may play an important role. Thus, it is recommended that lactating women restrict the intake of flaxseed during

  3. Altered Health Outcomes in Adult Offspring of Sprague Dawley and Wistar Rats Undernourished During Early or Late Pregnancy

    EPA Science Inventory

    Gestational undernutrition in humans can result in birth weight reductions (an indicator of a suboptimal intrauterine environment) and predisposition to adult disease in offspring including high blood pressure, insulin resistance, glucose intolerance, and obesity (key components ...

  4. Altered Health Outcomes in Adult Offspring of Sprague Dawley and Wistar Rats Undernourished During Early or Late Pregnancy

    EPA Science Inventory

    Gestational undernutrition in humans can result in birth weight reductions (an indicator of a suboptimal intrauterine environment) and predisposition to adult disease in offspring including high blood pressure, insulin resistance, glucose intolerance, and obesity (key components ...

  5. Maternal tobacco smoke increased visceral adiposity and serum corticosterone levels in adult male rat offspring.

    PubMed

    Zinkhan, Erin K; Lang, Brook Y; Yu, Baifeng; Wang, Yan; Jiang, Chengshe; Fitzhugh, Melanie; Dahl, Marjanna; Campbell, Michael S; Fung, Camille; Malleske, Daniel; Albertine, Kurt H; Joss-Moore, Lisa; Lane, Robert H

    2014-07-01

    Maternal tobacco smoke (MTS) predisposes human and rat offspring to visceral obesity in early adulthood. Glucocorticoid excess also causes visceral obesity. We hypothesized that in utero MTS would increase visceral adiposity and alter the glucocorticoid pathway in young adult rats. We developed a novel model of in utero MTS exposure in pregnant rats by exposing them to cigarette smoke from E11.5 to term. Neonatal rats were cross-fostered to control dams and weaned to standard rat chow through young adulthood (postnatal day 60). We demonstrated increased visceral adiposity (193%)*, increased visceral adipose 11-β hydroxysteroid dehydrogenase 1 mRNA (204%)*, increased serum corticosterone (147%)*, and no change in glucocorticoid receptor protein in adult male MTS rat offspring. Female rats exposed to MTS in utero demonstrated no change in visceral or subcutaneous adiposity, decreased serum corticosterone (60%)*, and decreased adipose glucocorticoid receptor protein (66%)*. *P < 0.05. We conclude that in utero MTS exposure increased visceral adiposity and altered in the glucocorticoid pathway in a sex-specific manner. We speculate that in utero MTS exposure programs adipose dysfunction in adult male rat offspring via alteration in the glucocorticoid pathway.

  6. Gestational Hypothyroidism Increases the Severity of Experimental Autoimmune Encephalomyelitis in Adult Offspring

    PubMed Central

    Albornoz, Eduardo A.; Carreño, Leandro J.; Cortes, Claudia M.; Gonzalez, Pablo A.; Cisternas, Pablo A.; Cautivo, Kelly M.; Catalán, Tamara P.; Opazo, M. Cecilia; Eugenin, Eliseo A.; Berman, Joan W.; Bueno, Susan M.; Kalergis, Alexis M.

    2013-01-01

    Background: Maternal thyroid hormones play a fundamental role in appropriate fetal development during gestation. Offspring that have been gestated under maternal hypothyroidism suffer cognitive impairment. Thyroid hormone deficiency during gestation can significantly impact the central nervous system by altering the migration, differentiation, and function of neurons, oligodendrocytes, and astrocytes. Given that gestational hypothyroidism alters the immune cell ratio in offspring, it is possible that this condition could result in higher sensitivity for the development of autoimmune diseases. Methods: Adult mice gestated under hypothyroidism were induced with experimental autoimmune encephalomyelitis (EAE). Twenty-one days after EAE induction, the disease score, myelin content, immune cell infiltration, and oligodendrocyte death were evaluated. Results: We observed that mice gestated under hypothyroidism showed higher EAE scores after disease induction during adulthood compared to mice gestated in euthyroidism. In addition, spinal cord sections of mice gestated under hypothyroidism that suffered EAE in adulthood showed higher demyelination, CD4+ and CD8+ infiltration, and increased oligodendrocyte death. Conclusions: These results show for the first time that a deficiency in maternal thyroid hormones during gestation can influence the outcome of a central nervous system inflammatory disease, such as EAE, in their offspring. These data strongly support evaluating thyroid hormones in pregnant women and treating hypothyroidism during pregnancy to prevent increased susceptibility to inflammatory diseases in the central nervous system of offspring. PMID:23777566

  7. Gestational hypothyroidism increases the severity of experimental autoimmune encephalomyelitis in adult offspring.

    PubMed

    Albornoz, Eduardo A; Carreño, Leandro J; Cortes, Claudia M; Gonzalez, Pablo A; Cisternas, Pablo A; Cautivo, Kelly M; Catalán, Tamara P; Opazo, M Cecilia; Eugenin, Eliseo A; Berman, Joan W; Bueno, Susan M; Kalergis, Alexis M; Riedel, Claudia A

    2013-12-01

    Maternal thyroid hormones play a fundamental role in appropriate fetal development during gestation. Offspring that have been gestated under maternal hypothyroidism suffer cognitive impairment. Thyroid hormone deficiency during gestation can significantly impact the central nervous system by altering the migration, differentiation, and function of neurons, oligodendrocytes, and astrocytes. Given that gestational hypothyroidism alters the immune cell ratio in offspring, it is possible that this condition could result in higher sensitivity for the development of autoimmune diseases. Adult mice gestated under hypothyroidism were induced with experimental autoimmune encephalomyelitis (EAE). Twenty-one days after EAE induction, the disease score, myelin content, immune cell infiltration, and oligodendrocyte death were evaluated. We observed that mice gestated under hypothyroidism showed higher EAE scores after disease induction during adulthood compared to mice gestated in euthyroidism. In addition, spinal cord sections of mice gestated under hypothyroidism that suffered EAE in adulthood showed higher demyelination, CD4(+) and CD8(+) infiltration, and increased oligodendrocyte death. These results show for the first time that a deficiency in maternal thyroid hormones during gestation can influence the outcome of a central nervous system inflammatory disease, such as EAE, in their offspring. These data strongly support evaluating thyroid hormones in pregnant women and treating hypothyroidism during pregnancy to prevent increased susceptibility to inflammatory diseases in the central nervous system of offspring.

  8. Parent–offspring resemblance in colony-specific adult survival of cliff swallows

    USGS Publications Warehouse

    Brown, Charles R.; Roche, Erin A.; Brown, Mary Bomberger

    2015-01-01

    Survival is a key component of fitness. Species that occupy discrete breeding colonies with different characteristics are often exposed to varying costs and benefits associated with group size or environmental conditions, and survival is an integrative net measure of these effects. We investigated the extent to which survival probability of adult (≥1-year old) cliff swallows (Petrochelidon pyrrhonota) occupying different colonies resembled that of their parental cohort and thus whether the natal colony had long-term effects on individuals. Individuals were cross-fostered between colonies soon after hatching and their presence as breeders monitored at colonies in the western Nebraska study area for the subsequent decade. Colony-specific adult survival probabilities of offspring born and reared in the same colony, and those cross-fostered away from their natal colony soon after birth, were positively and significantly related to subsequent adult survival of the parental cohort from the natal colony. This result held when controlling for the effect of natal colony size and the age composition of the parental cohort. In contrast, colony-specific adult survival of offspring cross-fostered to a site was unrelated to that of their foster parent cohort or to the cohort of non-fostered offspring with whom they were reared. Adult survival at a colony varied inversely with fecundity, as measured by mean brood size, providing evidence for a survival–fecundity trade-off in this species. The results suggest some heritable variation in adult survival, likely maintained by negative correlations between fitness components. The study provides additional evidence that colonies represent non-random collections of individuals.

  9. Host Suitability of a Gregarious Parasitoid on Beetle Hosts: Flexibility between Fitness of Adult and Offspring

    PubMed Central

    Li, Li; Sun, Jianghua

    2011-01-01

    Behavioral tactics play a crucial role in the evolution of species and are likely to be found in host-parasitoid interactions where host quality may differ between host developmental stages. We investigated foraging decisions, parasitism and related fitness in a gregarious ectoparasitoid, Sclerodermus harmandi in relation to two distinct host developmental stages: larvae and pupae. Two colonies of parasitoids were reared on larvae of Monochamus alternatus and Saperda populnea (Cerambycidae: Lamiinae). Paired-choice and non-choice experiments were used to evaluate the preference and performance of S. harmandi on larvae and pupae of the two species. Foraging decisions and offspring fitness-related consequences of S. harmandi led to the selection of the most profitable host stage for parasitoid development. Adult females from the two colonies oviposited more quickly on pupae as compared to larvae of M. alternatus. Subsequently, their offspring development time was faster and they gained higher body weight on the pupal hosts. This study demonstrates optimal foraging of intraspecific détente that can occur during host-parasitoid interactions, of which the quality of the parasitism (highest fitness benefit and profitability) is related to the host developmental stage utilized. We conclude that S. harmandi is able to perfectly discriminate among host species or stages in a manner that maximizes its offspring fitness. The results indicated that foraging potential of adults may not be driven by its maternal effects, also induced flexibly with encountering prior host quality. PMID:21526176

  10. Host suitability of a gregarious parasitoid on beetle hosts: flexibility between fitness of adult and offspring.

    PubMed

    Li, Li; Sun, Jianghua

    2011-04-19

    Behavioral tactics play a crucial role in the evolution of species and are likely to be found in host-parasitoid interactions where host quality may differ between host developmental stages. We investigated foraging decisions, parasitism and related fitness in a gregarious ectoparasitoid, Sclerodermus harmandi in relation to two distinct host developmental stages: larvae and pupae. Two colonies of parasitoids were reared on larvae of Monochamus alternatus and Saperda populnea (Cerambycidae: Lamiinae). Paired-choice and non-choice experiments were used to evaluate the preference and performance of S. harmandi on larvae and pupae of the two species. Foraging decisions and offspring fitness-related consequences of S. harmandi led to the selection of the most profitable host stage for parasitoid development. Adult females from the two colonies oviposited more quickly on pupae as compared to larvae of M. alternatus. Subsequently, their offspring development time was faster and they gained higher body weight on the pupal hosts. This study demonstrates optimal foraging of intraspecific détente that can occur during host-parasitoid interactions, of which the quality of the parasitism (highest fitness benefit and profitability) is related to the host developmental stage utilized. We conclude that S. harmandi is able to perfectly discriminate among host species or stages in a manner that maximizes its offspring fitness. The results indicated that foraging potential of adults may not be driven by its maternal effects, also induced flexibly with encountering prior host quality.

  11. Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring.

    PubMed

    Sussman, Dafna; Germann, Jurgen; Henkelman, Mark

    2015-02-01

    The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood. To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy. The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume. These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood.

  12. Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring

    PubMed Central

    Sussman, Dafna; Germann, Jurgen; Henkelman, Mark

    2015-01-01

    Introduction The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood. Methods To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy. Results The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume. Conclusions These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood. PMID:25642385

  13. Parental Educational Attainment and Adult Offspring Personality: An Intergenerational Life Span Approach to the Origin of Adult Personality Traits.

    PubMed

    Sutin, Angelina R; Luchetti, Martina; Stephan, Yannick; Robins, Richard W; Terracciano, Antonio

    2017-03-13

    Why do some individuals have more self-control or are more vulnerable to stress than others? Where do these basic personality traits come from? Although a fundamental question in personality, more is known about how traits are related to important life outcomes than their developmental origins. The present research took an intergenerational life span approach to address whether a significant aspect of the childhood environment-parental educational attainment-was associated with offspring personality traits in adulthood. We tested the association between parents' educational levels and adult offspring personality traits in 7 samples (overall age range 14-95) and meta-analytically combined the results (total N > 60,000). Parents with more years of education had children who were more open, extraverted, and emotionally stable as adults. These associations were small but consistent, of similar modest magnitude to the association between life events and change in personality in adulthood, and were also supported by longitudinal analyses. Contrary to expectations, parental educational attainment was unrelated to offspring Conscientiousness, except for a surprisingly negative association in the younger cohorts. The results were similar in a subsample of participants who were adopted, which suggested that environmental mechanisms were as relevant as shared genetic variants. Participant levels of education were associated with greater conscientiousness, emotional stability, extraversion, and openness and partially mediated the relation between parent education and personality. Child IQ and family income were also partial mediators. The results of this research suggest that parental educational attainment is 1 intergenerational factor associated with offspring personality development in adulthood. (PsycINFO Database Record

  14. The association of maternal socialization in childhood and adolescence with adult offsprings' sympathy/caring.

    PubMed

    Eisenberg, Nancy; VanSchyndel, Sarah K; Hofer, Claire

    2015-01-01

    The purpose of the study was to examine associations between mothers' socialization practices in childhood and adolescence and offsprings' (N = 32, 16 female) sympathy/concern in early adulthood. Mothers reported on their socialization practices and beliefs a total of 6 times using a Q-sort during their offsprings' childhood (between 7-8 and 11-12 years of age) and adolescence (between 13-14 and 17-18 years of age). Adult offsprings' sympathy/caring was assessed 3 times in early adulthood (at ages 19-20 to 23-24 years) and in their mid-20s to 30s (ages 25-26 to 31-32 years). In general, friends' reports of participants' sympathy/concern at ages 25-32 years related positively to mother-reported rational discipline (including inductions) and warmth and support during childhood and adolescence and negatively to mother-reported negative affect during adolescence. Self-reported sympathy/concern during early adulthood was positively related to maternal warmth and support during childhood and almost significantly negatively related to mother-reported negative affect during childhood and adolescence. Most of the relations held when the prior level of self-reported childhood empathy or adolescent sympathy was controlled.

  15. Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring.

    PubMed

    Bubenikova-Valesova, Vera; Kacer, Petr; Syslova, Kamila; Rambousek, Lukas; Janovsky, Martin; Schutova, Barbora; Hruba, Lenka; Slamberova, Romana

    2009-10-01

    Methamphetamine is a commonly abused psychostimulant that causes addiction and is often abused by pregnant women. Acute or chronic administration of methamphetamine elevates the levels of the extracellular monoamine neurotransmitters, such as dopamine. The aim of the present study was to show whether prenatal exposure to methamphetamine (5mg/kg, entire gestation) or saline in Wistar rats induces changes in dopamine levels and its metabolites in the nucleus accumbens, and in behavior (locomotor activity, rearing, and immobility) after the administration of a challenge dose of methamphetamine (1mg/kg) or saline in male offspring. We found that adult offspring prenatally exposed to methamphetamine had higher basal levels of dopamine (about 288%), dihydroxyphenylacetic acid (about 67%) and homovanillic acid (about 74%) in nucleus accumbens. An increased basal level of dopamine corresponds to lower basal immobility in offspring prenatally exposed to methamphetamine. The acute injection of methamphetamine in adulthood increased the level of dopamine in the nucleus accumbens, which is related to an increase of locomotion and rearing (exploration). In addition, prenatally methamphetamine-exposed rats showed higher response to the challenge dose of methamphetamine, when compared to prenatally saline-exposed rats. In conclusion, rats exposed to methamphetamine in utero have shown changes in the mesolimbic dopaminergic system and were more sensitive to the administration of the acute dose of methamphetamine in adulthood.

  16. Maternal food restriction modulates cerebrovascular structure and contractility in adult rat offspring: effects of metyrapone

    PubMed Central

    Durrant, Lara M.; Khorram, Omid; Buchholz, John N.

    2014-01-01

    Although the effects of prenatal undernutrition on adult cardiovascular health have been well studied, its effects on the cerebrovascular structure and function remain unknown. We used a pair-fed rat model of 50% caloric restriction from day 11 of gestation to term, with ad libitum feeding after birth. We validated that maternal food restriction (MFR) stress is mediated by glucocorticoids by administering metyrapone, a corticosterone synthesis inhibitor, to MFR mothers at day 11 of gestation. At age 8 mo, offspring from Control, MFR, and MFR + Metyrapone groups were killed, and middle cerebral artery (MCA) segments were studied using vessel-bath myography and confocal microscopy. Colocalization of smooth muscle α-actin (SMαA) with nonmuscle (NM), SM1 and SM2 myosin heavy-chain (MHC) isoforms was used to assess smooth muscle phenotype. Our results indicate that artery stiffness and wall thickness were increased, pressure-evoked myogenic reactivity was depressed, and myofilament Ca2+ sensitivity was decreased in offspring of MFR compared with Control rats. MCA from MFR offspring exhibited a significantly greater SMαA/NM colocalization, suggesting that the smooth muscle cells had been altered toward a noncontractile phenotype. MET significantly reversed the effects of MFR on stiffness but not myogenic reactivity, lowered SMαA/NM colocalization, and increased SMαA/SM2 colocalization. Together, our data suggest that MFR alters cerebrovascular contractility via both glucocorticoid-dependent and glucocorticoid-independent mechanisms. PMID:24477541

  17. Childhood maltreatment in adult offspring of Portuguese war veterans with and without PTSD

    PubMed Central

    Dias, Aida; Sales, Luisa; Cardoso, Rui M.; Kleber, Rolf

    2014-01-01

    Background The colonial war that Portugal was involved in between 1961 and 1974 had a significant impact on veterans and their families. However, it is unclear what the consequences of this war are, in particular with regard to levels of childhood maltreatment (CM) in offspring. Objective Our study aims to analyze the influences of fathers’ war exposure and posttraumatic stress disorder (PTSD) on the offspring's CM and simultaneously test the hypothesis of the intergenerational transmission of father–child CM. Method Cross-sectional data were collected, using the Childhood Trauma Questionnaire—Short Form, from 203 adult children and 117 fathers. Subjects were distributed according to three conditions based on the father's war exposure status: did not participate in war, or non-war-exposed (NW); participated in war, or war-exposed (W); and war-exposed with PTSD diagnosis (WP). The data were examined using correlations, variance/covariance, and regression analyses. Results Children of war veterans with PTSD reported more emotional and physical neglect, while their fathers reported increased emotional and physical abuse exposure during their own childhood. Significant father–child CM correlations were found in the war veteran group but less in the war veteran with PTSD group. Father CM predicted 16% of offspring CM of children of war veterans. Conclusions The father's war-related PTSD might be a risk factor for offspring neglect but potentially a protective one for the father–child abuse transmission. War-exposed fathers without PTSD did transmit their own CM experiences more often. Therefore, father's war exposure and father's war PTSD may each be important variables to take into account in the study of intergenerational transmission of CM. PMID:24505510

  18. IV prenatal nicotine exposure increases the reinforcing efficacy of methamphetamine in adult rat offspring.

    PubMed

    Lacy, Ryan T; Morgan, Amanda J; Harrod, Steven B

    2014-08-01

    Maternal smoking during pregnancy is correlated with increased substance use in offspring. Research using rodent models shows that gestational nicotine exposure produces enduring alterations in the neurodevelopment of motivational systems, and that rats prenatally treated with nicotine have altered motivation for drug reinforcement on fixed-ratio (FR) schedules of reinforcement. The present study investigated methamphetamine (METH) self-administration in adult offspring prenatally exposed to intravenous (IV) nicotine or saline using a progressive-ratio (PR) schedule of reinforcement. Pregnant rats were administered IV prenatal saline (PS) or nicotine (PN; 0.05mg/kg/infusion), 3×/day during gestational days 8-21. At postnatal day 70, offspring acquired a lever-press response for sucrose (26%, w/v; FR1-3). Rats were trained with METH (0.05mg/kg/infusion), and following stable FR responding, animals were tested using a progressive-ratio (PR) schedule for three different doses of METH (0.005, 0.025, and 0.05mg/kg/infusion). METH infusion, active lever presses, and the ratio breakpoint are reported. PN-exposed animals exhibited more METH-maintained responding than PS controls, according to a dose×prenatal treatment interaction (e.g., infusions). PN rats self-administered more METH infusions between the range of 0.025 and 0.05, but not for the 0.005mg/kg/infusion dose. IV PN-exposure produced enhanced motivation to self-administer METH. These findings indicate that pregnant women who smoke tobacco may impart neurobiological changes in offspring's motivational systems that render them increasingly vulnerable to drug abuse during adulthood. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  20. MATERNAL EXPERIENCE OF ABUSE IN CHILDHOOD AND DEPRESSIVE SYMPTOMS IN ADOLESCENT AND ADULT OFFSPRING: A 21-YEAR LONGITUDINAL STUDY

    PubMed Central

    Roberts, Andrea L.; Chen, Ying; Slopen, Natalie; McLaughlin, Katie A.; Koenen, Karestan C.; Austin, Sydney Bryn

    2015-01-01

    Background Intergenerational effects of child abuse have been documented, but it is unknown whether maternal childhood abuse influences offspring mental health in adolescence or adulthood. Methods To examine whether maternal experience of childhood abuse is associated with depressive symptoms in adolescent and young adult offspring, we linked data from two large longitudinal cohorts of women (N = 8,882) and their offspring (N = 11,402), and we examined three possible pathways by which maternal experience of abuse might be associated with offspring depressive symptoms: maternal mental health, family characteristics, and offspring’s own experience of abuse. Results Offspring of women who experienced severe versus no childhood abuse had greater likelihood of high depressive symptoms (RR = 1.78, 95% CI = 1.47, 2.16) and persistent high depressive symptoms (RR = 2.47, 95% CI = 1.37, 4.44). Maternal mental health accounted for 20.9% and offspring’s exposure to abuse accounted for 30.3% of the elevated risk of high depressive symptoms. Disparities in offspring depressive symptoms by maternal abuse exposure were evident at age 12 years and persisted through age 31 years. Conclusions Findings provide evidence that childhood abuse adversely affects the mental health of the victim’s offspring well into adulthood. As offspring exposure to abuse and maternal mental health accounted for more than 50% of the elevated risk of high depressive symptoms among offspring of women who experienced abuse, improving maternal mental health and parenting practices may reduce offspring risk for depressive symptoms in these families. PMID:26220852

  1. Persistent Interneuronopathy in the Prefrontal Cortex of Young Adult Offspring Exposed to Ethanol In Utero.

    PubMed

    Skorput, Alexander G J; Gupta, Vivek P; Yeh, Pamela W L; Yeh, Hermes H

    2015-08-05

    Gestational exposure to ethanol has been reported to alter the disposition of tangentially migrating GABAergic cortical interneurons, but much remains to be elucidated. Here we first established the migration of interneurons as a proximal target of ethanol by limiting ethanol exposure in utero to the gestational window when tangential migration is at its height. We then asked whether the aberrant tangential migration of GABAergic interneurons persisted as an enduring interneuronopathy in the medial prefrontal cortex (mPFC) later in the life of offspring prenatally exposed to ethanol. Time pregnant mice with Nkx2.1Cre/Ai14 embryos harboring tdTomato-fluorescent medial ganglionic eminence (MGE)-derived cortical GABAergic interneurons were subjected to a 3 day binge-type 5% w/w ethanol consumption regimen from embryonic day (E) 13.5-16.5, spanning the peak of corticopetal interneuron migration in the fetal brain. Our binge-type regimen increased the density of MGE-derived interneurons in the E16.5 mPFC. In young adult offspring exposed to ethanol in utero, this effect persisted as an increase in the number of mPFC layer V parvalbumin-immunopositive interneurons. Commensurately, patch-clamp recording in mPFC layer V pyramidal neurons uncovered enhanced GABA-mediated spontaneous and evoked synaptic transmission, shifting the inhibitory/excitatory balance toward favoring inhibition. Furthermore, young adult offspring exposed to the 3 day binge-type ethanol regimen exhibited impaired reversal learning in a modified Barnes maze, indicative of decreased PFC-dependent behavioral flexibility, and heightened locomotor activity in an open field arena. Our findings underscore that aberrant neuronal migration, inhibitory/excitatory imbalance, and thus interneuronopathy contribute to indelible abnormal cortical circuit form and function in fetal alcohol spectrum disorders. The significance of this study is twofold. First, we demonstrate that a time-delimited binge-type ethanol

  2. Perinatal thiamine restriction affects central GABA and glutamate concentrations and motor behavior of adult rat offspring.

    PubMed

    Ferreira-Vieira, Talita Hélen; de Freitas-Silva, Danielle Marra; Ribeiro, Andrea Frozino; Pereira, Sílvia Rejane Castanheira; Ribeiro, Ângela Maria

    2016-03-23

    The purposes of the present study were to investigate the effects of perinatal thiamine deficiency, from the 11th day of gestation until the 5th day of lactation, on motor behavior and neurochemical parameters in adult rat offspring, using 3-month-old, adult, male Wistar rats. All rats were submitted to motor tests, using the rotarod and paw print tasks. After behavioral tests, their thalamus, cerebellum and spinal cord were dissected for glutamate and GABA quantifications by high performance liquid chromatography. The thiamine-restricted mothers (RM) group showed a significant reduction of time spent on the rotarod at 25 rpm and an increase in hind-base width. A significant decrease of glutamate concentration in the cerebellum and an increase of GABA concentrations in the thalamus were also observed. For the offspring from control mothers (CM) group there were significant correlations between thalamic GABA concentrations and both rotarod performance and average hind-base width. In addition, for rats from the RM group a significant correlation between stride length and cerebellar GABA concentration was found. These results show that the deficiency of thiamine during an early developmental period affects certain motor behavior parameters and GABA and glutamate levels in specific brain areas. Hence, a thiamine deficiency episode during an early developmental period can induce motor impairments and excitatory and inhibitory neurotransmitter changes that are persistent and detectable in later periods of life. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Antenatal Maternal Stress Alters Functional Brain Responses In Adult Offspring During Conditioned Fear

    PubMed Central

    Sadler, Theodore R.; Nguyen, Peter T.; Yang, Jun; Givrad, Tina K.; Mayer, Emeran A.; Maarek, Jean-Michel I.; Hinton, David R.; Holschneider, Daniel P.

    2011-01-01

    Antenatal maternal stress has been shown in rodent models and in humans to result in altered behavioral and neuroendocrine responses, yet little is known about its effects on functional brain activation. Pregnant female rats received a daily foot-shock stress or sham-stress two days after testing plug-positive and continuing for the duration of their pregnancy. Adult male offspring (age 14 weeks) with and without prior maternal stress (MS) were exposed to an auditory fear conditioning (CF) paradigm. Cerebral blood flow (CBF) was assessed during recall of the tone cue in the nonsedated, nontethered animal using the 14C-iodoantipyrine method, in which the tracer was administered intravenously by remote activation of an implantable minipump. Regional CBF distribution was examined by autoradiography and analyzed by statistical parametric mapping in the three-dimensionally reconstructed brains. Presence of fear memory was confirmed by behavioral immobility (‘freezing’). Corticosterone plasma levels during the CF paradigm were measured by ELISA in a separate group of rats. Antenatal MS exposure altered functional brain responses to the fear conditioned cue in adult offspring. Rats with prior MS exposure compared to those without demonstrated heightened fear responsivity, exaggerated and prolonged corticosterone release, increased functional cerebral activation of limbic/paralimbic regions (amygdala, ventral hippocampus, insula, ventral striatum, nucleus acumbens), the locus coeruleus, and white matter, and deactivation of medial prefrontal cortical regions. Dysregulation of corticolimbic circuits may represent risk factors in the future development of anxiety disorders and associated alterations in emotional regulation. PMID:21300034

  4. Maternal arachidonic acid supplementation improves neurodevelopment in young adult offspring from rat dams with and without diabetes.

    PubMed

    Zhao, Jinping; Del Bigio, Marc R; Weiler, Hope A

    2011-01-01

    Maternal diabetes may compromise infant arachidonic acid (AA) status and development. This study tested if maternal AA supplementation improves neurodevelopment in adult offspring. Rat dams were randomized into 6 groups: Saline-Placebo, streptozotocin-induced diabetes with glucose controlled at <13mmol/L, or poorly controlled at 13-20mmol/L using insulin; and fed either a Control or AA (0.5% fat) diet throughout reproduction. Weaned-offspring were fed regular chow to 12 weeks of age. Testing included exploratory behavior, rota rod and water maze (WM). Poorly controlled offspring showed longer (p≤0.018) escape-latency on testing-day 1 WM but not thereafter (p>0.05). Maternal glucose concentration positively correlated with (p=0.006) male offspring testing-day 1 WM latency. The AA-diet offspring performed better in WM and rota rod (p≤0.032) and showed higher exploratory behavior (p=0.008) than Control-diet offspring. These data suggest maternal hyperglycemia has longstanding consequences to initial stages of learning in the offspring. Maternal AA supplementation and training positively influence learning outcomes.

  5. Protective effects of maternal methyl donor supplementation on adult offspring of high fat diet-fed dams.

    PubMed

    Jiao, Fei; Yan, Xiaoshuang; Yu, Yuan; Zhu, Xiao; Ma, Ying; Yue, Zhen; Ou, Hailong; Yan, Zhonghai

    2016-08-01

    Obesity has become a global public health problem associated with metabolic dysfunction and chronic disorders. It has been shown that the risk of obesity and the DNA methylation profiles of the offspring can be affected by maternal nutrition, such as high-fat diet (HFD) consumption. The aim of this study was to investigate whether metabolic dysregulation and physiological abnormalities in offspring caused by maternal HFD can be alleviated by the treatment of methyl donors during pregnancy and lactation of dams. Female C57BL/6 mice were assigned to specific groups and given different nutrients (control diet, Control+Met, HFD and HFD+Met) throughout gestation and lactation. Offspring of each group were weaned onto a control diet at 3 weeks of age. Physiological (weight gain and adipose composition) and metabolic (plasma biochemical analyses) outcomes were assessed in male and female adult offspring. Expression and DNA methylation profiles of obesogenic-related genes including PPAR γ, fatty acid synthase, leptin and adiponectin were also detected in visceral fat of offspring. The results showed that dietary supplementation with methyl donors can prevent the adverse effects of maternal HFD on offspring. Changes in the expression and DNA methylation of obesogenic-related genes indicated that epigenetic regulation may contribute to the effects of maternal dietary factors on offspring outcomes.

  6. Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies.

    PubMed

    Neuheimer, A B; Hartvig, M; Heuschele, J; Hylander, S; Kiørboe, T; Olsson, K H; Sainmont, J; Andersen, K H

    2015-12-01

    Explaining variability in offspring vs. adult size among groups is a necessary step to determine the evolutionary and environmental constraints shaping variability in life history strategies. This is of particular interest for life in the ocean where a diversity of offspring development strategies is observed along with variability in physical and biological forcing factors in space and time. We compiled adult and offspring size for 407 pelagic marine species covering more than 17 orders of magnitude in body mass including Cephalopoda, Cnidaria, Crustaceans, Ctenophora, Elasmobranchii, Mammalia, Sagittoidea, and Teleost. We find marine life following one of two distinct strategies, with offspring size being either proportional to adult size (e.g., Crustaceans, Elasmobranchii, and Mammalia) or invariant with adult size (e.g., Cephalopoda, Cnidaria, Sagittoidea, Teleosts, and possibly Ctenophora). We discuss where these two strategies occur and how these patterns (along with the relative size of the offspring) may be shaped by physical and biological constraints in the organism's environment. This adaptive environment along with the evolutionary history of the different groups shape observed life history strategies and possible group-specific responses to changing environmental conditions (e.g., production and distribution).

  7. Peri-conceptional obesogenic exposure induces sex-specific programming of disease susceptibilities in adult mouse offspring.

    PubMed

    Dahlhoff, M; Pfister, S; Blutke, A; Rozman, J; Klingenspor, M; Deutsch, M J; Rathkolb, B; Fink, B; Gimpfl, M; Hrabě de Angelis, M; Roscher, A A; Wolf, E; Ensenauer, R

    2014-02-01

    Vulnerability of the fetus upon maternal obesity can potentially occur during all developmental phases. We aimed at elaborating longer-term health outcomes of fetal overnutrition during the earliest stages of development. We utilized Naval Medical Research Institute (NMRI) mice to induce pre-conceptional and gestational obesity and followed offspring outcomes in the absence of any postnatal obesogenic influences. Male adult offspring developed overweight, insulin resistance, hyperleptinemia, hyperuricemia and hepatic steatosis; all these features were not observed in females. Instead, they showed impaired fasting glucose and a reduced fat mass and adipocyte size. Influences of the interaction of maternal diet∗sex concerned offspring genes involved in fatty liver disease, lipid droplet size regulation and fat mass expansion. These data suggest that a peri-conceptional obesogenic exposure is sufficient to shape offspring gene expression patterns and health outcomes in a sex- and organ-specific manner, indicating varying developmental vulnerabilities between sexes towards metabolic disease in response to maternal overnutrition.

  8. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms.

  9. Gestational protein restriction impairs insulin-regulated glucose transport mechanisms in gastrocnemius muscles of adult male offspring.

    PubMed

    Blesson, Chellakkan S; Sathishkumar, Kunju; Chinnathambi, Vijayakumar; Yallampalli, Chandrasekhar

    2014-08-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet-exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet-fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  10. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring.

    PubMed

    Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-07-01

    The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de

  11. Estrogen normalizes perinatal nicotine-induced hypertensive responses in adult female rat offspring.

    PubMed

    Xiao, Daliao; Huang, Xiaohui; Yang, Shumei; Zhang, Lubo

    2013-06-01

    Perinatal nicotine exposure caused a sex-dependent heightened vascular response to angiotensin II (Ang II) and increased blood pressure in adult male but not in female rat offspring. The present study tested the hypothesis that estrogen normalizes perinatal nicotine-induced hypertensive response to Ang II in female offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth. Ovariectomy and 17β-estradiol replacement were performed on 8-week-old female offspring. At 5 months of age, Ang II-induced blood pressure responses were not changed by nicotine treatment in the sham groups. In contrast, nicotine significantly enhanced Ang II-induced blood pressure responses as compared with saline control in the ovariectomy groups, which was associated with increased Ang II-induced vascular contractions. These heightened responses were abrogated by 17β-estradiol replacement. In addition, nicotine enhanced Ang II receptor type I, NADPH (nicotinamide adenine dinucleotide phosphate) oxidase type 2 protein expressions, and reactive oxygen species production of aortas as compared with saline control in the ovariectomy groups. Antioxidative agents, both apocynin and tempol, inhibited Ang II-induced vascular contraction and eliminated the differences of contractions between nicotine-treated and control ovariectomy rats. These findings support a key role of estrogen in the sex difference of perinatal nicotine-induced programming of vascular dysfunction, and suggest that estrogen may counteract heightened reactive oxygen species production, leading to protection of females from development programming of hypertensive phenotype in adulthood.

  12. Chronic maternal low-protein diet in mice affects anxiety, night-time energy expenditure and sleep patterns, but not circadian rhythm in male offspring

    USDA-ARS?s Scientific Manuscript database

    Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP) diet, had lower body and hind-leg muscle weights and decre...

  13. Myocardial macronutrient transporter adaptations in the adult pregestational female intrauterine and postnatal growth-restricted offspring

    PubMed Central

    Abbasi, Afshan; Thamotharan, Manikkavasagar; Shin, Bo-Chul; Jordan, Maria C.; Roos, Kenneth P.; Stahl, Andreas

    2012-01-01

    Associations between exponential childhood growth superimposed on low birth weight and adult onset cardiovascular disease with glucose intolerance/type 2 diabetes mellitus exist in epidemiological investigations. To determine the metabolic adaptations that guard against myocardial failure on subsequent exposure to hypoxia, we compared with controls (CON), the effect of intrauterine (IUGR), postnatal (PNGR), and intrauterine and postnatal (IPGR) calorie and growth restriction (n = 6/group) on myocardial macronutrient transporter (fatty acid and glucose) -mediated uptake in pregestational young female adult rat offspring. A higher myocardial FAT/CD36 protein expression in IUGR, PNGR, and IPGR, with higher FATP1 in IUGR, FATP6 in PNGR, FABP-c in PNGR and IPGR, and no change in GLUT4 of all groups was observed. These adaptive macronutrient transporter protein changes were associated with no change in myocardial [3H]bromopalmitate accumulation but a diminution in 2-deoxy-[14C]glucose uptake. Examination of the sarcolemmal subfraction revealed higher basal concentrations of FAT/CD36 in PNGR and FATP1 and GLUT4 in IUGR, PNGR, and IPGR vs. CON. Exogenous insulin uniformly further enhanced sarcolemmal association of these macronutrient transporter proteins above that of basal, with the exception of insulin resistance of FATP1 and GLUT4 in IUGR and FAT/CD36 in PNGR. The basal sarcolemmal macronutrient transporter adaptations proved protective against subsequent chronic hypoxic exposure (7 days) only in IUGR and PNGR, with notable deterioration in IPGR and CON of the echocardiographic ejection fraction. We conclude that the IUGR and PNGR pregestational adult female offspring displayed a resistance to insulin-induced translocation of FATP1, GLUT4, or FAT/CD36 to the myocardial sarcolemma due to preexistent higher basal concentrations. This basal adaptation of myocardial macronutrient transporters ensured adequate fatty acid uptake, thereby proving protective against chronic

  14. Myocardial macronutrient transporter adaptations in the adult pregestational female intrauterine and postnatal growth-restricted offspring.

    PubMed

    Abbasi, Afshan; Thamotharan, Manikkavasagar; Shin, Bo-Chul; Jordan, Maria C; Roos, Kenneth P; Stahl, Andreas; Devaskar, Sherin U

    2012-06-01

    Associations between exponential childhood growth superimposed on low birth weight and adult onset cardiovascular disease with glucose intolerance/type 2 diabetes mellitus exist in epidemiological investigations. To determine the metabolic adaptations that guard against myocardial failure on subsequent exposure to hypoxia, we compared with controls (CON), the effect of intrauterine (IUGR), postnatal (PNGR), and intrauterine and postnatal (IPGR) calorie and growth restriction (n = 6/group) on myocardial macronutrient transporter (fatty acid and glucose) -mediated uptake in pregestational young female adult rat offspring. A higher myocardial FAT/CD36 protein expression in IUGR, PNGR, and IPGR, with higher FATP1 in IUGR, FATP6 in PNGR, FABP-c in PNGR and IPGR, and no change in GLUT4 of all groups was observed. These adaptive macronutrient transporter protein changes were associated with no change in myocardial [(3)H]bromopalmitate accumulation but a diminution in 2-deoxy-[(14)C]glucose uptake. Examination of the sarcolemmal subfraction revealed higher basal concentrations of FAT/CD36 in PNGR and FATP1 and GLUT4 in IUGR, PNGR, and IPGR vs. CON. Exogenous insulin uniformly further enhanced sarcolemmal association of these macronutrient transporter proteins above that of basal, with the exception of insulin resistance of FATP1 and GLUT4 in IUGR and FAT/CD36 in PNGR. The basal sarcolemmal macronutrient transporter adaptations proved protective against subsequent chronic hypoxic exposure (7 days) only in IUGR and PNGR, with notable deterioration in IPGR and CON of the echocardiographic ejection fraction. We conclude that the IUGR and PNGR pregestational adult female offspring displayed a resistance to insulin-induced translocation of FATP1, GLUT4, or FAT/CD36 to the myocardial sarcolemma due to preexistent higher basal concentrations. This basal adaptation of myocardial macronutrient transporters ensured adequate fatty acid uptake, thereby proving protective against

  15. Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes

    USDA-ARS?s Scientific Manuscript database

    Developmental epigenetic changes, such as DNA methylation, have been recognized as potential pathogenic factors in inflammatory bowel diseases, the hallmark of which is an exaggerated immune response against luminal microbes. A methyl-donor (MD) diet can modify DNA methylation at select murine genom...

  16. Prenatal caffeine exposure induces a poor quality of articular cartilage in male adult offspring rats via cholesterol accumulation in cartilage

    PubMed Central

    Luo, Hanwen; Li, Jing; Cao, Hong; Tan, Yang; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-01-01

    Epidemiological investigations indicate that osteoarthritis is associated with intrauterine growth retardation (IUGR) and abnormal cholesterol metabolism. Our previous studies showed that prenatal caffeine exposure (PCE) induced chondrogenesis retardation in IUGR offspring rats. The current study sought to investigate the effects of PCE on male IUGR offspring rats’ articular cartilage, and the mechanisms associated with abnormal cholesterol metabolism. Based on the results from both male fetal and adult fed a high-fat diet (HFD) studies of rats that experienced PCE (120 mg/kg.d), the results showed a poor quality of articular cartilage and cholesterol accumulation in the adult PCE group. Meanwhile, the serum total cholesterol and low-density lipoprotein-cholesterol concentrations were increased in adult PCE offspring. We also observed lower expression of insulin-like growth factor1 (IGF1) and impaired cholesterol efflux in adult articular cartilage. Furthermore, the expression of cartilage functional genes, components of the IGF1 signaling pathway and cholesterol efflux pathway related genes were decreased in PCE fetal cartilage. In conclusion, PCE induced a poor quality of articular cartilage in male adult offspring fed a HFD. This finding was shown to be due to cholesterol accumulation in the cartilage, which may have resulted from intrauterine reduced activity of the IGF1 signaling pathway. PMID:26639318

  17. Influence of Panax ginseng on the offspring of adult rats exposed to prenatal stress

    PubMed Central

    KIM, YOUNG OCK; LEE, HWA-YOUNG; WON, HANSOL; NAH, SEONG-SU; LEE, HWA-YOUNG; KIM, HYUNG-KI; KWON, JUN-TACK; KIM, HAK-JAE

    2015-01-01

    The exposure of pregnant females to stress during a critical period of fetal brain development is an environmental risk factor for the development of schizophrenia in adult offspring. Schizophrenia is a group of common mental disorders of unclear origin, affecting approximately 1% of the global population, showing a generally young age at onset. In the present study, a repeated variable stress paradigm was applied to pregnant rats during the final week of gestation. The effects of an extract of Panax ginseng C.A. Meyer (PG) on rats exposed to prenatal stress (PNS) were investigated in terms of behavioral activity and protein expression analyses. In the behavioral tests, grooming behavior in a social interaction test, line-crossing behavior in an open-field test and swimming activity in a forced-swim test were decreased in the rats exposed to PNS compared with the non-stressed offspring; the changes in behavioral activity were reversed upon oral treatment with PG (300 mg/kg). Subsequently, western blot analysis and immunohistochemical analyses of the prefrontal cortex and hippocampus revealed that the downregulation of several neurodevelopmental genes which occurred following exposure to PNS was reversed upon treatment with PG. The current findings demonstrate that the downregulation of several genes following exposure to PNS may affect subsequent behavioral changes, and that these phenomena are reversed following treatment with PG during pregnancy. Our results suggest that oral treatment with PG reduces the incidence of psychiatric disorders, such as schizophrenia. PMID:25394395

  18. Prenatal exposure to permethrin influences vascular development of fetal brain and adult behavior in mice offspring.

    PubMed

    Imanishi, Satoshi; Okura, Masahiro; Zaha, Hiroko; Yamamoto, Toshifumi; Akanuma, Hiromi; Nagano, Reiko; Shiraishi, Hiroaki; Fujimaki, Hidekazu; Sone, Hideko

    2013-11-01

    Pyrethroids are one of the most widely used classes of insecticides and show neurotoxic effects that induce oxidative stress in the neonatal rat brain. However, little is still known about effects of prenatal exposure to permethrin on vascular development in fetal brain, central nervous system development, and adult offspring behaviors. In this study, the effects of prenatal exposure to permethrin on the development of cerebral arteries in fetal brains, neurotransmitter in neonatal brains, and locomotor activities in offspring mice were investigated. Permethrin (0, 2, 10, 50, and 75 mg/kg) was orally administered to pregnant females once on gestation day 10.5. The brains of permethrin-treated fetuses showed altered vascular formation involving shortened lengths of vessels, an increased number of small branches, and, in some cases, insufficient fusion of the anterior communicating arteries in the area of circle of Willis. The prenatal exposure to permethrin altered neocortical and hippocampus thickness in the mid brain and significantly increased norepinephrine and dopamine levels at postnatal day 7 mice. For spontaneous behavior, the standing ability test using a viewing jar and open-field tests showed significant decrease of the standing ability and locomotor activity in male mice at 8 or 12 weeks of age, respectively. The results suggest that prenatal exposure to permethrin may affect insufficient development of the brain through alterations of vascular development. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  19. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment.

    PubMed

    Mattei, D; Ivanov, A; Ferrai, C; Jordan, P; Guneykaya, D; Buonfiglioli, A; Schaafsma, W; Przanowski, P; Deuther-Conrad, W; Brust, P; Hesse, S; Patt, M; Sabri, O; Ross, T L; Eggen, B J L; Boddeke, E W G M; Kaminska, B; Beule, D; Pombo, A; Kettenmann, H; Wolf, S A

    2017-05-09

    Maternal immune activation (MIA) during pregnancy has been linked to an increased risk of developing psychiatric pathologies in later life. This link may be bridged by a defective microglial phenotype in the offspring induced by MIA, as microglia have key roles in the development and maintenance of neuronal signaling in the central nervous system. The beneficial effects of the immunomodulatory treatment with minocycline on schizophrenic patients are consistent with this hypothesis. Using the MIA mouse model, we found an altered microglial transcriptome and phagocytic function in the adult offspring accompanied by behavioral abnormalities. The changes in microglial phagocytosis on a functional and transcriptional level were similar to those observed in a mouse model of Alzheimer's disease hinting to a related microglial phenotype in neurodegenerative and psychiatric disorders. Minocycline treatment of adult MIA offspring reverted completely the transcriptional, functional and behavioral deficits, highlighting the potential benefits of therapeutic targeting of microglia in psychiatric disorders.

  20. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment

    PubMed Central

    Mattei, D; Ivanov, A; Ferrai, C; Jordan, P; Guneykaya, D; Buonfiglioli, A; Schaafsma, W; Przanowski, P; Deuther-Conrad, W; Brust, P; Hesse, S; Patt, M; Sabri, O; Ross, T L; Eggen, B J L; Boddeke, E W G M; Kaminska, B; Beule, D; Pombo, A; Kettenmann, H; Wolf, S A

    2017-01-01

    Maternal immune activation (MIA) during pregnancy has been linked to an increased risk of developing psychiatric pathologies in later life. This link may be bridged by a defective microglial phenotype in the offspring induced by MIA, as microglia have key roles in the development and maintenance of neuronal signaling in the central nervous system. The beneficial effects of the immunomodulatory treatment with minocycline on schizophrenic patients are consistent with this hypothesis. Using the MIA mouse model, we found an altered microglial transcriptome and phagocytic function in the adult offspring accompanied by behavioral abnormalities. The changes in microglial phagocytosis on a functional and transcriptional level were similar to those observed in a mouse model of Alzheimer’s disease hinting to a related microglial phenotype in neurodegenerative and psychiatric disorders. Minocycline treatment of adult MIA offspring reverted completely the transcriptional, functional and behavioral deficits, highlighting the potential benefits of therapeutic targeting of microglia in psychiatric disorders. PMID:28485733

  1. Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats.

    PubMed

    Santos, Mery; Rodríguez-González, Guadalupe L; Ibáñez, Carlos; Vega, Claudia C; Nathanielsz, Peter W; Zambrano, Elena

    2015-02-01

    Exercise improves health but few data are available regarding benefits of exercise in offspring exposed to developmental programming. There is currently a worldwide epidemic of obesity. Obesity in pregnant women predisposes offspring to obesity. Maternal obesity has well documented effects on offspring reproduction. Few studies address ability of offspring exercise to reduce adverse outcomes. We observed increased oxidative stress and impaired sperm function in rat offspring of obese mothers. We hypothesized that regular offspring exercise reverses adverse effects of maternal obesity on offspring sperm quality and fertility. Female Wistar rats ate chow (C) or high-energy, obesogenic diet (MO) from weaning through lactation, bred at postnatal day (PND) 120, and ate their pregnancy diet until weaning. All offspring ate C diet from weaning. Five male offspring (different litters) ran on a wheel for 15 min, 5 times/week from PND 330 to 450 and were euthanized at PND 450. Average distance run per session was lower in MO offspring who had higher body weight, adiposity index, and gonadal fat and showed increases in testicular oxidative stress biomarkers. Sperm from MO offspring had reduced antioxidant enzyme activity, lower sperm quality, and fertility. Exercise in MO offspring decreased testicular oxidative stress, increased sperm antioxidant activity and sperm quality, and improved fertility. Exercise intervention has beneficial effects on adiposity index, gonadal fat, oxidative stress markers, sperm quality, and fertility. Thus regular physical exercise in male MO offspring recuperates key male reproductive functions even at advanced age: it's never too late. Copyright © 2015 the American Physiological Society.

  2. Dietary sodium manipulation during critical periods in development sensitize adult offspring to amphetamines.

    PubMed

    McBride, Shawna M; Culver, Bruce; Flynn, Francis W

    2008-09-01

    This study examined critical periods in development to determine when offspring were most susceptible to dietary sodium manipulation leading to amphetamine sensitization. Wistar dams (n = 6-8/group) were fed chow containing low (0.12% NaCl; LN), normal (1% NaCl; NN), or high sodium (4% NaCl; HN) during the prenatal or early postnatal period (birth to 5 wk). Offspring were fed normal chow thereafter until testing at 6 mo. Body weight (BW), blood pressure (BP), fluid intake, salt preference, response to amphetamine, open field behavior, plasma adrenocorticotropin hormone (ACTH), plasma corticosterone (Cort), and adrenal gland weight were measured. BW was similar for all offspring. Offspring from the prenatal and postnatal HN group had increased BP, NaCl intake, and salt preference and decreased water intake relative to NN offspring. Prenatal HN offspring had greater BP than postnatal HN offspring. In response to amphetamine, both prenatal and postnatal LN and HN offspring had increased locomotor behavior compared with NN offspring. In a novel open field environment, locomotion was also increased in prenatal and postnatal LN and HN offspring compared with NN offspring. ACTH and Cort levels 30 min after restraint stress and adrenal gland weight measurement were greater in LN and HN offspring compared with NN offspring. These results indicate that early life experience with low- and high-sodium diets, during the prenatal or early postnatal period, is a stress that produces long-term changes in responsiveness to amphetamines and to subsequent stressors.

  3. Preweaning GH Treatment Normalizes Body Growth Trajectory and Reverses Metabolic Dysregulation in Adult Offspring After Maternal Undernutrition.

    PubMed

    Li, Minglan; Reynolds, Clare M; Gray, Clint; Vickers, Mark H

    2015-09-01

    Maternal undernutrition (UN) results in growth disorders and metabolic dysfunction in offspring. Although dysregulation of the GH-IGF axis in offspring is a known consequence of maternal UN, little is known about the efficacy of GH treatment during the period of developmental plasticity on later growth and metabolic outcomes. The present study investigated the effect of preweaning GH treatment on growth, glucose metabolism, and the GH-IGF axis in adult male and female offspring after maternal UN. Female Sprague Dawley rats were fed either a chow diet ad libitum (control [CON]) or 50% of ad libitum (UN) throughout pregnancy. From postnatal day 3, CON and UN pups received either saline (CON-S and UN-S) or GH (2.5 μg/g·d CON-GH and UN-GH) daily throughout lactation. At weaning, male and female offspring were randomly selected from each litter and fed a standard chow diet for the remainder of the study. Preweaning GH treatment normalized maternal UN-induced alterations in postweaning growth trajectory and concomitant adiposity in offspring. Plasma leptin concentrations were increased in UN-S offspring and normalized in the UN-GH group. Hepatic GH receptor expression was significantly elevated in UN-S offspring and normalized with GH treatment. Hepatic IGF binding protein-2 gene expression and plasma IGF-1 to IGF binding protein-3 ratio was reduced in UN-S offspring and elevated with GH treatment. GH treatment during a critical developmental window prevented maternal UN-induced changes in postnatal growth patterns and related adiposity, suggesting that manipulation of the GH-IGF-1 axis in early development may represent a promising avenue to prevent adverse developmental programming effects in adulthood.

  4. Transfer of individual chlorobiphenyls from adult female grey seals to their offspring via milk

    SciTech Connect

    Green, N.J.L.; Jones, K.C.; Pomeroy, P.P.; Harwood, J.

    1994-12-31

    Branded individual grey seals (Halichoerus grypus) have been monitored on the Isle of May, Scotland over a three year period to investigate the influence of polychlorinated biphenyls (PCBs) on their health. Simultaneous sampling of milk, blood and adipose tissue from weaning mothers has enabled a detailed analysis of the release of individual chlorobiphenyls from a mother seal`s fat reserves, and their availability to the seal`s offspring through lactation. Transfer coefficients have been calculated for 22 individual congeners for their mobilization from adipose to blood, and for their incorporation from blood into milk. The overall transfer from blubber to milk decreased with increasing chlorination from ca 0.6 for tetra- to < 0.1 for octa- and nona-chlorinated biphenyls. Fat samples from 21 pups of the study adults were analyzed for the same chlorobiphenyl congeners. No congener selectivity was observable for the combined uptake and storage processes of these chlorobiphenyls by the pups.

  5. Effects of maternal high-fat diet and sedentary lifestyle on susceptibility of adult offspring to ozone exposure in rats.

    PubMed

    Gordon, C J; Phillips, P M; Johnstone, A F M; Schmid, J; Schladweiler, M C; Ledbetter, A; Snow, S J; Kodavanti, U P

    2017-05-01

    Epidemiological and experimental data suggest that obesity exacerbates the health effects of air pollutants such as ozone (O3). Maternal inactivity and calorically rich diets lead to offspring that show signs of obesity. Exacerbated O3 susceptibility of offspring could thus be manifested by maternal obesity. Thirty-day-old female Long-Evans rats were fed a control (CD) or high-fat (HF) (60% calories) diet for 6 wks and then bred. GD1 rats were then housed with a running wheel (RW) or without a wheel (SED) until parturition, creating four groups of offspring: CD-SED, CD-RW, HF-SED and HF-RW. HF diet was terminated at PND 35 and all offspring were placed on CD. Body weight and %fat of dams were greatest in order; HF-SED > HF-RW > CD-SED > CD-RW. Adult offspring were exposed to O3 for two consecutive days (0.8 ppm, 4 h/day). Glucose tolerance tests (GTT), ventilatory parameters (plethysmography), and bronchoalveolar fluid (BALF) cell counts and protein biomarkers were performed to assess response to O3. Exercise and diet altered body weight and %fat of young offspring. GTT, ventilation and BALF cell counts were exacerbated by O3 with responses markedly exacerbated in males. HF diet and O3 led to significant exacerbation of several BALF parameters: total cell count, neutrophils and lymphocytes were increased in male HF-SED versus CD-SED. Males were hyperglycemic after O3 exposure and exhibited exacerbated GTT responses. Ventilatory dysfunction was also exacerbated in males. Maternal exercise had minimal effects on O3 response. The results of this exploratory study suggest a link between maternal obesity and susceptibility to O3 in their adult offspring in a sex-specific manner.

  6. Periconceptional undernutrition suppresses cortisol response to arginine vasopressin and corticotropin-releasing hormone challenge in adult sheep offspring.

    PubMed

    Oliver, M H; Bloomfield, F H; Jaquiery, A L; Todd, S E; Thorstensen, E B; Harding, J E

    2012-02-01

    Poor maternal nutrition during pregnancy can result in increased disease risk in adult offspring. Many of these effects are proposed to be mediated via altered hypothalamo-pituitary-adrenal axis (HPAA) function, and are sex and age specific. Maternal undernutrition around the time of conception alters HPAA function in foetal and early postnatal life, but there are limited conflicting data about later effects. The aim of this study was to investigate the effect of moderate periconceptional undernutrition on HPAA function of offspring of both sexes longitudinally, from juvenile to adult life. Ewes were undernourished from 61 days before until 30 days after conception or fed ad libitum. HPAA function in offspring was assessed by arginine vasopressin plus corticotropin-releasing hormone challenge at 4, 10 and 18 months. Plasma cortisol response was lower in males than in females, and was not different between singles and twins. Periconceptional undernutrition suppressed offspring plasma cortisol but not adrenocorticotropic hormone responses. In males, this suppression was apparent by 4 months, and was more profound by 10 months, with no further change by 18 months. In females, suppression was first observed at 10 months and became more profound by 18 months. Maternal undernutrition limited to the periconceptional period has a prolonged, sex-dependent effect on adrenal function in the offspring.

  7. The Transmission of Values to School-Age and Young Adult Offspring: Race and Gender Differences in Parenting

    ERIC Educational Resources Information Center

    Pagano, Maria E.; Hirsch, Barton J.; Deutsch, Nancy L.; McAdams, Dan P.

    2003-01-01

    The current study explores parental socialization practices and the values transmitted to school-aged and young adult off-spring, focusing on race and gender issues involved in parental teachings. A community sample of 187 black and white mothers and fathers were interviewed with regards to their parenting practices using both quantitative and…

  8. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CD1 Mice

    EPA Science Inventory

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the bi...

  9. Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring.

    PubMed

    Gur, Tamar L; Shay, Lena; Palkar, Aditi Vadodkar; Fisher, Sydney; Varaljay, Vanessa A; Dowd, Scot; Bailey, Michael T

    2017-08-01

    Recent studies demonstrate that exposure to stress changes the composition of the intestinal microbiota, which is associated with development of stress-induced changes to social behavior, anxiety, and depression. Stress during pregnancy has also been related to the emergence of these disorders; whether commensal microbes are part of a maternal intrauterine environment during prenatal stress is not known. Here, we demonstrate that microbiome changes are manifested in the mother, and also found in female offspring in adulthood, with a correlation between stressed mothers and female offspring. Alterations in the microbiome have been shown to alter immune responses, thus we examined cytokines in utero. IL-1β was increased in placenta and fetal brain from offspring exposed to the prenatal stressor. Because IL-1β has been shown to prevent induction of brain derived neurotrophic factor (BDNF), we examined BDNF and found a reduction in female placenta and adult amygdala, suggesting in utero impact on neurodevelopment extending into adulthood. Furthermore, gastrointestinal microbial communities were different in adult females born from stressed vs. non-stressed pregnancies. Adult female offspring also demonstrated increased anxiety-like behavior and alterations in cognition, suggesting a critical window where stress is able to influence the microbiome and the intrauterine environment in a deleterious manner with lasting behavioral consequences. The microbiome may be a key link between the intrauterine environment and adult behavioral changes. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CD1 Mice

    EPA Science Inventory

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the bi...

  11. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CDl Mice.

    EPA Science Inventory

    Inorganic arsenic exposure is carcinogenic in humans and rodents. When pregnant mice are exposed to inorganic arsenic in the drinking water their offspring, when adults, develop tumors and proliferative lesions at several sites, such as lung, liver, adrenal, uterus, ovary and ovi...

  12. Pathogenesis and epidemiology of Brucellosis in Yellowstone bison: serologic and culture results from adult females and their offspring

    USDA-ARS?s Scientific Manuscript database

    The objective of this prospective study was to follow the natural course of Brucella abortus infection in cohorts of seropositive and seronegative female bison and their offspring in Yellowstone National Park over a 5 year period. Specimens were collected from 53 adult, female bison at least once a...

  13. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CDl Mice.

    EPA Science Inventory

    Inorganic arsenic exposure is carcinogenic in humans and rodents. When pregnant mice are exposed to inorganic arsenic in the drinking water their offspring, when adults, develop tumors and proliferative lesions at several sites, such as lung, liver, adrenal, uterus, ovary and ovi...

  14. Parental life events cause behavioral difference among offspring: Adult pre-gestational restraint stress reduces anxiety across generations

    PubMed Central

    He, Nan; Kong, Qiao-Qiao; Wang, Jun-Zuo; Ning, Shu-Fen; Miao, Yi-Long; Yuan, Hong-Jie; Gong, Shuai; Cui, Xiang-Zhong; Li, Chuan-Yong; Tan, Jing-He

    2016-01-01

    While effects of gestational, neonatal or adolescent stress on psychological alterations in progeny have been extensively studied, much less is known regarding the effects of adult pre-gestational life events on offspring behavior. Although full siblings often display behavioral differences, whether the different parental life events prior to different pregnancies contribute to these behavioral differences among siblings is worth studying. In this study, male and female adult mice were restrained for 60 days before mating with unstressed or stressed partners. F1 offspring were examined for anxiety or mated to generate F2. Both F1 females and males from restrained mothers and/or fathers showed significantly reduced anxiety and serum cortisol and increased mRNA levels of glucocorticoid receptor and brain-derived neurotrophic factor compared to control offspring from unstressed parents. Similar behavioral and molecular changes were also observed in F2 females and males. Although restraint of adolescent mice reduced anxiety in F1 of both sexes, social instability of them increased anxiety predominantly in F1 females. Thus, adult pre-gestational restraint reduced offspring’s anxiety across generations; different stressors on parents may cause different phenotypes in offspring; individual behaviors can depend on adult life experiences of parents. PMID:28000794

  15. Evaluation of a Group Intervention to Assist Aging Parents with Permanency Planning for an Adult Offspring with Special Needs

    ERIC Educational Resources Information Center

    Botsford, Anne L.; Rule, David

    2004-01-01

    More than three-fourths of older adults with developmental disabilities and mental illness live in the community with aging parents, the majority of whom do not complete plans for the residential, financial, and legal future of their offspring. The authors used a true experimental design to evaluate the effectiveness of a six-week…

  16. Vasoactive intestinal peptide antagonist treatment during mouse embryogenesis impairs social behavior and cognitive function of adult male offspring.

    PubMed

    Hill, Joanna M; Cuasay, Katrina; Abebe, Daniel T

    2007-07-01

    Vasoactive intestinal peptide (VIP) is a regulator of rodent embryogenesis during the period of neural tube closure. VIP enhanced growth in whole cultured mouse embryos; treatment with a VIP antagonist during embryogenesis inhibited growth and development. VIP antagonist treatment during embryogenesis also had permanent effects on adult brain chemistry and impaired social recognition behavior in adult male mice. The neurological deficits of autism appear to be initiated during neural tube closure and social behavior deficits are among the key characteristics of this disorder that is more common in males and is frequently accompanied by mental retardation. The current study examined the blockage of VIP during embryogenesis as a model for the behavioral deficits of autism. Treatment of pregnant mice with a VIP antagonist during embryonic days 8 through 10 had no apparent effect on the general health or sensory or motor capabilities of adult offspring. However, male offspring exhibited reduced sociability in the social approach task and deficits in cognitive function, as assessed through cued and contextual fear conditioning. Female offspring did not show these deficiencies. These results suggest that this paradigm has usefulness as a mouse model for aspects of autism as it selectively impairs male offspring who exhibit the reduced social behavior and cognitive dysfunction seen in autism. Furthermore, the study indicates that the foundations of some aspects of social behavior are laid down early in mouse embryogenesis, are regulated in a sex specific manner and that interference with embryonic regulators such as VIP can have permanent effects on adult social behavior.

  17. Parental longevity and 7-year changes in blood pressures in adult offspring.

    PubMed

    Zureik, Mahmoud; Galan, Pilar; Bertrais, Sandrine; Courbon, Dominique; Czernichow, Sébastien; Blacher, Jacques; Ducimetière, Pierre; Safar, Michel E; Hercberg, Serge

    2005-08-01

    In this report, we examined the cross-sectional and the 7-year longitudinal changes in blood pressures in adult offspring according to parental longevity. A population of volunteers free of symptomatic cardiovascular diseases who participated to the Supplementation en Vitamines et en Minéraux Antioxydants (SUVIMAX) Vascular Study (mean age 52.3 years; 48.3% women) were examined at baseline and 7 years later. Paternal (n=994) and maternal (n=896) longevity were analyzed separately. The prevalence of hypertension at baseline in subjects whose father died at <65 years of age, in those whose fathers were alive by age 65 but died by 80 years of age, and in those whose fathers were alive by age 80 was respectively 34.9%, 28.5%, and 20.2% (P<0.001). The means of systolic blood pressure in the 3 groups of paternal longevity were respectively 128.4 (+/-16.0), 125.3 (+/-14.2), and 123.6 (+/-14.4) mm Hg (P<0.001). During the follow-up, the mean systolic blood pressure increases in the 3 groups of paternal longevity were respectively 5.3 (+/-17.0), 4.2 (+/-14.0), and 1.6 (+/-13.2) mm Hg (P<0.001). In subjects without hypertension at baseline, hypertension occurred during the follow-up in 26.6%, 17.7%, and 15.3% (P<0.009), respectively. Multivariate analyses adjusted for baseline or changes in cardiovascular risk factors did not modify these results. In contrast, there was no relationship between maternal longevity and blood pressure measurements in either cross-sectional or longitudinal analyses. This study suggests that paternal premature death was associated with accelerated progression of systolic blood pressure and higher occurrence of hypertension in offspring. These results indicate that there are dynamic and continuous processes linking paternal longevity to blood pressure in adults.

  18. Prenatal glucocorticoid exposure in rats: programming effects on stress reactivity and cognition in adult offspring.

    PubMed

    Zeng, Yan; Brydges, Nichola M; Wood, Emma R; Drake, Amanda J; Hall, Jeremy

    2015-01-01

    Human epidemiological studies have provided compelling evidence that prenatal exposure to stress is associated with significantly increased risks of developing psychiatric disorders in adulthood. Exposure to excessive maternal glucocorticoids may underlie this fetal programming effect. In the current study, we assessed how prenatal dexamethasone administration during the last week of gestation affects stress reactivity and cognition in adult offspring. Stress reactivity was assessed by evaluating anxiety-like behavior on an elevated plus maze and in an open field. In addition, to characterize the long-term cognitive outcomes of prenatal exposure to glucocorticoids, animals were assessed on two cognitive tasks, a spatial reference memory task with reversal learning and a delayed matching to position (DMTP) task. Our results suggest that prenatal exposure to dexamethasone had no observable effect on anxiety-like behavior, but affected cognition in the adult offspring. Prenatally dexamethasone-exposed animals showed a transient deficit in the spatial reference memory task and a trend to faster acquisition during the reversal-learning phase. Furthermore, prenatally dexamethasone-treated animals also showed faster learning of new platform positions in the DMTP task. These results suggest that fetal overexposure to glucocorticoids programs a phenotype characterized by cognitive flexibility and adaptability to frequent changes in environmental circumstances. This can be viewed as an attempt to increase the fitness of survival in a potentially hazardous postnatal environment, as predicted by intrauterine adversity. Collectively, our data suggest that prenatal exposure to dexamethasone in rats could be used as an animal model for studying some cognitive components of related psychiatric disorders.

  19. Chronic prenatal ethanol exposure alters expression of central and peripheral insulin signaling molecules in adult guinea pig offspring.

    PubMed

    Dobson, Christine C; Thevasundaram, Kersh; Mongillo, Daniel L; Winterborn, Andrew; Holloway, Alison C; Brien, James F; Reynolds, James N

    2014-11-01

    Maternal ethanol consumption during pregnancy can produce a range of teratogenic outcomes in offspring. The mechanism of ethanol teratogenicity is multi-faceted, but may involve alterations in insulin and insulin-like growth factor (IGF) signaling pathways. These pathways are not only important for metabolism, but are also critically involved in neuronal survival and plasticity, and they can be altered by chronic prenatal ethanol exposure (CPEE). The objective of this study was to test the hypothesis that CPEE alters expression of insulin and IGF signaling molecules in the prefrontal cortex and liver of adult guinea pig offspring. Pregnant Dunkin-Hartley-strain guinea pigs received ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding (nutritional control) throughout gestation. Fasting blood glucose concentration was measured in male and female offspring at postnatal day 150-200, followed by euthanasia, collection of prefrontal cortex and liver, and RNA extraction. IGF-1, IGF-1 receptor (IGF-1R), IGF-2, IGF-2 receptor (IGF-2R), insulin receptor substrate (IRS)-1, IRS-2, and insulin receptor (INSR) mRNA expression levels were measured in tissues using quantitative real-time PCR. The mean maternal blood ethanol concentration was 281 ± 15 mg/dL at 1 h after the second divided dose of ethanol on GD 57. CPEE resulted in increased liver weight in adult offspring, but produced no difference in fasting blood glucose concentration compared with nutritional control. In the liver, CPEE decreased mRNA expression of IGF-1, IGF-1R, and IGF-2, and increased IRS-2 mRNA expression in male offspring only compared with nutritional control. Female CPEE offspring had decreased INSR hepatic mRNA expression compared with male CPEE offspring. In the prefrontal cortex, IRS-2 mRNA expression was increased in CPEE offspring compared with nutritional control. The data demonstrate that CPEE alters both central and peripheral expression of insulin and IGF signaling

  20. Maternal Age at Holocaust Exposure and Maternal PTSD Independently Influence Urinary Cortisol Levels in Adult Offspring

    PubMed Central

    Bader, Heather N.; Bierer, Linda M.; Lehrner, Amy; Makotkine, Iouri; Daskalakis, Nikolaos P.; Yehuda, Rachel

    2014-01-01

    Background: Parental traumatization has been associated with increased risk for the expression of psychopathology in offspring, and maternal posttraumatic stress disorder (PTSD) appears to increase the risk for the development of offspring PTSD. In this study, Holocaust-related maternal age of exposure and PTSD were evaluated for their association with offspring ambient cortisol and PTSD-associated symptom expression. Method: Ninety-five Holocaust offspring and Jewish comparison subjects received diagnostic and psychological evaluations, and 24 h urinary cortisol was assayed by RIA. Offspring completed the parental PTSD questionnaire to assess maternal PTSD status. Maternal Holocaust exposure was identified as having occurred in childhood, adolescence, or adulthood and examined in relation to offspring psychobiology. Results: Urinary cortisol levels did not differ for Holocaust offspring and comparison subjects but differed significantly in offspring based on maternal age of exposure and maternal PTSD status. Increased maternal age of exposure and maternal PTSD were each associated with lower urinary cortisol in offspring, but did not exhibit a significant interaction. In addition, offspring PTSD-associated symptom severity increased with maternal age at exposure and PTSD diagnosis. A regression analysis of correlates of offspring cortisol indicated that both maternal age of exposure and maternal PTSD were significant predictors of lower offspring urinary cortisol, whereas childhood adversity and offspring PTSD symptoms were not. Conclusion: Offspring low cortisol and PTSD-associated symptom expression are related to maternal age of exposure, with the greatest effects associated with increased age at exposure. These effects are relatively independent of the negative consequences of being raised by a trauma survivor. These observations highlight the importance of maternal age of exposure in determining a psychobiology in offspring that is consistent with increased

  1. Associations Between Substance Use Disorders and Major Depression in Parents and Late Adolescent-Emerging Adult Offspring: An Adoption Study

    PubMed Central

    Marmorstein, Naomi R.; Iacono, William G.; McGue, Matt

    2012-01-01

    Aims To examine whether major depressive disorder (MDD) and substance use disorders (SUDs: specifically, nicotine dependence (ND), alcohol use disorders (AUDs), and cannabis use disorders (CUDs)) in parents predicted increased risk for these disorders in late adolescent–emerging adult offspring and, specifically, the extent to which the pattern of risk differed for adopted and non-adopted youth. Participants Late adolescent and emerging adult participants from the Sibling Interaction and Behavior Study (mean age=18.8), a community-based investigation of adopted and non-adopted adolescents, and their parents (adoptive parents of adopted youth, biological parents of non-adopted adolescents) were included. Measurements Structured interviews were used to assess these disorders. Findings (1) when the same disorder in parents and adolescents was examined, parental MDD was associated with increased risk for MDD among both adopted (p<.001) and non-adopted (p<.01) adolescents; in contrast, SUDs were associated with increased risk for the same SUD in non-adopted offspring (all p<.01). (2) When cross-SUD effects were examined, for the most part, each SUD was associated with increased risk for other SUDs among non-adopted but not adopted offspring (most p<.05). (3) When MDD-SUD associations were examined, parental ND and CUDs predicted increased risk for MDD in non-adopted (p<.001), but not adopted, adolescents. These effects tended to remain significant when adjusting for within-person comorbidity (p<.05). Conclusions Major depressive disorder in parents appears to be a risk factor for late adolescent-emerging adult major depressive disorder but not substance use disorder in offspring, with this risk being environmentally mediated. Substance use disorder in parents appears, via genetic mediation, to increase risk of substance use disorder in adolescent offspring, and cannabis and nicotine use disorders in parents similarly contribute to major depressive disorder in those

  2. The influence of parental divorce and alcohol abuse on adult offspring risk of lifetime suicide attempt in the United States.

    PubMed

    Alonzo, Dana; Thompson, Ronald G; Stohl, Mahlki; Hasin, Deborah

    2014-05-01

    The influences of parental divorce and alcohol abuse on adult offspring lifetime suicide attempt have not been examined in national data. This study analyzed data from the 2001-2002 NESARC to estimate main and interaction effects of parental divorce and alcohol abuse on lifetime suicide attempt. Adjusted for controls, parental divorce and parental alcohol abuse independently increased odds of lifetime suicide attempt. The effect of parental divorce was not significantly moderated by parental alcohol abuse. Further research is needed to examine whether additional parental and offspring psychiatric and substance use covariates attenuate the association between parental divorce and lifetime suicide attempt.

  3. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    PubMed

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R; Newman, John W; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  4. Hyperglycaemia in pregnant rats causes sex-related vascular dysfunction in adult offspring: role of cyclooxygenase-2.

    PubMed

    de Sá, Francine Gomes; de Queiroz, Diego Barbosa; Ramos-Alves, Fernanda Elizabethe; Santos-Rocha, Juliana; da Silva, Odair Alves; Moreira, Hicla Stefany; Leal, Geórgia Andrade; da Rocha, Marcelo Aurélio; Duarte, Gloria Pinto; Xavier, Fabiano Elias

    2017-08-01

    What is the central question of this study? Hyperglycaemia during pregnancy induces vascular dysfunction and hypertension in male offspring. Given that female offspring from other fetal programming models are protected from the effects of fetal insult, the present study investigated whether there are sex differences in blood pressure and vascular function in hyperglycaemia-programmed offspring. What is the main finding and its importance? We demonstrated that hyperglycaemia in pregnant rats induced vascular dysfunction and hypertension only in male offspring. We found sex differences in oxidative stress and cyclooxygenase-2-derived prostanoid production that might underlie the vascular dysfunction. These differences, particularly in resistance arteries, may in part explain the absence of hypertension in female offspring born to hyperglycaemic dams. Exposure to maternal hyperglycaemia induces hypertension and vascular dysfunction in adult male offspring. Given that female offspring from several fetal programming models are protected from the effects of fetal insult, in this study we analysed possible differences relative to sex in blood pressure and vascular function in hyperglycaemia-programmed offspring. Hyperglycaemia was induced on day 7 of gestation (streptozotocin, 50 mg kg(-1) ). Blood pressure, acetylcholine and phenylephrine or noradrenaline responses were analysed in the aorta and mesenteric resistance arteries of 3-, 6- and 12-month-old male and female offspring. Thromboxane A2 release was analysed with commercial kits and superoxide anion (O2(-) ) production by dihydroethidium-emitted fluorescence. Male but not female offspring of hyperglycaemic dams (O-DR) had higher blood pressure than control animals (O-CR). Contraction in response to phenylephrine increased and relaxation in response to acetylcholine decreased only in the aorta from 12-month-old male O-DR and not in age-matched O-CR. Contractile and vasodilator responses were preserved in both the

  5. Effects of a preventive parenting intervention for divorced families on the intergenerational transmission of parenting attitudes in young adult offspring.

    PubMed

    Mahrer, Nicole E; Winslow, Emily; Wolchik, Sharlene A; Tein, Jenn-Yun; Sandler, Irwin N

    2014-01-01

    This study evaluates whether the New Beginnings Program (NBP), a parenting intervention for divorced mothers, led to positive parenting attitudes in young adult offspring. Data were collected from 240 mothers (G1) and offspring (G2) at ages 9-12 and again in adolescence and young adulthood. Alternative theoretical models were tested to examine mediators of NBP effects on G2 parenting attitudes. Significant interactions between condition and baseline G1 parenting indicated that NBP improved G2's parenting attitudes for those exposed to poorer G1 parenting at program entry. Effects on G2 warm attitudes were partially mediated through program effects on G1 warm parenting. The implications of improving parenting attitudes in offspring who experience parental divorce on well-being in the next generation are discussed.

  6. Maternal high-fat diet inversely affects insulin sensitivity in dams and young adult male rat offspring.

    PubMed

    Karbaschi, Roxana; Sadeghimahalli, Forouzan; Zardooz, Homeira

    2016-09-01

    This study attempts to further clarify the potential effects of maternal high-fat (HF) diet on glucose homeostasis in dams and young adult male rat offspring. Female rats were divided into control (CON dams) and HF (HF dams) diet groups, which received the diet 4 weeks prior to and through pregnancy and lactation periods. Blood samples were taken to determine metabolic parameters, then an intraperitoneal glucose tolerance test (IPGTT) was performed. Maternal HF diet increased intra-abdominal fat mass and plasma corticosterone level, but decreased leptin concentration in dams. In HF offspring intra-abdominal fat mass, plasma leptin, and corticosterone levels decreased. Following IPGTT, the plasma insulin level of HF dams was higher than the controls. In HF offspring plasma insulin level was not significantly different from the controls, but a steeper decrease of their plasma glucose concentration was observed.

  7. Impact of maternal melatonin suppression on forced swim and tail suspension behavioral despair tests in adult offspring

    PubMed Central

    Voiculescu, SE; Rosca, AE; Zeca, V; Zagrean, L; Zagrean, AM

    2015-01-01

    Melatonin is an essential hormone, which regulates circadian rhythms and has antioxidative and anticarcinogenic effects. As melatonin secretion is suppressed by light, this effect was examined on the offspring of the Wistar rat females exposed to continuous light (500 lux) during the second half of the pregnancy (day 12 to 21). Control rats were kept under a 12:12 light-dark cycle. The resulted male offspring have been behaviorally assessed for depression after postnatal day 60 by using Forced Swim Test (FST) and Tail Suspension Test (TST). Animals resulted from the melatonin deprived pregnancies have developed an abnormal response in the TST, but a normal FST behavior. Also, TST active movement was different in the melatonin suppression group compared to the control group. These findings suggest that intrauterine melatonin deprivation might be linked to the depressive like behavior in adult male offspring. PMID:25866579

  8. Prenatal air pollution exposure induces sexually dimorphic fetal programming of metabolic and neuroinflammatory outcomes in adult offspring.

    PubMed

    Bolton, Jessica L; Auten, Richard L; Bilbo, Staci D

    2014-03-01

    Environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal exposure to diesel exhaust particles (DEP), a primary component of air pollution, would prime microglia long-term, resulting in exacerbated metabolic and affective outcomes following exposure to a high-fat diet in adulthood. Time-mated mouse dams were intermittently exposed to respiratory instillations of either vehicle (VEH) or DEP throughout gestation. Adult male and female offspring were then fed either a low-fat diet (LFD) or high-fat diet (HFD) for 9 weeks. The male offspring of DEP-exposed dams exhibited exaggerated weight gain, insulin resistance, and anxiety-like behavior on HFD compared to the male offspring of VEH-exposed dams, whereas female offspring did not differ according to prenatal treatment. Furthermore, HFD induced evidence of macrophage infiltration of both adipose tissue and the brain in both sexes, but these cells were more activated specifically in DEP/HFD males. DEP/HFD males also expressed markedly higher levels of microglial/macrophage, but not astrocyte, activation markers in the hippocampus, whereas females exhibited only a suppression of astrocyte activation markers due to HFD. In a second experiment, DEP male offspring mounted an exaggerated peripheral IL-1β response to an LPS challenge at postnatal day (P)30, whereas their central IL-1β response did not differ from VEH male offspring, which is suggestive of macrophage priming due to prenatal DEP exposure. In sum, prenatal air pollution exposure "programs" offspring for increased susceptibility to diet-induced metabolic, behavioral, and neuroinflammatory changes in adulthood in a sexually dimorphic manner.

  9. The possible mechanisms by which maternal hypothyroidism impairs insulin secretion in adult male offspring in rats.

    PubMed

    Karbalaei, Narges; Ghasemi, Asghar; Hedayati, Mehdi; Godini, Aliashraf; Zahediasl, Saleh

    2014-04-01

    Previous studies have recently shown that maternal hypothyroidism leads to impaired glucose metabolism and reduced insulin secretion in adult offspring in rats. The aim of this study was to locate the defect in the insulin secretion pathway induced by maternal hypothyroidism. Pregnant Wistar rats were divided into two groups; the control group consumed water, while the hypothyroid (FH) group received water containing 0.025% 6-propyl-2-thiouracil during gestation. An intravenous glucose tolerance test was carried out on 5-month-old male offspring. In in vitro studies, the effects of various secretagogues and inhibitors acting at different levels of the insulin secretion cascade were investigated, and insulin content, insulin secretion and glucokinase activity of the islets were compared. Although insulin content of the FH islets did not differ from that of control islets, insulin secretion from FH islets was reduced when it was challenged by glucose or arginine. Compared with control islets, activities of both hexokinase and glucokinase were also significantly decreased in the FH islets. Although, in both groups, increasing glibenclamide and nifedipine concentrations in the presence of 16.7 mmol l(-1) glucose increased and decreased insulin secretion, respectively, the percentage of changes in secretion of FH islets was significantly lower compared with control islets. The response of FH islets to high extracellular potassium concentration and diazoxide was also significantly lower than that of the control islets. These findings demonstrate that impaired insulin secretion in the FH group is probably related to alterations in different steps of the insulin secretion pathway and not in the insulin pool of β-cells.

  10. Maternal caffeine administration leads to adverse effects on adult mice offspring.

    PubMed

    Serapiao-Moraes, Diana F; Souza-Mello, Vanessa; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A; Faria, Tatiane S

    2013-12-01

    This study aimed to evaluate the role of caffeine chronic administration during gestation of C57BL/6 mice on cardiac remodeling and the expression of components of the renin-angiotensin system (RAS) in male offspring as adults. Pregnant C57BL/6 female mice were divided into two groups (n = 10): Control group (C), dams were injected with the vehicle only (saline 0.9% NaCl); Caffeine group (CF), dams received daily a subcutaneous injection of 20 mg/kg of caffeine/day (1 mg/mL saline). Pups had free access to standard chow since weaning to 3 months of age, when they were killed. CF group showed increased energy expenditure (+7%) with consequent reduction in body mass (BM) gain (-18%), increased blood pressure (+48%), and higher heart rate (+10%) than C group. The ratio between LV mass/BM was greater (+10%), with bigger cardiomyocytes (+40%), and reduced vascularization (-25%) in CF group than in C group. In the LV, the expression of angiotensin-converting enzyme (+30%), Angiotensin II (AngII) (+60%), AngII receptor (ATR)-1 (+77%) were higher, and the expression of ATR-2 was lower (-46%; P < 0.05) in CF group than in C group. In the kidney, the expressions of renin (+128%) and ATR-1 (+88%) were higher in CF group than in C group. Chronic administration of caffeine to pregnant dams led to persistent activation of local RAS in the kidney and heart of the offspring, which, in turn, leads to high BP and adverse cardiac remodeling. These findings highlight the urge to encourage pregnant women to avoid food or medicines containing caffeine.

  11. Prenatal Inflammation-Induced Hypoferremia Alters Dopamine Function in the Adult Offspring in Rat: Relevance for Schizophrenia

    PubMed Central

    Aguilar-Valles, Argel; Flores, Cecilia; Luheshi, Giamal N.

    2010-01-01

    Maternal infection during pregnancy has been associated with increased incidence of schizophrenia in the adult offspring. Mechanistically, this has been partially attributed to neurodevelopmental disruption of the dopamine neurons, as a consequence of exacerbated maternal immunity. In the present study we sought to target hypoferremia, a cytokine-induced reduction of serum non-heme iron, which is common to all types of infections. Adequate iron supply to the fetus is fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal infection can affect the offspring's dopamine function. Using a rat model of localized injury induced by turpentine, which triggers the innate immune response and inflammation, we investigated the effects of maternal iron supplementation on the offspring's dopamine function by assessing behavioral responses to acute and repeated administration of the dopamine indirect agonist, amphetamine. In addition we measured protein levels of tyrosine hydroxylase, and tissue levels of dopamine and its metabolites, in ventral tegmental area, susbtantia nigra, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Offspring of turpentine-treated mothers exhibited greater responses to a single amphetamine injection and enhanced behavioral sensitization following repeated exposure to this drug, when compared to control offspring. These behavioral changes were accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its metabolites, selectively in the nucleus accumbens. Both, the behavioral and neurochemical changes were prevented by maternal iron supplementation. Localized prenatal inflammation induced a deregulation in iron homeostasis, which resulted in fundamental alterations in dopamine function and behavioral alterations in the adult offspring. These changes are characteristic of schizophrenia symptoms in humans. PMID:20532043

  12. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    SciTech Connect

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li; Wang, Linlong; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  13. Mouse maternal systemic inflammation at the zygote stage causes blunted cytokine responsiveness in lipopolysaccharide-challenged adult offspring.

    PubMed

    Williams, Charlotte L; Teeling, Jessica L; Perry, V Hugh; Fleming, Tom P

    2011-07-19

    The preimplantation embryo is sensitive to culture conditions in vitro and poor maternal diet in vivo. Such environmental perturbations can have long-lasting detrimental consequences for offspring health and physiology. However, early embryo susceptibility to other aspects of maternal health and their potential long-term influence into adulthood is relatively unexplored. In this study, we established an in vivo mouse model of maternal periconceptional systemic inflammation by intraperitoneal lipopolysaccharide (LPS) administration on the day of zygote formation and investigated the consequences into adulthood. In the short term, maternal LPS challenge induced a transient and typical maternal sickness response (elevated serum proinflammatory cytokines and hypoactive behaviour). Maternal LPS challenge altered preimplantation embryo morphogenesis and cell lineage allocation, resulting in reduced blastocyst inner cell mass (ICM) cell number and a reduced ICM:trophectoderm cell ratio. In the long term, diverse aspects of offspring physiology were affected by maternal LPS treatment. Whilst birthweight, growth and adult blood pressure were unaltered, reduced activity in an open-field behaviour test, increased fat pad:body weight ratio and increased body mass index were observed in male, but not female, offspring. Most importantly, the maternal LPS challenge caused corticosterone-independent blunting of the serum proinflammatory cytokine response to innate immune challenge in both male and female offspring. The suppressed state of innate immunity in challenged offspring was dose-dependent with respect to the maternal LPS concentration administered. These results demonstrate for the first time that the preimplantation embryo in vivo is sensitive to maternal systemic inflammation, with effects on blastocyst cell lineage allocation and consequences for behaviour, adiposity and innate immune response in adult offspring. Critically, we identify a novel mechanism mediated

  14. Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia.

    PubMed

    Aguilar-Valles, Argel; Flores, Cecilia; Luheshi, Giamal N

    2010-06-04

    Maternal infection during pregnancy has been associated with increased incidence of schizophrenia in the adult offspring. Mechanistically, this has been partially attributed to neurodevelopmental disruption of the dopamine neurons, as a consequence of exacerbated maternal immunity. In the present study we sought to target hypoferremia, a cytokine-induced reduction of serum non-heme iron, which is common to all types of infections. Adequate iron supply to the fetus is fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal infection can affect the offspring's dopamine function. Using a rat model of localized injury induced by turpentine, which triggers the innate immune response and inflammation, we investigated the effects of maternal iron supplementation on the offspring's dopamine function by assessing behavioral responses to acute and repeated administration of the dopamine indirect agonist, amphetamine. In addition we measured protein levels of tyrosine hydroxylase, and tissue levels of dopamine and its metabolites, in ventral tegmental area, susbtantia nigra, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Offspring of turpentine-treated mothers exhibited greater responses to a single amphetamine injection and enhanced behavioral sensitization following repeated exposure to this drug, when compared to control offspring. These behavioral changes were accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its metabolites, selectively in the nucleus accumbens. Both, the behavioral and neurochemical changes were prevented by maternal iron supplementation. Localized prenatal inflammation induced a deregulation in iron homeostasis, which resulted in fundamental alterations in dopamine function and behavioral alterations in the adult offspring. These changes are characteristic of schizophrenia symptoms in humans.

  15. Maternal prolactin inhibition during lactation affects physical performance evaluated by acute exhaustive swimming exercise in adult rat offspring.

    PubMed

    Casimiro-Lopes, G; Lisboa, P C; Koury, J C; Boaventura, G; Passos, M C F; Moura, E G

    2012-02-01

    Maternal prolactin inhibition at the end of lactation programs for metabolic syndrome and hypothyroidism in adult offspring, which could negatively affect exercise performance. We evaluated the effects of maternal hypoprolactinemia in late lactation on physical performance in adult progeny. Lactating Wistar rats were treated with bromocriptine (BRO, 1 mg per day) or saline on days 19, 20, and 21 of lactation and offspring were followed until 180 days old. Physical performance was recorded in untrained rats at 90 and 180 days by an acute exhaustive swimming test (exercise group-Ex). At day 90, BRO offspring showed higher visceral fat mass, higher plasma thiobarbituric acid reactive substances, lower total antioxidant capacity, higher liver glycogen, lower glycemia, and normal insulinemia. Although thyroid hormones (TH) levels were unchanged, mitochondrial glycerol phosphate dehydrogenase (mGPD) activity was lower in muscle and in brown adipose tissue (BAT). At this age, BRO-Ex offspring showed higher exercise capacity, lower blood lactate, higher serum T3, and higher muscle and BAT mGPD activities. At day 180, BRO offspring showed central obesity, hypothyroidism, insulin resistance, and lower EDL (extensor digitorum longus) muscle glycogen with unaltered plasma oxidative stress markers. This group showed no alteration of exercise capacity or blood lactate. After exercise, EDL and liver glycogen were lower, while T3 levels, BAT and muscle mGPD activities were normalized. Liver glycogen seem to be related with higher exercise capacity in younger BRO offspring, while the loss of this temporary advantage maybe related to the hypothyroidism and insulin resistance developed with age.

  16. Prenatal caffeine exposure induced high susceptibility to metabolic syndrome in adult female offspring rats and its underlying mechanisms.

    PubMed

    Pei, Lin-Guo; Yuan, Chao; Guo, Yi-Tian; Kou, Hao; Xia, Li-Ping; Zhang, Li; Yan, You-E; Xu, Dan; Wang, Hui

    2017-08-01

    Our previous studies have demonstrated that prenatal caffeine exposure (PCE) induced an intrauterine programming of hypothalamic-pituitary-adrenal axis (HPAA)-associated neuroendocrine metabolism in 3-month-old offspring rats. In this study, we aimed to confirm this programming disorder and high susceptibility to metabolic syndrome (MS) in 10-month-old female PCE offspring with postnatal catch-up growth. We found that PCE female offspring rats showed decreased bodyweight but a higher rate of weight gain after birth. Moreover, in the offspring, basal hyperinsulinemia and insulin resistance were observed before unpredictable chronic stress (UCS), but serum total cholesterol (TCH) levels and triglyceride/high-density lipoprotein-cholesterol (TG/HDL-C), TCH/HDL-C and low-density lipoprotein-cholesterol/HDL-C (LDL-C/HDL-C) ratio changes were increased after UCS, accompanied by morphological damage of the related tissues. These results suggested that PCE adult female offspring rats were highly susceptible to MS, which is related to HPAA-associated neuroendocrine-metabolic programming disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Supplementation with D-serine prevents the onset of cognitive deficits in adult offspring after maternal immune activation

    PubMed Central

    Fujita, Yuko; Ishima, Tamaki; Hashimoto, Kenji

    2016-01-01

    Prenatal maternal infection contributes to the etiology of schizophrenia, with D-serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA) receptor, playing a role in the pathophysiology of this disease. We examined whether supplementation with D-serine during juvenile and adolescent stages could prevent the onset of cognitive deficits, prodromal and the core symptoms of schizophrenia in adult offspring after maternal immune activation (MIA). Juvenile offspring exposed prenatally to poly(I:C) showed reduced expression of NMDA receptor subunits in the hippocampus. Supplementing drinking water with D-serine (600 mg/L from P28 to P56) prevented the onset of cognitive deficits in adult offspring after MIA, in a significant manner. This study shows that supplementing offspring with D-serine during juvenile and adolescent stages could prevent the onset of psychosis in adulthood, after MIA. Therefore, early intervention with D-serine may prevent the occurrence of psychosis in high-risk subjects. PMID:27853241

  18. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    SciTech Connect

    Wang, Lingxing; Cai, Ruowei; Lv, Guorong; Huang, Ziyang; Wang, Zhenhua

    2010-05-28

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternal hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.

  19. Preweaning growth hormone treatment ameliorates adipose tissue insulin resistance and inflammation in adult male offspring following maternal undernutrition.

    PubMed

    Reynolds, C M; Li, M; Gray, C; Vickers, M H

    2013-08-01

    It is well established that early-life nutritional alterations lead to increased risk of obesity and metabolic disorders in adult life. Although it is clear that obesity gives rise to chronic low-grade inflammation, there is little evidence regarding the role of inflammation in the adipose tissue of undernourished (UN) offspring. GH reduces fat mass and has antiinflammatory properties. The present study examined the effect of maternal UN on adipose inflammation in adult offspring and whether GH treatment during a critical period of developmental plasticity could ameliorate metabolic dysfunction associated with a poor start to life. Sprague Dawley rats were assigned to chow (C) or UN (50% ad libitum; UN) diet throughout gestation. Male C and UN pups received saline (control saline [CS]/UN) or GH (2.5 μg/g/d; control growth hormone [CGH]/undernourished growth hormone [UNGH]) from days 3-21. Postweaning males were further randomized and fed either chow or high-fat diet until day 160. An ex vivo glucose uptake assay demonstrated adipose tissue from UN offspring displayed attenuated insulin-stimulated glucose uptake compared with CS, CGH, and UNGH. This was associated with increased insulin receptor, glucose transporter 4, and insulin receptor substrate 1 gene expression. Furthermore, UN demonstrated enhanced TNFα and IL-1β secretion from adipose explants and stromal vascular fraction cultures accompanied by increased adipose tissue gene expression of several key proinflammatory genes and markers of macrophage infiltration. Overall, UN offspring displayed a more potent immunophenotype, which correlated with decreased insulin sensitivity. Preweaning GH treatment negates these detrimental effects, indicating the potential for reversing metabolic dysfunction in UN adult offspring.

  20. Prenatal Testosterone Exposure Leads to Hypertension That Is Gonadal Hormone-Dependent in Adult Rat Male and Female Offspring1

    PubMed Central

    Chinnathambi, Vijayakumar; Balakrishnan, Meena; Yallampalli, Chandrasekhar; Sathishkumar, Kunju

    2012-01-01

    ABSTRACT Prenatal testosterone exposure impacts postnatal reproductive and endocrine function, leading to alterations in sex steroid levels. Because gonadal steroids are key regulators of cardiovascular function, it is possible that alteration in sex steroid hormones may contribute to development of hypertension in prenatally testosterone-exposed adults. The objectives of this study were to evaluate whether prenatal testosterone exposure leads to development of hypertension in adult males and females and to assess the influence of gonadal hormones on arterial pressure in these animals. Offspring of pregnant rats treated with testosterone propionate or its vehicle (controls) were examined. Subsets of male and female offspring were gonadectomized at 7 wk of age, and some offspring from age 7 to 24 wk received hormone replacement, while others did not. Testosterone exposure during prenatal life significantly increased arterial pressure in both male and female adult offspring; however, the effect was greater in males. Prenatal androgen-exposed males and females had more circulating testosterone during adult life, with no change in estradiol levels. Gonadectomy prevented hyperandrogenism and also reversed hypertension in these rats. Testosterone replacement in orchiectomized males restored hypertension, while estradiol replacement in ovariectomized females was without effect. Steroidal changes were associated with defective expression of gonadal steroidogenic genes, with Star, Sf1, and Hsd17b1 upregulation in testes. In ovaries, Star and Cyp11a1 genes were upregulated, while Cyp19 was downregulated. This study showed that prenatal testosterone exposure led to development of gonad-dependent hypertension during adult life. Defective steroidogenesis may contribute in part to the observed steroidal changes. PMID:22302690

  1. Interactions between the developmental and adult social environments mediate group dynamics and offspring traits in Drosophila melanogaster.

    PubMed

    Morimoto, Juliano; Ponton, Fleur; Tychsen, Ilona; Cassar, Jason; Wigby, Stuart

    2017-06-15

    Developmental conditions can strongly influence adult phenotypes and social interactions, which in turn affect key evolutionary processes such as sexual selection and sexual conflict. While the implications of social interactions in phenotypically mixed populations at the individual level are increasingly well known, how these effects influence the fate of groups remains poorly understood, which limits our understanding of the broader ecological implications. To address this problem we manipulated adult phenotypes and social composition in Drosophila melanogaster - by experimentally manipulating the larval density of the group-members - and measured a range of group-level outcomes across the lifespan of groups. Adult groups composed of exclusively low larval-density individuals showed high courtship levels, and low early reproductive rates, group growth rates, offspring mass and offspring eclosion success, relative to high larval-density or mixed larval-density groups. Furthermore, high larval-density groups had lower survival. Offspring mass increased with time, but at a reduced rate in groups when male group members (but not females) were from a mixture of larval-densities; peak reproductive rates were also earlier in these groups. Our results suggest that that variation in developmental conditions experienced by adult group members can modify the reproductive output of groups.

  2. Mortality in Adult Offspring of Immigrants: A Swedish National Cohort Study

    PubMed Central

    Manhica, Hélio; Toivanen, Susanna; Hjern, Anders; Rostila, Mikael

    2015-01-01

    Background Higher risks of psychiatric disorders and lower-than-average subjective health in adulthood have been demonstrated in offspring of immigrants in Sweden compared with offspring of native Swedes, and linked to relative socioeconomic disadvantage. The present study investigated mortality rates in relation to this inequity from a gender perspective. Methods We used data from national registers covering the entire Swedish population aged 18-65 years. Offspring of foreign-born parents who were either Swedish born or had received residency in Sweden before school age (<7 years) were defined as “offspring of immigrants.” We used Cox regression models to examine the association between parental country of birth and mortality between 1990 and 2008, with adjustment for education, income, age and family type. Results Male offspring of immigrants from the Middle East (HR:2.00, CI:1.66-2.26), other non-European countries (HR:1.80, CI:1.36-2.36) and Finland (HR:1.56, CI:1.48-1.65) showed an age-adjusted excess mortality risk from all causes of death when compared to offspring with Swedish-born parents. Income, but not education, greatly attenuated these increased mortality risks. No excess mortality rates were found among female offspring of immigrants, with the exception of external cause of death among offspring of Finnish immigrants. Conclusion The study demonstrates high mortality rates in male offspring of immigrants from Finland and non-European countries that are associated with economic, but not educational, disadvantage. No increased mortality rates were found among female offspring of immigrants. Future studies are needed to explain this gender differential and why income, but not education, predicts mortality in male offspring of immigrants. PMID:25706297

  3. Prenatal high-salt diet in the Sprague-Dawley rat programs blood pressure and heart rate hyperresponsiveness to stress in adult female offspring.

    PubMed

    Porter, James P; King, Summer H; Honeycutt, April D

    2007-07-01

    Several animal models have been developed to study fetal programming of hypertension. One model involves feeding high-salt (HS) diet to rats before and during pregnancy, during lactation, and after weaning for 10 days. In the present investigation, we limited HS diet to the prenatal period in an attempt to find a narrower critical window for fetal programming. The HS diet did not result in low-birth weight offspring. In the adult offspring, radiotelemetry was used to assess blood pressure and heart rate in the conscious unstressed state. As adults, the HS offspring were not hypertensive compared with normal-salt (NS) control animals. However, the pressor and tachycardic responses to 1-h of restraint were significantly enhanced in HS female offspring, and recovery after restraint was delayed. This was accompanied by an increase in relative expression of corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus of the hypothalamus during basal and stressed conditions. There was no augmented stress response or relative increase in CRH mRNA in adult HS male offspring. When challenged with 1 wk of 8% NaCl diet as adults, neither HS male nor female offspring exhibited salt sensitivity compared with NS groups. These data show that a high-salt diet limited to the prenatal period is not sufficient to program hypertension in adult offspring. However, this narrower critical period is sufficient to imprint a lasting hyperresponsiveness to stress, at least in adult female offspring. These data indicate that excessive maternal salt intake during pregnancy can adversely affect the cardiovascular health of adult offspring.

  4. Epigenetics: Behavioral Influences on Gene Function, Part I: Maternal Behavior Permanently Affects Adult Behavior in Offspring

    ERIC Educational Resources Information Center

    Ogren, Marilee P.; Lombroso, Paul J.

    2008-01-01

    The article highlights the field of epigenetics and its relevance in determining the effects of maternal nurturing on behavioral patterns in offsprings. Results concluded that maternal behavior influences the offspring's behavior to stress in adulthood and the effects are transgenerational through epigenetic mechanisms.

  5. Advanced Parental Age Impaired Fear Conditioning and Hippocampal LTD in Adult Female Rat Offspring.

    PubMed

    Luo, Lilu; Sun, Tingting; Guan, Xin; Ni, Yiling; Yang, Liqiang; Zhao, Quan; Kong, Xiangyang; Chen, Yanmei; Zhang, Jichuan

    2017-05-23

    Advanced maternal or paternal age is associated with increased risks of cognitive and emotional disorders. Chronic stress is also a common experience in human life that causes psychiatric diseases. However, the synergistic effects of these two factors on offspring are rarely studied. In the present study, the offspring of both young (3-4 months) and old (12-14 months) rat parents were given CUMS for 21 days at the age of 4 weeks. The effects of advanced parental age and chronic unpredictable mild stress (CUMS) on emotional and cognitive behaviors and the related cellular mechanisms were investigated by using behavioral and electrophysiological techniques. We found that CUMS decreased sucrose consumption, increased anxiety, and impaired learning and memory in offspring from both old and young breeders. However, advanced parental age impaired fear memory and spatial memory mainly in female offspring. The serum corticosterone of female offspring was lower than males, but advanced parental age significantly elevated serum corticosterone in female offspring in response to electrical foot shocks. In addition, hippocampal LTD was severely impaired in female offspring from older parents. Our results indicated that female offspring from older breeders might be more sensitive to stress, and the hippocampal function was more vulnerable. These results might provide experimental basis for the prevention and treatment of advanced parental age related psychiatric disorders in future.

  6. Epigenetics: Behavioral Influences on Gene Function, Part I: Maternal Behavior Permanently Affects Adult Behavior in Offspring

    ERIC Educational Resources Information Center

    Ogren, Marilee P.; Lombroso, Paul J.

    2008-01-01

    The article highlights the field of epigenetics and its relevance in determining the effects of maternal nurturing on behavioral patterns in offsprings. Results concluded that maternal behavior influences the offspring's behavior to stress in adulthood and the effects are transgenerational through epigenetic mechanisms.

  7. Perinatal low-protein diet alters brainstem antioxidant metabolism in adult offspring.

    PubMed

    Ferreira, Diorginis Soares; Liu, Yuri; Fernandes, Mariana Pinheiro; Lagranha, Claudia Jacques

    2016-10-01

    Studies in humans and animal models have established a close relationship between early environment insult and subsequent risk of development of non-communicable diseases, including the cardiovascular. Whereas experimental evidences highlight the early undernutrition and the late cardiovascular disease relation, the central mechanisms linking the two remain unknown. Owing to the oxidative balance influence in several pathologies, the aim of the present study was to evaluate the effects of maternal undernutrition (i.e. a low-protein (LP) diet) on oxidative balance in the brainstem. Male rats from mothers fed with an LP diet (8% casein) throughout the perinatal period (i.e. gestation and lactation) showed 10× higher lipid peroxidation levels than animals treated with normoprotein (17% casein) at 100 days of age. In addition, we observed the following reductions in enzymatic activities: superoxide dismutase, 16%; catalase, 30%; glutathione peroxidase, 34%; glutathione-S-transferase, 51%; glutathione reductase, 23%; glucose-6-phosphate dehydrogenase, 31%; and in non-enzymatic glutathione system, 46%. This study is the first to focus on the role of maternal LP nutrition in oxidative balance in a central nervous system structure responsible for cardiovascular control in adult rats. Our data observed changes in oxidative balance in the offspring, therefore, bring a new concept related to early undernutrition and can help in the development of a new clinical strategy to combat the effects of nutritional insult. Wherein the central oxidative imbalance is a feasible mechanism underlying the hypertension risk in adulthood triggered by maternal LP diet.

  8. Adult helpers increase the recruitment of closely related offspring in the cooperatively breeding rifleman

    PubMed Central

    Briskie, James V.; Hatchwell, Ben J.

    2016-01-01

    Indirect fitness benefits gained through kin-selected helping are widely invoked to explain the evolution of cooperative breeding behavior in birds. However, the impact of helpers on productivity of helped broods can be difficult to determine if the effects are confounded by territory quality or if the benefit of helpers is apparent only in the long term. In riflemen Acanthisitta chloris, helping and group membership are effectively decoupled as adult helpers are individuals that have dispersed from their natal territory and live independently from breeders in “kin neighborhoods.” Nevertheless, helpers direct their care toward close relatives, suggesting that helping provides indirect fitness benefits. The aim of this study was to examine the benefits of helpers to recipient offspring in the rifleman, investigating both short- and long-term effects. The total amount of food delivered to nestlings in helped broods was greater than that received by broods without helpers. This did not result in any short-term increase in nestling mass or nestling body condition nor was there any reduction in length of the nestling period at helped nests. However, helpers were associated with a significant increase in juvenile recruitment, with twice the proportion of fledglings surviving to the next breeding season from helped broods relative to unhelped broods. Thus, helpers gain indirect fitness by improving the survival of kin, and in contrast to a previous study of riflemen, we conclude that kin selection has played a key role in the evolution of cooperative breeding in this species. PMID:28028377

  9. Prenatal cocaine exposure causes sex-dependent impairment in the myogenic reactivity of coronary arteries in adult offspring

    PubMed Central

    Xiao, DaLiao; Yang, Shumei; Zhang, Lubo

    2009-01-01

    Cocaine abuse is a significant problem among pregnant women. The present study tested the hypothesis that prenatal cocaine exposure impairs myogenic reactivity of coronary arteries in adult offspring. Pregnant rats received cocaine (30 mg kg−1 day−1) or saline from days 15 to 21 of gestational age and experiments were conducted in 3-month-old offspring. In pressurized coronary septal arteries, the diameter and vessel wall intracellular Ca2+ concentrations were measured simultaneously in the same tissue as a function of intraluminal pressure. Cocaine did not affect KCl-induced contractions of coronary arteries in either males or females, but decreased the distensibility in male vessels. In male offspring, cocaine treatment resulted in a significant decease in pressure-dependent myogenic contractions. Inhibition of eNOS with NG-nitro-L-arginine did not alter the myogenic response in either saline control or cocaine-treated animals. In females, cocaine caused a significant increase in pressure-dependent myogenic contractions. NG-nitro-L-arginine did not affect the myogenic response in the control animals, but blocked the cocaine-mediated effect. In both males and females, the presure-induced increases in vessel wall Ca2+ concentrations were not significantly different between cocaine and saline groups. The ratio of changes in the diameter to Ca2+ concentrations in the presurized arteries was significantly less in male but greater in female offspring after cocaine treatment. The results suggest that prenatal cocaine exposure causes reprogramming of coronary myogenic tone via changes in the Ca2+ sensitivity in a sex-dependent manner, leading to an increased risk of dysfunction of coronary autoregulation in adult offspring. PMID:19704103

  10. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats.

    PubMed

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li; Wang, Linlong; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE+ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE+HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE+HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a "two-programming" hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is "the first programming", and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as "the second programming".

  11. Maternal intake of trans-unsaturated or interesterified fatty acids during pregnancy and lactation modifies mitochondrial bioenergetics in the liver of adult offspring in mice.

    PubMed

    de Velasco, Patricia C; Chicaybam, Gustavo; Ramos-Filho, Dionizio M; Dos Santos, Raísa M A R; Mairink, Caroline; Sardinha, Fátima L C; El-Bacha, Tatiana; Galina, Antonio; Tavares-do-Carmo, Maria das Graças

    2017-07-01

    The quality of dietary lipids in the maternal diet can programme the offspring to diseases in later life. We investigated whether the maternal intake of palm oil or interesterified fat, substitutes for trans-unsaturated fatty acids (FA), induces metabolic changes in the adult offspring. During pregnancy and lactation, C57BL/6 female mice received normolipidic diets containing partially hydrogenated vegetable fat rich in trans-unsaturated fatty acids (TG), palm oil (PG), interesterified fat (IG) or soyabean oil (CG). After weaning, male offspring from all groups received the control diet until day 110. Plasma glucose and TAG and liver FA profiles were ascertained. Liver mitochondrial function was accessed with high-resolution respirometry by measuring VO2, fluorimetry for detection of hydrogen peroxide (H2O2) production and mitochondrial Ca2+ uptake. The results showed that the IG offspring presented a 20 % increase in plasma glucose and both the IG and TG offspring presented a 2- and 1·9-fold increase in TAG, respectively, when compared with CG offspring. Liver MUFA and PUFA contents decreased in the TG and IG offspring when compared with CG offspring. Liver MUFA content also decreased in the PG offspring. These modifications in FA composition possibly affected liver mitochondrial function, as respiration was impaired in the TG offspring and H2O2 production was higher in the IG offspring. In addition, mitochondrial Ca2+ retention capacity was reduced by approximately 40 and 55 % in the TG and IG offspring, respectively. In conclusion, maternal consumption of trans-unsaturated and interesterified fat affected offspring health by compromising mitochondrial bioenergetics and lipid metabolism in the liver.

  12. [Effect of maternal high fat diet during gestation and lactation period on spatial learning and memory in adult mice offspring].

    PubMed

    Wang, Ling; Liu, Ying; Wang, Weixiang; Wang, Yiyang; Li, Bei

    2013-11-01

    To investigate the effect of perinatal high fat diet on spatial learning and memory in adult Kunming (KM) mice offspring. The adult female KM mice were randomly divided into control and high fat group, fed with lab chow and high fat diet (containing 20% of lard) during gestation and lactation periods. After weaning at 4 weeks old, 10 offspring mice randomly selected from control group, as control continuing (CC) group, were fed with lab chow. 10 mice, as high fat continuing (FF) group, from high fat group were fed with high fat diet. 10 mice, as transforming high fat (FC) group, were fed with lab chow. Then, Morris water maze task was applied to evaluate spatial learning and memory in the pups. The body weight and the mass of visceral fat and brain were weighted, and the level of serum leptin was measured through ELISA. Latency of FF and FC groups were shorter than CC group (P < 0.05), and the crossing times of FC group was more than CC group. The weights, the mass of visceral fat and brain of FF and FC groups were heavier than those of control group (P < 0.05). The level of serum leptin of FF group was higher than CC group (P <0. 05). Maternal high fat diet during pregnancy and lactation may contribute to better spatial learning and memory ability in adult mice offspring.

  13. Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis.

    PubMed

    Gobinath, Aarthi R; Workman, Joanna L; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M

    2016-02-01

    Postpartum depression (PPD) affects approximately 15% of mothers, disrupts maternal care, and can represent a form of early life adversity for the developing offspring. Intriguingly, male and female offspring are differentially vulnerable to the effects of PPD. Antidepressants, such as fluoxetine, are commonly prescribed for treating PPD. However, fluoxetine can reach offspring via breast milk, raising serious concerns regarding the long-term consequences of infant exposure to fluoxetine. The goal of this study was to examine the long-term effects of maternal postpartum corticosterone (CORT, a model of postpartum stress/depression) and concurrent maternal postpartum fluoxetine on behavioral, endocrine, and neural measures in adult male and female offspring. Female Sprague-Dawley dams were treated daily with either CORT or oil and fluoxetine or saline from postnatal days 2-23, and offspring were weaned and left undisturbed until adulthood. Here we show that maternal postpartum fluoxetine increased anxiety-like behavior and impaired hypothalamic-pituitary-adrenal (HPA) axis negative feedback in adult male, but not female, offspring. Furthermore, maternal postpartum fluoxetine increased the density of immature neurons (doublecortin-expressing) in the hippocampus of adult male offspring but decreased the density of immature neurons in adult female offspring. Maternal postpartum CORT blunted HPA axis negative feedback in males and tended to increase density of immature neurons in males but decreased it in females. These results indicate that maternal postpartum CORT and fluoxetine can have long-lasting effects on anxiety-like behavior, HPA axis negative feedback, and adult hippocampal neurogenesis and that adult male and female offspring are differentially affected by these maternal manipulations.

  14. Pre-Weaning Growth Hormone Treatment Reverses Hypertension and Endothelial Dysfunction in Adult Male Offspring of Mothers Undernourished during Pregnancy

    PubMed Central

    Gray, Clint; Li, Minglan; Reynolds, Clare M.; Vickers, Mark H.

    2013-01-01

    Maternal undernutrition results in elevated blood pressure (BP) and endothelial dysfunction in adult offspring. However, few studies have investigated interventions during early life to ameliorate the programming of hypertension and vascular disorders. We have utilised a model of maternal undernutrition to examine the effects of pre-weaning growth hormone (GH) treatment on BP and vascular function in adulthood. Female Sprague-Dawley rats were fed either a standard control diet (CON) or 50% of CON intake throughout pregnancy (UN). From neonatal day 3 until weaning (day 21), CON and UN pups received either saline (CON-S, UN-S) or GH (2.5 ug/g/day)(CON-GH, UN-GH). All dams were fed ad libitum throughout lactation. Male offspring were fed a standard diet until the end of the study. Systolic blood pressure (SBP) was measured at day 150 by tail cuff plethysmography. At day 160, intact mesenteric vessels mounted on a pressure myograph. Responses to pressure, agonist-induced constriction and endothelium-dependent vasodilators were investigated to determine vascular function. SBP was increased in UN-S groups and normalised in UN-GH groups (CON-S 121±2 mmHg, CON-GH 115±3, UN-S 146±3, UN-GH 127±2). Pressure mediated dilation was reduced in UN-S offspring and normalised in UN-GH groups. Vessels from UN-S offspring demonstrated a reduced constrictor response to phenylephrine and reduced vasodilator response to acetylcholine (ACh). Furthermore, UN-S offspring vessels displayed a reduced vasodilator response in the presence of L-NG-Nitroarginine Methyl Ester (L-NAME), carbenoxolone (CBX), L-NAME and CBX, Tram-34 and Apamin. UN-GH vessels showed little difference in responses when compared to CON and significantly increased vasodilator responses when compared to UN-S offspring. Pre-weaning GH treatment reverses the negative effects of maternal UN on SBP and vasomotor function in adult offspring. These data suggest that developmental cardiovascular programming is potentially

  15. Assessment of growth and metabolism characteristics in offspring of dehydroepiandrosterone-induced polycystic ovary syndrome adults

    PubMed Central

    Huang, Ying; Gao, Jiang-Man; Zhang, Chun-Mei; Zhao, Hong-Cui; Qiao, Jie

    2016-01-01

    Polycystic ovary syndrome (PCOS) is a common reproductive disorder that has many characteristic features including hyperandrogenemia, insulin resistance and obesity, which may have significant implications for pregnancy outcomes and long-term health of women. Daughters born to PCOS mothers constitute a high-risk group for metabolic and reproductive derangements, but no report has described potential growth and metabolic risk factors for such female offspring. Hence, we used a mouse model of dehydroepiandrosterone (DHEA)-induced PCOS to study the mechanisms underlying the pathology of PCOS by investigating the growth, developmental characteristics, metabolic indexes and expression profiles of key genes of offspring born to the models. We found that the average litter size was significantly smaller in the DHEA group, and female offspring had sustained higher body weight, increased body fat and triglyceride content in serum and liver; they also exhibited decreased energy expenditure, oxygen consumption and impaired glucose tolerance. Genes related to glucolipid metabolism such as Pparγ, Acot1/2, Fgf21, Pdk4 and Inhbb were upregulated in the liver of the offspring in DHEA group compared with those in controls, whereas Cyp17a1 expression was significantly decreased. However, the expression of these genes was not detected in male offspring. Our results show that female offspring in DHEA group exhibit perturbed growth and glucolipid metabolism that were not observed in male offspring. PMID:27798284

  16. Maternal levels of dichlorodiphenyl-dichloroethylene (DDE) may increase weight and body mass index in adult female offspring.

    PubMed

    Karmaus, W; Osuch, J R; Eneli, I; Mudd, L M; Zhang, J; Mikucki, D; Haan, P; Davis, S

    2009-03-01

    To investigate the effect of prenatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyl-dichloroethylene (DDE) on weight, height and body mass index (BMI) in adult female offspring of the Michigan fisheater cohort examined between 1973 and 1991. 259 mothers from the Michigan fisheater cohort were studied. Prenatal exposure to PCBs and DDE was estimated by extrapolating maternal measurements to the time that the women gave birth. 213 daughters aged 20-50 years in 2000 were identified and 83% of them participated in at least one of two repeated investigations in 2001/02 (n = 151) and 2006/07 (n = 129). To assess the effect of prenatal PCB and DDE exposure on anthropometric measurements, generalised estimating equations nested for repeated measurements (2001/02 and 2006/07) and for sharing the same mother were used. We controlled for maternal height and BMI and for daughters' age, birth weight, having been breastfed and number of pregnancies. Maternal height and BMI were significant predictors of the daughters' height, weight and BMI. Low birth weight (<2500 g) was significantly associated with reduced adult offspring weight and BMI. The weight and BMI of adult offspring were statistically significantly associated with the extrapolated prenatal DDE levels of their mothers. Controlling for confounders and compared to maternal DDE levels of <1.503 microg/l, offspring BMI was increased by 1.65 when prenatal DDE levels were 1.503-2.9 microg/l and by 2.88 if levels were >2.9 microg/l. Prenatal PCB levels showed no effect. Prenatal exposure to the oestrogenic endocrine-disrupting chemical DDE may contribute to the obesity epidemic in women.

  17. Opiate addiction in adult offspring through possible imprinting after obstetric treatment.

    PubMed Central

    Jacobson, B; Nyberg, K; Grönbladh, L; Eklund, G; Bygdeman, M; Rydberg, U

    1990-01-01

    OBJECTIVE--To test the hypothesis that opiate addiction in adults might stem partly from an imprinting process during birth when certain drugs are given to the mother. DESIGN--Retrospective study by logistic regression of opiate addicts with siblings as controls. SETTING--Stockholm, Sweden. SUBJECTS--200 Opiate addicts born in Stockholm during 1945-66, comprising 41 identified during interviews of probands for an earlier study; 75 patients whose death from opiate addiction had been confirmed during 1978-88; and 84 accepted for the methadone programme. 262 Siblings (controls) born in Stockholm during the same period, 24 of whom were excluded for drug addiction or being brought up outside the family. Birth records were unavailable for eight, leaving 230 siblings and 139 corresponding probands. MAIN OUTCOME MEASURES--Administration of opiates, barbiturates, and nitrous oxide (for greater than 1 h) to mothers of all subjects during labour within 10 hours before birth as a risk factor for adult opiate addiction. RESULTS--In subjects who had subsequently become addicts a significant proportion of mothers had received opiates or barbiturates, or both, compared with unmatched siblings (25% v 16%, chi 2 = 5.83, df = 1, p = 0.02), and these mothers had received nitrous oxide for longer and more often. After controlling for hospital of birth, order of birth, duration of labour, presentation other than vertex, surgical intervention, asphyxia, meconium stained amniotic fluid, and birth weight the relative risk for offspring subsequently becoming an adult opiate addict increased with the number of administrations of any of the three drugs. When the addicts were matched with their own siblings the estimated relative risk was 4.7 (95% confidence interval 1.8 to 12.4, p for trend = 0.002) for three administrations compared with when no drug was given. CONCLUSIONS--The results are compatible with the imprinting hypothesis. Therefore, for obstetric pain relief methods are preferable

  18. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years

    PubMed Central

    Allan, Keith M; Raja, Edwin A; Bhattacharya, Sohinee; McNeill, Geraldine; Hannaford, Philip C; Sarwar, Nadeem; Lee, Amanda J; Bhattacharya, Siladitya; Norman, Jane E

    2013-01-01

    Objectives To determine whether maternal obesity during pregnancy is associated with increased mortality from cardiovascular events in adult offspring. Design Record linkage cohort analysis. Setting Birth records from the Aberdeen Maternity and Neonatal databank linked to the General Register of Deaths, Scotland, and the Scottish Morbidity Record systems. Population 37 709 people with birth records from 1950 to present day. Main outcome measures Death and hospital admissions for cardiovascular events up to 1 January 2012 in offspring aged 34-61. Maternal body mass index (BMI) was calculated from height and weight measured at the first antenatal visit. The effect of maternal obesity on outcomes in offspring was tested with time to event analysis with Cox proportional hazard regression to compare outcomes in offspring of mothers in underweight, overweight, or obese categories of BMI compared with offspring of women with normal BMI. Results All cause mortality was increased in offspring of obese mothers (BMI >30) compared with mothers with normal BMI after adjustment for maternal age at delivery, socioeconomic status, sex of offspring, current age, birth weight, gestation at delivery, and gestation at measurement of BMI (hazard ratio 1.35, 95% confidence interval 1.17 to 1.55). In adjusted models, offspring of obese mothers also had an increased risk of hospital admission for a cardiovascular event (1.29, 1.06 to 1.57) compared with offspring of mothers with normal BMI. The offspring of overweight mothers also had a higher risk of adverse outcomes. Conclusions Maternal obesity is associated with an increased risk of premature death in adult offspring. As one in five women in the United Kingdom is obese at antenatal booking, strategies to optimise weight before pregnancy are urgently required. PMID:23943697

  19. Differential expression of murine adult hemoglobins in early ontogeny

    SciTech Connect

    Wawrzyniak, C.J.; Lewis, S.E.; Popp, R.A.

    1985-01-01

    A hemoglobin mutation is described that permits study of the expression of the two adult ..beta..-globin genes throughout fetal and postnatal development. Mice with a mutation at the Hbb/sup s/, ..beta..-globin locus, were used to study the relative levels of ..beta..-s2major and ..beta..-sminor globins specified by the mutant Hbb/sup s2/ haplotype during development. At 11.5 days of gestation ..beta..-sminor comprised over 80% and ..beta..-s2major under 20% of the adult beta-globin. The relative level of ..beta..-sminor decreased through fetal development; at birth ..beta..-sminor represented 33.7% of the ..beta..-globin. The adult values of 71.0% ..beta..-s2major and 29.0% ..beta..-sminor globin are expressed in mice six days after birth. Because the two ..beta..-globin genes are expressed in mice of the Hbb/sup 2s/ haplotype, both the ..beta..-smajor and ..beta..-sminor genes must be expressed in mice of the Hbb/sup s/ haplotype. Expression of the ..beta..-sminor gene is elevated to 35.6% in Hbb/sup s2/ mice that have been bled repeatedly. Thus, the 5' ..beta..-s2major and 3' ..beta..-sminor genes of the Hbb/sup s2/ haplotype and, presumably the 5' ..beta..-smajor and 3' ..beta..-sminor genes of the Hbb/sup s/ haplotype, are regulated independently and are homologous to the 5' ..beta..-dmajor and 3' ..beta..-dminor genes of the Hbb/sup d/ haplotype. Mice of the Hbb/sup s2/ haplotype are better than mice of the Hbb/sup d/ haplotytpe for studying the mechanisms of hemoglobin switching because the Hbb/sup s2/ each of the three embryonic and two adult hemoglobins can be separated by electrophoresis. 17 refs., 3 figs.

  20. Thermoregulatory deficits in adult long evans rat offspring exposed perinatally to the antithyroidal drug, propylthiouracil

    EPA Science Inventory

    Developmental exposure to endocrine disrupting toxicants has been shown to alter a variety of physiological processes in mature offspring. Body (core) temperature (Tc) is a tightly regulated homeostatic system but is susceptible to disruptors of the hypothalamic-pituitary-thyroid...

  1. Thermoregulatory deficits in adult long evans rat offspring exposed perinatally to the antithyroidal drug, propylthiouracil

    EPA Science Inventory

    Developmental exposure to endocrine disrupting toxicants has been shown to alter a variety of physiological processes in mature offspring. Body (core) temperature (Tc) is a tightly regulated homeostatic system but is susceptible to disruptors of the hypothalamic-pituitary-thyroid...

  2. Calcium supplementation reverts central adiposity, leptin, and insulin resistance in adult offspring programed by neonatal nicotine exposure.

    PubMed

    Nobre, J L; Lisboa, P C; Santos-Silva, A P; Lima, N S; Manhães, A C; Nogueira-Neto, J F; Cabanelas, A; Pazos-Moura, C C; Moura, E G; de Oliveira, E

    2011-09-01

    Obesity is a worldwide epidemic. Calcium influences energy metabolism regulation, causing body weight loss. Because maternal nicotine exposure during lactation programs for obesity, hyperleptinemia, insulin resistance (IR), and hypothyroidism, we decided to evaluate the possible effect of dietary calcium supplementation on these endocrine dysfunctions in this experimental model. Osmotic minipumps containing nicotine solution (N: 6 mg/kg per day for 14 days) or saline (C) were s.c. implanted in lactating rats 2 days after giving birth (P2). At P120, N and C offspring were subdivided into four groups: 1) C - standard diet; 2) C with calcium supplementation (CCa, 10 g calcium carbonate/kg rat chow); 3) N - standard diet; and 4) N with calcium supplementation (NCa). Rats were killed at P180. As expected, N offspring showed higher visceral and total body fat, hyperleptinemia, lower hypothalamus leptin receptor (OB-R) content, hyperinsulinemia, and higher IR index. Also, higher tyrosine hydroxylase (TH) expression (+51%), catecholamine content (+37%), and serum 25-hydroxyvitamin D(3) (+76%) were observed in N offspring. Dietary calcium supplementation reversed adiposity, hyperleptinemia, OB-R underexpression, IR, TH overexpression, and vitamin D. However, this supplementation did not reverse hypothyroidism. In NCa offspring, Sirt1 mRNA was lower in visceral fat (-37%) and higher in liver (+42%). In conclusion, dietary calcium supplementation seems to revert most of the metabolic syndrome parameters observed in adult offspring programed by maternal nicotine exposure during lactation. It is conceivable that the reduction in fat mass per se, induced by calcium therapy, is the main mechanism that leads to the increment of insulin action.

  3. Prenatal stress enhances severity of atherosclerosis in the adult apolipoprotein E-deficient mouse offspring via inflammatory pathways.

    PubMed

    Ho, H; Lhotak, S; Solano, M E; Karimi, K; Pincus, M K; Austin, R C; Arck, P

    2013-02-01

    Atherosclerosis is the underlying cause of cardiovascular disease and stroke. Endothelial cell dysfunctions are early events in atherosclerosis, resulting in the recruitment of circulating monocytes. The immune system can elicit an inflammatory response toward the atherosclerotic lesion, thereby accelerating lesion growth. Risk factors for atherosclerosis include hypertension, smoking, stress perception or low birth weight. As prenatal stress challenge decreases the birth weight and affects the offspring's postnatal immune response, we aimed to investigate whether prenatal stress contributes to the development of atherosclerosis in mice. Syngenic pregnant apolipoprotein E-deficient (apoE-/-) dams were exposed to sound stress on gestation days 12.5 and 14.5. The presence and size of atherosclerotic plaques in the offspring at the age of 15 weeks was evaluated by histomorphology, accompanied by flow cytometric analysis of the frequency and phenotype of monocytes/macrophages and regulatory T (Treg) cells in the blood. Further, cytokine secretion of peripheral blood lymphocytes was analyzed. In response to prenatal stress challenge, an increased frequency of large atherosclerotic plaques was detectable in apoE-/- offspring, which was particularly profound in females. Prenatal stress also resulted in alterations of the offspring's immune response, such as a decreased frequency of Treg cells in blood, alterations of macrophage populations in blood and an increased secretion of inflammatory cytokines. We provide novel evidence that prenatally stressed adult offspring show an increased severity of atherosclerosis. As Treg cells are key players in dampening inflammation, the observed increase in atherosclerosis may be due to the lack of Treg cell frequency. Future interdisciplinary research is urgently required to understand the developmental origin of prenatal stress-induced atherosclerosis. The availability of our model may facilitate and foster such research endeavors.

  4. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy.

    PubMed

    Houshmand-Oeregaard, Azadeh; Hansen, Ninna S; Hjort, Line; Kelstrup, Louise; Broholm, Christa; Mathiesen, Elisabeth R; Clausen, Tine D; Damm, Peter; Vaag, Allan

    2017-01-01

    Offspring of women with diabetes in pregnancy are at increased risk of type 2 diabetes mellitus (T2DM), potentially mediated by epigenetic mechanisms. The adipokines leptin, adiponectin, and resistin (genes: LEP, ADIPOQ, RETN) play key roles in the pathophysiology of T2DM. We hypothesized that offspring exposed to maternal diabetes exhibit alterations in epigenetic regulation of subcutaneous adipose tissue (SAT) adipokine transcription. We studied adipokine plasma levels, SAT gene expression, and DNA methylation of LEP, ADIPOQ, and RETN in adult offspring of women with gestational diabetes (O-GDM, N = 82) or type 1 diabetes (O-T1DM, N = 67) in pregnancy, compared to offspring of women from the background population (O-BP, N = 57). Compared to O-BP, we found elevated plasma leptin and resistin levels in O-T1DM, decreased gene expression of all adipokines in O-GDM, decreased RETN expression in O-T1DM, and increased LEP and ADIPOQ methylation in O-GDM. In multivariate regression analysis, O-GDM remained associated with increased ADIPOQ methylation and decreased ADIPOQ and RETN gene expression and O-T1DM remained associated with decreased RETN expression after adjustment for potential confounders and mediators. In conclusion, offspring of women with diabetes in pregnancy exhibit increased ADIPOQ DNA methylation and decreased ADIPOQ and RETN gene expression in SAT. However, altered methylation and expression levels were not reflected in plasma protein levels, and the functional implications of these findings remain uncertain.

  5. Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring

    PubMed Central

    2014-01-01

    Background Windscapes affect energy costs for flying animals, but animals can adjust their behavior to accommodate wind-induced energy costs. Theory predicts that flying animals should decrease air speed to compensate for increased tailwind speed and increase air speed to compensate for increased crosswind speed. In addition, animals are expected to vary their foraging effort in time and space to maximize energy efficiency across variable windscapes. Results We examined the influence of wind on seabird (thick-billed murre Uria lomvia and black-legged kittiwake Rissa tridactyla) foraging behavior. Airspeed and mechanical flight costs (dynamic body acceleration and wing beat frequency) increased with headwind speed during commuting flights. As predicted, birds adjusted their airspeed to compensate for crosswinds and to reduce the effect of a headwind, but they could not completely compensate for the latter. As we were able to account for the effect of sampling frequency and wind speed, we accurately estimated commuting flight speed with no wind as 16.6 ms?1 (murres) and 10.6 ms?1 (kittiwakes). High winds decreased delivery rates of schooling fish (murres), energy (murres) and food (kittiwakes) but did not impact daily energy expenditure or chick growth rates. During high winds, murres switched from feeding their offspring with schooling fish, which required substantial above-water searching, to amphipods, which required less above-water searching. Conclusions Adults buffered the adverse effect of high winds on chick growth rates by switching to other food sources during windy days or increasing food delivery rates when weather improved. PMID:26019870

  6. Maternal epilepsy and offsprings' adult intelligence: a population-based study from Norway.

    PubMed

    Oyen, Nina; Vollset, Stein E; Eide, Martha G; Bjerkedal, Tor; Skjaerven, Rolv

    2007-09-01

    We examined if children of mothers with epilepsy had normal intelligence, speculating that either epilepsy or its therapy might affect this parameter. In a population-based cohort study in Norway, information on maternal epilepsy reported to the Medical Birth Registry of Norway, 1967-1979 was linked to information on 18-19-year-old men's intellectual ability and anthropometric measures ascertained by the Norwegian Conscripts Service, 1984-1999. The standardized intelligence test (IQ score) was reported as single-digit standard scores with values from 1 to 9. No individual information on antiepileptic drug therapy was available. Mean IQ score was lower in 1,207 conscripts whose mothers had epilepsy reported on the birth notification form, as compared with 316,554 conscripts of mothers without epilepsy; 4.8 (standard deviation 1.8) versus 5.2(1.8), p < 0.001, respectively. This difference remained after adjustment for maternal education, maternal age, birth order, marital status, year of birth, and weight and length at birth. When comparing men with and without reported maternal epilepsy, the odds ratio of having an IQ score < or = 3 was 1.6 (95% confidence interval: 1.4-1.8), which was unaffected by adjustment for confounding factors. Mean height among conscripts of mothers with and without epilepsy measured 178.6 and 179.9 cm, respectively, a difference of 1.3 cm (p < 0.001). We observed that almost 20 years after birth, maternal epilepsy was associated with reduced IQ score and also shorter adult height in male offspring. We do not know whether these findings will persist when epilepsy is better treated with the newer and safer generation of antiepileptic drugs.

  7. Prenatal Ethanol Exposure Causes Glucose Intolerance with Increased Hepatic Gluconeogenesis and Histone Deacetylases in Adult Rat Offspring: Reversal by Tauroursodeoxycholic Acid

    PubMed Central

    Yao, Xing-Hai; Nguyen, Hoa K.; Nyomba, B. L. Grégoire

    2013-01-01

    Prenatal ethanol exposure results in increased glucose production in adult rat offspring and this may involve modulation of protein acetylation by cellular stress. We used adult male offspring of dams given ethanol during gestation days 1–7 (early), 8–14 (mid) and 15–21 (late) compared with those from control dams. A group of ethanol offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks. We determined gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, hepatic free radicals, histone deacetylases (HDAC), acetylated foxo1, acetylated PEPCK, and C/EBP homologous protein as a marker of endoplasmic reticulum stress. Prenatal ethanol during either of the 3 weeks of pregnancy increased gluconeogenesis, gluconeogenic genes, oxidative and endoplasmic reticulum stresses, sirtuin-2 and HDAC3, 4, 5, and 7 in adult offspring. Conversely, prenatal ethanol reduced acetylation of foxo1 and PEPCK. Treatment of adult ethanol offspring with TUDCA reversed all these abnormalities. Thus, prenatal exposure of rats to ethanol results in long lasting oxidative and endoplasmic reticulum stresses explaining increased expression of gluconeogenic genes and HDAC proteins which, by deacetylating foxo1 and PEPCK, contribute to increased gluconeogenesis. These anomalies occurred regardless of the time of ethanol exposure during pregnancy, including early embryogenesis. As these anomalies were reversed by treatment of the adult offspring with TUDCA, this compound has therapeutic potentials in the treatment of glucose intolerance associated with prenatal ethanol exposure. PMID:23544086

  8. Fish oil supplementation to rats fed high-fat diet during pregnancy prevents development of impaired insulin sensitivity in male adult offspring.

    PubMed

    Albert, Benjamin B; Vickers, Mark H; Gray, Clint; Reynolds, Clare M; Segovia, Stephanie A; Derraik, José G B; Garg, Manohar L; Cameron-Smith, David; Hofman, Paul L; Cutfield, Wayne S

    2017-07-17

    We examined whether maternal fish oil supplementation during pregnancy could prevent development of insulin resistance in adult male offspring of rat dams fed a high-fat diet. Time-mated Sprague-Dawley rat dams were randomised into four treatment groups: Con-Con, dams fed a control diet (fat: 15% kcal) and administered water by gavage; Con-FO, control diet with unoxidised fish oil by gavage; HF-Con, high-fat diet (fat: 45% kcal) and water by gavage; and HF-FO, high-fat diet and unoxidised fish oil by gavage. Dams were fed the allocated diet ad libitum during pregnancy and lactation, but daily gavage occurred only during pregnancy. After weaning, male offspring consumed a chow diet ad libitum until adulthood. Maternal high-fat diet led to increased food consumption, adiposity, systolic blood pressure, and triglycerides and plasma leptin in adult HF-Con offspring. HF-Con offspring also exhibited lower insulin sensitivity than Con-Con rats. Male offspring from HF-FO group were similar to HF-Con regarding food consumption and most metabolic parameters. However, insulin sensitivity in the HF-FO group was improved relative to the HF-Con offspring. Supplementation with unoxidised n-3 PUFA rich oils in the setting of a maternal obesogenic diet improved insulin sensitivity, but had no impact on body composition of adult male offspring.

  9. Targeting arachidonic acid pathway to prevent programmed hypertension in maternal fructose-fed male adult rat offspring.

    PubMed

    Tain, You-Lin; Lee, Wei-Chia; Wu, Kay L H; Leu, Steve; Chan, Julie Y H

    2016-12-01

    Hypertension can be programmed in response to nutritional insults in early life. Maternal high-fructose (HF) intake induced programmed hypertension in adult male offspring, which is associated with renal programming and arachidonic acid metabolism pathway. We examined whether early treatment with a soluble epoxide hydrolase (SEH) inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) or 15-Deoxy-Δ(12,14)-prostagandin J2 (15dPGJ2) can prevent HF-induced programmed hypertension. Pregnant Sprague Dawley rats received regular chow or chow supplemented with fructose (60% diet by weight) during the whole period of pregnancy and lactation. Four groups of male offspring were studied: control, HF, HF+AUDA and HF+15dPGJ2. In HF+AUDA group, mother rats received AUDA 25 mg/L in drinking water during lactation. In the HF+15dPGJ2 group, male offspring received 15dPGJ2 1.5 mg/kg body weight by subcutaneous injection once daily for 1 week after birth. Rats were sacrificed at 12 weeks of age. Maternal HF-induced programmed hypertension is associated with increased renal protein level of SEH and oxidative stress, which early AUDA therapy prevents. Comparison of AUDA and 15dPGJ2 treatments demonstrated that AUDA was more effective in preventing HF-induced programmed hypertension. AUDA therapy increases angiotensin converting enzyme-2 (ACE2) protein levels and PGE2 levels in adult offspring kidney exposed to maternal HF. 15dPGJ2 therapy increases plasma asymmetric dimethylarginine (ADMA) levels and decreases L-arginine-to-ADMA ratio. Better understanding of the impact of arachidonic acid pathway, especially inhibition of SEH, on renal programming may aid in developing reprogramming strategy to prevent programmed hypertension in children exposed to antenatal HF intake.

  10. Decreasing maternal myostatin programs adult offspring bone strength in a mouse model of osteogenesis imperfecta

    PubMed Central

    Oestreich, Arin K.; Kamp, William M.; McCray, Marcus G.; Carleton, Stephanie M.; Karasseva, Natalia; Lenz, Kristin L.; Jeong, Youngjae; Daghlas, Salah A.; Yao, Xiaomei; Wang, Yong; Pfeiffer, Ferris M.; Ellersieck, Mark R.; Schulz, Laura C.; Phillips, Charlotte L.

    2016-01-01

    During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstntm1Sjl/+) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstntm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2oim), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2oim/+ offspring from natural mating of Mstntm1Sjl/+ dams to Col1a2oim/+sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2oim/+ dams to Col1a2oim/+ sires. Finally, increased bone biomechanical strength of Col1a2oim/+ offspring that had been transferred into Mstntm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta. PMID:27821779

  11. Effect of maternal protein restriction during pregnancy and postweaning high-fat feeding on diet-induced thermogenesis in adult mouse offspring.

    PubMed

    Sellayah, Dyan; Dib, Lea; Anthony, Frederick W; Watkins, Adam J; Fleming, Tom P; Hanson, Mark A; Cagampang, Felino R

    2014-10-01

    Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Female MF-1 mice were fed a normal protein (NP, 18% casein) or a protein-restricted (PR, 9% casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45% kcal fat) or standard chow (C, 7% kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P < 0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P < 0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P < 0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring. These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood.

  12. Effect of resveratrol on metabolic and cardiovascular function in male and female adult offspring exposed to prenatal hypoxia and a high-fat diet.

    PubMed

    Shah, Amin; Reyes, Laura M; Morton, Jude S; Fung, David; Schneider, Jillian; Davidge, Sandra T

    2016-03-01

    Prenatal hypoxia, a common outcome of pregnancy complications, predisposes offspring to the development of metabolic and cardiovascular disorders in later life. We have previously observed that resveratrol improved cardiovascular and metabolic health in adult male rat offspring exposed to prenatal hypoxia and a postnatal high-fat (HF) diet; however, the effects of resveratrol in female rat offspring are not known. Our aim was to identify the mechanism(s) by which resveratrol may prevent metabolic and cardiac dysfunction in both male and female rat offspring exposed to prenatal hypoxia and a postnatal HF diet. Offspring that experienced normoxia or hypoxia in utero were fed a HF diet or a HF diet supplemented with resveratrol for 9 weeks following weaning. Body composition, metabolic function, in vivo cardiac function and ex vivo cardiac susceptibility to ischaemia-reperfusion (I/R) injury were assessed at 12 weeks of age. Prenatal hypoxia impaired metabolic function in male, but not female, rat offspring fed a HF diet and this was improved by resveratrol supplementation. Prenatal hypoxia also led to reduced recovery from cardiac I/R injury in male, and to a lesser extent in female, rat offspring fed a HF diet. Indices of cardiac oxidative stress after I/R were enhanced in both male and female rat offspring exposed to prenatal hypoxia. Resveratrol improved cardiac recovery from I/R injury and attenuated superoxide levels in both male and female rat offspring. In conclusion, prenatal hypoxia impaired metabolic and cardiac function in a sex-specific manner. Resveratrol supplementation may improve metabolic and cardiovascular health in adult male and female rat offspring exposed to prenatal hypoxia. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  13. Effects of number and gender of offspring on quality of life among older adults: evidence from the Korean Longitudinal Study of Aging, 2006–2012

    PubMed Central

    Kim, Jae-Hyun; Lee, Sang Gyu; Shin, Jaeyong; Cho, Kyung-Hee; Choi, Jae-Woo; Park, Eun-Cheol

    2015-01-01

    Objectives We examined correlations between number and gender of offspring and health-related quality of life (HRQoL) and quality of life (QoL) in older adults. Setting We used data from the 2006–2012 data sets of the Korean Longitudinal Study of Aging. Participants There were 10 242, 8680, 7907 and 7480 participants in 2006, 2008, 2010 and 2012, respectively. Interventions Number and gender of offspring. Primary and secondary outcome measures We measured participants’ QoL and HRQoL using a visual analogue scale developed by the Korea Labour Institute and which is similar to the EQ-VAS, a European measure. Results We estimated the HRQoL and QoL of individuals with offspring. Estimates for the HRQoL and QoL of parents with no offspring were −7.762 and −9.384, respectively (both p<0.0001) versus parents with two offspring. For parents with five or more offspring, the estimates for the HRQoL and QoL were −1.529 and 0.885, respectively (p<0.001 and p<0.017, respectively) compared with parents with two offspring. For fathers with no offspring compared with fathers with two offspring, the estimates for the HRQoL and QoL were −6.143 and −7.492, respectively (both p<0.0001). Conclusions These results suggest that number of offspring is associated with both HRQoL and QoL. Those with no offspring showed the lowest HRQoL and QoL. Although having five or more children had positive associations with QoL, it had negative associations with HRQoL. Public health services for those with poor quality of life should provide effective support programmes and services based on these findings. PMID:26063566

  14. Low functional programming of renal AT{sub 2}R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure

    SciTech Connect

    Ao, Ying; Sun, Zhaoxia; Hu, Shuangshuang; Zuo, Na; Li, Bin; Yang, Shuailong; Xia, Liping; Wu, Yong; Wang, Linlong; He, Zheng; Wang, Hui

    2015-09-01

    Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well as interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT{sub 2}R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT{sub 1a}R)/AT{sub 2}R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT{sub 2}R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT{sub 2}R might mediate the developmental origin of adult glomerulosclerosis. - Highlights: • Prenatal caffeine exposure induces glomerulosclerosis in adult offspring. • Prenatal caffeine

  15. Functional impairment due to bereavement after the death of adolescent or young adult offspring in a national population study of 1,051,515 parents.

    PubMed

    Wilcox, Holly C; Mittendorfer-Rutz, Ellenor; Kjeldgård, Linnea; Alexanderson, Kristina; Runeson, Bo

    2015-08-01

    This study addresses the burden of grief after the death of an adolescent or young adult offspring. Parental bereavement following the death of an adolescent or young adult offspring is associated with considerable psychiatric and somatic impairment. Our aim is to fill a research gap by examining offspring death due to suicide, accidents, or natural causes in relation to risk of parental sickness absence with psychiatric or somatic disorders. This whole population-based prospective study included mothers and fathers of all offspring aged 16-24 years in Sweden on December 31, 2004 (n = 1,051,515). This study had no loss to follow-up and exposure, confounders, and the outcome were recorded independently of each other. Cox survival analysis was used to model time to sickness absence exceeding 30 days, adjusting for parental demographic characteristics, previous parental sickness absence and disability pension, and inpatient and outpatient psychiatric and somatic healthcare prior to offspring death in 2001-2004. This large study population provided satisfactory statistical power for stratification by parents' sex and adolescent and young adults' cause of death. Mothers and fathers of offspring suicide and accident decedents both had over tenfold higher risk for psychiatric sickness absence exceeding 30 days as compared to parents of live offspring. Fathers of suicide decedents were at 40 % higher risk for somatic sickness absence. This is the largest study to date of parents who survived their offspring's death and the first study of work-related outcomes in bereaved parents. This study uses a broad metric of work-related functional impairment, sickness absence, for capturing the burden of sudden offspring death.

  16. Neck/upper back and low back pain in parents and their adult offspring: Family linkage data from the Norwegian HUNT Study.

    PubMed

    Lier, R; Nilsen, T I L; Vasseljen, O; Mork, P J

    2015-07-01

    Chronic pain in the neck and low back is highly prevalent. Although heritable components have been identified, knowledge about generational transmission of spinal pain between parents and their adult offspring is sparse. This study examined the intergenerational association of spinal pain using data from 11,081 parent-offspring trios participating in the population-based HUNT Study in Norway. Logistic regression was used to calculate adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for offspring spinal pain associated with parental spinal pain. In total, 3654 (33%) offspring reported spinal pain at participation. Maternal and paternal spinal pain was consistently associated with higher ORs for offspring spinal pain. The results suggest a slightly stronger association for parental multilevel spinal pain (i.e., both neck/upper back pain and low back pain) than for pain localized to the neck/upper back or low back. Multilevel spinal pain in both parents was associated with ORs of 2.6 (95% CI, 2.1-3.3), 2.4 (95% CI, 1.9-3.1) and 3.1 (95% CI, 2.2-4.4) for offspring neck/upper back, low back and multilevel spinal pain, respectively. Parental chronic spinal pain was consistently associated with increased occurrence of chronic spinal pain in their adult offspring, and this association was particularly strong for multilevel spinal pain. © 2014 European Pain Federation - EFIC®

  17. Maternal high-fat diet exaggerates atherosclerosis in adult offspring by augmenting periaortic adipose tissue-specific proinflammatory response.

    PubMed

    Wakana, Noriyuki; Irie, Daisuke; Kikai, Masakazu; Terada, Kensuke; Yamamoto, Keita; Kawahito, Hiroyuki; Kato, Taku; Ogata, Takehiro; Ueyama, Tomomi; Matoba, Satoaki; Yamada, Hiroyuki

    2015-03-01

    Maternal obesity elicits offspring's metabolic disorders via developmental modifications of visceral adipose tissue; however, its effect on atherogenesis remains undefined. Perivascular adipose tissue has recently been implicated in vascular remodeling and vasoreactivity. We hypothesize that developmental modifications of perivascular adipose tissue by maternal high-fat diet (HFD) exposure promotes atherosclerosis in adult offspring. Eight-week-old female apolipoprotein E-deficient mice were fed an HFD or normal diet (ND) during gestation and lactation. Offspring were fed a high-cholesterol diet from 8 weeks of age. Twenty-week-old male offspring of HFD-fed dams (O-HFD) showed a 2.1-fold increase in atherosclerotic lesion of the entire aorta compared with those of ND-fed dams (O-ND). Although mRNA expressions of interleukin-6, tumor necrosis factor, and monocyte chemotactic protein-1 and accumulation of macrophages in epididymal white adipose tissue were less in O-HFD than in O-ND, thoracic periaortic adipose tissue (tPAT) showed an exaggerated inflammatory response in O-HFD. Intra-abdominal transplantation of tPAT from 8-week-old O-HFD alongside the distal abdominal aorta exaggerated atherosclerosis development of the infrarenal aorta in recipient apolipoprotein E-deficient mice compared with tPAT from O-ND (210%, P<0.01). Although macrophage accumulation was rarely detected in tPAT of 8-week-old offspring, mRNA expression and protein levels of macrophage colony-stimulating factor were markedly elevated in O-HFD (2.3-fold, 3.3-fold, respectively, P<0.05), suggesting that increased macrophage colony-stimulating factor expression contributes to the augmented accumulation of macrophages, followed by the enhanced proinflammatory response. Our findings demonstrate that maternal HFD exaggerates atherosclerosis development in offspring by augmenting tPAT-specific inflammatory response proceeded by an increased expression of macrophage colony-stimulating factor. © 2015

  18. Embryonic exposure to dimethoate and/or deltamethrin impairs sexual development and programs reproductive success in adult male offspring mice.

    PubMed

    Ben Slima, A; Ben Abdallah, F; Keskes-Ammar, L; Mallek, Z; El Feki, A; Gdoura, R

    2012-05-01

    Pesticides can be toxic to desirable plants and animals, including humans. The aim of this study was to investigate the reproductive effects of low doses of pesticides on male offspring of exposed pregnant mice. Three groups of five female mice were treated daily by oral gavage with dimethoate (5 mg kg(-1) per day), deltamethrin (5 mg kg(-1) per day) and their mixture at 5 mg kg(-1) per day from day 3 to day 21 of pregnancy. Fertility, sexual behaviour and a number of reproductive endpoints, such as organ weights, sperm evaluations and testicular histology, were examined on four adult male offspring of exposed pregnant mice. When compared with control, a dose of deltamethrin 5 mg kg j(-1) causes a decrease in the absolute and relative weight of the testes of exposed mice and it affects their fertility by reducing the density, mobility and vitality of sperm and increasing the number of abnormal forms of these cells (P ≤ 0.01). The same results were obtained in mice exposed to a dose of 5 mg kg j(-1) combination of dimethoate and deltamethrin. This study demonstrated that deltamethrin and combination of dimethoate and deltamethrin caused a decrease in the absolute and relative weight of the testes, which affected the sperm parameters of male offspring of exposed mice to a low dose of these pesticides during pregnancy.

  19. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring.

    PubMed

    Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S; Lin, Tsang-Long; Jannasch, Amber S; Freeman, Jennifer L

    2016-02-19

    The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring.

  20. Discrepancy in reports of support exchanges between parents and adult offspring: within- and between-family differences.

    PubMed

    Kim, Kyungmin; Zarit, Steven H; Birditt, Kira S; Fingerman, Karen L

    2014-04-01

    Using data from 929 parent-child dyads nested in 458 three-generation families (aged 76 for the oldest generation, 50 for the middle generation, and 24 for the youngest generation), this study investigated how discrepancies in reports of support that parents and their adult offspring exchanged with one another vary both within and between families, and what factors explain variations in dyadic discrepancies. We found substantial within- and between-family differences in dyadic discrepancies in reports of support exchanges. For downward exchanges (from parents to offspring), both dyad-specific characteristics within a family (e.g., gender composition, relative levels of relationship quality, and family obligation) and shared family characteristics (e.g., average levels of relationship quality) showed significant effects on dyadic discrepancies. For upward exchanges (from offspring to parents), however, only dyad-specific characteristics (e.g., gender composition, coresidence, relative levels of positive relationship quality, and family obligation) were significantly associated with discrepancies. Discrepancies in support exchanges were mainly associated with dyad-specific characteristics, but they also appeared to be influenced by family emotional environments. The use of multiple informants revealed that families differ in discrepancies in reports of exchanges, which has implications for quality of family life as well as future exchanges.

  1. MODERATE PERINATAL ARSENIC EXPOSURE ALTERS NEUROENDOCRINE MARKERS ASSOCIATED WITH DEPRESSION AND INCREASES DEPRESSIVE-LIKE BEHAVIORS IN ADULT MOUSE OFFSPRING

    PubMed Central

    Martinez, Ebany J.; Kolb, Bethany L.; Bell, Angela; Savage, Daniel D.; Allan, Andrea M.

    2008-01-01

    Arsenic is one of the most common heavy metal contaminants found in the environment, particularly in water. We examined the impact of perinatal exposure to relatively low levels of arsenic (50 parts per billion) on neuroendocrine markers associated with depression and depressive-like behaviors in affected adult C57BL/6J mouse offspring. Whereas most biomedical research on arsenic has focused on its carcinogenic potential, a few studies suggest that arsenic can adversely affect brain development and neural function. Compared to controls, offspring exposed to 50 parts per billion arsenic during the perinatal period had significantly elevated serum corticosterone levels, reduced whole hippocampal CRFR1 protein level and elevated dorsal hippocampal serotonin 5HT1A receptor binding and receptor-effector coupling. 5HT1A receptor binding and receptor-effector coupling were not different in the ventral hippocampal formation, entorhinal or parietal cortices, or inferior colliculus. Perinatal arsenic exposure also significantly increased learned helplessness and measures of immobility in a forced swim task. Taken together, these results suggest that perinatal arsenic exposure may disrupt the regulatory interactions between the hypothalamic-pituitary-adrenal axis and the serotonergic system in the dorsal hippocampal formation in a manner that predisposes affected offspring to depressive-like behavior. These results are the first to demonstrate that relatively low levels of arsenic exposure during development can have long-lasting adverse effects on behavior and neurobiological markers associated with these behavioral changes. PMID:18573533

  2. Discrepancy in Reports of Support Exchanges between Parents and Adult Offspring: Within- and Between-Family Differences

    PubMed Central

    Kim, Kyungmin; Zarit, Steven H.; Birditt, Kira S.; Fingerman, Karen L.

    2014-01-01

    Using data from 929 parent-child dyads nested in 458 three-generation families (aged 76 for the oldest generation, 50 for the middle generation, and 24 for the youngest generation), this study investigated how discrepancies in reports of support that parents and their adult offspring exchanged with one another vary both within and between families, and what factors explain variations in dyadic discrepancies. We found substantial within- and between-family differences in dyadic discrepancies in reports of support exchanges. For downward exchanges (from parents to offspring), both dyad-specific characteristics within a family (e.g., gender composition, relative levels of relationship quality, and family obligation) and shared family characteristics (e.g., average levels of relationship quality) showed significant effects on dyadic discrepancies. For upward exchanges (from offspring to parents), however, only dyad-specific characteristics (e.g., gender composition, coresidence, relative levels of positive relationship quality, and family obligation) were significantly associated with discrepancies. Discrepancies in support exchanges were mainly associated with dyad-specific characteristics, but they also appeared to be influenced by family emotional environments. The use of multiple informants revealed that families differ in discrepancies in reports of exchanges, which has implications for quality of family life as well as future exchanges. PMID:24548009

  3. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring

    PubMed Central

    Wirbisky, Sara E.; Weber, Gregory J.; Sepúlveda, Maria S.; Lin, Tsang-Long; Jannasch, Amber S.; Freeman, Jennifer L.

    2016-01-01

    The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring. PMID:26891955

  4. Birth by cesarean section in relation to adult offspring overweight and biomarkers of cardiometabolic risk.

    PubMed

    Hansen, S; Halldorsson, T I; Olsen, S F; Rytter, D; Bech, B H; Granström, C; Henriksen, T B; Chavarro, J E

    2017-07-31

    Birth by Cesarean section (C-section) may increase the risk for non-communicable diseases. We aimed to examine the relation of birth by C-section with offspring overweight and markers of cardiometabolic risk in a prospective observational cohort with 20 years of follow-up. The Danish Fetal Origins Cohort enrolled 965 pregnant women in 1988-1989. In 2008, a follow-up study of the offspring was completed. The offspring were invited to participate in a clinical examination with measurements of anthropometry and a fasting blood sample (n=443). In addition, 252 offspring completed a self-administered questionnaire with questions on height and weight, leaving us with a study sample of 695 offspring. Offspring overweight at 20 years was defined as body mass index (BMI)⩾25 kg m(-2). We also analyzed blood pressure and fasting blood samples for cardiometabolic risk factors including insulin, leptin and adiponectin, and lipid concentrations. In the cohort, 7% were born by C-section, and at age 20 years, 18% of the offspring had a BMI ⩾25 kg m(-2). Birth by C-section was associated with increased odds of overweight or obesity at 20 years (Odds ratio=2.17 (95% confidence interval (CI): 1.10, 4.27)) after adjustment for potential confounders. Birth by C-section was also associated with higher serum concentrations of total cholesterol (8.5%, 95% CI: 1.1-16.5), low-density lipoprotein cholesterol (12.6%, 95% CI: 1.0, 25.5), leptin (73.1%, 95% CI: 5.9, 183.1) and Apolipoprotein B (0.08 g l(-1), 95% CI: 0.04, 0.15). In contrast, birth by C-section was not related to blood pressure or serum concentrations of insulin, adiponectin, triglycerides, high-density lipoprotein or Apolipoprotein A. Birth by C-section was associated with higher frequency of dysmetabolic traits in offspring independently of shared risk factors. Further research aimed at replicating these findings and elucidating the underlying biological mechanisms of this relation is needed

  5. To have and to hold: codependency as a mediator or moderator of the relationship between substance abuse in the family of origin and adult-offspring medical problems.

    PubMed

    Harkness, Daniel

    2003-01-01

    This pilot study explored the putative role of codependency as a mediator or moderator of the relationship between substance abuse in the family of origin (SAFO) and offspring medical problems in a counterbalanced multiple-treatment experiment with a heterogenous sample of adult males and females. Codependent attitude and behavior were moderators that attenuated the relationship between SAFO and two measures of acute offspring medical problems, but codependent behavior amplified the relationship between SAFO and chronic medical problems. Challenging replications are called for.

  6. Maternal high-protein diet during pregnancy, but not during suckling, induced altered expression of an increasing number of hepatic genes in adult mouse offspring.

    PubMed

    Vanselow, Jens; Kucia, Marzena; Langhammer, Martina; Koczan, Dirk; Metges, Cornelia C

    2016-04-01

    Indirect effects of a high-protein maternal diet are not well understood. In this study, we analyzed short-term and sustainable effects of a prenatal versus early postnatal maternal high-protein diet on growth and hepatic gene expression in mouse offspring. Dams were exposed to an isoenergetic high-protein (HP, 40 % w/w) diet during pregnancy or lactation. Growth and hepatic expression profiles of male offspring were evaluated directly after weaning and 150 days after birth. Offspring from two dietary groups, high-protein diet during pregnancy and control diet during lactation (HPC), and control diet during pregnancy and high-protein diet during lactation (CHP), were compared with offspring (CC) from control-fed dams. Maternal CHP treatment was associated with sustained offspring growth retardation, but decreased numbers of affected hepatic genes in adults compared to weanlings. In contrast, offspring of the HPC group did not show persistent effects on growth parameters, but the number of affected hepatic genes was even increased at adult age. In both dietary groups, however, only a small subset of genes was affected in weanlings as well as in adults. We conclude that (1) prenatal and early postnatal maternal HP diet caused persistent, but (2) different effects and partially complementary trends on growth characteristics and on the hepatic transcriptome and associated pathways and that (3) only a small number of genes and associated upstream regulators might be involved in passing early diet-induced imprints to adulthood.

  7. Increased Levels of C1q in the Prefrontal Cortex of Adult Offspring after Maternal Immune Activation: Prevention by 7,8-Dihydroxyflavone

    PubMed Central

    Han, Mei; Zhang, Ji-chun; Hashimoto, Kenji

    2017-01-01

    Objective Prenatal infection is implicated in the etiology of schizophrenia. The objective of this paper is to study the role of complement protein C1q in the psychosis of adult offspring after maternal immune activation (MIA). In addition, effect of 7,8-dihydroxyflavone (7,8-DHF: a tropomyosin receptor kinase B [TrkB] agonist) was also examined. Methods Western blot analysis of C1q in the brain regions from adult offspring after prenatal poly(I:C) (5.0 mg/kg/day from E12 to E17) exposure was performed. 7,8-DHF or vehicle was given from 4 to 8-weeks old. Results Expression of C1q in the prefrontal cortex (PFC) of adult offspring from poly(I:C)-treated pregnant mice was significantly higher than that of control group. Early treatment with 7,8-DHF during juvenile and adolescent stages could prevent an increase of C1q in the PFC of adult offspring after MIA. Conclusion Therefore, it is likely that increased C1q expression in the frontal cortex may play a role in the behavioral abnormalities of adult offspring after MIA. Furthermore, supplementation with a TrkB agonist such as 7,8-DHF during the prodromal stage may have prophylactic effects on the behavioral abnormalities after MIA. PMID:28138113

  8. Birth outcomes among offspring of adult cancer survivors: a population-based study.

    PubMed

    Stensheim, Hanne; Klungsøyr, Kari; Skjaerven, Rolv; Grotmol, Tom; Fosså, Sophie D

    2013-12-01

    Do cancer and cancer treatment influence patients' subsequent pregnancies and outcomes for the offspring? In this study, we compared birth outcomes in 3,915 female and male survivors and 144,653 controls from the general population with similar parity, by merging data from the Cancer Registry and the Medical Birth Registry of Norway. The cancer survivors were diagnosed at age 16-45 in the period 1967-2004. Subgroups of nulliparous survivors (childless before cancer) and primiparous (one pregnancy before and one after cancer) were analyzed, using logistic regression to compare birth outcomes with controls, focusing perinatal death, congenital anomalies, preterm birth (<37 gestational weeks) and low birth weight (LBW, <2,500 g). We adjusted for maternal age, birth period and educational level. Nulliparous female survivors' offspring had increased risk of preterm birth (OR = 1.30 [95% CI 1.05-1.61]) but similar risks of LBW and perinatal death as their controls. Primiparous female survivors differed from their controls, with higher frequency of preterm birth (OR = 1.89 [95% CI 1.40-2.56]) and LBW at term (OR = 2.02 [95% CI 1.15-3.55]). A borderline significant increase of perinatal death was seen among offspring of primiparous female survivors, with OR = 1.92 (95% CI 0.98-3.76). Offspring of male survivors did not differ from their controls. For all cancer types combined, no increased risk of congenital anomalies was seen among either female or male survivors' offspring. Pregnant female cancer survivors should be offered close follow-up, as there is an increased risk of adverse birth outcomes, in particular among those with higher parities.

  9. Intake of grape procyanidins during gestation and lactation impairs reverse cholesterol transport and increases atherogenic risk indexes in adult offspring.

    PubMed

    Del Bas, Josep Maria; Crescenti, Anna; Arola-Arnal, Anna; Oms-Oliu, Gemma; Arola, Lluís; Caimari, Antoni

    2015-12-01

    Cardiovascular disease (CVD) is one of the most prevalent noncommunicable diseases in humans. Different studies have identified dietary procyanidins as bioactive compounds with beneficial properties against CVD by improving lipid homeostasis, among other mechanisms. The aim of this work was to assess whether grape seed procyanidin consumption at a physiological dose during the perinatal period could influence the CVD risk of the offspring. Wistar rat dams were treated with a grape seed procyanidin extract (GSPE; 25mg/kg of body weight per day) or vehicle during gestation and lactation. The adult male offspring of GSPE-treated dams presented decreased high-density lipoprotein cholesterol (HDL-C) levels, increased total cholesterol-to-HDL-C ratios and an exacerbated fasting triglyceride-to-HDL-C ratios (atherogenic index of plasma) compared to the control group. Impaired reverse cholesterol transport (RCT) was evidenced by the accumulation of cholesterol in skeletal muscle and by decreased fecal excretion of cholesterol and bile acids, which was consistent with the observed mRNA down-regulation of the rate-limiting enzyme in the hepatic bile acid synthesis pathway Cyp7A1. Conversely, GSPE programming also resulted in up-regulated gene expression of different key components of the RCT process, such as hepatic Npc1, Abcg1, Abca1, Lxra, Srebp2, Lcat, Scarb1 and Pltp, and the repression of microRNA miR-33a expression, a key negative controller of hepatic RCT at the gene expression level. Our results show that maternal intake of grape procyanidins during the perinatal period impacts different components of the RCT process, resulting in increased CVD risk in the adult offspring. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Months of asynchrony in offspring production but synchronous adult emergence: the role of diapause in an ectoparasite's life cycle.

    PubMed

    Härkönen, Laura; Kaitala, Arja

    2013-12-01

    Off-host stages of temperate zone ectoparasites must overcome two challenges: coping with unfavorable seasons and synchronizing their life cycles with host availability. In general, little is known about the seasonal cycles of insect ectoparasites of warm-blooded animals. The current study investigates the unusual phenology of a viviparous hippoboscid fly, the deer ked (Lipoptena cervi L.), that parasitizes boreal cervids. Despite months of asynchrony in offspring production, the adults emerge synchronously in mid-August across the northern boreal zone. We examined the role of diapause variation in the synchronization of life cycles by testing adult emergence success and time in relation to offspring birth month (October to April) and with respect to chilling time and photoperiod. Unexpectedly, we found that photoperiod had no role in regulating the life cycle, but diapause was maintained as long as pupae were exposed to cold. Pupae born before February needed a slightly longer exposure to high temperatures to terminate diapause if the cold period was short. Despite the apparent importance of a long period of chilling for life cycle synchrony, it was not required to terminate diapause. This finding of cold mainly preventing, rather than promoting, diapause termination is not novel among temperate insects, but it is rare. Slow diapause termination as a response to exceptionally long exposure to high, not low, temperatures seems to be a cornerstone for synchronizing the life cycle in the deer ked.

  11. Adult rat's offspring of alcoholic mothers are impaired on spatial learning and object recognition in the Can test.

    PubMed

    Popović, Miroljub; Caballero-Bleda, María; Guerri, Consuelo

    2006-11-01

    The aim of this study was to examine spatial and object recognition reference and working memory in adult offspring of Wistar rats exposed to ethanol in prenatal and/or preweaning period. For this purpose, four different conditions of the Can test were performed sequentially: spatial/object discrimination task, spatial orientation task, simple object recognition task and complex object recognition task. The results of present study shows: (1) the significant impairment in spatial learning and object recognition in animals exposed to alcohol during prenatal and/or preweaning period, (2) that cognitive dysfunction become increasingly evident with switching from simple to more sophisticated task, (3) that the most vulnerable period is the early neonatal period which corresponds to the third trimester gestational development in humans and (4) that during the developmental period, abrupt introduction or withdrawal of ethanol, rather than its continuous consumption, can produce higher cognitive deficit later on. In conclusion, moderate ethanol exposure during brain development produce long lasting impairment of spatial and recognition reference and working memory in adult rat's offspring and these effects depend on the developmental period in which they were exposed to ethanol.

  12. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring

    PubMed Central

    Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Fernandes, Jansen; Lopim, Glauber Menezes; Cabral, Francisco Romero; Scerni, Débora Amado; de Oliveira-Pinto, Ana Virgínia; Lent, Roberto; Arida, Ricardo Mario

    2016-01-01

    Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task). Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation) and associative (spatial learning) mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning) and increases BDNF levels and cell numbers in the hippocampal formation of offspring. PMID:26771675

  13. Evaluation of a group intervention to assist aging parents with permanency planning for an adult offspring with special needs.

    PubMed

    Botsford, Anne L; Rule, David

    2004-07-01

    More than three-fourths of older adults with developmental disabilities and mental illness live in the community with aging parents, the majority of whom do not complete plans for the residential, financial, and legal future of their offspring. The authors used a true experimental design to evaluate the effectiveness of a six-week psychoeducational group intervention with 27 older mothers. Data collected in pre- and posttest telephone interviews were analyzed with repeated measures MANCOVA to test five hypotheses. Significant multivariate effects were found for mothers' knowledge and awareness about permanency planning, confidence and competence to plan, planning activities, and stage of planning. Findings support use of group interventions with older parents and underscore the need for professional education about planning for adults with special needs.

  14. Maternal immune activation alters glutamic acid decarboxylase-67 expression in the brains of adult rat offspring

    PubMed Central

    Cassella, Sarah N.; Hemmerle, Ann M.; Lundgren, Kerstin H.; Kyser, Tara L.; Ahlbrand, Rebecca; Bronson, Stefanie L.; Richtand, Neil M.; Seroogy, Kim B.

    2016-01-01

    Activation of the maternal innate immune system, termed “maternal immune activation” (MIA), represents a common environmental risk factor for schizophrenia. Whereas evidence suggests dysregulation of GABA systems may underlie the pathophysiology of schizophrenia, a role for MIA in alteration of GABAergic systems is less clear. Here, pregnant rats received either the viral mimetic polyriboinosinic-polyribocytidilic acid or vehicle injection on gestational day 14. Glutamic acid decarboxylase-67 (GAD67) mRNA expression was examined in male offspring at postnatal day (P)14, P30 and P60. At P60, GAD67 mRNA was elevated in hippocampus and thalamus and decreased in prefrontal cortex of MIA offspring. MIA-induced alterations in GAD expression could contribute to the pathophysiology of schizophrenia. PMID:26830319

  15. Tobacco Smoking: Patterns, Health Consequences for Adults, and the Long-term Health of the Offspring

    PubMed Central

    Maritz, Gert S.; Mutemwa, Muyunda

    2012-01-01

    Tobacco use started several centuries ago and increased markedly after the invention of the cigarette making machine. Once people start smoking they find it difficult to quit the habit. This is due to the addictive effect of nicotine in tobacco smoke. Various epidemiologic and laboratory studies clearly showed that smoking is associated with various diseases such as heart diseases, asthma and emphysema and the associated increase in morbidity and mortality of smokers. Several studies implicate nicotine as the causative factor in tobacco smoke. Apart from nicotine, various carcinogens also occur in tobacco smoke resulting in an increase in the incidence of cancer in smokers. While the smoking habit is decreasing in developed countries, tobacco use increases in the developing countries. Smoking prevalence is also highest in poor communities and amongst those with low education levels. It is important to note that, although ther is a decline in the number of smokers in the developed countries, there is a three to four decades lag between the peak in smoking prevalence and the subsequent peak in smoking related mortality. It has been shown that maternal smoking induces respiratory diseases in the offspring. There is also evidence that parental smoking may program the offspring to develop certain diseases later in life. Various studies showed that maternal nicotine exposure during pregnancy and lactation via tobacco smoke of nicotine replacement therapy (NRT), program the offspring to develop compromised lung structure later in life with the consequent compromised lung function. This implies that NRT is not an option to assist pregnant or lactating smokers to quit the habit. Even paternal smoking may have an adverse effect on the health of the offspring since it has been shown that 2nd and 3rd hand smoking have adverse health consequences for those exposed to it. PMID:22980343

  16. Low functional programming of renal AT2R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure.

    PubMed

    Ao, Ying; Sun, Zhaoxia; Hu, Shuangshuang; Zuo, Na; Li, Bin; Yang, Shuailong; Xia, Liping; Wu, Yong; Wang, Linlong; He, Zheng; Wang, Hui

    2015-09-01

    Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well as interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT2R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT1aR)/AT2R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT2R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT2R might mediate the developmental origin of adult glomerulosclerosis. Copyright © 2015. Published by Elsevier Inc.

  17. Contributions of maternal and paternal adiposity and smoking to adult offspring adiposity and cardiovascular risk: the Midspan Family Study.

    PubMed

    Han, T S; Hart, C L; Haig, C; Logue, J; Upton, M N; Watt, G C M; Lean, M E J

    2015-11-02

    Obesity has some genetic basis but requires interaction with environmental factors for phenotypic expression. We examined contributions of gender-specific parental adiposity and smoking to adiposity and related cardiovascular risk in adult offspring. Cross-sectional general population survey. Scotland. 1456 of the 1477 first generation families in the Midspan Family Study: 2912 parents (aged 45-64 years surveyed between 1972 and 1976) who had 1025 sons and 1283 daughters, aged 30-59 years surveyed in 1996. Offspring body mass index (BMI), waist circumference (WC), cardiometabolic risk (lipids, blood pressure and glucose) and cardiovascular disease as outcome measures, and parental BMI and smoking as determinants. All analyses adjusted for age, socioeconomic status and family clustering and offspring birth weight. Regression coefficients for BMI associations between father-son (0.30) and mother-daughter (0.33) were greater than father-daughter (0.23) or mother-son (0.22). Regression coefficient for the non-genetic, shared-environment or assortative-mating relationship between BMIs of fathers and mothers was 0.19. Heritability estimates for BMI were greatest among women with mothers who had BMI either <25 or ≥30 kg/m(2). Compared with offspring without obese parents, offspring with two obese parents had adjusted OR of 10.25 (95% CI 6.56 to 13.93) for having WC ≥102 cm for men, ≥88 cm women, 2.46 (95% CI 1.33 to 4.57) for metabolic syndrome and 3.03 (95% CI 1.55 to 5.91) for angina and/or myocardial infarct (p<0.001). Neither parental adiposity nor smoking history determined adjusted offspring individual cardiometabolic risk factors, diabetes or stroke. Maternal, but not paternal, smoking had significant effects on WC in sons (OR=1.50; 95% CI 1.13 to 2.01) and daughters (OR=1.42; 95% CI 1.10 to 1.84) and metabolic syndrome OR=1.68; 95% CI 1.17 to 2.40) in sons. There are modest genetic/epigenetic influences on the environmental factors behind adverse

  18. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring.

    PubMed

    Lacy, Ryan T; Brown, Russell W; Morgan, Amanda J; Mactutus, Charles F; Harrod, Steven B

    2016-01-01

    In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers

  19. Prenatal acetaminophen induces liver toxicity in dams, reduces fetal liver stem cells, and increases airway inflammation in adult offspring.

    PubMed

    Karimi, Khalil; Keßler, Timo; Thiele, Kristin; Ramisch, Katherina; Erhardt, Annette; Huebener, Peter; Barikbin, Roja; Arck, Petra; Tiegs, Gisa

    2015-05-01

    During pregnancy, acetaminophen is one of the very few medications recommended by physicians to treat fever or pain. Recent insights from epidemiological studies suggest an association between prenatal acetaminophen medication and an increased risk for development of asthma in children later in life. The underlying pathogenesis of such association is still unknown. We aimed to develop a mouse model to provide insights into the effect of prenatal acetaminophen on maternal, fetal and adult offspring's health. The toxic effect of acetaminophen was studied in mice on 1) maternal liver; mirrored by biomarkers of liver injury, centrilobular necrosis, and infiltration of granulocytes; 2) fetal liver; reflected by the frequency of hematopoietic stem cells, and 3) postnatal health; evaluated by the severity of allergic airway inflammation among offspring. We observed an increased susceptibility towards acetaminophen-induced liver damage in pregnant mice compared to virgins. Moreover, hematopoietic stem cell frequency in fetal liver declined in response to acetaminophen. Furthermore, a greater severity of airway inflammation was observed in offspring of dams upon prenatal acetaminophen treatment, identified lung infiltration by leukocytes and eosinophil infiltration into the airways. Our newly developed mouse model on prenatal use of acetaminophen reflects findings from epidemiological studies in humans. The availability of this model will allow improvement in our understanding of how acetaminophen-related hepatotoxicity is operational in pregnant individuals and how an increased risk for allergic diseases in response to prenatal acetaminophen is mediated. Such insights, once available, may change the recommendations for prenatal acetaminophen use. Copyright © 2014 European Association for the Study of the Liver. All rights reserved.

  20. Inulin Supplementation Lowered the Metabolic Defects of Prolonged Exposure to Chlorpyrifos from Gestation to Young Adult Stage in Offspring Rats.

    PubMed

    Reygner, Julie; Lichtenberger, Lydia; Elmhiri, Ghada; Dou, Samir; Bahi-Jaber, Narges; Rhazi, Larbi; Depeint, Flore; Bach, Veronique; Khorsi-Cauet, Hafida; Abdennebi-Najar, Latifa

    2016-01-01

    Increasing evidence indicates that chlorpyrifos (CPF), an organophosphorus insecticide, is involved in metabolic disorders. We assess the hypothesis whether supplementation with prebiotics from gestation to adulthood, through a modulation of microbiota composition and fermentative activity, alleviates CPF induced metabolic disorders of 60 days old offspring. 5 groups of Wistar rats, from gestation until weaning, received two doses of CPF pesticide: 1 mg/kg/day (CPF1) or 3.5 mg/kg/day (CPF3.5) with free access to inulin (10g/L in drinking water). Then male pups received the same treatment as dams. Metabolic profile, leptin sensitivity, insulin receptor (IR) expression in liver, gut microbiota composition and short chain fatty acid composition (SCFAs) in the colon, were analyzed at postnatal day 60 in the offspring (PND 60). CPF3.5 increased offspring's birth body weight (BW) but decreased BW at PND60. Inulin supplementation restored the BW at PND 60 to control levels. Hyperinsulinemia and decrease in insulin receptor β in liver were seen in CPF1 exposed rats. In contrast, hyperglycemia and decrease in insulin level were found in CPF3.5 rats. Inulin restored the levels of some metabolic parameters in CPF groups to ranges comparable with the controls. The total bacterial population, short chain fatty acid (SCFA) production and butyrate levels were enhanced in CPF groups receiving inulin. Our data indicate that developmental exposure to CPF interferes with metabolism with dose related effects evident at adulthood. By modulating microbiota population and fermentative activity, inulin corrected adult metabolic disorders of rats exposed to CPF during development. Prebiotics supply may be thus considered as a novel nutritional strategy to counteract insulin resistance and diabetes induced by a continuous pesticide exposure.

  1. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring.

    PubMed

    Langie, Sabine A S; Achterfeldt, Sebastian; Gorniak, Joanna P; Halley-Hogg, Kirstin J A; Oxley, David; van Schooten, Frederik J; Godschalk, Roger W L; McKay, Jill A; Mathers, John C

    2013-08-01

    The mechanisms through which environmental and dietary factors modulate DNA repair are still unclear but may include dysregulation of gene expression due to altered epigenetic markings. In a mouse model, we investigated the effect of maternal folate depletion during pregnancy and lactation, and high-fat feeding from weaning, on base excision repair (BER) and DNA methylation and expression of selected BER-related genes in the brain of adult offspring. While folate depletion did not affect BER activity of the mothers, BER increased in the offspring at weaning (P=0.052). In the long term, as observed in 6-mo-old offspring, the double insult, i.e., maternal low-folate supply and high-fat feeding from weaning, decreased BER activity significantly in the cortex, cerebellum, hippocampus, and subcortical regions (P≤0.017). This fall in BER activity was associated with small changes in methylation or expression of BER-related genes. Maternal folate depletion led to slightly increased oxidative DNA damage levels in subcortical regions of adult offspring, which may increase sensitivity to oxidative stress and predispose to neurological disorders. In summary, our data suggest that low-folate supply during early life may leave an epigenetic mark that can predispose the offspring to further dietary insults, causing adverse effects during adult life.

  2. Cocaine exposure prior to pregnancy alters the psychomotor response to cocaine and transcriptional regulation of the dopamine D1 receptor in adult male offspring.

    PubMed

    Sasaki, Aya; Constantinof, Andrea; Pan, Pauline; Kupferschmidt, Dave A; McGowan, Patrick O; Erb, Suzanne

    2014-05-15

    There is evidence that maternal experience prior to pregnancy can play an important role in behavioral, physiological, and genetic programming of offspring. Likewise, exposure to cocaine in utero can result in marked changes in central nervous system function of offspring. In this study, we examined whether exposure of rat dams to cocaine prior to pregnancy subsequently alters indices of behavior, physiology, and gene expression in offspring. Multiple outcome measures were examined in adult male offspring: (1) behavioral expression of cocaine-induced psychomotor activation; (2) levels of corticosterone in response to immobilization stress; and (3) expression of multiple genes, including dopamine receptor D1 (DRD1) and D2 (DRD2), glucocorticoid receptor (GR), and corticotropin-releasing factor (CRF), in functionally relevant brain regions. Adult Sprague-Dawley females were exposed to cocaine (15-30 mg/kg, i.p.) or saline for 10 days, and were then mated to drug naïve males of the same strain. Separate groups of adult male offspring were tested for their acute psychomotor response to cocaine (0, 15, 30 mg/kg, i.p.), corticosterone responsivity to 20 min of immobilization stress, and expression of multiple genes using quantitative PCR. Offspring of dams exposed to cocaine prior to conception exhibited increased psychomotor sensitivity to cocaine, and upregulated gene expression of DRD1 in the medial prefrontal cortex (mPFC). Neither stress-induced corticosterone levels nor gene expression of GR or CRF genes were altered. These data suggest that cocaine exposure before pregnancy can serve to enhance psychomotor sensitivity to cocaine in offspring, possibly via alterations in dopamine function that include upregulation of the DRD1.

  3. Maternal in utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate affects the blood pressure of adult male offspring

    SciTech Connect

    Martinez–Arguelles, D.B.; McIntosh, M.; Rohlicek, C.V.; Culty, M.; Zirkin, B.R.; Papadopoulos, V.

    2013-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used industrially to add flexibility to polyvinyl chloride (PVC) polymers and is ubiquitously found in the environment, with evidence of prenatal, perinatal and early infant exposure in humans. In utero exposure to DEHP decreases circulating testosterone levels in the adult rat. In addition, DEHP reduces the expression of the angiotensin II receptors in the adrenal gland, resulting in decreased circulating aldosterone levels. The latter may have important effects on water and electrolyte balance as well as systemic arterial blood pressure. Therefore, we determined the effects of in utero exposure to DEHP on systemic arterial blood pressure in the young (2 month-old) and older (6.5 month-old) adult rats. Sprague-Dawley pregnant dams were exposed from gestational day 14 until birth to 300 mg DEHP/kg/day. Blood pressure, heart rate, and activity data were collected using an intra-aortal transmitter in the male offspring at postnatal day (PND) 60 and PND200. A low (0.01%) and high-salt (8%) diet was used to challenge the animals at PND200. In utero exposure to DEHP resulted in reduced activity at PND60. At PND200, systolic and diastolic systemic arterial pressures as well as activity were reduced in response to DEHP exposure. This is the first evidence showing that in utero exposure to DEHP has cardiovascular and behavioral effects in the adult male offspring. Highlights: ► In utero exposure to 300 mg DEHP/kg/day decreases activity at postnatal day 60. ► In utero exposure to DEHP decreases aldosterone levels at postnatal day 200. ► In utero exposure to DEHP decreases systolic blood pressure at postnatal day 200. ► An 8% salt diet recovers the decreased blood pressure at postnatal day 200.

  4. Maternal exposure to atrazine during lactation suppresses suckling-induced prolactin release and results in prostatitis in the adult offspring.

    PubMed

    Stoker, T E; Robinette, C L; Cooper, R L

    1999-11-01

    The availability of prolactin (PRL) to the neonatal brain is known to affect the development of the tuberoinfundibular (TIDA) neurons and, as a consequence, lead to alterations in subsequent PRL regulation. Without early lactational exposure to PRL (derived from the dam's milk), TIDA neuronal growth is impaired and elevated PRL levels are present in the prepubertal male. These observations, combined with the finding that alterations in PRL secretion (i.e., hyperprolactinemia) in the adult male rat have been implicated in the development of prostatitis, led us to hypothesize that early lactational exposure to agents that suppress suckling-induced PRL release would lead to a disruption in TIDA development, altered PRL regulation, and subsequent prostatitis in the male offspring. To test this hypothesis, suckling-induced PRL release was measured in Wistar dams treated twice daily with the herbicide atrazine (ATR, by gavage, on PND 1-4 at 0, 6.25, 12.5, 25, and 50 mg/kg body weight), or twice daily with the dopamine receptor agonist bromocriptine (BROM, sc, at 0.052, 0.104, 0.208, and 0.417 mg/kg); BROM is known to suppress PRL release. Similarly, atrazine has also been reported to suppress PRL in adult females. Serum PRL was measured on PND 3 using a serial sampling technique and indwelling cardiac catheters. A significant rise in serum PRL release was noted in all control females within 10 min of the initiation of suckling. Fifty-mg/kg ATR inhibited suckling-induced PRL release in all females, whereas 25 and 12.5 mg/kg ATR inhibited this measure in some dams and had no discernible effect in others. The 6.25 mg/kg dose of ATR was without effect. BROM, used here as a positive control, also inhibited suckling-induced PRL release at doses of 0.104 to 0.417 mg/kg, with no effect at 0.052 mg/kg. To examine the effect of postnatal ATR and BROM on the incidence and severity of inflammation (INF) of the lateral prostate of the offspring, adult males were examined at 90 and

  5. Maternal fructose-intake-induced renal programming in adult male offspring.

    PubMed

    Tain, You-Lin; Wu, Kay L H; Lee, Wei-Chia; Leu, Steve; Chan, Julie Y H

    2015-06-01

    Nutrition in pregnancy can elicit long-term effects on the health of offspring. Although fructose consumption has increased globally and is linked to metabolic syndrome, little is known about the long-term effects of maternal high-fructose (HF) exposure during gestation and lactation, especially on renal programming. We examined potential key genes and pathways that are associated with HF-induced renal programming using whole-genome RNA next-generation sequencing (NGS) to quantify the abundance of RNA transcripts in kidneys from 1-day-, 3-week-, and 3-month-old male offspring. Pregnant Sprague-Dawley rats received regular chow or chow supplemented with HF (60% diet by weight) during the entire period of pregnancy and lactation. Male offspring exhibited programmed hypertension at 3 months of age. Maternal HF intake modified over 200 renal transcripts from nephrogenesis stage to adulthood. We observed that 20 differentially expressed genes identified in 1-day-old kidney are related to regulation of blood pressure. Among them, Hmox1, Bdkrb2, Adra2b, Ptgs2, Col1a2 and Tbxa2r are associated with endothelium-derived hyperpolarizing factor (EDHF). NGS also identified genes in arachidonic acid metabolism (Cyp2c23, Hpgds, Ptgds and Ptges) that may be potential key genes/pathways contributing to renal programming and hypertension. Collectively, our NGS data suggest that maternal HF intake elicits a defective adaptation of interrelated EDHFs during nephrogenesis which may lead to renal programming and hypertension in later life. Moreover, our results highlight genes and pathways involved in renal programming as potential targets for therapeutic approaches to prevent metabolic-syndrome-related comorbidities in children with HF exposure in early life. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Life-cycle exposure to BDE-47 results in thyroid endocrine disruption to adults and offsprings of zebrafish (Danio rerio).

    PubMed

    Zhao, Xuesong; Ren, Xin; Ren, Baixiang; Luo, Zhouying; Zhu, Rong

    2016-12-01

    2,2,4',4'-Tetrabromodi-phenyl ether (BDE-47) is predominantly concentrated in humans and wildlife and disturbs thyroid hormone homeostasis. The purpose of this study was to characterize the thyroid endocrine disruption induced by life-cycle exposure to BDE-47 in adults and offspring of zebrafish (Danio rerio). We exposed zebrafish embryos at the blastula stage to different concentrations of BDE-47 (1, 5, and 10μg/L). Exposure duration was 180days until fish reached adulthood. In F0 larvae, exposure decreased survival and increased malformations at 4 dpf. Thyroid hormone concentrations did not differ significantly between the F0 larvae and controls. All exposures significantly up-regulated expression of tshß, pa8, ugt1 and tg and down-regulated ttr. Significant up-regulation of dio2 and crh was observed in the 10μg/L BDE-47 group. There was no significant difference in the growth and somatic index between F0 adults and controls. BDE-47 (10μg/L) significantly decreased whole-body content of thyroxine (T4) but significantly increased triiodothyronine (T3) in both sexes. All exposures up-regulated expression of crh, tshß, pa8, ugt1 and tg and down-regulated ttr. Exposure to 10μg/L BDE-47 significantly up-regulated dio2 and ugt1 in both sexes. BDE-47 exposure (5 and 10μg/L) significantly increased the activity of pethoxy-resorufin-O-deethylase and UDP-glucuronosyl transferase. BDE-47 (10μg/L) significantly increased activity of ethoxy- and methoxy-resorufin-O-deethylase. In F1 offspring without continued BDE-47 (10μg/L) treatment, T4 significantly decreased and T3 increased. T4 was further decreased and T3 was further increased with continued BDE-47 treatment. Continued BDE-47 exposure decreased hatching and increased malformation compared with those without BDE-47 exposure. Expression of crh, tshß, dio2, pa8, ugt1 and tg was significantly up-regulated without BDE-47 exposure and with continued exposure. With continued BDE-47 exposure, dio1 was significantly

  7. (Meta)cognitive beliefs in posttraumatic stress disorder following forced displacement at the end of the Second World War in older adults and their offspring.

    PubMed

    Jelinek, Lena; Wittekind, Charlotte E; Kellner, Michael; Moritz, Steffen; Muhtz, Christoph

    2013-01-01

    The aim of the present study was to investigate (meta)cognitive beliefs related to posttraumatic stress disorder (PTSD) in a sample of individuals displaced as children at the end of the Second World War as well as transgenerational effects of trauma and PTSD on the offspring. Displaced individuals with (n=20) and without PTSD (n=24) and nondisplaced healthy controls (n=11), as well as one of their adult offspring, were assessed with the Metacognitions Questionnaire (MCQ-30). Older adults, formerly displaced in childhood, were additionally assessed with the Posttraumatic Cognitions Inventory (PTCI). Dysfunctional beliefs (MCQ-30, PTCI) were particularly pronounced in formerly displaced individuals with PTSD, but not in the offspring generation. The findings suggest that in an aging group of displaced individuals with PTSD dysfunctional beliefs are associated with the disorder. Bias modification may help to attenuate symptomatology. No evidence was found for a transgenerational effect.

  8. Transmission of cultural values among Mexican-origin parents and their adolescent and emerging adult offspring.

    PubMed

    Perez-Brena, Norma J; Updegraff, Kimberly A; Umaña-Taylor, Adriana J

    2015-06-01

    The integration of the U.S. and Mexican culture is an important process associated with Mexican-origin youths' adjustment and family dynamics. The current study examined the reciprocal associations in parents' and two offspring's cultural values (i.e., familism and respect) in 246 Mexican-origin families. Overall, mothers' values were associated with increases in youths' values 5 years later. In contrast, youths' familism values were associated with increases in fathers' familism values 5 years later. In addition, developmental differences emerged where parent-to-offspring effects were more consistent for youth transitioning from early to late adolescence than for youth transitioning from middle adolescence to emerging adulthood. Finally, moderation by immigrant status revealed a youth-to-parent effect for mother-youth immigrant dyads, but not for dyads where youth were U.S.-raised. Our findings highlight the reciprocal nature of parent-youth value socialization and provide a nuanced understanding of these processes through the consideration of familism and respect values. As Mexican-origin youth represent a large and rapidly growing segment of the U.S. population, research that advances our understanding of how these youth develop values that foster family cohesion and support is crucial.

  9. Moderate Exercise during Pregnancy in Wistar Rats Alters Bone and Body Composition of the Adult Offspring in a Sex-Dependent Manner

    PubMed Central

    Rosa, Brielle V.; Blair, Hugh T.; Vickers, Mark H.; Dittmer, Keren E.; Morel, Patrick C. H.; Knight, Cameron G.; Firth, Elwyn C.

    2013-01-01

    Exercise during pregnancy may have long-lasting effects on offspring health. Musculoskeletal growth and development, metabolism, and later-life disease risk can all be impacted by the maternal environment during pregnancy. The skeleton influences glucose handling through the actions of the bone-derived hormone osteocalcin. The purpose of this study was to test the effects of moderate maternal exercise during pregnancy on the bone and body composition of the offspring in adult life, and to investigate the role of osteocalcin in these effects. Groups of pregnant Wistar rats either performed bipedal standing exercise to obtain food/water throughout gestation but not lactation, or were fed conventionally. Litters were reduced to 8/dam and pups were raised to maturity under control conditions. Whole body dual-energy x-ray absorptiometry, and ex vivo peripheral quantitative computed tomography scans of the right tibia were performed. At study termination blood and tissue samples were collected. Serum concentrations of fully and undercarboxylated osteocalcin were measured, and the relative expression levels of osteocalcin, insulin receptor, Forkhead box transcription factor O1, and osteotesticular protein tyrosine phosphatase mRNA were quantified. Body mass did not differ between the offspring of exercised and control dams, but the male offspring of exercised dams had a greater % fat and lower % lean than controls (p=0.001 and p=0.0008, respectively). At the mid-tibial diaphysis, offspring of exercised dams had a lower volumetric bone mineral density than controls (p=0.01) and in the male offspring of exercised dams the bone: muscle relationship was fundamentally altered. Serum concentrations of undercarboxylated osteocalcin were significantly greater in the male offspring of exercised dams than in controls (p=0.02); however, the relative expression of the measured genes did not differ between groups. These results suggest that moderate exercise during pregnancy can

  10. Ingestion of Carbohydrate-Rich Supplements during Gestation Programs Insulin and Leptin Resistance but not Body Weight Gain in Adult Rat Offspring.

    PubMed

    Beck, Bernard; Richy, Sébastien; Archer, Zoe A; Mercer, Julian G

    2012-01-01

    Prenatal nutritional conditions can predispose to development of obesity and metabolic syndrome in adulthood. Gestation with its important modifications in hormonal status is a period of changes in normal feeding habits with pulses of consumption or avoidance of certain categories of food. We tried to mimic in an animal model some changes in food consumption patterns observed in pregnant women. For this purpose, Long-Evans female rats were fed during the dark period, their usual pre-gestational food quantity, and were allowed to complete their daily intake with either a restricted control (Cr), high-fat (HF), or high-carbohydrate (HC) diet available ad libitum during the light period. Dams fed a control diet ad libitum (Ca) served as controls. Body weight and composition, food intake, and metabolic hormones (insulin, leptin) were recorded in male offspring until 20 weeks after birth. Cr and HC females ate less than Ca females (-16%; p < 0.001) and their offspring presented a weight deficit from birth until 6 (HC group) and 10 (Cr group) weeks of age (p < 0.05 or less). Plasma leptin corresponded to low body weight in Cr offspring, but was increased in HC offspring that in addition, had increased plasma insulin, blood glucose, and subcutaneous adipose tissue mass. HF dams ate more than Ca dams (+13%; p < 0.001), but plasma leptin and insulin were similar in their offspring. Hypothalamic Ob-Rb expression was increased in Cr, HC, and HF offspring (+33-100% vs Ca; p < 0.05 or less). HC supplement ingestion during gestation therefore leads to insulin and leptin resistance in adult offspring independently of lower birth weight. These hormonal changes characterize obesity-prone animals. We therefore suggest that attention should be paid to the carbohydrate snacking and overall carbohydrate content in the diet during the last weeks (or months) preceding delivery to limit development of later metabolic disorders in offspring.

  11. Intake of 7,8-Dihydroxyflavone During Juvenile and Adolescent Stages Prevents Onset of Psychosis in Adult Offspring After Maternal Immune Activation

    PubMed Central

    Han, Mei; Zhang, Ji-chun; Yao, Wei; Yang, Chun; Ishima, Tamaki; Ren, Qian; Ma, Min; Dong, Chao; Huang, Xu-Feng; Hashimoto, Kenji

    2016-01-01

    Prenatal infection and subsequent abnormal neurodevelopment of offspring is involved in the etiology of schizophrenia. Brain-derived neurotrophic factor (BDNF) and its high affinity receptor, tropomyosin receptor kinase B (TrkB) signaling plays a key role in the neurodevelopment. Pregnant mice exposed to polyriboinosinic-polyribocytidylic acid [poly(I:C)] causes schizophrenia-like behavioral abnormalities in their offspring at adulthood. Here we found that the juvenile offspring of poly(I:C)-treated mice showed cognitive deficits, as well as reduced BDNF-TrkB signaling in the prefrontal cortex (PFC). Furthermore, the adult offspring of poly(I:C)-treated mice showed cognitive deficits, prepulse inhibition (PPI) deficits, reduced BDNF-TrkB signaling, immunoreactivity of parvalbumin (PV) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in the prelimbic (PrL) of medial PFC and CA1 of hippocampus. Supplementation of a TrkB agonist 7,8-dihydroxyflavone (1 mg/mL in drinking water) during juvenile and adolescent stages could prevent these behavioral abnormalities, reduced BDNF-TrkB signaling in PFC and CA1, and immunoreactivity of PV and PGC-1α in the PrL of medial PFC and CA1 in the adult offspring from poly(I:C)-treated mice. These findings suggest that early intervention by a TrkB agonist in subjects with ultra-high risk for psychosis may reduce the risk of subsequent transition to schizophrenia. PMID:27824119

  12. Maternal exposure to diets containing high fructose and saturated fats, low B vitamins, or their combination programs growth, adiposity, and insulin sensitivity in adult offspring

    USDA-ARS?s Scientific Manuscript database

    Early exposure to unfavorable nutrition programs increases risk of adult-onset diseases. In this rat study, we investigate morphological, metabolic and endocrinal phenotypes of offspring born to dams consuming isocaloric diets containing 30% fructose, 9.9% coconut fat and 0.5% cholesterol (F+SFA), m...

  13. Intrauterine metabolic programming alteration increased susceptibility to non-alcoholic adult fatty liver disease in prenatal caffeine-exposed rat offspring.

    PubMed

    Wang, Linlong; Shen, Lang; Ping, Jie; Zhang, Li; Liu, Zhongfen; Wu, Yong; Liu, Yansong; Huang, Hegui; Chen, Liaobin; Wang, Hui

    2014-01-30

    An increase in susceptibility to metabolic syndromes (MetS) in rat offspring that experienced prenatal caffeine exposure (PCE) has been previously demonstrated. The present study aimed to clarify this increased susceptibility and elucidate the mechanism of foetal origin that causes or contributes to adult non-alcoholic fatty liver disease (NAFLD) as a result of PCE. Based on the results from both foetal and adult studies of rats that experienced PCE (120 mg/kgd), the foetal weight and serum triglyceride levels decreased significantly and hepatocellular ultrastructure was altered. Foetal livers exhibited inhibited insulin-like growth factor-1 (IGF-1), enhanced lipogenesis and reduced lipid output. In adult female offspring of PCE+lab chow, lipid synthesis, oxidation and output were enhanced, whereas lipogenesis was inhibited in their male conterparters. Furthermore, in adult offspring of PCE+ high-fat diet, catch-up growth appeared obvious with enhanced hepatic IGF-1, especially in females. Both males and females showed increased lipid synthesis and reduced output, which were accompanied by elevated serum triglyceride. Severe NAFLD appeared with higher Kleiner scores. Gluconeogenesis was continuously enhanced in females. Therefore, increased susceptibility to diet-induced NAFLD in PCE offspring was confirmed, and it appears to be mediated by intrauterine glucose and alterations in lipid metabolic programming. This altered programming enhanced foetal hepatic lipogenesis and reduced lipid output in utero, which continued into the postnatal phase and reappeared in adulthood with the introduction of a high-fat diet, thereby aggravating hepatic lipid accumulation and causing NAFLD.

  14. Maternal nicotine exposure and fetal programming of vascular oxidative stress in adult offspring.

    PubMed

    Lim, Rebecca; Sobey, Christopher G

    2011-11-01

    Despite the well-known harmful effects, many women continue to smoke throughout pregnancy. Consequently, nicotine replacement therapy (NRT) - which has been developed as a pharmacotherapy for smoking cessation - has been used as an alternative to smoking during pregnancy. However, like cigarette smoking, NRT results in biologically significant levels of nicotine crossing the placenta, leading to both fetal and neonatal exposure to nicotine, and yet, NRT safety during pregnancy has not been extensively evaluated. There is now evidence from studies in rats that maternal nicotine exposure throughout gestation results in fetal programming of vascular oxidative stress in the offspring during adulthood. This phenomenon involves vascular dysfunction mediated by reactive oxygen species in association with decreased superoxide dismutase activity and increased Nox2-NADPH oxidase expression in the vascular wall. If this phenomenon also occurs in humans, either smoking or NRT use during pregnancy may represent a novel risk factor for the unborn that results in accelerated cardiovascular disease in their adulthood.

  15. Partial Characterization of the Sox2+ Cell Population in an Adult Murine Model of Digit Amputation

    PubMed Central

    Agrawal, Vineet; Siu, Bernard F.; Chao, Hsu; Hirschi, Karen K.; Raborn, Eric; Johnson, Scott A.; Tottey, Stephen; Hurley, Katherine B.; Medberry, Chris J.

    2012-01-01

    Tissue regeneration in response to injury in adult mammals is generally limited to select tissues. Nonmammalian species such as newts and axolotls undergo regeneration of complex tissues such as limbs and digits via recruitment and accumulation of local and circulating multipotent progenitors preprogrammed to recapitulate the missing tissue. Directed recruitment and activation of progenitor cells at a site of injury in adult mammals may alter the default wound-healing response from scar tissue toward regeneration. Bioactive molecules derived from proteolytic degradation of extracellular matrix (ECM) proteins have been shown to recruit a variety of progenitor cells in vitro and in vivo to the site of injury. The present study further characterized the population of cells accumulating at the site of injury after treatment with ECM degradation products in a well-established model of murine digit amputation. After a mid-second phalanx digit amputation in 6–8-week-old adult mice, treatment with ECM degradation products resulted in the accumulation of a heterogeneous population of cells, a subset of which expressed the transcription factor Sox2, a marker of pluripotent and adult progenitor cells. Sox2+ cells were localized lateral to the amputated P2 bone and coexpressed progenitor cell markers CD90 and Sca1. Transgenic Sox2 eGFP/+ and bone marrow chimeric mice showed that the bone marrow and blood circulation did not contribute to the Sox2+ cell population. The present study showed that, in addition to circulating progenitor cells, resident tissue-derived cells also populate at the site of injury after treatment with ECM degradation products. Although future work is necessary to determine the contribution of Sox2+ cells to functional tissue at the site of injury, recruitment and/or activation of local tissue-derived cells may be a viable approach to tissue engineering of more complex tissues in adult mammals. PMID:22530556

  16. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    SciTech Connect

    Weinberger, Florian Mehrkens, Dennis Starbatty, Jutta Nicol, Philipp Eschenhagen, Thomas

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  17. Label-Retaining Cells in the Adult Murine Salivary Glands Possess Characteristics of Adult Progenitor Cells

    PubMed Central

    Chibly, Alejandro M.; Querin, Lauren; Harris, Zoey; Limesand, Kirsten H.

    2014-01-01

    Radiotherapy is the primary treatment for patients with head and neck cancer, which account for roughly 500,000 annual cases worldwide. Dysfunction of the salivary glands and associated conditions like xerostomia and dysphagia are often developed by these patients, greatly diminishing their life quality. Current preventative and palliative care fail to deliver an improvement in the quality of life, thus accentuating the need for regenerative therapies. In this study, a model of label retaining cells (LRCs) in murine salivary glands was developed, in which LRCs demonstrated proliferative potential and possessed markers of putative salivary progenitors. Mice were labeled with 5-Ethynyl-2′-deoxyuridine (EdU) at postnatal day 10 and chased for 8 weeks. Tissue sections from salivary glands obtained at the end of chase demonstrated co-localization between LRCs and the salivary progenitor markers keratin 5 and keratin 14, as well as kit mRNA, indicating that LRCs encompass a heterogeneous population of salivary progenitors. Proliferative potential of LRCs was demonstrated by a sphere assay, in which LRCs were found in primary and secondary spheres and they co-localized with the proliferation marker Ki67 throughout sphere formation. Surprisingly, LRCs were shown to be radio-resistant and evade apoptosis following radiation treatment. The clinical significance of these findings lie in the potential of this model to study the mechanisms that prevent salivary progenitors from maintaining homeostasis upon exposure to radiation, which will in turn facilitate the development of regenerative therapies for salivary gland dysfunction. PMID:25238060

  18. Evaluation of possible toxic effects of spearmint (Mentha spicata) on the reproductive system, fertility and number of offspring in adult male rats.

    PubMed

    Nozhat, Fatemeh; Alaee, Sanaz; Behzadi, Khodabakhsh; Azadi Chegini, Najmeh

    2014-11-01

    In this study we investigated the effects of spearmint (Mentha spicata Labiatae) on the reproductive system, fertility and number of offspring in adult male rats. Adult Wistar male rats in one control (C) and three experimental groups (I, II and III) received 0, 10, 20 and 40 mg/kg spearmint extract orally for 45 days, respectively. Following this treatment, the animals' weights, and the standard weight of reproductive tissues, sperm count, sperm motility and serum testosterone concentration were measured, and reproductive tissues were examined histopathologically. To evaluate the effects of spearmint on fertility of male rats and growth of their offspring, male rats of the control and experimental groups mated with untreated female rats. RESULTS showed that spearmint did not affect the rats' body and reproductive tissue weights. The sperm count, fast and slow progressive motility of sperm and serum testosterone concentration decreased while number of non-progressive sperm and immotile sperm increased in the experimental groups compared to the control group, but none of these changes were statistically significant. Histopathological studies showed no severe changes in reproductive tissues between control and experimental groups. Number and growth of offspring born from mating of male rats with untreated female rats showed no difference. We concluded that spearmint has no significant toxic effect on the reproductive system, fertility and number of offspring in adult male rats at the above mentioned dose levels. However high levels of this extract may have adverse effects on male fertility.

  19. Evaluation of possible toxic effects of spearmint (Mentha spicata) on the reproductive system, fertility and number of offspring in adult male rats

    PubMed Central

    Nozhat, Fatemeh; Alaee, Sanaz; Behzadi, Khodabakhsh; Azadi Chegini, Najmeh

    2014-01-01

    Objective: In this study we investigated the effects of spearmint (Mentha spicata Labiatae) on the reproductive system, fertility and number of offspring in adult male rats. Materials and Methods: Adult Wistar male rats in one control (C) and three experimental groups (I, II and III) received 0, 10, 20 and 40 mg/kg spearmint extract orally for 45 days, respectively. Following this treatment, the animals’ weights, and the standard weight of reproductive tissues, sperm count, sperm motility and serum testosterone concentration were measured, and reproductive tissues were examined histopathologically. To evaluate the effects of spearmint on fertility of male rats and growth of their offspring, male rats of the control and experimental groups mated with untreated female rats. Results: Results showed that spearmint did not affect the rats’ body and reproductive tissue weights. The sperm count, fast and slow progressive motility of sperm and serum testosterone concentration decreased while number of non-progressive sperm and immotile sperm increased in the experimental groups compared to the control group, but none of these changes were statistically significant. Histopathological studies showed no severe changes in reproductive tissues between control and experimental groups. Number and growth of offspring born from mating of male rats with untreated female rats showed no difference. Conclusion: We concluded that spearmint has no significant toxic effect on the reproductive system, fertility and number of offspring in adult male rats at the above mentioned dose levels. However high levels of this extract may have adverse effects on male fertility. PMID:25386406

  20. Inulin Supplementation Lowered the Metabolic Defects of Prolonged Exposure to Chlorpyrifos from Gestation to Young Adult Stage in Offspring Rats

    PubMed Central

    Reygner, Julie; Lichtenberger, Lydia; Elmhiri, Ghada; Dou, Samir; Bahi-Jaber, Narges; Rhazi, Larbi; Depeint, Flore; Bach, Veronique

    2016-01-01

    Increasing evidence indicates that chlorpyrifos (CPF), an organophosphorus insecticide, is involved in metabolic disorders. We assess the hypothesis whether supplementation with prebiotics from gestation to adulthood, through a modulation of microbiota composition and fermentative activity, alleviates CPF induced metabolic disorders of 60 days old offspring. 5 groups of Wistar rats, from gestation until weaning, received two doses of CPF pesticide: 1 mg/kg/day (CPF1) or 3.5 mg/kg/day (CPF3.5) with free access to inulin (10g/L in drinking water). Then male pups received the same treatment as dams. Metabolic profile, leptin sensitivity, insulin receptor (IR) expression in liver, gut microbiota composition and short chain fatty acid composition (SCFAs) in the colon, were analyzed at postnatal day 60 in the offspring (PND 60). CPF3.5 increased offspring’s birth body weight (BW) but decreased BW at PND60. Inulin supplementation restored the BW at PND 60 to control levels. Hyperinsulinemia and decrease in insulin receptor β in liver were seen in CPF1 exposed rats. In contrast, hyperglycemia and decrease in insulin level were found in CPF3.5 rats. Inulin restored the levels of some metabolic parameters in CPF groups to ranges comparable with the controls. The total bacterial population, short chain fatty acid (SCFA) production and butyrate levels were enhanced in CPF groups receiving inulin. Our data indicate that developmental exposure to CPF interferes with metabolism with dose related effects evident at adulthood. By modulating microbiota population and fermentative activity, inulin corrected adult metabolic disorders of rats exposed to CPF during development. Prebiotics supply may be thus considered as a novel nutritional strategy to counteract insulin resistance and diabetes induced by a continuous pesticide exposure. PMID:27760213

  1. Young adult donor bone marrow infusions into female mice postpone age-related reproductive failure and improve offspring survival.

    PubMed

    Selesniemi, Kaisa; Lee, Ho-Joon; Niikura, Teruko; Tilly, Jonathan L

    2008-11-14

    The female reproductive axis is the first major organ system of the body to fail with advancing age. In addition to a permanent cessation of fertile potential, the loss of cyclic ovarian function in humans heralds the onset of menopause, which in turn underlies the emergence of a diverse spectrum of health issues in aging women. Recently, it was reported that bone marrow (BM) transplantation (BMT) into adult female mice conditioned a week earlier with highly cytotoxic drugs rescues ovarian function and fertility. Herein we show in mice receiving no prior conditioning regimen that once-monthly infusions of BM-derived cells retrieved from young adult female donors bearing an enhanced green fluorescent protein (EGFP) transgene sustain the fertile potential of aging wild-type females long past their time of normal reproductive senescence. The fertility-promoting effects of female donor BM are observed regardless whether the infusions are initiated in young adult or middle-aged females. Although the mechanism by which BM infusions benefit the reproductive performance of aging females remains to be elucidated, the absence of EGFP-expressing offspring suggests that it does not depend on development of mature eggs derived from germline-committed cells in the donor marrow. However, donor BM-derived somatic cells accumulate in the recipients, indicating efficient donor cell engraftment without prior conditioning. These findings provide a strong impetus to further explore development of adult stem cell-based technologies to safely extend function of the female reproductive axis into advanced age without the need for toxic pre-conditioning protocols routinely used in other models of stem cell delivery.

  2. Young adult donor bone marrow infusions into female mice postpone age-related reproductive failure and improve offspring survival

    PubMed Central

    Selesniemi, Kaisa; Lee, Ho-Joon; Niikura, Teruko; Tilly, Jonathan L.

    2009-01-01

    The female reproductive axis is the first major organ system of the body to fail with advancing age. In addition to a permanent cessation of fertile potential, the loss of cyclic ovarian function in humans heralds the onset of menopause, which in turn underlies the emergence of a diverse spectrum of health issues in aging women. Recently, it was reported that bone marrow (BM) transplantation (BMT) into adult female mice conditioned a week earlier with highly cytotoxic drugs rescues ovarian function and fertility. Herein we show in mice receiving no prior conditioning regimen that once-monthly infusions of BM-derived cells retrieved from young adult female donors bearing an enhanced green fluorescent protein (EGFP) transgene sustain the fertile potential of aging wild-type females long past their time of normal reproductive senescence. The fertility-promoting effects of female donor BM are observed regardless whether the infusions are initiated in young adult or middle-aged females. Although the mechanism by which BM infusions benefit the reproductive performance of aging females remains to be elucidated, the absence of EGFP-expressing offspring suggests that it does not depend on development of mature eggs derived from germline-committed cells in the donor marrow. However, donor BM-derived somatic cells accumulate in the recipients, indicating efficient donor cell engraftment without prior conditioning. These findings provide a strong impetus to further explore development of adult stem cell-based technologies to safely extend function of the female reproductive axis into advanced age without the need for toxic pre-conditioning protocols routinely used in other models of stem cell delivery. PMID:20157587

  3. Nine days of intensive exercise training improves mitochondrial function but not insulin action in adult offspring of mothers with type 2 diabetes.

    PubMed

    Irving, Brian A; Short, Kevin R; Nair, K Sreekumaran; Stump, Craig S

    2011-07-01

    A close association between insulin resistance and reduced skeletal muscle oxidative capacity has been reported in adult offspring of people with type 2 diabetes (T2D), prompting a hypothesis that insulin resistance may result from mitochondrial dysfunction or vice versa. We determined whether 9 d of intensive exercise training ameliorates the mitochondrial dysfunction and insulin resistance in offspring of T2D. We compared the response to 9 d of intensive exercise training in eight (seven females, one male) healthy adult offspring of mothers with T2D with eight (six females, two males) nondiabetic controls. Skeletal muscle mitochondrial ATP production was assessed using a luciferase-based assay, and insulin sensitivity was measured using hyperinsulinemic-euglycemic clamps. Short-term intensive training increased skeletal muscle mitochondrial ATP production and citrate synthase activity similarly in both groups (P < 0.01). In contrast, whereas short-term intensive training reduced the fasting glucose (~5%, P = 0.035) and insulin levels (~40%, P = 0.011) as well as increased the glucose infusion rate during the hyperinsulinemic-euglycemic clamp (~50%, P = 0.028) among controls, no changes in these parameters were observed among offspring except for an increase in fasting glucose (~7%, P = 0.004). A short-term intensive exercise training program was equally effective at increasing skeletal muscle oxidative capacity in nondiabetic people and in the offspring of mothers with diabetes. In contrast, the exercise improved insulin sensitivity only in nondiabetic people but not in the offspring of T2D mothers, revealing dissociation between improvements in skeletal muscle mitochondrial function and insulin sensitivity. The exercise effect on mitochondrial function and insulin sensitivity seems to be mediated by different regulatory pathways.

  4. Maternal Obesity in Sheep Increases Fatty Acid Synthesis, Upregulates Nutrient Transporters, and Increases Adiposity in Adult Male Offspring after a Feeding Challenge

    PubMed Central

    Long, Nathan M.; Rule, Daniel C.; Tuersunjiang, Nuermaimaiti; Nathanielsz, Peter W.; Ford, Stephen P.

    2015-01-01

    Maternal obesity in women is increasing worldwide. The objective of this study was to evaluate differences in adipose tissue metabolism and function in adult male offspring from obese and control fed mothers subjected to an ad libitum feeding challenge. We developed a model in which obese ewes were fed 150% of feed provided for controls from 60 days before mating to term. All ewes were fed to requirements during lactation. After weaning, F1 male offspring were fed only to maintenance requirements until adulthood (control = 7, obese = 6), when they were fed ad libitum for 12 weeks with intake monitored. At the end of the feeding challenge offspring were given an intravenous glucose tolerance test (IVGTT), necropsied, and adipose tissue collected. During the feeding trial F1obese males consumed more (P < 0.01), gained more weight (P < 0.01) and became heavier (P < 0.05) than F1control males. During IVGTT, Obese F1 offspring were hyperglycemic and hypoinsulinemic (P < 0.01) compared to F1 control F1. At necropsy perirenal and omental adipose depots weights were 47% and 58% greater respectively and subcutaneous fat thickness 41% greater in F1obese vs F1control males (P < 0.05). Adipocyte diameters were greater (P ≤ 0.04) in perirenal, omental and subcutaneous adipose depots in F1obese males (11, 8 and 7% increase vs. control, respectively). When adipose tissue was incubated for 2 hrs with C-14 labeled acetate, subcutaneous, perirenal, and omental adipose tissue of F1 obese males exhibited greater incorporation (290, 83, and 90% increase vs. control, respectively P < 0.05) of acetate into lipids. Expression of fatty acid transporting, binding, and syntheses mRNA and protein was increased (P < 0.05) compared to F1 control offspring. Maternal obesity increased appetite and adiposity associated with increased adipocyte diameters and increased fatty acid synthesis in over-nourished adult male offspring. PMID:25875659

  5. Transmission of Cultural Values among Mexican American Parents and their Adolescent and Emerging Adult Offspring

    PubMed Central

    Perez-Brena, Norma J.; Updegraff, Kimberly A.; Umaña-Taylor, Adriana J.

    2015-01-01

    The integration of the U.S. and Mexican culture is an important process associated with Mexican-origin youths’ adjustment and family dynamics. The current study examined the reciprocal associations in parents’ and two offspring’s cultural values (i.e., familism and respect) in 246 Mexican-origin families. Overall, mothers’ values were associated with increases in youths’ values five years later. In contrast, youths’ familism values were associated with increases in fathers’ familism values five years later. In addition, developmental differences emerged where parent-to-offspring effects were more consistent for youth transitioning from early to late adolescence than for youth transitioning from middle adolescence to emerging adulthood. Finally, moderation by immigrant-status revealed a youth-to-parent effect for mother-youth immigrant dyads, but not for dyads where youth were U.S.-raised. Our findings highlight the reciprocal nature of parent-youth value socialization and provide a nuanced understanding of these processes through the consideration of familism and respect values. As Mexican-origin youth represent a large and rapidly growing segment of the U.S. population, research that advances our understanding of how these youth develop values that foster family cohesion and support are crucial. PMID:25470657

  6. Identification and enrichment of colony-forming cells from the adult murine pituitary

    SciTech Connect

    Lepore, D.A.; Roeszler, K.; Wagner, J.; Ross, S.A.; Bauer, K.; Thomas, P.Q. , E-Mail: paul.thomas@mcri.edu.au

    2005-08-01

    Stem and progenitor cells have been identified in many adult tissues including bone marrow, the central nervous system, and skin. While there is direct evidence to indicate the activity of a progenitor cell population in the pituitary gland, this putative subpopulation has not yet been identified. Herein we describe the isolation and characterization of a novel clonogenic cell type in the adult murine pituitary, which we have termed Pituitary Colony-Forming Cells (PCFCs). PCFCs constitute 0.2% of pituitary cells, and generate heterogeneous colonies from single cells. PCFCs exhibit variable proliferative potential, and may exceed 11 population doublings in 14 days. Enrichment of PCFCs to 61.5-fold with 100% recovery can be obtained through the active uptake of the fluorescent dipeptide, {beta}-Ala-Lys-N{epsilon}-AMCA. PCFCs are mostly contained within the large, agranular subpopulation of AMCA{sup +} cells, and constitute 28% of this fraction, corresponding to 140.5-fold enrichment. Interestingly, the AMCA{sup +} population contains rare cells that are GH{sup +} or PRL{sup +}. GH{sup +} cells were also identified in PCFC single cell colonies, suggesting that PCFCs have the potential to differentiate into GH{sup +} cells. Together, these data show that the pituitary contains a rare clonogenic population which may correspond to the somatotrope/lactotrope progenitors suggested by previous experiments.

  7. Alternatively activated macrophages determine repair of the infarcted adult murine heart

    PubMed Central

    Shiraishi, Manabu; Shintani, Yasunori; Shintani, Yusuke; Ishida, Hidekazu; Saba, Rie; Yamaguchi, Atsushi; Adachi, Hideo; Yashiro, Kenta

    2016-01-01

    Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1–/–), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1–/– mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1–/– mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI. PMID:27140396

  8. Young Adult Exposure to Cardiovascular Risk Factors and Risk of Events Later in Life: The Framingham Offspring Study

    PubMed Central

    Pletcher, Mark J.; Vittinghoff, Eric; Thanataveerat, Anusorn; Bibbins-Domingo, Kirsten

    2016-01-01

    Background It is unclear whether coronary heart disease (CHD) risk factor exposure during early adulthood contributes to CHD risk later in life. Our objective was to analyze whether extent of early adult exposures to systolic and diastolic blood pressure (SBP, DBP) and low-and high-density lipoprotein cholesterol (LDL, HDL) are independent predictors of CHD events later in life. Methods and Findings We used all available measurements of SBP, DBP, LDL, and HDL collected over 40 years in the Framingham Offspring Study to estimate risk factor trajectories, starting at age 20 years, for all participants. Average early adult (age 20–39) exposure to each risk factor was then estimated, and used to predict CHD events (myocardial infarction or CHD death) after age 40, with adjustment for risk factor exposures later in life (age 40+). 4860 participants contributed an average of 6.3 risk factor measurements from in-person examinations and 24.5 years of follow-up after age 40, and 510 had a first CHD event. Early adult exposures to high SBP, DBP, LDL or low HDL were associated with 8- to 30-fold increases in later life CHD event rates, but were also strongly correlated with risk factor levels later in life. After adjustment for later life levels and other risk factors, early adult DBP and LDL remained strongly associated with later life risk. Compared with DBP≤70 mmHg, adjusted hazard ratios (HRs) were 2.1 (95% confidence interval: 0.8–5.7) for DBP = 71–80, 2.6 (0.9–7.2) for DBP = 81–90, and 3.6 (1.2–11) for DBP>90 (p-trend = 0.019). Compared with LDL≤100 mg/dl, adjusted HRs were 1.5 (0.9–2.6) for LDL = 101–130, 2.2 (1.2–4.0) for LDL = 131–160, and 2.4 (1.2–4.7) for LDL>160 (p-trend = 0.009). While current levels of SBP and HDL were also associated with CHD events, we did not detect an independent association with early adult exposure to either of these risk factors. Conclusions Using a mixed modeling approach to estimation of young adult exposures

  9. Suicidal risk in young adult offspring of mothers with bipolar or major depressive disorder: a longitudinal family risk study.

    PubMed

    Klimes-Dougan, Bonnie; Lee, Chih-Yuan S; Ronsaville, Donna; Martinez, Pedro

    2008-04-01

    Recent evidence has highlighted suicidal risk associated with bipolar disorder (BD). Using a family risk approach, the goal of this study was to evaluate suicidal thoughts and behaviors longitudinally from childhood to young adulthood in children of mothers with BD, Major depressive disorder (MDD), and well mothers. Few group differences were found for cross-sectional assessments of suicidal thoughts and behavior in young adulthood; the offspring of MDD demonstrate an earlier onset and more persistent suicidality than other groups, but by young adulthood, BD offspring appear to be comparable to MDD offspring in their rates of suicidality. The longitudinal assessments reveal a pattern of higher suicidal risk in MDD offspring, more intermediate risk in BD offspring, and lower risk in well offspring. Precursors and correlates of suicidal thoughts and behaviors were also examined. These findings suggest diverse developmental trajectories based on family risk and have implications for planning preventive intervention.

  10. Olfactory impairment in an adult population: the Beaver Dam Offspring Study.

    PubMed

    Schubert, Carla R; Cruickshanks, Karen J; Fischer, Mary E; Huang, Guan-Hua; Klein, Barbara E K; Klein, Ronald; Pankow, James S; Nondahl, David M

    2012-05-01

    The objective of this study was to determine the prevalence of olfactory impairment and associated risk factors and the effects of olfactory impairment on dietary choices and quality of life. Odor identification was measured in 2838 participants aged 21-84 years (mean 49 years) in the Beaver Dam Offspring Study. The overall prevalence of olfactory impairment was 3.8%, increased with age (from 0.6% in those<35 years to 13.9% among those≥65 years) and was more common in men than women. In a multivariate model age (odds ratio [OR]=1.48, 95% confidence interval [CI]=1.33, 1.64 for every 5-year increase), nasal polyps or deviated septum (OR=2.69, 95% CI=1.62, 4.48), ankle-brachial index<0.9 (OR=3.62, 95% CI=1.45, 9.01), and smoking (women only) (OR=2.43, 95% CI=1.19, 4.98 ever smoked vs. never) were associated with an increased odds of olfactory impairment, whereas higher household income, ≥$50,000 versus <$50,000 per year, was associated with a decreased odds of olfactory impairment (OR=0.48, 95% CI=0.31, 0.73). Participants with olfactory impairment were less likely to report that food tasted as good as it used to, or that they experienced food flavors the same. There was no association between olfactory impairment and general health-related quality of life, depressive symptoms, or dietary choices. The prevalence of olfactory impairment was low in this largely middle-aged cohort, and some factors associated with olfactory impairment are potentially modifiable.

  11. Risk Factors Associated with Aortic and Carotid Intimal-Medial Thickness in Adolescents and Young Adults: the Muscatine Offspring Study

    PubMed Central

    Dawson, Jeffrey D.; Sonka, Milan; Blecha, Mary Beth; Lin, Wenjiao; Davis, Patricia H.

    2009-01-01

    Objectives To determine whether cardiovascular risk factors are associated with aortic and carotid intimal-medial thickness (aIMT and cIMT) in adolescents and young adults. Background Atherosclerotic lesions begin developing in youth, first in the distal abdominal aorta and later in the carotid arteries. Knowledge of how risk factors relate to aIMT and cIMT may help in the design of early interventions to prevent cardiovascular disease. Methods Participants were 635 members of the Muscatine Offspring cohort. The mean aIMT and cIMT were measured using an automated reading program. Results The means (SDs) of aIMT and cIMT were 0.63 (0.14) mm and 0.49 (0.04) mm, respectively. In adolescents (ages 11 to 17), aIMT was associated with triglycerides, systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), and waist/hip ratio, after adjusting for age, gender, and height. In young adults (ages 18 to 34), aIMT was associated with those same five risk factors, plus HDL-cholesterol and pulse pressure. In adolescents, cIMT was associated with SBP, pulse pressure, heart rate, BMI, and waist/hip ratio. In young adults, cIMT was associated total cholesterol, LDL-cholesterol, triglycerides, SBP, .DBP, BMI, waist/hip ratio, and HbA1C. In both age groups, aIMT and cIMT were significantly correlated with the PDAY coronary artery risk score. Conclusions Both aIMT and cIMT are associated with cardiovascular risk factors. Using aIMT in adolescents gives information beyond that obtained from cIMT alone. Measurement of aIMT and cIMT may help identify those at risk for premature cardiovascular disease. PMID:19520251

  12. Effects of Family Dysfunction and Parental Problem Drinking on Adult Offspring.

    ERIC Educational Resources Information Center

    Soukup, Dorothy Therese

    Few empirical studies have been conducted to determine the characteristics and functioning of Adult Children of Alcoholics (ACoAs). This study examined the emotional and behavioral wellness of college students (N=253) raised in a variety of family environments with varying levels of healthy/unhealthy functioning. For the purposes of this study…

  13. Maternal conjugated linoleic acid supplementation reverses high-fat diet-induced skeletal muscle atrophy and inflammation in adult male rat offspring.

    PubMed

    Pileggi, C A; Segovia, S A; Markworth, J F; Gray, C; Zhang, X D; Milan, A M; Mitchell, C J; Barnett, M P G; Roy, N C; Vickers, M H; Reynolds, C M; Cameron-Smith, D

    2016-03-01

    A high-saturated-fat diet (HFD) during pregnancy and lactation leads to metabolic disorders in offspring concomitant with increased adiposity and a proinflammatory phenotype in later life. During the fetal period, the impact of maternal diet on skeletal muscle development is poorly described, despite this tissue exerting a major influence on life-long metabolic health. This study investigated the effect of a maternal HFD on skeletal muscle anabolic, catabolic, and inflammatory signaling in adult rat offspring. Furthermore, the actions of maternal-supplemented conjugated linoleic acid (CLA) on these measures of muscle phenotype were investigated. A purified control diet (CD; 10% kcal fat), a CD supplemented with CLA (CLA; 10% kcal fat, 1% total fat as CLA), a high-fat (HFD; 45% kcal fat from lard), or a HFD supplemented with CLA (HFCLA; 45% kcal fat from lard, 1% total fat as CLA) was fed ad libitum to female Sprague-Dawley rats for 10 days before mating and throughout gestation and lactation. Male offspring received a standard chow diet from weaning, and the gastrocnemius was collected for analysis at day 150. Offspring from HF and HFCLA mothers displayed lower muscular protein content accompanied by elevated monocyte chemotactic protein-1, IL-6, and IL-1β concentrations. Phosphorylation of NF-κBp65 (Ser(536)) and expression of the catabolic E3 ligase muscle ring finger 1 (MuRF1) were increased in HF offspring, an effect reversed by maternal CLA supplementation. The present study demonstrates the importance of early life interventions to ameliorate the negative effects of poor maternal diet on offspring skeletal muscle development.

  14. On the evolution of intergenerational division of labor, menopause and transfers among adults and offspring

    PubMed Central

    Cyrus Chu, C.Y.; Lee, Ronald D.

    2013-01-01

    We explain how upward transfers from adult children to their elderly parents might evolve as an interrelated feature of a deepening intergenerational division of labor. Humans have a particularly long period of juvenile dependence requiring both food and care time provided mainly by younger and older adults. We suggest that the division of labor evolves to exploit comparative advantage between young and old adults in fertility, childcare and foraging. Eventually the evolving division of labor reaches a limit when the grandmother's fertility reaches zero (menopause). Continuing, it may hit another limit when the grandmother's foraging time has been reduced to her subsistence needs. Further specialization can occur only with food transfers to the grandmother, enabling her to reduce her foraging time to concentrate on additional childcare. We prove that this outcome can arise only after menopause has evolved. We describe the conditions necessary for both group selection (comparative steady state reproductive fitness) and individual selection (successful invasion by a mutation), and interpret these conditions in terms of comparative advantages. PMID:23648187

  15. On the evolution of intergenerational division of labor, menopause and transfers among adults and offspring.

    PubMed

    Cyrus, Chu C Y; Lee, Ronald D

    2013-09-07

    We explain how upward transfers from adult children to their elderly parents might evolve as an interrelated feature of a deepening intergenerational division of labor. Humans have a particularly long period of juvenile dependence requiring both food and care time provided mainly by younger and older adults. We suggest that the division of labor evolves to exploit comparative advantage between young and old adults in fertility, childcare and foraging. Eventually the evolving division of labor reaches a limit when the grandmother's fertility reaches zero (menopause). Continuing, it may hit another limit when the grandmother's foraging time has been reduced to her subsistence needs. Further specialization can occur only with food transfers to the grandmother, enabling her to reduce her foraging time to concentrate on additional childcare. We prove that this outcome can arise only after menopause has evolved. We describe the conditions necessary for both group selection (comparative steady state reproductive fitness) and individual selection (successful invasion by a mutation), and interpret these conditions in terms of comparative advantages.

  16. The Association of Maternal Socialization in Childhood and Adolescence with Adult Offsprings' Sympathy/Caring

    ERIC Educational Resources Information Center

    Eisenberg, Nancy; VanSchyndel, Sarah K.; Hofer, Claire

    2015-01-01

    The purpose of the study was to examine associations between mothers' socialization practices in childhood and adolescence and offsprings' (N = 32, 16 female) sympathy/concern in early adulthood. Mothers reported on their socialization practices and beliefs a total of 6 times using a Q-sort during their offsprings' childhood…

  17. The Association of Maternal Socialization in Childhood and Adolescence with Adult Offsprings' Sympathy/Caring

    ERIC Educational Resources Information Center

    Eisenberg, Nancy; VanSchyndel, Sarah K.; Hofer, Claire

    2015-01-01

    The purpose of the study was to examine associations between mothers' socialization practices in childhood and adolescence and offsprings' (N = 32, 16 female) sympathy/concern in early adulthood. Mothers reported on their socialization practices and beliefs a total of 6 times using a Q-sort during their offsprings' childhood…

  18. Too risky to settle: avian community structure changes in response to perceived predation risk on adults and offspring

    USGS Publications Warehouse

    Hua, Fangyuan; Fletcher, Robert J.; Sieving, Kathryn E.; Dorazio, Robert M.

    2013-01-01

    Predation risk is widely hypothesized as an important force structuring communities, but this potential force is rarely tested experimentally, particularly in terrestrial vertebrate communities. How animals respond to predation risk is generally considered predictable from species life-history and natural-history traits, but rigorous tests of these predictions remain scarce. We report on a large-scale playback experiment with a forest bird community that addresses two questions: (i) does perceived predation risk shape the richness and composition of a breeding bird community? And (ii) can species life-history and natural-history traits predict prey community responses to different types of predation risk? On 9 ha plots, we manipulated cues of three avian predators that preferentially prey on either adult birds or offspring, or both, throughout the breeding season. We found that increased perception of predation risk led to generally negative responses in the abundance, occurrence and/or detection probability of most prey species, which in turn reduced the species richness and shifted the composition of the breeding bird community. Species-level responses were largely predicted from the key natural-history trait of body size, but we did not find support for the life-history theory prediction of the relationship between species' slow/fast life-history strategy and their response to predation risk.

  19. Too risky to settle: avian community structure changes in response to perceived predation risk on adults and offspring

    PubMed Central

    Hua, Fangyuan; Fletcher, Robert J.; Sieving, Kathryn E.; Dorazio, Robert M.

    2013-01-01

    Predation risk is widely hypothesized as an important force structuring communities, but this potential force is rarely tested experimentally, particularly in terrestrial vertebrate communities. How animals respond to predation risk is generally considered predictable from species life-history and natural-history traits, but rigorous tests of these predictions remain scarce. We report on a large-scale playback experiment with a forest bird community that addresses two questions: (i) does perceived predation risk shape the richness and composition of a breeding bird community? And (ii) can species life-history and natural-history traits predict prey community responses to different types of predation risk? On 9 ha plots, we manipulated cues of three avian predators that preferentially prey on either adult birds or offspring, or both, throughout the breeding season. We found that increased perception of predation risk led to generally negative responses in the abundance, occurrence and/or detection probability of most prey species, which in turn reduced the species richness and shifted the composition of the breeding bird community. Species-level responses were largely predicted from the key natural-history trait of body size, but we did not find support for the life-history theory prediction of the relationship between species' slow/fast life-history strategy and their response to predation risk. PMID:23782879

  20. Diet and heart disease risk factors in adult American men and women: the Framingham Offspring-Spouse nutrition studies.

    PubMed

    Posner, B M; Cupples, L A; Franz, M M; Gagnon, D R

    1993-12-01

    The 1984-1988 dietary and cardiovascular disease risk factor profiles of the Framingham Offspring-Spouse population (n = 3787 Framingham males and females, 22-79 years) were compared to earlier estimates from the 1976-1980 NHANES II and 1977-1978 USDA Nationwide Food Consumption surveys. The goals were to assess whether differences exist among population estimates, to determine whether national population-based nutrition recommendations for cardiovascular disease risk reduction are appropriately targeted, and to identify focus areas for future preventive nutrition interventions. Overall, population mean levels of cardiovascular disease risk factors were high but mean total cholesterol and blood pressure levels and rates of dyslipidaemia were lower in Framingham men and women and hypertension appeared higher in Framingham compared with NHANES II. Severe overweight appeared more prevalent in Framingham men but similar in Framingham women in comparison with NHANES. Population estimates of total fat (36-41% of calories) and saturated fat (12.5-13.7% of calories) intakes were higher and carbohydrate intakes were lower (40-46% of calories) than current recommended levels. Dietary cholesterol and sodium intakes in Framingham women appeared to have reached recommended levels but were high in men. While the goals of current nutrition recommendations remain appropriate, future population-based preventive nutrition interventions to lower cardiovascular disease risk need to emphasize weight reduction, lowering intakes of foods rich in animal and plant fats, increases in dietary sources of complex carbohydrates, fibre and micronutrients, and lower sodium intakes, particularly in adult men.

  1. Grape skin extract protects against programmed changes in the adult rat offspring caused by maternal high-fat diet during lactation.

    PubMed

    Resende, Angela C; Emiliano, Andréa F; Cordeiro, Viviane S C; de Bem, Graziele F; de Cavalho, Lenize C R M; de Oliveira, Paola Raquel B; Neto, Miguel L; Costa, Cristiane A; Boaventura, Gilson T; de Moura, Roberto S

    2013-12-01

    Maternal overnutrition during suckling period is associated with increased risk of metabolic disorders in the offspring. We aimed to assess the effect of Vitis vinifera L. grape skin extract (ACH09) on cardiovascular and metabolic disorders in adult male offspring of rats fed a high-fat (HF) diet during lactation. Four groups of female rats were fed: control diet (7% fat), ACH09 (7% fat plus 200 mg kg(-1) d(-1) ACH09 orally), HF (24% fat), and HF+ACH09 (24% fat plus 200 mg kg(-1) d(-1) ACH09 orally) during lactation. After weaning, all male offspring were fed a control diet and sacrificed at 90 or 180 days old. Systolic blood pressure was increased in adult offspring of HF-fed dams and ACH09 prevented the hypertension. Increased adiposity, plasma triglyceride, glucose levels and insulin resistance were observed in offspring from both ages, and those changes were reversed by ACH09. Expression of insulin cascade proteins IRS-1, AKT and GLUT4 in the soleus muscle was reduced in the HF group of both ages and increased by ACH09. The plasma oxidative damage assessed by malondialdehyde levels was increased, and nitrite levels decreased in the HF group of both ages, which were reversed by ACH09. In addition, ACH09 restored the decreased plasma and mesenteric arteries antioxidant activities of superoxide dismutase, catalase and glutathione peroxidase in the HF group. In conclusion, the treatment of HF-fed dams during lactation with ACH09 provides protection from later-life hypertension, body weight gain, insulin resistance and oxidative stress. The protective effect ACH09 may involve NO synthesis, antioxidant action and activation of insulin-signaling pathways. © 2013.

  2. Maternal High-Fat Diet-Induced Loss of Fetal Oocytes Is Associated with Compromised Follicle Growth in Adult Rat Offspring1

    PubMed Central

    Tsoulis, Michael W.; Chang, Pauline E.; Moore, Caroline J.; Chan, Kaitlyn A.; Gohir, Wajiha; Petrik, James J.; Vickers, Mark H.; Connor, Kristin L.; Sloboda, Deborah M.

    2016-01-01

    Maternal obesity predisposes offspring to metabolic and reproductive dysfunction. We have shown previously that female rat offspring born to mothers fed a high-fat (HF) diet throughout pregnancy and lactation enter puberty early and display aberrant reproductive cyclicity. The mechanisms driving this reproductive phenotype are currently unknown thus we investigated whether changes in ovarian function were involved. Wistar rats were mated and randomized to: dams fed a control diet (CON) or dams fed a HF diet from conception until the end of lactation (HF). Ovaries were collected from fetuses at Embryonic Day (E) 20, and neonatal ovaries at Day 4 (P4), prepubertal ovaries at P27 and adult ovaries at P120. In a subset of offspring, the effects of a HF diet fed postweaning were evaluated. The present study shows that fetuses of mothers fed a HF diet had significantly fewer oocytes at E20, and in neonates, have reduced AMH signaling that may facilitate an increased number of assembled primordial follicles. Both prepubertally and in adulthood, ovaries show increased follicular atresia. As adults, offspring have reduced FSH responsiveness, low expression levels of estrogen receptor alpha (Eralpha), the oocyte-secreted factor, Gdf9, oocyte-specific RNA binding protein, Dazl, and high expression levels of the granulosa-cell derived factor, AMH, in antral follicles. Together, these data suggest that ovarian compromise in offspring born to HF-fed mothers may arise from changes already observable in the fetus and neonate and in the long term, associated with increased follicular atresia through adulthood. PMID:26962114

  3. Self-Reported Hearing Difficulties Among Adults With Normal Audiograms: The Beaver Dam Offspring Study

    PubMed Central

    Tremblay, Kelly L.; Pinto, Alex; Fischer, Mary E.; Klein, Barbara E. K.; Klein, Ronald; Levy, Sarah; Tweed, Ted S.; Cruickshanks, Karen J.

    2016-01-01

    Objective Clinicians encounter patients who report experiencing hearing difficulty (HD) even when audiometric thresholds fall within normal limits. When there is no evidence of audiometric hearing loss, it generates debate over possible biomedical and psychosocial etiologies. It is possible that self-reported HDs relate to variables within and/or outside the scope of audiology. The purpose of this study is to identify how often, on a population basis, people with normal audiometric thresholds self-report HD and to identify factors associated with such HDs. Design This was a cross-sectional investigation of participants in the Beaver Dam Offspring Study. HD was defined as a self-reported HD on a four-item scale despite having pure-tone audiometric thresholds within normal limits (<20 dB HL0.5, 1, 2, 3, 4, 6, 8 kHz bilaterally, at each frequency). Distortion product otoacoustic emissions and word-recognition performance in quiet and with competing messages were also analyzed. In addition to hearing assessments, relevant factors such as sociodemographic and lifestyle factors, environmental exposures, medical history, health-related quality of life, and symptoms of neurological disorders were also examined as possible risk factors. The Center for Epidemiological Studies-Depression was used to probe symptoms associated with depression, and the Medical Outcomes Study Short-Form 36 mental score was used to quantify psychological stress and social and role disability due to emotional problems. The Visual Function Questionnaire-25 and contrast sensitivity test were used to query vision difficulties. Results Of the 2783 participants, 686 participants had normal audiometric thresholds. An additional grouping variable was created based on the available scores of HD (four self-report questions), which reduced the total dataset to n = 682 (age range, 21–67 years). The percentage of individuals with normal audiometric thresholds who self-reported HD was 12.0% (82 of 682). The

  4. Effects of autoimmune NGF deprivation in the adult rabbit and offspring.

    PubMed

    Johnson, E M; Gorin, P D; Osborne, P A; Rydel, R E; Pearson, J

    1982-05-20

    An experimental autoimmune approach to the production of nerve growth factor deprivation, which we have previously described in the rat and guinea pig, has been applied to the rabbit. This species was chosen for study because of several potential advantages. The rabbit produces large litters and has a relatively short gestation period. More importantly, rabbits generate high titers of antibody against mouse NGF and large amounts of maternal antibody are passively transferred to the developing rabbit fetus compared to most other species, particularly the rat. The sympathetic nervous system of adult rabbit immunized against mouse NGF underwent degeneration with up to an 85% decrease in neuronal numbers in the superior cervical ganglion after 10 months of immunization, thus providing further evidence that NGF is required for the survival of mature sympathetic neurons. Despite the fact that newborn rabbits born to anti-NGF producing mothers had much higher titers of anti-NGF than did rats, the effects on the developing sympathetic and sensory nervous systems were not found to be any greater than in rats. Reductions in norepinephrine levels in the heart and spleen of adult rabbits born to anti-NGF producing mothers were greater than in small intestine. Prenatal exposure to maternal anti-NGF caused reductions (up to 70%) in the number of neurons in the dorsal root ganglia. Substance-P immunoreactivity was reduced in the substantia gelatinosa of the spinal cord of rabbit exposed to maternal anti-NGF. These changes, however, were not greater than seen in the rat. We conclude that although the rabbits offers some advantage in the study of the effects of NGF deprivation in the adult animal, it appears less well suited than the rat or guinea pig to the study of the effects of NGF deprivation on development.

  5. Fatty Acid de Novo Synthesis in Adult Intrauterine Growth-Restricted Offspring, and Adult Male Response to a High Fat Diet.

    PubMed

    Yee, Jennifer K; Han, Guang; Vega, Juan; Lee, Wai-Nang P; Ross, Michael G; Desai, Mina

    2016-12-01

    Intrauterine growth restriction (IUGR) with rapid catch-up growth leads to adult obesity and insulin resistance. We have previously shown that IUGR male rats demonstrated increased de novo fatty acid synthesis in the subcutaneous (SC) fat, but not the visceral fat, during the nursing period prior to the onset of obesity. Young IUGR females do not exhibit the same increase. We further hypothesized that in male IUGR offspring, de novo synthesis is a programmed intrinsic effect that persists to adulthood and does not suppress in response to a high fat diet. We measured fatty acid de novo synthesis in IUGR adult males (6 months) using deuterium-enriched drinking water as a stable isotope tracer, then further studied the response after consumption of an isocaloric high fat diet. Baseline de novo synthesis in adult females was also studied at age 9 months. Males demonstrated increased baseline de novo synthesis in both SC fat and visceral fat. Correspondingly, SC and visceral fat protein expression of lipogenic enzymes acetyl-coA carboxylase-α (ACCα) and fatty acid synthase were upregulated. After the isocaloric high fat diet, de novo synthesis was suppressed such that no differences remained between the two groups, although, IUGR SC fat demonstrated persistently increased lipogenic protein expression. In contrast, de novo synthesis among adult females is not impacted in IUGR. In conclusion, enhancement of male IUGR SC fat de novo synthesis appears to be an early consequence of metabolic programming, whereas enhancement in visceral fat appears to be a later consequence.

  6. Alteration of mitochondrial function in adult rat offspring of malnourished dams

    PubMed Central

    Reusens, Brigitte; Theys, Nicolas; Remacle, Claude

    2011-01-01

    Under-nutrition as well as over-nutrition during pregnancy has been associated with the development of adult diseases such as diabetes and obesity. Both epigenetic modifications and programming of the mitochondrial function have been recently proposed to explain how altered intrauterine metabolic environment may produce such a phenotype. This review aims to report data reported in several animal models of fetal malnutrition due to maternal low protein or low calorie diet, high fat diet as well as reduction in placental blood flow. We focus our overview on the β cell. We highlight that, notwithstanding early nutritional events, mitochondrial dysfunctions resulting from different alteration by diet or gender are programmed. This may explain the higher propensity to develop obesity and diabetes in later life. PMID:21954419

  7. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation

    PubMed Central

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Background Fetal exposure to hyperglycemia impacts negatively kidney development and function. Objective Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Design Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Results Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)—a key enzyme involved in gene expression during early development–was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Conclusion Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function. PMID:26258530

  8. Increased Cardiovascular Reactivity to Acute Stress and Salt-Loading in Adult Male Offspring of Fat Fed Non-Obese Rats

    PubMed Central

    Rudyk, Olena; Makra, Péter; Jansen, Eugene; Shattock, Michael J.; Poston, Lucilla; Taylor, Paul D.

    2011-01-01

    Diet-induced obesity in rat pregnancy has been shown previously to be associated with consistently raised blood pressure in the offspring, attributed to sympathetic over-activation, but the relative contributions to this phenotype of maternal obesity versus raised dietary fat is unknown. Sprague-Dawley female rats were fed either a control (4.3% fat, n = 11) or lard-enriched (23.6% fat, n = 16) chow 10 days prior to mating, throughout pregnancy and lactation. In conscious adult (9-month-old) offspring cardiovascular parameters were measured (radiotelemetry). The short period of fat-feeding did not increase maternal weight versus controls and the baseline blood pressure was similar in offspring of fat fed dams (OF) and controls (OC). However, adult male OF showed heightened cardiovascular reactivity to acute restraint stress (p<0.01; Δ systolic blood pressure (SBP) and Δheart rate (HR)) with a prolonged recovery time compared to male OC. α1/β-adrenergic receptor blockade normalised the response. Also, after dietary salt-loading (8%-NaCl ad libitum for 1 week) male OF demonstrated higher SBP (p<0.05) in the awake phase (night-time) and increased low/high frequency ratio of power spectral density of HR variability versus OC. Baroreflex gain and basal power spectral density components of the heart rate or blood pressure were similar in male OF and OC. Minor abnormalities were evident in female OF. Fat feeding in the absence of maternal obesity in pregnant rats leads to altered sympathetic control of cardiovascular function in adult male offspring, and hypertension in response to stressor stimuli. PMID:22043281

  9. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation.

    PubMed

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Fetal exposure to hyperglycemia impacts negatively kidney development and function. Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)--a key enzyme involved in gene expression during early development--was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function.

  10. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress.

    PubMed

    Cattani, Daiane; Cesconetto, Patrícia Acordi; Tavares, Mauren Kruger; Parisotto, Eduardo Benedetti; De Oliveira, Paulo Alexandre; Rieg, Carla Elise Heinz; Leite, Marina Concli; Prediger, Rui Daniel Schröder; Wendt, Nestor Cubas; Razzera, Guilherme; Filho, Danilo Wilhelm; Zamoner, Ariane

    2017-07-15

    We have previously demonstrated that maternal exposure to glyphosate-based herbicide (GBH) leads to glutamate excitotoxicity in 15-day-old rat hippocampus. The present study was conducted in order to investigate the effects of subchronic exposure to GBH on some neurochemical and behavioral parameters in immature and adult offspring. Rats were exposed to 1% GBH in drinking water (corresponding to 0.36% of glyphosate) from gestational day 5 until postnatal day (PND)-15 or PND60. Results showed that GBH exposure during both prenatal and postnatal periods causes oxidative stress, affects cholinergic and glutamatergic neurotransmission in offspring hippocampus from immature and adult rats. The subchronic exposure to the pesticide decreased L-[(14)C]-glutamate uptake and increased (45)Ca(2+) influx in 60-day-old rat hippocampus, suggesting a persistent glutamate excitotoxicity from developmental period (PND15) to adulthood (PND60). Moreover, GBH exposure alters the serum levels of the astrocytic protein S100B. The effects of GBH exposure were associated with oxidative stress and depressive-like behavior in offspring on PND60, as demonstrated by the prolonged immobility time and decreased time of climbing observed in forced swimming test. The mechanisms underlying the GBH-induced neurotoxicity involve the NMDA receptor activation, impairment of cholinergic transmission, astrocyte dysfunction, ERK1/2 overactivation, decreased p65 NF-κB phosphorylation, which are associated with oxidative stress and glutamate excitotoxicity. These neurochemical events may contribute, at least in part, to the depressive-like behavior observed in adult offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Elevated blood pressure in preterm-born offspring associates with a distinct antiangiogenic state and microvascular abnormalities in adult life.

    PubMed

    Lewandowski, Adam J; Davis, Esther F; Yu, Grace; Digby, Janet E; Boardman, Henry; Whitworth, Polly; Singhal, Atul; Lucas, Alan; McCormick, Kenny; Shore, Angela C; Leeson, Paul

    2015-03-01

    Preterm-born individuals have elevated blood pressure. We tested the hypothesis that this associates with an enhanced antiangiogenic circulating profile and that this association is mediated by variations in capillary density. We studied 204 adults aged 25 years (range, 20-30 years), of which 102 had been followed up prospectively since very preterm birth (mean gestational age, 30.3±2.5 weeks) and 102 were born term to uncomplicated pregnancies. A panel of circulating biomarkers, including soluble endoglin and soluble fms-like tyrosine kinase-1, were compared between groups and related to perinatal history and adult cardiovascular risk. Associations with cardiovascular phenotype were studied in 90 individuals who had undergone detailed assessment of microvascular, macrovascular, and cardiac structure and function. Preterm-born individuals had elevations in soluble endoglin (5.64±1.03 versus 4.06±0.85 ng/mL; P<0.001) and soluble fms-like tyrosine kinase-1 (88.1±19.0 versus 73.0±15.3 pg/mL; P<0.001) compared with term-born individuals, proportional to elevations in resting and ambulatory blood pressure, as well as degree of prematurity (P<0.05). Maternal hypertensive pregnancy disorder was associated with additional increases in soluble fms-like tyrosine kinase-1 (P=0.002). Other circulating biomarkers, including those of inflammation and endothelial activation, were not related to blood pressure. There was a specific graded association between soluble endoglin and degree of functional and structural capillary rarefaction (P=0.002 and P<0.001), and in multivariable analysis, there were capillary density-mediated associations between soluble endoglin and blood pressure. Preterm-born individuals exhibit an enhanced antiangiogenic state in adult life that is specifically related to elevations in blood pressure. The association seems to be mediated through capillary rarefaction and is independent of other cardiovascular structural and functional differences in the

  12. Early postnatal caloric restriction protects adult male intrauterine growth-restricted offspring from obesity.

    PubMed

    Garg, Meena; Thamotharan, Manikkavasagar; Dai, Yun; Thamotharan, Shanthie; Shin, Bo-Chul; Stout, David; Devaskar, Sherin U

    2012-06-01

    Postnatal ad libitum caloric intake superimposed on intrauterine growth restriction (IUGR) is associated with adult-onset obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). We hypothesized that this paradigm of prenatal nutrient deprivation-induced programming can be reversed with the introduction of early postnatal calorie restriction. Ten-month-old male rats exposed to either prenatal nutrient restriction with ad libitum postnatal intake (IUGR), pre- and postnatal nutrient restriction (IPGR), or postnatal nutrient restriction limited to the suckling phase (50% from postnatal [PN]1 to PN21) (PNGR) were compared with age-matched controls (CON). Visceral adiposity, metabolic profile, and insulin sensitivity by hyperinsulinemic-euglycemic clamps were examined. The 10-month-old male IUGR group had a 1.5- to 2.0-fold increase in subcutaneous and visceral fat (P < 0.0002) while remaining euglycemic, insulin sensitive, inactive, and exhibiting metabolic inflexibility (Vo(2)) versus CON. The IPGR group remained lean, euglycemic, insulin sensitive, and active while maintaining metabolic flexibility. The PNGR group was insulin sensitive, similar to IPGR, but less active while maintaining metabolic flexibility. We conclude that IUGR resulted in obesity without insulin resistance and energy metabolic perturbations prior to development of glucose intolerance and T2DM. Postnatal nutrient restriction superimposed on IUGR was protective, restoring metabolic normalcy to a lean and active phenotype.

  13. Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring.

    PubMed

    Kesby, James P; O'Loan, Jonathan C; Alexander, Suzanne; Deng, Chao; Huang, Xu-Feng; McGrath, John J; Eyles, Darryl W; Burne, Thomas H J

    2012-04-01

    Developmental vitamin D (DVD) deficiency is a candidate risk factor for developing schizophrenia in humans. In rodents DVD deficiency induces subtle changes in the way the brain develops. This early developmental insult leads to select behavioural changes in the adult, such as an enhanced response to amphetamine-induced locomotion in female DVD-deficient rats but not in male DVD-deficient rats and an enhanced locomotor response to the N-methyl-D: -aspartate (NMDA) receptor antagonist, MK-801, in male DVD-deficient rats. However, the response to MK-801-induced locomotion in female DVD-deficient rats is unknown. Therefore, the aim of the current study was to further examine this behavioural finding in male and female rats and assess NMDA receptor density. DVD-deficient Sprague Dawley rats were assessed for locomotion, ataxia, acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR to multiple doses of MK-801. The NMDA receptor density in relevant brain regions was assessed in a drug-naive cohort. DVD deficiency increased locomotion in response to MK-801 in both sexes. DVD-deficient rats also showed an enhanced ASR compared with control rats, but PPI was normal. Moreover, DVD deficiency decreased NMDA receptor density in the caudate putamen of both sexes. These results suggest that a transient prenatal vitamin D deficiency has a long-lasting effect on NMDA-mediated signalling in the rodent brain and may be a plausible candidate risk factor for schizophrenia and other neuropsychiatric disorders.

  14. Effects of Maternal Exposure to Cadmium Oxide Nanoparticles During Pregnancy on Maternal and Offspring Kidney Injury Markers Using a Murine Model.

    PubMed

    Blum, Jason L; Edwards, Joshua R; Prozialeck, Walter C; Xiong, Judy Q; Zelikoff, Judith T

    2015-01-01

    Nanoparticles (NP) are pervasive in many areas of modern life, with little known about their potential toxicities. One commercially important NP is cadmium oxide (CdO), which is used to synthesize other Cd-containing NP, such as quantum dots. Cadmium (Cd) is a well-known nephrotoxicant, but the nephrotoxic potential of CdO NP remains unknown, particularly when exposure occurs during pregnancy. Therefore, pregnant CD-1 mice were used to examine the effects of inhaled CdO NP (230 μg CdO NP/m(3)) on maternal and neonatal renal function by examining urinary creatinine and urinary biomarkers of kidney injury, including kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL). Inhalation of CdO NP by dams produced a fivefold increase in urinary Kim-1 with no marked effect on urinary creatinine levels. Kim-1 mRNA expression peaked by gestational day (GD) 10.5, and NGAL expression increased from GD 10.5 to 17.5. In addition, histological analyses revealed proximal tubular pathology at GD 10.5. Neonatal Kim-1 mRNA expression rose between postnatal days (PND) 7 and 14, with mammary glands/milk being the apparent source of Cd for offspring. These studies demonstrate that, similar to what is seen with other Cd forms, Cd associated with inhaled CdO NP results in renal injury to both directly exposed dam and offspring. As commercial uses for nanotechnology continue to expand throughout the world, risks for unintentional exposure in the workplace increase. Given the large number of women in the industrial workforce, care needs to be taken to protect these already vulnerable populations.

  15. Developmental Exposure to Mild Variable Stress: Adult Offspring Performance in Trace Fear Conditioning after Prenatal and Postnatal Stress

    EPA Science Inventory

    In utero exposure to mild variable stress has been reported to influence learning and memory formation in offspring. Our research aims to examine whether nonchemical environmental stressors will exacerbate effects to chemical exposure. This study utilized a varying stress parad...

  16. Does physical activity during pregnancy adversely influence markers of the metabolic syndrome in adult offspring? A prospective study over two decades.

    PubMed

    Danielsen, Inge; Granström, Charlotta; Rytter, Dorte; Hammer Bech, Bodil; Brink Henriksen, Tine; Vaag, Allan Arthur; Olsen, Sjurdur Frodi

    2013-08-01

    It is unknown whether physical activity during pregnancy (PA) has long-term impact on the metabolic profile of the offspring. We investigated associations of PA with markers of the metabolic syndrome (MS) in 20y old offspring. Longitudinal study where 965 pregnant women during 1988-1989 had four dimensions of PA assessed by questionnaires in gestation week 30: PA at work; leisure time PA, daily amount of walking-biking and sport participation. The following MS markers were assessed in the offspring (n=439): body mass index (BMI), waist circumference, blood pressure, homeostasis model assessment insulin resistance as well as fasting plasma glucose, triglycerides, cholesterol (high-density lipoprotein (HDL), low-density lipoprotein and total cholesterol), insulin and leptin levels. Walking-biking PA in pregnancy is associated with unchanged or subtle, adverse changes of distinct MS markers among offspring including lower levels of HDL cholesterol (ratio 0.95 (95% CI 0.92 to 0.98) per 1 h increment in walking-biking), a higher diastolic blood pressure (difference 1.12 (95% CI 0.03 to 2.20) mm Hg/1 h increment) and a higher BMI (ratio 1.03 (95% CI 1.01 to 1.05) per 1 h increment). In separate analyses in males, these associations persisted and additional adverse associations were found for triglycerides, systolic blood pressure, waist circumference and leptin. No associations were detected with other measures of PA. The study did not substantiate any protective effects of PA in pregnancy. In contrast, data suggested that high amounts of daily walking-biking in pregnancy may have adverse effects on levels of HDL cholesterol, diastolic blood pressure and BMI in young adult offspring.

  17. Maternal dietary loads of α-tocopherol depress protein kinase C signaling and synaptic plasticity in rat postnatal developing hippocampus and promote permanent deficits in adult offspring.

    PubMed

    Betti, Michele; Ambrogini, Patrizia; Minelli, Andrea; Floridi, Alessandro; Lattanzi, Davide; Ciuffoli, Stefano; Bucherelli, Corrado; Prospero, Emilia; Frontini, Andrea; Santarelli, Lory; Baldi, Elisabetta; Benetti, Fernando; Galli, Francesco; Cuppini, Riccardo

    2011-01-01

    Vitamin E (α-tocopherol) supplementation has been tested as prophylaxis against gestational disorders associated with oxidative damage. However, recent evidence showing that high maternal α-tocopherol intake can adversely affect offspring development raises concerns on the safety of vitamin E extradosages during pregnancy. Besides acting as an antioxidant, α-tocopherol depresses cell proliferation and modulates cell signaling through inhibiting protein kinase C (PKC), a kinase that is deeply involved in neural maturation and plasticity. Possible effects of α-tocopherol loads in the maturing brain, where PKC dysregulation is associated to developmental dysfunctions, are poorly known. Here, supranutritional doses of α-tocopherol were fed to pregnant and lactating dams to evaluate the effects on PKC signaling and morphofunctional maturation in offspring hippocampus. Results showed that maternal supplementation potentiates hippocampal α-tocopherol incorporation in offspring and leads to marked decrease of PKC phosphorylation throughout postnatal maturation, accompanied by reduced phosphorylation of growth-associated protein-43 and myristoylated alanine-rich C kinase substrate, two PKC substrates involved in neural development and plasticity. Although processes of neuronal maturation, synapse formation and targeting appeared unaffected, offspring of supplemented mothers displayed a marked reduction of long-term synaptic plasticity in juvenile hippocampus. Interestingly, this impairment persisted in adulthood, when a deficit in hippocampus-dependent, long-lasting spatial memory was also revealed. In conclusion, maternal supplementation with elevated doses of α-tocopherol can influence cell signaling and synaptic plasticity in developing hippocampus and promotes permanent adverse effects in adult offspring. The present results emphasize the need to evaluate the safety of supranutritional maternal intake of α-tocopherol in humans.

  18. Gestational and lactational exposure to atrazine via the drinking water causes specific behavioral deficits and selectively alters monoaminergic systems in C57BL/6 mouse dams, juvenile and adult offspring.

    PubMed

    Lin, Zhoumeng; Dodd, Celia A; Xiao, Shuo; Krishna, Saritha; Ye, Xiaoqin; Filipov, Nikolay M

    2014-09-01

    Atrazine (ATR) is one of the most frequently detected pesticides in the U.S. water supply. This study aimed to investigate neurobehavioral and neurochemical effects of ATR in C57BL/6 mouse offspring and dams exposed to a relatively low (3 mg/l, estimated intake 1.4 mg/kg/day) concentration of ATR via the drinking water (DW) from gestational day 6 to postnatal day (PND) 23. Behavioral tests included open field, pole, grip strength, novel object recognition (NOR), forced swim, and marble burying tests. Maternal weight gain and offspring (PND21, 35, and 70) body or brain weights were not affected by ATR. However, ATR-treated dams exhibited decreased NOR performance and a trend toward hyperactivity. Juvenile offspring (PND35) from ATR-exposed dams were hyperactive (both sexes), spent less time swimming (males), and buried more marbles (females). In adult offspring (PND70), the only behavioral change was a sex-specific (females) decreased NOR performance by ATR. Neurochemically, a trend toward increased striatal dopamine (DA) in dams and a significant increase in juvenile offspring (both sexes) was observed. Additionally, ATR exposure decreased perirhinal cortex serotonin in the adult female offspring. These results suggest that perinatal DW exposure to ATR targets the nigrostriatal DA pathway in dams and, especially, juvenile offspring, alters dams' cognitive performance, induces sex-selective changes involving motor and emotional functions in juvenile offspring, and decreases cognitive ability of adult female offspring, with the latter possibly associated with altered perirhinal cortex serotonin homeostasis. Overall, ATR exposure during gestation and lactation may cause adverse nervous system effects to both offspring and dams. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Gestational and Lactational Exposure to Atrazine via the Drinking Water Causes Specific Behavioral Deficits and Selectively Alters Monoaminergic Systems in C57BL/6 Mouse Dams, Juvenile and Adult Offspring

    PubMed Central

    Krishna, Saritha; Ye, Xiaoqin; Filipov, Nikolay M.

    2014-01-01

    Atrazine (ATR) is one of the most frequently detected pesticides in the U.S. water supply. This study aimed to investigate neurobehavioral and neurochemical effects of ATR in C57BL/6 mouse offspring and dams exposed to a relatively low (3 mg/l, estimated intake 1.4 mg/kg/day) concentration of ATR via the drinking water (DW) from gestational day 6 to postnatal day (PND) 23. Behavioral tests included open field, pole, grip strength, novel object recognition (NOR), forced swim, and marble burying tests. Maternal weight gain and offspring (PND21, 35, and 70) body or brain weights were not affected by ATR. However, ATR-treated dams exhibited decreased NOR performance and a trend toward hyperactivity. Juvenile offspring (PND35) from ATR-exposed dams were hyperactive (both sexes), spent less time swimming (males), and buried more marbles (females). In adult offspring (PND70), the only behavioral change was a sex-specific (females) decreased NOR performance by ATR. Neurochemically, a trend toward increased striatal dopamine (DA) in dams and a significant increase in juvenile offspring (both sexes) was observed. Additionally, ATR exposure decreased perirhinal cortex serotonin in the adult female offspring. These results suggest that perinatal DW exposure to ATR targets the nigrostriatal DA pathway in dams and, especially, juvenile offspring, alters dams’ cognitive performance, induces sex-selective changes involving motor and emotional functions in juvenile offspring, and decreases cognitive ability of adult female offspring, with the latter possibly associated with altered perirhinal cortex serotonin homeostasis. Overall, ATR exposure during gestation and lactation may cause adverse nervous system effects to both offspring and dams. PMID:24913803

  20. Prenatal Testosterone Exposure Leads to Gonadal Hormone-Dependent Hyperinsulinemia and Gonadal Hormone-Independent Glucose Intolerance in Adult Male Rat Offspring.

    PubMed

    More, Amar S; Mishra, Jay S; Gopalakrishnan, Kathirvel; Blesson, Chellakkan S; Hankins, Gary D; Sathishkumar, Kunju

    2016-01-01

    Elevated testosterone levels during prenatal life lead to hyperandrogenism and insulin resistance in adult females. This study evaluated whether prenatal testosterone exposure leads to the development of insulin resistance in adult male rats in order to assess the influence of gonadal hormones on glucose homeostasis in these animals. Male offspring of pregnant rats treated with testosterone propionate or its vehicle (control) were examined. A subset of male offspring was orchiectomized at 7 wk of age and reared to adulthood. At 24 wk of age, fat weights, plasma testosterone, glucose homeostasis, pancreas morphology, and gastrocnemius insulin receptor (IR) beta levels were examined. The pups born to testosterone-treated mothers were smaller at birth and remained smaller through adult life, with levels of fat deposition relatively similar to those in controls. Testosterone exposure during prenatal life induced hyperinsulinemia paralleled by an increased HOMA-IR index in a fasting state and glucose intolerance and exaggerated insulin responses following a glucose tolerance test. Prenatal androgen-exposed males had more circulating testosterone during adult life. Gonadectomy prevented hyperandrogenism, reversed hyperinsulinemia, and attenuated glucose-induced insulin responses but did not alter glucose intolerance in these rats. Prenatal androgen-exposed males had decreased pancreatic islet numbers, size, and beta-cell area along with decreased expression of IR in gastrocnemius muscles. Gonadectomy restored pancreatic islet numbers, size, and beta-cell area but did not normalize IRbeta expression. This study shows that prenatal testosterone exposure leads to a defective pancreas and skeletal muscle function in male offspring. Hyperinsulinemia during adult life is gonad-dependent, but glucose intolerance appears to be independent of postnatal testosterone levels. © 2016 by the Society for the Study of Reproduction, Inc.

  1. Appraisals of discriminatory events among adult offspring of Indian residential school survivors: the influences of identity centrality and past perceptions of discrimination.

    PubMed

    Bombay, Amy; Matheson, Kimberly; Anisman, Hymie

    2014-01-01

    As part of a government policy of assimilation beginning in the mid-1800s, a large proportion of Aboriginal children in Canada were forcibly removed from their homes to attend Indian Residential Schools (IRSs), a practice which continued into the 1990s. This traumatic experience had lasting negative effects not only on those who attended but also on their offspring, who were previously found to report higher levels of perceived discrimination and depressive symptoms compared with Aboriginal adults whose families were not directly affected by IRSs. In attempt to elucidate the processes involved in these previous findings, the current study (N = 399) revealed that greater levels of past perceptions of discrimination among IRS offspring, together with their greater likelihood of considering their Aboriginal heritage to be a central component of their self-concept (i.e., high identity centrality), were associated with an increased likelihood of appraising subsequent negative intergroup scenarios to be a result of discrimination and as threatening to their well-being. In turn, these altered appraisals of threat in response to the scenarios were associated with higher levels of depressive symptoms relative to non-IRS adults. The apparent reinforcing relationships between past discrimination, identity centrality, and appraisals of discrimination and threat in intergroup interactions highlight the need for interventions targeting this cycle that appears to contribute to heightened psychological distress among offspring of those who were directly victimized by collective race-based traumas.

  2. Cognitive vulnerabilities in parents as a potential risk factor for anxiety symptoms in young adult offspring: An exploration of looming cognitive style.

    PubMed

    Riskind, John H; Sica, Claudio; Bottesi, Gioia; Ghisi, Marta; Kashdan, Todd B

    2017-03-01

    Given that anxiety runs in families, it is critical to understand the cognitive factors that may be responsible for this intergenerational transmission. The present study offers a first step by exploring the link between mother and father tendencies to view potentially threatening situations as rapidly escalating toward dreaded outcomes (i.e., looming cognitive style) and the emotional disturbances and looming cognitive styles of their adult offspring. We assessed cognitive vulnerabilities, anxiety, and depressive symptoms in a non-clinical sample (N = 382) of Italian college students and their parents. The looming cognitive style of fathers, but not mothers, was significantly related to greater anxiety in adult offspring. This finding was obtained for both sons and daughters, and remained even after statistically controlling for the anxiety, worry, depressive symptoms, and anxiety sensitivity (AS) of parents). Notably, the association between fathers' looming cognitive style and offspring symptoms was not related to their child's depressive symptoms, and similar to prior work, served as a cognitive marker specific to anxiety. The present study relied on a cross-sectional design and did not use clients diagnosed with anxiety disorders. The findings suggest that it may prove fruitful to consider parental vulnerabilities such as looming cognitive styles in comprehensive cognitive and interpersonal models of anxiety. The intergenerational transmission of emotional difficulties seems to extend beyond anxiety to beliefs about the escalation of threat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Brief maternal exposure of rats to the xenobiotics dibutyl phthalate or diethylstilbestrol alters adult-type Leydig cell development in male offspring.

    PubMed

    Ivell, Richard; Heng, Kee; Nicholson, Helen; Anand-Ivell, Ravinder

    2013-03-01

    Maternal exposure to estrogenic xenobiotics or phthalates has been implicated in the distortion of early male reproductive development, referred to in humans as the testicular dysgenesis syndrome. It is not known, however, whether such early gestational and/or lactational exposure can influence the later adult-type Leydig cell phenotype. In this study, Sprague-Dawley rats were exposed to dibutyl phthalate (DBP; from gestational day (GD) 14.5 to postnatal day (PND) 6) or diethylstilbestrol (DES; from GD14.5 to GD16.5) during a short gestational/lactational window, and male offspring subsequently analysed for various postnatal testicular parameters. All offspring remained in good health throughout the study. Maternal xenobiotic treatment appeared to modify specific Leydig cell gene expression in male offspring, particularly during the dynamic phase of mid-puberty, with serum INSL3 concentrations showing that these compounds led to a faster attainment of peak values, and a modest acceleration of the pubertal trajectory. Part of this effect appeared to be due to a treatment-specific impact on Leydig cell proliferation during puberty for both xenobiotics. Taken together, these results support the notion that maternal exposure to certain xenobiotics can also influence the development of the adult-type Leydig cell population, possibly through an effect on the Leydig stem cell population.

  4. Prenatal Food Restriction with Postweaning High-fat Diet Alters Glucose Metabolic Function in Adult Rat Offspring.

    PubMed

    Xiao, Di; Kou, Hao; Zhang, Li; Guo, Yu; Wang, Hui

    2017-01-01

    The present study was designed to investigate the effects of prenatal food restriction (PFR) with postweaning high-fat diet (HFD) on glucose metabolic function in adult offspring. Pregnant Wistar rats were given PFR treatment from gestational day 11 to spontaneous delivery. All pups were fed by HFD after weaning. Oral glucose tolerance test (OGTT) was conducted at postnatal week (PW) 20. Rats were decapitated in PW24 to collect liver and pancreas, and expression of hepatic insulin signaling genes were then quantified. Body weight from PW4 to PW24 in PFR males was lower than those in control males, whereas there was no distinct difference between females. However, body weight gain rates were higher from PW16 to PW24 in PFR males and females. Fasting serum glucose presented no changes, whereas fasting serum insulin decreased in PW20 in PFR pups. Moreover, glucose intolerance only appeared in PFR males, whereas no changes were shown in PFR females in relative values. Serum insulin increased in both PFR groups after OGTT. Remarkable pathological changes were also found in islets from PFR rats. There was an increase in the hepatic mRNA expression of IR in PFR females and of Glut2 in PFR males. PFR with postweaning HFD induced a catch-up growth in body weight, especially in PFR females. Serum insulin decreased in both PFR groups in fasting status. Insulin resistance after OGTT only existed in PFR males, whereas PFR females showed no obvious changes in glucose metabolism. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  5. Trans and interesterified fat and palm oil during the pregnancy and lactation period inhibit the central anorexigenic action of insulin in adult male rat offspring.

    PubMed

    Bispo, Kenia Pereira; de Oliveira Rodrigues, Letícia; da Silva Soares de Souza, Érica; Mucci, Daniela; Tavares do Carmo, Maria das Graças; de Albuquerque, Kelse Tibau; de Carvalho Sardinha, Fatima Lucia

    2015-01-01

    Palm oil and interesterified fat have been used to replace partially hydrogenated fats, rich in trans isomers, in processed foods. This study investigated whether the maternal consumption of normolipidic diets containing these lipids affects the insulin receptor and Akt/protein kinase B (PKB) contents in the hypothalamus and the hypophagic effect of centrally administered insulin in 3-month-old male offspring. At 90 days, the intracerebroventricular injection of insulin decreased 24-h feeding in control rats but not in the palm, interesterified or trans groups. The palm group exhibited increases in the insulin receptor content of 64 and 69 % compared to the control and trans groups, respectively. However, the quantifications of PKB did not differ significantly across groups. We conclude that the intake of trans fatty acid substitutes during the early perinatal period affects food intake regulation in response to centrally administered insulin in the young adult offspring; however, the underlying mechanisms remain unclear.

  6. The Proteome of Native Adult Müller Glial Cells From Murine Retina*

    PubMed Central

    Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca

    2016-01-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  7. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet.

    PubMed

    Orellana, Juan A; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy

    2014-01-01

    Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter

  8. The scent of stress: environmental challenge in the peripartum environment of mice affects emotional behaviours of the adult offspring in a sex-specific manner.

    PubMed

    Lerch, S; Dormann, C; Brandwein, C; Gass, P; Chourbaji, S

    2016-06-01

    Early adverse experiences are known to influence the risk of developing psychiatric disorders later. To shed further light on the development of laboratory mice, we systematically examined the influence of a prenatal or postnatal olfactory stressor, namely unfamiliar male mouse faeces, presented to pregnant or nursing mouse dams. Maternal and offspring behaviours were then examined. Maternal behaviours relative to controls revealed changes in nest building by the pregnant dams exposed to the unfamiliar faeces. There were no differences among groups on pup retrieval or exploration by the dams. Behavioural phenotyping of male and female offspring as adults included measures of exploration, anxiety, social and depressive-like behaviours. Additionally, serum corticosterone was assessed as a marker of physiological stress response. Group differences were dependent on the sex of the adult offspring. Males raised by dams that were stressed during pregnancy presented elevated emotionality as indicated by increased numbers of faecal boluses in the open field paradigm. Consistent with the effects of prenatal stress on the males only the prenatally stressed females had higher body weights than their respective controls. Indeed, males in both experimental groups had higher circulating corticosterone levels. By contrast, female offspring of dams exposed to the olfactory stressor after parturition were more anxious in the O-maze as indicated by increased latencies in entering the exposed areas of the maze. These findings emphasize the necessity for researchers to consider the pre- and postnatal environments, even of mice with almost identical genetic backgrounds, in designing experiments and interpreting their data. © The Author(s) 2015.

  9. Effect of cross-fostering on seizures in adult male offspring of methamphetamine-treated rat mothers.

    PubMed

    Slamberová, R; Hrubá, L; Bernásková, K; Matejovská, I; Rokyta, R

    2010-10-01

    Stimulant drugs are often associated with increased seizure susceptibility. Inhibitory gamma-aminobutyric acid (GABA) and excitatory N-methyl-D-aspartate (NMDA) systems play a role in the effect of stimulants in the genesis of epileptic seizures. Our previous studies showed that prenatal methamphetamine (MA) exposure induced long-term changes in seizure susceptibility. The aim of the present study was to investigate the effect of cross-fostering on the prenatal and postnatal MA-exposed rats, respectively, on their seizures in adulthood. Bicuculline (GABA(A) receptor antagonist), NMDA (NMDA receptor agonist) and flurothyl (a convulsant gas) were used to induce seizures in adult male offsprings. Female dams were injected with MA (5 mg/kg daily) or physiological saline (S) for approx. 9 week [about 3 week prior to impregnation, for the entire gestation period (22 days) and in preweaning period (21 days)]. Absolute controls (C) did not receive any injections. On postnatal day 1, pups were cross-fostered so that each mother received pups from all three treatments. Thus, nine groups (based on the prenatal and postnatal drug exposure) of adult male rats were tested in each seizure test: C/C; C/S; C/MA; S/C; S/S; S/MA; MA/C; MA/S; MA/MA. The present study demonstrates that the effect of prenatal and/or postnatal MA exposure is seizure model specific. In addition, our data show that there is an effect of cross-fostering on seizures; particularly, the effect of prenatal MA exposure shown in animals fostered by control mothers is no longer apparent in animals fostered postnatally by MA-treated mothers. Such effect of postnatal treatment is not manifested in prenatal controls. In summary, it seems that: (1) prenatal MA exposure alters seizure susceptibility more than postnatal MA exposure; (2) especially in seizures induced by chemicals that affect GABAergic system (bicuculline, flurothyl) notable effect of adoption (cross-fostering) is apparent; (3) in seizure models that are

  10. Gestational Chronodisruption Impairs Hippocampal Expression of NMDA Receptor Subunits Grin1b/Grin3a and Spatial Memory in the Adult Offspring

    PubMed Central

    Vilches, Nelson; Spichiger, Carlos; Mendez, Natalia; Abarzua-Catalan, Lorena; Galdames, Hugo A.; Hazlerigg, David G.; Richter, Hans G.; Torres-Farfan, Claudia

    2014-01-01

    Epidemiological and experimental evidence correlates adverse intrauterine conditions with the onset of disease later in life. For a fetus to achieve a successful transition to extrauterine life, a myriad of temporally integrated humoral/biophysical signals must be accurately provided by the mother. We and others have shown the existence of daily rhythms in the fetus, with peripheral clocks being entrained by maternal cues, such as transplacental melatonin signaling. Among developing tissues, the fetal hippocampus is a key structure for learning and memory processing that may be anticipated as a sensitive target of gestational chronodisruption. Here, we used pregnant rats exposed to constant light treated with or without melatonin as a model of gestational chronodisruption, to investigate effects on the putative fetal hippocampus clock, as well as on adult offspring’s rhythms, endocrine and spatial memory outcomes. The hippocampus of fetuses gestated under light:dark photoperiod (12:12 LD) displayed daily oscillatory expression of the clock genes Bmal1 and Per2, clock-controlled genes Mtnr1b, Slc2a4, Nr3c1 and NMDA receptor subunits 1B-3A-3B. In contrast, in the hippocampus of fetuses gestated under constant light (LL), these oscillations were suppressed. In the adult LL offspring (reared in LD during postpartum), we observed complete lack of day/night differences in plasma melatonin and decreased day/night differences in plasma corticosterone. In the adult LL offspring, overall hippocampal day/night difference of gene expression was decreased, which was accompanied by a significant deficit of spatial memory. Notably, maternal melatonin replacement to dams subjected to gestational chronodisruption prevented the effects observed in both, LL fetuses and adult LL offspring. Collectively, the present data point to adverse effects of gestational chronodisruption on long-term cognitive function; raising challenging questions about the consequences of shift work during

  11. Maternal trans fat intake during pregnancy or lactation impairs memory and alters BDNF and TrkB levels in the hippocampus of adult offspring exposed to chronic mild stress.

    PubMed

    Pase, Camila Simonetti; Roversi, Karine; Roversi, Katiane; Vey, Luciana Taschetto; Dias, Verônica Tironi; Veit, Juliana Cristiana; Maurer, Luana Haselein; Duarte, Thiago; Emanuelli, Tatiana; Duarte, Marta; Bürger, Marilise Escobar

    2017-02-01

    This study aimed to assess the influence of maternal dietary fat intake during pregnancy or lactation on memory of adult offspring after chronic mild stress (CMS) exposure. Female Wistar rats were supplemented daily with soybean oil/fish oil (SO/FO) or hydrogenated vegetable fat (HVF) by oral gavage (3.0g/kg body weight) during pregnancy or lactation. On post-natal day (PND) 60, half of the animals were exposed to CMS following behavioral assessments. While the adult offspring born under influence of SO/FO and HVF supplementations during pregnancy showed higher levels of n-3 and n-6 fatty acids (FA) series DHA and ARA metabolites, respectively, in the hippocampus, adult offspring born from supplemented dams during lactation showed higher levels of their precursors: ALA and LA. However, only HVF supplementation allowed TFA incorporation of adult offspring, and levels were higher in lactation period. Adult offspring born from dams supplemented with trans fat in both pregnancy and lactation showed short and long-term memory impairments before and after CMS. Furthermore, our study also showed higher memory impairment in offspring born from HVF-supplemented dams during lactation in comparison to pregnancy. BDNF expression was increased by stress exposure in offspring from both SO/FO- and HVF-supplemented dams during pregnancy. In addition, offspring from HVF-supplemented dams showed decreased TrkB expression in both supplemented periods, regardless of stress exposure. In conclusion, these findings show for the first time that the type of dietary FA as well as the period of brain development is able to change FA incorporation in brain neural membranes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Paternal High Fat Diet in Rats Leads to Renal Accumulation of Lipid and Tubular Changes in Adult Offspring

    PubMed Central

    Chowdhury, Sabiha S.; Lecomte, Virginie; Erlich, Jonathan H.; Maloney, Christopher A.; Morris, Margaret J.

    2016-01-01

    Along with diabetes and obesity, chronic kidney disease (CKD) is increasing across the globe. Although some data support an effect of maternal obesity on offspring kidney, the impact of paternal obesity is unknown; thus, we have studied the effect of paternal obesity prior to conception. Male Sprague Dawley rats were fed chow diet or high fat diet (HFD) for 13–14 weeks before mating with chow-fed females. Male offspring were weaned onto chow and killed at 27 weeks for renal gene expression and histology. Fathers on HFD were 30% heavier than Controls at mating. At 27 weeks of age offspring of obese fathers weighed 10% less; kidney triglyceride content was significantly increased (5.35 ± 0.84 vs. 2.99 ± 0.47 μg/mg, p < 0.05, n = 8 litters per group. Histological analysis of the kidney demonstrated signs of tubule damage, with significantly greater loss of brush border, and increased cell sloughing in offspring of obese compared to Control fathers. Acat1, involved in entry of fatty acid for beta-oxidation, was significantly upregulated, possibly to counteract increased triglyceride storage. However other genes involved in lipid metabolism, inflammation and kidney injury showed no changes. Paternal obesity was associated with renal triglyceride accumulation and histological changes in tubules, suggesting a mild renal insult in offspring, who may be at risk of developing CKD. PMID:27563922

  13. Effects of prenatal chronic mild stress exposure on hippocampal cell proliferation, expression of GSK-3α, β and NR2B in adult offspring during fear extinction in rats.

    PubMed

    Li, Min; Li, Xiaobai; Zhang, Xinxin; Ren, Jintao; Jiang, Han; Wang, Yan; Ma, Yuchao; Cheng, Wenwen

    2014-06-01

    Stress during pregnancy has been implicated as a risk factor for the development of many mental disorders; however, the influence of prenatal stress on the fear or anxiety-related behaviors, especially the fear extinction in adult offspring has been little investigated. In order to investigate how prenatal stress affects fear extinction, which is regarded as a form of new learning that counteracts the expression of Pavlovian's conditioned fear, a rat model of prenatal chronic mild stress (PNS) was used to evaluate the effects of PNS on fear extinction in adult offspring. The expression of hippocampal glycogen synthase kinase-3s (GSK-3α, β), N-methyl-d-aspartic acid receptors (NMDARs)-2B and the hippocampal cell proliferation in dentate gyrus in the adult offspring during fear extinction were studied. Our results showed that PNS significantly reduced body weight of pups, indicating PNS might induce growth retardation in offspring. Moreover, PNS significantly enhanced the freezing behavior of offspring at the phase of extinction, suggesting PNS impaired the abilities of fear extinction learning. In addition, PNS significantly increased the levels of GSK-3α, β and NR2B, but reduced hippocampal cell proliferation during fear extinction. Taken together, our findings suggest that maternal stress during pregnancy can impair the fear extinction of adult offspring, probably by affecting the neural plasticity of brain.

  14. High-fructose diet in pregnancy leads to fetal programming of hypertension, insulin resistance, and obesity in adult offspring.

    PubMed

    Saad, Antonio F; Dickerson, Joshua; Kechichian, Talar B; Yin, Huaizhi; Gamble, Phyllis; Salazar, Ashley; Patrikeev, Igor; Motamedi, Massoud; Saade, George R; Costantine, Maged M

    2016-09-01

    gender. Maternal intake of high fructose leads to fetal programming of adult obesity, hypertension, and metabolic dysfunction, all risk factors for cardiovascular disease. This fetal programming is more pronounced in female offspring. Limiting intake of high fructose-enriched diets in pregnancy may have significant impact on long-term health. Published by Elsevier Inc.

  15. Chronic exposure to cigarette smoke during gestation results in altered cholinesterase enzyme activity and behavioral deficits in adult rat offspring: potential relevance to schizophrenia.

    PubMed

    Zugno, Alexandra I; Fraga, Daiane B; De Luca, Renata D; Ghedim, Fernando V; Deroza, Pedro F; Cipriano, Andreza L; Oliveira, Mariana B; Heylmann, Alexandra S A; Budni, Josiane; Souza, Renan P; Quevedo, João

    2013-06-01

    Prenatal cigarette smoke exposure (PCSE) has been associated with physiological and developmental changes that may be related to an increased risk for childhood and adult neuropsychiatric diseases. The present study investigated locomotor activity and cholinesterase enzyme activity in rats, following PCSE and/or ketamine treatment in adulthood. Pregnant female Wistar rats were exposed to 12 commercially filtered cigarettes per day for a period of 28 days. We evaluated motor activity and cholinesterase activity in the brain and serum of adult male offspring that were administered acute subanesthetic doses of ketamine (5, 15 and 25 mg/kg), which serves as an animal model of schizophrenia. To determine locomotor activity, we used the open field test. Cholinesterase activity was assessed by hydrolysis monitored spectrophotometrically. Our results show that both PCSE and ketamine treatment in the adult offspring induced increase of locomotor activity. Additionally, it was observed increase of acetylcholinesterase and butyrylcholinesterase activity in the brain and serum, respectively. We demonstrated that animals exposed to cigarettes in the prenatal period had increased the risk for psychotic symptoms in adulthood. This also occurs in a dose-dependent manner. These changes provoke molecular events that are not completely understood and may result in abnormal behavioral responses found in neuropsychiatric disorders, such as schizophrenia.

  16. Effects of rat odour and shelter on maternal behaviour in C57BL/6 dams and on fear and stress responses in their adult offspring.

    PubMed

    Coutellier, Laurence; Friedrich, Anne-Christin; Failing, Klaus; Marashi, Vera; Würbel, Hanno

    2008-06-09

    Recent studies in rats and mice suggest that developmental plasticity of HPA-stress and fear responses could be mediated by environment-dependent variations in maternal behaviour. The present study was designed to examine this question further by varying the adversity of the maternal environment to study its effects on nest-attendance and maternal care and on the HPA and fear responses in the adult offspring. C57BL/6 dams and their litter were housed in a cage system composed of a nest cage (NC) and a foraging cage (FC) connected by a tunnel. Using a 2 x 2 factorial design, we varied the maternal foraging environment (FC) by the presence or absence of rat odour (feces) and shelters (MouseHouse and tube) from postnatal days 1-14 and assessed the adult offspring's corticosterone response to isolation/novelty stress and their behaviour in three tests of fearfulness (elevated-O-maze, open-field, free exploration). While the presence of shelters in the FC reduced time spent in the NC (nest site attendance), the presence of rat odour in the FC increased active maternal care without altering nest site attendance. Alterations of the offspring's HPA and fear responses were rather subtle. The presence of shelters in the dam's foraging environment decreased fearfulness in the offspring in the free exploration test. In addition, males reared by dams exposed to rat odour were less fearful in the open-field test, and both males and females reared by dams without shelters and rat odour in the FC showed a greater corticosterone response to isolation/novelty stress. Multiple regression analysis indicated a negative relationship between maternal licking/grooming and fearfulness in males and a positive relationship between nest site attendance and fearfulness in females. Taken together, these results indicate that mouse dams adjust specific aspects of maternal behaviour in response to the specific properties of their environment, and that active maternal care and nest site attendance

  17. Variations in the postnatal maternal environment in mice: effects on maternal behaviour and behavioural and endocrine responses in the adult offspring.

    PubMed

    Coutellier, Laurence; Friedrich, Anne-Christin; Failing, Klaus; Würbel, Hanno

    2008-01-28

    According to the maternal mediation hypothesis, brain and behavioural development in rodents is affected by environment-dependent variations in maternal care. Thus, it has been shown that early handling results in reduced behavioural and neuroendocrine responses to stressors and that these effects are associated with increased maternal care received during infancy. To investigate this further in mice, we chose a less artificial paradigm that is not confounded by human manipulation and reflects a more natural form of early environmental variation. We housed lactating C57BL/6 dams and their litters in cage systems composed of a nest cage (NC) and a foraging cage (FC) connected by a tunnel, and varied the dams' access to food by providing food either in the NC (NC dams) or FC (FC dams) until postnatal day 14. FC dams were more frequently observed in the FC than NC dams, and although the frequency of the dams being in physical contact with the pups did not differ between the two treatments, FC dams showed lower levels of active nursing than NC dams during the first week of lactation. These environment-dependent variations in maternal behaviour had sex-specific effects on the adult offspring's behavioural and HPA responses to stressors and altered their social behaviour in the home cage, with NC offspring showing higher levels of socio-positive behaviours than FC offspring. These results provide further independent evidence for the maternal mediation hypothesis and demonstrate that even subtle variations of the maternal environment can affect maternal care and induce persistent changes in offspring phenotype.

  18. Maternal nicotine exposure during lactation alters food preference, anxiety-like behavior and the brain dopaminergic reward system in the adult rat offspring.

    PubMed

    Pinheiro, C R; Moura, E G; Manhães, A C; Fraga, M C; Claudio-Neto, S; Younes-Rapozo, V; Santos-Silva, A P; Lotufo, B M; Oliveira, E; Lisboa, P C

    2015-10-01

    The mesolimbic reward pathway is activated by drugs of abuse and palatable food, causing a sense of pleasure, which promotes further consumption of these substances. Children whose parents smoke are more vulnerable to present addictive-like behavior to drugs and food.We evaluated the association between maternal nicotine exposure during lactation with changes in feeding, behavior and in the dopaminergic reward system. On postnatal day (PN) 2,Wistar rat dams were implanted with minipumps releasing nicotine (N; 6 mg/kg/day, s.c.) or saline (C) for 14 days. On PN150 and PN160, offspring were divided into 4 groups for a food challenge: N and C that received standard chow(SC); and N and C that could freely self-select (SSD) between high-fat and high-sugar diets (HFD and HSD, respectively). Offspring were tested in the elevated plus maze (EPM) and open field (OF) arena on PN152–153. On PN170, offspring were euthanized for central dopaminergic analysis. SSD animals showed an increased food intake compared to SC ones and a preference for HFD. However, N-SSD animals consumed relatively more HSD than C-SSD ones. Regarding behavior, N animals showed an increase in the time spent in the EPM center and a reduction in relative activity in the OF center. N offspring presented lower dopamine receptor (D2R) and transporter (DAT) contents in the nucleus accumbens, and lower D2R in the arcuate nucleus. Postnatal exposure to nicotine increases preference for sugar and anxiety levels in the adult progeny possibly due to a decrease in dopaminergic action in the nucleus accumbens and arcuate nucleus.

  19. High-Fat Diet During Mouse Pregnancy and Lactation Targets GIP-Regulated Metabolic Pathways in Adult Male Offspring.

    PubMed

    Kruse, Michael; Keyhani-Nejad, Farnaz; Isken, Frank; Nitz, Barbara; Kretschmer, Anja; Reischl, Eva; de las Heras Gala, Tonia; Osterhoff, Martin A; Grallert, Harald; Pfeiffer, Andreas F H

    2016-03-01

    Maternal obesity is a worldwide problem associated with increased risk of metabolic diseases in the offspring. Genetic deletion of the gastric inhibitory polypeptide (GIP) receptor (GIPR) prevents high-fat diet (HFD)-induced obesity in mice due to specific changes in energy and fat cell metabolism. We investigated whether GIP-associated pathways may be targeted by fetal programming and mimicked the situation by exposing pregnant mice to control or HFD during pregnancy (intrauterine [IU]) and lactation (L). Male wild-type (WT) and Gipr(-/-) offspring received control chow until 25 weeks of age followed by 20 weeks of HFD. Gipr(-/-) offspring of mice exposed to HFD during IU/L became insulin resistant and obese and exhibited increased adipose tissue inflammation and decreased peripheral tissue substrate utilization after being reintroduced to HFD, similar to WT mice on regular chow during IU/L. They showed decreased hypothalamic insulin sensitivity compared with Gipr(-/-) mice on control diet during IU/L. DNA methylation analysis revealed increased methylation of CpG dinucleotides and differential transcription factor binding of promoter regions of genes involved in lipid oxidation in the muscle of Gipr(-/-) offspring on HFD during IU/L, which were inversely correlated with gene expression levels. Our data identify GIP-regulated metabolic pathways that are targeted by fetal programming. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight.

    PubMed

    Blackmore, Heather L; Niu, Youguo; Fernandez-Twinn, Denise S; Tarry-Adkins, Jane L; Giussani, Dino A; Ozanne, Susan E

    2014-10-01

    Obese pregnancies are not only associated with adverse consequences for the mother but also the long-term health of her child. Human studies have shown that individuals from obese mothers are at increased risk of premature death from cardiovascular disease (CVD), but are unable to define causality. This study aimed to determine causality using a mouse model of maternal diet-induced obesity. Obesity was induced in female C57BL/6 mice by feeding a diet rich in simple sugars and saturated fat 6 weeks prior to pregnancy and throughout pregnancy and lactation. Control females were fed laboratory chow. Male offspring from both groups were weaned onto chow and studied at 3, 5, 8, and 12 weeks of age for gross cardiac morphometry using stereology, cardiomyocyte cell area by histology, and cardiac fetal gene expression using qRT-PCR. Cardiac function was assessed by isolated Langendorff technology at 12 weeks of age and hearts were analyzed at the protein level for the expression of the β1 adrenergic receptor, muscarinic type-2 acetylcholine receptor, and proteins involved in cardiac contraction. Offspring from obese mothers develop pathologic cardiac hypertrophy associated with re-expression of cardiac fetal genes. By young adulthood these offspring developed severe systolic and diastolic dysfunction and cardiac sympathetic dominance. Importantly, cardiac dysfunction occurred in the absence of any change in corresponding body weight and despite the offspring eating a healthy low-fat diet. These findings provide a causal link to explain human observations relating maternal obesity with premature death from CVD in her offspring.

  1. Adult offspring of high-fat diet-fed dams can have normal glucose tolerance and body composition.

    PubMed

    Platt, K M; Charnigo, R J; Pearson, K J

    2014-06-01

    Maternal high-fat diet consumption and obesity have been shown to program long-term obesity and lead to impaired glucose tolerance in offspring. Many rodent studies, however, use non-purified, cereal-based diets as the control for purified high-fat diets. In this study, primiparous ICR mice were fed purified control diet (10-11 kcal% from fat of lard or butter origin) and lard (45 or 60 kcal% fat) or butter (32 or 60 kcal% fat)-based high-fat diets for 4 weeks before mating, throughout pregnancy, and for 2 weeks of nursing. Before mating, female mice fed the 32 and 60% butter-based high-fat diets exhibited impaired glucose tolerance but those females fed the lard-based diets showed normal glucose disposal following a glucose challenge. High-fat diet consumption by female mice of all groups decreased lean to fat mass ratios during the 4th week of diet treatment compared with those mice consuming the 10-11% fat diets. All females were bred to male mice and pregnancy and offspring outcomes were monitored. The body weight of pups born to 45% lard-fed dams was significantly increased before weaning, but only female offspring born to 32% butter-fed dams exhibited long-term body weight increases. Offspring glucose tolerance and body composition were measured for at least 1 year. Minimal, if any, differences were observed in the offspring parameters. These results suggest that many variables should be considered when designing future high-fat diet feeding and maternal obesity studies in mice.

  2. Long-term effect of maternal obesity on pancreatic beta cells of offspring: reduced beta cell adaptation to high glucose and high-fat diet challenges in adult female mouse offspring.

    PubMed

    Han, J; Xu, J; Epstein, P N; Liu, Y Qi

    2005-09-01

    Obesity is a global problem with high risks of cardiovascular diseases, stroke and type 2 diabetes. It is well known that maternal obesity affects offspring by inducing malformation, functional abnormalities in many organs and cells, and by increased risk of obesity and type 2 diabetes. However, little is known about abnormalities induced by maternal obesity in pancreatic beta cells of offspring. We used mouse mothers with the Agouti yellow modification on a C57BL/6 background as a maternal model of normoglycaemic obesity, and produced Agouti-negative offspring. Half of the offspring were fed a high-fat diet. Offspring glucose tolerance was tested at different ages, and animals were killed at 50 weeks of age for islet function analysis. Maternal obesity impaired glucose tolerance in female offspring fed a high-fat diet, and significantly reduced insulin secretion at 50 weeks of age in female offspring that had been fed a normal diet and high-fat diet. Insulin secretion and glucose potentiation from these islets were significantly reduced. Islet protein, DNA and insulin contents were increased while glyceraldehyde-3-phosphate dehydrogenase and transketolase activities were reduced in female offspring. Our results indicate that maternal obesity has a long-term effect on the beta cells of female, but not of male, offspring, and leads to increased risk of gestational diabetes and type 2 diabetes in the offspring's later lives.

  3. Associations of Maternal Pre-Pregnancy Body Mass Index and Gestational Weight Gain with Adult Offspring Cardio-Metabolic Risk Factors: The Jerusalem Perinatal Family Follow-up Study

    PubMed Central

    Hochner, Hagit; Friedlander, Yechiel; Calderon-Margalit, Ronit; Meiner, Vardiella; Sagy, Yael; Avgil-Tsadok, Meytal; Burger, Ayala; Savitsky, Bella; Siscovick, David S.; Manor, Orly

    2012-01-01

    Background Accumulating evidence demonstrates that both maternal pre-pregnancy body mass index (mppBMI) and gestational weight gain (GWG) are associated with adult offspring adiposity. However, whether these maternal attributes are related to other cardio-metabolic risk factors in adulthood has not been comprehensively studied. Methods and Results We used a birth cohort of 1400 young adults born in Jerusalem, with extensive archival data as well as clinical information at age 32, to prospectively examine the associations of mppBMI and GWG with adiposity and related cardio-metabolic outcomes. Greater mppBMI, independent of GWG and confounders, was significantly associated with higher offspring BMI, waist circumference (WC), systolic and diastolic BP, insulin and triglycerides and with lower HDL-C. For example, the effect sizes were translated to nearly 5kg/m2 higher mean BMI, 8.4cm higher WC, 0.13mmol/L (11.4mg/dL) higher triglycerides and 0.10mmol/L (3.8mg/dL) lower HDL-C among offspring of mothers within the upper mppBMI quartile (BMI>26.4kg/m2) compared to the lower (BMI<21.0kg/m2). GWG, independent of mppBMI, was positively associated with offspring adiposity; differences of 1.6kg/m2 in BMI and 2.4cm in waist were observed when offspring of mothers in the upper (GWG>14kg) and lower (GWG<9kg) quartiles of GWG were compared. Further adjustment for offspring adiposity attenuated to null the observed associations. Conclusions Maternal size both before and during pregnancy are associated with cardio-metabolic risk factors in young adult offspring. The associations appear to be driven mainly by offspring adiposity. Future studies that explore mechanisms underlying the intergenerational cycle of obesity are warranted to identify potentially novel targets for cardio-metabolic risk-reduction interventions. PMID:22344037

  4. Interesterified fat or palm oil as substitutes for partially hydrogenated fat in maternal diet can predispose obesity in adult male offspring.

    PubMed

    Magri, Tatiana P R; Fernandes, Flávia S; Souza, Amanda S; Langhi, Larissa G P; Barboza, Thiago; Misan, Vanessa; Mucci, Daniela B; Santos, Raísa M; Nunes, Thaiza F; Souza, Sergio A L; de Mello Coelho, Valéria; Tavares do Carmo, Maria das Graças

    2015-10-01

    Palm oil (PO) and interesterified fat (IF) have been used to replace partially hydrogenated fat (PHF), which is rich in trans isomers, in processed foods. The purpose of this study was to investigate whether normolipidic diets containing PHF, IF, or PO consumed during pregnancy and lactation affect total body adiposity and adipose tissue morphology of adult offspring mice. Four groups of female C57BL/6 mice were fed, during pregnancy and lactation, a control diet (control group, CG), a PHF diet (trans group, TG), a PO diet (PG group), or an IF diet (IG group). After weaning (at 21 days), male pups received the control diet for 70 days. Food intake and body weight were monitored in all groups throughout the experimental period. At 3 months of age, mice were sacrificed and the inguinal (IWAT), epididymal (EWAT), retroperitoneal (RPWAT), and mesenteric (MWAT) adipose fat pads were removed and weighed. Adiposity was quantified by micro computed tomography (micro-CT), and adipocyte areas and cell number were analyzed by histology. PG and IG offspring gained more weight than CG and TG groups (p < 0.01) during the first 10 weeks after weaning, resulting in higher final body weights (p < 0.05). IG mice and PG mice had respectively heavier EWAT and IWAT than TG and CG mice. Micro-CT scanning revealed that the total volumes of internal, external, and total fat depots were greater in IG animals, as compared to the other groups. Larger adipocyte areas were observed in EWAT and IWAT in IG and TG, respectively, in comparison to CG and PG mice. PG mice showed increased adipocyte numbers in IWAT. Maternal intake of IF and/or PO during pregnancy and lactation predisposes the offspring to the development of obesity in adult life in mice. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Gestational N-hexane inhalation alters the expression of genes related to ovarian hormone production and DNA methylation states in adult female F1 rat offspring.

    PubMed

    Li, Hong; Zhang, Chenyun; Ni, Feng; Guo, Suhua; Wang, Wenxiang; Liu, Jing; Lu, Xiaoli; Huang, Huiling; Zhang, Wenchang

    2015-12-15

    Research has revealed that n-hexane can disrupt adult female endocrine functions; however, few reports have focused on endocrine changes in adult F1 females after maternal exposure during gestation. In this study, female Wistar rats inhaled 100, 500, 2500, or 12,500 ppm n-hexane for 4 h daily during their initial 20 gestational days. The F1 female offspring exhibited abnormal oestrus cycles. Compared with the controls, the in vitro-cultured ovarian granulosa cells of the 12,500 ppm group showed significantly reduced in vitro progesterone and oestradiol secretion. Elevated progesterone secretion was observed in the 500 ppm group, and decreased and significantly upregulated mRNA expression of the Star, Cyp11a1, Cyp17a1, and Hsd3b genes was observed in the 12,500 ppm and 500 ppm groups, respectively. The protein expression levels were consistent with the mRNA expression levels. Methylation screening of the promoter regions of these genes was performed using MeDIP-chip and confirmed by methylation-sensitive high-resolution melting (MS-HRM), and the observed methylation state changes of the promoter regions were correlated with the gene expression levels. The results suggest that the hormone levels in the female offspring after gestational n-hexane inhalation correspond to the expression levels and DNA methylation states of the hormone production genes.

  6. Offspring, 1995.

    ERIC Educational Resources Information Center

    Offspring, 1995

    1995-01-01

    These two 1995 issues of the journal "Offspring," a publication of the Michigan Council of Cooperative Nursery Schools, cover a variety of topics familiar to nursery school and day care providers including the mission of the publication. Articles are short pieces useful to practitioners and are frequently accompanied by classroom activities.…

  7. Offspring, 1996.

    ERIC Educational Resources Information Center

    Rosenthal, Marilynn, Ed.; And Others

    1996-01-01

    These two 1996 issues of the journal "Offspring," a publication of the Michigan Council of Cooperative Nursery Schools, cover a variety of topics familiar to nursery school and day care providers and pertinent to the mission of the publication. Articles are short pieces useful to parents, teachers, and others and aim to provide a forum…

  8. Existence of infective juveniles in the offspring of first- and second-generation adults of Steinernema rarum (OLI strain): evaluation of their virulence.

    PubMed

    Cagnolo, Susana R; Donari, Yanina M; Di Rienzo, Julio A

    2004-01-01

    Descriptions of the life cycle of the genus Steinernema do not consider the production of infective juveniles (IJs) by the first-generation developed within the insect host when more than one generation develops. We demonstrated IJ production by first- and second-generation adults of Steinernema rarum (OLI strain), evaluated their virulence and compared virulence and morphometric characters between the two IJ forms. Our results demonstrated not only the presence of IJs in the offspring of first- and second-generation adults but also a greater virulence of first-generation IJs. Both types of IJs also differed in five morphometric characters. According to our results, a population of IJs emerging from a host cadaver has individuals of two generations with different characteristics; hence, they should not be considered the same. These generational differences may be exploited, for example, for biocontrol purposes, by using a specific generation of IJs for inoculative release.

  9. Maternal nutrient restriction during early fetal kidney development attenuates the renal innate inflammatory response in obese young adult offspring.

    PubMed

    Sharkey, Don; Gardner, David S; Symonds, Michael E; Budge, Helen

    2009-11-01

    Obesity is an independent risk factor for developing chronic kidney disease. Toll-like receptor 4 (TLR4), interleukin (IL)-18, and uncoupling protein 2 (UCP2) are important components of the innate immune system mediating inflammatory renal damage. Early to midgestation maternal nutrient restriction appears to protect the kidney from the deleterious effects of early onset obesity, although the mechanisms remain unclear. We examined the combined effects of gestational maternal nutrient restriction during early fetal kidney development and early onset obesity on the renal innate immune response in offspring. Pregnant sheep were randomly assigned to a normal (control, 100%) or nutrient-restricted (NR, 50%) diet from days 30 to 80 gestation and 100% thereafter. Offspring were killed humanely at 7 days or, following rearing in an obesogenic environment, at 1 yr of age, and renal tissues were collected. IL-18 and TLR4 expression were strongly correlated irrespective of intervention. Seven-day NR offspring had significantly lower relative renal mass and IL-18 mRNA expression. At 1 yr of age, obesity resulted in increased mRNA abundance of TLR4, IL-18, and UCP2, coupled with tubular atrophy and greater immunohistological staining of glomerular IL-6 and medullary tumor necrosis factor (TNF)-alpha. NR obese offspring had a marked reduction of TLR4 abundance and renal IL-6 staining. In conclusion, maternal nutrient restriction during early fetal kidney development attenuates the effects of early onset obesity-related nephropathy, in part, through the downregulation of the innate inflammatory response. A better understanding of maternal nutrition and the in utero nutritional environment may offer therapeutic strategies aimed at reducing the burden of later kidney disease.

  10. Psychosocial maternal stress during pregnancy affects serum corticosterone, blood immune parameters and anxiety behaviour in adult male rat offspring.

    PubMed

    Götz, Alexander A; Stefanski, Volker

    2007-01-30

    Exposure to prenatal stress can impair the behavioural and hormonal development in mammals. However, the consequences for the immune system are rarely investigated and there is only limited evidence that naturalistic prenatal stressors do also have the potential to affect the offspring. Thus, by using a social conflict model in female Long-Evans rats, we investigated the effects of prenatal social stress on several behavioural, hormonal and immunological parameters. Offspring from stressed and non-stressed pregnant females were housed in pairs after weaning, and tested at an age of 4-6 months. Prenatally stressed (PS) males were more active in the elevated plus-maze test as indicated by significantly more frequent entries into the open arms compared to prenatal control males (PC). In addition, PS males had significantly lower serum corticosterone concentrations under basal conditions as well as after ACTH-challenge. The basal number of total leukocytes was significantly lower in the PS group due to significantly lower lymphocyte counts. In particular, the CD4+ T-helper cell subset was affected. The lymphocyte proliferation to pokeweed mitogen was lower in PS males. Because some of the present findings do not correspond to previous studies using conventional stressors, we assume that the nature of the stressor plays an important role for pregnancy outcome and behaviour and physiology of the offspring in later life.

  11. Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain.

    PubMed

    Hoekman, Marco F M; Jacobs, Frank M J; Smidt, Marten P; Burbach, J Peter H

    2006-01-01

    In order to obtain leads to molecular mechanisms of signal transduction pathways and controlled gene expression in neuronal development we have screened the adult mouse brain for expressed forkhead transcription factors using a degenerate RT-PCR approach. Here, we focus on three FoxO genes found to be expressed in the brain: FoxO1, FoxO3 and FoxO6. The FoxO subfamily of forkhead transcription family is emerging as a central keypoint in an array of cellular functions, such as metabolism, differentiation and transformation. In situ hybridization experiments on adult and embryonic mouse brain showed differential expression patterns for three FoxO members. FoxO1 was strongly expressed in the striatum and neuronal subsets of the hippocampus (dentate gyrus and the ventral/posterior part of the CA regions), whereas FoxO3 was more diffusely expressed throughout the brain including all hippocampal areas, cortex and cerebellum. FoxO6 expression was eminent in various parts of the adult mouse brain, including the entire hippocampus, the amygdalohippocampal area and the shell of the nucleus accumbens. Remarkably, all three FoxO transcription factors were expressed relatively late in the developing murine brain, starting between E12.5 and E14. In summary, the presented data show FoxO factors to be expressed in the adult and developing mouse brain, in a spatially end temporally restricted manner.

  12. Effects of nutritional supplementation during pregnancy on early adult disease risk: follow up of offspring of participants in a randomised controlled trial investigating effects of supplementation on infant birth weight.

    PubMed

    Macleod, John; Tang, Lie; Hobbs, F D Richard; Wharton, Brian; Holder, Roger; Hussain, Shakir; Nichols, Linda; Stewart, Paul; Clark, Penny; Luzio, Steve; Holly, Jeff; Smith, George Davey

    2013-01-01

    Observational evidence suggests that improving fetal growth may improve adult health. Experimental evidence from nutritional supplementation trials undertaken amongst pregnant women in the less developed world does not show strong or consistent effects on adult disease risk and no trials from the more developed world have previously been reported. To test the hypothesis that nutritional supplementation during pregnancy influences offspring disease risk in adulthood. Clinical assessment of a range of established diseases risk markers in young adult offspring of 283 South Asian mothers who participated in two trials of nutritional supplementation during pregnancy (protein/energy/vitamins; energy/vitamins or vitamins only) at Sorrento Maternity Hospital in Birmingham UK either unselected or selected on the basis of nutritional status. 236 (83%) offspring were traced and 118 (50%) of these were assessed in clinic. Protein/energy/vitamins supplementation amongst undernourished mothers was associated with increased infant birthweight. Nutritional supplementation showed no strong association with any one of a comprehensive range of markers of adult disease risk and no consistent pattern of association with risk across markers in offspring of either unselected or undernourished mothers. We found no evidence that nutritional supplements given to pregnant women are an important influence on adult disease risk however our study lacked power to estimate small effects. Our findings do not provide support for a policy of nutritional supplementation for pregnant women as an effective means to improve adult health in more developed societies.

  13. Effects of Nutritional Supplementation during Pregnancy on Early Adult Disease Risk: Follow Up of Offspring of Participants in a Randomised Controlled Trial Investigating Effects of Supplementation on Infant Birth Weight

    PubMed Central

    Macleod, John; Tang, Lie; Hobbs, F. D. Richard; Wharton, Brian; Holder, Roger; Hussain, Shakir; Nichols, Linda; Stewart, Paul; Clark, Penny; Luzio, Steve; Holly, Jeff; Davey Smith, George

    2013-01-01

    Background Observational evidence suggests that improving fetal growth may improve adult health. Experimental evidence from nutritional supplementation trials undertaken amongst pregnant women in the less developed world does not show strong or consistent effects on adult disease risk and no trials from the more developed world have previously been reported. Objective To test the hypothesis that nutritional supplementation during pregnancy influences offspring disease risk in adulthood Design Clinical assessment of a range of established diseases risk markers in young adult offspring of 283 South Asian mothers who participated in two trials of nutritional supplementation during pregnancy (protein/energy/vitamins; energy/vitamins or vitamins only) at Sorrento Maternity Hospital in Birmingham UK either unselected or selected on the basis of nutritional status. Results 236 (83%) offspring were traced and 118 (50%) of these were assessed in clinic. Protein/energy/vitamins supplementation amongst undernourished mothers was associated with increased infant birthweight. Nutritional supplementation showed no strong association with any one of a comprehensive range of markers of adult disease risk and no consistent pattern of association with risk across markers in offspring of either unselected or undernourished mothers. Conclusions We found no evidence that nutritional supplements given to pregnant women are an important influence on adult disease risk however our study lacked power to estimate small effects. Our findings do not provide support for a policy of nutritional supplementation for pregnant women as an effective means to improve adult health in more developed societies. PMID:24349496

  14. Both food restriction and high-fat diet during gestation induce low birth weight and altered physical activity in adult rat offspring: the "Similarities in the Inequalities" model.

    PubMed

    Cunha, Fábio da Silva; Dalle Molle, Roberta; Portella, André Krumel; Benetti, Carla da Silva; Noschang, Cristie; Goldani, Marcelo Zubaran; Silveira, Patrícia Pelufo

    2015-01-01

    We have previously described a theoretical model in humans, called "Similarities in the Inequalities", in which extremely unequal social backgrounds coexist in a complex scenario promoting similar health outcomes in adulthood. Based on the potential applicability of and to further explore the "similarities in the inequalities" phenomenon, this study used a rat model to investigate the effect of different nutritional backgrounds during gestation on the willingness of offspring to engage in physical activity in adulthood. Sprague-Dawley rats were time mated and randomly allocated to one of three dietary groups: Control (Adlib), receiving standard laboratory chow ad libitum; 50% food restricted (FR), receiving 50% of the ad libitum-fed dam's habitual intake; or high-fat diet (HF), receiving a diet containing 23% fat. The diets were provided from day 10 of pregnancy until weaning. Within 24 hours of birth, pups were cross-fostered to other dams, forming the following groups: Adlib_Adlib, FR_Adlib, and HF_Adlib. Maternal chow consumption and weight gain, and offspring birth weight, growth, physical activity (one week of free exercise in running wheels), abdominal adiposity and biochemical data were evaluated. Western blot was performed to assess D2 receptors in the dorsal striatum. The "similarities in the inequalities" effect was observed on birth weight (both FR and HF groups were smaller than the Adlib group at birth) and physical activity (both FR_Adlib and HF_Adlib groups were different from the Adlib_Adlib group, with less active males and more active females). Our findings contribute to the view that health inequalities in fetal life may program the health outcomes manifested in offspring adult life (such as altered physical activity and metabolic parameters), probably through different biological mechanisms.

  15. Maternal hypoxia increases the susceptibility of adult rat male offspring to high-fat diet-induced nonalcoholic fatty liver disease.

    PubMed

    Su, Yi-Ming; Lv, Guo-Rong; Xie, Jing-Xian; Wang, Zhen-Hua; Lin, Hui-Tong

    2013-11-01

    Exposure to an adverse intrauterine environment increases the risk for adult metabolic syndrome. However, the influence of prenatal hypoxia on the risk of fatty liver disease in offspring is unclear. The purpose of the present study was to evaluate the role of reduced fetal oxygen on the development and severity of high-fat (HF) diet-induced nonalcoholic fatty liver disease (NAFLD). Based on design implicating 2 factors, ie, maternal hypoxia (MH) and postnatal HF diet, blood lipid and insulin levels, hepatic histology, and potential molecular targets were evaluated in male Sprague Dawley rat offspring. MH associated with postnatal HF diet caused a significant increase in plasma concentration of triglycerides, free fatty acids, low-density lipoprotein cholesterol, and insulin. Histologically, a more severe form of NAFLD with hepatic inflammation, hepatic resident macrophage infiltration, and progression toward nonalcoholic steatohepatitis was observed. The lipid homeostasis changes and insulin resistance caused by MH plus HF were accompanied by a significant down-regulation of insulin receptor substrate 2 (IRS-2), phosphoinositide-3 kinase p110 catalytic subunit, and protein kinase B. In MH rats, insulin-stimulated IRS-2 and protein kinase B (AKT) phosphorylation were significantly blunted as well as insulin suppression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Meanwhile, a significant up-regulation of lipogenic pathways was noticed, including sterol-regulatory element-binding protein-1 and fatty acid synthase in liver. Our results indicate that maternal hypoxia enhances dysmetabolic liver injury in response to an HF diet. Therefore, the offspring born in the context of maternal hypoxia may require special attention and follow-up to prevent the early development of NAFLD.

  16. Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring.

    PubMed

    Powers, Brian E; Kelley, Christy M; Velazquez, Ramon; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J

    2017-01-06

    The Ts65Dn mouse model of Down syndrome (DS) and Alzheimer's disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12-17months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NBM/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD.

  17. Early free access to hypertonic NaCl solution induces a long-term effect on drinking, brain cell activity and gene expression of adult rat offspring.

    PubMed

    Macchione, A F; Beas, C; Dadam, F M; Caeiro, X E; Godino, A; Ponce, L F; Amigone, J L; Vivas, L

    2015-07-09

    Exposure to an altered osmotic environment during a pre/postnatal period can differentially program the fluid intake and excretion pattern profile in a way that persists until adulthood. However, knowledge about the programming effects on the underlying brain neurochemical circuits of thirst and hydroelectrolyte balance, and its relation with behavioral outputs, is limited. We evaluated whether early voluntary intake of hypertonic NaCl solution may program adult offspring fluid balance, plasma vasopressin, neural activity, and brain vasopressin and angiotensinergic receptor type 1a (AT1a)-receptor gene expression. The manipulation (M) period covered dams from 1 week before conception until offspring turned 1-month-old. The experimental groups were (i) Free access to hypertonic NaCl solution (0.45 M NaCl), food (0.18% NaCl) and water [M-Na]; and (ii) Free access to food and water only [M-Ctrol]. Male offspring (2-month-old) were subjected to iv infusion (0.15 ml/min) of hypertonic (1.5M NaCl), isotonic (0.15M NaCl) or sham infusion during 20 min. Cumulative water intake (140 min) and drinking latency to the first lick were recorded from the start of the infusion. Our results indicate that, after systemic sodium overload, the M-Na group had increased water intake, and diminished neuronal activity (Fos-immunoreactivity) in the subfornical organ (SFO) and nucleus of the solitary tract. They also showed reduced relative vasopressin (AVP)-mRNA and AT1a-mRNA expression at the supraoptic nucleus and SFO, respectively. The data indicate that the availability of a rich source of sodium during the pre/postnatal period induces a long-term effect on drinking, neural activity, and brain gene expression implicated in the control of hydroelectrolyte balance.

  18. Maternal protein restriction during gestation and lactation in the rat results in increased brain levels of kynurenine and kynurenic acid in their adult offspring.

    PubMed

    Honório de Melo Martimiano, Paula; de Sa Braga Oliveira, André; Ferchaud-Roucher, Véronique; Croyal, Mikaël; Aguesse, Audrey; Grit, Isabelle; Ouguerram, Khadija; Lopes de Souza, Sandra; Kaeffer, Bertrand; Bolaños-Jiménez, Francisco

    2017-01-01

    Early malnutrition is a risk factor for depression and schizophrenia. Since the offspring of malnourished dams exhibit increased brain levels of serotonin (5-HT), a tryptophan-derived neurotransmitter involved in the pathophysiology of these mental disorders, it is believed that the deleterious effects of early malnutrition on brain function are due in large part to altered serotoninergic neurotransmission resulting from impaired tryptophan (Trp) metabolism. However, tryptophan is also metabolized through the kynurenine (KYN) pathway yielding several neuroactive compounds including kynurenic (KA), quinolinic (QA) and xanthurenic (XA) acids. Nevertheless, the impact of perinatal malnutrition on brain kynurenine pathway metabolism has not been examined to date. Here, we used ultra-performance liquid chromatography-tandem mass spectrometry for the simultaneous quantification of tryptophan and a set of seven compounds spanning its metabolism through the serotonin and kynurenine pathways, in the brain of embryos and adult offspring of rat dams fed a protein-restricted (PR) diet. Protein-restricted embryos showed reduced brain levels of Trp, serotonin and KA, but not of KYN, XA, or QA. In contrast, PR adult rats exhibited enhanced levels of Trp in the brainstem and cortex along with increased concentrations of 5-HT, kynurenine and XA. The levels of XA and KA were also increased in the hippocampus of adult PR rats. These results show that early protein deficiency induces selective and long-lasting changes in brain kynurenine metabolism. Given the regulatory role of KYN pathway metabolites on brain development and function, these changes might contribute to the risk of developing psychiatric disorders induced by early malnutrition. © 2016 International Society for Neurochemistry.

  19. Role of cannabinoidergic mechanisms in ethanol self-administration and ethanol seeking in rat adult offspring following perinatal exposure to {delta}{sup 9}-tetrahydrocannabinol

    SciTech Connect

    Economidou, Daina; Mattioli, Laura; Ubaldi, Massimo; Lourdusamy, Anbarasu; Soverchia, Laura; Hardiman, Gary; Campolongo, Patrizia; Cuomo, Vincenzo; Ciccocioppo, Roberto

    2007-08-15

    The present study evaluated the consequences of perinatal {delta}{sup 9}-tetrahydrocannabinol ({delta}{sup 9}-THC) treatment (5 mg/kg/day by gavage), either alone or combined with ethanol (3% v/v as the only fluid available), on ethanol self-administration and alcohol-seeking behavior in rat adult offspring. Furthermore, the effect of the selective cannabinoid CB{sub 1} receptor antagonist, SR-141716A, on ethanol self-administration and on reinstatement of ethanol-seeking behavior induced either by stress or conditioned drug-paired cues was evaluated in adult offspring of rats exposed to the same perinatal treatment. Lastly, microarray experiments were conducted to evaluate if perinatal treatment with {delta}{sup 9}-tetrahydrocannabinol, ethanol or their combination causes long-term changes in brain gene expression profile in rats. The results of microarray data analysis showed that 139, 112 and 170 genes were differentially expressed in the EtOH, {delta}{sup 9}-THC, or EtOH + {delta}{sup 9}-THC group, respectively. No differences in alcohol self-administration and alcohol seeking were observed between rat groups. Intraperitoneal (IP) administration of SR-141716A (0.3-3.0 mg/kg) significantly reduced lever pressing for ethanol and blocked conditioned reinstatement of alcohol seeking. At the same doses SR-141716A failed to block foot-shock stress-induced reinstatement of alcohol seeking. The results reveal that perinatal exposure to {delta}{sup 9}-THC ethanol or their combination results in evident changes in gene expression patterns. However, these treatments do not significantly affect vulnerability to ethanol abuse in adult offspring. On the other hand, the results obtained with SR-141716A emphasize that endocannabinoid mechanisms play a major role in ethanol self-administration, as well as in the reinstatement of ethanol-seeking behavior induced by conditioned cues, supporting the idea that cannabinoid CB{sub 1} receptor antagonists may represent interesting

  20. Protective effect of Euterpe oleracea Mart (açaí) extract on programmed changes in the adult rat offspring caused by maternal protein restriction during pregnancy.

    PubMed

    de Bem, Graziele Freitas; da Costa, Cristiane Aguiar; de Oliveira, Paola Raquel Braz; Cordeiro, Viviane Silva Cristino; Santos, Izabelle Barcellos; de Carvalho, Lenize Costa Reis Marins; Souza, Marcelo Augusto Vieira; Ognibene, Dayane Texeira; Daleprane, Julio Beltrame; Sousa, Pergentino José Cunha; Resende, Angela Castro; de Moura, Roberto Soares

    2014-09-01

    This study examined the effect of açaí (Euterpe oleracea Mart.) seed extract (ASE) on cardiovascular and renal alterations in adult offspring, whose mothers were fed a low-protein (LP) diet during pregnancy. Four groups of rats were fed: control diet (20% protein); ASE (200 mg/kg per day); and LP (6% protein); LP + ASE (6% protein + ASE) during pregnancy. After weaning, all male offspring were fed a control diet and sacrificed at 4 months old. We evaluated the blood pressure, vascular function, serum and urinary parameters, plasma and kidney oxidative damage, and antioxidant activity and renal structural changes. Hypertension and the reduced acetylcholine-induced vasodilation in the LP group were prevented by ASE. Serum levels of urea, creatinine and fractional excretion of sodium were increased in LP and reduced in LP + ASE. ASE improved nitrite levels and the superoxide dismutase and glutathione peroxidase activity in LP, with a corresponding decrease of malondialdehyde and protein carbonyl levels. Kidney volume and glomeruli number were reduced and glomerular volume was increased in LP. These renal alterations were prevented by ASE. Treatment of protein-restricted dams with ASE provides protection from later-life hypertension, oxidative stress, renal functional and structural changes, probably through a vasodilator and antioxidant activity. © 2014 Royal Pharmaceutical Society.

  1. Prenatal omega 3 fatty acid supplementation to a micronutrient imbalanced diet protects brain neurotrophins in both the cortex and hippocampus in the adult rat offspring.

    PubMed

    Sable, Pratiksha S; Kale, Anvita A; Joshi, Sadhana R

    2013-11-01

    Our earlier studies show that maternal diets imbalanced in micronutrients like folic acid and vitamin B12 reduced brain docosahexaenoic acid (DHA) and brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the offspring at birth and postnatal d21. This study followed the offspring till 3 months to examine the hypothesis that impaired brain neurotrophins at birth and d21 due to altered maternal micronutrients can be reversed by prenatal omega 3 fatty acid but not a postnatal control diet leading to altered cognition in adult life. Pregnant rats were divided into control and five treatment groups at two levels of folic acid (normal and excess folate) in the presence and absence of vitamin B12 (NFBD, EFB and EFBD). Omega 3 fatty acid supplementation was given to the vitamin B12 deficient groups (NFBDO and EFBDO). Following delivery, 8 dams from each group were shifted to control and remaining continued on same diet. Imbalance in maternal micronutrients up to 3months decreased DHA, BDNF and NGF in cortex and only BDNF in the hippocampus and impaired cognitive performance. Postnatal control diet normalized BDNF in the cortex but not the hippocampus and also altered cognitive performance. Prenatal omega 3 fatty acid supplementation normalized DHA, BDNF and NGF while long term supplementation was not beneficial only when micronutrients were imbalanced. Patterns established at birth are not totally reversible by postnatal diets and give clues for planning intervention studies for improving brain functioning and cognitive abilities. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis.

    PubMed

    López-Hidalgo, Rosa; Ballestín, Raul; Vega, Jessica; Blasco-Ibáñez, José M; Crespo, Carlos; Gilabert-Juan, Javier; Nácher, Juan; Varea, Emilio

    2016-01-01

    Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5'BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5'BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice.

  3. The role of depression in the differential effect of childhood parental divorce on male and female adult offspring suicide attempt risk.

    PubMed

    Lizardi, Dana; Thompson, Ronald G; Keyes, Katherine; Hasin, Deborah

    2010-09-01

    In previous studies by our group, we found that female offspring of parental divorce and parental remarriage are more susceptible to suicide attempt than male offspring. In this study, we examine whether these findings remain even after controlling for offspring depression. The sample consists of respondents from the 2001-2002 National Epidemiologic Survey on Alcohol and Related Conditions. Multivariable regressions controlled for offspring depression, parental depression, age, race/ethnicity, income, and marital status. Our previous findings that female offspring of parental divorce and parental remarriage are more likely to report a lifetime suicide attempt than male offspring remained even after controlling for offspring depression. Findings suggest that focusing on engaging female offspring who demonstrate symptoms of depression is not sufficient to reduce suicide attempt risk in this group as many at risk individuals will remain unrecognized.

  4. Concurrent maternal and pup postnatal tobacco smoke exposure in Wistar rats changes food preference and dopaminergic reward system parameters in the adult male offspring.

    PubMed

    Pinheiro, C R; Moura, E G; Manhães, A C; Fraga, M C; Claudio-Neto, S; Abreu-Villaça, Y; Oliveira, E; Lisboa, P C

    2015-08-20

    Children from pregnant smokers are more susceptible to become obese adults and to become drug or food addicts. Drugs and food activate the mesolimbic reward pathway, causing a sense of pleasure that induces further consumption. Here, we studied the relationship between tobacco smoke exposure during lactation with feeding, behavior and brain dopaminergic reward system parameters at adulthood. Nursing Wistar rats and their pups were divided into two groups: tobacco smoke-exposed (S: 4times/day, from the 3rd to the 21th day of lactation), and ambient air-exposed (C). On PN175, both offspring groups were subdivided for a food challenge: S and C that received standard chow (SC) or that chose between high-fat (HFD) and high-sucrose diets (HSDs). Food intake was recorded after 30min and 12h. Offspring were tested in the elevated plus maze and open field on PN178-179; they were euthanized for dopaminergic analysis on PN180. SSD (self-selected diet) animals presented a higher food intake compared to SC ones. S-SSD animals ate more than C-SSD ones at 30min and 12h. Both groups preferred the HFD. However, S-SSD animals consumed relatively more HFD than C-SSD at 30min. No behavioral differences were observed between groups. S animals presented lower tyrosine hydroxylase (TH) content in the ventral tegmental area, lower TH, dopaminergic receptor 2, higher dopaminergic receptor 1 contents in the nucleus accumbens and lower OBRb in hypothalamic arcuate nucleus. Tobacco-smoke exposure during lactation increases preference for fat in the adult progeny possibly due to alterations in the dopaminergic system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. A maternal high fat diet programmes endothelial function and cardiovascular status in adult male offspring independent of body weight, which is reversed by maternal conjugated linoleic acid (CLA) supplementation.

    PubMed

    Gray, Clint; Vickers, Mark H; Segovia, Stephanie A; Zhang, Xiaohuan D; Reynolds, Clare M

    2015-01-01

    Maternal high fat intake during pregnancy and lactation can result in obesity and adverse cardio-metabolic status in offspring independent of postnatal diet. While it is clear that maternal high fat intake can cause hypertension in adult offspring, there is little evidence regarding the role of dietary interventions in terms of reversing these adverse effects. Conjugated linoleic acid (CLA) is an omega 6 fatty acid with beneficial effects in obesity and metabolic status. However, the impact of CLA supplementation in the context of pregnancy disorders and high fat diet-induced developmental programming of offspring cardio-metabolic dysfunction has not been investigated. We have utilised a model of maternal overnutrition to examine the effects of CLA supplementation on programmed endothelial dysfunction during adulthood. Female Sprague-Dawley rats were fed either a purified control diet (CON) or purified control diet supplemented with 1% CLA (of total fat), a purified high fat (HF) diet (45%kcal from fat) and a purified HF diet supplemented with 1% CLA (of total fat) (HFCLA). All dams were fed ad libitum throughout pregnancy and lactation. Offspring were fed a standard chow diet from weaning (day 21) until the end of the study (day 150). Systolic blood pressure (SBP) was measured at day 85 and 130 by tail cuff plethysmography. At day 150, offspring mesenteric vessels were mounted on a pressure myograph and vascular responses to agonist-induced constriction and endothelium-dependent vasodilators were investigated. SBP was increased at day 85 and 130 in HF and HFCLA adult male offspring compared to CON and CLA groups with no effect of CLA supplementation. An overall effect of a maternal HF diet was observed in adult male vessels with a reduced vasoconstrictor response to phenylephrine and blunted vasodilatory response to acetylcholine (ACh). Furthermore, HF and HFCLA offspring displayed a reduction in nitric oxide pathway function and an increased compensatory EDHF

  6. A Maternal High Fat Diet Programmes Endothelial Function and Cardiovascular Status in Adult Male Offspring Independent of Body Weight, Which is Reversed by Maternal Conjugated Linoleic Acid (CLA) Supplementation

    PubMed Central

    Gray, Clint; Vickers, Mark H.; Segovia, Stephanie A.; Zhang, Xiaohuan D.; Reynolds, Clare M.

    2015-01-01

    Maternal high fat intake during pregnancy and lactation can result in obesity and adverse cardio-metabolic status in offspring independent of postnatal diet. While it is clear that maternal high fat intake can cause hypertension in adult offspring, there is little evidence regarding the role of dietary interventions in terms of reversing these adverse effects. Conjugated linoleic acid (CLA) is an omega 6 fatty acid with beneficial effects in obesity and metabolic status. However, the impact of CLA supplementation in the context of pregnancy disorders and high fat diet-induced developmental programming of offspring cardio-metabolic dysfunction has not been investigated. We have utilised a model of maternal overnutrition to examine the effects of CLA supplementation on programmed endothelial dysfunction during adulthood. Female Sprague-Dawley rats were fed either a purified control diet (CON) or purified control diet supplemented with 1% CLA (of total fat), a purified high fat (HF) diet (45%kcal from fat) and a purified HF diet supplemented with 1% CLA (of total fat) (HFCLA). All dams were fed ad libitum throughout pregnancy and lactation. Offspring were fed a standard chow diet from weaning (day 21) until the end of the study (day 150). Systolic blood pressure (SBP) was measured at day 85 and 130 by tail cuff plethysmography. At day 150, offspring mesenteric vessels were mounted on a pressure myograph and vascular responses to agonist-induced constriction and endothelium-dependent vasodilators were investigated. SBP was increased at day 85 and 130 in HF and HFCLA adult male offspring compared to CON and CLA groups with no effect of CLA supplementation. An overall effect of a maternal HF diet was observed in adult male vessels with a reduced vasoconstrictor response to phenylephrine and blunted vasodilatory response to acetylcholine (ACh). Furthermore, HF and HFCLA offspring displayed a reduction in nitric oxide pathway function and an increased compensatory EDHF

  7. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation.

    PubMed Central

    Burns, S P; Desai, M; Cohen, R D; Hales, C N; Iles, R A; Germain, J P; Going, T C; Bailey, R A

    1997-01-01

    Maternal protein restriction is a model of fetal programming of adult glucose intolerance. Perfused livers of 48-h- starved adult offspring of rat dams fed 8% protein diets during pregnancy and lactation produced more glucose from 6 mM lactate than did control livers from rats whose dams were fed 20% protein. In control livers, a mean of 24% of the glucose formed from lactate in the periportal region of the lobule was taken up by the most distal perivenous cells; this distal perivenous uptake was greatly diminished in maternal low protein (MLP) livers, accounting for a major fraction of the increased glucose output of MLP livers. In control livers, the distal perivenous cells contained 40% of the total glucokinase of the liver; this perivenous concentration of glucokinase was greatly reduced in MLP livers. Intralobular distribution of phosphenolpyruvate carboxykinase was unaltered, though overall increased activity could have contributed to the elevated glucose output. Hepatic lobular volume in MLP livers was twice that in control livers, indicating that MLP livers had half the normal number of lobules. Fetal programming of adult glucose metabolism may operate partly through structural alterations and changes in glucokinase expression in the immediate perivenous region. PMID:9312176

  8. A New and Fast Technique to Generate Offspring after Germ Cells Transplantation in Adult Fish: The Nile Tilapia (Oreochromis niloticus) Model

    PubMed Central

    Lacerda, Samyra M. S. N.; Batlouni, Sergio R.; Costa, Guilherme M. J.; Segatelli, Tânia M.; Quirino, Bruno R.; Queiroz, Bruno M.; Kalapothakis, Evanguedes; França, Luiz R.

    2010-01-01

    Background Germ cell transplantation results in fertile recipients and is the only available approach to functionally investigate the spermatogonial stem cell biology in mammals and probably in other vertebrates. In the current study, we describe a novel non-surgical methodology for efficient spermatogonial transplantation into the testes of adult tilapia (O. niloticus), in which endogenous spermatogenesis had been depleted with the cytostatic drug busulfan. Methodology/Principal Findings Using two different tilapia strains, the production of fertile spermatozoa with donor characteristics was demonstrated in adult recipient, which also sired progeny with the donor genotype. Also, after cryopreservation tilapia spermatogonial cells were able to differentiate to spermatozoa in the testes of recipient fishes. These findings indicate that injecting germ cells directly into adult testis facilitates and enable fast generation of donor spermatogenesis and offspring compared to previously described methods. Conclusion Therefore, a new suitable methodology for biotechnological investigations in aquaculture was established, with a high potential to improve the production of commercially valuable fish, generate transgenic animals and preserve endangered fish species. PMID:20505774

  9. Expression and localization of laminin 5, laminin 10, type IV collagen, and amelotin in adult murine gingiva.

    PubMed

    Sawada, Takashi; Yamazaki, Takaki; Shibayama, Kazuko; Kumazawa, Kaido; Yamaguchi, Yoko; Ohshima, Mitsuhiro

    2014-06-01

    The biochemical composition of the internal and external basal laminae in the junctional epithelium differs significantly, and the precise cellular origin of their respective molecules remains to be determined. In the present study, the expression and localization of three basement membrane-specific molecules-laminin 5 (γ2 chain), type IV collagen (α1 chain), and laminin 10 (α5 chain)-and one tooth-specific molecule, amelotin, was analyzed in adult murine gingiva by using in situ hybridization and immunohistochemistry. The results showed that the outermost cells in junctional epithelium facing the tooth enamel strongly expressed laminin 5 mRNA, supporting the immunohistochemical staining data. This suggests that laminin 5 is actively synthesized in junctional epithelial cells and that the products are incorporated into the internal basal lamina to maintain firm epithelial adhesion to the tooth enamel throughout life. Conversely, no amelotin mRNA signals were detected in the junctional epithelial cells, suggesting that the molecules localized on the internal basal lamina are mainly derived from maturation-stage ameloblasts. Weak and sporadic expression of type IV collagen in addition to laminin 10 in the gingiva indicates that these molecules undergo turnover less frequently in adult animals.

  10. Regulation of haematopoietic stem cell proliferation by stimulatory factors produced by murine fetal and adult liver.

    PubMed Central

    Dawood, K A; Briscoe, C V; Thomas, D B; Riches, A C

    1990-01-01

    Haematopoietic stem cells in murine fetal liver are in a proliferative state unlike those in normal bone marrow which are quiescent. A regulatory activity is produced by cells in the fetal liver which will switch quiescent normal bone marrow haematopoietic stem cells into cell cycle in vitro. This regulator from Day 15 fetal liver cells is produced by adherent cells and by cells fractionated on a Percoll gradient in the 1.064 and 1.076 g per cm3 density bands but not in the 1.123 g per cm3 band. Colony-stimulating factor cannot be detected in the supernatants containing the stem cell regulatory activity. The stimulator can be detected in supernatants produced from cell suspensions of liver cells at Day 15 and Day 17 of gestation and 24 hours and 72 hours after birth. However by 1 week after birth the production of the stimulator decreases and is undetectable 3 and 10 weeks after birth. The total numbers of haematopoietic stem cells (CFU-S) in fetal liver decrease from Day 15 of gestation and only small numbers are present 1 week after birth. Thus the decline in the production of haematopoietic stem cell proliferation stimulator correlates with the decrease in haematopoietic stem cell numbers in the liver through gestation and after birth. PMID:2323992

  11. A maternal diet of fatty fish reduces body fat of offspring compared with a maternal diet of beef and a post-weaning diet of fish improves insulin sensitivity and lipid profile in adult C57BL/6 male mice.

    PubMed

    Hussain, A; Nookaew, I; Khoomrung, S; Andersson, L; Larsson, I; Hulthén, L; Jansson, N; Jakubowicz, R; Nilsson, S; Sandberg, A-S; Nielsen, J; Holmäng, A

    2013-11-01

    The maternal diet during pregnancy and lactation may affect the long-term health of the offspring. Our aim was to study how a fish or meat diet perinatal and after weaning affects body composition, insulin sensitivity and the profile of n-3 and n-6 polyunsaturated fatty acids (PUFAs) in breast milk, fat depots, skeletal muscle and liver in male adult mice offspring. During gestation and lactation, C57BL/6 dams were fed a herring- or beef-based diet. Half of the pups in each group changed diets after weaning. In offspring, body composition measured by DEXA, plasma lipid profile and insulin sensitivity measured by euglycemic clamp or QUICKI were monitored to adulthood. Analysis of total FAs by GC-MS were performed in the diet, breast milk and in different tissues. At 9 week of age, offspring of herring-fed dams had less body fat than offspring of beef-fed dams. Mice fed herring after weaning had increased insulin sensitivity at 15 week of age, reduced total plasma cholesterol and triglyceride levels, and compared with beef-fed mice, larger interscapular brown adipose tissue depots. The FA composition of the maternal diet was mirrored in breast milk, and the herring diet significantly affected the FA profile of different tissues, leading to an increased content of n-3 PUFAs. A herring-based maternal diet reduces body fat in the offspring, but the insulin sensitivity, plasma lipids and amount of brown adipose tissue are affected by the offspring's own diet; the herring diet is more beneficial than the beef diet. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  12. Duloxetine prevents the effects of prenatal stress on depressive-like and anxiety-like behavior and hippocampal expression of pro-inflammatory cytokines in adult male offspring rats.

    PubMed

    Zhang, Xiaosong; Wang, Qi; Wang, Yan; Hu, Jingmin; Jiang, Han; Cheng, Wenwen; Ma, Yuchao; Liu, Mengxi; Sun, Anji; Zhang, Xinxin; Li, Xiaobai

    2016-12-01

    Stress during pregnancy may cause neurodevelopmental and psychiatric disorders. However, the mechanisms are largely unknown. Currently, pro-inflammatory cytokines have been identified as a risk factor for depression and anxiety disorder. Unfortunately, there is very little research on the long-term effects of prenatal stress on the neuroinflammatory system of offspring. Moreover, the relationship between antidepressant treatment and cytokines in the central nervous system, especially in the hippocampus, an important emotion modulation center, is unclear. Therefore, the aim of this study was to determine the effects of prenatal chronic mild stress during development on affective-like behaviors and hippocampal cytokines in adult offspring, and to verify whether antidepressant (duloxetine) administration from early adulthood could prevent the harmful consequences. To do so, prenatally stressed and non-stressed Sprague-Dawley rats were treated with either duloxetine (10mg/kg/day) or vehicle from postnatal day 60 for 21days. Adult offspring were divided into four groups: 1) prenatal stress+duloxetine treatment, 2) prenatal stress+vehicle, 3) duloxetine treatment alone, and 4) vehicle alone. Adult offspring were assessed for anxiety-like behavior using the open field test and depression-like behavior using the forced swim test. Brains were analyzed for pro-inflammatory cytokine markers in the hippocampus via real-time PCR. Results demonstrate that prenatal stress-induced anxiety- and depression-like behaviors are associated with an increase in hippocampal inflammatory mediators, and duloxetine administration prevents the increased hippocampal pro-inflammatory cytokine interleukin-6 and anxiety- and depression-like behavior in prenatally stressed adult offspring. This research provides important evidence on the long-term effect of PNS exposure during development in a model of maternal adversity to study the pathogenesis of depression and its therapeutic interventions

  13. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT₂A and mGlu₂ receptors in the adult offspring.

    PubMed

    Moreno, José L; Kurita, Mitsumasa; Holloway, Terrell; López, Javier; Cadagan, Richard; Martínez-Sobrido, Luis; García-Sastre, Adolfo; González-Maeso, Javier

    2011-02-02

    Epidemiological studies indicate that maternal influenza viral infection increases the risk for schizophrenia in the adult offspring. The serotonin and glutamate systems are suspected in the etiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. The effects of hallucinogens, such as psilocybin and mescaline, require the serotonin 5-HT(2A) receptor, and induce schizophrenia-like psychosis in humans. In addition, metabotropic glutamate receptor mGlu(2/3) agonists show promise as a new treatment for schizophrenia. Here, we investigated the level of expression and behavioral function of 5-HT(2A) and mGlu(2) receptors in a mouse model of maternal influenza viral infection. We show that spontaneous locomotor activity is diminished by maternal infection with the mouse-adapted influenza A/WSN/33 (H1N1) virus. The behavioral responses to hallucinogens and glutamate antipsychotics are both affected by maternal exposure to influenza virus, with increased head-twitch response to hallucinogens and diminished antipsychotic-like effect of the glutamate agonist. In frontal cortex of mice born to influenza virus-infected mothers, the 5-HT(2A) receptor is upregulated and the mGlu(2) receptor is downregulated, an alteration that may be involved in the behavioral changes observed. Additionally, we find that the cortical 5-HT(2A) receptor-dependent signaling pathways are significantly altered in the offspring of infected mothers, showing higher c-fos, egr-1, and egr-2 expression in response to the hallucinogenic drug DOI. Identifying a biochemical alteration that parallels the behavioral changes observed in a mouse model of prenatal viral infection may facilitate targeting therapies for treatment and prevention of schizophrenia.

  14. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT2A and mGlu2 receptors in the adult offspring

    PubMed Central

    Moreno, José L.; Kurita, Mitsumasa; Holloway, Terrell; López, Javier; Cadagan, Richard; Martínez-Sobrido, Luis; García-Sastre, Adolfo; González-Maeso, Javier

    2011-01-01

    Epidemiological studies indicate that maternal influenza viral infection increases the risk for schizophrenia in the adult offspring. The serotonin and glutamate systems are suspected in the etiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. The effects of hallucinogens, such as psilocybin and mescaline, require the serotonin 5-HT2A receptor, and induce schizophrenia-like psychosis in humans. In addition, metabotropic glutamate receptor mGlu2/3 agonists show promise as a new treatment for schizophrenia. Here, we investigated the level of expression and behavioral function of 5-HT2A and mGlu2 receptors in a mouse model of maternal influenza viral infection. We show that spontaneous locomotor activity is diminished by maternal infection with the mouse-adapted influenza A/WSN/33 (H1N1) virus. The behavioral responses to hallucinogens and glutamate antipsychotics are both affected by maternal exposure to influenza virus, with increased head-twitch response to hallucinogens and diminished antipsychotic-like effect of the glutamate agonist. In frontal cortex of mice born to influenza virus-infected mothers, the 5-HT2A receptor is up-regulated and the mGlu2 receptor is down-regulated, an alteration that may be involved in the behavioral changes observed. Additionally, we find that the cortical 5-HT2A receptor-dependent signaling pathways are significantly altered in the offspring of infected mothers, showing higher c-fos, egr-1 and egr-2 expression in response to the hallucinogenic drug DOI. Identifying a biochemical alteration that parallels the behavioral changes observed in a mouse model of prenatal viral infection may facilitate targeting therapies for treatment and prevention of schizophrenia. PMID:21289196

  15. Offspring of parents who were separated and not speaking to one another have reduced resistance to the common cold as adults.

    PubMed

    Murphy, Michael L M; Cohen, Sheldon; Janicki-Deverts, Denise; Doyle, William J

    2017-06-20

    Exposure to parental separation or divorce during childhood has been associated with an increased risk for physical morbidity during adulthood. Here we tested the hypothesis that this association is primarily attributable to separated parents who do not communicate with each other. We also examined whether early exposure to separated parents in conflict is associated with greater viral-induced inflammatory response in adulthood and in turn with increased susceptibility to viral-induced upper respiratory disease. After assessment of their parents' relationship during their childhood, 201 healthy volunteers, age 18-55 y, were quarantined, experimentally exposed to a virus that causes a common cold, and monitored for 5 d for the development of a respiratory illness. Monitoring included daily assessments of viral-specific infection, objective markers of illness, and local production of proinflammatory cytokines. Adults whose parents lived apart and never spoke during their childhood were more than three times as likely to develop a cold when exposed to the upper respiratory virus than adults from intact families. Conversely, individuals whose parents were separated but communicated with each other showed no increase in risk compared with those from intact families. These differences persisted in analyses adjusted for potentially confounding variables (demographics, current socioeconomic status, body mass index, season, baseline immunity to the challenge virus, affectivity, and childhood socioeconomic status). Mediation analyses were consistent with the hypothesis that greater susceptibility to respiratory infectious illness among the offspring of noncommunicating parents was attributable to a greater local proinflammatory response to infection.

  16. Maternal investment, life-history strategy of the offspring and adult chronic disease risk in South Asian women in the UK

    PubMed Central

    Wells, Jonathan C.K.; Yao, Pallas; Williams, Jane E; Gayner, Rebecca

    2016-01-01

    Background and objectives: Patterns of development predict cardiovascular disease (CVD) risk, and ethnic differences therein, but it remains unclear why apparently ‘adaptive plasticity’ in early life should generate health costs in later life. We hypothesized that offspring receiving low maternal investment during fetal life, the primary period of organogenesis, should predict a shorter reproductive career and develop a fast life-history strategy, prioritizing reproduction over growth and homeostatic maintenance. Methodology: We studied 58 young adult South Asian women living in the UK, a group with high susceptibility to CVD. We obtained gestational age, birth weight (BW) and menarcheal age by recall and measured anthropometry, body composition, resting metabolic rate (RMR) and blood pressure (BP). Results: BW and gestational age were inversely associated with menarcheal age, indicating that lower maternal investment is associated with faster maturation. Menarcheal age was positively associated with height but inversely with adiposity, indicating that rapid maturation prioritizes lipid stores over somatic growth. BW was inversely associated with BP, whereas adiposity was positively associated, indicating that lower maternal investment reduces BP homeostasis. BW was positively associated with RMR, whereas menarche was inversely associated, indicating that maternal investment influences adult metabolism. Conclusions and implications: Supporting our hypothesis, low maternal investment promoted faster life histories, demonstrated by earlier menarche, reduced growth and elevated adiposity. These traits were associated with poorer BP regulation. This is the first study demonstrating strategic adjustment of the balance between reproduction and metabolic health in response to the level of maternal investment during fetal life. PMID:26988862

  17. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis

    PubMed Central

    López-Hidalgo, Rosa; Ballestín, Raul; Vega, Jessica; Blasco-Ibáñez, José M.; Crespo, Carlos; Gilabert-Juan, Javier; Nácher, Juan; Varea, Emilio

    2016-01-01

    Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5′BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5′BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice

  18. Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats

    PubMed Central

    Hallam, Megan C.; Reimer, Raylene A.

    2016-01-01

    The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS) diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF) had lower body weight and adiposity than animals re-matched to a high protein (HP) or control (C) diet and also had increased levels of the satiety hormones GLP-1 and PYY (p < 0.05). Control animals, whether maintained throughout the study on AIN-93M, or continued on HFS rather than reverting back to AIN-93M, did not differ from each other in body weight or adiposity. Overall, the HF diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones). The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation. PMID:26784224

  19. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring

    PubMed Central

    Khalil, Omari S; Pisar, Mazura; Forrest, Caroline M; Vincenten, Maria C J; Darlington, L Gail; Stone, Trevor W

    2014-01-01

    Glutamate receptors for N-methyl-d-aspartate (NMDA) are involved in early brain development. The kynurenine pathway of tryptophan metabolism includes the NMDA receptor agonist quinolinic acid and the antagonist kynurenic acid. We now report that prenatal inhibition of the pathway in rats with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulphonamide (Ro61-8048) produces marked changes in hippocampal neuron morphology, spine density and the immunocytochemical localisation of developmental proteins in the offspring at postnatal day 60. Golgi–Cox silver staining revealed decreased overall numbers and lengths of CA1 basal dendrites and secondary basal dendrites, together with fewer basal dendritic spines and less overall dendritic complexity in the basal arbour. Fewer dendrites and less complexity were also noted in the dentate gyrus granule cells. More neurons containing the nuclear marker NeuN and the developmental protein sonic hedgehog were detected in the CA1 region and dentate gyrus. Staining for doublecortin revealed fewer newly generated granule cells bearing extended dendritic processes. The number of neuron terminals staining for vesicular glutamate transporter (VGLUT)-1 and VGLUT-2 was increased by Ro61-8048, with no change in expression of vesicular GABA transporter or its co-localisation with vesicle-associated membrane protein-1. These data support the view that constitutive kynurenine metabolism normally plays a role in early embryonic brain development, and that interfering with it has profound consequences for neuronal structure and morphology, lasting into adulthood. PMID:24646396

  20. Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats.

    PubMed

    Hallam, Megan C; Reimer, Raylene A

    2016-01-14

    The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS) diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF) had lower body weight and adiposity than animals re-matched to a high protein (HP) or control (C) diet and also had increased levels of the satiety hormones GLP-1 and PYY (p < 0.05). Control animals, whether maintained throughout the study on AIN-93M, or continued on HFS rather than reverting back to AIN-93M, did not differ from each other in body weight or adiposity. Overall, the HF diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones). The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation.

  1. Interaction of recalled parental ADHD symptoms and rearing behavior with current attachment and emotional dysfunction in adult offspring with ADHD.

    PubMed

    Edel, Marc-Andreas; Juckel, Georg; Brüne, Martin

    2010-06-30

    Research into attachment and emotion regulation has shown that children with ADHD are at risk of developing attachment disorders and emotion regulation disturbances, which in part may be due to the rearing style of their parents. No such data exists for adults with persistent ADHD. We hypothesized that current attachment style and emotion processing of adult patients with ADHD may be influenced by the presence of parental ADHD symptoms when the now adult patients were children, assuming that ADHD symptoms of parents have an impact on their parenting style. We examined recalled parental ADHD symptoms and rearing style as well as current attachment and emotion regulation abilities in a sample of 73 adults with ADHD using several self-rating instruments. Recalled prevalence of ADHD symptoms in the mother, and less so in the father, of adult patients with ADHD was significantly associated with partly adverse parental rearing styles, current attachment problems in romantic partnerships and emotion regulation disturbances compared with adult ADHD patients without possibly affected parent. ADHD symptoms in parents of children with ADHD may present a risk factor for attachment problems and poor emotion regulation when ADHD children are grown.

  2. Strain-dependent protective effect of adult thymectomy on murine infection by Mycobacterium lepraemurium.

    PubMed Central

    Bach, M A; Hoffenbach, A

    1987-01-01

    C57BL/6, DBA/2, BALB/c and CBA mice were thymectomized as adults, or sham-thymectomized, and infected subcutaneously with 10(6) MLM. The number of MLM in the spleen and in the inoculated footpad was measured after 1 year of infection as well as the DTH reactions and the IgM and IgG antibody levels to MLM. Non-thymectomized mice exhibited a broad spectrum of resistance to MLM infection and of T cell mediated immunity grading from the highly resistant C57BL/6 strain to the highly susceptible CBA strain. In between, DBA/2 was found more resistant than BALB/c mice. Adult thymectomy reduced by 100 times the MLM number in the spleen of infected DBA/2 mice, without affecting that measured in the inoculated footpad, and significantly decreased DTH reaction in the same strain. No effect of adult thymectomy was observed in any other strain, except for an increase of anti MLM antibodies in BALB/c mice. These results may suggest that the medium-resistant DBA/2 strain develops after MLM infection suppressor T cells which favour MLM dissemination and are sensitive to adult. PMID:2958188

  3. Ablating hedgehog signaling in tenocytes during development impairs biomechanics and matrix organization of the adult murine patellar tendon enthesis.

    PubMed

    Breidenbach, Andrew P; Aschbacher-Smith, Lindsey; Lu, Yinhui; Dyment, Nathaniel A; Liu, Chia-Feng; Liu, Han; Wylie, Chris; Rao, Marepalli; Shearn, Jason T; Rowe, David W; Kadler, Karl E; Jiang, Rulang; Butler, David L

    2015-08-01

    Restoring the native structure of the tendon enthesis, where collagen fibers of the midsubstance are integrated within a fibrocartilaginous structure, is problematic following injury. As current surgical methods fail to restore this region adequately, engineers, biologists, and clinicians are working to understand how this structure forms as a prerequisite to improving repair outcomes. We recently reported on the role of Indian hedgehog (Ihh), a novel enthesis marker, in regulating early postnatal enthesis formation. Here, we investigate how inactivating the Hh pathway in tendon cells affects adult (12-week) murine patellar tendon (PT) enthesis mechanics, fibrocartilage morphology, and collagen fiber organization. We show that ablating Hh signaling resulted in greater than 100% increased failure insertion strain (0.10 v. 0.05 mm/mm, p<0.01) as well as sub-failure biomechanical deficiencies. Although collagen fiber orientation appears overtly normal in the midsubstance, ablating Hh signaling reduces mineralized fibrocartilage by 32%, leading to less collagen embedded within mineralized tissue. Ablating Hh signaling also caused collagen fibers to coalesce at the insertion, which may explain in part the increased strains. These results indicate that Ihh signaling plays a critical role in the mineralization process of fibrocartilaginous entheses and may be a novel therapeutic to promote tendon-to-bone healing. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Cross-sectional association of dietary patterns with insulin resistance phenotypes among adults without diabetes in the Framingham Offspring Study

    PubMed Central

    Liu, Enju; McKeown, Nicola M.; Newby, PK; Meigs, James B.; Vasan, Ramachandran S.; Quatromoni, Paula A.; D'Agostino, Ralph B.; Jacques, Paul F.

    2013-01-01

    Cluster analysis is a valuable tool for exploring the health consequences of consuming different dietary patterns. We used this approach to examine the cross-sectional relationship between dietary patterns and insulin resistance phenotypes, including waist circumference, body mass index (BMI), fasting insulin, 2-h post-challenge insulin, insulin sensitivity index (ISI0,120), HDL cholesterol, triacylglycerol and blood pressure, using data from the fifth examination cycle of the Framingham Offspring Study. Among 2,875 participants without diabetes, we identified four dietary patterns based on the predominant sources of energy: “Fruits, Reduced Fat Dairy and Whole Grains”, “Refined Grains and Sweets”, “Beer”, and “Soda”. After adjusting for multiple comparisons and potential confounders, compared with the “Fruits, Reduced Fat Dairy and Whole Grains” pattern, the “Refined Grains and Sweets” pattern had significantly higher mean waist circumference (92.4 versus 90.5 cm, P=0.008) and BMI (27.3 versus 26.6 kg/m2, P=0.02); the “Soda” pattern had significantly higher mean fasting insulin concentration (31.3 versus 28.0 μU/ml, P≤0.001); the “Beer” pattern had significantly higher mean HDL cholesterol concentration (1.46 versus 1.31 mmol/l, P<0.001). No associations were observed between dietary patterns and ISI0,120, triacylglycerol, and systolic or diastolic blood pressure. Our findings suggest that consumption of a diet rich in fruits, vegetables, whole grains and reduced fat dairy protects against insulin resistance phenotypes and displacing these healthy choices with refined grains, high fat dairy, sweet baked foods, candy and sugar sweetened soda promotes insulin resistant phenotypes. PMID:19216828

  5. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells

    PubMed Central

    Kabiri, Zahra; Numata, Akihiko; Kawasaki, Akira; Tenen, Daniel G.

    2015-01-01

    Wnt signaling controls early embryonic hematopoiesis and dysregulated β-catenin is implicated in leukemia. However, the role of Wnts and their source in adult hematopoiesis is still unclear, and is clinically important as upstream Wnt inhibitors enter clinical trials. We blocked Wnt secretion in hematopoietic lineages by targeting Porcn, a membrane-bound O-acyltransferase that is indispensable for the activity and secretion of all vertebrate Wnts. Surprisingly, deletion of Porcn in Rosa-CreERT2/PorcnDel, MX1-Cre/PorcnDel, and Vav-Cre/PorcnDel mice had no effects on proliferation, differentiation, or self-renewal of adult hematopoietic stem cells. Targeting Wnt secretion in the bone marrow niche by treatment with a PORCN inhibitor, C59, similarly had no effect on hematopoiesis. These results exclude a role for hematopoietic PORCN-dependent Wnts in adult hematopoiesis. Clinical use of upstream Wnt inhibitors is not likely to be limited by effects on hematopoiesis. PMID:26089398

  6. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung.

    PubMed

    Lappalainen, Urpo; Whitsett, Jeffrey A; Wert, Susan E; Tichelaar, Jay W; Bry, Kristina

    2005-04-01

    The production of the inflammatory cytokine interleukin (IL)-1 is increased in lungs of patients with chronic obstructive pulmonary disease (COPD) or asthma. To characterize the in vivo actions of IL-1 in the lung, transgenic mice were generated in which human IL-1beta was expressed in the lung epithelium with a doxycycline-inducible system controlled by the rat Clara cell secretory protein (CCSP) promoter. Induction of IL-1beta expression in the lungs of adult mice caused pulmonary inflammation characterized by neutrophil and macrophage infiltrates. IL-1beta caused distal airspace enlargement, consistent with emphysema. IL-1beta caused disruption of elastin fibers in alveolar septa and fibrosis in airway walls and in the pleura. IL-1beta increased the thickness of conducting airways, enhanced mucin production, and caused lymphocytic aggregates in the airways. Decreased immunostaining for the winged helix transcription factor FOXA2 was associated with goblet cell hyperplasia in IL-1beta-expressing mice. The production of the neutrophil attractant CXC chemokines KC (CXCL1) and MIP-2 (CXCL2), and of matrix metalloproteases MMP-9 and MMP-12, was increased by IL-1beta. Chronic production of IL-1beta in respiratory epithelial cells of adult mice causes lung inflammation, enlargement of distal airspaces, mucus metaplasia, and airway fibrosis in the adult mouse.

  7. Carbohydrate-related dietary factors and plasma adiponectin levels in healthy adults in the Framingham Offspring Cohort

    USDA-ARS?s Scientific Manuscript database

    Diet may influence circulating adiponectin levels by improving insulin sensitivity. We examined the associations between carbohydrate-related dietary factors and plasma adiponectin levels in healthy adults aged 26–81 y (n= 979 men and 1227 women). Dietary intakes were assessed using a FFQ. Fasting...

  8. Exposure to a Highly Caloric Palatable Diet during the Perinatal Period Affects the Expression of the Endogenous Cannabinoid System in the Brain, Liver and Adipose Tissue of Adult Rat Offspring.

    PubMed

    Ramírez-López, María Teresa; Arco, Raquel; Decara, Juan; Vázquez, Mariam; Noemí Blanco, Rosario; Alén, Francisco; Suárez, Juan; Gómez de Heras, Raquel; Rodríguez de Fonseca, Fernando

    2016-01-01

    Recent studies have linked gestational exposure to highly caloric diets with a disrupted endogenous cannabinoid system (ECS). In the present study, we have extended these studies by analyzing the impact of the exposure to a palatable diet during gestation and lactation on a) the adult expression of endocannabinoid-related behaviors, b) the metabolic profile of adult offspring and c) the mRNA expression of the signaling machinery of the ECS in the hypothalamus, the liver and the adipose tissue of adult offspring of both sexes. Exposure to a palatable diet resulted in a) sex-dimorphic and perinatal diet specific feeding behaviors, including the differential response to the inhibitory effects of the cannabinoid receptor inverse agonist AM251, b) features of metabolic syndrome including increased adiposity, hyperleptinemia, hypertriglyceridemia and hypercholesterolemia and c) tissue and sex-specific changes in the expression of both CB1 and CB2 receptors and in that of the endocannabinoid-degrading enzymes FAAH and MAGL, being the adipose tissue the most affected organ analyzed. Since the effects were observed in adult animals that were weaned while consuming a normal diet, the present results indicate that the ECS is one of the targets of maternal programming of the offspring energy expenditure. These results clearly indicate that the maternal diet has long-term effects on the development of pups through multiple alterations of signaling homeostatic pathways that include the ECS. The potential relevance of these alterations for the current obesity epidemic is discussed.

  9. Exposure to a Highly Caloric Palatable Diet during the Perinatal Period Affects the Expression of the Endogenous Cannabinoid System in the Brain, Liver and Adipose Tissue of Adult Rat Offspring

    PubMed Central

    Ramírez-López, María Teresa; Arco, Raquel; Decara, Juan; Vázquez, Mariam; Noemí Blanco, Rosario; Alén, Francisco; Suárez, Juan; Gómez de Heras, Raquel

    2016-01-01

    Recent studies have linked gestational exposure to highly caloric diets with a disrupted endogenous cannabinoid system (ECS). In the present study, we have extended these studies by analyzing the impact of the exposure to a palatable diet during gestation and lactation on a) the adult expression of endocannabinoid-related behaviors, b) the metabolic profile of adult offspring and c) the mRNA expression of the signaling machinery of the ECS in the hypothalamus, the liver and the adipose tissue of adult offspring of both sexes. Exposure to a palatable diet resulted in a) sex-dimorphic and perinatal diet specific feeding behaviors, including the differential response to the inhibitory effects of the cannabinoid receptor inverse agonist AM251, b) features of metabolic syndrome including increased adiposity, hyperleptinemia, hypertriglyceridemia and hypercholesterolemia and c) tissue and sex-specific changes in the expression of both CB1 and CB2 receptors and in that of the endocannabinoid-degrading enzymes FAAH and MAGL, being the adipose tissue the most affected organ analyzed. Since the effects were observed in adult animals that were weaned while consuming a normal diet, the present results indicate that the ECS is one of the targets of maternal programming of the offspring energy expenditure. These results clearly indicate that the maternal diet has long-term effects on the development of pups through multiple alterations of signaling homeostatic pathways that include the ECS. The potential relevance of these alterations for the current obesity epidemic is discussed. PMID:27806128

  10. Unexpected Long-Term Protection of Adult Offspring Born to High-Fat Fed Dams against Obesity Induced by a Sucrose-Rich Diet

    PubMed Central

    Couvreur, Odile; Ferezou, Jacqueline; Gripois, Daniel; Serougne, Colette; Crépin, Delphine; Aubourg, Alain; Gertler, Arieh; Vacher, Claire-Marie; Taouis, Mohammed

    2011-01-01

    Background Metabolic and endocrine environment during early life is crucial for metabolic imprinting. When dams were fed a high fat diet (HF diet), rat offspring developed hypothalamic leptin resistance with lean phenotype when weaned on a normal diet. Interestingly, when grown on the HF diet, they appeared to be protected against the effects of HF diet as compared to offspring of normally fed dams. The mechanisms involved in the protective effect of maternal HF diet are unclear. Methodology/Principal Findings We thus investigated the impact of maternal high fat diet on offspring subjected to normal or high palatable diet (P diet) on metabolic and endocrine parameters. We compared offspring born to dams fed P or HF diet. Offspring born to dams fed control or P diet, when fed P diet exhibited a higher body weight, altered hypothalamic leptin sensitivity and metabolic parameters suggesting that maternal P diet has no protective effect on offspring. Whereas, maternal HF diet reduces body weight gain and circulating triglycerides, and ameliorates corpulence index of offspring, even when subjected to P diet. Interestingly, this protective effect is differently expressed in male and female offspring. Male offspring exhibited higher energy expenditure as mirrored by increased hypothalamic UCP-2 and liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus astrocytic organization. In female offspring, the most striking impact of maternal HF diet is the reduced hypothalamic expression of NPY and POMC. Conclusions/Significance HF diet given during gestation and lactation protects, at least partially, offspring from excessive weight gain through several mechanisms depending upon gender including changes in arcuate nucleus astrocytic organization and increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and reduced hypothalamic expression of NPY and POMC in females. Taken together our results reveal new mechanisms involved in the protective

  11. Differential vascular permeability along the forebrain ventricular neurogenic niche in the adult murine brain.

    PubMed

    Colín-Castelán, Dannia; Ramírez-Santos, Jesús; Gutiérrez-Ospina, Gabriel

    2016-02-01

    Adult neurogenesis is influenced by blood-borne factors. In this context, greater or lesser vascular permeability along neurogenic niches would expose differentially neural stem cells (NSCs), transit amplifying cells (TACs), and neuroblasts to such factors. Here we evaluate endothelial cell morphology and vascular permeability along the forebrain neurogenic niche in the adult brain. Our results confirm that the subventricular zone (SVZ) contains highly permeable, discontinuous blood vessels, some of which allow the extravasation of molecules larger than those previously reported. In contrast, the rostral migratory stream (RMS) and the olfactory bulb core (OBc) display mostly impermeable, continuous blood vessels. These results imply that NSCs, TACs, and neuroblasts located within the SVZ are exposed more readily to blood-borne molecules, including those with very high molecular weights, than those positioned along the RMS and the OBc, subregions in which every stage of neurogenesis also takes place. These observations suggest that the existence of specialized vascular niches is not a precondition for neurogenesis to occur; specialized vascular beds might be essential for keeping high rates of proliferation and/or differential differentiation of neural precursors located at distinct domains. © 2015 Wiley Periodicals, Inc.

  12. Wnt Signaling Regulates Airway Epithelial Stem Cells in Adult Murine Submucosal Glands.

    PubMed

    Lynch, Thomas J; Anderson, Preston J; Xie, Weiliang; Crooke, Adrianne K; Liu, Xiaoming; Tyler, Scott R; Luo, Meihui; Kusner, David M; Zhang, Yulong; Neff, Traci; Burnette, Daniel C; Walters, Katherine S; Goodheart, Michael J; Parekh, Kalpaj R; Engelhardt, John F

    2016-06-24

    Wnt signaling is required for lineage commitment of glandular stem cells (SCs) during tracheal submucosal gland (SMG) morphogenesis from the surface airway epithelium (SAE). Whether similar Wnt-dependent processes coordinate SC expansion in adult SMGs following airway injury remains unknown. We found that two Wnt-reporters in mice (BAT-gal and TCF/Lef:H2B-GFP) are coexpressed in actively cycling SCs of primordial glandular placodes and in a small subset of adult SMG progenitor cells that enter the cell cycle 24 hours following airway injury. At homeostasis, these Wnt reporters showed nonoverlapping cellular patterns of expression in the SAE and SMGs. Following tracheal injury, proliferation was accompanied by dynamic changes in Wnt-reporter activity and the analysis of 56 Wnt-related signaling genes revealed unique temporal changes in expression within proximal (gland-containing) and distal (gland-free) portions of the trachea. Wnt stimulation in vivo and in vitro promoted epithelial proliferation in both SMGs and the SAE. Interestingly, slowly cycling nucleotide label-retaining cells (LRCs) of SMGs were spatially positioned near clusters of BAT-gal positive serous tubules. Isolation and culture of tet-inducible H2B-GFP LRCs demonstrated that SMG LRCs were more proliferative than SAE LRCs and culture expanded SMG-derived progenitor cells outcompeted SAE-derived progenitors in regeneration of tracheal xenograft epithelium using a clonal analysis competition assay. SMG-derived progenitors were also multipotent for cell types in the SAE and formed gland-like structures in xenografts. These studies demonstrate the importance of Wnt signals in modulating SC phenotypes within tracheal niches and provide new insight into phenotypic differences of SMG and SAE SCs. Stem Cells 2016.

  13. Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways.

    PubMed

    Gianotti, Ambra; Ferrera, Loretta; Philp, Amber R; Caci, Emanuela; Zegarra-Moran, Olga; Galietta, Luis J V; Flores, Carlos A

    2016-06-15

    Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice.

  14. Maternal vitamin D-restricted diet has consequences in the formation of pancreatic islet/insulin-signaling in the adult offspring of mice.

    PubMed

    Maia-Ceciliano, Thais C; Barreto-Vianna, Andre R C; Barbosa-da-Silva, Sandra; Aguila, Marcia B; Faria, Tatiane S; Mandarim-de-Lacerda, Carlos A

    2016-10-01

    The maternal deficiency of vitamin D can act on organogenesis in mice offspring, being a risk factor for chronic diseases in adulthood. This study investigates the effects of maternal deficiency of vitamin D on structural islet remodeling and insulin-signaling pathway in the offspring. We studied male C57Bl/6 offspring at 3-month old (n = 10/group) from mother fed one of the two diets: control diet (C) or vitamin D-restricted diet (VitD(-)). After weaning, offspring only fed the control diet ad libitum. In the offspring, we studied insulin production, islet remodeling, and islet protein expression of the insulin-signaling pathway (Western blotting, isolated islet, n = 5/group). VitD(-) offspring showed greater glycemia (P = 0.012), smaller beta-cell mass (P = 0.014), and hypoinsulinemia (P = 0.024) than C offspring. Comparing VitD(-) offspring with C offspring, we observed lower protein levels in islet of insulin (P = 0.003), insulin receptor substrate-1 (P = 0.025), phosphatidylinositol-3-kinases (P = 0.045), 3-phosphoinositide-dependent protein kinase 1 (P = 0.017), protein kinase B (P = 0.028), with reduced expression of pancreas/duodenum homeobox-1 (PDX-1) (P = 0.016), glucose transporter-2 (P = 0.003), and glucokinase (P = 0.045). The maternal vitamin D-restricted diet modifies the development of the pancreas of the offspring, leading to islet remodeling and altered insulin-signaling pathway. The decrease of PDX-1 is probably significant to the changes in the beta-cell mass and insulin secretion in adulthood.

  15. Proteomics identifies differentially expressed proteins in neonatal murine thymus compared with adults

    PubMed Central

    2012-01-01

    Background The thymus is an immune organ essential for life and plays a crucial role in the development of T cells. It undergoes a fetal to adult developmental maturation process occurring in mouse during the postnatal months. The molecular modifications underlying these ontogenic changes are essentially unknown. Here we used a differential proteomic-based technique (2D-Difference Gel Electrophoresis) coupled with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to search for key proteins in the postnatal development of the thymus. Eight different BALB/c mice were used in the study: four mice aged of 1 day (neonatal) and four mice aged of 60 days (adult). Protein samples derived from thymus were labeled and run in 2D-PAGE (Two-Dimensional Polyacrylamide Gel Electrophoresis). One whole-thymus tissue from each mouse was run on gels and each gel containing a pooled sample of the eight mice was run in parallel. The pooled sample was set as the internal pool, containing equal amount of each protein extract used in the experiment. Gels were matched and compared with Difference In-gel Analysis software. Differential spots were picked, in-gel digested and peptide mass fingerprints were obtained. Results Among the differentially regulated proteins in neonatal thymus group, 111 proteins were identified by mass spectrometry, of which 95 proteins were up-regulated and 16 proteins were down-regulated. The identified proteins belong to several functional categories, including cell proliferation, cycle and apoptosis, transcription regulation, signal transduction, nucleotide processing, proteolysis and translation, protein folding, metabolism, oxidoreduction, cytoskeleton, immune response, and embryonic development. The major interaction networks comprised of cellular function and maintenance, cellular assembly and organization, and metabolism were also identified by STRING analysis. Conclusions The demonstrated molecular changes are

  16. Long-Term Retinal PEDF Overexpression Prevents Neovascularization in a Murine Adult Model of Retinopathy

    PubMed Central

    Ribera, Albert; Bosch, Assumpcio; Ramos, David; Ruberte, Jesus; Bosch, Fatima

    2012-01-01

    Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders. PMID:22911805

  17. Comparing Sexuality Communication Among Offspring of Teen Parents and Adult Parents: a Different Role for Extended Family.

    PubMed

    Grossman, Jennifer M; Tracy, Allison J; Richer, Amanda M; Erkut, Sumru

    2015-06-01

    This brief report examined teenagers' sexuality communication with their parents and extended families. It compared who teens of early parents (those who had children when they were adolescents) and teens of later parents (those who were adults when they had children) talk to about sex. Eighth grade students (N=1281) in 24 schools completed survey items about their communication about sex. Structural equation modeling was used to predict communication profiles, while adjusting for the nesting of students within schools. After controlling for teens' age, gender, race/ethnicity, grades, parent/guardian closeness, and social desirability of survey responses, as well as family status and median family income, results showed that teens of early (teen) parents were more likely than teens of later (adult) parents to talk with both parents and extended family about sex and less likely than later parents to talk only with parents. These findings indicate that realities of teen sexuality communication for teens of early parents may extend beyond a parent-teen model to include extended family. Extended family involvement in educational outreach is a potential untapped resource to support sexual health for teens of early parents.

  18. Comparing Sexuality Communication Among Offspring of Teen Parents and Adult Parents: a Different Role for Extended Family

    PubMed Central

    Tracy, Allison J.; Richer, Amanda M.; Erkut, Sumru

    2016-01-01

    This brief report examined teenagers’ sexuality communication with their parents and extended families. It compared who teens of early parents (those who had children when they were adolescents) and teens of later parents (those who were adults when they had children) talk to about sex. Eighth grade students (N=1281) in 24 schools completed survey items about their communication about sex. Structural equation modeling was used to predict communication profiles, while adjusting for the nesting of students within schools. After controlling for teens’ age, gender, race/ethnicity, grades, parent/guardian closeness, and social desirability of survey responses, as well as family status and median family income, results showed that teens of early (teen) parents were more likely than teens of later (adult) parents to talk with both parents and extended family about sex and less likely than later parents to talk only with parents. These findings indicate that realities of teen sexuality communication for teens of early parents may extend beyond a parent-teen model to include extended family. Extended family involvement in educational outreach is a potential untapped resource to support sexual health for teens of early parents. PMID:27499816

  19. Gender effects of reported in utero tobacco exposure on smoking initiation, progression and nicotine dependence in adult offspring.

    PubMed

    Oncken, Cheryl; McKee, Sherry; Krishnan-Sarin, Suchitra; O'Malley, Stephanie; Mazure, Carolyn

    2004-10-01

    We examined the relationship between self-reported in utero tobacco exposure and gender on smoking initiation, progression of cigarette use (i.e., telescoping), and current levels of nicotine dependence in adult treatment-seeking smokers. Subjects (N = 298) who reported "yes" (28% of the original sample) or "no" (50% of the original sample) to in utero tobacco exposure were included in the analyses. Telescoping was calculated as the difference between the age respondents smoked their "first full cigarette" and the age when they started smoking daily. Females who reported being exposed in utero transitioned from initial to daily cigarette use more rapidly than females not exposed. The opposite effect was found for males, which may be related to our finding that in utero exposure lowered the age of cigarette experimentation in exposed compared with unexposed males. Measures of current cigarette use and dependence (i.e., Fagerström Test for Nicotine Dependence, prior withdrawal, number of past year quit attempts) were significantly associated with reported in utero exposure, gender, or interactions of exposure and gender. In utero tobacco exposure may accelerate the progression from experimentation to daily use in girls, result in early tobacco experimentation among boys, and produce higher levels of nicotine dependence among adult smokers.

  20. Maternal diabetes programs hypertension and kidney injury in offspring.

    PubMed

    Chen, Yun-Wen; Chenier, Isabelle; Tran, Stella; Scotcher, Michael; Chang, Shiao-Ying; Zhang, Shao-Ling

    2010-07-01

    We investigated whether maternal diabetes programs the offspring to develop hypertension and kidney injury in adulthood and examined potential underlying mechanisms. In a murine model we studied the offspring of three groups of dams (non-diabetic, diabetic, and diabetic treated with insulin). Mean systolic blood pressure in the offspring was monitored from 8 to 20 weeks. Body and kidney weights in the offspring of diabetic mothers were significantly lower than in offspring of non-diabetic mothers. Offspring of diabetic mothers developed hypertension, microalbuminuria, and glucose intolerance. Increased accumulation of extracellular matrix proteins in the glomeruli and marked upregulation of angiotensinogen, angiotensin II type 1 receptor, angiotensin-converting enzyme, transforming growth factor beta-1 (TGF-beta1), and plasminogen activator inhibitor-1 (PAI-1) gene expression were evident in the renal cortex of hypertensive offspring of diabetic mothers. By contrast, angiotensin-converting enzyme-2 (ACE2) gene expression was lower in the hypertensive offspring of diabetic mothers than in that of non-diabetic mothers. These changes were prevented in the offspring of insulin-treated diabetic mothers. These data indicate that maternal diabetes induces perinatal programming of hypertension, renal injury, and glucose intolerance in the offspring and suggest a central role for the activation of the intrarenal renin-angiotensin system and TGF-beta1 gene expression in this process.

  1. Exploring Alternate Processes Contributing to the Association Between Maternal Smoking and the Smoking Behavior Among Young Adult Offspring

    PubMed Central

    2013-01-01

    Introduction: Maternal smoking during pregnancy (MSP) is a known risk factor for regular smoking in young adulthood and may pose a risk independently of mother’s lifetime smoking. The processes through which MSP exerts this influence are unknown but may occur through greater smoking quantity and frequency following initiation early in adolescence or increased sensitivity to nicotine dependence (ND) at low levels of smoking. Methods: This study used path analysis to investigate adolescent smoking quantity, smoking frequency, and ND as potential simultaneous mediating pathways through which MSP and mother’s lifetime smoking (whether she has ever smoked) increase the risk of smoking in young adulthood among experimenters (at baseline, <100 cigarettes/lifetime) and current smokers (>100 cigarettes/lifetime). Results: For experimenters, MSP was directly associated with more frequent young adult smoking and was not mediated by adolescent smoking behavior or ND. Independently of MSP, the effect of mother’s lifetime smoking was fully mediated through frequent smoking and was heightened ND during adolescence. Controlling for MSP eliminated a previously observed direct association between mother’s lifetime smoking and future smoking among experimenters. For current smokers, only prior smoking behavior was associated with future smoking frequency. Conclusions: These results seem to rule out sensitivity to ND and increased smoking behavior as contributing pathways of MSP. Further, the impact of MSP on young adult smoking extends beyond that of having an ever-smoking mother. Future work should test other possible mediators; for example, MSP-related epigenetic changes or gene variants influencing the brain’s nicotine response. PMID:23766342

  2. Gestation and breastfeeding in schistosomotic mothers differently modulate the immune response of adult offspring to postnatal Schistosoma mansoni infection.

    PubMed

    Santos, Patrícia d'Emery Alves; Lorena, Virgínia Maria Barros de; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; Nascimento, Wheverton Ricardo Correia do; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; Souza, Valdênia Maria Oliveira de

    2016-02-01

    Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants.

  3. Gestation and breastfeeding in schistosomotic mothers differently modulate the immune response of adult offspring to postnatal Schistosoma mansoni infection

    PubMed Central

    Santos, Patrícia d‘Emery Alves; de Lorena, Virgínia Maria Barros; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; do Nascimento, Wheverton Ricardo Correia; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; de Souza, Valdênia Maria Oliveira

    2016-01-01

    Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants. PMID:26872339

  4. Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring.

    PubMed

    Ghorbel, Imen; Amara, Ibtissem Ben; Ktari, Naourez; Elwej, Awatef; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba

    2016-12-01

    Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na(+)K(+)-ATPase, Mg(2+)-ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.

  5. Maternal dietary loads of α-tocopherol differentially influence fear conditioning and spatial learning in adult offspring.

    PubMed

    Ambrogini, Patrizia; Ciuffoli, Stefano; Lattanzi, Davide; Minelli, Andrea; Bucherelli, Corrado; Baldi, Elisabetta; Betti, Michele; Cuppini, Riccardo

    2011-10-24

    α-Tocopherol, the main component of vitamin E, is well known to be a radical scavenger, so an increased intake of vitamin E is recommended in complicated pregnancy, to prevent possible fetus damage by free radical. In a previous work, we found that maternal α-tocopherol supplementation affects PKC-mediated cellular signaling and hippocampal synaptic plasticity in developing brain; the latter effect persists in adulthood. Here, adult rats maternally exposed to supranutritional doses of α-tocopherol were evaluated for Contextual Fear Conditioning and spatial learning in Morris Water Maze, two different hippocampus-dependent learning tasks. Moreover, anxiety, spontaneous activity, and explorative drive were also evaluated as factors potentially affecting learning performance. Treated rats showed a different behavior with respect to controls: performance in Contextual Fear Conditioning was improved, while spatial learning tested in Morris Water Maze, was impaired. The improvement of fear response was not ascribable to differences in anxiety level and/or spontaneous activity; thus it appears to be a specific effect of α-tocopherol overloading during brain development. On the contrary, the impaired performance in Morris Water Maze exhibited by treated rats can be in part explained by their enhanced explorative drive. Although extrapolation from rats to humans is difficult, a caveat in assuming supranutritional doses of vitamin E in pregnancy arises from this study. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Murine adult neural progenitor cells alter their proliferative behavior and gene expression after the activation of Toll-like-receptor 3

    PubMed Central

    Melnik, A.; Tauber, S.; Dumrese, C.; Ullrich, O.; Wolf, S. A.

    2012-01-01

    Viral infections during pregnancy significantly increase the risk for psychological pathologies like schizophrenia in the offspring. One of the main morphological hallmarks of schizophrenia is a reduced size of the hippocampus. Since new neurons are produced in this particular brain compartment throughout life, it might be possible that low neurogenesis levels triggered by a maternal viral infection contribute to developmental deficits of the hippocampus. We injected polyinosinic:polycytidylic acid (Poly I:C) in pregnant C57Bl/6 mice to stimulate an anti-viral response through TLR3 and examined gene expressions in the neuronal progenitor cells (NPCs) of the offspring at different ages. Additionally, we treated adult NPC lines with Poly I:C to investigate its direct effect. We could show for the first time that TLR3 and its downstream effector molecule IRF3 are expressed in adult NPCs. Poly I:C treatment in vitro and in vivo led to the regulation of proliferation and genes involved in antiviral response, migration, and survival. These findings indicate that NPCs of the fetus are able to react towards an in utero immune response, and thus, changes in the neuronal stem cell pool can contribute to the development of neurological diseases like schizophrenia. PMID:24688771

  7. Variable maternal stress in rats alters locomotor activity, social behavior, and recognition memory in the adult offspring.

    PubMed

    Wilson, Christina A; Terry, Alvin V

    2013-03-01

    Rats repeatedly exposed to variable prenatal stress (PNS) exhibit behavioral signs that are similar to those manifested in several neuropsychiatric disorders such as deficits in attention and inhibitory control, and impairments in memory-related task performance. The purpose of the study described here was to conduct a comprehensive battery of tests to further characterize the behavioral phenotype of PNS rats as well as to evaluate the sensitivity of the model to therapeutic interventions (i.e., to compounds previously shown to have therapeutic potential in neuropsychiatric disorders). The results of this study indicated that PNS in rats is associated with: 1) increased locomotor activity and stereotypic behaviors, 2) elevated sensitivity to the psychostimulant amphetamine, 3) increased aggressive behaviors toward both adult and juvenile rats and 4) delay-dependent deficits in recognition memory. There was no evidence that PNS rats exhibited deficits in other areas of motor function/learning, sensorimotor gating, spatial learning and memory, social withdrawal, or anhedonia. In addition, the results revealed that the second generation antipsychotic risperidone attenuated amphetamine-related increases in locomotor activity in PNS rats; however, the effect was not sustained over time. Furthermore, deficits in recognition memory in PNS rats were attenuated by the norepinephrine reuptake inhibitor, atomoxetine, but not by the α7 nicotinic acetylcholine receptor partial agonist, GTS-21. This study supports the supposition that important phenomenological similarities exist between rats exposed to PNS and patients afflicted with neuropsychiatric disorders thus further establishing the face validity of the model for evaluating potential therapeutic interventions. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Prenatal high-fat diet alters the cerebrovasculature and clearance of β-amyloid in adult offspring.

    PubMed

    Hawkes, Cheryl A; Gentleman, Steve M; Nicoll, James Ar; Carare, Roxana O

    2015-03-01

    Alzheimer's disease (AD) is characterized by the accumulation of β-amyloid (Aβ) peptides in the extracellular spaces of the brain as plaques and in the walls of blood vessels as cerebral amyloid angiopathy (CAA). Failure of perivascular drainage of Aβ along cerebrovascular basement membranes contributes to the development of CAA. Mid-life hypercholesterolaemia is a risk factor for the development of AD. Maternal obesity is associated with the development of obesity, hypertension and hypercholesterolaemia in adulthood, suggesting that the risk for AD and CAA may also be influenced by the early-life environment. In the present study, we tested the hypothesis that early-life exposure to a high-fat diet results in changes to the cerebrovasculature and failure of Aβ clearance from the brain. We also assessed whether vascular Aβ deposition is greater in the brains of aged humans with a history of hyperlipidaemia, compared to age-matched controls with normal lipidaemia. Using a mouse model of maternal obesity, we found that exposure to a high-fat diet during gestation and lactation induced changes in multiple components of the neurovascular unit, including a down-regulation in collagen IV, fibronectin and apolipoprotein E, an up-regulation in markers of astrocytes and perivascular macrophages and altered blood vessel morphology in the brains of adult mice. Sustained high-fat diet over the entire lifespan resulted in additional decreases in levels of pericytes and impaired perivascular clearance of Aβ from the brain. In humans, vascular Aβ load was significantly increased in the brains of aged individuals with a history of hypercholesterolaemia. These results support a critical role for early dietary influence on the brain vasculature across the lifespan, with consequences for the development of age-related cerebrovascular and neurodegenerative diseases.

  9. Combined parental obesity augments single-parent obesity effects on hypothalamus inflammation, leptin signaling (JAK/STAT), hyperphagia, and obesity in the adult mice offspring.

    PubMed

    Ornellas, Fernanda; Souza-Mello, Vanessa; Mandarim-de-Lacerda, Carlos Alberto; Aguila, Marcia Barbosa

    2016-01-01

    We aimed to evaluate the effects of maternal and/or paternal obesity on offspring body mass, leptin signaling, appetite-regulating neurotransmitters and local inflammatory markers. C57BL/6 mice received standard chow (SC, lean groups) or high-fat diet (HF, obese groups) starting from one month of age. At three months, HF mice became obese relative to SC mice. They were then mated as follows: lean mother and lean father, lean mother and obese father, obese mother and lean father, and obese mother and obese father. The offspring received the SC diet from weaning until three months of age, when they were sacrificed. In the offspring, paternal obesity did not lead to changes in the Janus kinase (JAK)/signal transducer and activation of the transcription (STAT) pathway or feeding behavior but did induce hypothalamic inflammation. On the other hand, maternal obesity resulted in increased weight gain, hyperleptinemia, decreased leptin OBRb receptor expression, JAK/STAT pathway impairment, and increased SOCS3 signaling in the offspring. In addition, maternal obesity elevated inflammatory markers and altered NPY and POMC expression in the hypothalamus. Interestingly, combined parental obesity exacerbated the deleterious outcomes compared to single-parent obesity. In conclusion, while maternal obesity is known to program metabolic changes and obesity in offspring, the current study demonstrated that obese fathers induce hypothalamus inflammation in offspring, which may contribute to the development of metabolic syndromes in adulthood.

  10. Dietary zinc deficiency impairs humoral and cellular immune responses to BCG and ESAT-6/CFP-10 vaccination in offspring and adult rats.

    PubMed

    Shi, Lina; Zhang, Lianying; Li, Changcai; Hu, Xiaoyan; Wang, Xiaolei; Huang, Qing; Zhou, Gengyin

    2016-03-01

    Besides being the world's most widely used vaccine, BCG is the most controversial vaccine in current use. Estimates of protection impaired by BCG against pulmonary TB vary from nil to 80%. Dietary zinc deficiency has been confirmed to impair the immune function of animals. However, knowledge about effects of mild dietary zinc deficiency and the time of vaccination on BCG vaccine responsiveness in offspring and adult rats is limited. This work investigated the consequences of feeding zinc deficient and normal zinc diets to rats during gestation, infancy or adulthood on the immune responses to BCG vaccination. On gestation day 0, sixteen maternal rats were divided into two groups and fed with diets bellow: a control diet ad libitum (30 μg zinc/g diet, NC), a zinc deficient diet ad libitum (8 μg zinc/g diet, ZnD). Pup rats were served as experimental subjects. From day 1 of pregnancy upon delivery, maternal rats were given a standard diet (30 mg/kg/day zinc) or zinc deficient diet (8 mg/kg/day zinc) respectively. Adult male 10-week Wistar rats were divided into two dietary groups for 17 weeks of feeding: a control diet ad libitum (30 μg zinc/g diet, NC), a zinc deficient diet ad libitum (8 μg zinc/g diet, ZnD). The birth time of newborn pups was recorded as the zero week. For adult male rats, the time of receiving different assigned diet was recorded as the zeroth week. Newborn pups of these maternal rats were immunized with BCG vaccine or MTB antigen ESAT-6/CFP-10 at postnatal 0 and 2 week. The adult male rats were immunized on the 12th and 14th week. Then, blood samples, thymus and spleen from the rats were harvested for detection of humoral and cell-mediated immune responses using ELISA, MTT and QRT-PCR analysis. Decreased INF-γ and TNF-α production in plasma, changes of expression level of ZIP2, ZIP8, NF-κB and IL-6 mRNA in immune organs, together with reduced T cell proliferation was observed in pups and adult BCG rats suffered from dietary zinc deficiency

  11. The effect of offspring on depressive disorder among old adults: Evidence from the Korean Longitudinal Study of Aging from 2006 to 2012.

    PubMed

    Kim, Jae-Hyun; Lee, Sang Gyu; Shin, Jaeyong; Choi, Young; Park, Eun-Cheol

    2015-01-01

    To investigate whether having an offspring protects against or increases the risk of depressive disorders. Data from the Korean Longitudinal Study of Aging (KLoSA) from 2006 and 2012 was assessed using longitudinal data analysis. We have included 10,149 research subjects at baseline and estimated the prevalence of depressive disorders for those with children. The number of offspring was from zero to five or more, and the composition of offspring is from zero boys and zero girls to two or more boys and two or more girls. For parents with zero offspring, the estimate for depressive disorder was 0.464 higher (SE: 0.123, p-value: 0.000, OR: 1.389; 95% CI: 1.176-1.640) and for parents with five or more offspring, the estimate for depressive disorder was 0.1 higher (SE: 0.104, p-value: 0.013, OR: 1.315; 95% CI: 1.150-1.504) compared to parents with two offspring. For parents with zero boys and zero girls, the estimate for depressive disorder was 0.599 higher (SE: 4.750, p-value: <0.0001, OR: 1.539; 95% CI: 1.298-1.825), and for parents with two or more boys and two or more girls, the estimate for depressive disorder was 1.328 higher (SE: 3.820, p-value: 0.000, OR: 1.328; 95% CI: 1.189-1.482) compared to parents with one boy and one girl. Our results indicate that there is a large effect of offspring on the prevalence of depressive disorder, with significant positive effects for mothers. Fathers are at lower risk for depressive disorder than mothers, and the graph was U-shaped. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Dietary Chromium Restriction of Pregnant Mice Changes the Methylation Status of Hepatic Genes Involved with Insulin Signaling in Adult Male Offspring.

    PubMed

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Maternal undernutrition is linked with an elevated risk of diabetes mellitus in offspring regardless of the postnatal dietary status. This is also found in maternal micro-nutrition deficiency, especial chromium which is a key glucose regulator. We investigated whether maternal chromium restriction contributes to the development of diabetes in offspring by affecting DNA methylation status in liver tissue. After being mated with control males, female weanling 8-week-old C57BL mice were fed a control diet (CON, 1.19 mg chromium/kg diet) or a low chromium diet (LC, 0.14 mg chromium/kg diet) during pregnancy and lactation. After weaning, some offspring were shifted to the other diet (CON-LC, or LC-CON), while others remained on the same diet (CON-CON, or LC-LC) for 29 weeks. Fasting blood glucose, serum insulin, and oral glucose tolerance test was performed to evaluate the glucose metabolism condition. Methylation differences in liver from the LC-CON group and CON-CON groups were studied by using a DNA methylation array. Bisulfite sequencing was carried out to validate the results of the methylation array. Maternal chromium limitation diet increased the body weight, blood glucose, and serum insulin levels. Even when switched to the control diet after weaning, the offspring also showed impaired glucose tolerance and insulin resistance. DNA methylation profiling of the offspring livers revealed 935 differentially methylated genes in livers of the maternal chromium restriction diet group. Pathway analysis identified the insulin signaling pathway was the main process affected by hypermethylated genes. Bisulfite sequencing confirmed that some genes in insulin signaling pathway were hypermethylated in livers of the LC-CON and LC-LC group. Accordingly, the expression of genes in insulin signaling pathway was downregulated. There findings suggest that maternal chromium restriction diet results in glucose intolerance in male offspring through alterations in DNA methylation which

  13. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    SciTech Connect

    Ma, Noelle; Nicholson, Catherine J.; Wong, Michael; Holloway, Alison C.; Hardy, Daniel B.

    2014-02-15

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal day 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced

  14. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase.

    PubMed

    Ma, Noelle; Nicholson, Catherine J; Wong, Michael; Holloway, Alison C; Hardy, Daniel B

    2014-02-15

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1mg/kg/day) for two weeks prior to mating until weaning. At postnatal day 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway.

  15. Effects of exposure to a cafeteria diet during gestation and after weaning on the metabolism and body weight of adult male offspring in rats.

    PubMed

    Mucellini, Amanda Brondani; Goularte, Jéferson Ferraz; de Araujo da Cunha, Ana Carla; Caceres, Rafael Corrêa; Noschang, Cristie; da Silva Benetti, Carla; Silveira, Patrícia Pelufo; Sanvitto, Gilberto Luiz

    2014-04-28

    In the present study, we investigated whether maternal exposure to a cafeteria diet affects the metabolism and body composition of offspring and whether such an exposure has a cumulative effect during the lifetime of the offspring. Female rats were fed a control (CON) or a cafeteria (CAF) diet from their own weaning to the weaning of their offspring. At 21 d of age, male offspring were divided into four groups by diet during gestation and after weaning (CON-CON, CON-CAF, CAF-CON and CAF-CAF). Blood was collected from dams (after weaning) and pups (at 30 and 120 d of age) by decapitation. CAF dams had significantly greater body weight and adipose tissue weight and higher concentrations of total cholesterol, insulin and leptin than CON dams (Student's t test). The energy intake of CAF rats was higher than that of CON rats regardless of the maternal diet (two-way ANOVA). Litters had similar body weights at weaning and at 30 d of age, but at 120 d, CON-CAF rats were heavier. At both ages, CAF rats had greater adipose tissue weight than CON rats regardless of the maternal diet, and the concentrations of TAG and cholesterol were similar between the two groups, as were blood glucose concentrations at 30 d of age. However, at 120 d of age, CAF rats were hyperglycaemic, hyperinsulinaemic and hyperleptinaemic regardless of the maternal diet. These findings suggest that maternal obesity does not modulate the metabolism of male offspring independently, modifying body weight only when associated with the intake of a cafeteria diet by the offspring.

  16. Dietary Chromium Restriction of Pregnant Mice Changes the Methylation Status of Hepatic Genes Involved with Insulin Signaling in Adult Male Offspring

    PubMed Central

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Maternal undernutrition is linked with an elevated risk of diabetes mellitus in offspring regardless of the postnatal dietary status. This is also found in maternal micro-nutrition deficiency, especial chromium which is a key glucose regulator. We investigated whether maternal chromium restriction contributes to the development of diabetes in offspring by affecting DNA methylation status in liver tissue. After being mated with control males, female weanling 8-week-old C57BL mice were fed a control diet (CON, 1.19 mg chromium/kg diet) or a low chromium diet (LC, 0.14 mg chromium/kg diet) during pregnancy and lactation. After weaning, some offspring were shifted to the other diet (CON-LC, or LC-CON), while others remained on the same diet (CON-CON, or LC-LC) for 29 weeks. Fasting blood glucose, serum insulin, and oral glucose tolerance test was performed to evaluate the glucose metabolism condition. Methylation differences in liver from the LC-CON group and CON-CON groups were studied by using a DNA methylation array. Bisulfite sequencing was carried out to validate the results of the methylation array. Maternal chromium limitation diet increased the body weight, blood glucose, and serum insulin levels. Even when switched to the control diet after weaning, the offspring also showed impaired glucose tolerance and insulin resistance. DNA methylation profiling of the offspring livers revealed 935 differentially methylated genes in livers of the maternal chromium restriction diet group. Pathway analysis identified the insulin signaling pathway was the main process affected by hypermethylated genes. Bisulfite sequencing confirmed that some genes in insulin signaling pathway were hypermethylated in livers of the LC-CON and LC-LC group. Accordingly, the expression of genes in insulin signaling pathway was downregulated. There findings suggest that maternal chromium restriction diet results in glucose intolerance in male offspring through alterations in DNA methylation which

  17. Dietary early-life exposure to contaminated eels does not impair spatial cognitive performances in adult offspring mice as assessed in the Y-maze and the Morris water maze.

    PubMed

    Dridi, Imen; Leroy, Delphine; Guignard, Cédric; Scholl, Georges; Bohn, Torsten; Landoulsi, Ahmed; Thomé, Jean-Pierre; Eppe, Gauthier; Soulimani, Rachid; Bouayed, Jaouad

    2014-12-01

    Many environmental contaminants are introduced via the diet and may act as neurotoxins and endocrine disrupters, especially influencing growing organisms in early life. The purpose of this study was to examine whether dietary exposure of dams to fish naturally contaminated with xenobiotics, especially with polychlorinated biphenyls (PCBs) and heavy metals (e.g., mercury and lead), resulted in cognitive function deficits in adult offspring mice. Daily, four groups of dams (n = 10/group) ingested standard diet plus paste with/without eels, during gestation and lactation, from gestational day (GD) six until post natal day (PND) 21 (weaning). Dams orally ingested a standardized amount of eel (0.8 mg kg(-1) d(-1)) containing the six non-dioxin-like (NDL) PCBs (Σ6 NDL-PCBs: 28, 52, 101, 138, 153, and 180) at 0, 85, 216, and 400 ng kg(-1) d(-1). Results showed that early-life exposure to contaminated eels did not (compared to non-exposed controls) impair immediate working memory in the Y-maze in the offspring assessed at PND 38. Furthermore, it did not significantly impact spatial learning and retention memory as measured in the Morris water maze in adult offspring mice (PND 120-123). Our results suggest that perinatal exposure to contaminated eels does not affect spatial cognitive performances, as assessed by the Y-maze and Morris water maze at adult age. Adverse effects of xenobiotics reported earlier might be camouflaged by beneficial eel constituents, such as n-3 fatty acids. However, additional studies are needed to differentiate between potential positive and negative effects following consumption of food items both rich in nutrients and contaminants. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The impact of parental educational trajectories on their adult offspring's overweight/obesity status: a study of three generations of Swedish men and women.

    PubMed

    Chaparro, M P; Koupil, Ilona

    2014-11-01

    The objective of this study was to investigate the impact of grandparental and parental education and parental educational trajectory on their adult offspring's overweight/obesity. We used register data from the Uppsala Birth Cohort Multigenerational Study, based on a representative cohort born in Sweden 1915-1929 (G1). Our sample included 5122 women and 11,204 men who were grandchildren of G1 (G3), their parents (G2), and grandparents. G3's overweight/obesity (BMI≥25 kg/m2) was based on pre-pregnancy weight/height for women before their first birth (average age=26 years), and measured weight/height at conscription for men (average age=18 years). G1's, G2's, and G3's highest educational attainment was obtained from routine registers and classified as low, intermediate, or high based on respective sample distributions. Parental (G2) educational trajectory was defined as change in education between their own and their highest educated parent (G1), classified into 5 categories: always advantaged (AA), upward trajectory (UT), stable-intermediate (SI), downward trajectory (DT), and always disadvantaged (AD). We used hierarchical gender-stratified logistic regression models adjusted for G3's age, education, year of BMI collection, lineage and G2's year of birth and income. Grandparental and parental education were negatively associated with men's odds of overweight/obesity and parental education affected women's overweight/obesity risk. Furthermore, men and women whose parents belonged to the UT, SI, DT, and AD groups had greater odds of overweight/obesity compared to men and women whose parents belonged to the AA group (adjusted for G3's age, year of BMI collection, lineage, and G2's year of birth). These associations were attenuated when further adjusting for parental income and G3's own education. Socioeconomic inequalities can have long-term consequences and impact the health of future generations. For overweight/obesity in concurrent young cohorts, this inequality

  19. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring

    ERIC Educational Resources Information Center

    Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Fernandes, Jansen; Lopim, Glauber Menezes; Cabral, Francisco Romero; Scerni, Débora Amado; de Oliveira-Pinto, Ana Virgínia; Lent, Roberto; Arida, Ricardo Mario

    2016-01-01

    Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell…

  20. Pregnant growth restricted female rats have bone gains during late gestation which contributes to second generation adolescent and adult offspring having normal bone health.

    PubMed

    Anevska, Kristina; Gallo, Linda A; Tran, Melanie; Jefferies, Andrew J; Wark, John D; Wlodek, Mary E; Romano, Tania

    2015-05-01

    Low birth weight, due to uteroplacental insufficiency, results in programmed bone deficits in the first generation (F1). These deficits may be passed onto subsequent generations. We characterized the effects of being born small on maternal bone health during pregnancy; and aimed to characterize the contribution of the maternal environment and germ line effects to bone health in F2 offspring from mothers born small. Bilateral uterine vessel ligation (or sham) surgery was performed on female F0 WKY rats on gestational day 18 (term 22days) to induce uteroplacental insufficiency and fetal growth restriction. Control and Restricted F1 female offspring were allocated to a non-pregnant or pregnant group. To generate F2 offspring, F1 females were allocated to either non-embryo or embryo transfer groups. Embryo transfer was performed on gestational day 1, where second generation (F2) embryos were gestated (donor-in-recipient) in either a Control (Control-in-Control, Restricted-in-Control) or Restricted (Control-in-Restricted, Restricted-in-Restricted) mother. Restricted F1 females were born 10-15% lighter than Controls. Restricted non-pregnant females had shorter femurs, reduced trabecular and cortical bone mineral contents, trabecular density and bone geometry measures determined by peripheral quantitative computed tomography (pQCT) compared to non-pregnant Controls. Pregnancy restored the bone deficits that were present in F1 Restricted females. F2 non-embryo transfer male and female offspring were born of normal weight, while F2 embryo transfer males and females gestated in a Control mother (Control-in-Control, Restricted-in-Control) were heavier at birth compared to offspring gestated in a Restricted mother (Restricted-in-Restricted, Control-in-Restricted). Male F2 Restricted embryo groups (Restricted-in-Control and Restricted-in-Restricted) had accelerated postnatal growth. There was no transmission of bone deficits present at 35days or 6months in F2 offspring. Embryo

  1. Effect of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration and anxiety behaviors in adult rat offspring.

    PubMed

    Nakhjiri, Elnaz; Saboory, Ehsan; Roshan-Milani, Shiva; Rasmi, Yousef; Khalafkhani, Davod

    2017-03-28

    Stressful events and exposure to opiates during gestation have important effects on the later mental health of the offspring. Anxiety is among the most common mental disorders. The present study aimed to identify effects of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration (PVC) and anxiety behaviors in rats. Pregnant rats were divided into four groups (n = 6, each): saline, morphine, stress + saline and stress + morphine treatment. The stress procedure consisted of restraint twice per day, two hours per session, for three consecutive days starting on day 15 of pregnancy. Rats in the saline and morphine groups received either 0.9% saline or morphine intraperitoneally on the same days. In the morphine/saline + stress groups, rats were exposed to restraint stress and received either morphine or saline intraperitoneally. All offspring were tested in an elevated plus maze (EPM) on postnatal day 90 (n = 6, each sex), and anxiety behaviors of each rat were recorded. Finally, blood samples were collected to determine PVC. Prenatal morphine exposure reduced anxiety-like behaviors. Co-administration of prenatal stress and morphine increased locomotor activity (LA) and PVC. PVC was significantly lower in female offspring of the morphine and morphine + stress groups compared with males in the same group, but the opposite was seen in the saline + stress group. These data emphasize the impact of prenatal stress and morphine on fetal neuroendocrine development, with long-term changes in anxiety-like behaviors and vasopressin secretion. These changes are sex specific, indicating differential impact of prenatal stress and morphine on fetal neuroendocrine system development. Lay Summary Pregnant women are sometimes exposed to stressful and painful conditions which may lead to poor outcomes for offspring. Opiates may provide pain and stress relief to these mothers. In this study, we used an experimental model of

  2. Nutritional status of adult ewes during early and mid-pregnancy. 1. Effects of plane of nutrition on ewe reproduction and offspring performance to weaning.

    PubMed

    Muñoz, C; Carson, A F; McCoy, M A; Dawson, L E R; O'Connell, N E; Gordon, A W

    2008-01-01

    The objective of this study was to determine the effects of plane of nutrition during early and mid-pregnancy on the performance of mature ewes and their offspring. From day 0 to day 39 post mating (early pregnancy, EP), 82 multiparous ewes were fed to provide either 60% (low, L), 100% (medium, M) or 200% (high, H) of predicted metabolisable energy (ME) requirements for maintenance, following a synchronised mating. From day 40 to day 90 (mid-pregnancy, MP), ewes were provided with either 80% (M) or 140% (H) of ME requirements. After 90 days of gestation, all ewes were fed to meet requirements for late pregnancy. During EP, mean live weight (LW) and body condition score (BCS) change of ewes were -6.3, -0.8 and +6.0 kg and -0.02, +0.10 and +0.22 units in the L-, M- and H-EP treatments, respectively. During MP, mean LW and BCS change were -0.8 and +4.9 kg and -0.09 and +0.09 units in the M- and H-MP treatments, respectively (P < 0.001). Treatments had no effect (P > 0.05) on conception rate, although there tended to be an inverse relationship (P = 0.085) between plane of nutrition in EP and plasma progesterone concentrations at day 42 of gestation. EP nutrition influenced foetal development with lambs from ewes offered diet L-EP being smaller (P < 0.01) at day 56 than M- or H-EP lambs. However, at parturition L-EP lambs were heavier (P < 0.05) and tended to have higher (P = 0.056) immunoglobulin status 24 h after birth. Mortality rates at weaning were reduced (P < 0.05) for lambs born from ewes offered diet L-EP compared with M- or H-EP lambs. Diet M during mid-pregnancy resulted in larger (P < 0.05) foetuses at day 80 of gestation. At parturition, these lambs had longer head and crown-rump lengths than H-MP lambs (P < 0.05). Lambs born to ewes offered diet M-MP tended to progress faster to attempting to suckle than H-MP lambs (P = 0.089). There was an interaction between plane of nutrition in early and mid-pregnancy, whereby the highest number of lambs weaned was a

  3. The effects of co-administration of opium and morphine with nicotine during pregnancy on spatial learning and memory of adult male offspring rats

    PubMed Central

    Sepehri, Gholamreza; Parsania, Shahrnaz; Hajzadeh, Mousa-Al-Reza; Haghpanah, Tahereh; Sheibani, Vahid; Divsalar, Kouros; Shekarforoush, Shahnaz; Afarinesh, Mohammad Reza

    2014-01-01

    Objective(s): Smoking opium/cigarette is a global health concern. The aim of this study was to examine learning and memory of rat male offsprings whose mothers had been exposed to either opium or morphine with nicotine during pregnancy. Materials and Methods: Wistar rats were used for the experiments. In the female rats, opium, morphine and nicotine dependencies were induced by daily injections of drug solution for 10 days before mating. Spatial memory was tested by Morris water maze test in male pups at the postnatal day 60. The duration that took until the rats found the platform in the maze and also their swimming speed were recorded. Results: An increase in the platform finding duration was observed for the pups of dependent mothers in comparison with the control in the training trial (P<0.05). Prenatal exposure to opium/morphine and nicotine significantly decreased the time spent in the trigger zone to find the hidden platform (P<0.05) but had no significant effect on the swimming speed in the probe test. However, no significant difference was observed in the learning and memory behavior of offspring whose mothers received morphine, opium, nicotine or the co-administration of either morphine or opium with nicotine. Conclusion: The present study showed that the opium, morphine and nicotine abuse and co-administration of opium/morphine with nicotine during pregnancy may cause deficits in spatial learning of male rat offspring. Based on our data, no synergistic effects of co-drug administration were observed on learning and memory in male rat offspring. PMID:25691947

  4. Maternal high-salt diet altered PKC/MLC20 pathway and increased ANG II receptor-mediated vasoconstriction in adult male rat offspring.

    PubMed

    Li, Weisheng; Lv, Juanxiu; Wu, Jue; Zhou, Xiuwen; Jiang, Lin; Zhu, Xiaolin; Tu, Qing; Tang, Jiaqi; Liu, Yanping; He, Axin; Zhong, Yuan; Xu, Zhice

    2016-07-01

    High-salt diet (HSD) is associated with cardiovascular diseases. This study aims at ascertaining the influence of maternal HSD on offspring's angiotensin II (ANG II)-mediated vasoconstriction and the underlying mechanisms. In comparison to a normal-salt diet, HSD used in pregnancy in rats changed the ultrastructures of the coronary artery (CA) in 5-month-old male offspring, and increased ANG II-mediated CA contractility. Measurement of [Ca(2+) ]i in CA using fluorescent fura-2, a Ca(2+) indicator, showed that ANG II-mediated increases in [Ca(2+) ]i were the same between HSD and normal-salt diet groups, but the ratio of diameter change/[Ca(2+) ]i induced by ANG II were significantly higher in HSD groups. Angiotensin II receptor type 1, not angiotensin II receptor type 2, caused ANG II-mediated vasoconstriction. Protein kinase C (PKC) inhibitor GF109203X attenuated the ANG II-mediated vasoconstriction, PKC agonist phorbol12,13-dibutyrate produced a greater contraction. There was an increase in PKCβ mRNA and the corresponding protein abundance in the offspring, whereas other PKC subunits PKCα, PKCδ, and PKCε did not change. Moreover, 20 kDa myosin light chain phosphorylation levels were increased in HSD group. Maternal HSD affected the developmental programing for the offspring CA, with increased ANG II-mediated vasoconstrictions. The angiotensin II receptor type 1-PKC-20 kDa myosin light chain phosphorylation pathway was the possible mediated cellular mechanism. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Maternal micronutrient imbalance alters gene expression of BDNF, NGF, TrkB and CREB in the offspring brain at an adult age.

    PubMed

    Sable, Pratiksha; Kale, Anvita; Joshi, Asmita; Joshi, Sadhana

    2014-05-01

    Micronutrients like folate, vitamin B12, and fatty acids which are interlinked in the one carbon cycle play a vital role in mediating epigenetic processes leading to an increased risk for neurodevelopmental disorders in the offspring. Our earlier study demonstrates that a micronutrient imbalanced diet adversely affects docosahexaenoic acid (DHA) and protein levels of neurotrophins like brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain and cognition in the offspring by 3 months of age. In this study we attempt to analyze if these effects are a consequence of a change in gene expression of these molecules. Further, we also examined the effect of either a postnatal control diet or a prenatal omega-3 fatty acid supplementation on gene expression in the cortex of the offspring. Pregnant rats were divided into control and five treatment groups at two levels of folic acid (normal and excess folate) in the presence and absence of vitamin B12. Omega-3 fatty acid (eicosapentaenoic acid - EPA+DHA) supplementation was given to vitamin B12 deficient groups. Following delivery, 8 dams from each group were shifted to control diet and remaining continued on the same treatment diet. Our results demonstrate that the imbalanced diet caused a marked reduction in the mRNA levels of BDNF, NGF, TrkB, and cAMP response element-binding protein (CREB). Prenatal omega-3 fatty acid supplementation to the maternal imbalanced diet was able to normalize the mRNA levels of all the above genes. This study demonstrates that a maternal diet imbalanced in micronutrients (folic acid, vitamin B12) influences gene expression of neurotrophins and their signalling molecules and thereby adversely affects the brain of the offspring.

  6. Excess Maternal Salt Intake Produces Sex-Specific Hypertension in Offspring: Putative Roles for Kidney and Gastrointestinal Sodium Handling

    PubMed Central

    Gray, Clint; Al-Dujaili, Emad A.; Sparrow, Alexander J.; Gardiner, Sheila M.; Craigon, Jim; Welham, Simon J.M.; Gardner, David S.

    2013-01-01

    Hypertension is common and contributes, via cardiovascular disease, towards a large proportion of adult deaths in the Western World. High salt intake leads to high blood pressure, even when occurring prior to birth – a mechanism purported to reside in altered kidney development and later function. Using a combination of in vitro and in vivo approaches we tested whether increased maternal salt intake influences fetal kidney development to render the adult individual more susceptible to salt retention and hypertension. We found that salt-loaded pregnant rat dams were hypernatraemic at day 20 gestation (147±5 vs. 128±5 mmoles/L). Increased extracellular salt impeded murine kidney development in vitro, but had little effect in vivo. Kidneys of the adult offspring had few structural or functional abnormalities, but male and female offspring were hypernatraemic (166±4 vs. 149±2 mmoles/L), with a marked increase in plasma corticosterone (e.g. male offspring; 11.9 [9.3–14.8] vs. 2.8 [2.0–8.3] nmol/L median [IQR]). Furthermore, adult male, but not female, offspring had higher mean arterial blood pressure (effect size, +16 [9–21] mm Hg; mean [95% C.I.]. With no clear indication that the kidneys of salt-exposed offspring retained more sodium per se, we conducted a preliminary investigation of their gastrointestinal electrolyte handling and found increased expression of proximal colon solute carrier family 9 (sodium/hydrogen exchanger), member 3 (SLC9A3) together with altered faecal characteristics and electrolyte handling, relative to control offspring. On the basis of these data we suggest that excess salt exposure, via maternal diet, at a vulnerable period of brain and gut development in the rat neonate lays the foundation for sustained increases in blood pressure later in life. Hence, our evidence further supports the argument that excess dietary salt should be avoided per se, particularly in the range of foods consumed by physiologically immature young. PMID

  7. Elevated paternal glucocorticoid exposure modifies memory retention in female offspring.

    PubMed

    Yeshurun, Shlomo; Rogers, Jake; Short, Annabel K; Renoir, Thibault; Pang, Terence Y; Hannan, Anthony J

    2017-09-01

    Recent studies have demonstrated that behavioral traits are subject to transgenerational modification by paternal environmental factors. We previously reported on the transgenerational influences of increased paternal stress hormone levels on offspring anxiety and depression-related behaviors. Here, we investigated whether offspring sociability and cognition are also influenced by paternal stress. Adult C57BL/6J male mice were treated with corticosterone (CORT; 25mg/L) for four weeks prior to paired-matings to generate F1 offspring. Paternal CORT treatment was associated with decreased body weights of female offspring and a marked reduction of the male offspring. There were no differences in social behavior of adult F1 offspring in the three-chamber social interaction test. Despite male offspring of CORT-treated fathers displaying hyperactivity in the Y-maze, there was no observable difference in short-term spatial working memory. Spatial learning and memory testing in the Morris water maze revealed that female, but not male, F1 offspring of CORT-treated fathers had impaired memory retention. We used our recently developed methodology to analyze the spatial search strategy of the mice during the learning trials and determined that the impairment could not be attributed to underlying differences in search strategy. These results provide evidence for the impact of paternal corticosterone administration on offspring cognition and complement the cumulative knowledge of transgenerational epigenetic inheritance of acquired traits in rodents and humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Association between maternal age at childbirth and child and adult outcomes in the offspring: a prospective study in five low-income and middle-income countries (COHORTS collaboration).

    PubMed

    Fall, Caroline H D; Sachdev, Harshpal Singh; Osmond, Clive; Restrepo-Mendez, Maria Clara; Victora, Cesar; Martorell, Reynaldo; Stein, Aryeh D; Sinha, Shikha; Tandon, Nikhil; Adair, Linda; Bas, Isabelita; Norris, Shane; Richter, Linda M

    2015-07-01

    Both young and advanced maternal age is associated with adverse birth and child outcomes. Few studies have examined these associations in low-income and middle-income countries (LMICs) and none have studied adult outcomes in the offspring. We aimed to examine both child and adult outcomes in five LMICs. In this prospective study, we pooled data from COHORTS (Consortium for Health Orientated Research in Transitioning Societies)-a collaboration of five birth cohorts from LMICs (Brazil, Guatemala, India, the Philippines, and South Africa), in which mothers were recruited before or during pregnancy, and the children followed up to adulthood. We examined associations between maternal age and offspring birthweight, gestational age at birth, height-for-age and weight-for-height Z scores in childhood, attained schooling, and adult height, body composition (body-mass index, waist circumference, fat, and lean mass), and cardiometabolic risk factors (blood pressure and fasting plasma glucose concentration), along with binary variables derived from these. Analyses were unadjusted and adjusted for maternal socioeconomic status, height and parity, and breastfeeding duration. We obtained data for 22 188 mothers from the five cohorts, enrolment into which took place at various times between 1969 and 1989. Data for maternal age and at least one outcome were available for 19 403 offspring (87%). In unadjusted analyses, younger (≤19 years) and older (≥35 years) maternal age were associated with lower birthweight, gestational age, child nutritional status, and schooling. After adjustment, associations with younger maternal age remained for low birthweight (odds ratio [OR] 1·18 (95% CI 1·02-1·36)], preterm birth (1·26 [1·03-1·53]), 2-year stunting (1·46 [1·25-1·70]), and failure to complete secondary schooling (1·38 [1·18-1·62]) compared with mothers aged 20-24 years. After adjustment, older maternal age remained associated with increased risk of preterm birth (OR 1

  9. Association between maternal age at childbirth and child and adult outcomes in the offspring: a prospective study in five low-income and middle-income countries (COHORTS collaboration)

    PubMed Central

    Fall, Caroline H D; Sachdev, Harshpal Singh; Osmond, Clive; Restrepo-Mendez, Maria Clara; Victora, Cesar; Martorell, Reynaldo; Stein, Aryeh D; Sinha, Shikha; Tandon, Nikhil; Adair, Linda; Bas, Isabelita; Norris, Shane; Richter, Linda M

    2015-01-01

    Summary Background Both young and advanced maternal age is associated with adverse birth and child outcomes. Few studies have examined these associations in low-income and middle-income countries (LMICs) and none have studied adult outcomes in the offspring. We aimed to examine both child and adult outcomes in five LMICs. Methods In this prospective study, we pooled data from COHORTS (Consortium for Health Orientated Research in Transitioning Societies)—a collaboration of five birth cohorts from LMICs (Brazil, Guatemala, India, the Philippines, and South Africa), in which mothers were recruited before or during pregnancy, and the children followed up to adulthood. We examined associations between maternal age and offspring birthweight, gestational age at birth, height-for-age and weight-for-height Z scores in childhood, attained schooling, and adult height, body composition (body-mass index, waist circumference, fat, and lean mass), and cardiometabolic risk factors (blood pressure and fasting plasma glucose concentration), along with binary variables derived from these. Analyses were unadjusted and adjusted for maternal socioeconomic status, height and parity, and breastfeeding duration. Findings We obtained data for 22 188 mothers from the five cohorts, enrolment into which took place at various times between 1969 and 1989. Data for maternal age and at least one outcome were available for 19 403 offspring (87%). In unadjusted analyses, younger (≤19 years) and older (≥35 years) maternal age were associated with lower birthweight, gestational age, child nutritional status, and schooling. After adjustment, associations with younger maternal age remained for low birthweight (odds ratio [OR] 1·18 (95% CI 1·02–1·36)], preterm birth (1·26 [1·03–1·53]), 2-year stunting (1·46 [1·25–1·70]), and failure to complete secondary schooling (1·38 [1·18–1·62]) compared with mothers aged 20–24 years. After adjustment, older maternal age remained

  10. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring

    PubMed Central

    Wu, Wei-Li; Adams, Catherine E.; Stevens, Karen E.; Chow, Ke-Huan; Freedman, Robert; Patterson, Paul H.

    2015-01-01

    Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal spleen-placenta-fetal brain axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (IL-6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of IL-6 in Chrna7 mutant mice. We found that the basal level of IL-6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7+/− offspring. The Chrna7+/− offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA. PMID:25683697

  11. Preconception Alcohol Increases Offspring Vulnerability to Stress.

    PubMed

    Jabbar, Shaima; Chastain, Lucy G; Gangisetty, Omkaram; Cabrera, Miguel A; Sochacki, Kamil; Sarkar, Dipak K

    2016-10-01

    The effect of preconception drinking by the mother on the life-long health outcomes of her children is not known, and therefore, in this study using an animal model, we determined the impact of preconception alcohol drinking of the mother on offspring stress response during adulthood. In our preconception alcohol exposure model, adult female rats were fed with 6.7% alcohol in their diet for 4 weeks, went without alcohol for 3 weeks and were bred to generate male and female offspring. Preconception alcohol-exposed offsprings' birth weight, body growth, stress response, anxiety-like behaviors, and changes in stress regulatory gene and protein hormone levels were evaluated. In addition, roles of epigenetic mechanisms in preconception alcohol effects were determined. Alcohol feeding three weeks prior to conception significantly affected pregnancy outcomes of female rats, with respect to delivery period and birth weight of offspring, without affecting maternal care behaviors. Preconception alcohol negatively affected offspring adult health, producing an increased stress hormone response to an immune challenge. In addition, preconception alcohol was associated with changes in expression and methylation profiles of stress regulatory genes in various brain areas. These changes in stress regulatory genes were normalized following treatment with a DNA methylation blocker during the postnatal period. These data highlight the novel possibility that preconception alcohol affects the inheritance of stress-related diseases possibly by epigenetic mechanisms.

  12. Preconception Alcohol Increases Offspring Vulnerability to Stress

    PubMed Central

    Jabbar, Shaima; Chastain, Lucy G; Gangisetty, Omkaram; Cabrera, Miguel A; Sochacki, Kamil; Sarkar, Dipak K

    2016-01-01

    The effect of preconception drinking by the mother on the life-long health outcomes of her children is not known, and therefore, in this study using an animal model, we determined the impact of preconception alcohol drinking of the mother on offspring stress response during adulthood. In our preconception alcohol exposure model, adult female rats were fed with 6.7% alcohol in their diet for 4 weeks, went without alcohol for 3 weeks and were bred to generate male and female offspring. Preconception alcohol-exposed offsprings' birth weight, body growth, stress response, anxiety-like behaviors, and changes in stress regulatory gene and protein hormone levels were evaluated. In addition, roles of epigenetic mechanisms in preconception alcohol effects were determined. Alcohol feeding three weeks prior to conception significantly affected pregnancy outcomes of female rats, with respect to delivery period and birth weight of offspring, without affecting maternal care behaviors. Preconception alcohol negatively affected offspring adult health, producing an increased stress hormone response to an immune challenge. In addition, preconception alcohol was associated with changes in expression and methylation profiles of stress regulatory genes in various brain areas. These changes in stress regulatory genes were normalized following treatment with a DNA methylation blocker during the postnatal period. These data highlight the novel possibility that preconception alcohol affects the inheritance of stress-related diseases possibly by epigenetic mechanisms. PMID:27296153

  13. Parental Gender Role Nontraditionalism and Offspring Outcomes.

    ERIC Educational Resources Information Center

    Booth, Alan; Amato, Paul R.

    1994-01-01

    Used data from longitudinal study of 471 parents and their adult offspring to examine whether nontraditional gender roles/attitudes among parents were associated with later life outcomes of children. Found very little evidence that mother's participation in labor force, father's participation in household tasks, and parents' gender role attitudes…

  14. Face-Emotion Processing in Offspring at Risk for Panic Disorder.

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Klein, Rachel G.; Mannuzza, Salvatore; Moulton, John L., III; Lissek, Shmuel; Guardino, Mary; Woldehawariat, Girma

    2005-01-01

    Objective: Panic disorder (PD) has been linked to perturbed processing of threats. This study tested the hypotheses that offspring of parents with PD and offspring with anxiety disorders display relatively greater sensitivity and attention allocation to fear provocation. Method: Offspring of adults with PD, major depressive disorder (MDD), or no…

  15. Face-Emotion Processing in Offspring at Risk for Panic Disorder.

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Klein, Rachel G.; Mannuzza, Salvatore; Moulton, John L., III; Lissek, Shmuel; Guardino, Mary; Woldehawariat, Girma

    2005-01-01

    Objective: Panic disorder (PD) has been linked to perturbed processing of threats. This study tested the hypotheses that offspring of parents with PD and offspring with anxiety disorders display relatively greater sensitivity and attention allocation to fear provocation. Method: Offspring of adults with PD, major depressive disorder (MDD), or no…

  16. Both Food Restriction and High-Fat Diet during Gestation Induce Low Birth Weight and Altered Physical Activity in Adult Rat Offspring: The “Similarities in the Inequalities” Model

    PubMed Central

    Portella, André Krumel; Benetti, Carla da Silva; Noschang, Cristie; Goldani, Marcelo Zubaran; Silveira, Patrícia Pelufo

    2015-01-01

    We have previously described a theoretical model in humans, called “Similarities in the Inequalities”, in which extremely unequal social backgrounds coexist in a complex scenario promoting similar health outcomes in adulthood. Based on the potential applicability of and to further explore the “similarities in the inequalities” phenomenon, this study used a rat model to investigate the effect of different nutritional backgrounds during gestation on the willingness of offspring to engage in physical activity in adulthood. Sprague-Dawley rats were time mated and randomly allocated to one of three dietary groups: Control (Adlib), receiving standard laboratory chow ad libitum; 50% food restricted (FR), receiving 50% of the ad libitum-fed dam’s habitual intake; or high-fat diet (HF), receiving a diet containing 23% fat. The diets were provided from day 10 of pregnancy until weaning. Within 24 hours of birth, pups were cross-fostered to other dams, forming the following groups: Adlib_Adlib, FR_Adlib, and HF_Adlib. Maternal chow consumption and weight gain, and offspring birth weight, growth, physical activity (one week of free exercise in running wheels), abdominal adiposity and biochemical data were evaluated. Western blot was performed to assess D2 receptors in the dorsal striatum. The “similarities in the inequalities” effect was observed on birth weight (both FR and HF groups were smaller than the Adlib group at birth) and physical activity (both FR_Adlib and HF_Adlib groups were different from the Adlib_Adlib group, with less active males and more active females). Our findings contribute to the view that health inequalities in fetal life may program the health outcomes manifested in offspring adult life (such as altered physical activity and metabolic parameters), probably through different biological mechanisms. PMID:25738800

  17. The Evaluation of Folic Acid-Deficient or Folic Acid-Supplemented Diet in the Gestational Phase of Female Rats and in Their Adult Offspring Subjected to an Animal Model of Schizophrenia.

    PubMed

    Canever, L; Alves, C S V; Mastella, G; Damázio, L; Polla, J V; Citadin, S; De Luca, L A; Barcellos, A S; Garcez, M L; Quevedo, J; Budni, J; Zugno, A I

    2017-03-24

    Although folic acid (FA) supplementation is known to influence numerous physiological functions, especially during pregnancy, little is known about its direct effects on the mothers' health. However, this vitamin is essential for the health of the mother and for the normal growth and development of the fetus. Thus, the aim of this study was (1) to evaluate the cognitive effects and biochemical markers produced by the AIN-93 diet (control), the AIN-93 diet supplemented with different doses of FA (5, 10, and 50 mg/kg), and a FA-deficient diet during pregnancy and lactation in female mother rats (dams) and (2) to evaluate the effect of maternal diets on inflammatory parameters in the adult offspring which were subjected to an animal model of schizophrenia (SZ) induced by ketamine (Ket). Our study demonstrated through the Y-maze test that rats subjected to the FA-deficient diet showed significant deficits in spatial memory, while animals supplemented with FA (5 and 10 mg/kg) showed no deficit in spatial memory. Our results also suggest that the rats subjected to the FA-deficient diet had increased levels of carbonylated proteins in the frontal cortex and hippocampus and also increased plasma levels of homocysteine (Hcy). Folate was able to prevent cognitive impairments in the rats supplemented with FA (5 and 10 mg/kg), data which may be attributed to the antioxidant effect of the vitamin. Moreover, FA prevented protein damage and elevations in Hcy levels in the rats subjected to different doses of this vitamin (5, 10, and 50 mg/kg). We verified a significant increase of the anti-inflammatory cytokine (interleukin-4 (IL-4)) and a reduction in the plasma levels of proinflammatory cytokines (interleukin-6 (IL-6)) and TNF-α) in the dams that were subjected to the diets supplemented with FA (5, 10, and 50 mg/kg), showing the possible anti-inflammatory effects of FA during pregnancy and lactation. In general, we also found that in the adult offspring that were

  18. Maternal protein restriction induces alterations in hepatic tumor necrosis factor-α/CYP7A1 signaling and disorders regulation of cholesterol metabolism in the adult rat offspring.

    PubMed

    Liu, Xiaomei; Qi, Ying; Tian, Baoling; Chen, Dong; Gao, Hong; Xi, Chunyan; Xing, Yanlin; Yuan, Zhengwei

    2014-07-01

    It is well recognized that adverse events in utero impair fetal development and lead to the development of obesity and metabolic syndrome in adulthood. To investigate the mechanisms linking impaired fetal growth to increased cholesterol, an important clinical risk factor characterizing the metabolic syndrome and cardiovascular disease, we examined the impact of maternal undernutrition on tumor necrosis factor-α (TNF-α)/c-jun N-terminal kinase (JNK) signaling pathway and the cholesterol 7α-hydroxylase (CYP7A1) expression in the livers of the offspring with a protein restriction model. The male offspring with intrauterine growth restriction (IUGR) caused by the isocaloric low-protein diet showed decreased liver weight at birth and augmented circulation and hepatic cholesterol levels at 40 weeks of age. Maternal undernutrition significantly upregulated cytokine TNF-α expression and JNK phospholytion levels in the livers from fetal age to adulthood. Elevated JNK phospholytion could be linked to downregulated hepatocyte nuclear factor-4α and CYP7A1 expression, subsequently led to higher hepatic cholesterol. This work demonstrated that intrauterine malnutrition-induced IUGR might result in intrinsic disorder in hepatic TNF-α/CYP7A1 signaling, and contribute to the development of hypercholesterolemia in later life.

  19. Maternal Fat Feeding Augments Offspring Nephron Endowment in Mice

    PubMed Central

    Hokke, Stacey; Puelles, Victor G.; Armitage, James A.; Fong, Karen; Bertram, John F.; Cullen-McEwen, Luise A.

    2016-01-01

    Increasing consumption of a high fat 'Western' diet has led to a growing number of pregnancies complicated by maternal obesity. Maternal overnutrition and obesity have health implications for offspring, yet little is known about their effects on offspring kidney development and renal function. Female C57Bl6 mice were fed a high fat diet (HFD, 21% fat) or matched normal fat diet (NFD, 6% fat) for 6 weeks prior to pregnancy and throughout gestation and lactation. HFD dams were overweight and glucose intolerant prior to mating but not in late gestation. Offspring of NFD and HFD dams had similar body weights at embryonic day (E)15.5, E18.5 and at postnatal day (PN)21. HFD offspring had normal ureteric tree development and nephron number at E15.5. However, using unbiased stereology, kidneys of HFD offspring were found to have 20–25% more nephrons than offspring of NFD dams at E18.5 and PN21. Offspring of HFD dams with body weight and glucose profiles similar to NFD dams prior to pregnancy also had an elevated nephron endowment. At 9 months of age, adult offspring of HFD dams displayed mild fasting hyperglycaemia but similar body weights to NFD offspring. Renal function and morphology, measured by transcutaneous clearance of FITC-sinistrin and stereology respectively, were normal. This study demonstrates that maternal fat feeding augments offspring nephron endowment with no long-term consequences for offspring renal health. Future studies assessing the effects of a chronic stressor on adult mice with augmented nephron number are warranted, as are studies investigating the molecular mechanisms that result in high nephron endowment. PMID:27547968

  20. Maternal Fat Feeding Augments Offspring Nephron Endowment in Mice.

    PubMed

    Hokke, Stacey; Puelles, Victor G; Armitage, James A; Fong, Karen; Bertram, John F; Cullen-McEwen, Luise A

    2016-01-01

    Increasing consumption of a high fat 'Western' diet has led to a growing number of pregnancies complicated by maternal obesity. Maternal overnutrition and obesity have health implications for offspring, yet little is known about their effects on offspring kidney development and renal function. Female C57Bl6 mice were fed a high fat diet (HFD, 21% fat) or matched normal fat diet (NFD, 6% fat) for 6 weeks prior to pregnancy and throughout gestation and lactation. HFD dams were overweight and glucose intolerant prior to mating but not in late gestation. Offspring of NFD and HFD dams had similar body weights at embryonic day (E)15.5, E18.5 and at postnatal day (PN)21. HFD offspring had normal ureteric tree development and nephron number at E15.5. However, using unbiased stereology, kidneys of HFD offspring were found to have 20-25% more nephrons than offspring of NFD dams at E18.5 and PN21. Offspring of HFD dams with body weight and glucose profiles similar to NFD dams prior to pregnancy also had an elevated nephron endowment. At 9 months of age, adult offspring of HFD dams displayed mild fasting hyperglycaemia but similar body weights to NFD offspring. Renal function and morphology, measured by transcutaneous clearance of FITC-sinistrin and stereology respectively, were normal. This study demonstrates that maternal fat feeding augments offspring nephron endowment with no long-term consequences for offspring renal health. Future studies assessing the effects of a chronic stressor on adult mice with augmented nephron number are warranted, as are studies investigating the molecular mechanisms that result in high nephron endowment.

  1. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation.

    PubMed

    Stennard, Fiona A; Costa, Mauro W; Lai, Donna; Biben, Christine; Furtado, Milena B; Solloway, Mark J; McCulley, David J; Leimena, Christiana; Preis, Jost I; Dunwoodie, Sally L; Elliott, David E; Prall, Owen W J; Black, Brian L; Fatkin, Diane; Harvey, Richard P

    2005-05-01

    The genetic hierarchies guiding lineage specification and morphogenesis of the mammalian embryonic heart are poorly understood. We now show by gene targeting that murine T-box transcription factor Tbx20 plays a central role in these pathways, and has important activities in both cardiac development and adult function. Loss of Tbx20 results in death of embryos at mid-gestation with grossly abnormal heart morphogenesis. Underlying these disturbances was a severely compromised cardiac transcriptional program, defects in the molecular pre-pattern, reduced expansion of cardiac progenitors and a block to chamber differentiation. Notably, Tbx20-null embryos showed ectopic activation of Tbx2 across the whole heart myogenic field. Tbx2 encodes a transcriptional repressor normally expressed in non-chamber myocardium, and in the atrioventricular canal it has been proposed to inhibit chamber-specific gene expression through competition with positive factor Tbx5. Our data demonstrate a repressive activity for Tbx20 and place it upstream of Tbx2 in the cardiac genetic program. Thus, hierarchical, repressive interactions between Tbx20 and other T-box genes and factors underlie the primary lineage split into chamber and non-chamber myocardium in the forming heart, an early event upon which all subsequent morphogenesis depends. Additional roles for Tbx20 in adult heart integrity and contractile function were revealed by in-vivo cardiac functional analysis of Tbx20 heterozygous mutant mice. These data suggest that mutations in human cardiac transcription factor genes, possibly including TBX20, underlie both congenital heart disease and adult cardiomyopathies.

  2. Chronic Maternal Low-Protein Diet in Mice Affects Anxiety, Night-Time Energy Expenditure and Sleep Patterns, but Not Circadian Rhythm in Male Offspring

    PubMed Central

    Mahadevan, Sangeetha K.; Fiorotto, Marta L.; Van den Veyver, Ignatia B.

    2017-01-01

    Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP) diet, had lower body and hind-leg muscle weights and decreased liver enzyme serum levels. We conducted energy expenditure, neurobehavioral and circadian rhythm assays in male offspring to examine mechanisms for the body-weight phenotype and assess neurodevelopmental implications of MLP exposure. C57BL/6J dams were fed a protein restricted (8%protein, MLP) or a control protein (20% protein, C) diet from four weeks before mating until weaning of offspring. Male offspring were weaned to standard rodent diet (20% protein) and single-housed until 8–12 weeks of age. We examined body composition, food intake, energy expenditure, spontaneous rearing activity and sleep patterns and performed behavioral assays for anxiety (open field activity, elevated plus maze [EPM], light/dark exploration), depression (tail suspension and forced swim test), sociability (three-chamber), repetitive (marble burying), learning and memory (fear conditioning), and circadian behavior (wheel-running activity during light-dark and constant dark cycles). We also measured circadian gene expression in hypothalamus and liver at different Zeitgeber times (ZT). Male offspring from separate MLP exposed dams had significantly greater body fat (P = 0.03), less energy expenditure (P = 0.004), less rearing activity (P = 0.04) and a greater number of night-time rest/sleep bouts (P = 0.03) compared to control. MLP offspring displayed greater anxiety-like behavior in the EPM (P<0.01) but had no learning and memory deficit in fear-conditioning assay (P = 0.02). There was an effect of time on Per1, Per 2 and Clock circadian gene expression in the hypothalamus but not on circadian behavior. Thus, transplacental and early developmental exposure of dams to chronic MLP reduces

  3. Chronic Maternal Low-Protein Diet in Mice Affects Anxiety, Night-Time Energy Expenditure and Sleep Patterns, but Not Circadian Rhythm in Male Offspring.

    PubMed

    Crossland, Randy F; Balasa, Alfred; Ramakrishnan, Rajesh; Mahadevan, Sangeetha K; Fiorotto, Marta L; Van den Veyver, Ignatia B

    2017-01-01

    Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP) diet, had lower body and hind-leg muscle weights and decreased liver enzyme serum levels. We conducted energy expenditure, neurobehavioral and circadian rhythm assays in male offspring to examine mechanisms for the body-weight phenotype and assess neurodevelopmental implications of MLP exposure. C57BL/6J dams were fed a protein restricted (8%protein, MLP) or a control protein (20% protein, C) diet from four weeks before mating until weaning of offspring. Male offspring were weaned to standard rodent diet (20% protein) and single-housed until 8-12 weeks of age. We examined body composition, food intake, energy expenditure, spontaneous rearing activity and sleep patterns and performed behavioral assays for anxiety (open field activity, elevated plus maze [EPM], light/dark exploration), depression (tail suspension and forced swim test), sociability (three-chamber), repetitive (marble burying), learning and memory (fear conditioning), and circadian behavior (wheel-running activity during light-dark and constant dark cycles). We also measured circadian gene expression in hypothalamus and liver at different Zeitgeber times (ZT). Male offspring from separate MLP exposed dams had significantly greater body fat (P = 0.03), less energy expenditure (P = 0.004), less rearing activity (P = 0.04) and a greater number of night-time rest/sleep bouts (P = 0.03) compared to control. MLP offspring displayed greater anxiety-like behavior in the EPM (P<0.01) but had no learning and memory deficit in fear-conditioning assay (P = 0.02). There was an effect of time on Per1, Per 2 and Clock circadian gene expression in the hypothalamus but not on circadian behavior. Thus, transplacental and early developmental exposure of dams to chronic MLP reduces

  4. In Utero and Lactational Exposure to PCBs in Mice: Adult Offspring Show Altered Learning and Memory Depending on Cyp1a2 and Ahr Genotypes

    PubMed Central

    Curran, Christine P.; Genter, Mary Beth; Patel, Krishna V.; Schaefer, Tori L.; Skelton, Matthew R.; Williams, Michael T.; Vorhees, Charles V.

    2011-01-01

    Background: Both coplanar and noncoplanar polychlorinated biphenyls (PCBs) exhibit neurotoxic effects in animal studies, but individual congeners do not always produce the same effects as PCB mixtures. Humans genetically have > 60-fold differences in hepatic cytochrome P450 1A2 (CYP1A2)-uninduced basal levels and > 12-fold variability in aryl hydrocarbon receptor (AHR)affinity; because CYP1A2 is known to sequester coplanar PCBs and because AHR ligands include coplanar PCBs, both genotypes can affect PCB response. Objectives: We aimed to develop a mouse paradigm with extremes in Cyp1a2 and Ahr genotypes to explore genetic susceptibility to PCB-induced developmental neurotoxicity using an environmentally relevant mixture of PCBs. Methods: We developed a mixture of eight PCBs to simulate human exposures based on their reported concentrations in human tissue, breast milk, and food supply. We previously characterized specific differences in PCB congener pharmacokinetics and toxicity, comparing high-affinity–AHR Cyp1a2 wild-type [Ahrb1_Cyp1a2(+/+)], poor-affinity–AHR Cyp1a2 wild-type [Ahrd_Cyp1a2(+/+)], and high-affinity–AHR Cyp1a2 knockout [Ahrb1_Cyp1a2(–/–)] mouse lines [Curran CP, Vorhees CV, Williams MT, Genter MB, Miller ML, Nebert DW. 2011. In utero and lactational exposure to a complex mixture of polychlorinated biphenyls: toxicity in pups dependent on the Cyp1a2 and Ahr genotypes. Toxicol Sci 119:189–208]. Dams received a mixture of three coplanar and five noncoplanar PCBs on gestational day 10.5 and postnatal day (PND) 5. In the present study we conducted behavioral phenotyping of exposed offspring at PND60, examining multiple measures of learning, memory, and other behaviors. Results: We observed the most significant deficits in response to PCB treatment in Ahrb1_Cyp1a2(–/–) mice, including impaired novel object recognition and increased failure rate in the Morris water maze. However, all PCB-treated genotypes showed significant differences on

  5. Mode of Delivery and Offspring Body Mass Index, Overweight and Obesity in Adult Life: A Systematic Review and Meta-Analysis

    PubMed Central

    Darmasseelane, Karthik; Hyde, Matthew J.; Santhakumaran, Shalini; Gale, Chris; Modi, Neena

    2014-01-01

    Background It has been suggested that mode of delivery, a potentially powerful influence upon long-term health, may affect later life body mass index (BMI). We conducted a systematic review and meta-analysis of the effect of Caesarean section (CS) and vaginal delivery (VD) on offspring BMI, overweight (BMI>25) and obesity (BMI>30) in adulthood. Secondary outcomes were subgroup analyses by gender and type of CS (in-labour/emergency, pre-labour/elective). Methods Using a predefined search strategy, Pubmed, Google Scholar and Web of Science were searched for any article published before 31st March 2012, along with references of any studies deemed relevant. Studies were selected if they reported birth characteristics and long-term offspring follow-up into adulthood. Aggregate data from relevant studies were extracted onto a pre-piloted data table. A random-effects meta-analysis was carried out in RevMan5. Results are illustrated using forest plots and funnel plots, and presented as mean differences or odds ratios (OR) and 95% confidence intervals. Results Thirty-five studies were identified through the search, and 15 studies with a combined population of 163,753 were suitable for inclusion in the meta-analysis. Comparing all CS to VD in pooled-gender unadjusted analyses, mean BMI difference was 0·44 kg·m-2 (0·17, 0·72; p = 0·002), OR for incidence of overweight was 1·26 (1·16, 1·38; p<0·00001) and OR for incidence of obesity was 1·22 (1·05, 1·42; p = 0·01). Heterogeneity was low in all primary analyses. Similar results were found in gender-specific subgroup analyses. Subgroup analyses comparing type of CS to VD showed no significant impact on any outcome. Conclusions There is a strong association between CS and increased offspring BMI, overweight and obesity in adulthood. Given the rising CS rate worldwide there is a need to determine whether this is causal, or reflective of confounding influences. Systematic review registration An a priori

  6. Nutritional status of adult ewes during early and mid-pregnancy. 2. Effects of supplementation with selenised yeast on ewe reproduction and offspring performance to weaning.

    PubMed

    Muñoz, C; Carson, A F; McCoy, M A; Dawson, L E R; O'Connell, N E; Gordon, A W

    2008-01-01

    The objective of this study was to determine the effects of selenium (Se) supplementation of mature ewes in the period from day -14 to day 90 post mating on Se status, productivity and viability of ewes and their offspring. Multiparous crossbred ewes (n = 82) were randomly assigned to receive a standard dried grass-based diet (control) or dried grass diet supplemented with 1 g of selenised yeast (Selplex®), providing 0.5 mg Se per ewe per day. After day 90 post mating, all ewes were offered grass-based diets supplemented with a standard multivitamin and mineral mix, up to lambing. Ewes that were fed additional Se had increased (P < 0.001) activity of glutathione peroxidase enzyme (GPx) and increased plasma Se concentrations throughout the treatment period. At lambing, GPx activity of supplemented ewes was higher (P < 0.001) than that of controls. Twenty-four hours after birth, lambs of ewes given Se had higher (P < 0.001) concentration of Se in plasma, greater (P < 0.001) activity of GPx and better (P < 0.01) immune status. Lambs of ewes that received supplementation showed a faster progression to stand than control lambs (P < 0.05), independent of maternal behaviour which was not affected. Supplementation reduced perinatal lamb mortality (0.04 v. 0.17; P < 0.05). However, overall mortality from birth to weaning was unaffected (P > 0.05). Supplemented ewes weaned lambs on average 2 kg heavier than control ewes, due to the higher (P < 0.05) growth rates achieved by their offspring. In conclusion, for ewes with a marginal Se status, an organic source of Se supplemented throughout pregnancy, compared with supplementation only in the last trimester, positively affected measures of lamb viability and survival.

  7. Early weaning by maternal prolactin inhibition leads to higher neuropeptide Y and astrogliosis in the hypothalamus of the adult rat offspring.

    PubMed

    Younes-Rapozo, Viviane; Moura, Egberto G; Manhães, Alex C; Peixoto-Silva, Nayara; de Oliveira, Elaine; Lisboa, Patricia C

    2015-02-14

    The suppression of prolactin production with bromocriptine (BRO) in the last 3 d of lactation reduces milk yield (early weaning) and increases the transfer of leptin through the milk, causing hyperleptinaemia in pups. In adulthood, several changes occur in the offspring as a result of metabolic programming, including overweight, higher visceral fat mass, hypothyroidism, hyperglycaemia, insulin resistance, hyperleptinaemia and central leptin resistance. In the present study, we investigated whether overweight rats programmed by early weaning with maternal BRO treatment have hypothalamic alterations in adulthood. We analysed the expression of neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), pro-opiomelanocortin (POMC) and α-melanocyte-stimulating hormone (α-MSH) by immunohistochemistry in the following hypothalamic nuclei: medial and lateral arcuate nucleus (ARC); paraventricular nucleus (PVN); lateral hypothalamus (LH). Additionally, we sought to determine whether these programmed rats exhibited hypothalamic inflammation as indicated by astrogliosis. NPY immunostaining showed a denser NPY-positive fibre network in the ARC and PVN (+82% in both nuclei) of BRO offspring. Regarding the anorexigenic neuropeptides, no difference was found for CART, POMC and α-MSH. The number of astrocytes was higher in all the nuclei of BRO rats. The fibre density of glial fibrillary acidic protein was also increased in both medial and lateral ARC (6·06-fold increase and 9·13-fold increase, respectively), PVN (5·75-fold increase) and LH (2·68-fold increase) of BRO rats. We suggest that early weaning has a long-term effect on the expression of NPY as a consequence of developmental plasticity, and the presence of astrogliosis indicates hypothalamic inflammation that is closely related to overweight and hyperleptinaemia observed in our model.

  8. Effect of age and COX-2-derived prostanoids on the progression of adult vascular dysfunction in the offspring of diabetic rats

    PubMed Central

    Ramos-Alves, FE; de Queiroz, DB; Santos-Rocha, J; Duarte, GP; Xavier, FE

    2012-01-01

    BACKGROUND AND PURPOSE The present study was designed to determine how diabetes in pregnancy affects vascular function in their offspring, the influence of age and whether COX activation is involved in this effect. EXPERIMENTAL APPROACH Relaxation responses to ACh were analysed in mesenteric resistance arteries from the offspring of control rats (O-CR) and those of diabetic rats (O-DR) at 3, 6 and 12 months of age. TxB2, PGE2 and PGF2α release were determined by enzyme immunoassay. COX-1 and COX-2 expression were measured by Western blot analysis. KEY RESULTS O-DR developed hypertension from 6 months of age compared with O-CR. In O-DR, relaxation responses to ACh were impaired in all ages studied and were restored by COX-2 inhibition. TP receptor blockade (SQ29548) restored ACh relaxation in arteries from 3-month-old O-DR while TP and EP receptor blockade (SQ29548 + AH6809) was required to restore it in 6-month-old O-DR. In 12-month-old O-DR, ACh relaxation was restored when TP, EP and FP receptors were blocked (SQ29548 + AH6809 + AL8810). ACh-stimulated TxB2 was higher in all O-DR. ACh-stimulated PGE2 release was increased in arteries from 6- and 12-month-old O-DR, whereas PGF2α was increased only in 12-month-old O-DR. COX-2, but not COX-1, expression was higher in O-DR than O-CR. CONCLUSIONS AND IMPLICATIONS The results indicate an age-dependent up-regulation of COX-2 coupled to an enhanced formation of vasoconstrictor prostanoids in resistance arteries from O-DR. This effect plays a key role in the pathogenesis of endothelial dysfunction, which in turn could contribute to the progression of vascular dysfunction in these rats. PMID:22436072

  9. Murine Typhus

    PubMed Central

    Dzul-Rosado, Karla R; Zavala Velázquez, Jorge Ernesto; Zavala-Castro, Jorge

    2012-01-01

    Rickettsia typhi: is an intracellular bacteria who causes murine typhus. His importance is reflected in the high frequency founding specific antibodies against Rickettsia typhi in several worldwide seroepidemiological studies, the seroprevalence ranging between 3-36%. Natural reservoirs of R. typhi are rats (some species belonging the Rattus Genus) and fleas (Xenopsylla cheopis) are his vector. This infection is associated with overcrowding, pollution and poor hygiene. Typically presents fever, headache, rash on trunk and extremities, in some cases may occur organ-specific complications, affecting liver, kidney, lung or brain. Initially the disease is very similar to other diseases, is very common to confuse the murine typhus with Dengue fever, therefore, ignorance of the disease is a factor related to complications or non-specific treatments for the resolution of this infection. This paper presents the most relevant information to consider about the rickettsiosis caused by Rickettsia typhi. PMID:24893060

  10. Roles of p53 and p27 Kip1 in the regulation of neurogenesis in the murine adult subventricular zone

    PubMed Central

    Gil-Perotin, Sara; Haines, Jeffery D.; Kaur, Jasbir; Marin-Husstege, Mireya; Spinetta, Michael J.; Kim, Kwi-Hye; Duran-Moreno, Maria; Schallert, Timothy; Zindy, Frederique; Roussel, Martine F.; Garcia-Verdugo, Jose M.; Casaccia, Patrizia

    2011-01-01

    The tumor suppressor protein p53 (Trp53) and the cell cycle inhibitor p27 Kip1 (Cdknb1) have both been implicated in regulating proliferation of adult subventricular zone (aSVZ) cells. We previously reported that genetic ablation of Trp53 (Trp53 −/−) or Cdknb1 (p27 Kip1−/−) increased proliferation of cells in the aSVZ, but differentially affected the number of adult born neuroblasts. We therefore hypothesized that these molecules might play non-redundant roles. To test this hypothesis we generated mice lacking both genes (Trp53 −/−;p27 Kip1−/−) and analysed the consequences on aSVZ cells and adult neuroblasts. Proliferation and self-renewal of cultured aSVZ cells were increased in the double mutants compared with control, but the mice did not develop spontaneous brain tumors. In contrast, the number of adult-born neuroblasts in the double mutants was similar to wild-type animals and suggested a complementation of the p27 Kip1−/− phenotype due to loss of Trp53. Cellular differences detected in the aSVZ correlated with cellular changes in the olfactory bulb and behavioral data on novel odor recognition. The exploration time for new odors was reduced in p27 Kip1−/− mice, increased in Trp53 −/− mice and normalized in the double Trp53−/−;p27 Kip1−/− mutants. At the molecular level, Trp53 −/− aSVZ cells were characterized by higher levels of NeuroD and Math3 and by the ability to generate neurons more readily. In contrast, p27 Kip1−/− cells generated fewer neurons, due to enhanced proteasomal degradation of pro-neural transcription factors. Together, these results suggest that p27 Kip1 and p53 function non-redundantly to modulate proliferation and self-renewal of aSVZ cells and antagonistically in regulating adult neurogenesis. PMID:21899604

  11. Immune activation in lactating dams alters sucklings' brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology.

    PubMed

    Arad, Michal; Piontkewitz, Yael; Albelda, Noa; Shaashua, Lee; Weiner, Ina

    2017-02-08

    Early immune activation (IA) in rodents, prenatal through the mother or early postnatal directly to the neonate, is widely used to produce behavioral endophenotypes relevant to schizophrenia and depression. Given that maternal immune response plays a crucial role in the deleterious effects of prenatal IA, and lactation is a critical vehicle of immunological support to the neonate, we predicted that immune activation of the lactating dam will produce long-term abnormalities in the sucklings. Nursing dams were injected on postnatal day 4 with the viral mimic poly-I:C (4mg/kg) or saline. Cytokine assessment was performed in dams' plasma and milk 2h, and in the sucklings' hippocampus, 6h and 24h following poly-I:C injection. Male and female sucklings were assessed in adulthood for: a) performance on behavioral tasks measuring constructs considered relevant to schizophrenia (selective attention and executive control) and depression (despair and anhedonia); b) response to relevant pharmacological treatments; c) brain structural changes. Maternal poly-I:C injection caused cytokine alterations in the dams' plasma and milk, as well as in the sucklings' hippocampus. Lactational poly-I:C exposure led to sex-dimorphic (non-overlapping) behavioral abnormalities in the adult offspring, with male but not female offspring exhibiting attentional and executive function abnormalities (manifested in persistent latent inhibition and slow reversal) and hypodopaminergia, and female but not male offspring exhibiting despair and anhedonia (manifested in increased immobility in the forced swim test and reduced saccharine preference) and hyperdopaminergia, mimicking the known sex-bias in schizophrenia and depression. The behavioral double-dissociation predicted distinct pharmacological profiles, recapitulating the pharmacology of negative/cognitive symptoms and depression. In-vivo imaging revealed hippocampal and striatal volume reductions in both sexes, as found in both disorders. This is

  12. Effects of prenatal stress on male offspring sexual maturity.

    PubMed

    Rodríguez, Nancy; Mayer, Nora; Gauna, Héctor F

    2007-01-01

    Prenatal stimulations have been shown to have long-term effects on at reproductive activity. We evaluated the influence of the prenatal stress on the hypothalamic-pituitary-gonad (HPG) axis in male offsprings from mothers with high number of offsprings per litter (HNL) and low number of offsprings per litter (LNL) after hypothesizing that the number of offsprings per litter may modify the effect of the prenatal stress on the HPG of adult offsprings. Pregnant Wistar rats were used for this study. Immobilization (IMO) stress was used, 30 min, 3 times per week, from the 5th to 21st day of pregnancy. The weight of adrenal and gonads, and the corticosterone (COR), testosterone (TES) and luteinizing hormone (LH) plasmatic levels were analyzed in the male offspring at 30, 45 and 70 days of age. The offspring males coming from LNL showed a decrease in testicle weight and TES levels, without changes in the plasmatic LH levels. However, the offspring of HNL showed a decrease of LH levels. It is possible to conclude that in LNL prenatal stress would produce alterations to gonadal level, while in HNL the effect of stress would be evident at pituitary level.

  13. Ambivalent reactions in the parent and offspring relationship.

    PubMed

    Fingerman, Karen L; Chen, Pei-Chun; Hay, Elizabeth; Cichy, Kelly E; Lefkowitz, Eva S

    2006-05-01

    Theory suggests that aging parents and their adult children experience ambivalence (conflicting emotions) as a result of unclear norms governing the tie between them. This study investigated personality differences and relationship context differences in ambivalence, as well as the reactions of parents and offspring to each other. As part of the Adult Family Study, 474 individuals from 158 family triads consisting of a mother, father, and son or daughter aged 22 to 49 years completed telephone interviews, in-person interviews, and questionnaires. Multilevel models revealed that poor parental health and neuroticism in parents and offspring were associated with greater ambivalence. Surprisingly, investment in competing roles was associated with less ambivalence. Parents also experienced greater ambivalence when offspring scored higher on neuroticism, rated the parent as less important, or were less invested in their own spousal role. Parents' characteristics were not associated with offspring's ambivalence. Parents appear to react to their children's personality and achievements even after children are grown.

  14. Induction of murine tumors in adult mice by a combination of either avian sarcoma virus or human adenovirus and syngeneic mouse embryo cells.

    PubMed

    Takeuchi, M; Nitta, K

    1983-01-01

    Primary murine Rous sarcoma was produced in adult mice of seven strains, C57BL/6, DBA/2, BALB/c, C3H/He, CBAJ, AKR, and DDD, by s.c. inoculation of a mixture of 5 X 10(6) chicken tumor cells containing Schmidt-Ruppin Rous sarcoma virus and 9- to 12-day-old mouse embryo cells (MEC) (2 X 10(6) ) of the syngeneic strain. The sarcoma developed at the site of injection in almost all mice tested, but there were some differences in the latent period and the survival time among mouse strains. When the number of cells inoculated was reduced to 5 X 10(4) for chicken tumor cells induced by the Schmidt-Ruppin strain of Rous sarcoma virus (SR-CTC) and 2 X 10(4) for MEC, no tumor was produced in C3H/He mice. These tumors had strain specificity and the Schmidt-Ruppin strain of Rous sarcoma virus genome in masked form. The tumor at the site of injection originated in the embryo cells injected along with SR-CTC. This was confirmed by CBAT6/T6 marker chromosome analysis of the tumor cells of CBA mice induced with SR-CTC plus CBAT6/T6 MEC and also confirmed by transplantation of a C57BL/6 X C3H/He F1 tumor which had been induced with SR-CTC plus C3H/He or C57BL/6 MEC. Tumor induction in adult mouse by a mixture of virus and syngeneic 9- to 14-day-old embryo cells was tested for human adenovirus serotype 12 (Ad12) and simian virus 40. Primary Ad12 tumor was also induced in adult CBA, C3H/He, and DDD mice by 4 X 10(5 to 6) 50% tissue culture infective dose of Ad12 with 5 X 10(6) syngeneic embryo cells. This tumor contained Ad12 T-antigen-positive particles in cells. But in the case of simian virus 40, the tumor did not appear for about 300 days of observation.

  15. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal N(G)-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    PubMed

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N(G)-nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N(G)-nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N(G)-nitro-L-arginine-methyl ester, N(G)-nitro-L-arginine-methyl ester +melatonin, and N(G)-nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N(G)-nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N(G)-nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N(G)-nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N(G)-nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N(G)-nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway

  16. Do Parental Stressors and Avoidance Coping Mediate between Parental Depression and Offspring Depression? A 23-Year Follow-Up

    ERIC Educational Resources Information Center

    Timko, Christine; Cronkite, Ruth C.; Moos, Rudolf H.

    2010-01-01

    We examined whether parents' stressors and avoidance coping when offspring were children helped to explain associations between parent depression at baseline and offspring's avoidance coping and depression in adulthood. Self-report data were collected at baseline and 1 year from parents (N = 326) and at 23 years from adult offspring (N = 326).…

  17. Cross-sectional association of dietary patterns with insulin-resistant phenotypes among adults without diabetes in the Framingham Offspring Study.

    PubMed

    Liu, Enju; McKeown, Nicola M; Newby, P K; Meigs, James B; Vasan, Ramachandran S; Quatromoni, Paula A; D'Agostino, Ralph B; Jacques, Paul F

    2009-08-01

    Cluster analysis is a valuable tool for exploring the health consequences of consuming different dietary patterns. We used this approach to examine the cross-sectional relationship between dietary patterns and insulin-resistant phenotypes, including waist circumference, BMI, fasting insulin, 2 h post-challenge insulin, insulin sensitivity index (ISI0,120), HDL-cholesterol, TAG and blood pressure, using data from the fifth examination cycle of the Framingham Offspring Study. Among 2875 participants without diabetes, we identified four dietary patterns based on the predominant sources of energy: 'Fruits, Reduced Fat Dairy and Whole Grains', 'Refined Grains and Sweets', 'Beer' and 'Soda'. After adjusting for multiple comparisons and potential confounders, compared with the 'Fruits, Reduced Fat Dairy and Whole Grains' pattern, the 'Refined Grains and Sweets' pattern had significantly higher mean waist circumference (92.4 v. 90.5 cm; P = 0.008) and BMI (27.3 v. 26.6 kg/m2; P = 0.02); the 'Soda' pattern had significantly higher mean fasting insulin concentration (31.3 v. 28.0 microU/ml; P < or = 0.001); the 'Beer' pattern had significantly higher mean HDL-cholesterol concentration (1.46 v. 1.31 mmol/l; P < 0.001). No associations were observed between dietary patterns and ISI0,120, TAG, and systolic or diastolic blood pressure. Our findings suggest that consumption of a diet rich in fruits, vegetables, whole grains and reduced-fat dairy protects against insulin-resistant phenotypes and displacing these healthy choices with refined grains, high-fat dairy, sweet baked foods, candy and sugar-sweetened soda may promote insulin-resistant phenotypes.

  18. Maternal and developmental immune challenges alter behavior and learning ability of offspring.

    PubMed

    Grindstaff, Jennifer L; Hunsaker, Veronica R; Cox, Shelby N

    2012-08-01

    Stimulation of the offspring immune response during development is known to influence growth and behavioral phenotype. However, the potential for maternal antibodies to block the behavioral effects of immune activation during the neonatal period has not been assessed. We challenged female zebra finches (Taeniopygia guttata) prior to egg laying and then challenged offspring during the nestling and juvenile periods with one of two antigens (keyhole limpet hemocyanin (KLH) or lipopolysaccharide (LPS)). We then tested the effects of maternal and neonatal immune challenges on offspring growth rates and neophobia and learning ability of offspring during adulthood. Neonatal immune challenge depressed growth rates. Neophobia of adult offspring was influenced by a combination of maternal treatment, offspring treatment, and offspring sex. Males challenged with LPS during the nestling and juvenile periods had reduced learning performance in a novel foraging task; however, female learning was not impacted. Offspring challenged with the same antigen as mothers exhibited similar growth suppression and behavioral changes as offspring challenged with a novel antigen. Thus, developmental immune challenges have long-term effects on the growth and behavioral phenotype of offspring. We found limited evidence that matching of maternal and offspring challenges reduces the effects of immune challenge in the altricial zebra finch. This may be a result of rapid catabolism of maternal antibodies in altricial birds. Our results emphasize the need to address sex differences in the long-term effects of developmental immune challenge and suggest that neonatal immune activation may be one proximate mechanism underlying differences in adult behavior.

  19. Maternal dietary restriction alters offspring's sleep homeostasis.

    PubMed

    Shimizu, Noriyuki; Chikahisa, Sachiko; Nishi, Yuina; Harada, Saki; Iwaki, Yohei; Fujihara, Hiroaki; Kitaoka, Kazuyoshi; Shiuchi, Tetsuya; Séi, Hiroyoshi

    2013-01-01

    Nutritional state in the gestation period influences fetal growth and development. We hypothesized that undernutrition during gestation would affect offspring sleep architecture and/or homeostasis. Pregnant female mice were assigned to either control (fed ad libitum; AD) or 50% dietary restriction (DR) groups from gestation day 12 to parturition. After parturition, dams were fed AD chow. After weaning, the pups were also fed AD into adulthood. At adulthood (aged 8-9 weeks), we carried out sleep recordings. Although offspring mice displayed a significantly reduced body weight at birth, their weights recovered three days after birth. Enhancement of electroencephalogram (EEG) slow wave activity (SWA) during non-rapid eye movement (NREM) sleep was observed in the DR mice over a 24-hour period without changing the diurnal pattern or amounts of wake, NREM, or rapid eye movement (REM) sleep. In addition, DR mice also displayed an enhancement of EEG-SWA rebound after a 6-hour sleep deprivation and a higher threshold for waking in the face of external stimuli. DR adult offspring mice exhibited small but significant increases in the expression of hypothalamic peroxisome proliferator-activated receptor α (Pparα) and brain-specific carnitine palmitoyltransferase 1 (Cpt1c) mRNA, two genes involved in lipid metabolism. Undernutrition during pregnancy may influence sleep homeostasis, with offspring exhibiting greater sleep pressure.

  20. Morning sickness: impact on offspring salt preference.

    PubMed

    Crystal, S R; Bernstein, I L

    1995-12-01

    These studies examined the relationship between salt preference of adult offspring and their mothers' symptoms of morning sickness during pregnancy. College students who could provide information about their mothers' symptoms of morning sickness completed a survey about their dietary salt intake (study 1; n = 169) or rated and consumed ten snack foods (study 2; n = 66). In study 1 a salt-use score was calculated based on responses to the Salt Intake Questionnaire; offspring of women with moderate or severe vomiting reported a significantly higher level of salt use (p < 0.01) than those whose mothers report little or no symptoms. In study 2 saltiness and pleasantness ratings of high-salt foods, intake of those foods and total sodium intake were the focus of analysis. Offspring of women reporting moderate or severe vomiting showed a significantly greater preference for the snack food subjects rated as saltiest than those whose mothers reported no or mild vomiting. They also ate more of that food and consumed more total sodium during the test session. Effects were stronger in Caucasian than Asian subjects. These studies suggest that moderate to severe vomiting during pregnancy can be associated with significantly higher salt intake in offspring. Thus, a gestational event may be an important determinant of salt intake and preference in adulthood.

  1. A comparison of murine T-cell-depleted adult bone marrow and full-term fetal blood cells in hematopoietic engraftment and immune reconstitution.

    PubMed

    Chen, Benny J; Cui, Xiuyu; Sempowski, Gregory D; Gooding, Maria E; Liu, Congxiao; Haynes, Barton F; Chao, Nelson J

    2002-01-01

    Umbilical cord blood has been increasingly used as a source of hematopoietic stem cells. A major area of concern for the use of cord blood transplantation is the delay in myeloid and lymphoid recovery. To directly compare myeloid and lymphoid recovery using an animal model of bone marrow and cord blood as sources of stem cells, hematopoietic engraftment and immune recovery were studied following infusion of T-cell-depleted adult bone marrow or full-term fetal blood cells, as a model of cord blood in a murine allogeneic transplantation model (C57BL/6 [H-2(b)] --> BALB/c [H-2(d)]). Allogeneic full-term fetal blood has poorer radioprotective capacity but greater long-term engraftment potential on a cell-to-cell basis compared with T-cell-depleted bone marrow. Allogeneic full-term fetal blood recipients had decreased absolute numbers of T, B, and dendritic cells compared with bone marrow recipients. Splenic T cells in allogeneic full-term fetal blood recipients proliferated poorly, were unable to generate cytotoxic effectors against third-party alloantigens in vitro, and failed to generate alloantigen-specific cytotoxic antibodies in vivo. In addition, reconstituting T cells in fetal blood recipients had decreased mouse T-cell receptor delta single-joint excision circles compared with bone marrow recipients. At a per-cell level, B cells from fetal blood recipients did not proliferate as well as those found in bone marrow recipients. These results suggest that full-term fetal blood can engraft allogeneic hosts across the major histocompatibility barrier with slower hematopoietic engraftment and impaired immune reconstitution.

  2. Impact of oxygen concentration on adult murine pre-antral follicle development in vitro and the corresponding metabolic profile.

    PubMed

    Gook, Debra A; Edgar, D H; Lewis, K; Sheedy, J R; Gardner, D K

    2014-01-01

    Oxygen concentration during in vitro culture has a significant effect on the physiology of embryos, altering metabolic profile and developmental outcome. Although atmospheric oxygen has been used routinely for the culture of ovarian follicles, oxygen concentration may also be critical for follicle growth but the optimal concentration has not been determined. In this study, mechanically isolated primary and secondary follicles (80-140 µm diameter) from adult mouse ovaries were cultured in serum-free conditions for 8 days in either 5 or 20% oxygen to determine growth (follicular diameter), morphology and viability. For each oxygen concentration, half of the medium was replaced on Days 2, 4 and 6 or on Day 4 only. In the latter group, metabolic analysis of spent follicular culture media was performed by (1)H-NMR. The proportion of viable, growing follicles was significantly (P < 0.0001) higher in 5% than in 20% oxygen (59% versus 8%). Reducing the frequency of medium replacement during culture in 5% oxygen resulted in significantly (P < 0.001) more viable follicles (79 versus 46%). In 20% oxygen, poor follicular viability was observed irrespective of the frequency of medium replacement (8 and 10% respectively). Metabolic profiles showed marked differences in amino acid and carbohydrate utilization with respect to both oxygen concentration and between Days 4 and 8 of development. Metabolites which significantly discriminated between oxygen concentration at both time points were glucose consumption, lactate utilization, alanine, alanyl-glutamine, leucine and proline. In conclusion, the poor in vitro follicular development previously observed in minimal culture conditions may reflect the use of 20% oxygen. Frequent medium replenishment is not necessary and does not overcome the detrimental effect of high oxygen on follicle viability. Further optimization of culture conditions would benefit from metabolic analyses and the use of 5% oxygen should be tested further for

  3. Experimental evidence for offspring learning in parent-offspring communication.

    PubMed

    Kedar, H; Rodríguez-Gironés, M A; Yedvab, S; Winkler, D W; Lotem, A

    2000-09-07

    The offspring of birds and mammals solicit food from their parents by a combination of movements and vocalizations that have come to be known collectively as 'begging'. Recently, begging has most often been viewed as an honest signal of offspring need. Yet, if offspring learn to adjust their begging efforts to the level that rewards them most, begging intensities may also reflect offsprings' past experience rather than their precise current needs. Here we show that bird nestlings with equal levels of need can learn to beg at remarkably different levels. These experiments with hand-raised house sparrows (Passer domesticus) indicated that chicks learn to modify begging levels within a few hours. Moreover, we found that the begging postures of hungry chicks in natural nests are correlated with the average postures that had previously yielded them parental feedings. Such learning challenges parental ability to assess offspring needs and may require that, in response, parents somehow filter out learned differences in offspring signals.

  4. Teenage parents and their offspring.

    PubMed

    Kaufman, J

    1996-06-18

    Teenage parents are cast into adult roles before the role experimentation and identity development tasks of middle adolescence can be completed. Understanding the etiology of this social problem requires an ecological perspective encompassing individual characteristics, person-context variables, and societal factors such as race and social class. Risk factors identified in the literature on adolescent pregnancy in the US include: absence of a future orientation or aspirations, lack of assertiveness and interpersonal skills to control physical intimacy, low socioeconomic status and minority group membership, growing up in a single-parent family, a history of sexual abuse, five or more siblings, a sister or friend who became a teenage mother, lax parental supervision of dating and free time, low self-esteem, and dropping out or failing in school. The limited data on adolescent fathers suggest they have histories of substance use, delinquency, failure to graduate from high school, financial difficulty, and exposure to family violence. The offspring of adolescent parents show a higher incidence of developmental delays and mild mental retardation than children of adults and are at increased risk of child abuse and neglect. Teen parents raised in dysfunctional families tend to perpetuate destructive methods of child rearing and have unrealistic, age-inappropriate expectations for infants and toddlers. Teenage parents' lack of competence can be mitigated, however, by positive living arrangements, a supportive family of origin, peer support groups, quality child care, school-based services, and accurate information about parenting and child development.

  5. The schooling of offspring and the survival of parents.

    PubMed

    Friedman, Esther M; Mare, Robert D

    2014-08-01

    Contemporary stratification research on developed societies usually views the intergenerational transmission of educational advantage as a one-way effect from parent to child. However, parents' investment in their offspring's schooling may yield significant returns for parents themselves in later life. For instance, well-educated offspring have greater knowledge of health and technology to share with their parents and more financial means to provide for them than do their less-educated counterparts. We use data from the 1992-2006 Health and Retirement Study (HRS) to examine whether adult offspring's educational attainments are associated with parents' survival in the United States. We show that adult offspring's educational attainments have independent effects on their parents' mortality, even after controlling for parents' own socioeconomic resources. This relationship is more pronounced for deaths that are linked to behavioral factors: most notably, chronic lower respiratory disease and lung cancer. Furthermore, at least part of the association between offspring's schooling and parents' survival may be explained by parents' health behaviors, including smoking and physical activity. These findings suggest that one way to influence the health of the elderly is through their offspring. To harness the full value of schooling for health, then, a family and multigenerational perspective is needed.

  6. The effect of genetic counseling for adult offspring of patients with type 2 diabetes on attitudes toward diabetes and its heredity: a randomized controlled trial.

    PubMed

    Nishigaki, M; Tokunaga-Nakawatase, Y; Nishida, J; Kazuma, K

    2014-10-01

    The aim of this study is to investigate the effect of diabetes genetic counseling on attitudes toward diabetes and its heredity in relatives of type 2 diabetes patients. This study was an unmasked, randomized controlled trial at a medical check-up center in Japan. Subjects in this study are healthy adults between 30 and 60 years of age who have a family history of type 2 diabetes in their first degree relatives. Participants in the intervention group received a brief genetic counseling session for approximately 10 min. Genetic counseling was structured based on the Health Belief Model. Both intervention and control groups received a booklet for general diabetes prevention. Risk perception and recognition of diabetes, and attitude towards its prevention were measured at baseline, 1 week and 1 year after genetic counseling. Participants who received genetic counseling showed significantly higher recognition about their sense of control over diabetes onset than control group both at 1 week and 1 year after the session. On the other hand, anxiety about diabetes did not change significantly. The findings show that genetic counseling for diabetes at a medical check center helped adults with diabetes family history understand they are able to exert control over the onset of their disease through lifestyle modification.

  7. Increased Anxiety in Offspring Reared by Circadian Clock Mutant Mice

    PubMed Central

    Koizumi, Hiroko; Kurabayashi, Nobuhiro; Watanabe, Yuto; Sanada, Kamon

    2013-01-01

    The maternal care that offspring receive from their mothers early in life influences the offspring’s development of emotional behavior in adulthood. Here we found that offspring reared by circadian clock-impaired mice show elevated anxiety-related behavior. Clock mutant mice harboring a mutation in Clock, a key component of the molecular circadian clock, display altered daily patterns of nursing behavior that is fragmented during the light period, instead of long bouts of nursing behavior in wild-type mice. Adult wild-type offspring fostered by Clock mutant mice exhibit increased anxiety-related behavior. This is coupled with reduced levels of brain serotonin at postnatal day 14, whose homeostasis during the early postnatal period is critical for normal emotional behavior in adulthood. Together, disruption of the circadian clock in mothers has an adverse impact on establishing normal anxiety levels in offspring, which may increase their risk of developing anxiety disorders. PMID:23776596

  8. Perinatal undernutrition alters intestinal alkaline phosphatase and its main transcription factors KLF4 and Cdx1 in adult offspring fed a high-fat diet.

    PubMed

    Lallès, Jean-Paul; Orozco-Solís, Ricardo; Bolaños-Jiménez, Francisco; de Coppet, Pierre; Le Dréan, Gwénola; Segain, Jean-Pierre

    2012-11-01

    Nutrient restriction during gestation and/or suckling is associated with an increased risk of developing inflammation, obesity and metabolic diseases in adulthood. However, the underlying mechanisms, including the role of the small intestine, are unclear. We hypothesized that intestinal adaptation to the diet in adulthood is modulated by perinatal nutrition. This hypothesis was tested using a split-plot design experiment with 20 controls and 20 intrauterine growth-retarded (IUGR) rats aged 240 days and randomly assigned to be fed a standard chow or a high-fat (HF) diet for 10 days. Jejunal tissue was collected at necropsy and analyzed for anatomy, digestive enzymes, goblet cells and mRNA levels. Cecal contents and blood serum were analyzed for alkaline phosphatase (AP). IUGR rats failed to adapt to HF by increasing AP activity in jejunal tissue and cecal content as observed in controls. mRNA levels of transcription factors KLF4 and Cdx1 were blunted in jejunal epithelial cell of IUGR rats fed HF. mRNA levels of TNF-α were lower in IUGR rats. They also displayed exacerbated aminopeptidase N response and reduced jejunal goblet cell density. Villus and crypt architecture and epithelial cell proliferation increased with HF in both control and IUGR rats. Serum AP tended to be lower, and serum levamisole inhibition-resistant AP fraction was lower, in IUGR than controls with HF. Serum fatty acids and triglycerides were higher in IUGR rats and higher with HF. In conclusion, the adult intestine adapts to an HF diet differentially depending on early nutrition, jejunal AP and transcription factors being blunted in IUGR individuals fed HF. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. When parents disclose BRCA1/2 test results: Their communication and perceptions of offspring response

    PubMed Central

    Bradbury, Angela R.; Patrick-Miller, Linda; Egleston, Brian L.; Olopade, Olufunmilayo I.; Daly, Mary B.; Moore, Cynthia W.; Sands, Colleen B.; Schmidheiser, Helen; Kondamudi, Preethi K.; Feigon, Maia; Ibe, Comfort N.; Daugherty, Christopher K.

    2011-01-01

    Background BRCA1/2 testing is not recommended for children, as risk reduction measures and screening are not generally recommended before 25 years old (YO). Little is known about the prevalence and predictors of parent communication to offspring and how offspring respond to this communication. Methods Semi-structured interviews were conducted with parents who had BRCA1/2 testing and at least one child <25 YO. Logistic regressions were utilized to evaluate associations with communication. Framework analysis was utilized to analyze open-ended responses. Results 253 parents completed interviews (61% response rate), reporting on 505 offspring. 29% of parents were BRCA1/2 mutation carriers. 334 (66%) offspring learned of their parent’s test result. Older offspring age (p<=0.01), offspring gender (female, p=0.05), parents’ negative test result (p=0.03) and parents’ education (high-school only, p=0.02) were associated with communication to offspring. The most frequently reported initial offspring responses were neutral (41%) or relief (28%). 13% of offspring were reported to experience concern or distress (11%) in response to parental communication of their test results. Distress was more frequently perceived among offspring learning of their parent’s BRCA1/2 positive or variant of uncertain significance result. Conclusion Many parents communicate their BRCA1/2 test results to young offspring. Parents’ perceptions of offspring responses appear to vary by offspring age and parent test result. A better understanding of how young offspring respond to information about hereditary risk for adult cancer could provide opportunities to optimize adaptive psychosocial responses to risk information and performance of health behaviors, in adolescence and throughout an at-risk lifespan. PMID:22231763

  10. Squamate hatchling size and the evolutionary causes of negative offspring size allometry.

    PubMed

    Meiri, S; Feldman, A; Kratochvíl, L

    2015-02-01

    Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring ('upper limit'), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring ('lower limit'). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry.

  11. When parents disclose BRCA1/2 test results: their communication and perceptions of offspring response.

    PubMed

    Bradbury, Angela R; Patrick-Miller, Linda; Egleston, Brian L; Olopade, Olufunmilayo I; Daly, Mary B; Moore, Cynthia W; Sands, Colleen B; Schmidheiser, Helen; Kondamudi, Preethi K; Feigon, Maia; Ibe, Comfort N; Daugherty, Christopher K

    2012-07-01

    BRCA1/2 testing is not recommended for children, as risk reduction measures and screening are not generally recommended before 25 years old (YO). Little is known about the prevalence and predictors of parent communication to offspring and how offspring respond to this communication. Semi-structured interviews were conducted with parents who had BRCA1/2 testing and at least 1 child <25 YO. Logistic regressions were utilized to evaluate associations with communication. Framework analysis was utilized to analyze open-ended responses. A total of 253 parents completed interviews (61% response rate), reporting on 505 offspring. Twenty-nine percent of parents were BRCA1/2 mutation carriers. Three hundred thirty-four (66%) offspring learned of their parent's test result. Older offspring age (P ≤ .01), offspring gender (female, P = .05), parents' negative test result (P = .03), and parents' education (high school only, P = .02) were associated with communication to offspring. The most frequently reported initial offspring responses were neutral (41%) or relief (28%). Thirteen percent of offspring were reported to experience concern or distress (11%) in response to parental communication of their test results. Distress was more frequently perceived among offspring learning of their parent's BRCA1/2 positive or variant of uncertain significance result. Many parents communicate their BRCA1/2 test results to young offspring. Parents' perceptions of offspring responses appear to vary by offspring age and parent test result. A better understanding of how young offspring respond to information about hereditary risk for adult cancer could provide opportunities to optimize adaptive psychosocial responses to risk information and performance