Sample records for adult offspring rats

  1. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats

    NASA Astrophysics Data System (ADS)

    Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui

    2017-12-01

    Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.

  2. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.

    PubMed

    Xu, Dan; Luo, Hanwen W; Hu, Wen; Hu, Shuwei W; Yuan, Chao; Wang, Guihua H; Zhang, Li; Yu, Hong; Magdalou, Jacques; Chen, Liaobin B; Wang, Hui

    2018-05-02

    Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9

  3. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation.

    PubMed

    Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B

    2015-01-01

    Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Maternal periodontal disease in rats decreases insulin sensitivity and insulin signaling in adult offspring.

    PubMed

    Shirakashi, Daisy J; Leal, Rosana P; Colombo, Natalia H; Chiba, Fernando Y; Garbin, Cléa A S; Jardim, Elerson G; Antoniali, Cristina; Sumida, Doris H

    2013-03-01

    Periodontal disease during pregnancy has been recognized as one of the causes of preterm and low-birth-weight (PLBW) babies. Several studies have demonstrated that PLBW babies are prone to developing insulin resistance as adults. Although there is controversy over the association between periodontal disease and PLBW, the phenomenon known as programming can translate any stimulus or aggression experienced during intrauterine growth into physiologic and metabolic alterations in adulthood. The purpose of the present study is to investigate whether the offspring of rats with periodontal disease develop insulin resistance in adulthood. Ten female Wistar rats were divided into periodontal disease (PED) and control (CN) groups. All rats were mated at 7 days after induction of periodontal disease. Male offspring were divided into two groups: 1) periodontal disease offspring (PEDO; n = 24); and 2) control offspring (CNO; n = 24). Offspring body weight was measured from birth until 75 days. When the offspring reached 75 days old, the following parameters were measured: 1) plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and tumor necrosis factor-α (TNF-α); 2) insulin sensitivity (IS); and 3) insulin signal transduction (IST) in insulin-sensitive tissues. Low birth weight was not detected in the PEDO group. However, plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and TNF-α were increased and IS and IST were reduced (P <0.05) in the PEDO group compared with the CNO group. Maternal periodontal disease may induce insulin resistance and reduce IST in adult offspring, but such alterations are not attributable to low birth weight.

  5. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    PubMed Central

    Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925

  6. Intravenous gestational nicotine exposure results in increased motivation for sucrose reward in adult rat offspring.

    PubMed

    Lacy, Ryan T; Hord, Lauren L; Morgan, Amanda J; Harrod, Steven B

    2012-08-01

    Prenatal tobacco smoke exposure is associated with alterations in motivated behavior in offspring, such as increased consumption of highly palatable foods and abused drugs. Animal models show that gestational nicotine (GN) exposure mediates changes in responding for sucrose and drug reward. A novel, intermittent low-dose intravenous (IV) exposure model was used to administer nicotine (0.05 mg/kg/injection) or saline 3×/day to rats on gestational days 8-21. Two experiments investigated the effect of IV GN on (1) the habituation of spontaneous locomotor activity and on (2) sucrose reinforced responding in offspring. For the operant experiments, animals acquired fixed-ratio (FR-3) responding for sucrose, 26% (w/v), and were tested on varying concentrations (0, 3, 10, 30, and 56%; Latin-square) according to a FR-3, and then a progressive-ratio (PR) schedule. Male and female adult offspring were used. IV GN did not alter birth or growth weight, or the number of pups born. No between-group differences in habituation to spontaneous locomotor activity were observed. FR testing produced an inverted U-shaped response curve, and rats showed peak responding for 10% sucrose reinforcement. Neither gestation nor sex affected responding, suggesting equivalent sensitivity to varying sucrose concentrations. PR testing revealed that GN rats showed greater motivation for sucrose reinforcement relative to controls. A low-dose, IV GN exposure model resulted in increased motivation to respond for sucrose reinforcement in adult offspring. This suggests that using a low number of cigarettes throughout pregnancy will result in increased motivation for highly palatable foods in adult, and perhaps, adolescent offspring. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Perinatal nicotine exposure increases obesity susceptibility by peripheral leptin resistance in adult female rat offspring.

    PubMed

    Zhang, Wan-Xia; Li, Yin-Ping; Fan, Jie; Chen, Hui-Jian; Li, Gai-Ling; Ouyang, Yan-Qiong; Yan, You-E

    2018-02-01

    Maternal nicotine (NIC) exposure causes overweight, hyperleptinemia and metabolic disorders in adult offspring. Our study aims to explore the underlying mechanism of perinatal NIC exposure increases obesity susceptibility in adult female rat offspring. In our model, we found that adult NIC-exposed females presented higher body weight and subcutaneous and visceral fat mass, as well as larger adipocytes, while no change was found in food intake. Serum profile showed a higher serum glucose, insulin and leptin levels in NIC-exposed females. In adipose tissue and liver, the leptin signaling pathway was blocked at 26 weeks, presented lower Janus tyrosine kinase 2 and signal transducer and activator of transcription 3 gene expression, higher suppressor of cytokine signaling 3 gene expression (in adipose tissue) and lower leptin receptors gene expression (in liver), indicating that peripheral leptin resistance occurred in NIC-exposed adult females. In female rats, the expression of lipolysis genes was affected dominantly in adipose tissue, but lipogenesis genes was affected in liver. Furthermore, the glucose and insulin tolerance tests showed a delayed glucose clearance and a higher area under the curve in NIC-exposed females. Therefore, perinatal NIC exposure programed female rats for adipocyte hypertrophy and obesity in adult life, through the leptin resistance in peripheral tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Intermittent prenatal MDMA exposure alters physiological but not mood related parameters in adult rat offspring.

    PubMed

    Adori, Csaba; Zelena, Dóra; Tímár, Júlia; Gyarmati, Zsuzsa; Domokos, Agnes; Sobor, Melinda; Fürst, Zsuzsanna; Makara, Gábor; Bagdy, György

    2010-01-20

    The recreational party drug "ecstasy" (3,4-methylenedioxymethamphetamine MDMA) is particularly popular among young adults who are in the childbearing age and thus there is a substantial risk of prenatal MDMA exposure. We applied an intermittent treatment protocol with an early first injection on pregnant Wistar rats (15 mg/kg MDMA s.c. on the E4, E11 and E18 days of gestation) to examine the potential physiological, endocrine and behavioral effects on adult male and female offspring. Prenatal MDMA-treatment provoked reduced body weight of offspring from the birth as far as the adulthood. Adult MDMA-offspring had a reduced blood-glucose concentration and hematocrit, altered relative spleen and thymus weight, had lower performance on wire suspension test and on the first trial of rotarod test. In contrast, no alteration in the locomotor activity was found. Anxiety and depression related behavioral parameters in elevated plus maze, sucrose preference or forced swimming tests were normal. MDMA-offspring had elevated concentration of the ACTH-precursor proopiomelanocortin and male MDMA-offspring exhibited elevated blood corticosterone concentration. No significant alteration was detected in the serotonergic marker tryptophan-hydroxylase and the catcholaminergic marker tyrosine-hydroxylase immunoreactive fiber densities in MDMA-offspring. The mothers exhibited reduced densities of serotonergic but not catecholaminergic fibers after the MDMA treatment. Our findings suggest that an intermittent prenatal MDMA exposure with an early first injection and a relatively low cumulative dose provokes mild but significant alterations in physical-physiological parameters and reduces motor skill learning in adulthood. In contrast, these adult offspring do not produce anxiety or depression like behavior.

  9. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronco, Ana Maria, E-mail: amronco@inta.cl; Montenegro, Marcela; Castillo, Paula

    2011-03-01

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remainedmore » unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.« less

  10. Prenatal Ethanol Exposure Causes Glucose Intolerance with Increased Hepatic Gluconeogenesis and Histone Deacetylases in Adult Rat Offspring: Reversal by Tauroursodeoxycholic Acid

    PubMed Central

    Yao, Xing-Hai; Nguyen, Hoa K.; Nyomba, B. L. Grégoire

    2013-01-01

    Prenatal ethanol exposure results in increased glucose production in adult rat offspring and this may involve modulation of protein acetylation by cellular stress. We used adult male offspring of dams given ethanol during gestation days 1–7 (early), 8–14 (mid) and 15–21 (late) compared with those from control dams. A group of ethanol offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks. We determined gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, hepatic free radicals, histone deacetylases (HDAC), acetylated foxo1, acetylated PEPCK, and C/EBP homologous protein as a marker of endoplasmic reticulum stress. Prenatal ethanol during either of the 3 weeks of pregnancy increased gluconeogenesis, gluconeogenic genes, oxidative and endoplasmic reticulum stresses, sirtuin-2 and HDAC3, 4, 5, and 7 in adult offspring. Conversely, prenatal ethanol reduced acetylation of foxo1 and PEPCK. Treatment of adult ethanol offspring with TUDCA reversed all these abnormalities. Thus, prenatal exposure of rats to ethanol results in long lasting oxidative and endoplasmic reticulum stresses explaining increased expression of gluconeogenic genes and HDAC proteins which, by deacetylating foxo1 and PEPCK, contribute to increased gluconeogenesis. These anomalies occurred regardless of the time of ethanol exposure during pregnancy, including early embryogenesis. As these anomalies were reversed by treatment of the adult offspring with TUDCA, this compound has therapeutic potentials in the treatment of glucose intolerance associated with prenatal ethanol exposure. PMID:23544086

  11. Maternal High-Fat and High-Salt Diets Have Differential Programming Effects on Metabolism in Adult Male Rat Offspring.

    PubMed

    Segovia, Stephanie A; Vickers, Mark H; Harrison, Claudia J; Patel, Rachna; Gray, Clint; Reynolds, Clare M

    2018-01-01

    Maternal high-fat or high-salt diets can independently program adverse cardiometabolic outcomes in offspring. However, there is a paucity of evidence examining their effects in combination on metabolic function in adult offspring. Female Sprague Dawley rats were randomly assigned to either: control (CD; 10% kcal from fat, 1% NaCl), high-salt (SD; 10% kcal from fat, 4% NaCl), high-fat (HF; 45% kcal from fat, 1% NaCl) or high-fat and salt (HFSD; 45% kcal from fat, 4% NaCl) diets 21 days prior to mating and throughout pregnancy and lactation. Male offspring were weaned onto a standard chow diet and were culled on postnatal day 130 for plasma and tissue collection. Adipocyte histology and adipose tissue, liver, and gut gene expression were examined in adult male offspring. HF offspring had significantly greater body weight, impaired insulin sensitivity and hyperleptinemia compared to CD offspring, but these increases were blunted in HFSD offspring. HF offspring had moderate adipocyte hypertrophy and increased expression of the pre-adipocyte marker Dlk1 . There was a significant effect of maternal salt with increased hepatic expression of Dgat1 and Igfb2 . Gut expression of inflammatory ( Il1r1, Tnfα, Il6 , and Il6r ) and renin-angiotensin system ( Agtr1a, Agtr1b ) markers was significantly reduced in HFSD offspring compared to HF offspring. Therefore, salt mitigates some adverse offspring outcomes associated with a maternal HF diet, which may be mediated by altered adipose tissue morphology and gut inflammatory and renin-angiotensin regulation.

  12. Effects of chronic prenatal MK-801 treatment on object recognition, cognitive flexibility, and drug-induced locomotor activity in juvenile and adult rat offspring.

    PubMed

    Gallant, S; Welch, L; Martone, P; Shalev, U

    2017-06-15

    Patients with schizophrenia display impaired cognitive functioning and increased sensitivity to psychomimetic drugs. The neurodevelopmental hypothesis of schizophrenia posits that disruption of the developing brain predisposes neural networks to lasting structural and functional abnormalities resulting in the emergence of such symptoms in adulthood. Given the critical role of the glutamatergic system in early brain development, we investigated whether chronic prenatal exposure to the glutamate NMDA receptor antagonist, MK-801, induces schizophrenia-like behavioural and neurochemical changes in juvenile and adult rats. Pregnant Long-Evans rats were administered saline or MK-801 (0.1mg/kg; s.c.) at gestation day 7-19. Object recognition memory and cognitive flexibility were assessed in the male offspring using a novel object preference task and a maze-based set-shifting procedure, respectively. Locomotor-activating effects of acute amphetamine and MK-801 were also assessed. Adult, but not juvenile, prenatally MK-801-treated rats failed to show novel object preference after a 90min delay, suggesting that object recognition memory may have been impaired. In addition, the set-shifting task revealed impaired acquisition of a new rule in adult prenatally MK-801-treated rats compared to controls. This deficit appeared to be driven by regression to the previously learned behaviour. There were no significant differences in drug-induced locomotor activity in juvenile offspring or in adult offspring following acute amphetamine challenges. Unexpectedly, MK-801-induced locomotor activity in adult prenatally MK-801-treated rats was lower compared to controls. Glutamate transmission dysfunction during early development may modify behavioural parameters in adulthood, though these parameters do not appear to model deficits observed in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Lang; Liu, Zhongfen; Gong, Jun

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growthmore » factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure

  14. Effects of maternal high-fat diet and sedentary lifestyle on susceptibility of adult offspring to ozone exposure in rats.

    PubMed

    Gordon, C J; Phillips, P M; Johnstone, A F M; Schmid, J; Schladweiler, M C; Ledbetter, A; Snow, S J; Kodavanti, U P

    2017-05-01

    Epidemiological and experimental data suggest that obesity exacerbates the health effects of air pollutants such as ozone (O 3 ). Maternal inactivity and calorically rich diets lead to offspring that show signs of obesity. Exacerbated O 3 susceptibility of offspring could thus be manifested by maternal obesity. Thirty-day-old female Long-Evans rats were fed a control (CD) or high-fat (HF) (60% calories) diet for 6 wks and then bred. GD1 rats were then housed with a running wheel (RW) or without a wheel (SED) until parturition, creating four groups of offspring: CD-SED, CD-RW, HF-SED and HF-RW. HF diet was terminated at PND 35 and all offspring were placed on CD. Body weight and %fat of dams were greatest in order; HF-SED > HF-RW > CD-SED > CD-RW. Adult offspring were exposed to O 3 for two consecutive days (0.8 ppm, 4 h/day). Glucose tolerance tests (GTT), ventilatory parameters (plethysmography), and bronchoalveolar fluid (BALF) cell counts and protein biomarkers were performed to assess response to O 3 . Exercise and diet altered body weight and %fat of young offspring. GTT, ventilation and BALF cell counts were exacerbated by O 3 with responses markedly exacerbated in males. HF diet and O 3 led to significant exacerbation of several BALF parameters: total cell count, neutrophils and lymphocytes were increased in male HF-SED versus CD-SED. Males were hyperglycemic after O 3 exposure and exhibited exacerbated GTT responses. Ventilatory dysfunction was also exacerbated in males. Maternal exercise had minimal effects on O 3 response. The results of this exploratory study suggest a link between maternal obesity and susceptibility to O 3 in their adult offspring in a sex-specific manner.

  15. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingxing; Cai, Ruowei; Lv, Guorong, E-mail: lxingwan502@gmail.com

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternalmore » hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.« less

  16. Maternal High-Fat Diet-Induced Loss of Fetal Oocytes Is Associated with Compromised Follicle Growth in Adult Rat Offspring1

    PubMed Central

    Tsoulis, Michael W.; Chang, Pauline E.; Moore, Caroline J.; Chan, Kaitlyn A.; Gohir, Wajiha; Petrik, James J.; Vickers, Mark H.; Connor, Kristin L.; Sloboda, Deborah M.

    2016-01-01

    Maternal obesity predisposes offspring to metabolic and reproductive dysfunction. We have shown previously that female rat offspring born to mothers fed a high-fat (HF) diet throughout pregnancy and lactation enter puberty early and display aberrant reproductive cyclicity. The mechanisms driving this reproductive phenotype are currently unknown thus we investigated whether changes in ovarian function were involved. Wistar rats were mated and randomized to: dams fed a control diet (CON) or dams fed a HF diet from conception until the end of lactation (HF). Ovaries were collected from fetuses at Embryonic Day (E) 20, and neonatal ovaries at Day 4 (P4), prepubertal ovaries at P27 and adult ovaries at P120. In a subset of offspring, the effects of a HF diet fed postweaning were evaluated. The present study shows that fetuses of mothers fed a HF diet had significantly fewer oocytes at E20, and in neonates, have reduced AMH signaling that may facilitate an increased number of assembled primordial follicles. Both prepubertally and in adulthood, ovaries show increased follicular atresia. As adults, offspring have reduced FSH responsiveness, low expression levels of estrogen receptor alpha (Eralpha), the oocyte-secreted factor, Gdf9, oocyte-specific RNA binding protein, Dazl, and high expression levels of the granulosa-cell derived factor, AMH, in antral follicles. Together, these data suggest that ovarian compromise in offspring born to HF-fed mothers may arise from changes already observable in the fetus and neonate and in the long term, associated with increased follicular atresia through adulthood. PMID:26962114

  17. Influence of Panax ginseng on the offspring of adult rats exposed to prenatal stress

    PubMed Central

    KIM, YOUNG OCK; LEE, HWA-YOUNG; WON, HANSOL; NAH, SEONG-SU; LEE, HWA-YOUNG; KIM, HYUNG-KI; KWON, JUN-TACK; KIM, HAK-JAE

    2015-01-01

    The exposure of pregnant females to stress during a critical period of fetal brain development is an environmental risk factor for the development of schizophrenia in adult offspring. Schizophrenia is a group of common mental disorders of unclear origin, affecting approximately 1% of the global population, showing a generally young age at onset. In the present study, a repeated variable stress paradigm was applied to pregnant rats during the final week of gestation. The effects of an extract of Panax ginseng C.A. Meyer (PG) on rats exposed to prenatal stress (PNS) were investigated in terms of behavioral activity and protein expression analyses. In the behavioral tests, grooming behavior in a social interaction test, line-crossing behavior in an open-field test and swimming activity in a forced-swim test were decreased in the rats exposed to PNS compared with the non-stressed offspring; the changes in behavioral activity were reversed upon oral treatment with PG (300 mg/kg). Subsequently, western blot analysis and immunohistochemical analyses of the prefrontal cortex and hippocampus revealed that the downregulation of several neurodevelopmental genes which occurred following exposure to PNS was reversed upon treatment with PG. The current findings demonstrate that the downregulation of several genes following exposure to PNS may affect subsequent behavioral changes, and that these phenomena are reversed following treatment with PG during pregnancy. Our results suggest that oral treatment with PG reduces the incidence of psychiatric disorders, such as schizophrenia. PMID:25394395

  18. Fish oil supplementation of rats during pregnancy reduces adult disease risks in their offspring.

    PubMed

    Joshi, Sadhana; Rao, Shobha; Golwilkar, Ajit; Patwardhan, Manisha; Bhonde, Ramesh

    2003-10-01

    Metabolic programming in utero due to maternal undernutrition is considered to increase the risk of adult diseases in offspring. It is therefore of relevance to investigate how dietary supplementation of specific nutrients can ameliorate the negative effects of maternal malnutrition. We examined the effects of supplementing fish oil or folic acid, both of which are conventional supplements in maternal intervention, on risk factors in the offspring as adults. Pregnant female rats from 4 groups (n = 6/group) were fed casein diets with 18 g/100 g protein (control diet), 12 g/100 g protein supplemented with 8 mg folic acid/kg diet (0.08 mg/kg diet) (FAS), 12 g/100 g protein without folic acid (FAD) or 12 g/100 g protein supplemented with 7 g/100 g fish oil (FOIL). Pups were weaned to a standard laboratory diet with 18 g/100 g protein. Serum glucose, insulin and cholesterol and plasma homocysteine levels were measured in the offspring at 6 and 11 mo of age. Serum glucose in 11-mo-old male and female pups was greater (P < 0.05) in both the FAS (males 2.46 +/- 0.51, females 2.49 +/- 0.29 mmol/L) and FAD groups (2.48 +/- 0.28 and 2.67 +/- 0.41 mmol/L) than in controls (2.03 +/- 0.15 and 2.02 +/- 0.18 mmol/L). Serum insulin concentrations were higher (P < 0.05) in the FAD group (males 1476 +/- 317, females 1441 +/- 220 pmol/L) but were lower in males from the FAS group (483 +/- 165 pmol/L) compared with controls (males 917 +/- 373, females 981 +/- 264 pmol/L). Glucose and insulin concentrations did not differ between the control and FOIL groups. Plasma homocysteine levels were lower (P < 0.05) only in 11-mo-old folate-deficient males; none of the other groups differed from the controls. Maternal supplementation of fish oil to a diet containing marginal protein was beneficial in maintaining circulating glucose, insulin, cholesterol and homocysteine levels in the offspring as adults.

  19. Influencing factors, underlying mechanism and interactions affecting hypercholesterolemia in adult offspring with caffeine exposure during pregnancy.

    PubMed

    Guo, Yitian; Luo, Hanwen; Wu, Yimeng; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2018-05-22

    Epidemiological surveys suggest that adult hypercholesterolemia has an intrauterine origin and exhibits gender differences. Our previous study demonstrated that adult rats with intrauterine growth retardation (IUGR) offspring rats induced by prenatal caffeine exposure (PCE) had a higher serum total cholesterol (TCH) level. In this study, we aimed to analyze the influencing factors, underlying mechanism and interactions affecting hypercholesterolemia in adult offspring with caffeine exposure during pregnancy. Pregnant rats were administered caffeine (120 mg/kg d) from gestational day 11 until delivery. Offspring rats fed a normal diet or a high-fat diet (HFD) were euthanized at postnatal week 24, and blood and liver samples were collected. The results showed that PCE could increase the serum levels of TCH and low-density lipoprotein-cholesterol (LDL-C), and the hepatic expression of HMG CoA reductase (HMGCR) and apolipoprotein B (ApoB), but decreased the high-density lipoprotein-cholesterol (HDL-C) level and the hepatic expression of scavenger receptor B1 (SR-B1) and LDL receptor (LDLR). Furthermore, PCE, HFD and gender interact with each other to influence the serum cholesterol phenotype and expression of hepatic cholesterol metabolic genes. These results suggest that the hypercholesterolemia in adult offspring rats induced by PCE mainly resulted from enhanced synthesis and the weakened reverse transport of cholesterol in the liver, furthermore HFD could aggravate this effect, which is caused by hepatic cholesterol metabolic disorders. Moreover, cholesterol metabolism in female rats was more sensitive to neuroendocrine changes and HFD than that in males. This study confirmed the influencing factors (such as a HFD and female gender) of hypercholesterolemia in IUGR offspring providing theoretical and experimental bases for the effective prevention of fetal-originated hypercholesterolemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Maternal hyperthyroidism increases the susceptibility of rat adult offspring to cardiovascular disorders.

    PubMed

    Lino, Caroline A; da Silva, Ivson Bezerra; Shibata, Caroline E R; Monteiro, Priscilla de S; Barreto-Chaves, Maria Luiza M

    2015-11-15

    Suboptimal intrauterine conditions as changed hormone levels during critical periods of the development are considered an insult and implicate in physiological adaptations which may result in pathological outcomes in later life. This study evaluated the effect of maternal hyperthyroidism (hyper) on cardiac function in adult offspring and the possible involvement of cardiac Renin-Angiotensin System (RAS) in this process. Wistar dams received orally thyroxin (12 mg/L) from gestational day 9 (GD9) until GD18. Adult offspring at postnatal day 90 (PND90) from hyper dams presented increased SBP evaluated by plethysmography and worse recovery after ischemia-reperfusion (I/R), as evidenced by decreased LVDP, +dP/dT and -dP/dT at 25 min of reperfusion and by increased infarct size. Increased cardiac Angiotensin I/II levels and AT1R in hyper offspring were verified. Herein, we provide evidences that maternal hyperthyroidism leads to altered expression of RAS components in adult offspring, which may be correlated with worse recovery of the cardiac performance after ischemic insults and hypertension. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring.

    PubMed

    Lacy, Ryan T; Brown, Russell W; Morgan, Amanda J; Mactutus, Charles F; Harrod, Steven B

    2016-01-01

    In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers

  2. Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats.

    PubMed

    Santos, Mery; Rodríguez-González, Guadalupe L; Ibáñez, Carlos; Vega, Claudia C; Nathanielsz, Peter W; Zambrano, Elena

    2015-02-01

    Exercise improves health but few data are available regarding benefits of exercise in offspring exposed to developmental programming. There is currently a worldwide epidemic of obesity. Obesity in pregnant women predisposes offspring to obesity. Maternal obesity has well documented effects on offspring reproduction. Few studies address ability of offspring exercise to reduce adverse outcomes. We observed increased oxidative stress and impaired sperm function in rat offspring of obese mothers. We hypothesized that regular offspring exercise reverses adverse effects of maternal obesity on offspring sperm quality and fertility. Female Wistar rats ate chow (C) or high-energy, obesogenic diet (MO) from weaning through lactation, bred at postnatal day (PND) 120, and ate their pregnancy diet until weaning. All offspring ate C diet from weaning. Five male offspring (different litters) ran on a wheel for 15 min, 5 times/week from PND 330 to 450 and were euthanized at PND 450. Average distance run per session was lower in MO offspring who had higher body weight, adiposity index, and gonadal fat and showed increases in testicular oxidative stress biomarkers. Sperm from MO offspring had reduced antioxidant enzyme activity, lower sperm quality, and fertility. Exercise in MO offspring decreased testicular oxidative stress, increased sperm antioxidant activity and sperm quality, and improved fertility. Exercise intervention has beneficial effects on adiposity index, gonadal fat, oxidative stress markers, sperm quality, and fertility. Thus regular physical exercise in male MO offspring recuperates key male reproductive functions even at advanced age: it's never too late. Copyright © 2015 the American Physiological Society.

  3. Protein Restriction During the Last Third of Pregnancy Malprograms the Neuroendocrine Axes to Induce Metabolic Syndrome in Adult Male Rat Offspring

    PubMed Central

    Gomes, Rodrigo Mello; Miranda, Rosiane Aparecida; Barella, Luiz Felipe; Malta, Ananda; Martins, Isabela Peixoto; Franco, Claudinéia Conationi da Silva; Pavanello, Audrei; Torrezan, Rosana; Natali, Maria Raquel Marçal; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar

    2016-01-01

    Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol. PMID:27007071

  4. Prenatal hypoxia promotes atherosclerosis via vascular inflammation in the offspring rats.

    PubMed

    Zhang, Pengjie; Zhu, Di; Chen, Xionghui; Li, Yongmei; Li, Na; Gao, Qinqin; Li, Lingjun; Zhou, Xiuwen; Lv, Juanxiu; Sun, Miao; Mao, Caiping; Xu, Zhice

    2016-02-01

    Hypoxia is a critical contributor to increased risks of cardiovascular diseases, including atherosclerosis, but the detailed mechanism that hypoxia leads to atherosclerosis remains unknown. Pregnant rats were treated with hypoxia (10.5% oxygen) during pregnancy, and HUVEC cells treated with 1% of oxygen. Blood lipids were tested at fetal stage and adult stage of offspring rats; the level of pro-inflammatory cytokines of HUVEC and offspring rats were investigated, and HIF-1α and NFκB mRNA level were also measured by Q-PCR and Elisa. We found that TC, LDL-C, ox-LDL-C, and the receptors of ox-LDL-C (lox-1) of the adult offspring were significantly higher than that of the control, while HDL-C was significantly reduced in hypoxia group. The internal elastic lamina was blocked by smooth muscle cells; and the migration of smooth muscle cells into the intima were observed in hypoxia offspring. Luciferase reporter gene experiment showed that HIF-1α activated NFκB transcription at four discrete binding sites of NFκBp65 promoter, although there was no obvious difference among the four discrete binding sites. Using transfection of pCDNA3.1-HIF-1α on HUVEC cells, HIF-1α significantly activated NFκB transcription at hypoxic conditions (1% O2), and concurrent with increased expression of IL-1β and TNF-α. Hypoxia during pregnancy activated NFκB transcription to induce pro-inflammatory cytokines, leading to the early stage of atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Maternal Fructose Exposure Programs Metabolic Syndrome-Associated Bladder Overactivity in Young Adult Offspring

    PubMed Central

    Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L. H.; Leu, Steve; Chan, Julie Y. H.

    2016-01-01

    Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M2-, M3-muscarinic and P2X1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE. PMID:27703194

  6. Maternal Fructose Exposure Programs Metabolic Syndrome-Associated Bladder Overactivity in Young Adult Offspring.

    PubMed

    Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L H; Leu, Steve; Chan, Julie Y H

    2016-10-05

    Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M 2 -, M 3 -muscarinic and P2X 1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE.

  7. Prenatal ethanol exposure increases osteoarthritis susceptibility in female rat offspring by programming a low-functioning IGF-1 signaling pathway

    PubMed Central

    Ni, Qubo; Tan, Yang; Zhang, Xianrong; Luo, Hanwen; Deng, Yu; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-01-01

    Epidemiological evidence indicates that osteoarthritis (OA) and prenatal ethanol exposure (PEE) are both associated with low birth weight but possible causal interrelationships have not been investigated. To investigate the effects of PEE on the susceptibility to OA in adult rats that experienced intrauterine growth retardation (IUGR), and to explore potential intrauterine mechanisms, we established the rat model of IUGR by PEE and dexamethasone, and the female fetus and 24-week-old adult offspring subjected to strenuous running for 6 weeks were sacrificed. Knee joints were collected from fetuses and adult offspring for histochemistry, immunohistochemistry and qPCR assays. Histological analyses and the Mankin score revealed increased cartilage destruction and accelerated OA progression in adult offspring from the PEE group compared to the control group. Immunohistochemistry showed reduced expression of insulin-like growth factor-1 (IGF-1) signaling pathway components. Furthermore, fetuses in the PEE group experienced IUGR but exhibited a higher postnatal growth rate. The expression of many IGF-1 signaling components was downregulated, which coincided with reduced amounts of type II collagen in the epiphyseal cartilage of fetuses in the PEE group. These results suggest that PEE enhances the susceptibility to OA in female adult rat offspring by down-regulating IGF-1 signaling and retarding articular cartilage development. PMID:26434683

  8. Prenatal ethanol exposure increases osteoarthritis susceptibility in female rat offspring by programming a low-functioning IGF-1 signaling pathway

    NASA Astrophysics Data System (ADS)

    Ni, Qubo; Tan, Yang; Zhang, Xianrong; Luo, Hanwen; Deng, Yu; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-10-01

    Epidemiological evidence indicates that osteoarthritis (OA) and prenatal ethanol exposure (PEE) are both associated with low birth weight but possible causal interrelationships have not been investigated. To investigate the effects of PEE on the susceptibility to OA in adult rats that experienced intrauterine growth retardation (IUGR), and to explore potential intrauterine mechanisms, we established the rat model of IUGR by PEE and dexamethasone, and the female fetus and 24-week-old adult offspring subjected to strenuous running for 6 weeks were sacrificed. Knee joints were collected from fetuses and adult offspring for histochemistry, immunohistochemistry and qPCR assays. Histological analyses and the Mankin score revealed increased cartilage destruction and accelerated OA progression in adult offspring from the PEE group compared to the control group. Immunohistochemistry showed reduced expression of insulin-like growth factor-1 (IGF-1) signaling pathway components. Furthermore, fetuses in the PEE group experienced IUGR but exhibited a higher postnatal growth rate. The expression of many IGF-1 signaling components was downregulated, which coincided with reduced amounts of type II collagen in the epiphyseal cartilage of fetuses in the PEE group. These results suggest that PEE enhances the susceptibility to OA in female adult rat offspring by down-regulating IGF-1 signaling and retarding articular cartilage development.

  9. Prenatal and early postnatal dietary sodium restriction sensitizes the adult rat to amphetamines.

    PubMed

    McBride, Shawna M; Culver, Bruce; Flynn, Francis W

    2006-10-01

    Acute sodium deficiency sensitizes adult rats to psychomotor effects of amphetamine. This study determined whether prenatal and early life manipulation of dietary sodium sensitized adult offspring to psychomotor effects of amphetamine (1 or 3 mg/kg ip) in two strains of rats. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) dams were fed chow containing low NaCl (0.12%; LN), normal NaCl (1%; NN), or high NaCl (4%; HN) throughout breeding, gestation, and lactation. Male offspring were maintained on the test diet for an additional 3 wk postweaning and then fed standard chow thereafter until testing began. Overall, blood pressure (BP), total fluid intake, salt preference, and adrenal gland weight were greater in SHR than in WKY. WKY LN offspring had greater water intake and adrenal gland weight than did WKY NN and HN offspring, whereas WKY HN offspring had increased BP, salt intake, and salt preference compared with other WKY offspring. SHR HN offspring also had increased BP compared with other SHR offspring; all other measures were similar for SHR offspring. The low-dose amphetamine increased locomotor and stereotypical behavior compared with baseline and saline injection in both WKY and SHR offspring. Dietary sodium history affected the rats' psychomotor response to the higher dose of amphetamine. Injections of 3 mg/kg amphetamine in both strains produced significantly more behavioral activity in the LN offspring than in NN and HN offspring. These results show that early life experience with low-sodium diets produce long-term changes in adult rats' behavioral responses to amphetamine.

  10. Intrauterine programming of lipid metabolic alterations in the heart of the offspring of diabetic rats is prevented by maternal diets enriched in olive oil.

    PubMed

    Capobianco, Evangelina; Pelesson, Magalí; Careaga, Valeria; Fornes, Daiana; Canosa, Ivana; Higa, Romina; Maier, Marta; Jawerbaum, Alicia

    2015-10-01

    Maternal diabetes can program metabolic and cardiovascular diseases in the offspring. The aim of this work was to address whether an olive oil supplemented diet during pregnancy can prevent lipid metabolic alterations in the heart of the offspring of mild diabetic rats. Control and diabetic Wistar rats were fed during pregnancy with either a standard diet or a 6% olive oil supplemented diet. The heart of adult offspring from diabetic rats showed increases in lipid concentrations (triglycerides in males and phospholipids, cholesterol, and free fatty acids in females), which were prevented with the maternal diets enriched in olive oil. Maternal olive oil supplementation increased the content of unsaturated fatty acids in the hearts of both female and male offspring from diabetic rats (possibly due to a reduction in lipoperoxidation), increased the expression of Δ6 desaturase in the heart of male offspring from diabetic rats, and increased the expression of peroxisome proliferator activated receptor α in the hearts of both female and male offspring from diabetic rats. Relevant alterations in cardiac lipid metabolism were evident in the adult offspring of a mild diabetic rat model, and regulated by maternal diets enriched in olive oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring.

    PubMed

    Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-07-01

    The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de

  12. Role of cannabinoidergic mechanisms in ethanol self-administration and ethanol seeking in rat adult offspring following perinatal exposure to {delta}{sup 9}-tetrahydrocannabinol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economidou, Daina; Mattioli, Laura; Ubaldi, Massimo

    The present study evaluated the consequences of perinatal {delta}{sup 9}-tetrahydrocannabinol ({delta}{sup 9}-THC) treatment (5 mg/kg/day by gavage), either alone or combined with ethanol (3% v/v as the only fluid available), on ethanol self-administration and alcohol-seeking behavior in rat adult offspring. Furthermore, the effect of the selective cannabinoid CB{sub 1} receptor antagonist, SR-141716A, on ethanol self-administration and on reinstatement of ethanol-seeking behavior induced either by stress or conditioned drug-paired cues was evaluated in adult offspring of rats exposed to the same perinatal treatment. Lastly, microarray experiments were conducted to evaluate if perinatal treatment with {delta}{sup 9}-tetrahydrocannabinol, ethanol or their combination causesmore » long-term changes in brain gene expression profile in rats. The results of microarray data analysis showed that 139, 112 and 170 genes were differentially expressed in the EtOH, {delta}{sup 9}-THC, or EtOH + {delta}{sup 9}-THC group, respectively. No differences in alcohol self-administration and alcohol seeking were observed between rat groups. Intraperitoneal (IP) administration of SR-141716A (0.3-3.0 mg/kg) significantly reduced lever pressing for ethanol and blocked conditioned reinstatement of alcohol seeking. At the same doses SR-141716A failed to block foot-shock stress-induced reinstatement of alcohol seeking. The results reveal that perinatal exposure to {delta}{sup 9}-THC ethanol or their combination results in evident changes in gene expression patterns. However, these treatments do not significantly affect vulnerability to ethanol abuse in adult offspring. On the other hand, the results obtained with SR-141716A emphasize that endocannabinoid mechanisms play a major role in ethanol self-administration, as well as in the reinstatement of ethanol-seeking behavior induced by conditioned cues, supporting the idea that cannabinoid CB{sub 1} receptor antagonists may represent

  13. Maternally Administered Sustained-Release Naltrexone in Rats Affects Offspring Neurochemistry and Behaviour in Adulthood

    PubMed Central

    Krstew, Elena V.; Tait, Robert J.; Hulse, Gary K.

    2012-01-01

    Naltrexone is not recommended during pregnancy. However, sustained-release naltrexone implant use in humans has resulted in cases of inadvertent foetal exposure. Here, we used clinically relevant dosing to examine the effects of maternally administered sustained-release naltrexone on the rat brain by examining offspring at birth and in adulthood. Maternal treatment (naltrexone or placebo implant) started before conception and ceased during gestation, birth or weaning. Morphometry was assessed in offspring at birth and adulthood. Adult offspring were evaluated for differences in locomotor behaviour (basal and morphine-induced, 10 mg/kg, s.c.) and opioid neurochemistry, propensity to self-administer morphine and cue-induced drug-seeking after abstinence. Blood analysis confirmed offspring exposure to naltrexone during gestation, birth and weaning. Naltrexone exposure increased litter size and reduced offspring birth-weight but did not alter brain morphometry. Compared to placebo, basal motor activity of naltrexone-exposed adult offspring was lower, yet they showed enhanced development of psychomotor sensitization to morphine. Developmental naltrexone exposure was associated with resistance to morphine-induced down-regulation of striatal preproenkephalin mRNA expression in adulthood. Adult offspring also exhibited greater operant responding for morphine and, in addition, cue-induced drug-seeking was enhanced. Collectively, these data show pronounced effects of developmental naltrexone exposure, some of which persist into adulthood, highlighting the need for follow up of humans that were exposed to naltrexone in utero. PMID:23300784

  14. Transgenerational effects of adolescent nicotine exposure in rats: Evidence for cognitive deficits in adult female offspring.

    PubMed

    Renaud, Samantha M; Fountain, Stephen B

    2016-01-01

    This study investigated whether adolescent nicotine exposure in one generation of rats would impair the cognitive capacity of a subsequent generation. Male and female rats in the parental F0 generation were given twice-daily i.p. injections of either 1.0mg/kg nicotine or an equivalent volume of saline for 35days during adolescence on postnatal days 25-59 (P25-59). After reaching adulthood, male and female nicotine-exposed rats were paired for breeding as were male and female saline control rats. Only female offspring were used in this experiment. Half of the offspring of F0 nicotine-exposed breeders and half of the offspring of F0 saline control rats received twice-daily i.p. injections of 1.0mg/kg nicotine during adolescence on P25-59. The remainder of the rats received twice-daily saline injections for the same period. To evaluate transgenerational effects of nicotine exposure on complex cognitive learning abilities, F1 generation rats were trained to perform a highly structured serial pattern in a serial multiple choice (SMC) task. Beginning on P95, rats in the F1 generation were given either 4days of massed training (20patterns/day) followed by spaced training (10 patterns/day) or only spaced training. Transgenerational effects of adolescent nicotine exposure were observed as greater difficulty in learning a "violation element" of the pattern, which indicated that rats were impaired in the ability to encode and remember multiple sequential elements as compound or configural cues. The results indicated that for rats that received massed training, F1 generation rats with adolescent nicotine exposure whose F0 generation parents also experienced adolescent nicotine exposure showed poorer learning of the violation element than rats that experienced adolescent nicotine exposure only in the F1 generation. Thus, adolescent nicotine exposure in one generation of rats produced a cognitive impairment in the next generation. Copyright © 2016 Elsevier Inc. All rights

  15. Effect of forced swimming stress on in-vivo fertilization capacity of rat and subsequent offspring quality

    PubMed Central

    Saki, Ghasem; Rahim, Fakher; Vaysi, Ozra Allah

    2010-01-01

    AIMS: This study aimed to determine the effect of 50 days of forced swimming stress on fertilization capacity of rat and subsequent offspring quality. SETTING AND DESIGN: The prospective study designed in vivo. MATERIALS AND METHODS: Total 90 Wistar rats including 30 adult male (3 months of age, weighing 210 ± 10.6 g) and 60 female rats (3 months of age, weighing 230 ± 12.2 g) were engaged in this study. Male rats were randomly divided in two equal groups (n = 15): Control and experimental groups. Animals of the experimental group were submitted to forced swimming stress for 3 min in water at 32°C daily for 50 days. Then all adult male rats were mated with normal females (2 per each male) for 7 days. Female rats were sacrificed and autopsy was performed on day 20 of pregnancy when uterus and ovaries were examined for the number of corpora lutea, dead and live fetuses, embryo resorption, implantation sites, and fetus weight. CONCLUSION: Results of this study have important implications for families attempting pregnancy. Stress pursuant to life events may have a negative impact on in vivo fertilization capacity of male rats and subsequent offspring quality. PMID:20607006

  16. Prenatal glucocorticoid exposure in rats: programming effects on stress reactivity and cognition in adult offspring.

    PubMed

    Zeng, Yan; Brydges, Nichola M; Wood, Emma R; Drake, Amanda J; Hall, Jeremy

    2015-01-01

    Human epidemiological studies have provided compelling evidence that prenatal exposure to stress is associated with significantly increased risks of developing psychiatric disorders in adulthood. Exposure to excessive maternal glucocorticoids may underlie this fetal programming effect. In the current study, we assessed how prenatal dexamethasone administration during the last week of gestation affects stress reactivity and cognition in adult offspring. Stress reactivity was assessed by evaluating anxiety-like behavior on an elevated plus maze and in an open field. In addition, to characterize the long-term cognitive outcomes of prenatal exposure to glucocorticoids, animals were assessed on two cognitive tasks, a spatial reference memory task with reversal learning and a delayed matching to position (DMTP) task. Our results suggest that prenatal exposure to dexamethasone had no observable effect on anxiety-like behavior, but affected cognition in the adult offspring. Prenatally dexamethasone-exposed animals showed a transient deficit in the spatial reference memory task and a trend to faster acquisition during the reversal-learning phase. Furthermore, prenatally dexamethasone-treated animals also showed faster learning of new platform positions in the DMTP task. These results suggest that fetal overexposure to glucocorticoids programs a phenotype characterized by cognitive flexibility and adaptability to frequent changes in environmental circumstances. This can be viewed as an attempt to increase the fitness of survival in a potentially hazardous postnatal environment, as predicted by intrauterine adversity. Collectively, our data suggest that prenatal exposure to dexamethasone in rats could be used as an animal model for studying some cognitive components of related psychiatric disorders.

  17. Gestational Protein Restriction Impairs Insulin-Regulated Glucose Transport Mechanisms in Gastrocnemius Muscles of Adult Male Offspring

    PubMed Central

    Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar

    2014-01-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  18. Hyperglycaemia in pregnant rats causes sex-related vascular dysfunction in adult offspring: role of cyclooxygenase-2.

    PubMed

    de Sá, Francine Gomes; de Queiroz, Diego Barbosa; Ramos-Alves, Fernanda Elizabethe; Santos-Rocha, Juliana; da Silva, Odair Alves; Moreira, Hicla Stefany; Leal, Geórgia Andrade; da Rocha, Marcelo Aurélio; Duarte, Gloria Pinto; Xavier, Fabiano Elias

    2017-08-01

    What is the central question of this study? Hyperglycaemia during pregnancy induces vascular dysfunction and hypertension in male offspring. Given that female offspring from other fetal programming models are protected from the effects of fetal insult, the present study investigated whether there are sex differences in blood pressure and vascular function in hyperglycaemia-programmed offspring. What is the main finding and its importance? We demonstrated that hyperglycaemia in pregnant rats induced vascular dysfunction and hypertension only in male offspring. We found sex differences in oxidative stress and cyclooxygenase-2-derived prostanoid production that might underlie the vascular dysfunction. These differences, particularly in resistance arteries, may in part explain the absence of hypertension in female offspring born to hyperglycaemic dams. Exposure to maternal hyperglycaemia induces hypertension and vascular dysfunction in adult male offspring. Given that female offspring from several fetal programming models are protected from the effects of fetal insult, in this study we analysed possible differences relative to sex in blood pressure and vascular function in hyperglycaemia-programmed offspring. Hyperglycaemia was induced on day 7 of gestation (streptozotocin, 50 mg kg -1 ). Blood pressure, acetylcholine and phenylephrine or noradrenaline responses were analysed in the aorta and mesenteric resistance arteries of 3-, 6- and 12-month-old male and female offspring. Thromboxane A 2 release was analysed with commercial kits and superoxide anion (O 2 - ) production by dihydroethidium-emitted fluorescence. Male but not female offspring of hyperglycaemic dams (O-DR) had higher blood pressure than control animals (O-CR). Contraction in response to phenylephrine increased and relaxation in response to acetylcholine decreased only in the aorta from 12-month-old male O-DR and not in age-matched O-CR. Contractile and vasodilator responses were preserved in both the

  19. Effects of prenatal chronic mild stress exposure on hippocampal cell proliferation, expression of GSK-3α, β and NR2B in adult offspring during fear extinction in rats.

    PubMed

    Li, Min; Li, Xiaobai; Zhang, Xinxin; Ren, Jintao; Jiang, Han; Wang, Yan; Ma, Yuchao; Cheng, Wenwen

    2014-06-01

    Stress during pregnancy has been implicated as a risk factor for the development of many mental disorders; however, the influence of prenatal stress on the fear or anxiety-related behaviors, especially the fear extinction in adult offspring has been little investigated. In order to investigate how prenatal stress affects fear extinction, which is regarded as a form of new learning that counteracts the expression of Pavlovian's conditioned fear, a rat model of prenatal chronic mild stress (PNS) was used to evaluate the effects of PNS on fear extinction in adult offspring. The expression of hippocampal glycogen synthase kinase-3s (GSK-3α, β), N-methyl-d-aspartic acid receptors (NMDARs)-2B and the hippocampal cell proliferation in dentate gyrus in the adult offspring during fear extinction were studied. Our results showed that PNS significantly reduced body weight of pups, indicating PNS might induce growth retardation in offspring. Moreover, PNS significantly enhanced the freezing behavior of offspring at the phase of extinction, suggesting PNS impaired the abilities of fear extinction learning. In addition, PNS significantly increased the levels of GSK-3α, β and NR2B, but reduced hippocampal cell proliferation during fear extinction. Taken together, our findings suggest that maternal stress during pregnancy can impair the fear extinction of adult offspring, probably by affecting the neural plasticity of brain. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Maternal bisphenol A exposure alters rat offspring hepatic and skeletal muscle insulin signaling protein abundance.

    PubMed

    Galyon, Kristina D; Farshidi, Farnoosh; Han, Guang; Ross, Michael G; Desai, Mina; Jellyman, Juanita K

    2017-03-01

    The obesogenic and diabetogenic effects of the environmental toxin bisphenol A during critical windows of development are well recognized. Liver and skeletal muscle play a central role in the control of glucose production, utilization, and storage. We hypothesized that maternal bisphenol A exposure disrupts insulin signaling in rat offspring liver and skeletal muscle. We determined the protein expression of hepatic and skeletal muscle insulin signaling molecules including insulin receptor beta, its downstream target insulin receptor substrate 1 and glucose transporters (glucose transporter 2, glucose transporter 4), and hepatic glucose-regulating enzymes phosphoenolpyruvate carboxykinase and glucokinase. Rat dams had ad libitum access to filtered drinking water (control) or drinking water with bisphenol A from 2 weeks prior to mating and through pregnancy and lactation. Offspring litters were standardized to 4 males and 4 females and nursed by the same dam. At weaning, bisphenol A exposure was removed from all offspring. Glucose tolerance was tested at 6 weeks and 6 months. Liver and skeletal muscle was collected from 3 week old and 10 month old offspring for protein expression (Western blot) of insulin receptor beta, insulin receptor substrate 1, glucose transporter 2, glucose transporter 4, phosphoenolpyruvate carboxykinase, and glucokinase. Male, but not female, bisphenol A offspring had impaired glucose tolerance at 6 weeks and 6 months. Both male and female adult offspring had higher glucose-stimulated insulin secretion as well as the ratio of stimulated insulin to glucose. Male bisphenol A offspring had higher liver protein abundance of the 200 kDa insulin receptor beta precursor (2-fold), and insulin receptor substrate 1 (1.5-fold), whereas glucose transporter 2 was 0.5-fold of the control at 3 weeks of age. In adult male bisphenol A offspring, the abundance of insulin receptor beta was higher (2-fold) and glucose transporter 4 was 0.8-fold of the control in

  1. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress.

    PubMed

    Cattani, Daiane; Cesconetto, Patrícia Acordi; Tavares, Mauren Kruger; Parisotto, Eduardo Benedetti; De Oliveira, Paulo Alexandre; Rieg, Carla Elise Heinz; Leite, Marina Concli; Prediger, Rui Daniel Schröder; Wendt, Nestor Cubas; Razzera, Guilherme; Filho, Danilo Wilhelm; Zamoner, Ariane

    2017-07-15

    We have previously demonstrated that maternal exposure to glyphosate-based herbicide (GBH) leads to glutamate excitotoxicity in 15-day-old rat hippocampus. The present study was conducted in order to investigate the effects of subchronic exposure to GBH on some neurochemical and behavioral parameters in immature and adult offspring. Rats were exposed to 1% GBH in drinking water (corresponding to 0.36% of glyphosate) from gestational day 5 until postnatal day (PND)-15 or PND60. Results showed that GBH exposure during both prenatal and postnatal periods causes oxidative stress, affects cholinergic and glutamatergic neurotransmission in offspring hippocampus from immature and adult rats. The subchronic exposure to the pesticide decreased L-[ 14 C]-glutamate uptake and increased 45 Ca 2+ influx in 60-day-old rat hippocampus, suggesting a persistent glutamate excitotoxicity from developmental period (PND15) to adulthood (PND60). Moreover, GBH exposure alters the serum levels of the astrocytic protein S100B. The effects of GBH exposure were associated with oxidative stress and depressive-like behavior in offspring on PND60, as demonstrated by the prolonged immobility time and decreased time of climbing observed in forced swimming test. The mechanisms underlying the GBH-induced neurotoxicity involve the NMDA receptor activation, impairment of cholinergic transmission, astrocyte dysfunction, ERK1/2 overactivation, decreased p65 NF-κB phosphorylation, which are associated with oxidative stress and glutamate excitotoxicity. These neurochemical events may contribute, at least in part, to the depressive-like behavior observed in adult offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration and anxiety behaviors in adult rat offspring.

    PubMed

    Nakhjiri, Elnaz; Saboory, Ehsan; Roshan-Milani, Shiva; Rasmi, Yousef; Khalafkhani, Davod

    2017-03-01

    Stressful events and exposure to opiates during gestation have important effects on the later mental health of the offspring. Anxiety is among the most common mental disorders. The present study aimed to identify effects of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration (PVC) and anxiety behaviors in rats. Pregnant rats were divided into four groups (n = 6, each): saline, morphine, stress + saline and stress + morphine treatment. The stress procedure consisted of restraint twice per day, two hours per session, for three consecutive days starting on day 15 of pregnancy. Rats in the saline and morphine groups received either 0.9% saline or morphine intraperitoneally on the same days. In the morphine/saline + stress groups, rats were exposed to restraint stress and received either morphine or saline intraperitoneally. All offspring were tested in an elevated plus maze (EPM) on postnatal day 90 (n = 6, each sex), and anxiety behaviors of each rat were recorded. Finally, blood samples were collected to determine PVC. Prenatal morphine exposure reduced anxiety-like behaviors. Co-administration of prenatal stress and morphine increased locomotor activity (LA) and PVC. PVC was significantly lower in female offspring of the morphine and morphine + stress groups compared with males in the same group, but the opposite was seen in the saline + stress group. These data emphasize the impact of prenatal stress and morphine on fetal neuroendocrine development, with long-term changes in anxiety-like behaviors and vasopressin secretion. These changes are sex specific, indicating differential impact of prenatal stress and morphine on fetal neuroendocrine system development. Lay Summary Pregnant women are sometimes exposed to stressful and painful conditions which may lead to poor outcomes for offspring. Opiates may provide pain and stress relief to these mothers. In this study, we used an experimental model of

  3. Cytotoxic effect of aspartame (diet sweet) on the histological and genetic structures of female albino rats and their offspring.

    PubMed

    Abd Elfatah, Azza A M; Ghaly, Inas S; Hanafy, Safaa M

    2012-10-01

    The present study evaluated the effect of aspartame intake on the histological and genetic structures of mother albino rats and their offspring. Sixty adult female albino rats and 180 of their offspring were equally divided into two groups (control and treated), each group divided into three subgroups. Each subgroup consisted of 10 pregnant rats and 30 of their offspring. The experimental design divided into three periods: (1) the gestation period (subgroup one), (2) the gestation period and three weeks after delivery (subgroup two) and (3) animals in the third subgroup treated as subgroup two then left till the end of the ninth week after delivery. Each pregnant rat in the treated subgroups was given a single daily dose of 1 mL aspartame solution (50.4 mg) by gastric gavage throughout the time intervals of experimental design. At the end of each experimental period for control and treated subgroups, the liver of half of both control and treated groups were subjected for histological study while the liver and bone marrow of the other halves were subjected for cytogenetic studies. Body weight of both groups were recorded individually twice weekly in the morning before offering the diet. The results revealed that the rats and their offspring in the subgroups of control animals showed increases in body weight, normal histological sections, low chromosomal aberration and low DNA fragmentation. The treated animals in the three subgroups rats and their offspring revealed decreases in body weight, high histological lesions, increases in the chromosomal aberration and DNA fragmentation compared with control groups. In conclusion, the consumption of aspartame leads to histopathological lesions in the liver and alterations of the genetic system in the liver and bone marrow of mother albino rats and their offspring. These toxicological changes were directly proportional to the duration of its administration and improved after its withdrawal.

  4. Duloxetine prevents the effects of prenatal stress on depressive-like and anxiety-like behavior and hippocampal expression of pro-inflammatory cytokines in adult male offspring rats.

    PubMed

    Zhang, Xiaosong; Wang, Qi; Wang, Yan; Hu, Jingmin; Jiang, Han; Cheng, Wenwen; Ma, Yuchao; Liu, Mengxi; Sun, Anji; Zhang, Xinxin; Li, Xiaobai

    2016-12-01

    Stress during pregnancy may cause neurodevelopmental and psychiatric disorders. However, the mechanisms are largely unknown. Currently, pro-inflammatory cytokines have been identified as a risk factor for depression and anxiety disorder. Unfortunately, there is very little research on the long-term effects of prenatal stress on the neuroinflammatory system of offspring. Moreover, the relationship between antidepressant treatment and cytokines in the central nervous system, especially in the hippocampus, an important emotion modulation center, is unclear. Therefore, the aim of this study was to determine the effects of prenatal chronic mild stress during development on affective-like behaviors and hippocampal cytokines in adult offspring, and to verify whether antidepressant (duloxetine) administration from early adulthood could prevent the harmful consequences. To do so, prenatally stressed and non-stressed Sprague-Dawley rats were treated with either duloxetine (10mg/kg/day) or vehicle from postnatal day 60 for 21days. Adult offspring were divided into four groups: 1) prenatal stress+duloxetine treatment, 2) prenatal stress+vehicle, 3) duloxetine treatment alone, and 4) vehicle alone. Adult offspring were assessed for anxiety-like behavior using the open field test and depression-like behavior using the forced swim test. Brains were analyzed for pro-inflammatory cytokine markers in the hippocampus via real-time PCR. Results demonstrate that prenatal stress-induced anxiety- and depression-like behaviors are associated with an increase in hippocampal inflammatory mediators, and duloxetine administration prevents the increased hippocampal pro-inflammatory cytokine interleukin-6 and anxiety- and depression-like behavior in prenatally stressed adult offspring. This research provides important evidence on the long-term effect of PNS exposure during development in a model of maternal adversity to study the pathogenesis of depression and its therapeutic interventions

  5. Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome

    PubMed Central

    Pereira, Troy J; Fonseca, Mario A; Campbell, Kristyn E; Moyce, Brittany L; Cole, Laura K; Hatch, Grant M; Doucette, Christine A; Klein, Julianne; Aliani, Michel; Dolinsky, Vernon W

    2015-01-01

    Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring. Key points Gestational diabetes mellitus is a common complication of pregnancy, but its effects on the offspring are poorly understood. We developed a rat model of diet-induced gestational diabetes mellitus that recapitulates many of the clinical features of the disease, including excessive gestational

  6. Constraints on the adult-offspring size relationship in protists.

    PubMed

    Caval-Holme, Franklin; Payne, Jonathan; Skotheim, Jan M

    2013-12-01

    The relationship between adult and offspring size is an important aspect of reproductive strategy. Although this filial relationship has been extensively examined in plants and animals, we currently lack comparable data for protists, whose strategies may differ due to the distinct ecological and physiological constraints on single-celled organisms. Here, we report measurements of adult and offspring sizes in 3888 species and subspecies of foraminifera, a class of large marine protists. Foraminifera exhibit a wide range of reproductive strategies; species of similar adult size may have offspring whose sizes vary 100-fold. Yet, a robust pattern emerges. The minimum (5th percentile), median, and maximum (95th percentile) offspring sizes exhibit a consistent pattern of increase with adult size independent of environmental change and taxonomic variation over the past 400 million years. The consistency of this pattern may arise from evolutionary optimization of the offspring size-fecundity trade-off and/or from cell-biological constraints that limit the range of reproductive strategies available to single-celled organisms. When compared with plants and animals, foraminifera extend the evidence that offspring size covaries with adult size across an additional five orders of magnitude in organism size. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  7. Early postweaning exercise improves central leptin sensitivity in offspring of rat dams fed high-fat diet during pregnancy and lactation.

    PubMed

    Sun, Bo; Liang, Nu-Chu; Ewald, Erin R; Purcell, Ryan H; Boersma, Gretha J; Yan, Jianqun; Moran, Timothy H; Tamashiro, Kellie L K

    2013-11-01

    Maternal high-fat (HF) diet has long-term consequences on the metabolic phenotype of the offspring. Here, we determined the effects of postweaning exercise in offspring of rat dams fed HF diet during gestation and lactation. Pregnant Sprague-Dawley rats were maintained on chow or HF diet throughout gestation and lactation. All pups were weaned onto chow diet on postnatal day (PND) 21. At 4 wk of age, male pups were given free access to running wheels (RW) or remained sedentary (SED) for 3 wk, after which all rats remained sedentary, resulting in four groups: CHOW-SED, CHOW-RW, HF-SED, and HF-RW. Male HF offspring gained more body weight by PND7 compared with CHOW pups and maintained this weight difference through the entire experiment. Three weeks of postweaning exercise did not affect body weight gain in either CHOW or HF offspring, but reduced adiposity in HF offspring. Plasma leptin was decreased at the end of the 3-wk running period in HF-RW rats but was not different from HF-SED 9 wk after the exercise period ended. At 14 wk of age, intracerebroventricular injection of leptin suppressed food intake in CHOW-SED, CHOW-RW, and HF-RW, while it did not affect food intake in HF-SED group. At death, HF-RW rats also had higher leptin-induced phospho-STAT3 level in the arcuate nucleus than HF-SED rats. Both maternal HF diet and postweaning exercise had effects on hypothalamic neuropeptide and receptor mRNA expression in adult offspring. Our data suggest that postweaning exercise improves central leptin sensitivity and signaling in this model.

  8. Perinatal exercise improves glucose homeostasis in adult offspring

    PubMed Central

    Carter, Lindsay G.; Lewis, Kaitlyn N.; Wilkerson, Donald C.; Tobia, Christine M.; Ngo Tenlep, Sara Y.; Shridas, Preetha; Garcia-Cazarin, Mary L.; Wolff, Gretchen; Andrade, Francisco H.; Charnigo, Richard J.; Esser, Karyn A.; Egan, Josephine M.; de Cabo, Rafael

    2012-01-01

    Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P < 0.05 for both). Blood glucose concentrations were reduced to lower values in response to an intraperitoneal insulin tolerance test for both female and male adult offspring of parents with access to running wheels (P < 0.05 and P < 0.01, respectively). Male offspring from exercised dams showed increased percent lean mass and decreased fat mass percent compared with male offspring from sedentary dams (P < 0.01 for both), but these parameters were unchanged in female offspring. These data suggest that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long-term glucose homeostasis in offspring. PMID:22932781

  9. Monosodium glutamate versus diet induced obesity in pregnant rats and their offspring.

    PubMed

    Afifi, M M; Abbas, Amr M

    2011-06-01

    We aim at determining the role of monosodium glutamate (MSG) compared with high caloric chow(HCC) in development of obesity in pregnant rats and their offspring. Ninety pregnant rats were divided into 3 groups, control, MSG and HCC fed. We determined energy intake, body weight (BW), abdominal fat, fat to body weight ratio, serum glucose, insulin, leptin, lipid profile, ob and leptin receptor-b gene expressions in pregnant rats and ob and leptin receptor-b gene expressions, serum insulin,glucose, leptin, triacylglycerides (TAG), total lipids (TL) and BW in offspring. Although daily energy intake and BW of MSG treated rats were lower than those of HCC fed rats, their abdominal fat and fat body weight ratio were higher. MSG or HCC increased Ob gene expression, leptin, insulin,LDL, cholesterol, total lipids (TL), glucose and decreased leptin receptor-b gene expression. In offspring of MSG treated rats, BW, serum glucose, insulin, leptin, TAG, TL and Ob gene expression increased and leptin receptor-b gene expression decreased whereas in offspring of HCC fed rats, serum insulin, leptin, Ob and leptin receptor-b gene expression increased but serum glucose, TAG, TL or BW did not change. We conclude that in pregnant rats, MSG, in spite of mild hypophagia, caused severe increase in fat body weight ratio, via leptin resistance, whereas, HCC increased BW and fat body weight ratio, due to hyperphagia with consequent leptin resistance. Moreover, maternal obesity in pregnancy, caused by MSG, has greater impact on offspring metabolism and BW than that induced by HCC.

  10. Maternal High Fat Diet Alters Skeletal Muscle Mitochondrial Catalytic Activity in Adult Male Rat Offspring

    PubMed Central

    Pileggi, Chantal A.; Hedges, Christopher P.; Segovia, Stephanie A.; Markworth, James F.; Durainayagam, Brenan R.; Gray, Clint; Zhang, Xiaoyuan D.; Barnett, Matthew P. G.; Vickers, Mark H.; Hickey, Anthony J. R.; Reynolds, Clare M.; Cameron-Smith, David

    2016-01-01

    A maternal high-fat (HF) diet during pregnancy can lead to metabolic compromise, such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat) or a high fat diet (HFD; 45% kcal from fat) for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1) and mitochondrial transcription factor A (mtTFA) were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS) respiratory complex subunits were suppressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%), which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%). Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle. PMID:27917127

  11. Effect of rat parental morphine exposure on passive avoidance memory and morphine conditioned place preference in male offspring.

    PubMed

    Akbarabadi, Ardeshir; Niknamfar, Saba; Vousooghi, Nasim; Sadat-Shirazi, Mitra-Sadat; Toolee, Heidar; Zarrindast, Mohammad-Reza

    2018-02-01

    Drug addiction is a chronic disorder resulted from complex interaction of genetic, environmental, and developmental factors. Epigenetic mechanisms play an important role in the development and maintenance of addiction and also memory formation in the brain. We have examined passive avoidance memory and morphine conditioned place preference (CPP) in the offspring of male and/or female rats with a history of adulthood morphine consumption. Adult male and female animals received chronic oral morphine for 21days and then were maintained drug free for 10days. After that, they were let to mate with either an abstinent or control rat. Male offspring's memory was evaluated by step through test. Besides, rewarding effects of morphine were checked with CCP paradigm. Offspring of abstinent animals showed significant memory impairment compared to the control group which was more prominent in the offspring of abstinent females. Conditioning results showed that administration of a high dose of morphine (10mg/kg) that could significantly induce CPP in control rats, was not able to induce similar results in the offspring of morphine abstinent parents; and CPP was much more prominent when it was induced in the offspring of morphine exposed females compared to the progeny of morphine exposed males. It is concluded that parental morphine consumption in adulthood even before mating has destructive effects on memory state of the male offspring and also leads to tolerance to the rewarding effects of morphine. These effects are greater when the morphine consumer parent is the female one. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Prenatal Gender-Related Nicotine Exposure Increases Blood Pressure Response to Angiotensin II in Adult Offspring

    PubMed Central

    Xiao, DaLiao; Xu, Zhice; Huang, Xiaohui; Longo, Lawrence D.; Yang, Shumei; Zhang, Lubo

    2008-01-01

    Epidemiological studies suggest that maternal cigarette smoking is associated with an increased risk of elevated blood pressure (BP) in postnatal life. The present study tested the hypothesis that prenatal nicotine exposure causes an increase in BP response to angiotensin II (Ang II) in adult offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps throughout the gestation. BP and vascular responses to Ang II were measured in 5-month–old adult offspring. Prenatal nicotine had no effect on baseline BP but significantly increased Ang II–stimulated BP in male but not female offspring. The baroreflex sensitivity was significantly decreased in both male and female offspring. Prenatal nicotine significantly increased arterial media thickness in male but not female offspring. In male offspring, nicotine exposure significantly increased Ang II–induced contractions of aortas and mesenteric arteries. These responses were not affected by inhibition of endothelial NO synthase activity. Losartan blocked Ang II–induced contractions in both control and nicotine-treated animals. In contrast, PD123319 had no effect on Ang II–induced contractions in control but inhibited them in nicotine-treated animals. Nicotine significantly increased Ang II type 1 receptor but decreased Ang II type 2 receptor protein levels, resulting in a significant increase in the ratio of Ang II type 1 receptor/Ang II type 2 receptor in the aorta. Furthermore, the increased contractions of mesenteric arteries were mediated by increases in intracellular Ca2+ concentrations and Ca2+ sensitivity. These results suggest that prenatal nicotine exposure alters vascular function via changes in Ang II receptor–mediated signaling pathways in adult offspring in a gender-specific manner, which may lead to an increased risk of hypertension in male offspring. PMID:18259024

  13. Arsenite in drinking water produces glucose intolerance in pregnant rats and their female offspring.

    PubMed

    Bonaventura, María Marta; Bourguignon, Nadia Soledad; Bizzozzero, Marianne; Rodriguez, Diego; Ventura, Clara; Cocca, Claudia; Libertun, Carlos; Lux-Lantos, Victoria Adela

    2017-02-01

    Drinking water is the main source of arsenic exposure. Chronic exposure has been associated with metabolic disorders. Here we studied the effects of arsenic on glucose metabolism, in pregnant and post-partum of dams and their offspring. We administered 5 (A5) or 50 (A50) mg/L of sodium arsenite in drinking water to rats from gestational day 1 (GD1) until two months postpartum (2MPP), and to their offspring from weaning until 8 weeks old. Liver arsenic dose-dependently increased in arsenite-treated rats to levels similar to exposed population. Pregnant A50 rats gained less weight than controls and recovered normal weight at 2MPP. Arsenite-treated pregnant animals showed glucose intolerance on GD16-17, with impaired insulin secretion but normal insulin sensitivity; they showed dose-dependent increased pancreas insulin on GD18. All alterations reverted at 2MPP. Offspring from A50-treated mothers showed lower body weight at birth, 4 and 8 weeks of age, and glucose intolerance in adult females, probably due to insulin secretion and sensitivity alterations. Arsenic alters glucose homeostasis during pregnancy by altering beta-cell function, increasing risk of developing gestational diabetes. In pups, it induces low body weight from birth to 8 weeks of age, and glucose intolerance in females, demonstrating a sex specific response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Inulin Supplementation Lowered the Metabolic Defects of Prolonged Exposure to Chlorpyrifos from Gestation to Young Adult Stage in Offspring Rats

    PubMed Central

    Reygner, Julie; Lichtenberger, Lydia; Elmhiri, Ghada; Dou, Samir; Bahi-Jaber, Narges; Rhazi, Larbi; Depeint, Flore; Bach, Veronique

    2016-01-01

    Increasing evidence indicates that chlorpyrifos (CPF), an organophosphorus insecticide, is involved in metabolic disorders. We assess the hypothesis whether supplementation with prebiotics from gestation to adulthood, through a modulation of microbiota composition and fermentative activity, alleviates CPF induced metabolic disorders of 60 days old offspring. 5 groups of Wistar rats, from gestation until weaning, received two doses of CPF pesticide: 1 mg/kg/day (CPF1) or 3.5 mg/kg/day (CPF3.5) with free access to inulin (10g/L in drinking water). Then male pups received the same treatment as dams. Metabolic profile, leptin sensitivity, insulin receptor (IR) expression in liver, gut microbiota composition and short chain fatty acid composition (SCFAs) in the colon, were analyzed at postnatal day 60 in the offspring (PND 60). CPF3.5 increased offspring’s birth body weight (BW) but decreased BW at PND60. Inulin supplementation restored the BW at PND 60 to control levels. Hyperinsulinemia and decrease in insulin receptor β in liver were seen in CPF1 exposed rats. In contrast, hyperglycemia and decrease in insulin level were found in CPF3.5 rats. Inulin restored the levels of some metabolic parameters in CPF groups to ranges comparable with the controls. The total bacterial population, short chain fatty acid (SCFA) production and butyrate levels were enhanced in CPF groups receiving inulin. Our data indicate that developmental exposure to CPF interferes with metabolism with dose related effects evident at adulthood. By modulating microbiota population and fermentative activity, inulin corrected adult metabolic disorders of rats exposed to CPF during development. Prebiotics supply may be thus considered as a novel nutritional strategy to counteract insulin resistance and diabetes induced by a continuous pesticide exposure. PMID:27760213

  15. A hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, D.; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071; Wu, Y.

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; themore » level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a

  16. [Effects of nano-lead exposure on learning and memory as well as iron homeostasis in brain of offspring rats].

    PubMed

    Gao, Jing; Su, Hong; Yin, Jingwen; Cao, Fuyuan; Feng, Peipei; Liu, Nan; Xue, Ling; Zheng, Guoying; Li, Qingzhao; Zhang, Yanshu

    2015-06-01

    To investigate the effects of nano-lead exposure on learning and memory and iron homeostasis in the brain of the offspring rats on postnatal day 21 (PND21) and postnatal day 42 (PND42). Twenty adult pregnant female Sprague-Dawley rats were randomly divided into control group and nano-lead group. Rats in the nano-lead group were orally administrated 10 mg/kg nano-lead, while rats in the control group were administrated an equal volume of normal saline until PND21. On PND21, the offspring rats were weaned and given the same treatment as the pregnant rats until 42 days after birth. The learning and memory ability of offspring rats on PND21 and PND42 was evaluated by Morris water maze test. The hippocampus and cortex s amples of offspring rats on PND21 and PND42 were collected to determine iron and lead levels in the hippocampus and cortex by inductively coupled plasma-mass spectrometry. The distributions of iron in the hippocampus and cortex were observed by Perl's iron staining. The expression levels of ferritin, ferroportin 1 (FPN1), hephaestin (HP), and ceruloplasmin (CP) were measured by enzyme-linked immunosorbent assay. After nano-lead exposure, the iron content in the cortex of offspring rats on PND21 and PND42 in the nano-lead group was significantly higher than those in the control group (32.63 ± 6.03 µg/g vs 27.04 ± 5.82 µg/g, P<0.05; 46.20 ±10.60 µg/g vs 36.61 ± 10.2µg/g, P<0.05). The iron content in the hippocampus of offspring rats on PND42 in the nano-lead group was significantly higher than that in the control group (56.9 ± 4.37µg/g vs 37.71 ± 6.92µg/g, P<0.05). The Perl's staining showed massive iron deposition in the cortex and hippocampus in the nano-lead group. FPNl level in the cotfex of offspring rats on PND21 in the nano-lead group was significantly lower than that in the control group (3.64 ± 0.23 ng/g vs 4.99 ± 0.95 ng/g, P<0.05). FPN1 level in the hippocampus of offspring rats on PND42 in the nano-lead group was significantly

  17. Effects of fetal hypothyroidism on uterine smooth muscle contraction and structure of offspring rats.

    PubMed

    Bagheripuor, Fatemeh; Ghanbari, Mahboubeh; Piryaei, Abbas; Ghasemi, Asghar

    2018-05-01

    What is the central question of this study? Does fetal hypothyroidism in rats alter uterine contractions and structure in the adult offspring? What is the main finding and its importance? Our study indicated that maternal hypothyroidism during pregnancy increased gestational length and decreased litter size. In addition, maternal hypothyroidism caused delayed puberty onset, irregular uterine contractions and histological changes in the uterus in the female offspring. This model might contribute to a better understanding of the cellular and molecular mechanisms involved in uterine contractions in fetal hypothyroidism, studies which are not possible in humans, and might help to establish therapeutic methods for these disorders observed in uterine contractions. Thyroid hormones play an essential role in fetal growth. Hypothyroidism impairs reproductive function in both humans and animals. The aim of this study was to assess the effects of fetal hypothyroidism on uterine smooth muscle contraction and structure in the adult offspring. The control group of female Wistar rats consumed tap water, whereas the hypothyroid group received water containing 0.025% of 6-propyl-2-thiouracial throughout gestation from mating until delivery. Isometric contractility and histological changes in uterine tissue were evaluated in the adult female offspring. We tested the effects of carbachol (10 -10 -10 -3  m) and oxytocin (10 -13 -10 -8  m) on uterine smooth muscle contraction in the fetal hypothyroid (FH) and control groups. Compared with control uteri, carbachol induced contractions with lower amplitude in the FH group (area under the curve: 1820.0 ± 250.0 versus 1370.0 ± 125.0 a.u., control versus FH group, respectively, P < 0.001) and frequency (86.4 ± 7.3 versus 37.0 ± 6.1 a.u., P < 0.001). Likewise, after exposure to oxytocin the amplitude (6614.0 ± 492.2 versus 4793.0 ± 735.2 a.u., P < 0.001) and frequency (367.4 ± 32.0 versus 167.0 ± 39.0

  18. Impact of maternal mild hyperglycemia on maternal care and offspring development and behavior of Wistar rats.

    PubMed

    Kiss, Ana Carolina Inhasz; Woodside, Barbara; Felício, Luciano Freitas; Anselmo-Franci, Janete; Damasceno, Débora Cristina

    2012-10-10

    The aim of the present study was to evaluate the effect of maternal mild hyperglycemia on maternal behavior, as well as the development, behavior, reproductive function, and glucose tolerance of the offspring. At birth, litters were assigned either to Control (subcutaneous (sc)-citrate buffer) or STZ groups (streptozotocin (STZ)-100mg/kg-sc.). On PND 90 both STZ-treated and Control female rats were mated. Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were performed during pregnancy. Pregnancy duration, litter size and sex ratio were assessed. Newborns were classified according to birth weight as small (SPA), adequate (APA), or large for pregnancy age (LPA). Maternal behavior was analyzed on PND 5 and 10. Offspring body weight, length, and anogenital distance were measured and general activity was assessed in the open field. Sexual behavior was tested in both male and female offspring. Levels of reproductive hormones and estrous cycle duration were evaluated in female offspring. Female offspring were mated and both a GTT and ITT performed during pregnancy. Neonatal STZ administration caused mild hyperglycemia during pregnancy and changed some aspects of maternal care. The hyperglycemic intrauterine milieu impaired physical development and increased immobility in the open field in the offspring although the latter effect appeared at different ages for males (adulthood) and females (infancy). There was no impairment in the sexual behavior of either male or female offspring. As adults, female offspring of STZ-treated mothers did not show glucose intolerance during pregnancy. Thus, offspring of female rats that show mild hyperglycemia in pregnancy have fewer behavioral and developmental impairments than previously reported in the offspring of severely diabetic dams suggesting that the degree of impairment is directly related to the mother glycemic intensity. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Psychological stress has a higher rate of developing addictive behaviors compared to physical stress in rat offspring

    PubMed Central

    Nazeri, Masoud; Ebrahimi, Arezoo; Aghaei, Iraj; Ghotbi Ravandi, Samaneh; Shabani, Mohammad

    2017-01-01

    Prenatal stress could have great influence on development of offspring and might alter cognitive function and other physiological processes of children. The current study was conducted to study the effect of physical or psychological prenatal stress on addictive and anxiety-like behavior of male and female offspring during their adolescence period (postnatal day (PND) 40). Adult female rats were exposed to physical (swimming) or psychological (observing another female rat swimming) stress from day six of gestation for 10 days. Male and female offspring were assayed for anxiety-like behavior, motor and balance function and morphine conditioned place preference using the open field, elevated plus maze (EPM), rotarod and wire grip assay and conditioned place preference. Offspring in both physical and psychological prenatal stress groups demonstrated significant increase in anxiety-like behavior in EPM paradigm, but no alterations were observed in motor and balance function of animals. Offspring in the psychological prenatal stress group had an increased preference for morphine in comparison to control and physical prenatal stress groups. Results of the current study demonstrated that animals exposed to psychological stress during fetal development are at a higher risk of developing addictive behaviors. Further research might elucidate the exact mechanisms involved to provide better preventive and therapeutic interventions. PMID:28900372

  20. Maternal high-sodium intake alters the responsiveness of the renin-angiotensin system in adult offspring.

    PubMed

    Ramos, Débora R; Costa, Nauilo L; Jang, Karen L L; Oliveira, Ivone B; da Silva, Alexandre A; Heimann, Joel C; Furukawa, Luzia N S

    2012-05-22

    The goal of the current study was to evaluate the impact of maternal sodium intake during gestation on the systemic and renal renin-angiotensin-aldosterone-system (RAAS) of the adult offspring. Female Wistar rats were fed high- (HSD-8.0% NaCl) or normal-sodium diets (NSD-1.3% NaCl) from 8 weeks of age until the delivery of their first litter. After birth, the offspring received NSD. Tail-cuff blood pressure (TcBP) was measured in the offspring between 6 and 12 weeks of age. At 12 weeks of age, the offspring were subjected to either one week of HSD or low sodium diet (LSD-0.16% NaCl) feeding to evaluate RAAS responsiveness or to acute saline overload to examine sodium excretory function. Plasma (PRA) and renal renin content (RRC), serum aldosterone (ALDO) levels, and renal cortical and medullary renin mRNA expression levels were evaluated at the end of the study. TcBP was higher among dams fed HSD, but no TcBP differences were observed among the offspring. Male offspring, however, exhibited increased TcBP after one week of HSD feeding, and this effect was independent of maternal diet. Increased RAAS responsiveness to the HSD and LSD was also observed in male offspring. The baseline levels of PRA, ALDO, and cortical and medullary renin gene expression were lower but the RRC levels were higher among HSD-fed male offspring (HSDoff). Conversely, female HSDoff showed reduced sodium excretion 4 h after saline overload compared with female NSDoff. High maternal sodium intake is associated with gender-specific changes in RAAS responsiveness among adult offspring. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The Evaluation of Folic Acid-Deficient or Folic Acid-Supplemented Diet in the Gestational Phase of Female Rats and in Their Adult Offspring Subjected to an Animal Model of Schizophrenia.

    PubMed

    Canever, L; Alves, C S V; Mastella, G; Damázio, L; Polla, J V; Citadin, S; De Luca, L A; Barcellos, A S; Garcez, M L; Quevedo, J; Budni, J; Zugno, A I

    2018-03-01

    Although folic acid (FA) supplementation is known to influence numerous physiological functions, especially during pregnancy, little is known about its direct effects on the mothers' health. However, this vitamin is essential for the health of the mother and for the normal growth and development of the fetus. Thus, the aim of this study was (1) to evaluate the cognitive effects and biochemical markers produced by the AIN-93 diet (control), the AIN-93 diet supplemented with different doses of FA (5, 10, and 50 mg/kg), and a FA-deficient diet during pregnancy and lactation in female mother rats (dams) and (2) to evaluate the effect of maternal diets on inflammatory parameters in the adult offspring which were subjected to an animal model of schizophrenia (SZ) induced by ketamine (Ket). Our study demonstrated through the Y-maze test that rats subjected to the FA-deficient diet showed significant deficits in spatial memory, while animals supplemented with FA (5 and 10 mg/kg) showed no deficit in spatial memory. Our results also suggest that the rats subjected to the FA-deficient diet had increased levels of carbonylated proteins in the frontal cortex and hippocampus and also increased plasma levels of homocysteine (Hcy). Folate was able to prevent cognitive impairments in the rats supplemented with FA (5 and 10 mg/kg), data which may be attributed to the antioxidant effect of the vitamin. Moreover, FA prevented protein damage and elevations in Hcy levels in the rats subjected to different doses of this vitamin (5, 10, and 50 mg/kg). We verified a significant increase of the anti-inflammatory cytokine (interleukin-4 (IL-4)) and a reduction in the plasma levels of proinflammatory cytokines (interleukin-6 (IL-6)) and TNF-α) in the dams that were subjected to the diets supplemented with FA (5, 10, and 50 mg/kg), showing the possible anti-inflammatory effects of FA during pregnancy and lactation. In general, we also found that in the adult offspring that were

  2. Differential hypothalamic leptin sensitivity in obese rat offspring exposed to maternal and postnatal intake of chocolate and soft drink.

    PubMed

    Kjaergaard, M; Nilsson, C; Secher, A; Kildegaard, J; Skovgaard, T; Nielsen, M O; Grove, K; Raun, K

    2017-01-16

    Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic astrocyte morphology in adult rat offspring. Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. As expected, adult offspring fed the S diet post weaning became obese (body weight: P<0.01, %body fat per kg: P<0.001) and this was due to the reduced energy expenditure (P<0.05) and hypothalamic astrogliosis (P<0.001) irrespective of maternal diet. Interesting, offspring born to S-diet-fed mothers and fed the S diet throughout postnatal life became obese despite lower energy intake than controls (P<0.05). These SS offspring showed increased feed efficiency (P<0.001) and reduced fasting pSTAT3 activity (P<0.05) in arcuate nucleus (ARC) compared with other groups. The findings indicated that the combination of the maternal and postnatal S-diet exposure induced persistent changes in leptin signalling, hence affecting energy balance. Thus, appetite regulation was more sensitive to the effect of leptin than energy expenditure, suggesting differential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Maternal intake of chocolate and soft drink had long-term consequences for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with alterations in hypothalamic leptin signalling.

  3. Differential hypothalamic leptin sensitivity in obese rat offspring exposed to maternal and postnatal intake of chocolate and soft drink

    PubMed Central

    Kjaergaard, M; Nilsson, C; Secher, A; Kildegaard, J; Skovgaard, T; Nielsen, M O; Grove, K; Raun, K

    2017-01-01

    Background/objective: Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic astrocyte morphology in adult rat offspring. Methods: Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. Results: As expected, adult offspring fed the S diet post weaning became obese (body weight: P<0.01, %body fat per kg: P<0.001) and this was due to the reduced energy expenditure (P<0.05) and hypothalamic astrogliosis (P<0.001) irrespective of maternal diet. Interesting, offspring born to S-diet-fed mothers and fed the S diet throughout postnatal life became obese despite lower energy intake than controls (P<0.05). These SS offspring showed increased feed efficiency (P<0.001) and reduced fasting pSTAT3 activity (P<0.05) in arcuate nucleus (ARC) compared with other groups. The findings indicated that the combination of the maternal and postnatal S-diet exposure induced persistent changes in leptin signalling, hence affecting energy balance. Thus, appetite regulation was more sensitive to the effect of leptin than energy expenditure, suggesting differential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Conclusions: Maternal intake of chocolate and soft drink had long-term consequences for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with

  4. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hegui; He, Zheng; Zhu, Chunyan

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4 g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observedmore » in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a “two-programming” mechanism for PEE-induced adrenal developmental toxicity: “the first programming” is a lower functional programming of adrenal steroidogenesis, and “the second programming” is GC-metabolic activation system-related GC-IGF1 axis programming. - Highlights: • Prenatal ethanol exposure induces adrenal developmental abnormality in offspring rats. • Prenatal ethanol exposure induces intrauterine programming of adrenal steroidogenesis. • Intrauterine GC-IGF1 axis programming might mediate adrenal developmental abnormality.« less

  5. Maternal antioxidant supplementation prevents adiposity in the offspring of Western diet-fed rats.

    PubMed

    Sen, Sarbattama; Simmons, Rebecca A

    2010-12-01

    Obesity in pregnancy significantly increases the risk of the offspring developing obesity after birth. The aims of this study were to test the hypothesis that maternal obesity increases oxidative stress during fetal development, and to determine whether administration of an antioxidant supplement to pregnant Western diet-fed rats would prevent the development of adiposity in the offspring. Female Sprague Dawley rats were started on the designated diet at 4 weeks of age. Four groups of animals were studied: control chow (control); control + antioxidants (control+Aox); Western diet (Western); and Western diet + antioxidants (Western+Aox). The rats were mated at 12 to 14 weeks of age, and all pups were weaned onto control diet. Offspring from dams fed the Western diet had significantly increased adiposity as early as 2 weeks of age as well as impaired glucose tolerance compared with offspring of dams fed a control diet. Inflammation and oxidative stress were increased in preimplantation embryos, fetuses, and newborns of Western diet-fed rats. Gene expression of proadipogenic and lipogenic genes was altered in fat tissue of rats at 2 weeks and 2 months of age. The addition of an antioxidant supplement decreased adiposity and normalized glucose tolerance. CONCLUSIONS; Inflammation and oxidative stress appear to play a key role in the development of increased adiposity in the offspring of Western diet-fed pregnant dams. Restoration of the antioxidant balance during pregnancy in the Western diet-fed dam is associated with decreased adiposity in offspring.

  6. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  7. Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring.

    PubMed

    Meehan, Crystal; Harms, Lauren; Frost, Jade D; Barreto, Rafael; Todd, Juanita; Schall, Ulrich; Shannon Weickert, Cynthia; Zavitsanou, Katerina; Michie, Patricia T; Hodgson, Deborah M

    2017-07-01

    Maternal exposure to infectious agents during gestation has been identified as a significant risk factor for schizophrenia. Using a mouse model, past work has demonstrated that the gestational timing of the immune-activating event can impact the behavioural phenotype and expression of dopaminergic and glutamatergic neurotransmission markers in the offspring. In order to determine the inter-species generality of this effect to rats, another commonly used model species, the current study investigated the impact of a viral mimetic Poly (I:C) at either an early (gestational day 10) or late (gestational day 19) time-point on schizophrenia-related behaviour and neurotransmitter receptor expression in rat offspring. Exposure to Poly (I:C) in late, but not early, gestation resulted in transient impairments in working memory. In addition, male rats exposed to maternal immune activation (MIA) in either early or late gestation exhibited sensorimotor gating deficits. Conversely, neither early nor late MIA exposure altered locomotor responses to MK-801 or amphetamine. In addition, increased dopamine 1 receptor mRNA levels were found in the nucleus accumbens of male rats exposed to early gestational MIA. The findings from this study diverge somewhat from previous findings in mice with MIA exposure, which were often found to exhibit a more comprehensive spectrum of schizophrenia-like phenotypes in both males and females, indicating potential differences in the neurodevelopmental vulnerability to MIA exposure in the rat with regards to schizophrenia related changes. Copyright © 2016. Published by Elsevier Inc.

  8. Angiotensin II enhancement during pregnancy influences the emotionality of rat offspring (Rattus norvegicus) in adulthood. Potential use of the Rat Grimace Scale.

    PubMed

    Senko, Tomas; Olexova, Lucia; Mokosakova, Miroslava; Kršková, Lucia

    2017-05-01

    One of the systems, which can be prenatally reprogrammed, is the renin-angiotensin-aldosterone system (RAAS). The aim of our experiment was to determine how prenatal activation of RAAS via exposure to elevated levels of angiotensin II (Ang II) influences the rat offspring's emotionality. Pregnant female rats were implanted with osmotic minipumps that continually released Ang II and oval object of the same shape and size was implanted into control dams. The adult offspring (AngII and control groups) were tested in rat grimace scale (RGS), open field test (OF) and elevated plus maze (EPM). Psychological stress increased the RGS score in both groups of animals. AngII animals had significantly lower RGS score (i.e. less negative emotions) in the home cage but higher index of emotional reactivity in RGS. AngII animals had also significantly lower frequency of defecation in OF and had no effect on changes in anxiety-like behaviour. We concluded that maternal activation of RAAS modified some aspect of emotionality of experimental animals and led to an enhanced emotional response to stress situation.

  9. Maternal low intensity physical exercise prevents obesity in offspring rats exposed to early overnutrition.

    PubMed

    Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Martins, Isabela Peixoto; Pavanello, Audrei; de Oliveira, Júlio Cezar; Prates, Kelly Valério; Miranda, Rosiane Aparecida; da Silva Franco, Claudinéia Conationi; Gomes, Rodrigo Mello; Francisco, Flávio Andrade; Alves, Vander Silva; de Almeida, Douglas Lopes; Moreira, Veridiana Mota; Palma-Rigo, Kesia; Vieira, Elaine; Fabricio, Gabriel Sergio; da Silva Rodrigues, Marcos Ricardo; Rinaldi, Wilson; Malta, Ananda; de Freitas Mathias, Paulo Cezar

    2017-08-09

    Low intensity exercise during pregnancy and lactation may create a protective effect against the development of obesity in offspring exposed to overnutrition in early life. To test these hypotheses, pregnant rats were randomly assigned into 2 groups: Sedentary and Exercised, low intensity, on a rodent treadmill at 30% VO 2Max /30-minute/session/3x/week throughout pregnancy and the lactation. Male offspring were raised in small litters (SL, 3 pups/dam) and normal litters (NL, 9 pups/dam) as models of early overnutrition and normal feed, respectively. Exercised mothers showed low mesenteric fat pad stores and fasting glucose and improved glucose-insulin tolerance, VO 2max during lactation and sympathetic activity. Moreover, the breast milk contained elevated levels of insulin. In addition, SL of sedentary mothers presented metabolic dysfunction and glucose and insulin intolerance and were hyperglycemic and hyperinsulinemic in adulthood. SL of exercised mothers showed lower fat tissue accretion and improvements in glucose tolerance, insulin sensitivity, insulinemia and glycemia. The results suggest that maternal exercise during the perinatal period can have a possible reprogramming effect to prevent metabolic dysfunction in adult rat offspring exposed to early overnutrition, which may be associated with the improvement in maternal health caused by exercise.

  10. Prenatal Food Restriction with Postweaning High-fat Diet Alters Glucose Metabolic Function in Adult Rat Offspring.

    PubMed

    Xiao, Di; Kou, Hao; Zhang, Li; Guo, Yu; Wang, Hui

    2017-01-01

    The present study was designed to investigate the effects of prenatal food restriction (PFR) with postweaning high-fat diet (HFD) on glucose metabolic function in adult offspring. Pregnant Wistar rats were given PFR treatment from gestational day 11 to spontaneous delivery. All pups were fed by HFD after weaning. Oral glucose tolerance test (OGTT) was conducted at postnatal week (PW) 20. Rats were decapitated in PW24 to collect liver and pancreas, and expression of hepatic insulin signaling genes were then quantified. Body weight from PW4 to PW24 in PFR males was lower than those in control males, whereas there was no distinct difference between females. However, body weight gain rates were higher from PW16 to PW24 in PFR males and females. Fasting serum glucose presented no changes, whereas fasting serum insulin decreased in PW20 in PFR pups. Moreover, glucose intolerance only appeared in PFR males, whereas no changes were shown in PFR females in relative values. Serum insulin increased in both PFR groups after OGTT. Remarkable pathological changes were also found in islets from PFR rats. There was an increase in the hepatic mRNA expression of IR in PFR females and of Glut2 in PFR males. PFR with postweaning HFD induced a catch-up growth in body weight, especially in PFR females. Serum insulin decreased in both PFR groups in fasting status. Insulin resistance after OGTT only existed in PFR males, whereas PFR females showed no obvious changes in glucose metabolism. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  11. Maternal exercise during pregnancy promotes physical activity in adult offspring

    PubMed Central

    Eclarinal, Jesse D.; Zhu, Shaoyu; Baker, Maria S.; Piyarathna, Danthasinghe B.; Coarfa, Cristian; Fiorotto, Marta L.; Waterland, Robert A.

    2016-01-01

    Previous rodent studies have shown that maternal voluntary exercise during pregnancy leads to metabolic changes in adult offspring. We set out to test whether maternal voluntary exercise during pregnancy also induces persistent changes in voluntary physical activity in the offspring. Adult C57BL/6J female mice were randomly assigned to be caged with an unlocked (U) or locked (L) running wheel before and during pregnancy. Maternal running behavior was monitored during pregnancy, and body weight, body composition, food intake, energy expenditure, total cage activity, and running wheel activity were measured in the offspring at various ages. U offspring were slightly heavier at birth, but no group differences in body weight or composition were observed at later ages (when mice were caged without access to running wheels). Consistent with our hypothesis, U offspring were more physically active as adults. This effect was observed earlier in female offspring (at sexual maturation). Remarkably, at 300 d of age, U females achieved greater fat loss in response to a 3-wk voluntary exercise program. Our findings show for the first time that maternal physical activity during pregnancy affects the offspring’s lifelong propensity for physical activity and may have important implications for combating the worldwide epidemic of physical inactivity and obesity.—Eclarinal, J. D., Zhu, S., Baker, M. S., Piyarathna, D. B., Coarfa, C., Fiorotto, M. L., Waterland, R. A. Maternal exercise during pregnancy promotes physical activity in adult offspring. PMID:27033262

  12. Intrauterine Exposure to Maternal Stress Alters Bdnf IV DNA Methylation and Telomere Length in the Brain of Adult Rat Offspring

    NASA Technical Reports Server (NTRS)

    Blaze, Jennifer; Asok, Arun; Borrelli, Kristyn; Tulbert, Christine; Bollinger, Justin; Ronca Finco, April E.; Roth, Tania L.

    2017-01-01

    DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavioral outcomes. Here, we measured methylation of Brain-derived neurotrophic factor (Bdnf), a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed controls. Further, prenatally-stressed males had shorter telomeres than controls in the mPFC. This study provides the first evidence in a rodent model of an association between prenatal stress exposure and subsequent shorter brain telomere length. Together findings indicate a long-term impact of prenatal stress on DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational epigenetic alterations and changes in telomere length.

  13. Maternal exercise during pregnancy promotes physical activity in adult offspring

    USDA-ARS?s Scientific Manuscript database

    Previous rodent studies have shown that maternal voluntary exercise during pregnancy leads to metabolic changes in adult offspring. We set out to test whether maternal voluntary exercise during pregnancy also induces persistent changes in voluntary physical activity in the offspring. Adult C57BL/6J ...

  14. Maternal consumption of a cafeteria diet during lactation in rats leads the offspring to a thin-outside-fat-inside phenotype.

    PubMed

    Pomar, C A; van Nes, R; Sánchez, J; Picó, C; Keijer, J; Palou, A

    2017-08-01

    The suckling period is a critical phase of development, in which maternal overnutrition may program the susceptibility of developing chronic diseases and disorders, such as obesity and metabolic alterations, in adult life. Here, we questioned whether the consumption of a cafeteria diet throughout lactation in rats affects the macronutrient composition of milk and whether it results in permanent metabolic effects in the offspring. Nursing rats were fed a control diet or a cafeteria diet during lactation. Milk was obtained at different time points of lactation. Offspring (males and females) were weaned onto a control diet until the age of 6 months. Circulating parameters were measured under ad libitum feeding and under 12-h fasting conditions at weaning and at 3 and 6 months of age. An oral glucose tolerance test (OGTT) was performed at 3 and 6 months of age. Rats fed a cafeteria diet during lactation consumed an unbalanced diet, with lower protein and higher fat content versus controls, which was reflected in the composition of the milk. The offspring of rats fed a cafeteria diet during lactation showed lower body weight and lower lean mass, but greater fat accumulation, compared with controls. They also displayed hyperleptinaemia, altered lipid profile and impaired response to an OGTT. Maternal consumption of a cafeteria diet throughout lactation in rats produces lasting effects in the metabolic health of their offspring, which are not associated with a higher body weight but with a greater fat accumulation, similarly to the thin-outside-fat-inside phenotype.

  15. The intrauterine environment affects learning ability of Tokai high avoider rat offspring derived using cryopreservation and embryo transfer-mediated reproduction.

    PubMed

    Endo, Hitoshi; Eto, Tomoo; Yoshii, Fumihito; Owada, Satoshi; Watanabe, Tetsu; Tatemichi, Masayuki; Kimura, Minoru

    2017-07-22

    Embryo transfer (ET) to recipient female animals is a useful technique in biological and experimental animal studies. While cryopreservation of two-cell stage rat embryos and ET to recipient rats are currently well-defined, it is unknown whether these artificial reproductive techniques and maternal factors affect offspring phenotype, particularly higher brain functions. Therefore, we assessed the effects of cryopreservation, ET, and maternal care on learning behaviour of the offspring, using Tokai high avoider (THA) rats that have a high learning ability phenotype. We found that the high learning ability of THA rat offspring was not replicated following ET to surrogate Wistar rats with a low-avoidance phenotype. Additionally, the characteristic phenotype of offspring obtained through mating of ET-derived rats was similar to that of THA rats. A postnatal cross-fostering investigation with the offspring of Wistar and THA rats showed that maternal behaviour, including postnatal care and lactation traits, did not differ between the dams of low-avoidance Wistar rats and THA rats; therefore, learning behaviour was retained in both Wistar and THA rat offspring. We conclude that the offspring phenotype, although unchanged, has an imperceptible effect on the learning ability of ET-derived THA rats through the intrauterine environment of the recipient. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring.

    PubMed

    Mychasiuk, R; Harker, A; Ilnytskyy, S; Gibb, R

    2013-06-25

    Although there has been an abundance of research focused on offspring outcomes associated with maternal experiences, there has been limited examination of the relationship between paternal experiences and offspring brain development. As spermatogenesis is a continuous process, experiences that have the ability to alter epigenetic regulation in fathers may actually change developmental trajectories of offspring. The purpose of this study was to examine the effects of paternal stress prior to conception on behaviour and the epigenome of both male and female developing rat offspring. Male Long-Evans rats were stressed for 27 consecutive days and then mated with control female rats. Early behaviour was tested in offspring using the negative geotaxis task and the open field. At P21 offspring were sacrificed and global DNA methylation levels in the hippocampus and frontal cortex were analysed. Paternal stress prior to conception altered behaviour of all offspring on the negative geotaxis task, delaying acquisition of the task. In addition, male offspring demonstrated a reduction in stress reactivity in the open field paradigm spending more time than expected in the centre of the open field. Paternal stress also altered DNA methylation patterns in offspring at P21, global methylation was reduced in the frontal cortex of female offspring, but increased in the hippocampus of both male and female offspring. The results from this study clearly demonstrate that paternal stress during spermatogenesis can influence offspring behaviour and DNA methylation patterns, and these affects occur in a sex-dependent manner. Development takes place in the centre of a complex interaction between maternal, paternal, and environmental influences, which combine to produce the various phenotypes and individual differences that we perceive. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Alterations in perivascular innervation function in mesenteric arteries from offspring of diabetic rats

    PubMed Central

    de Queiroz, D B; Sastre, E; Caracuel, L; Callejo, M; Xavier, F E; Blanco-Rivero, J; Balfagón, G

    2015-01-01

    Background and Purpose We have reported that exposure to a diabetic intrauterine environment during pregnancy increases blood pressure in adult offspring, but the mechanisms involved are not completely understood. This study was designed to analyse a possible role of perivascular sympathetic and nitrergic innervation in the superior mesenteric artery (SMA) in this effect. Experimental Approach Diabetes was induced in pregnant Wistar rats by a single injection of streptozotocin. Endothelium-denuded vascular rings from the offspring of control (O-CR) and diabetic rats (O-DR) were used. Vasomotor responses to electrical field stimulation (EFS), NA and the NO donor DEA-NO were studied. The expressions of neuronal NOS (nNOS) and phospho-nNOS (P-nNOS) and release of NA, ATP and NO were determined. Sympathetic and nitrergic nerve densities were analysed by immunofluorescence. Key Results Blood pressure was higher in O-DR animals. EFS-induced vasoconstriction was greater in O-DR animals. This response was decreased by phentolamine more in O-DR animals than their controls. L-NAME increased EFS-induced vasoconstriction more strongly in O-DR than in O-CR segments. Vasomotor responses to NA or DEA-NO were not modified. NA, ATP and NO release was increased in segments from O-DR. nNOS expression was not modified, whereas P-nNOS expression was increased in O-DR. Sympathetic and nitrergic nerve densities were similar in both experimental groups. Conclusions and Implications The activity of sympathetic and nitrergic innervation is increased in SMA from O-DR animals. The net effect is an increase in EFS-induced contractions in these animals. These effects may contribute to the increased blood pressure observed in the offspring of diabetic rats. PMID:26177571

  18. The effect of zinc supplementation of lactating rats on short-term and long-term memory of their male offspring.

    PubMed

    Karami, Mohammad; Ehsanivostacolaee, Simin; Moazedi, Ali Ahmad; Nosrati, Anahita

    2013-01-01

    In this study the effect of zinc chloride (ZnCl2) administration on the short-term and long-term memory of rats were assessed. We enrolled six groups of adult female and control group of eight Wistar rats in each group. One group was control group with free access to food and water, and five groups drunk zinc chloride in different doses (20, 30, 50, 70 and 100 mg/kg/day) in drinking water for two weeks during lactation .One month after birth, a shuttle box used to short- term and long-term memory and the latency in entering the dark chamber as well. This experiment showed that maternal 70 mg/kg dietary zinc during lactation influenced the working memory of rats' offspring in all groups. Rats received 100 mg/kg/day zinc during lactation so they had significant impairment in working memory (short-term) of their offspring (P<0.05). There was no significant difference in reference (long-term) memory of all groups. Drug consumption below70 mg/kg/day zinc chloride during lactation had no effect. While enhanced 100 mg/ kg/ day zinc in lactating rats could cause short-term memory impairment.

  19. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    PubMed Central

    de Castro Barbosa, Thais; Ingerslev, Lars R.; Alm, Petter S.; Versteyhe, Soetkin; Massart, Julie; Rasmussen, Morten; Donkin, Ida; Sjögren, Rasmus; Mudry, Jonathan M.; Vetterli, Laurène; Gupta, Shashank; Krook, Anna; Zierath, Juleen R.; Barrès, Romain

    2015-01-01

    Objectives Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. Methods F0-male rats fed either HFD or chow diet for 12 weeks were mated with chow-fed dams to generate F1 and F2 offspring. Motile spermatozoa were isolated from F0 and F1 breeders to determine DNA methylation and small non-coding RNA (sncRNA) expression pattern by deep sequencing. Results Newborn offspring of HFD-fed fathers had reduced body weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD-fed F0 and their F1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. Conclusion Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations. PMID:26977389

  20. Maternal Exercise Improves the Metabolic Health of Adult Offspring.

    PubMed

    Harris, Johan E; Baer, Lisa A; Stanford, Kristin I

    2018-03-01

    The intrauterine environment can modulate the course of development and confer an enduring effect on offspring health. The effects of maternal diet to impair offspring metabolic health are well established, but the effects of maternal exercise on offspring metabolic health have been less defined. Because physical exercise is a treatment for obesity and type 2 diabetes (T2D), maternal exercise is an appealing intervention to positively influence the intrauterine environment and improve the metabolic health of offspring. Recent research has provided insights into the effects of maternal exercise on the metabolic health of adult offspring, which is the focus of this review. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Gamma-linoleic acid and ascorbate improves skeletal ossification in offspring of diabetic rats.

    PubMed

    Braddock, Rattana; Simán, C Martin; Hamilton, Katherine; Garland, Hugh O; Sibley, Colin P

    2002-05-01

    Maternal diabetes causes a range of complications in offspring, including reduced skeletal ossification. This study examined whether feeding gamma-linoleic acid (GLA) and ascorbate, alone or in combination, to diabetic pregnant rats improves skeletal development in their offspring. In addition, Ca(2+) concentration was monitored in maternal plasma and fetal tissue, as well as placental mRNA expression of calbindin-D(9k). Female rats rendered diabetic with streptozotocin were fed GLA (500 mg/kg/d), ascorbate (290 mg/kg/d), ascorbyl-GLA (790 mg/kg/d), or GLA and ascorbate (500 and 290 mg/kg/d, respectively) throughout pregnancy. Fetal skeletons were studied after alizarin red staining. Fewer ossification centers were observed in offspring of diabetic rats compared with offspring of control rats (68 +/- 4% of control, p = 0.01). An almost complete restoration of ossification occurred with all the treatments (92-95 +/- 3% of control). The effects of treatment on fetal ossification could not be explained by altered maternal plasma Ca(2+) concentrations or by mRNA expression of the placental Ca(2+)-transporting protein calbindin-D(9K). We conclude that GLA and/or ascorbate treatment was effective against diabetes-induced fetal ossification defects by a mechanism not related to placental Ca(2+) supply.

  2. Preconception Alcohol Increases Offspring Vulnerability to Stress

    PubMed Central

    Jabbar, Shaima; Chastain, Lucy G; Gangisetty, Omkaram; Cabrera, Miguel A; Sochacki, Kamil; Sarkar, Dipak K

    2016-01-01

    The effect of preconception drinking by the mother on the life-long health outcomes of her children is not known, and therefore, in this study using an animal model, we determined the impact of preconception alcohol drinking of the mother on offspring stress response during adulthood. In our preconception alcohol exposure model, adult female rats were fed with 6.7% alcohol in their diet for 4 weeks, went without alcohol for 3 weeks and were bred to generate male and female offspring. Preconception alcohol-exposed offsprings' birth weight, body growth, stress response, anxiety-like behaviors, and changes in stress regulatory gene and protein hormone levels were evaluated. In addition, roles of epigenetic mechanisms in preconception alcohol effects were determined. Alcohol feeding three weeks prior to conception significantly affected pregnancy outcomes of female rats, with respect to delivery period and birth weight of offspring, without affecting maternal care behaviors. Preconception alcohol negatively affected offspring adult health, producing an increased stress hormone response to an immune challenge. In addition, preconception alcohol was associated with changes in expression and methylation profiles of stress regulatory genes in various brain areas. These changes in stress regulatory genes were normalized following treatment with a DNA methylation blocker during the postnatal period. These data highlight the novel possibility that preconception alcohol affects the inheritance of stress-related diseases possibly by epigenetic mechanisms. PMID:27296153

  3. Adolescent Female Cannabinoid Exposure Diminishes the Reward-Facilitating Effects of Δ9-Tetrahydrocannabinol and d-Amphetamine in the Adult Male Offspring.

    PubMed

    Pitsilis, George; Spyridakos, Dimitrios; Nomikos, George G; Panagis, George

    2017-01-01

    Marijuana is currently the most commonly abused illicit drug. According to recent studies, cannabinoid use occurring prior to pregnancy can impact brain plasticity and behavior in future generations. The purpose of the present study was to determine whether adolescent exposure of female rats to Δ 9 -tetrahydrocannabinol (Δ 9 -THC) induces transgenerational effects on the reward-facilitating effects of Δ 9 -THC and d -amphetamine in their adult male offspring. Female Sprague-Dawley rats received Δ 9 -THC (0.1 or 1 mg/kg, i.p.) or vehicle during postnatal days 28-50. As adults, females were mated with drug-naïve males. We then assessed potential alterations of the Δ 9 -THC's (0, 0.1, 0.5, and 1 mg/kg, i.p.) and d -amphetamine's (0, 0.1, 0.5, and 1 mg/kg, i.p.) reward-modifying effects using the curve-shift variant of the intracranial self-stimulation (ICSS) procedure in their adult male F1 offspring. The reward-facilitating effect of the 0.1 mg dose of Δ 9 -THC was abolished in the F1 offspring of females that were exposed to Δ 9 -THC (0.1 or 1 mg/kg), whereas the reward-attenuating effect of the 1 mg dose of Δ 9 -THC remained unaltered. The reward-facilitating effects of 0.5 and 1 mg of d -amphetamine were significantly decreased in the F1 offspring of females that were exposed to Δ 9 -THC (1 mg/kg and 0.1 or 1 mg, respectively). The present results reveal that female Δ 9 -THC exposure during adolescence can diminish the reward-facilitating effects of Δ 9 -THC and d -amphetamine in the adult male offspring. These transgenerational effects occur in the absence of in utero exposure. It is speculated that Δ 9 -THC exposure during female adolescence may affect neural mechanisms that are shaping reward-related behavioral responses in a subsequent generation, as indicated by the shifts in the reward-facilitating effects of commonly used and abused drugs.

  4. Long-lasting alterations of hippocampal GABAergic neurotransmission in adult rats following perinatal Δ9-THC exposure.

    PubMed

    Beggiato, Sarah; Borelli, Andrea Celeste; Tomasini, Maria Cristina; Morgano, Lucia; Antonelli, Tiziana; Tanganelli, Sergio; Cuomo, Vincenzo; Ferraro, Luca

    2017-03-01

    The long-lasting effects of gestational cannabinoids exposure on the adult brain of the offspring are still controversial. It has already been shown that pre- or perinatal cannabinoids exposure induces learning and memory disruption in rat adult offspring, associated with permanent alterations of cortical glutamatergic neurotransmission and cognitive deficits. In the present study, the risk of long-term consequences induced by perinatal exposure to cannabinoids on rat hippocampal GABAergic system of the offspring, has been explored. To this purpose, pregnant rats were treated daily with Delta 9 -tetrahydrocannabinol (Δ 9 -THC; 5mg/kg) or its vehicle. Perinatal exposure to Δ 9 -THC induced a significant reduction (p<0.05) in basal and K + -evoked [ 3 H]-GABA outflow of 90-day-old rat hippocampal slices. These effects were associated with a reduction of hippocampal [ 3 H]-GABA uptake compared to vehicle exposed group. Perinatal exposure to Δ 9 -THC induced a significant reduction of CB1 receptor binding (B max ) in the hippocampus of 90-day-old rats. However, a pharmacological challenge with either Δ 9 -THC (0.1μM) or WIN55,212-2 (2μM), similarly reduced K + -evoked [ 3 H]-GABA outflow in both experimental groups. These reductions were significantly blocked by adding the selective CB1 receptor antagonist SR141716A. These findings suggest that maternal exposure to cannabinoids induces long-term alterations of hippocampal GABAergic system. Interestingly, previous behavioral studies demonstrated that, under the same experimental conditions as in the present study, perinatal cannabinoids exposure induced cognitive impairments in adult rats, thus resembling some effects observed in humans. Although it is difficult and sometimes misleading to extrapolate findings obtained from animal models to humans, the possibility that an alteration of hippocampus aminoacidergic transmission might underlie, at least in part, some of the cognitive deficits affecting the offspring

  5. Maternal nicotine exposure during lactation alters food preference, anxiety-like behavior and the brain dopaminergic reward system in the adult rat offspring.

    PubMed

    Pinheiro, C R; Moura, E G; Manhães, A C; Fraga, M C; Claudio-Neto, S; Younes-Rapozo, V; Santos-Silva, A P; Lotufo, B M; Oliveira, E; Lisboa, P C

    2015-10-01

    The mesolimbic reward pathway is activated by drugs of abuse and palatable food, causing a sense of pleasure, which promotes further consumption of these substances. Children whose parents smoke are more vulnerable to present addictive-like behavior to drugs and food.We evaluated the association between maternal nicotine exposure during lactation with changes in feeding, behavior and in the dopaminergic reward system. On postnatal day (PN) 2,Wistar rat dams were implanted with minipumps releasing nicotine (N; 6 mg/kg/day, s.c.) or saline (C) for 14 days. On PN150 and PN160, offspring were divided into 4 groups for a food challenge: N and C that received standard chow(SC); and N and C that could freely self-select (SSD) between high-fat and high-sugar diets (HFD and HSD, respectively). Offspring were tested in the elevated plus maze (EPM) and open field (OF) arena on PN152–153. On PN170, offspring were euthanized for central dopaminergic analysis. SSD animals showed an increased food intake compared to SC ones and a preference for HFD. However, N-SSD animals consumed relatively more HSD than C-SSD ones. Regarding behavior, N animals showed an increase in the time spent in the EPM center and a reduction in relative activity in the OF center. N offspring presented lower dopamine receptor (D2R) and transporter (DAT) contents in the nucleus accumbens, and lower D2R in the arcuate nucleus. Postnatal exposure to nicotine increases preference for sugar and anxiety levels in the adult progeny possibly due to a decrease in dopaminergic action in the nucleus accumbens and arcuate nucleus.

  6. Effect of honey on the reproductive system of male rat offspring exposed to prenatal restraint stress.

    PubMed

    Haron, M N; Mohamed, M

    2016-06-01

    Exposure to prenatal stress is associated with impaired reproductive function in male rat offspring. Honey is traditionally used by the Malays for enhancement of fertility. The aim of this study was to determine the effect of honey on reproductive system of male rat offspring exposed to prenatal restraint stress. Dams were divided into four groups (n = 10/group): control, honey, stress and honey + stress groups. Dams from honey and honey + stress groups received oral honey (1.2 g kg(-1) body weight) daily from day 1 of pregnancy, meanwhile dams from stress and honey + stress groups were subjected to restraint stress (three times per day) from day 11 of pregnancy until delivery. At 10 weeks old, each male rat offspring was mated with a regular oestrus cycle female. Male sexual behaviour and reproductive performance were evaluated. Then, male rats were euthanised for assessment on reproductive parameters. Honey supplementation during prenatal restraint stress significantly increased testis and epididymis weights as well as improved the percentages of abnormal spermatozoa and sperm motility in male rat offspring. In conclusion, this study might suggest that supplementation of honey during pregnancy seems to reduce the adverse effects of restraint stress on reproductive organs weight and sperm parameters in male rat offspring. © 2015 Blackwell Verlag GmbH.

  7. Maternal immune activation during pregnancy in rats impairs working memory capacity of the offspring.

    PubMed

    Murray, Brendan G; Davies, Don A; Molder, Joel J; Howland, John G

    2017-05-01

    Maternal immune activation during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia in the offspring. Patients with schizophrenia display an array of cognitive symptoms, including impaired working memory capacity. Rodent models have been developed to understand the relationship between maternal immune activation and the cognitive symptoms of schizophrenia. The present experiment was designed to test whether maternal immune activation with the viral mimetic polyinosinic:polycytidylic acid (polyI:C) during pregnancy affects working memory capacity of the offspring. Pregnant Long Evans rats were treated with either saline or polyI:C (4mg/kg; i.v.) on gestational day 15. Male offspring of the litters (2-3months of age) were subsequently trained on a nonmatching-to-sample task with odors. After a criterion was met, the rats were tested on the odor span task, which requires rats to remember an increasing span of different odors to receive food reward. Rats were tested using delays of approximately 40s during the acquisition of the task. Importantly, polyI:C- and saline-treated offspring did not differ in performance of the nonmatching-to-sample task suggesting that both groups could perform a relatively simple working memory task. In contrast, polyI:C-treated offspring had reduced span capacity in the middle and late phases of odor span task acquisition. After task acquisition, the rats were tested using the 40s delay and a 10min delay. Both groups showed a delay-dependent decrease in span, although the polyI:C-treated offspring had significantly lower spans regardless of delay. Our results support the validity of the maternal immune activation model for studying the cognitive symptoms of neurodevelopmental disorders such as schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Gestational low-protein intake enhances whole-kidney miR-192 and miR-200 family expression and epithelial-to-mesenchymal transition in rat adult male offspring.

    PubMed

    Sene, Letícia B; Rizzi, Victor Hugo Gonçalves; Gontijo, José A R; Boer, Patricia A

    2018-05-22

    Studies have shown that adult offspring of mothers fed a protein-restricted diet during pregnancy present a pronounced reduction of nephron number associated with decreased fractional urinary sodium excretion and arterial hypertension. Additionally, recent advances in our understanding of the molecular pathways that govern the association of gestational nutritional restriction, intrauterine growth retardation and inflammation with impaired nephrogenesis, nephron underdosing and kidney fibrosis point to the epithelial to mesenchymal transition (EMT) as a common factor. In the current study, protein and sodium urinary excretion rates were evaluated in rats, and immunohistochemistry and western blot techniques were used to characterize kidney structure changes in 16 week old male offspring of mothers fed a low-protein diet during pregnancy (LP group) compared with age-matched (NP) controls. We also verified the expression of miRNA, mRNA and protein markers of fibrosis and the EMT in whole kidney prepared from LP offspring. We found, surprisingly, that arterial hypertension and long-term hyperfiltration, manifest by proteinuria, were associated with increased renal miR-192 and miR-200 family expression in 16 week old LP relative to age-matched NP rats. Measurement of kidney fibrosis and EMT-related protein markers, by histochemistry and immunoblot techniques, showed a significant rise of TGF-β1 and type-I collagen content in glomeruli and tubulointerstitial areas, accompanied by enhanced fibronectin and ZEB1 and decreased E-cadherin immunoreactivity in 16 week old LP offspring. The results were partially confirmed by increased gene (mRNA) expression of collagen 1α1, collagen 1α2 and ZEB1 in LP whole kidneys compared with those of age-matched NP offspring. In view of the presumed functional overload in the remaining nephrons, we suggest that hypertension and proteinuria development following maternal protein restriction may be a preponderant factor for EMT and

  9. Changes in Dpysl2 expression are associated with prenatally stressed rat offspring and susceptibility to schizophrenia in humans

    PubMed Central

    LEE, HWAYOUNG; JOO, JAESOON; NAH, SEONG-SU; KIM, JONG WOO; KIM, HYUNG-KI; KWON, JUN-TACK; LEE, HWA-YOUNG; KIM, YOUNG OCK; KIM, HAK-JAE

    2015-01-01

    Exposure to stress during critical periods of fetal brain development is an environmental risk factor for the development of schizophrenia in adult offspring. In the present study, a repeated-variable stress paradigm was applied to pregnant rats during the last week of gestation, which is analogous to the second trimester of brain development in humans. Behavioral and proteomic analyses were conducted in prenatally-stressed (PNS) adult offspring and non-stressed (NS) adult controls. In the behavioral tests, grooming behavior in the social interaction test, line-crossing behavior in the open field test, and swimming behavior in the forced swimming test were decreased in the PNS group. Western blot analysis and immunohistochemical analysis revealed that the expression of dihydropyrimidinase-like 2 (Dpysl2) or collapsin response mediator protein 2 (Crmp2) was downregulated in the prefrontal cortex and hippocampus of rats in the PNS group. Subsequently, single-nucleotide polymorphisms (SNPs) of the human dihydropyrimidinase-like 2 (DPYSL2) gene were analyzed in a population. Two functional SNPs (rs9886448 in the promoter region and rs2289593 in the exon region) were associated with susceptibility to schizophrenia. The present findings demonstrated that the downregulation of genes such as Dpysl2 and Dypsl3 in a rat model of prenatal stress may affect subsequent behavioral changes and that polymorphisms of the DPYSL2 gene in humans may be associated with the development of schizophrenia. Taken together with previous studies investigating the association between the DPYSL2 gene and schizophrenia, the present findings may contribute additional evidence regarding developmental theories of the pathophysiology of schizophrenia. PMID:25847191

  10. The effects of prenatal and early postnatal tocotrienol-rich fraction supplementation on cognitive function development in male offspring rats.

    PubMed

    Nagapan, Gowri; Meng Goh, Yong; Shameha Abdul Razak, Intan; Nesaretnam, Kalanithi; Ebrahimi, Mahdi

    2013-07-31

    Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus

  11. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms.

    PubMed

    Huang, Hegui; He, Zheng; Zhu, Chunyan; Liu, Lian; Kou, Hao; Shen, Lang; Wang, Hui

    2015-10-01

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observed in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a "two-programming" mechanism for PEE-induced adrenal developmental toxicity: "the first programming" is a lower functional programming of adrenal steroidogenesis, and "the second programming" is GC-metabolic activation system-related GC-IGF1 axis programming. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Facial emotion labeling in unaffected offspring of adults with bipolar I disorder.

    PubMed

    Sharma, Aditya Narain; Barron, Evelyn; Le Couteur, James; Close, Andrew; Rushton, Steven; Grunze, Heinz; Kelly, Thomas; Nicol Ferrier, Ian; Le Couteur, Ann Simone

    2017-01-15

    Young people 'at risk' for developing Bipolar Disorder have been shown to have deficits in facial emotion labeling across emotions with some studies reporting deficits for one or more particular emotions. However, these have included a heterogeneous group of young people (siblings of adolescents and offspring of adults with bipolar disorder), who have themselves diagnosed psychopathology (mood disorders and neurodevelopmental disorders including ADHD). 24 offspring of adults with bipolar I disorder and 34 offspring of healthy controls were administered the Diagnostic Analysis of Non Verbal Accuracy 2 (DANVA 2) to investigate the ability of participants to correctly label 4 emotions: happy, sad, fear and anger using both child and adult faces as stimuli at low and high intensity. Mixed effects modelling revealed that the offspring of adults with bipolar I disorder made more errors in both the overall recognition of facial emotions and the specific recognition of fear compared with the offspring of healthy controls. Further more errors were made by offspring that were male, younger in age and also in recognition of emotions using 'child' stimuli. The sample size, lack of blinding of the study team and the absence of any stimuli that assess subjects' response to a neutral emotional stimulus are limitations of the study. Offspring (with no history of current or past psychopathology or psychotropic medication) of adults with bipolar I disorder displayed facial emotion labeling deficits (particularly fear) suggesting facial emotion labeling may be an endophenotype for bipolar disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Low functional programming of renal AT2R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure.

    PubMed

    Ao, Ying; Sun, Zhaoxia; Hu, Shuangshuang; Zuo, Na; Li, Bin; Yang, Shuailong; Xia, Liping; Wu, Yong; Wang, Linlong; He, Zheng; Wang, Hui

    2015-09-01

    Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well as interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT2R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT1aR)/AT2R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT2R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT2R might mediate the developmental origin of adult glomerulosclerosis. Copyright © 2015. Published by Elsevier Inc.

  14. Offspring of a parent with genetic disease: childhood experiences and adult psychological characteristics.

    PubMed

    van der Meer, Lucienne; van Duijn, Erik; Wolterbeek, Ron; Tibben, Aad

    2014-12-01

    To investigate childhood experiences and psychological characteristics in offspring of a parent with genetic disease. Self-report scales were used to assess adverse childhood experiences (ACEs), adult attachment style, mental health, and psychological symptomatology in offspring of a parent with a neurogenetic disorder (i.e. Huntington's Disease, HD; Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy, CADASIL; and Hereditary Cerebral Hemorrhage With Amyloidosis-Dutch type, HCHWA-D), and in offspring of a parent affected with Hereditary Breast/Ovarian Cancer (HBOC). These groups were compared to persons who did not have a parent with one of these genetic diseases. Associations between childhood experiences and adult psychological characteristics were investigated. Compared with the reference group (n = 127), offspring of a parent with a neurogenetic disorder (n = 96) reported more parental dysfunction in childhood, and showed more adult attachment anxiety and poorer mental health. Offspring of a parent with HBOC (n = 70) reported more parental loss in childhood and showed poorer mental health. Offspring who experienced parental genetic disease in childhood had more attachment anxiety than offspring who experienced parental disease later in life. In the group of offspring, a higher number of ACEs was associated with poorer mental health and more psychological symptomatology. This cross-sectional study indicates that adult offspring of a parent with genetic disease may differ in attachment style and mental health from persons without one of these genetic diseases in their family, and that this may be related to adverse childhood experiences.

  15. Sex and age-dependent effects of a maternal junk food diet on the mu-opioid receptor in rat offspring.

    PubMed

    Gugusheff, Jessica R; Bae, Sung Eun; Rao, Alexandra; Clarke, Iain J; Poston, Lucilla; Taylor, Paul D; Coen, Clive W; Muhlhausler, Beverly S

    2016-03-15

    Perinatal junk food exposure increases the preference for palatable diets in juvenile and adult rat offspring. Previous studies have implicated reduced sensitivity of the opioid pathway in the programming of food preferences; however it is not known when during development these changes in opioid signalling first emerge. This study aimed to determine the impact of a maternal junk food (JF) diet on mu-opioid receptor (MuR) expression and ligand binding in two key regions of the reward pathway, the nucleus accumbens (NAc) and the ventral tegmental area (VTA) in rats during the early suckling (postnatal day (PND) 1 and 7) and late suckling/early post-weaning (PND 21 and 28) periods. Female rats were fed either a JF or a control diet for two weeks prior to mating and throughout pregnancy and lactation. MuR expression in the VTA was significantly reduced in female JF offspring on PND 21 and 28 (by 32% and 57% respectively, P<0.05), but not at earlier time points (PND 1 and 7). MuR ligand binding was also reduced (by 22%, P<0.05) in the VTA of female JF offspring on PND 28. No effects of perinatal junk food exposure on MuR mRNA expression or binding were detected at these time points in male offspring. These findings provide evidence that the opioid signalling system is a target of developmental programming by the end of the third postnatal week in females, but not in males. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Maternal handling during pregnancy reduces DMBA-induced mammary tumorigenesis among female offspring.

    PubMed Central

    Hilakivi-Clarke, L.

    1997-01-01

    The present study investigated whether handling of pregnant rats would affect mammary tumorigenesis in their female offspring. Pregnant Sprague-Dawley rats were injected daily with 0.05 ml of vehicle between days 14 and 20 of gestation or were left undisturbed. Handling did not have any effects on pregnancy or early development of the offspring. The female offspring were administered 10 mg of 7,12-dimethylbenz(a)anthracene (DMBA) at the age of 55 days. The rats whose mothers were handled during pregnancy had a significantly reduced mammary tumour incidence when compared with the offspring of non-handled mothers. Thus, on week 18 after DMBA exposure, 15% of the handled offspring had developed mammary tumours, whereas 44% of the non-handled offspring had tumours. No significant differences in the latency to tumour appearance, in the size of the tumours or in their growth rates were noted. Daily handling performed during post-natal days 5 and 20 produced similar data to that obtained for prenatal handling; on week 18 after DMBA exposure, the mammary tumour incidence among the post-natally handled rats was 22% and among the non-handled rats 44%. Possible deviations in hormonal parameters were also studied in adult female rats exposed in utero to handling. The onset of puberty tended to occur later among the handled offspring, but no differences in the uterine wet weights or serum oestradiol levels between the groups were noted. In conclusion, maternal handling reduced the offspring's risk to develop mammary tumours, and this effect was independent of the oestrogenic environment at adulthood. We propose that handling of a pregnant rat reduces mammary tumorigenesis in her offspring by means of changing the morphology of the mammary gland, the pattern of expression of specific genes and/or immune functions. PMID:9231913

  17. Maternal protein-free diet during lactation programs male Wistar rat offspring for increased novelty-seeking, locomotor activity, and visuospatial performance.

    PubMed

    Lotufo, Bruna M; Tenório, Frank; Barradas, Penha C; Guedes, Paulo L; Lima, Sebastião S; Rocha, Michael L M; Duarte-Pinheiro, Vitor Hugo; Rodrigues, Vanessa S T; Lisboa, Patrícia C; Filgueiras, Cláudio C; Abreu-Villaça, Yael; Manhães, Alex C

    2018-04-01

    It is well established that chronic undernutrition has detrimental impacts on brain development and maturation. However, protein malnutrition during the period specifically encompassing the brain growth spurt has not been widely studied, particularly regarding its effects on adolescent and adult offspring behavior. Here, we assessed the effects of a protein-free diet during the 1st 10 postnatal days on the macronutrient content of the milk produced by lactating Wistar rats, on their maternal behavior, and on the offspring's behavior. Lactating dams were fed either a protein-free or a normoprotein diet from litter parturition to Postnatal Day 10 (P10). All dams received the normoprotein diet after P10. Offspring were tested in the elevated plus-maze (anxiety-like behavior), hole board arena (novelty-seeking and locomotor activity), and radial arm water maze (memory-learning) at either P40 (adolescents) or P90 (adults). The protein-free diet reduced milk protein content at P10 but not at P20. Carbohydrate and lipid contents were unaffected. Serum corticosterone levels in the offspring (at P10, P40, or P90) and dams (at P21) were not affected by the protein-free diet. Maternal behavior was also unchanged. In the offspring, no differences were observed between groups regarding anxiety-like behaviors at both ages. The protein-free diet increased adolescent locomotor activity as well as adult novelty-seeking behavior and memory performance. Our results indicate that the brain growth spurt period is particularly sensitive to protein malnutrition, showing that even a brief nutritional insult during this period can cause specific age-dependent behavioral effects on the offspring. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Maternal overnutrition programs changes in the expression of skeletal muscle genes that are associated with insulin resistance and defects of oxidative phosphorylation in adult male rat offspring.

    PubMed

    Latouche, Celine; Heywood, Sarah E; Henry, Sarah L; Ziemann, Mark; Lazarus, Ross; El-Osta, Assam; Armitage, James A; Kingwell, Bronwyn A

    2014-03-01

    Children of obese mothers have increased risk of metabolic syndrome as adults. Here we report the effects of a high-fat diet in the absence of maternal obesity at conception on skeletal muscle metabolic and transcriptional profiles of adult male offspring. Female Sprague Dawley rats were fed a diet rich in saturated fat and sucrose [high-fat diet (HFD): 23.5% total fat, 9.83% saturated fat, 20% sucrose wt:wt] or a normal control diet [(CD) 7% total fat, 0.5% saturated fat, 10% sucrose wt:wt] for the 3 wk prior to mating and throughout pregnancy and lactation. Maternal weights were not different at conception; however, HFD-fed dams were 22% heavier than controls during pregnancy. On a normal diet, the male offspring of HFD-fed dams were not heavier than controls but demonstrated features of insulin resistance, including elevated plasma insulin concentration [40.1 ± 2.5 (CD) vs 56.2 ± 6.1 (HFD) mU/L; P = 0.023]. Next-generation mRNA sequencing was used to identify differentially expressed genes in the offspring soleus muscle, and gene set enrichment analysis (GSEA) was used to detect coordinated changes that are characteristic of a biological function. GSEA identified 15 upregulated pathways, including cytokine signaling (P < 0.005), starch and sucrose metabolism (P < 0.017), inflammatory response (P < 0.024), and cytokine-cytokine receptor interaction (P < 0.037). A further 8 pathways were downregulated, including oxidative phosphorylation (P < 0.004), mitochondrial matrix (P < 0.006), and electron transport/uncoupling (P < 0.022). Phosphorylation of the insulin signaling protein kinase B was reduced [2.86 ± 0.63 (CD) vs 1.02 ± 0.27 (HFD); P = 0.027] and mitochondrial complexes I, II, and V protein were downregulated by 50-68% (P < 0.005). On a normal diet, the male offspring of HFD-fed dams did not become obese adults but developed insulin resistance, with transcriptional evidence of muscle cytokine activation, inflammation, and mitochondrial dysfunction. These

  19. Altered Health Outcomes in Adult Offspring of Sprague Dawley and Wistar Rats Undernourished During Early or Late Pregnancy

    EPA Science Inventory

    Gestational undernutrition in humans can result in birth weight reductions (an indicator of a suboptimal intrauterine environment) and predisposition to adult disease in offspring including high blood pressure, insulin resistance, glucose intolerance, and obesity (key components ...

  20. Low functional programming of renal AT{sub 2}R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ao, Ying; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071; Sun, Zhaoxia

    Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well asmore » interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT{sub 2}R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT{sub 1a}R)/AT{sub 2}R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT{sub 2}R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT{sub 2}R might mediate the developmental origin of adult glomerulosclerosis. - Highlights: • Prenatal caffeine exposure induces glomerulosclerosis in adult offspring. • Prenatal caffeine

  1. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    PubMed

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  2. Prenatal Stress Impairs Spatial Learning and Memory Associated with Lower mRNA Level of the CAMKII and CREB in the Adult Female Rat Hippocampus.

    PubMed

    Sun, Hongli; Wu, Haibin; Liu, Jianping; Wen, Jun; Zhu, Zhongliang; Li, Hui

    2017-05-01

    Prenatal stress (PS) results in various behavioral and emotional alterations observed in later life. In particular, PS impairs spatial learning and memory processes but the underlying mechanism involved in this pathogenesis still remains unknown. Here, we reported that PS lowered the body weight in offspring rats, particularly in female rats, and impaired spatial learning and memory of female offspring rats in the Morris water maze. Correspondingly, the decreased CaMKII and CREB mRNA in the hippocampus were detected in prenatally stressed female offspring, which partially explained the effect of PS on the spatial learning and memory. Our findings suggested that CaMKII and CREB may be involved in spatial learning and memory processes in the prenatally stressed adult female offspring.

  3. Effect of cross-fostering on seizures in adult male offspring of methamphetamine-treated rat mothers.

    PubMed

    Slamberová, R; Hrubá, L; Bernásková, K; Matejovská, I; Rokyta, R

    2010-10-01

    Stimulant drugs are often associated with increased seizure susceptibility. Inhibitory gamma-aminobutyric acid (GABA) and excitatory N-methyl-D-aspartate (NMDA) systems play a role in the effect of stimulants in the genesis of epileptic seizures. Our previous studies showed that prenatal methamphetamine (MA) exposure induced long-term changes in seizure susceptibility. The aim of the present study was to investigate the effect of cross-fostering on the prenatal and postnatal MA-exposed rats, respectively, on their seizures in adulthood. Bicuculline (GABA(A) receptor antagonist), NMDA (NMDA receptor agonist) and flurothyl (a convulsant gas) were used to induce seizures in adult male offsprings. Female dams were injected with MA (5 mg/kg daily) or physiological saline (S) for approx. 9 week [about 3 week prior to impregnation, for the entire gestation period (22 days) and in preweaning period (21 days)]. Absolute controls (C) did not receive any injections. On postnatal day 1, pups were cross-fostered so that each mother received pups from all three treatments. Thus, nine groups (based on the prenatal and postnatal drug exposure) of adult male rats were tested in each seizure test: C/C; C/S; C/MA; S/C; S/S; S/MA; MA/C; MA/S; MA/MA. The present study demonstrates that the effect of prenatal and/or postnatal MA exposure is seizure model specific. In addition, our data show that there is an effect of cross-fostering on seizures; particularly, the effect of prenatal MA exposure shown in animals fostered by control mothers is no longer apparent in animals fostered postnatally by MA-treated mothers. Such effect of postnatal treatment is not manifested in prenatal controls. In summary, it seems that: (1) prenatal MA exposure alters seizure susceptibility more than postnatal MA exposure; (2) especially in seizures induced by chemicals that affect GABAergic system (bicuculline, flurothyl) notable effect of adoption (cross-fostering) is apparent; (3) in seizure models that are

  4. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats

    EPA Science Inventory

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoli...

  5. Cocaine enhances resistance to extinction of responding for brain-stimulation reward in adult prenatally stressed rats.

    PubMed

    Gao, Shuibo; Suenaga, Toshiko; Oki, Yutaka; Yukie, Masao; Nakahara, Daiichiro

    2011-10-01

    The present experiment assessed whether prenatal stress (PS) can alter the ability of acute and chronic cocaine administration to increase and decrease the rewarding effectiveness of the medial forebrain bundle (MFB) using intracranial self-stimulation (ICSS), and also whether PS can affect the extinction of the MFB stimulation response. Adult male offspring of female rats that received PS or no PS (nPS) were implanted with MFB stimulating electrodes, and were then tested in ICSS paradigms. In both nPS and PS offspring, acute cocaine injection decreased ICSS thresholds dose-dependently. However, the threshold-lowering effects at any dose were not significantly different between groups. There was also no group-difference in the threshold-elevating effects of chronic cocaine administration. Nevertheless, chronically drug-administered PS rats exhibited a resistance to the extinguishing of the response for brain-stimulation reward when acutely treated with cocaine, as compared to extinction without cocaine treatment. The results suggest that PS may weaken the ability for response inhibition under cocaine loading in male adult offspring. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The effects of prenatal and early postnatal tocotrienol-rich fraction supplementation on cognitive function development in male offspring rats

    PubMed Central

    2013-01-01

    Background Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze.Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base

  7. [Streptozotocin-induced maternal intrauterine hyperglycemia environment and its influence on development and metabolic in adult offspring with high birth weight in rats].

    PubMed

    Li, Xin; Luo, Shu-jing; Zhang, Kai; Yang, Hui-xia

    2012-10-01

    To establish and assess the high-birth-weight offspring model of the diabetic rat induced by stueptozotocin, and the long-term metabolic impact of maternal hyperglycemia of those offsprings. Streptozotocin (STZ, 25 mg/kg) was given to Wistar rats (G group, n = 14) once intraperitoneally to induce maternal hyperglycemia model (blood glucose between 10 - 20 mmol/L), and there still had a number of rats defined as severe hyperglycemia model group (SG group, n = 5). The Control group (C group, n = 7) were given the same volume citrate buffer solution. The body weight and blood glucose were recorded, and the lavaging glucose tolerance test (LGTT) was performed by a glucose meter in the gestation. The offsprings were corresponding allocated into 2 groups, and the birth weight were recorded. All the offsprings were observated body weight, blood glucose blood pressure (male rats only), and so on. (1) The blood glucose of G group (16.8 ± 5.4 mmol/L) and SG group (20.5 ± 5.6 mmol/L) were increased significantly as compared with C group (7.0 ± 1.4 mmol/L) 5 days after the model was established (P < 0.01); and the average blood glucose of G group (16.6 ± 3.4 mmol/L) and SG group (23.8 ± 1.5 mmol/L) increased too as comparede with C group (5.8 ± 1.1 mmol/L), the difference was significance according to statistics (P < 0.01). (2) According to the LGTT result, which operationed on generation day 4 and day 10, the blood glucose of every time point of G group were increased significantly as compared with C group (P < 0.01). (3) The male and female birth weight of G group was remarkably higher than the C group and the SG group (P < 0.05), and the blood glucose of SG/G/C group was (6.5 ± 1.2) mmol/L, (4.1 ± 0.8) mmol/L, (4.1 ± 0.8) mmol/L respectively, according to the statistics results, the difference between SG group and G/C group respectively both remarkable (P < 0.05). (4) The body weight, Lee's index, fat weight, and the fat weight of mass ratio in C group mother rats

  8. Effect of maternal exposure to Tityus bahiensis scorpion venom during lactation on the offspring of rats.

    PubMed

    Martins, Adriana do Nascimento; Nencioni, Ana Leonor Abrahão; Dorce, Ana Leticia Coronado; Paulo, Maria Eliza F V; Frare, Eduardo Osório; Dorce, Valquíria Abrão Coronado

    2016-01-01

    Scorpion stings are a public health problem in Brazil and lactating women may be affected. We aimed to study the effects of Tityus bahiensis venom in the offspring of rats treated during lactation. Mothers received a subcutaneous injection of saline (1.0ml/kg) or venom (2.5mg/kg) or an intraperitoneal injection of LPS (lipopolysaccharide) (100μg/kg) on postnatal (PN) days 2 (PN2), 10 (PN10) or 16 (PN16). The offspring were evaluated during the childhood and adulthood. Pups showed a delay in physical and reflexological development, and a decrease in motor activity. Adults displayed low anxiety. There was an increase in the number of viable neuronal cells in hippocampal areas CA1 and CA4. The levels of IFN-γ (interferon-gamma) increased in the experimental groups. Several of the parameters analyzed showed important differences between the sexes. Thus, the scorpion venom affects the development in the offspring of mothers envenomed during the lactation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats

    EPA Pesticide Factsheets

    behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil.Electrophysiological measures of 'memory' in form of plasticity model known as long term potentiation (LTP)Molecular changes induced by LTPThis dataset is associated with the following publication:Gilbert , M., K. Sanchez-Huerta, and C. Wood. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats. ENDOCRINOLOGY. Endocrine Society, 157(2): 774-87, (2016).

  10. Maternal Western diet increases adiposity even in male offspring of obesity-resistant rat dams: early endocrine risk markers.

    PubMed

    Frihauf, Jennifer B; Fekete, Éva M; Nagy, Tim R; Levin, Barry E; Zorrilla, Eric P

    2016-12-01

    Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain. Copyright © 2016 Frihauf et al.

  11. Maternal Western diet increases adiposity even in male offspring of obesity-resistant rat dams: early endocrine risk markers

    PubMed Central

    Frihauf, Jennifer B.; Fekete, Éva M.; Nagy, Tim R.; Levin, Barry E.

    2016-01-01

    Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain. PMID:27654396

  12. Gestational N-hexane inhalation alters the expression of genes related to ovarian hormone production and DNA methylation states in adult female F1 rat offspring.

    PubMed

    Li, Hong; Zhang, Chenyun; Ni, Feng; Guo, Suhua; Wang, Wenxiang; Liu, Jing; Lu, Xiaoli; Huang, Huiling; Zhang, Wenchang

    2015-12-15

    Research has revealed that n-hexane can disrupt adult female endocrine functions; however, few reports have focused on endocrine changes in adult F1 females after maternal exposure during gestation. In this study, female Wistar rats inhaled 100, 500, 2500, or 12,500 ppm n-hexane for 4 h daily during their initial 20 gestational days. The F1 female offspring exhibited abnormal oestrus cycles. Compared with the controls, the in vitro-cultured ovarian granulosa cells of the 12,500 ppm group showed significantly reduced in vitro progesterone and oestradiol secretion. Elevated progesterone secretion was observed in the 500 ppm group, and decreased and significantly upregulated mRNA expression of the Star, Cyp11a1, Cyp17a1, and Hsd3b genes was observed in the 12,500 ppm and 500 ppm groups, respectively. The protein expression levels were consistent with the mRNA expression levels. Methylation screening of the promoter regions of these genes was performed using MeDIP-chip and confirmed by methylation-sensitive high-resolution melting (MS-HRM), and the observed methylation state changes of the promoter regions were correlated with the gene expression levels. The results suggest that the hormone levels in the female offspring after gestational n-hexane inhalation correspond to the expression levels and DNA methylation states of the hormone production genes. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Maternal exposure to diets containing high fructose and saturated fats, low B vitamins, or their combination programs growth, adiposity, and insulin sensitivity in adult offspring

    USDA-ARS?s Scientific Manuscript database

    Early exposure to unfavorable nutrition programs increases risk of adult-onset diseases. In this rat study, we investigate morphological, metabolic and endocrinal phenotypes of offspring born to dams consuming isocaloric diets containing 30% fructose, 9.9% coconut fat and 0.5% cholesterol (F+SFA), m...

  15. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats.

    PubMed

    Paul, Heather A; Bomhof, Marc R; Vogel, Hans J; Reimer, Raylene A

    2016-02-12

    Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy.

  16. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats

    PubMed Central

    Paul, Heather A.; Bomhof, Marc R.; Vogel, Hans J.; Reimer, Raylene A.

    2016-01-01

    Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy. PMID:26868870

  17. Maternal protein restriction that does not have an influence on the birthweight of the offspring induces morphological changes in kidneys reminiscent of phenotypes exhibited by intrauterine growth retardation rats.

    PubMed

    Yuasa, Ko; Kondo, Tomohiro; Nagai, Hiroaki; Mino, Masaki; Takeshita, Ai; Okada, Toshiya

    2016-03-01

    Severe restriction of maternal protein intake to 6-8% protein diet results in intrauterine growth retardation (IUGR), low birthweight and high risk of metabolic syndrome in the adult life of the offspring. However, little information is available on the effects of maternal protein restriction on offspring under the conditions that does not have an influence on their birthweight of the offspring,. In the present study, pregnant rats were kept on a diet consisting of either 9% (low-protein, Lp rats) or 18% (normal-protein, Np rats) protein by weight/volume/etc. After birth, both Lp and Np rats were kept on a diet containing 18% protein. Neonatal body weight was significantly lower in Lp rats compared to Np rats from 4 days to 5 weeks after birth. While glomerular number per unit volume (1 mm(3) ) of the kidney (Nv) was comparable between Lp and Np rats 4 weeks after birth, the Nv was significantly decreased in Lp rats at 20 weeks after birth. Four and 20 weeks after birth, glomerular sclerosis index, interstitial fibrosis score, and ratio of ED1-positive cell ratio were all significantly higher in Lp compared to Np rats. Transforming growth factor-β1-positive cells were observed in the distal tubules in the kidney of 4- and 20-week-old Lp rats kidneys, but not in those of age-matched Np rats. Altogether, these findings revealed that maternal protein restriction that does not have an influence on the birthweight of the offspring, induces similar changes as those seen in the kidneys of IUGR neonates. © 2015 Japanese Teratology Society.

  18. Neonatal tobacco smoke reduces thermogenesis capacity in brown adipose tissue in adult rats.

    PubMed

    Peixoto, T C; Moura, E G; Oliveira, E; Younes-Rapozo, V; Soares, P N; Rodrigues, V S T; Santos, T R; Peixoto-Silva, N; Carvalho, J C; Calvino, C; Conceição, E P S; Guarda, D S; Claudio-Neto, S; Manhães, A C; Lisboa, P C

    2018-01-01

    Maternal smoking is a risk factor for progeny obesity. We have previously shown, in a rat model of neonatal tobacco smoke exposure, a mild increase in food intake and a considerable increase in visceral adiposity in the adult offspring. Males also had secondary hyperthyroidism, while females had only higher T4. Since brown adipose tissue (BAT) hypofunction is related to obesity, here we tested the hypothesis that higher levels of thyroid hormones are not functional in BAT, suggesting a lower metabolic rate. We evaluated autonomic nerve activity in BAT and its function in adult rats that were exposed to tobacco smoke during lactation. At birth, litters were adjusted to 3 male and 3 female pups/litter. From postnatal day (PND) 3 to 21, Wistar lactating rats and their pups were divided into SE group, smoke-exposed in a cigarette smoking machine (4 times/day) and C group, exposed to filtered air. Offspring were sacrificed at PND180. Adult SE rats of both genders had lower interscapular BAT autonomic nervous system activity, with higher BAT mass but no change in morphology. BAT UCP1 and CPT1a protein levels were decreased in the SE groups of both genders. Male SE rats had lower β3-AR, TRα1, and TRβ1 expression while females showed lower PGC1α expression. BAT Dio2 mRNA and hypothalamic POMC and MC4R levels were similar between groups. Hypothalamic pAMPK level was higher in SE males and lower in SE females. Thus, neonatal cigarette smoke exposure induces lower BAT thermogenic capacity, which can be obesogenic at adulthood.

  19. The Effect of Ascorbic Acid and Garlic Administration on Lead-Induced Neural Damage in Rat Offspring's Hippocampus.

    PubMed

    Sadeghi, Akram; Ebrahimzadeh Bideskan, Alireza; Alipour, Fatemeh; Fazel, Alireza; Haghir, Hossein

    2013-02-01

    The aim of this study was to investigate ascorbic acid and garlic protective effects on lead-induced neurotoxicity during rat hippocampus development. 90 pregnant wistar rats were divided randomly into nine groups: 1- Animals received leaded water (L). 2- Rats received leaded water and ascorbic acid (L+AA). 3- Animals received leaded water and garlic juice (L+G). 4-Animals received leaded water, ascorbic acid and garlic juice (L+G+AA). 5- Rats treated with ascorbic acid (AA). 6- Rats treated with garlic juice (G). 7- Rats treated with ascorbic acid and garlic juice (AA+G). 8- Rats treated with tap water plus 0.4 ml/l normal hydrogen chloride (HCl) and 0.5 mg/l Glucose (Sham). 9- Normal group (N). Leaded water (1500 ppm), garlic juice (1 ml/100g/day, gavage) and ascorbic acid (500 mg/kg/day, IP) were used. Finally, blood lead levels (BLL) were measured in both rats and their offspring. The rat offspring brain sections were stained using Toluidine Blue and photographed. Dark neurons (DNs) were counted to compare all groups. BLL significantly increased in L group compared to control and sham groups and decreased in L+G and L+AA groups in comparison to the L group (P<0.05). the number of DNs in the CA1, CA3, and DG of rat offspring hippocampus significantly increased in L group in comparison to control and sham groups (P<0.05) and decreased in L+G and L+AA groups compared to L group (P<0.05). Garlic juice and ascorbic acid administration during pregnancy and lactation may protect lead-induced neural damage in rat offspring hippocampus.

  20. Effects on reproduction in female offspring from Sprague-Dawley rats fed 10% snakeweed (Gutierrezia microcephala) throughout pregnancy and concurrent treatment with safflower oil.

    PubMed

    Staley, E C; Smith, G S; Greenberg, J A

    1995-10-01

    Previous studies determined that safflower oil administration provided protection against the embryotoxicity seen following ingestion of 10% snakeweed (Gutierrezia microcephala) throughout pregnancy. Sixty-two young primiparous female rats born in those studies were paired with adult male Sprague-Dawley rats. After 4 d they were removed and carried their litters to term. Observations were made of the presence and extent of reproductive effects attributable to the 10% snakeweed exposure and differences in fecundity that were attributable to dosing with safflower oil or normal saline during the snakeweed exposure. Of the 62 rats, 50 carried litters to term and approximated the reproductive efficiency of normal primiparous Sprague-Dawley rats. There was no significant difference between the fecundity of females born to rats fed the 10% snakeweed and dosed with safflower oil, those born of rats fed snakeweed dosed with normal saline, or those fed a snakeweed-free diet and dosed with normal saline. Regardless of the diet or treatment administered, dams carrying their litters to parturition gave birth to healthy, normo-reproductive offspring. While the toxic principles in Gutierrezia species plants may act as estrogenic or anti-estrogenic compounds, they did not impair fertility in the female offspring of dosed rats.

  1. Maternal Nicotine Exposure During Late Gestation and Lactation Increases Anxiety-Like and Impulsive Decision-Making Behavior in Adolescent Offspring of Rat.

    PubMed

    Lee, Hyunchan; Chung, Sooyeon; Noh, Jihyun

    2016-10-01

    Prenatal nicotine exposure over an entire pregnancy has been associated with an increased prevalence of hyperactivity, anxiety-like behavior and depression-like behavior in mature rats. However, the effects of maternal nicotine exposure in late gestation and lactation on the psychology and behavior of adolescent rat offspring are unclear. Thus, we investigated the effect of nicotine exposure during late gestation and lactation on anxiety-like and impulsive decision-making behavior in adolescent offspring of rat. Female rats were orally exposed to nicotine which is within range of plasma level of human chronic smokers during the period of third last period of gestation and lactation. When the offspring were weaned, we observed alterations in the anxiety-like behavior and decision-making ability of adolescent rat offspring using light/dark box test and T-maze delay-based cost-benefit decision-making task. The maternal consumption of nicotine reduced both the time spent in the light compartment and the number of transitions compared to nicotine-free rats. Moreover, such nicotine exposed adolescent offspring rats showed impulsive decision making which chose the instant reward in a decision-making situation. We found that nicotine exposure during late gestation and lactation induces an increase in anxiety-like and impulsive decision-making behavior at this developmental stage. These findings suggest that maternal nicotine-exposed offspring are at an increased risk of developing anxious and impulsive behavior.

  2. Thyroid function alterations attributed to high iodide supplementation in maternal rats and their offspring.

    PubMed

    Liang, Xue; Feng, Yanni; Lin, Laixiang; Abeysekera, Iruni Roshanie; Iqbal, Umar; Wang, Tingting; Wang, Ying; Yao, Xiaomei

    2018-05-01

    Our aim was to investigate thyroid function alterations attributed to high iodide supplementation in maternal rats and their offspring. Depending on their iodide intake, the pregnant rats were randomly divided into three groups: normal iodide intake (NI), 10 times high iodide intake (10 HI) and 100 times high iodide intake (100 HI) groups. Iodine concentration in the urine and maternal milk; iodine content and mitochondrial superoxide production; expression of TRα1, TRβ1, NIS and Dio1 in both the thyroid and mammary glands were all measured. The offspring were exposed to different iodide-containing water (NI, 10 HI and 100 HI) from weaning to postnatal day 180 (PN180). Serum thyroid hormone levels were measured in both maternal rats and their offspring. Iodine concentration in the urine and maternal milk, as well as iodine content in the thyroid and mammary glands was significantly increased in both the 10 HI and 100 HI groups (p < .05). In the 100 HI group of maternal rats, low FT3 levels, high FT4, TPOAb and TgAb levels were detected. In addition, an increased mitochondrial superoxide production and decreased expression of TRα1, TRβ1, NIS and Dio1 in the thyroid and mammary glands was found (p < .05). A positive staining of CD4 + that co-localized with TRβ1 in the infiltrated cells within the thyroid follicles was observed. At PN180 in the offspring, the FT3 and FT4 levels showed a significant decrease, while the levels of serum TSH, TPOAb and TgAb were significantly increased in both 10 HI and 100 HI groups (p < .05). In maternal rats, although normal thyroid function can be maintained following 10 HI, thyroiditis can be induced following 100 HI on lactation days 7, 14, and 21. In the offspring at PN180, hypothyroidism complicated with thyroiditis can occur in both the 10 HI and 100 HI groups. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Maternal treatment with a placental-targeted antioxidant (MitoQ) impacts offspring cardiovascular function in a rat model of prenatal hypoxia.

    PubMed

    Aljunaidy, Mais M; Morton, Jude S; Kirschenman, Raven; Phillips, Tom; Case, C Patrick; Cooke, Christy-Lynn M; Davidge, Sandra T

    2018-05-17

    Intrauterine growth restriction, a common consequence of prenatal hypoxia, is a leading cause of fetal morbidity and mortality with a significant impact on population health. Hypoxia may increase placental oxidative stress and lead to an abnormal release of placental-derived factors, which are emerging as potential contributors to developmental programming. Nanoparticle-linked drugs are emerging as a novel method to deliver therapeutics targeted to the placenta and avoid risking direct exposure to the fetus. We hypothesize that placental treatment with antioxidant MitoQ loaded onto nanoparticles (nMitoQ) will prevent the development of cardiovascular disease in offspring exposed to prenatal hypoxia. Pregnant rats were intravenously injected with saline or nMitoQ (125 μM) on gestational day (GD) 15 and exposed to either normoxia (21% O 2 ) or hypoxia (11% O 2 ) from GD15-21 (term: 22 days). In one set of animals, rats were euthanized on GD 21 to assess fetal body weight, placental weight and placental oxidative stress. In another set of animals, dams were allowed to give birth under normal atmospheric conditions (term: GD 22) and male and female offspring were assessed at 7 and 13 months of age for in vivo cardiac function (echocardiography) and vascular function (wire myography, mesenteric artery). Hypoxia increased oxidative stress in placentas of male and female fetuses, which was prevented by nMitoQ. 7-month-old male and female offspring exposed to prenatal hypoxia demonstrated cardiac diastolic dysfunction, of which nMitoQ improved only in 7-month-old female offspring. Vascular sensitivity to methacholine was reduced in 13-month-old female offspring exposed to prenatal hypoxia, while nMitoQ treatment improved vasorelaxation in both control and hypoxia exposed female offspring. Male 13-month-old offspring exposed to hypoxia showed an age-related decrease in vascular sensitivity to phenylephrine, which was prevented by nMitoQ. In summary, placental

  4. GESTATIONAL EXPOSURE TO NONYLPHENOL CAUSES PRECOCIOUS MAMMARY GLAND DEVELOPMENT IN FEMALE RAT OFFSPRING

    EPA Science Inventory

    This study examined whether or not exposure to 4-nonylphenol (NP) during late gestation affects reproductive and mammary development in the offspring of female rats. Time pregnant Long Evans rats were gavaged with NP (10 or 100 mg/kg), atrazine (ATR, 100 mg/kg), or corn oil on ge...

  5. [Effects of perinatal exposure to bisphenol A inducing dopaminergic neuronal cell to apoptosis happening in midbrain of male rat offspring].

    PubMed

    Lin, Yong; Zhang, Hao; Wang, Wen-dong; Wu, De-sheng; Jiang, Song-hui; Qu, Wei-dong

    2006-07-01

    To investigate the mechanism and effect of rat perinatal exposure to bisphenol A (BPA) resulting in midbrain dopaminergic neuronal cell apoptosis and tyrosine hydroxylase expression of male offspring. Rat dams were randomLy divided into 4 groups on gestational day(GD) 10 and given orally the bisphenol A doses as 0, 0.5, 5, 50 mg/kg x d from GD10 to weaning. The brains of male offspring were obtained for detecting, with immunohistochemistry protocol, the Caspase-3, Bcl-2 and tyrosine hydroxylase expression in the midbrain on postnatal day 21 or 30 respectively, and the midbrain apoptotic neuronal cell were detected by TUNEL on PND21. The expression of Caspase-3 in the midbrain of rat male offspring were increased but bcl-2 were decreased on PND21 and 30, respectively. On PND21, apoptotic neuronal cell were found in the midbrain of high and medium doses groups. TH protein expression was decreased. Perinatal exposure to bisphenol A can induce the apoptosis of midbrain dopaminergic neuron in the male rat offspring even after weaning, and concomitantly decrease the midbrain TH immunoreactivity, this may cause the abnormal function of dopaminergic pathway of rat male offspring.

  6. Offspring predisposition to obesity due to maternal-diet-induced obesity in rats is preventable by dietary normalization before mating.

    PubMed

    Castro, Heriberto; Pomar, Catalina Amadora; Palou, Andreu; Picó, Catalina; Sánchez, Juana

    2017-03-01

    We studied in rats whether the expected detrimental effects in offspring associated to maternal dietary obesity may be reverted by obesogenic diet removal 1 month before mating. Female rats were fed a cafeteria diet (CD) from days 10 to 100 and then a standard diet (SD) (postcafeteria rats). One month after CD removal, postcafeteria rats and a group of SD-fed female rats (controls) were mated with males. At weaning, offspring were fed SD and followed until 4 months old. CD was effective at inducing obesity in dams. Its removal led to a reduction in body weight, although, after 30 days, rats retained excess body weight and fat than controls. During lactation, postcafeteria dams showed greater body fat, and higher leptin and adiponectin levels in milk than controls. From 2 months of life, offspring of postcafeteria dams displayed lower body weight than controls, with no differences in the percentage of fat, homeostatic model assessment for insulin resistance, or circulating parameters. Removal of CD in obese rats before gestation, although without complete reversion of body weight excess, may prevent the expected detrimental effects in offspring associated to an excess fat accumulation in adulthood and the related metabolic disturbances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Maternal high-fat diet impairs glucose metabolism, β-cell function and proliferation in the second generation of offspring rats.

    PubMed

    Huang, Yan-Hong; Ye, Ting-Ting; Liu, Chong-Xiao; Wang, Lei; Chen, Yuan-Wen; Dong, Yan

    2017-01-01

    This study aimed to assess the impact of perinatal high-fat (HF) diet in female Sprague-Dawley rats (F0) on glucose metabolism and islet function in their early life of second-generation of offspring (F2). F0 rats were fed with a standard chow (SC) or HF diet for 8 weeks before mating, up to termination of lactation for their first-generation of offspring (F1-SC and F1-HF). F1 females were mated with normal males at the age of week 11, and producing F2 offspring (F2-SC, F2-HF). All the offspring were fed SC diet after weaning for 3 weeks. The glucose level and islet function of F2 offspring were assessed at the age of week 3 and 12. The F2-HF offspring had a high birth weight and maintained a higher body mass at the age of week 3 and 12, along with an impaired glucose tolerance and lower serum insulin levels compared with the F2-SC. β-cell proliferation was also impaired in the islets of F2-HF rats at the age of week 3 and 12. The pancreatic and duodenal homeobox factor-1 (Pdx1) and Neurogenic differentiation 1 (NeuroD1) expressions were decreased in the islet of F2-HF rats at the age of week 12. Maternal HF diet during pre-gestation, gestation, and lactation in rats could result in the increased body weight and glucose intolerance in their early life of F2 offspring due to impaired β-cell function and proliferation.

  8. [Effect of selenium deficiency on the F344 inbred line offspring rats' neuro-behavior, ability of learning and memory].

    PubMed

    Hong, Liang-Li; Tian, Dong-Ping; Su, Min; Shen, Xiu-Na; Gao, Yuxia

    2006-01-01

    To establish the selenium (Se) deficient animal model on F344 inbred line rats and observe the effects of a long-term Se-deficiency on the offspring's neuro-behavior, abilities of learning and memory. Feeding F344 inbred line rats on Se-deficient diet to establish Se-deficient animal model. For the offspring, the body weight, physiological indexes nervous reflections for growth and development were monitored during the early postnatal period. The Se-deficient diet contained less than 0.01 mg/kg and the glutathione peroxidase (GSH-Px) activity in blood of the Se-deficient group rats is lower than the Se-normal group after feeding on Se-deficient diet for 4 weeks. For the offspring, the birth weight and the body weight of Se-deficient group were obviously lower than the Se-normal group before weaning. Se-deficient offspring rats differed from Se-normal controls in lower scores in surface righting reflex (RR) test at postnatal 4th day after delivery, cliff avoidance test at postnatal 7th day and auditory acuity trial at postnatal 10th day respectively. But these differences disappear after a few days in the same tests. In addition, no significant differences between two groups in suspending test and walking ability test at postnatal 12th and 14th day. In open field test, Se-deficient male offspring stayed less time in the middle grid and moved less. In Morris water maze test, the Se-deficient offspring spent more time to find the hidden platform at the 6th and 9th training tests in the place navigation trial. Furthermore, the Se-deficient group spent less time in target quadrant when giving the spatial probe trial. A Se-deficient animal model have been established on F344 inbred line rats successfully. A long-term Se deficiency could retard the development of the offspring in uterus and after delivery. Se deficiency also decreased the offspring's abilities of spatial learning and memory in Morris water maze test and resulted in the male offspring's nervousness to new

  9. Family ties: maternal-offspring attachment and young adult nonmedical prescription opioid use.

    PubMed

    Cerdá, M; Bordelois, P; Keyes, K M; Roberts, A L; Martins, S S; Reisner, S L; Austin, S B; Corliss, H L; Koenen, K C

    2014-09-01

    Nonmedical prescription drug use is prevalent among young adults, yet little is known about modifiable determinants of use. We examined whether maternal-offspring attachment reported at mean age 21 was associated with nonmedical prescription opioid use at mean age 26, and investigated whether a history of depressive symptoms and substance use played a role in associations between maternal-offspring attachment and nonmedical prescription opioid use. We used data from the Growing Up Today Study, a longitudinal cohort of United States adolescents followed into young adulthood. Maternal-offspring attachment was reported by young adults and their mothers, and defined as mutual low, mutual medium or high, and dissonant. Analyses were carried out in the full sample using generalized estimating equation models, and in a sibling subsample, using conditional fixed effects models to control for stable aspects of the family environment. Analyses with the full sample and the sibling subsample both showed that mutual medium/high maternal-offspring attachment at age 21 was associated with lower odds of nonmedical prescription opioid use at age 26 (RR=0.74; 95% CI=0.57-0.97 in full sample). The association was partly mediated by mean age 23 offspring smoking, heavy episodic drinking, and illicit drug use. Promoting reciprocal attachment in the maternal-offspring dyad should be investigated as a strategy to prevent nonmedical prescription opioid use by young adulthood. Even in young adulthood, programs that target both parents and offspring may have greater impact on offspring substance use than programs that target offspring alone. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Family ties: maternal-offspring attachment and young adult nonmedical prescription opioid use

    PubMed Central

    Cerdá, M.; Bordelois, P.; Keyes, K.M.; Roberts, A.L.; Martins, S.S.; Reisner, S.L.; Austin, S.B.; Corliss, H.L.; Koenen, K.C.

    2014-01-01

    Background Nonmedical prescription drug use is prevalent among young adults, yet little is known about modifiable determinants of use. We examined whether maternal-offspring attachment reported at mean age 21 was associated with nonmedical prescription opioid use at mean age 26, and investigated whether a history of depressive symptoms and substance use played a role in associations between maternal-offspring attachment and nonmedical prescription opioid use. Methods We used data from the Growing Up Today Study, a longitudinal cohort of United States adolescents followed into young adulthood. Maternal-offspring attachment was reported by young adults and their mothers, and defined as mutual low, mutual medium or high, and dissonant. Analyses were carried out in the full sample using generalized estimating equation models, and in a sibling subsample, using conditional fixed effects models to control for stable aspects of the family environment. Results Analyses with the full sample and the sibling subsample both showed that mutual medium/high maternal-offspring attachment at age 21 was associated with lower odds of nonmedical prescription opioid use at age 26 (RR=0.74; 95% CI=0.57-0.97 in full sample). The association was partly mediated by mean age 23 offspring smoking, heavy episodic drinking, and illicit drug use. Conclusions Promoting reciprocal attachment in the maternal-offspring dyad should be investigated as a strategy to prevent nonmedical prescription opioid use by young adulthood. Even in young adulthood, programs that target both parents and offspring may have greater impact on offspring substance use than programs that target offspring alone. PMID:25024105

  11. The exposure to Trichilia catigua (catuaba) crude extract impairs fertility of adult female rats but does not cause reproductive damage to male offspring.

    PubMed

    Dos Santos, Alice Hartmann; Ramos, Aline Camargo; Silveira, Kennia Moura; Kiss, Ana Carolina Inhasz; Longhini, Renata; Diniz, Andréa; de Mello, João Carlos Palazzo; Gerardin, Daniela Cristina Ceccatto

    2015-05-26

    Trichilia catigua is broadly used in folk medicine due to its mental and physical tonic activities and stimulant effects. In animal models, its antidepressant-like effects have been associated with the dopaminergic (DA) system modulation, which has an important role on maternal behavior and male offspring reproductive development. Since little is known about the adverse effects of the exposure to T. catigua crude extract (CAT) in rats, specially regarding maternal homeostasis and offspring development, the aim of the present study was to evaluate whether CAT exposure may influence maternal toxicity parameters and behavior or disrupt male offspring physical and reproductive development. Dams were treated daily (by gavage) with 400mg/kg of CAT or vehicle (control=CTR) throughout pregnancy and lactation. Fertility and maternal behavior tests were conducted in dams. Male offspring reproductive and behavioral parameters were analyzed. Dams exposed to CAT showed increased pre- and post-implantation losses rates when compared to CTR group. No significant changes regarding maternal behavior or male offspring parameters were observed. In conclusion, maternal exposure to CAT interfered with implantation during the initial phases of pregnancy but did not induce changes on maternal behavior or male offspring reproductive and behavioral parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Luo, Hanwen; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071

    Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected.more » Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD

  13. Gestational hypoxia disrupts the neonatal leptin surge and programs hyperphagia and obesity in male offspring in the Sprague-Dawley rat.

    PubMed

    Vargas, Vladimir E; Gurung, Sunam; Grant, Benjamin; Hyatt, Kimberly; Singleton, Krista; Myers, Sarah M; Saunders, Debra; Njoku, Charity; Towner, Rheal; Myers, Dean A

    2017-01-01

    The effect of gestational hypoxia on the neonatal leptin surge, development of hypothalamic arcuate nuclei (ARH) projections and appetite that could contribute to the programming of offspring obesity is lacking. We examined the effect of 12% O2 from gestational days 15-19 in the Sprague-Dawley rat on post-weaning appetite, fat deposition by MRI, adipose tissue cytokine expression, the neonatal leptin surge, ARH response to exogenous leptin, and αMSH projections to the paraventricular nucleus (PVN) in response to a high fat (HFD) or control diet (CD) in male offspring. Normoxia (NMX) and Hypoxia (HPX) offspring exhibited increased food intake when fed a HFD from 5-8 weeks post-birth; HPX offspring on the CD had increased food intake from weeks 5-7 vs. NMX offspring on a CD. HPX offspring on a HFD remained hyperphagic through 23 weeks. Body weight were the same between offspring from HPX vs. NMX dams from 4-12 weeks of age fed a CD or HFD. By 14-23 weeks of age, HPX offspring fed the CD or HFD as well as male NMX offspring fed the HFD were heavier vs. NMX offspring fed the CD. HPX offspring fed a CD exhibited increased abdominal adiposity (MRI) that was amplified by a HFD. HPX offspring fed a HFD exhibited the highest abdominal fat cytokine expression. HPX male offspring had higher plasma leptin from postnatal day (PN) 6 through 14 vs. NMX pups. HPX offspring exhibited increased basal c-Fos labeled cells in the ARH vs. NMX pups on PN16. Leptin increased c-Fos staining in the ARH in NMX but not HPX offspring at PN16. HPX offspring had fewer αMSH fibers in the PVN vs. NMX offspring on PN16. In conclusion, gestational hypoxia impacts the developing ARH resulting in hyperphagia contributing to adult obesity on a control diet and exacerbated by a HFD.

  14. Gestational hypoxia disrupts the neonatal leptin surge and programs hyperphagia and obesity in male offspring in the Sprague-Dawley rat

    PubMed Central

    Vargas, Vladimir E.; Gurung, Sunam; Grant, Benjamin; Hyatt, Kimberly; Singleton, Krista; Myers, Sarah M.; Saunders, Debra; Njoku, Charity; Towner, Rheal

    2017-01-01

    The effect of gestational hypoxia on the neonatal leptin surge, development of hypothalamic arcuate nuclei (ARH) projections and appetite that could contribute to the programming of offspring obesity is lacking. We examined the effect of 12% O2 from gestational days 15–19 in the Sprague-Dawley rat on post-weaning appetite, fat deposition by MRI, adipose tissue cytokine expression, the neonatal leptin surge, ARH response to exogenous leptin, and αMSH projections to the paraventricular nucleus (PVN) in response to a high fat (HFD) or control diet (CD) in male offspring. Normoxia (NMX) and Hypoxia (HPX) offspring exhibited increased food intake when fed a HFD from 5–8 weeks post-birth; HPX offspring on the CD had increased food intake from weeks 5–7 vs. NMX offspring on a CD. HPX offspring on a HFD remained hyperphagic through 23 weeks. Body weight were the same between offspring from HPX vs. NMX dams from 4–12 weeks of age fed a CD or HFD. By 14–23 weeks of age, HPX offspring fed the CD or HFD as well as male NMX offspring fed the HFD were heavier vs. NMX offspring fed the CD. HPX offspring fed a CD exhibited increased abdominal adiposity (MRI) that was amplified by a HFD. HPX offspring fed a HFD exhibited the highest abdominal fat cytokine expression. HPX male offspring had higher plasma leptin from postnatal day (PN) 6 through 14 vs. NMX pups. HPX offspring exhibited increased basal c-Fos labeled cells in the ARH vs. NMX pups on PN16. Leptin increased c-Fos staining in the ARH in NMX but not HPX offspring at PN16. HPX offspring had fewer αMSH fibers in the PVN vs. NMX offspring on PN16. In conclusion, gestational hypoxia impacts the developing ARH resulting in hyperphagia contributing to adult obesity on a control diet and exacerbated by a HFD. PMID:28957383

  15. A hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion.

    PubMed

    Xu, D; Wu, Y; Liu, F; Liu, Y S; Shen, L; Lei, Y Y; Liu, J; Ping, J; Qin, J; Zhang, C; Chen, L B; Magdalou, J; Wang, H

    2012-11-01

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic-pituitary-adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Impaired hypothalamic mTOR activation in the adult rat offspring born to mothers fed a low-protein diet.

    PubMed

    Guzmán-Quevedo, Omar; Da Silva Aragão, Raquel; Pérez García, Georgina; Matos, Rhowena J B; de Sa Braga Oliveira, André; Manhães de Castro, Raul; Bolaños-Jiménez, Francisco

    2013-01-01

    Several epidemiological and experimental studies have clearly established that maternal malnutrition induces a high risk of developing obesity and related metabolic diseases in the offspring. To determine if altered nutrient sensing might underlie this enhanced disease susceptibility, here we examined the effects of perinatal protein restriction on the activation of the nutrient sensor mTOR in response to acute variations in the nutritional status of the organism. Female Wistar rats were fed isocaloric diets containing either 17% protein (control) or 8% protein (PR) throughout pregnancy and lactation. At weaning offspring received standard chow and at 4 months of age the effects of fasting or fasting plus re-feeding on the phosphorylation levels of mTOR and its downstream target S6 ribosomal protein (rpS6) in the hypothalamus were assessed by immuno-fluorescence and western blot. Under ad libitum feeding conditions, PR rats exhibited decreased mTOR and rpS6 phosphorylation in the arcuate (ARC) and ventromedial (VMH) hypothalamic nuclei. Moreover, the phosphorylation of mTOR and rpS6 in these hypothalamic nuclei decreased with fasting in control but not in PR animals. Conversely, PR animals exhibited enhanced number of pmTOR imunostained cells in the paraventricular nucleus (PVN) and fasting decreased the activation of mTOR in the PVN of malnourished but not of control rats. These alterations occurred at a developmental stage at which perinatally-undernourished animals do not show yet obesity or glucose intolerance. Collectively, our observations suggest that altered hypothalamic nutrient sensing in response to an inadequate foetal and neonatal energetic environment is one of the basic mechanisms of the developmental programming of metabolic disorders and might play a causing role in the development of the metabolic syndrome induced by malnutrition during early life.

  17. Protein malnutrition during fetal programming induces fatty liver in adult male offspring rats.

    PubMed

    Campisano, Sabrina Edith; Echarte, Stella Maris; Podaza, Enrique; Chisari, Andrea Nancy

    2017-05-01

    We evaluated the effects of protein malnutrition on liver morphology and physiology in rats subjected to different malnutrition schemes. Pregnant rats were fed with a control diet or a low protein diet (LPD). Male offspring rats received a LPD during gestation, lactation, and until they were 60 days old (MM group), a late LPD that began after weaning (CM), or a LPD administrated only during the gestation-lactation period followed by a control diet (MC). On day 60, blood was collected and the liver was dissected out. We found a decrease in MM rats' total body (p < 0.001) and liver (p < 0.05) weight. These and CM rats showed obvious liver dysfunction reflected by the increase in serum glutamic pyruvic transaminase (SGOT) (MM p < 0.001) and serum glutamic pyruvic transaminase (SGPT) (MM and CM p < 0.001) enzymes, and liver content of cholesterol (MM and CM p < 0.001) and triglycerides (MM p < 0.01; CM p < 0.001), in addition to what we saw by histology. Liver dysfunction was also shown by the increase in gamma glutamyl transferase (GGT) (MM, MC, and CM p < 0.001) and GST-pi1 (MM and CM p < 0.001, MC p < 0.05) expression levels. MC rats showed the lowest increment in GST-pi1 expression (MC vs. MM; p < 0.001, MC vs. CM; p < 0.01). ROS production (MM, CM, and MC: p < 0.001), lipid peroxidation (MM, CM, and MC p < 0.001), content of carbonyl groups in liver proteins (MM and CM p < 0.001, MC p < 0.01), and total antioxidant capacity (MM, CM, and MC p < 0.001) were increased in the liver of all groups of malnourished animals. However, MM rats showed the highest increment. We found higher TNF-α (MM and CM p < 0.001), and IL-6 (MM and CM p < 0.001) serum levels and TGF-β liver content (MM p < 0.01; CM p < 0.05), in MM and CM groups, while MC rats reverted the values to normal levels. Pro-survival signaling pathways mediated by tyrosine or serine/threonine kinases (pAKT) (MM and CM p < 0.001; MC p < 0.01) and extrasellular

  18. Chlorpyrifos induces anxiety-like behavior in offspring rats exposed during pregnancy.

    PubMed

    Silva, Jonas G; Boareto, Ana C; Schreiber, Anne K; Redivo, Daiany D B; Gambeta, Eder; Vergara, Fernanda; Morais, Helen; Zanoveli, Janaína M; Dalsenter, Paulo R

    2017-02-22

    Chlorpyrifos is a pesticide, member of the organophosphate class, widely used in several countries to manage insect pests on many agricultural crops. Currently, chlorpyrifos health risks are being reevaluated due to possible adverse effects, especially on the central nervous system. The aim of this study was to investigate the possible action of this pesticide on the behaviors related to anxiety and depression of offspring rats exposed during pregnancy. Wistar rats were treated orally with chlorpyrifos (0.01, 0.1, 1 and 10mg/kg/day) on gestational days 14-20. Male offspring behavior was evaluated on post-natal days 21 and 70 by the elevated plus-maze test, open field test and forced swimming test. The results demonstrated that exposure to 0.1, 1 or 10mg/kg/day of chlorpyrifos could induce anxiogenic-like, but not depressive-like behavior at post-natal day 21, without causing fetal toxicity. This effect was reversed on post-natal day 70. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment

    PubMed Central

    Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili

    2015-01-01

    Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72 h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1+ microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1β, IL-6, TNF-α, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU+/DCX+ cells. Minocycline reduced Iba1+ cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory. PMID:25830666

  20. Effects of in utero exposure to Tityus bahiensis scorpion venom in adult rats.

    PubMed

    Dorce, Ana Leticia Coronado; Dorce, Valquiria Abrão Coronado; Nencioni, Ana Leonor Abrahão

    2010-01-01

    The toxicity of Tityus bahiensis scorpion venom is well known, but there are little data about the damage in offspring of dams that were exposed to the venom during pregnancy. The objective of this work was to determine the toxic effects of venom in adult offspring of Wistar rats exposed to venom in utero. Dams were divided into a control group, subcutaneously injected with saline solution on the 10th (GD10) and 16th (GD16) days, and two experimental groups, subcutaneously injected with venom (2.5mg/kg) on GD10 or GD16, respectively. Adult offspring were evaluated according to behavioral development and neuronal integrity in the hippocampus. Tests performed in the activity box and in the enriched environment demonstrated that males from GD10 had motor decrease. Females from GD10 showed a depressive-like state and were more anxious, as demonstrated by the forced swimming test and social interaction. The plus-maze discriminative avoidance task demonstrated that GD16 males had lower levels of anxiety. The number of neuronal cells was decreased in CA1, CA3 and CA4 hippocampal areas of males and females from GD10 group and in CA1 of females and CA4 of males from GD16 group. Thus, we conclude that venom exposure in pregnant dams causes subtle alteration in the behavioral and neuronal development of offspring in adult life in a gender-dependent manner. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  1. Concurrent maternal and pup postnatal tobacco smoke exposure in Wistar rats changes food preference and dopaminergic reward system parameters in the adult male offspring.

    PubMed

    Pinheiro, C R; Moura, E G; Manhães, A C; Fraga, M C; Claudio-Neto, S; Abreu-Villaça, Y; Oliveira, E; Lisboa, P C

    2015-08-20

    Children from pregnant smokers are more susceptible to become obese adults and to become drug or food addicts. Drugs and food activate the mesolimbic reward pathway, causing a sense of pleasure that induces further consumption. Here, we studied the relationship between tobacco smoke exposure during lactation with feeding, behavior and brain dopaminergic reward system parameters at adulthood. Nursing Wistar rats and their pups were divided into two groups: tobacco smoke-exposed (S: 4times/day, from the 3rd to the 21th day of lactation), and ambient air-exposed (C). On PN175, both offspring groups were subdivided for a food challenge: S and C that received standard chow (SC) or that chose between high-fat (HFD) and high-sucrose diets (HSDs). Food intake was recorded after 30min and 12h. Offspring were tested in the elevated plus maze and open field on PN178-179; they were euthanized for dopaminergic analysis on PN180. SSD (self-selected diet) animals presented a higher food intake compared to SC ones. S-SSD animals ate more than C-SSD ones at 30min and 12h. Both groups preferred the HFD. However, S-SSD animals consumed relatively more HFD than C-SSD at 30min. No behavioral differences were observed between groups. S animals presented lower tyrosine hydroxylase (TH) content in the ventral tegmental area, lower TH, dopaminergic receptor 2, higher dopaminergic receptor 1 contents in the nucleus accumbens and lower OBRb in hypothalamic arcuate nucleus. Tobacco-smoke exposure during lactation increases preference for fat in the adult progeny possibly due to alterations in the dopaminergic system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Obesity causes weight increases in prepubertal and pubertal male offspring and is related to changes in spermatogenesis and sperm production in rats.

    PubMed

    Navya, Harish; Yajurvedi, Hanumant Narasinhacharya

    2017-04-01

    The effect of obesity on testicular activity in prepubertal and pubertal rats was investigated in the present study. Obesity was induced in adult females by feeding a high-calorie diet (HCD). These females were mated with normal males and were fed an HCD during pregnancy and lactation. The male offspring born to obese mothers and fed an HCD after weaning were found to be obese. Seminiferous tubules of offspring from control mothers (OCM) and offspring from HCD-fed mothers (OHCDM) had the same set of germ cells at different age intervals, namely spermatogonia, leptotene spermatocytes, zygotene spermatocytes, pachytene spermatocytes and round and elongated spermatids on postnatal days (PND) 7, 13, 17, 24 and 36, and on the day of preputial separation, respectively. However, there was a significant decrease in round and elongated spermatids and the epididymal sperm count, coupled with a significant decrease in testosterone and an increase in leptin serum concentrations in OHCDM compared with OCM. These results show that obesity in prepubertal rats does not affect the age-dependent appearance of germ cells according to developmental hierarchy, but it does interfere with spermatid formation, resulting in a reduced sperm count, which may be due to a deficiency of testosterone mediated by hyperleptinaemia.

  3. Sampling of prenatal and postnatal offspring from individual rat dams enhances animal use without compromising development

    NASA Technical Reports Server (NTRS)

    Alberts, J. R.; Burden, H. W.; Hawes, N.; Ronca, A. E.

    1996-01-01

    To assess prenatal and postnatal developmental status in the offspring of a group of animals, it is typical to examine fetuses from some of the dams as well as infants born to the remaining dams. Statistical limitations often arise, particularly when the animals are rare or especially precious, because all offspring of the dam represent only a single statistical observation; littermates are not independent observations (biologically or statistically). We describe a study in which pregnant laboratory rats were laparotomized on day 7 of gestation (GD7) to ascertain the number and distribution of uterine implantation sites and were subjected to a simulated experience on a 10-day space shuttle flight. After the simulated landing on GD18, rats were unilaterally hysterectomized, thus providing a sample of fetuses from 10 independent uteruses, followed by successful vaginal delivery on GD22, yielding postnatal samples from 10 uteruses. A broad profile of maternal and offspring morphologic and physiologic measures indicated that these novel sampling procedures did not compromise maternal well-being and maintained normal offspring development and function. Measures included maternal organ weights and hormone concentrations, offspring body size, growth, organ weights, sexual differentiation, and catecholamine concentrations.

  4. Maternal exposure to environmental DEHP exacerbated OVA-induced asthmatic responses in rat offspring.

    PubMed

    Wang, Bohan; Liu, Fangwei; Dong, Jing; You, Mingdan; Fu, Yuanyuan; Li, Chao; Lu, Yiping; Chen, Jie

    2018-02-15

    Di (ethylhexyl) phthalate (DEHP) is a commonly used phthalates (PAEs) compound as plasticizer and becomes a severe environmental pollutant worldwide. Studies show that DEHP, as an environmental endocrine disruptor, has potential adverse effects on human. Epidemiologic studies indicate that DEHP is positively correlated to allergic diseases. Maternal exposure to DEHP may contribute to the increasing incidence of allergic diseases in offspring. However, the role of DEHP and its detailed mechanism in allergic disease of the offspring are still unclear. The aim of our study is to investigate whether DEHP maternal exposure could aggravate the allergic responses in offspring and its mechanism. Pregnant Wistar rats were randomly divided into three groups and exposed to different doses of DEHP. Half of the offspring were challenged with OVA after birth. All the pups of each group were sacrificed at postnatal day (PND)14, PND21 and PND28. The number of inflammatory cells in bronchoalveolar lavage was counted, lung pathological changes were observed, Th2 type cytokines expressions were checked, and the expression of TSLP signaling pathway were examined. Our results showed that maternal exposure to DEHP during pregnancy and lactation aggravated the eosinophils accumulation and the pathological inflammatory changes in pups' lung after OVA challenge. And maternal exposure to DEHP during pregnancy and lactation also elevated the levels of typical Th2 cytokines in OVA-challenged rats. What's more, maternal exposure to DEHP during pregnancy and lactation increased the levels of TSLP, TSLPR and IL-7R in the offspring after OVA challenge. Our study suggested that DEHP maternal exposure could aggravate the OVA-induced asthmatic responses in offspring. And this adjuvant effect of DEHP was related with the TSLP/TSLPR/IL-7R and its downstream signal pathways. Copyright © 2017. Published by Elsevier B.V.

  5. Parent–offspring resemblance in colony-specific adult survival of cliff swallows

    USGS Publications Warehouse

    Brown, Charles R.; Roche, Erin A.; Brown, Mary Bomberger

    2015-01-01

    Survival is a key component of fitness. Species that occupy discrete breeding colonies with different characteristics are often exposed to varying costs and benefits associated with group size or environmental conditions, and survival is an integrative net measure of these effects. We investigated the extent to which survival probability of adult (≥1-year old) cliff swallows (Petrochelidon pyrrhonota) occupying different colonies resembled that of their parental cohort and thus whether the natal colony had long-term effects on individuals. Individuals were cross-fostered between colonies soon after hatching and their presence as breeders monitored at colonies in the western Nebraska study area for the subsequent decade. Colony-specific adult survival probabilities of offspring born and reared in the same colony, and those cross-fostered away from their natal colony soon after birth, were positively and significantly related to subsequent adult survival of the parental cohort from the natal colony. This result held when controlling for the effect of natal colony size and the age composition of the parental cohort. In contrast, colony-specific adult survival of offspring cross-fostered to a site was unrelated to that of their foster parent cohort or to the cohort of non-fostered offspring with whom they were reared. Adult survival at a colony varied inversely with fecundity, as measured by mean brood size, providing evidence for a survival–fecundity trade-off in this species. The results suggest some heritable variation in adult survival, likely maintained by negative correlations between fitness components. The study provides additional evidence that colonies represent non-random collections of individuals.

  6. Periconceptional Folic Acid Supplementation Benefit to Development of Early Sensory-Motor Function through Increase DNA Methylation in Rat Offspring

    PubMed Central

    Li, Wen; Li, Zhenshu; Li, Shou; Wang, Xinyan; Wilson, John X.; Huang, Guowei

    2018-01-01

    Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function. PMID:29494536

  7. Young adult's attachment style as a partial mediator between maternal functioning and young adult offsprings' functioning.

    PubMed

    Ruiz, Sarah K; Harris, Susan J; Martinez, Pedro; Gold, Philip M; Klimes-Dougan, Bonnie

    2018-05-01

    The quality of our early attachment relationships with primary caregivers is carried forward to new developmental domains, including interpersonal contexts in adulthood. One of the factors that can disrupt early attachment is maternal depression, which may be associated with less responsive care and may impede the development of a secure attachment. Moreover, this disruption in secure attachment may act as a mechanism by which offspring of depressed mothers are more likely to experience their own psychopathology. In this study we predicted that attachment anxiety and avoidance would mediate the relationship between maternal depression diagnosis and functional impairment predicting young adult offspring's functional impairment. This study utilized longitudinal data from 98 families with clinically diagnosed depressed and well mothers, and two of their young adult children, an older and younger sibling (N = 123, Female = 75, Mage = 22.09, SD = 2.57). Mother's and young adult children's functioning was based on clinical ratings on the Global Assessment Scale. Attachment was based on the young adult's self-report on the Experiences in Close Relationships. Results indicate that maternal diagnosis and functional impairment predicted offspring's functional impairment. This relationship was partially mediated through offspring's attachment anxiety, but not attachment avoidance. The mediator and outcome variable were measured concurrently, thus causal implications are limited. Our study provides critical evidence that early experiences with depressed mothers may have influence into young adulthood in typical and atypical domains of development. This work extends our understanding of the impact of early experiences in long-term development, and may have treatment implications for intervening on both maternal and romantic relationships to improve attachment. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring.

    PubMed

    Hu, Min; Richard, Jennifer Elise; Maliqueo, Manuel; Kokosar, Milana; Fornes, Romina; Benrick, Anna; Jansson, Thomas; Ohlsson, Claes; Wu, Xiaoke; Skibicka, Karolina Patrycja; Stener-Victorin, Elisabet

    2015-11-17

    During pregnancy, women with polycystic ovary syndrome (PCOS) display high circulating androgen levels that may affect the fetus and increase the risk of mood disorders in offspring. This study investigated whether maternal androgen excess causes anxiety-like behavior in offspring mimicking anxiety disorders in PCOS. The PCOS phenotype was induced in rats following prenatal androgen (PNA) exposure. PNA offspring displayed anxiety-like behavior in the elevated plus maze, which was reversed by flutamide [androgen receptor (AR) blocker] and tamoxifen [selective estrogen receptor (ER) modulator]. Circulating sex steroids did not differ between groups at adult age. The expression of serotonergic and GABAergic genes associated with emotional regulation in the amygdala was consistent with anxiety-like behavior in female, and partly in male PNA offspring. Furthermore, AR expression in amygdala was reduced in female PNA offspring and also in females exposed to testosterone in adult age. To determine whether AR activation in amygdala affects anxiety-like behavior, female rats were given testosterone microinjections into amygdala, which resulted in anxiety-like behavior. Together, these data describe the anxiety-like behavior in PNA offspring and adult females with androgen excess, an impact that seems to occur during fetal life, and is mediated via AR in amygdala, together with changes in ERα, serotonergic, and GABAergic genes in amygdala and hippocampus. The anxiety-like behavior following testosterone microinjections into amygdala demonstrates a key role for AR activation in this brain area. These results suggest that maternal androgen excess may underpin the risk of developing anxiety disorders in daughters and sons of PCOS mothers.

  9. Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring

    PubMed Central

    Hu, Min; Richard, Jennifer Elise; Maliqueo, Manuel; Kokosar, Milana; Fornes, Romina; Benrick, Anna; Jansson, Thomas; Ohlsson, Claes; Wu, Xiaoke; Skibicka, Karolina Patrycja; Stener-Victorin, Elisabet

    2015-01-01

    During pregnancy, women with polycystic ovary syndrome (PCOS) display high circulating androgen levels that may affect the fetus and increase the risk of mood disorders in offspring. This study investigated whether maternal androgen excess causes anxiety-like behavior in offspring mimicking anxiety disorders in PCOS. The PCOS phenotype was induced in rats following prenatal androgen (PNA) exposure. PNA offspring displayed anxiety-like behavior in the elevated plus maze, which was reversed by flutamide [androgen receptor (AR) blocker] and tamoxifen [selective estrogen receptor (ER) modulator]. Circulating sex steroids did not differ between groups at adult age. The expression of serotonergic and GABAergic genes associated with emotional regulation in the amygdala was consistent with anxiety-like behavior in female, and partly in male PNA offspring. Furthermore, AR expression in amygdala was reduced in female PNA offspring and also in females exposed to testosterone in adult age. To determine whether AR activation in amygdala affects anxiety-like behavior, female rats were given testosterone microinjections into amygdala, which resulted in anxiety-like behavior. Together, these data describe the anxiety-like behavior in PNA offspring and adult females with androgen excess, an impact that seems to occur during fetal life, and is mediated via AR in amygdala, together with changes in ERα, serotonergic, and GABAergic genes in amygdala and hippocampus. The anxiety-like behavior following testosterone microinjections into amygdala demonstrates a key role for AR activation in this brain area. These results suggest that maternal androgen excess may underpin the risk of developing anxiety disorders in daughters and sons of PCOS mothers. PMID:26578781

  10. Responsiveness of cerebral and hepatic cytochrome P450s in rat offspring prenatally exposed to lindane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok

    2008-08-15

    ABSTRACT: Prenatal exposure to low doses of lindane has been shown to affect the ontogeny of xenobiotic metabolizing cytochrome P450s (CYPs), involved in the metabolism and neurobehavioral toxicity of lindane. Attempts were made in the present study to investigate the responsiveness of CYPs in offspring prenatally exposed to lindane (0.25 mg/kg b. wt.; 1/350th of LD{sub 50}; p. o. to mother) when challenged with 3-methylcholanthrene (MC) or phenobarbital (PB), inducers of CYP1A and 2B families or a sub-convulsant dose of lindane (30 mg/kg b. wt., p. o.) later in life. Prenatal exposure to lindane was found to produce an increasemore » in the mRNA and protein expression of CYP1A1, 1A2, 2B1, 2B2 isoforms in brain and liver of the offspring at postnatal day 50. The increased expression of the CYPs in the offspring suggests the sensitivity of the CYPs during postnatal development, possibly, to low levels of lindane, which may partition into mother's milk. A higher increase in expression of CYP1A and 2B isoenzymes and their catalytic activity was observed in animals pretreated prenatally with lindane and challenged with MC (30 mg/kg, i. p. x 5 days) or PB (80 mg/kg, i. p. x 5 days) when young at age (approx. 7 weeks) compared to animals exposed to MC or PB alone. Further, challenge of the control and prenatally exposed offspring with a single sub-convulsant dose of lindane resulted in an earlier onset and increased incidence of convulsions in the offspring prenatally exposed to lindane have demonstrated sensitivity of the CYPs in the prenatally exposed offspring. Our data assume significance as the subtle changes in the expression profiles of hepatic and cerebral CYPs in rat offspring during postnatal development could modify the adult response to a later exposure to xenobiotics.« less

  11. Buprenorphine, methadone, and morphine treatment during pregnancy: behavioral effects on the offspring in rats.

    PubMed

    Chen, Hwei-Hsien; Chiang, Yao-Chang; Yuan, Zung Fan; Kuo, Chung-Chih; Lai, Mei-Dan; Hung, Tsai-Wei; Ho, Ing-Kang; Chen, Shao-Tsu

    2015-01-01

    Methadone and buprenorphine are widely used for treating people with opioid dependence, including pregnant women. Prenatal exposure to opioids has devastating effects on the development of human fetuses and may induce long-term physical and neurobehavioral changes during postnatal maturation. This study aimed at comparing the behavioral outcomes of young rats prenatally exposed to buprenorphine, methadone, and morphine. Pregnant Sprague-Dawley rats were administered saline, morphine, methadone, and buprenorphine during embryonic days 3-20. The cognitive function, social interaction, anxiety-like behaviors, and locomotor activity of offsprings were examined by novel object recognition test, social interaction test, light-dark transition test, elevated plus-maze, and open-field test between 6 weeks and 10 weeks of age. Prenatal exposure to methadone and buprenorphine did not affect locomotor activity, but significantly impaired novel object recognition and social interaction in both male and female offsprings in the same manner as morphine. Although prenatal exposure to methadone or buprenorphine increased anxiety-like behaviors in the light-dark transition in both male and female offsprings, the effects were less pronounced as compared to that of morphine. Methadone affected elevated plus-maze in both sex, but buprenorphine only affected the female offsprings. These findings suggest that buprenorphine and methadone maintenance therapy for pregnant women, like morphine, produced detrimental effects on cognitive function and social behaviors, whereas the offsprings of such women might have a lower risk of developing anxiety disorders.

  12. Buprenorphine, methadone, and morphine treatment during pregnancy: behavioral effects on the offspring in rats

    PubMed Central

    Chen, Hwei-Hsien; Chiang, Yao-Chang; Yuan, Zung Fan; Kuo, Chung-Chih; Lai, Mei-Dan; Hung, Tsai-Wei; Ho, Ing-kang; Chen, Shao-Tsu

    2015-01-01

    Methadone and buprenorphine are widely used for treating people with opioid dependence, including pregnant women. Prenatal exposure to opioids has devastating effects on the development of human fetuses and may induce long-term physical and neurobehavioral changes during postnatal maturation. This study aimed at comparing the behavioral outcomes of young rats prenatally exposed to buprenorphine, methadone, and morphine. Pregnant Sprague-Dawley rats were administered saline, morphine, methadone, and buprenorphine during embryonic days 3–20. The cognitive function, social interaction, anxiety-like behaviors, and locomotor activity of offsprings were examined by novel object recognition test, social interaction test, light–dark transition test, elevated plus-maze, and open-field test between 6 weeks and 10 weeks of age. Prenatal exposure to methadone and buprenorphine did not affect locomotor activity, but significantly impaired novel object recognition and social interaction in both male and female offsprings in the same manner as morphine. Although prenatal exposure to methadone or buprenorphine increased anxiety-like behaviors in the light–dark transition in both male and female offsprings, the effects were less pronounced as compared to that of morphine. Methadone affected elevated plus-maze in both sex, but buprenorphine only affected the female offsprings. These findings suggest that buprenorphine and methadone maintenance therapy for pregnant women, like morphine, produced detrimental effects on cognitive function and social behaviors, whereas the offsprings of such women might have a lower risk of developing anxiety disorders. PMID:25834439

  13. Increased Cyclooxygenase-2-Derived Prostanoids Contributes to the Hyperreactivity to Noradrenaline in Mesenteric Resistance Arteries from Offspring of Diabetic Rats

    PubMed Central

    Santos-Rocha, Juliana; Duarte, Gloria P.; Xavier, Fabiano E.

    2012-01-01

    This study analyzed the effect of in utero exposure to maternal diabetes on contraction to noradrenaline in mesenteric resistance arteries (MRA) from adult offspring, focusing on the role of cyclooxygenase (COX)-derived prostanoids. Diabetes in the maternal rat was induced by a single injection of streptozotocin (50 mg/kg body weight) on day 7 of pregnancy. Contraction to noradrenaline was analyzed in isolated MRA from offspring of diabetic (O-DR) and non-diabetic (O-CR) rats at 3, 6 and 12 months of age. Release of thromboxane A2 (TxA2) and prostaglandins E2 (PGE2) and F2α (PGF2α), was measured by specific enzyme immunoassay kits. O-DR developed hypertension from 6 months of age compared with O-CR. Arteries from O-DR were hyperactive to noradrenaline only at 6 and 12 months of age. Endothelial removal abolished this hyperreactivity to noradrenaline between O-CR and O-DR. Preincubation with either the COX-1/2 (indomethacin) or COX-2 inhibitor (NS-398) decreased noradrenaline contraction only in 6- and 12-month-old O-DR, while it remained unmodified by COX-1 inhibitor SC-560. In vessels from 6-month-old O-DR, a similar reduction in the contraction to noradrenaline produced by NS-398 was observed when TP and EP receptors were blocked (SQ29548+AH6809). In 12-month-old O-DR, this effect was only achieved when TP, EP and FP were blocked (SQ29548+AH6809+AL8810). Noradrenaline-stimulated TxB2 and PGE2 release was higher in 6- and 12-month-old O-DR, whereas PGF2α was increased only in 12-month-old O-DR. Our results demonstrated that in utero exposure to maternal hyperglycaemia in rats increases the participation of COX-2-derived prostanoids on contraction to noradrenaline, which might help to explain the greater response to this agonist in MRA from 6- and 12-month-old offspring. As increased contractile response in resistance vessels may contribute to hypertension, our results suggest a role for these COX-2-derived prostanoids in elevating vascular resistance and blood

  14. Reversal of prenatal morphine exposure-induced memory deficit in male but not female rats.

    PubMed

    Nasiraei-Moghadam, Shiva; Sherafat, Mohammad Amin; Safari, Mir-Shahram; Moradi, Fatemeh; Ahmadiani, Abolhassan; Dargahi, Leila

    2013-05-01

    Impaired memory performance in offspring is one of the long-lasting neurobehavioral consequences of prenatal opiate exposure. Here, we studied the effects of prenatal morphine exposure on inhibitory avoidance memory performance in male and female offspring and also investigated whether these deficits are reversible during the postnatal development. Pregnant Wistar rats received morphine sulfate through drinking water, from the first day of gestation up to the day 13, M₁₋₁₃, or to the time of delivery, M₁₋₂₁. Four- and ten-week-old (adolescent and adult, respectively) male and female offspring were subjected to behavioral assays and then analysis of proteins involved in apoptosis or in synaptic plasticity. Results revealed that adolescent and adult female rats failed in passive avoidance retention task in both M₁₋₁₃ and M₁₋₂₁ groups. Adolescent and adult male offspring were similar to control animals in M₁₋₁₃ group. However M₁₋₂₁ impaired retention task in prepubertal male offspring, and this memory loss was repaired in postpubertal stage. Consistently, Bax/Bcl-2 ratio and cleaved caspase-3 were significantly increased in both M₁₋₁₃ and M₁₋₂₁ adolescent and adult female rats, but only in M₁₋₂₁ adolescent male rats. Furthermore, prenatal morphine exposure reduced the expression of brain-derived neurotrophic factor precursor protein in adolescent and adult female offspring and also decreased p-ca(2+)/calmodulin-dependent kinase II/ca(2+)/calmodulin-dependent kinase II ratio in adolescent male and female rats. Altogether, the results show that prenatal morphine exposure, depending on the time or duration of exposure, has distinct effects on male and female rats, and postnatal development may reverse these deficits more likely in males.

  15. Propofol exposure during early gestation impairs learning and memory in rat offspring by inhibiting the acetylation of histone.

    PubMed

    Lin, Jiamei; Wang, Shengqiang; Feng, Yunlin; Zhao, Weihong; Zhao, Weilu; Luo, Foquan; Feng, Namin

    2018-05-01

    Propofol is widely used in clinical practice, including non-obstetric surgery in pregnant women. Previously, we found that propofol anaesthesia in maternal rats during the third trimester (E18) caused learning and memory impairment to the offspring rats, but how about the exposure during early pregnancy and the underlying mechanisms? Histone acetylation plays an important role in synaptic plasticity. In this study, propofol was administered to the pregnant rats in the early pregnancy (E7). The learning and memory function of the offspring were tested by Morris water maze (MWM) test on post-natal day 30. Two hours before each MWM trial, histone deacetylase 2 (HDAC2) inhibitor, suberoylanilide hydroxamic acid (SAHA), Senegenin (SEN, traditional Chinese medicine), hippyragranin (HGN) antisense oligonucleotide (HGNA) or vehicle were given to the offspring. The protein levels of HDAC2, acetylated histone 3 (H3) and 4 (H4), cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), N-methyl-D-aspartate receptor (NMDAR) 2 subunit B (NR2B), HGN and synaptophysin in offspring's hippocampus were determined by Western blot or immunofluorescence test. It was discovered that infusion with propofol in maternal rats on E7 leads to impairment of learning and memory in offspring, increased the protein levels of HDAC2 and HGN, decreased the levels of acetylated H3 and H4 and phosphorylated CREB, NR2B and synaptophysin. HDAC2 inhibitor SAHA, Senegenin or HGN antisense oligonucleotide reversed all the changes. Thus, present results indicate exposure to propofol during the early gestation impairs offspring's learning and memory via inhibiting histone acetylation. SAHA, Senegenin and HGN antisense oligonucleotide might have therapeutic value for the adverse effect of propofol. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Effects of paternal obesity on growth and adiposity of male rat offspring.

    PubMed

    Lecomte, Virginie; Maloney, Christopher A; Wang, Kristy W; Morris, Margaret J

    2017-02-01

    Emerging evidence suggests that paternal obesity plays an important role in offspring health. Our previous work using a rodent model of diet-induced paternal obesity showed that female offspring from high-fat diet (HFD)-fed fathers develop glucose intolerance due to impairment of pancreatic insulin secretion. Here, we focused on the health outcomes of male offspring from HFD-fed fathers. Male Sprague-Dawley rats (3 wk old) were fed control (CD-F0) or HFD (HFD-F0) for 12 wk before mating with control-fed females. Male offspring were fed control diets for up to 8 wk or 6 mo. Although male offspring from HFD-F0 did not develop any obvious glucose metabolism defects in this study, surprisingly, a growth deficit phenotype was observed from birth to 6 mo of age. Male offspring from HFD-F0 had reduced birth weight compared with CD-F0, followed by reduced postweaning growth from 9 wk of age. This resulted in 10% reduction in body weight at 6 mo with significantly smaller fat pads and skeletal muscles. Reduced circulating levels of growth hormone (GH) and IGF-I were detected at 8 wk and 6 mo, respectively. Expression of adipogenesis markers was decreased in adipose tissue of HFD-F0 offspring at 8 wk and 6 mo, and expression of growth markers was decreased in muscle of HFD-F0 offspring at 8 wk. We propose that the reduced GH secretion at 8 wk of age altered the growth of male offspring from HFD-F0, resulting in smaller animals from 9 wk to 6 mo of age. Furthermore, increased muscle triglyceride content and expression of lipogenic genes were observed in HFD-F0 offspring, potentially increasing their metabolic risk. Copyright © 2017 the American Physiological Society.

  17. Parental Depression as a Moderator of Secondary Deficits of Depression in Adult Offspring

    ERIC Educational Resources Information Center

    Timko, Christine; Cronkite, Ruth C.; Swindle, Ralph; Robinson, Rebecca L.; Sutkowi, Anne; Moos, Rudolf H.

    2009-01-01

    This study examined whether having a depressed parent intensifies the secondary deficits that often co-occur with offspring's depression symptoms. The sample was adult offspring of parents who had been diagnosed with depression 23 years earlier (N = 143) and demographically matched nondepressed parents (N = 197). Respondents completed mailed…

  18. Low-dose developmental bisphenol A exposure alters fatty acid metabolism in Fischer 344 rat offspring.

    PubMed

    Dunder, Linda; Halin Lejonklou, Margareta; Lind, Lars; Risérus, Ulf; Lind, P Monica

    2018-06-06

    Bisphenol A (BPA) is an endocrine disruptor and also a suggested obesogen and metabolism-disrupting chemical. Accumulating data indicates that the fatty acid (FA) profile and their ratios in plasma and other metabolic tissues are associated with metabolic disorders. Stearoyl-CoA desaturase 1 (SCD-1) is a key regulator of lipid metabolism and its activity can be estimated by dividing the FA product by its precursor measured in blood or other tissues. The primary aim of this study was to investigate the effect of low-dose developmental BPA exposure on tissue-specific FA composition including estimated SCD-1 activity, studied in 5- and 52-week (wk)-old Fischer 344 (F344) rat offspring. Pregnant F344 rats were exposed to BPA via their drinking water corresponding to 0: [CTRL], 0.5: [BPA0.5], or 50 µg/kg BW/day: [BPA50], from gestational day 3.5 until postnatal day 22. BPA0.5 increased SCD-16 (estimated as the 16:1n-7/16:0 ratio) and SCD-18 (estimated as the 18:1n-9/18:0 ratio) indices in inguinal white adipose tissue triglycerides (iWAT-TG) and in plasma cholesterol esters (PL-CE), respectively, in 5-wk-old male offspring. In addition, BPA0.5 altered the FA composition in male offspring, e.g. by decreasing levels of the essential polyunsaturated FA linoleic acid (18:2n-6) in iWAT-and liver-TG. No differences were observed regarding the studied FAs in 52-wk-old offspring, although a slightly increased BW was observed in 52-wk-old female offspring. Low-dose developmental BPA exposure increased SCD-16 in iWAT-TG and SCD-18 in PL-CE of male offspring, which may reflect higher SCD-1 activity in these tissues. Altered desaturation activity and signs of altered FA composition are novel findings that may indicate insulin resistance in the rat offspring. These aforementioned results, together with the observed increased BW, adds to previously published data demonstrating that BPA can act as a metabolism disrupting chemical. Copyright © 2018 The Authors. Published by

  19. Effects of maternal and lactational exposure to 2-hydroxy-4-methoxybenzone on development and reproductive organs in male and female rat offspring

    PubMed Central

    Nakamura, Noriko; Inselman, Amy L.; White, Gene A.; Chang, Ching-Wei; Trbojevich, Raul A.; Sepehr, Estatira; Voris, Kristie L.; Patton, Ralph E.; Bryant, Matthew S.; Harrouk, Wafa; McIntyre, Barry; Foster, Paul M.; Hansen, Deborah K.

    2015-01-01

    BACKGROUND 2-hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet (UV)-absorbing compound used in many cosmetic products as a UV-protecting agent and in plastics for preventing UV-induced photodecomposition. HMB has been detected in over 95% of randomly collected human urine samples from adults and from premature infants, and it may have estrogenic potential. METHODS To determine the effects of maternal and lactational exposure to HMB on development and reproductive organs of offspring, time-mated female Harlan Sprague-Dawley rats were dosed with 0, 1,000, 3,000, 10,000, 25,000, or 50,000 ppm HMB (7-8 per group) added to chow from gestation day 6 until weaning on postnatal day (PND) 23. RESULTS AND CONCLUSION Exposure to HMB was associated with reduced body and organ weights in female and male offspring. No significant differences were observed in the number of implantation sites/litter, mean resorptions/litter, % litters with resorptions, number and weights of live fetuses, or sex ratios between the control and HMB dose groups. Normalized anogenital distance in male pups at PND 23 was decreased in the highest dose group. Spermatocyte development was impaired in testes of male offspring in the highest dose group. In females, follicular development was delayed in the highest dose group. However, by evaluating levels of the compound in rat serum, the doses at which adverse events occurred are much higher than usual human exposure levels. Thus, exposure to less than 10,000 ppm HMB does not appear to be associated with adverse effects on the reproductive system in rats. PMID:25707689

  20. Decreased H3K9ac level of StAR mediated testicular dysplasia induced by prenatal dexamethasone exposure in male offspring rats.

    PubMed

    Liu, Min; Chen, Biao; Pei, Linguo; Zhang, Qi; Zou, Yunfei; Xiao, Hao; Zhou, Jin; Chen, Liaobin; Wang, Hui

    2018-06-11

    Prenatal dexamethasone exposure (PDE) could induce testicular developmental toxicity in adults. The present study aims to confirm its intrauterine origination, and to explore its potential intrauterine programming mechanism. The pregnant rats were respectively injected subcutaneously with 0.2 and 0.8 mg/kg⋅d dexamethasone during gestational days (GD) 9 to 20. The testes and serum of offspring rats were collected on GD20 and postnatal week (PW) 12. In vivo, PDE significantly induced the abnormal testicular morphology in offspring from GD20 to PW12. Moreover, the serum and intratesticular testosterone levels and the expression of testicular steroidogenic acute regulatory protein (StAR) were reduced by PDE. The expression levels of glucocorticoid receptor (GR) and histone deacetylase 7 (HDAC7) were increased in fetal testes. Furthermore, the histone 3 lysine 9 acetylation (H3K9ac) level in the StAR promoter was decreased by PDE from GD20 to PW12. In vitro, mouse Leydig tumour cell line (MLTC-1) cells were treated with dexamethasone (20, 100 and 500 nM), and the testosterone production and StAR expression were reduced. Moreover, dexamethasone increased the expression of HDAC7 by activating GR, which decreased the H3K9ac level in the StAR promoter. Taken together, PDE caused testicular dysplasia before and after birth in male offspring rats, and its mechanism was related to the low-expressional programming of StAR mediated by decreasing H3K9ac level. Copyright © 2018. Published by Elsevier B.V.

  1. [The effect of methyl-containing supplements during pregnancy on the phenotypic modification of offspring hair color in rats].

    PubMed

    Prasolova, L A; Trut, L N; Os'kina, I N; Gulevich, R G; Pliusnina, I Z; Vsevolodov, E B; Latypov, I F

    2006-01-01

    The effect of methyl supplements to the diet of pregnant homozygous (AAHH) female rats with agouti coat color mated with homozygous (aahh) males on the phenotypic modification of the coat color of their heterozygous offspring (AaHh) has been studied. Comparative morphological analysis of the main parameters of hair that determine coat color, including the total length of hairs of different types and the length of the upper black (eumelanin) and light (pheomelanin) parts of awn hairs has been performed. The pattern of pigment granule distribution among hair layers has been analyzed. The melanin content of the hair has been determined using electron spin resonance (ESR). Although all offspring have a typical agouti coat color (alternating black and light portions of hair), 39% of them have a darker coat color than control and other experimental rats have. The main differences between the offspring with darkened and standard coat colors are accounted for by the ratio between the eumelanin and pheomelanin portions of awn hairs. In darkened offspring, this ratio is significantly higher than in control rats. The possible mechanisms of the phenotypic modification of agouti coat color in experimental animals are discussed.

  2. Subclinical hypothyroidism in pregnant rats impaired learning and memory of their offspring by promoting the p75NTR signal pathway.

    PubMed

    Zhang, Fan; Chen, Jian; Lin, Xinyue; Peng, Shiqiao; Yu, Xiaohui; Shan, Zhongyan; Teng, Weiping

    2018-05-01

    Maternal hypothyroidism during pregnancy can affect the neurodevelopment of their offspring. This study aimed to investigate the effects of maternal subclinical hypothyroidism (SCH) on spatial learning and memory, and its relationship with the apoptotic factors in cerebral cortex of the offspring. Female adult Wistar rats were randomly divided into three groups ( n  = 15 per group): control (CON) group, SCH group and overt hypothyroidism (OH) group. Spatial learning and memory in the offspring were evaluated by long-term potentiation (LTP) and Morris water-maze (MWM) test. The protein expression of the p75 neurotrophin receptor (p75 NTR ), phospho-c-Jun N-terminal kinase (p-JNK), the pro-apoptotic protein p53 and Bax were detected by Western blotting. The Pups in the SCH and OH groups showed longer escape latencies in the MWM and decreased field-excitatory post synaptic potentials in LTP tests compared with those in the CON group. p75 NTR , p-JNK, p53 and Bax expression levels in the cerebral cortex increased in pups in the SCH and OH groups compared with those in the CON group. Maternal SCH during pregnancy may impair spatial learning and memory in the offspring and may be associated with the increased apoptosis in the cerebral cortex. © 2018 The authors.

  3. Impact of Perinatal Systemic Hypoxic–Ischemic Injury on the Brain of Male Offspring Rats: An Improved Model of Neonatal Hypoxic–Ischemic Encephalopathy in Early Preterm Newborns

    PubMed Central

    Xu, Hongwu; Wu, Weizhao; Lai, Xiulan; Ho, Guyu; Ma, Lian; Chen, Yunbin

    2013-01-01

    In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE) in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND) 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions. PMID:24324800

  4. Anxiety-like behaviour in adult rats perinatally exposed to maternal calorie restriction.

    PubMed

    Levay, Elizabeth A; Paolini, Antonio G; Govic, Antonina; Hazi, Agnes; Penman, Jim; Kent, Stephen

    2008-08-22

    Environmental stimuli such as caloric availability during the perinatal period exert a profound influence on the development of an organism. Studies in this domain have focused on the effects of under- and malnutrition while the effects of more mild levels of restriction have not been delineated. Rat dams and their offspring were subjected to one of five dietary regimens: control, CR50% for 3 days preconception, CR25% during gestation, CR25% during lactation, and CR25% during gestation, lactation, and post-weaning (lifelong). The pup retrieval test and maternal observations were conducted during lactation to quantify maternal care. In the pup retrieval test, dams that were concurrently experiencing CR (i.e., from the lactation and lifelong groups) displayed shorter latencies to retrieve all pups than the control and preconception groups and the lactation group constructed better nests than all groups. Adult offspring were tested in three tests of anxiety: the elevated plus maze, open field, and emergence test. No differences were observed in the elevated plus maze; however, in the open field preconception animals made fewer entries and spent more time in the central zone than controls. In addition, preconception offspring exhibited longer latencies to full body emergence, spent less time fully emerged, and spent more time engaged in risk assessment behaviours than all other groups. Offspring from the preconception group were also on average 11% heavier than control rats throughout life and displayed 37% higher serum leptin concentrations than controls. A potential role for leptin in the anxiogenic effect of preconception CR is discussed.

  5. Late gestational intermittent hypoxia induces metabolic and epigenetic changes in male adult offspring mice.

    PubMed

    Khalyfa, Abdelnaby; Cortese, Rene; Qiao, Zhuanhong; Ye, Honggang; Bao, Riyue; Andrade, Jorge; Gozal, David

    2017-04-15

    Late gestation during pregnancy has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia, a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis and metabolic function in offspring. Here we show that late gestation intermittent hypoxia induces metabolic dysfunction as reflected by increased body weight and adiposity index in adult male offspring that is paralleled by epigenomic alterations and inflammation in visceral white adipose tissue. Fetal perturbations by OSA during pregnancy impose long-term detrimental effects manifesting as metabolic dysfunction in adult male offspring. Pregnancy, particularly late gestation (LG), has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia (IH), a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis, and metabolic function in offspring. We hypothesized that IH during late pregnancy (LG-IH) may increase the propensity for metabolic dysregulation and obesity in adult offspring via epigenetic modifications. Time-pregnant female C57BL/6 mice were exposed to LG-IH or room air (LG-RA) during days 13-18 of gestation. At 24 weeks, blood samples were collected from offspring mice for lipid profiles and insulin resistance, indirect calorimetry was performed and visceral white adipose tissues (VWAT) were assessed for inflammatory cells as well as for differentially methylated gene regions (DMRs) using a methylated DNA immunoprecipitation on chip (MeDIP-chip). Body weight, food intake, adiposity index, fasting insulin, triglycerides and cholesterol levels were all significantly higher in LG-IH male but not female offspring. LG-IH also altered metabolic expenditure and locomotor activities in male offspring, and increased number of pro-inflammatory macrophages emerged in VWAT along with 1520 DMRs (P < 0.0001), associated with 693

  6. Parental Divorce, Maternal-Paternal Alcohol Problems, and Adult Offspring Lifetime Alcohol Dependence.

    PubMed

    Thompson, Ronald G; Alonzo, Dana; Hasin, Deborah S

    2013-01-01

    This study examined the influences of parental divorce and maternal-paternal histories of alcohol problems on adult offspring lifetime alcohol dependence using data from the 2001-2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC). Parental divorce and maternal-paternal alcohol problems interacted to differentially influence the likelihood of offspring lifetime alcohol dependence. Experiencing parental divorce and either maternal or paternal alcohol problems doubled the likelihood of alcohol dependence. Divorce and history of alcohol problems for both parents tripled the likelihood. Offspring of parental divorce may be more vulnerable to developing alcohol dependence, particularly when one or both parents have alcohol problems.

  7. Effects of pre- and postnatal exposure to the UV-filter Octyl Methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelstad, Marta, E-mail: maap@food.dtu.dk; Boberg, Julie; Hougaard, Karin Sorig

    Octyl Methoxycinnamate (OMC) is a frequently used UV-filter in sunscreens and other cosmetics. The aim of the present study was to address the potential endocrine disrupting properties of OMC, and to investigate how OMC induced changes in thyroid hormone levels would be related to the neurological development of treated offspring. Groups of 14-18 pregnant Wistar rats were dosed with 0, 500, 750 or 1000 mg OMC/kg bw/day during gestation and lactation. Serum thyroxine (T{sub 4}), testosterone, estradiol and progesterone levels were measured in dams and offspring. Anogenital distance, nipple retention, postnatal growth and timing of sexual maturation were assessed. Onmore » postnatal day 16, gene expression in prostate and testes, and weight and histopathology of the thyroid gland, liver, adrenals, prostate, testes, epididymis and ovaries were measured. After weaning, offspring were evaluated in a battery of behavioral and neurophysiological tests, including tests of activity, startle response, cognitive and auditory function. In adult animals, reproductive organ weights and semen quality were investigated. Thyroxine (T{sub 4}) levels showed a very marked decrease during the dosing period in all dosed dams, but were less severely affected in the offspring. On postnatal day 16, high dose male offspring showed reduced relative prostate and testis weights, and a dose-dependent decrease in testosterone levels. In OMC exposed female offspring, motor activity levels were decreased, while low and high dose males showed improved spatial learning abilities. The observed behavioral changes were probably not mediated solely by early T{sub 4} deficiencies, as the observed effects differed from those seen in other studies of developmental hypothyroxinemia. At eight months of age, sperm counts were reduced in all three OMC-dosed groups, and prostate weights were reduced in the highest dose group. Taken together, these results indicate that perinatal OMC-exposure can affect both

  8. Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats

    PubMed Central

    Glenn, Melissa J.; Gibson, Erin M.; Kirby, Elizabeth D.; Mellott, Tiffany J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Increased dietary intake of choline early in life improves performance of adult rats on memory tasks and prevents their age-related memory decline. Because neurogenesis in the adult hippocampus also declines with age, we investigated whether prenatal choline availability affects hippocampal neurogenesis in adult Sprague–Dawley rats and modifies their neurogenic response to environmental stimulation. On embryonic days (ED) 12−17, pregnant rats ate a choline-supplemented (SUP-5 g/kg), choline sufficient (SFF-1.1 g/kg), or choline-free (DEF) semisynthetic diet. Adult offspring either remained in standard housing or were given 21 daily visits to explore a maze. On the last ten exploration days, all rats received daily injections of 5-bromo-2-deoxyuridine (BrdU, 100 mg/kg). The number of BrdU+ cells was significantly greater in the dentate gyrus in SUP rats compared to SFF or DEF rats. While maze experience increased the number of BrdU+ cells in SFF rats to the level seen in the SUP rats, this enriching experience did not alter cell proliferation in DEF rats. Similar patterns of cell proliferation were obtained with immunohistochemical staining for neuronal marker doublecortin, confirming that diet and exploration affected hippocampal neurogenesis. Moreover, hippocampal levels of the brain-derived neurotrophic factor (BDNF) were increased in SUP rats as compared to SFF and DEF animals. We conclude that prenatal choline intake has enduring effects on adult hippocampal neurogenesis, possibly via up-regulation of BDNF levels, and suggest that these alterations of neurogenesis may contribute to the mechanism of life-long changes in cognitive function governed by the availability of choline during gestation. PMID:17445242

  9. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal NG-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    PubMed

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N G -nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N G -nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N G -nitro-L-arginine-methyl ester, N G -nitro-L-arginine-methyl ester +melatonin, and N G -nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N G -nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N G -nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N G -nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N G -nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N G -nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway

  10. Exposure to sorbitol during lactation causes metabolic alterations and genotoxic effects in rat offspring.

    PubMed

    Cardoso, Felipe S; Araujo-Lima, Carlos F; Aiub, Claudia A F; Felzenszwalb, Israel

    2016-10-17

    Sorbitol is a polyol used by the food industry as a sweetener. Women are consuming diet and light products containing sorbitol during pregnancy and in the postnatal period to prevent themselves from excessive weight gain and maintain a slim body. Although there is no evidence for the genotoxicity of sorbitol in the perinatal period, this study focused on evaluating the effects of the maternal intake of sorbitol on the biochemical and toxicological parameters of lactating Wistar rat offspring after 14days of mother-to-offspring exposure. A dose-dependent reduction of offspring length was observed. An increase in sorbitol levels determined in the milk was also observed. However, we detected an inverse relationship between the exposition dose in milk fructose and triacylglycerols concentrations. There was an increase in the plasmatic levels of ALT, AST and LDLc and a decrease in proteins, cholesterol and glucose levels in the offspring. Sorbitol exposure caused hepatocyte genotoxicity, including micronuclei induction. Maternal sorbitol intake induced myelotoxicity and myelosuppression in their offspring. The Comet assay of the blood cells detected a dose-dependent genotoxic response within the sorbitol-exposed offspring. According to our results, sorbitol is able to induce important metabolic alterations and genotoxic responses in the exposed offspring. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Prenatal Opiate Exposure Attenuates LPS-Induced Fever in Adult Rats: Role of Interleukin-1β

    PubMed Central

    Hamilton, Kathryn L.; Franklin, La’Tonyia M.; Roy, Sabita; Schrott, Lisa M.

    2009-01-01

    Much is known about the immunomodulatory effects of opiate exposure and withdrawal in adult rats. However, little research has delved into understanding the immunological consequences of prenatal opiate exposure and postnatal withdrawal. The purpose of the current study was to measure changes in responding to immune stimulation in adult rats following prenatal opiate exposure. Further, we sought to characterize the role of interleukin (IL)-1β in these changes. Following prenatal exposure to the long-acting opiate l-alpha-acetylmethadol (LAAM), adult male and female rats were assessed for their fever response to lipopolysaccharide (LPS). Blood and tissue samples were collected to measure circulating IL-1β and IL-1β protein in the hypothalamus and spleen. Prenatal LAAM exposure resulted in a blunted fever response to LPS injection without any changes in basal body temperature or in response to saline injection. Circulating IL-1β was not affected by prenatal LAAM exposure, nor was IL-1β protein in the spleen. Interestingly, mature IL-1β protein was elevated in the hypothalamus of prenatally LAAM-treated rats. These results indicate that prenatal opiate exposure blunts the fever response of adult offspring. Direct action of IL-1β is likely not the cause of the dysfunction reported here. However, alterations in signaling mechanisms downstream from IL-1β may play a role in the altered fever response in adult rats treated prenatally with opiates. PMID:17196563

  12. Parental divorce, parental depression, and gender differences in adult offspring suicide attempt.

    PubMed

    Lizardi, Dana; Thompson, Ronald G; Keyes, Katherine; Hasin, Deborah

    2009-12-01

    Research suggests parental divorce during childhood increases risk of suicide attempt for male but not female offspring. The negative impact on offspring associated with parental divorce may be better explained by parental psychopathology, such as depression. We examined whether adult offspring of parental divorce experience elevated risk of suicide attempt, controlling for parental history of depression, and whether the risk varies by the gender of the offspring. Using the 2001 to 2002 National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), the sample consists of respondents who experienced parental divorce (N = 4895). Multivariable regressions controlled for age, race/ethnicity, income, marital status, and parental history of depression. Females living with their fathers were significantly more likely to report lifetime suicide attempts than females living with their mothers, even after controlling for parental depression. Findings suggest that childhood/adolescent parental divorce may have a stronger impact on suicide attempt risk in female offspring than previously recognized.

  13. Parental Divorce, Parental Depression, and Gender Differences in Adult Offspring Suicide Attempt

    PubMed Central

    Lizardi, Dana; Thompson, Ronald G.; Keyes, Katherine; Hasin, Deborah

    2013-01-01

    Research suggests parental divorce during childhood increases risk of suicide attempt for male but not female offspring. The negative impact on offspring associated with parental divorce may be better explained by parental psychopathology, such as depression. We examined whether adult offspring of parental divorce experience elevated risk of suicide attempt, controlling for parental history of depression, and whether the risk varies by the gender of the offspring. Using the 2001 to 2002 National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), the sample consists of respondents who experienced parental divorce (N = 4895). Multivariable regressions controlled for age, race/ethnicity, income, marital status, and parental history of depression. Females living with their fathers were significantly more likely to report lifetime suicide attempts than females living with their mothers, even after controlling for parental depression. Findings suggest that childhood/adolescent parental divorce may have a stronger impact on suicide attempt risk in female offspring than previously recognized. PMID:20010025

  14. A general model for the scaling of offspring size and adult size.

    PubMed

    Falster, Daniel S; Moles, Angela T; Westoby, Mark

    2008-09-01

    Understanding evolutionary coordination among different life-history traits is a key challenge for ecology and evolution. Here we develop a general quantitative model predicting how offspring size should scale with adult size by combining a simple model for life-history evolution with a frequency-dependent survivorship model. The key innovation is that larger offspring are afforded three different advantages during ontogeny: higher survivorship per time, a shortened juvenile phase, and advantage during size-competitive growth. In this model, it turns out that size-asymmetric advantage during competition is the factor driving evolution toward larger offspring sizes. For simplified and limiting cases, the model is shown to produce the same predictions as the previously existing theory on which it is founded. The explicit treatment of different survival advantages has biologically important new effects, mainly through an interaction between total maternal investment in reproduction and the duration of competitive growth. This goes on to explain alternative allometries between log offspring size and log adult size, as observed in mammals (slope = 0.95) and plants (slope = 0.54). Further, it suggests how these differences relate quantitatively to specific biological processes during recruitment. In these ways, the model generalizes across previous theory and provides explanations for some differences between major taxa.

  15. Protective effect of Euterpe oleracea Mart (açaí) extract on programmed changes in the adult rat offspring caused by maternal protein restriction during pregnancy.

    PubMed

    de Bem, Graziele Freitas; da Costa, Cristiane Aguiar; de Oliveira, Paola Raquel Braz; Cordeiro, Viviane Silva Cristino; Santos, Izabelle Barcellos; de Carvalho, Lenize Costa Reis Marins; Souza, Marcelo Augusto Vieira; Ognibene, Dayane Texeira; Daleprane, Julio Beltrame; Sousa, Pergentino José Cunha; Resende, Angela Castro; de Moura, Roberto Soares

    2014-09-01

    This study examined the effect of açaí (Euterpe oleracea Mart.) seed extract (ASE) on cardiovascular and renal alterations in adult offspring, whose mothers were fed a low-protein (LP) diet during pregnancy. Four groups of rats were fed: control diet (20% protein); ASE (200 mg/kg per day); and LP (6% protein); LP + ASE (6% protein + ASE) during pregnancy. After weaning, all male offspring were fed a control diet and sacrificed at 4 months old. We evaluated the blood pressure, vascular function, serum and urinary parameters, plasma and kidney oxidative damage, and antioxidant activity and renal structural changes. Hypertension and the reduced acetylcholine-induced vasodilation in the LP group were prevented by ASE. Serum levels of urea, creatinine and fractional excretion of sodium were increased in LP and reduced in LP + ASE. ASE improved nitrite levels and the superoxide dismutase and glutathione peroxidase activity in LP, with a corresponding decrease of malondialdehyde and protein carbonyl levels. Kidney volume and glomeruli number were reduced and glomerular volume was increased in LP. These renal alterations were prevented by ASE. Treatment of protein-restricted dams with ASE provides protection from later-life hypertension, oxidative stress, renal functional and structural changes, probably through a vasodilator and antioxidant activity. © 2014 Royal Pharmaceutical Society.

  16. Parental Divorce, Maternal-Paternal Alcohol Problems, and Adult Offspring Lifetime Alcohol Dependence

    PubMed Central

    THOMPSON, RONALD G.; ALONZO, DANA; HASIN, DEBORAH S.

    2014-01-01

    This study examined the influences of parental divorce and maternal-paternal histories of alcohol problems on adult offspring lifetime alcohol dependence using data from the 2001–2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC). Parental divorce and maternal-paternal alcohol problems interacted to differentially influence the likelihood of offspring lifetime alcohol dependence. Experiencing parental divorce and either maternal or paternal alcohol problems doubled the likelihood of alcohol dependence. Divorce and history of alcohol problems for both parents tripled the likelihood. Offspring of parental divorce may be more vulnerable to developing alcohol dependence, particularly when one or both parents have alcohol problems. PMID:24678271

  17. Prenatal stress increases the obesogenic effects of a high-fat-sucrose diet in adult rats in a sex-specific manner.

    PubMed

    Paternain, L; de la Garza, A L; Batlle, M A; Milagro, F I; Martínez, J A; Campión, J

    2013-03-01

    Stress during pregnancy can induce metabolic disorders in adult offspring. To analyze the possible differential response to a high-fat-sucrose (HFS) diet in offspring affected by prenatal stress (PNS) or not, pregnant Wistar rats (n = 11) were exposed to a chronic mild stress during the third week of gestation. The aim of this study was to model a chronic depressive-like state that develops over time in response to exposure of rats to a series of mild and unpredictable stressors. Control dams (n = 11) remained undisturbed. Adult offspring were fed chow or HFS diet (20% protein, 35% carbohydrate, 45% fat) for 10 weeks. Changes in adiposity, biochemical profile, and retroperitoneal adipose tissue gene expression by real-time polymerase chain reaction were analyzed. An interaction was observed between HFS and PNS concerning visceral adiposity, with higher fat mass in HFS-fed stressed rats, statistically significant only in females. HFS modified lipid profile and increased insulin resistance biomarkers, while PNS reduced insulin concentrations and the homeostasis model assessment index. HFS diet increased gene (mRNA) expression for leptin and apelin and decreased cyclin-dependent kinase inhibitor 1A and fatty acid synthase (Fasn), whereas PNS increased Fasn and stearoyl-CoA desaturase1. An interaction between diet and PNS was observed for adiponutrin (Adpn) and peroxisome proliferator-activated receptor-γ coactivator1-α (Ppargc1a) gene expression: Adpn was increased by the PNS only in HFS-fed rats, whereas Ppargc1a was increased by the PNS only in chow-fed rats. From these results, it can be concluded that experience of maternal stress during intrauterine development can enhance predisposition to obesity induced by a HFS diet intake.

  18. [Methyl-containing diet of mothers affects the AGOUTI gene expression in the offspring of rats with various behavioral types].

    PubMed

    Prasolova, L A; Os'kina, I N; Pliusnina, I Z; Trut, L N

    2009-05-01

    The effects of selection of agouti rats (with genotype AAHH) on the tame and aggressive behavior and dietary methyl given to females from the eighth day of pregnancy to the fifth day after the birth of the offspring on the intensity of the agouti coat color in the offspring have been studied. The morphometric parameters of hair determining the darkness of the agouti color (the total length of guard hairs, the lengths of their eumelanin end and pheomelanin band, the ratio between the lengths of the eumelanin and pheomelanin portions of the hair, the total length of the awn hairs, and the relative length of their widened "lanceolate" upper end) have been compared. It has been found that selection of agouti rats for aggressive behavior is accompanied by darkening of the coat color compared to tame rats due to an increase in the ratio of the length of the black eumelanin end of the guard hairs to the length of the yellow pheomelanin band. Methyl-containing additives to the diet of females affect the intensity of the agouti coat color in the offsprings with both types of behavior, but to different extents. Aggressive offspring is more sensitive to the mother's methyl-containing diet: the percentage of animals that are darker than control rats is higher among aggressive animals than among tame ones due to a greater increase in the ratio between dark and light portions of hairs. The possible mechanisms of differences in the phenotypic modifications of coat color in control and experimental agouti rats with different types of behavior are discussed.

  19. Perinatal maternal high-fat diet induces early obesity and sex-specific alterations of the endocannabinoid system in white and brown adipose tissue of weanling rat offspring.

    PubMed

    Almeida, Mariana M; Dias-Rocha, Camilla P; Souza, André S; Muros, Mariana F; Mendonca, Leonardo S; Pazos-Moura, Carmen C; Trevenzoli, Isis H

    2017-11-01

    Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes. We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development. Female rats received standard diet (9 % energy content from fat) or HF diet (29 % energy content from fat) before mating, during pregnancy and lactation. At weaning, male and female offspring were killed for tissue harvest. Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS's components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups. The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.

  20. Maternal stress does not exacerbate long-term bone deficits in female rats born growth restricted, with differential effects on offspring bone health.

    PubMed

    Anevska, Kristina; Cheong, Jean N; Wark, John D; Wlodek, Mary E; Romano, Tania

    2018-02-01

    Females born growth restricted have poor adult bone health. Stress exposure during pregnancy increases risk of pregnancy complications. We determined whether maternal stress exposure in growth-restricted females exacerbates long-term maternal and offspring bone phenotypes. On gestational day 18, bilateral uterine vessel ligation (restricted) or sham (control) surgery was performed on Wistar-Kyoto rats. At 4 mo, control and restricted females were mated and allocated to unstressed or stressed pregnancies. Stressed pregnancies had physiological measurements performed; unstressed females were not handled. After birth, mothers were aged to 13 mo. Second-generation (F2) offspring generated four experimental groups: control unstressed, restricted unstressed, control stressed and restricted stressed. F2 offspring were studied at postnatal day 35 (PN35), 6, 12, and 16 mo. Peripheral quantitative computed tomography was performed on maternal and F2 offspring femurs. Restricted females, irrespective of stress during pregnancy, had decreased endosteal circumference, bending strength, and increased osteocalcin concentrations after pregnancy at 13 mo. F2 offspring of stressed mothers were born lighter. F2 male offspring from stressed pregnancies had decreased trabecular content at 6 mo and decreased endosteal circumference at 16 mo. F2 female offspring from growth-restricted mothers had reduced cortical thickness at PN35 and reduced endosteal circumference at 6 mo. At 12 mo, females from unstressed restricted and stressed control mothers had decreased trabecular content. Low birth weight females had long-term bone changes, highlighting programming effects on bone health. Stress during pregnancy did not exacerbate these programmed effects. Male and female offspring responded differently to maternal growth restriction and stress, indicating gender-specific programming effects.

  1. Fertilizability of Superovulated Eggs by Estrous Stage-independent PMSG/hCG Treatment in Adult Wistar-Imamichi Rats

    PubMed Central

    Kon, Hiroe; Hokao, Ryoji; Shinoda, Motoo

    2014-01-01

    We investigated the fertilization and developmental ability of superovulated eggs obtained from adult Wistar-Imamichi (WI) rats, by using pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) treatment. Female WI rats, 11–13 weeks of age, were divided into four groups by estrous stage (metestrus [ME], diestrus [DE], proestrus [PE], or estrus [E]). PMSG (150 IU/kg) and hCG (75 IU/kg) were injected at an interval of 48 or 55 h and the female rats were mated with mature male rats. The ovulated eggs were collected 20, 24, and 27 h after hCG injection. Regardless of the estrous stage at the time of PMSG injection, the treated rats mated and ovulated similar to the untreated spontaneously ovulated rats (S group). Although the proportion of fertilized eggs in the E- and PE-treated groups was less than the S group 20 h after hCG injection, the proportion was not different among all treated and S groups 24 h after hCG injection. The proportion of fertilized eggs using in vitro fertilization and the proportion of offspring obtained from 2-cell stage embryo transfer did not differ among the treated and S groups. In comparison with PMSG/hCG-treated immature rats, mating and ovulation rate of adult rats were significantly higher. The proportion of fertilized eggs obtained from mated rats did not differ between immature and adult rats. These results demonstrate that adult WI rats are good egg donors for reproductive biotechnological studies using unfertilized or fertilized eggs. PMID:24770643

  2. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    PubMed

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques. © The Author(s) 2014.

  3. Later Life Impacts of Social Participation on Parents of Adult Offspring With and Without Intellectual and Developmental Disabilities.

    PubMed

    Olsen, Darren L

    2018-01-01

    Social participation is an important resource for parents in old age, and may be particularly important for parents living with adult offspring with intellectual and developmental disabilities. To evaluate whether socializing with friends and family and participating in social organizations protects against depression in old age, this study examined parents of adult offspring with disabilities ( n = 164) and without disabilities ( n = 820). As expected, more socializing with friends and more participating in organizations were associated with fewer depressive symptoms for all parents. However, socializing with family members predicted fewer depressive symptoms only for parents co-residing with their adult offspring with disabilities, suggesting that socializing with family is particularly important for parents providing direct care to adults with disabilities.

  4. In utero protein restriction causes growth delay and alters sperm parameters in adult male rats

    PubMed Central

    2011-01-01

    Background Recent studies have supported the concept of "fetal programming" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Methods Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t-test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. Results We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. Conclusions In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood. PMID:21702915

  5. In utero protein restriction causes growth delay and alters sperm parameters in adult male rats.

    PubMed

    Toledo, Fabíola C; Perobelli, Juliana E; Pedrosa, Flávia P C; Anselmo-Franci, Janete A; Kempinas, Wilma D G

    2011-06-24

    Recent studies have supported the concept of "fetal programming" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t-test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood.

  6. Early Life Exposure to Undernutrition Induces ER Stress, Apoptosis, and Reduced Vascularization in Ovaries of Adult Rat Offspring1

    PubMed Central

    Chan, Kaitlyn A.; Bernal, Angelica B.; Vickers, Mark H.; Gohir, Wajiha; Petrik, Jim J.; Sloboda, Deborah M.

    2015-01-01

    ABSTRACT Maternal nutritional restriction has been shown to induce impairments in a number of organ systems including the ovary. We have previously shown that maternal undernutrition induces fetal growth restriction and low birth weight, and results in an offspring ovarian phenotype characteristic of premature ovarian aging with reduced ovarian reserve. In the present study, we set out to investigate the underlying mechanisms that lead offspring of undernourished mothers to premature ovarian aging. Pregnant dams were randomized to 1) a standard diet throughout pregnancy and lactation (control), 2) a calorie-restricted (50% of control) diet during pregnancy, 3) a calorie-restricted (50% of control) diet during pregnancy and lactation, or 4) a calorie-restricted (50% of control) diet during lactation alone. The present study shows that early life undernutrition-induced reduction of adult ovarian follicles may be mediated by increased ovarian endoplasmic reticulum stress in a manner that increased follicular apoptosis but not autophagy. These changes were associated with a loss of ovarian vessel density and are consistent with an accelerated ovarian aging phenotype. Whether these changes are mediated specifically by a reduction in the local antioxidant environment is unclear, although our data suggest the possibility that ovarian melatonin may play a part in early life nutritional undernutrition and impaired offspring folliculogenesis. PMID:25810471

  7. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring.

    PubMed

    Gallegos, Cristina E; Bartos, Mariana; Bras, Cristina; Gumilar, Fernanda; Antonelli, Marta C; Minetti, Alejandra

    2016-03-01

    The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Maternal high-salt diet altered PKC/MLC20 pathway and increased ANG II receptor-mediated vasoconstriction in adult male rat offspring.

    PubMed

    Li, Weisheng; Lv, Juanxiu; Wu, Jue; Zhou, Xiuwen; Jiang, Lin; Zhu, Xiaolin; Tu, Qing; Tang, Jiaqi; Liu, Yanping; He, Axin; Zhong, Yuan; Xu, Zhice

    2016-07-01

    High-salt diet (HSD) is associated with cardiovascular diseases. This study aims at ascertaining the influence of maternal HSD on offspring's angiotensin II (ANG II)-mediated vasoconstriction and the underlying mechanisms. In comparison to a normal-salt diet, HSD used in pregnancy in rats changed the ultrastructures of the coronary artery (CA) in 5-month-old male offspring, and increased ANG II-mediated CA contractility. Measurement of [Ca(2+) ]i in CA using fluorescent fura-2, a Ca(2+) indicator, showed that ANG II-mediated increases in [Ca(2+) ]i were the same between HSD and normal-salt diet groups, but the ratio of diameter change/[Ca(2+) ]i induced by ANG II were significantly higher in HSD groups. Angiotensin II receptor type 1, not angiotensin II receptor type 2, caused ANG II-mediated vasoconstriction. Protein kinase C (PKC) inhibitor GF109203X attenuated the ANG II-mediated vasoconstriction, PKC agonist phorbol12,13-dibutyrate produced a greater contraction. There was an increase in PKCβ mRNA and the corresponding protein abundance in the offspring, whereas other PKC subunits PKCα, PKCδ, and PKCε did not change. Moreover, 20 kDa myosin light chain phosphorylation levels were increased in HSD group. Maternal HSD affected the developmental programing for the offspring CA, with increased ANG II-mediated vasoconstrictions. The angiotensin II receptor type 1-PKC-20 kDa myosin light chain phosphorylation pathway was the possible mediated cellular mechanism. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Postnatal dietary omega-3 fatty acid supplementation rescues glucocorticoid-programmed adiposity, hypertension, and hyperlipidemia in male rat offspring raised on a high-fat diet.

    PubMed

    Zulkafli, Intan S; Waddell, Brendan J; Mark, Peter J

    2013-09-01

    Fetal glucocorticoid excess programs several adverse outcomes in adult offspring, many of which can be prevented by postnatal, dietary omega-3 (n-3) fatty acids. Here we tested 2 separate hypotheses: 1) a postnatal high-fat diet exacerbates the glucocorticoid-programmed phenotype; and 2) postnatal, dietary n-3 fatty acids rescue programmed outcomes, even in the presence of a high-fat diet challenge. Pregnant Wistar rat dams were either untreated or administered dexamethasone acetate (Dex; 0.5 μg/mL drinking water) from day 13 of pregnancy. Offspring were cross-fostered to untreated mothers and males were weaned onto a standard (Std), high-fat, low n-3 (HF), or high-fat, high n-3 (HFHn-3) diet. Prenatal Dex reduced birth weight (26%) and delayed puberty onset by 1.2 days, irrespective of postnatal diet. Prenatal Dex programmed increased blood pressure in adult offspring, an effect worsened by the postnatal HF diet. Supplementation with high n-3 fatty acids, however, prevented both the Dex and HF-induced increases in blood pressure. Prenatal Dex also programmed increased adiposity, plasma cholesterol, and plasma triglyceride levels at 6 months of age, particularly in those offspring raised on the HF diet. But again, each of these adverse outcomes was rescued by supplementation of the HF diet with n-3 fatty acids. In conclusion, the capacity of n-3 fatty acids to overcome adverse programming outcomes remains evident, even in the presence of a HF diet challenge.

  10. Impact of prenatal hypoxia on fetal bone growth and osteoporosis in ovariectomized offspring rats.

    PubMed

    Yang, Yuxian; Fan, Xiaorong; Tao, Jianying; Xu, Ting; Zhang, Yingying; Zhang, Wenna; Li, Lingjun; Li, Xiang; Ding, Hongmei; Sun, Miao; Gao, Qinqin; Xu, Zhice

    2018-03-07

    Prenatal hypoxia causes intrauterine growth retardation. It is unclear whether/how hypoxia affects the bone in fetal and offspring life. This study showed that prenatal hypoxia retarded fetal skeletal growth in rats, inhibited extracellular matrix (ECM) synthesis and down-regulated of insulin-like growth factor 1 (IGF1) signaling in fetal growth plate chondrocytes in vivo and in vitro. In addition, ovariectomized (OVX) was used for study of postmenopausal osteoporosis. Compared with the control, OVX offspring in prenatal hypoxic group showed an enhanced osteoporosis in the femurs, associated with reduced proteoglycan and IGF1 signaling. The results indicated prenatal hypoxia not only delayed fetal skeletal growth, but also increased OVX-induced osteoporosis in the elder offspring probably through down-regulated IGF1 signaling and inhibition of ECM synthesis, providing important information of prenatal hypoxia on functional and molecular bone growth and metabolism in fetal and offspring. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The effects of feeding rats diets deficient in folic acid and related methyl donors on the blood pressure and glucose tolerance of the offspring.

    PubMed

    Maloney, Christopher A; Hay, Susan M; Rees, William D

    2009-05-01

    In humans poor maternal folate status is associated with a decrease in infant birth weight. As low birth weight increases the risk of cardiovascular and metabolic disease in adults, an inadequate supply of folic acid in the mother's diet may increase the susceptibility of the offspring to disease. We have fed laboratory rats diets deficient in folic acid and the related methyl donors methionine and choline to examine the effects on growth, blood pressure and insulin action in the offspring. Poor folate status transiently increased fetal growth but did not produce a long-term change in body weight. There were, however, small changes in the hearts of the female offspring. When folate deficiency was combined with low intakes of methionine and choline, the kidneys of the male offspring were proportionately smaller, probably because of the limited availability of methionine. There was no effect on the blood pressure of either the male or female offspring. The pancreatic insulin content of fetuses from animals fed the folate-deficient diets were higher than those of the controls. Following an oral glucose challenge, there was a weak trend for glucose-stimulated insulin release to be increased in the offspring of dams fed the folate-deficient diet. The changes in insulin concentrations were, however, much smaller than the corresponding changes observed in the offspring of animals fed protein-deficient diets. These results suggest that folate deficiency during gestation causes modest changes to the insulin axis of the fetus.

  12. Association between parental psychopathology and suicidal behavior among adult offspring: results from the cross-sectional South African Stress and Health survey

    PubMed Central

    2014-01-01

    Background Prior studies have demonstrated a link between parental psychopathology and offspring suicidal behavior. However, it remains unclear what aspects of suicidal behavior among adult offspring are predicted by specific parental mental disorders, especially in Africa. This study set out to investigate the association between parental psychopathology and suicidal behavior among their adult offspring in a South African general population sample. Method Parental psychopathology and suicidal behavior in offspring were assessed using structured interviews among 4,315 respondents from across South Africa. The WHO CIDI was used to collect data on suicidal behavior, while the Family History Research Diagnostic Criteria Interview was used to assess prior parental psychopathology. Bivariate and multivariate survival models tested the associations between the type and number parental mental disorders (including suicide) and lifetime suicidal behavior in the offspring. Associations between a range of parental disorders and the onset of subsequent suicidal behavior (suicidal ideation, plans, and attempts) among adult offspring were tested. Results The presence of parental psychopathology significantly increased the odds of suicidal behavior among their adult offspring. More specifically, parental panic disorder was associated with offspring suicidal ideation, while parental panic disorder, generalized anxiety disorder and suicide were significantly associated with offspring suicide attempts. Among those with suicidal ideation, none of the tested forms of parental psychopathology was associated with having suicide plans or attempts. There was a dose–response relationship between the number of parental disorders and odds of suicidal ideation. Conclusions Parental psychopathology increases the odds of suicidal behavior among their adult offspring in the South African context, replicating results found in other regions. Specific parental disorders predicted the onset and

  13. Neuropsychological functioning in posttraumatic stress disorder following forced displacement in older adults and their offspring.

    PubMed

    Jelinek, Lena; Wittekind, Charlotte E; Moritz, Steffen; Kellner, Michael; Muhtz, Christoph

    2013-12-15

    The aim of the present study was to investigate neuropsychological performance in an untried trauma sample of older adults displaced during childhood at the end of World War II (WWII) with and without posttraumatic stress disorder (PTSD) as well as transgenerational effects of trauma and PTSD on their offspring. Displaced older adults with (n=20) and without PTSD (n=24) and nondisplaced healthy individuals (n=11) as well as one of their respective offspring were assessed with a large battery of cognitive tests (primarily targeting memory functioning). No evidence for deficits in neuropsychological performance was found in the aging group of displaced people with PTSD. Moreover, no group difference emerged in the offspring groups. Findings may be interpreted as first evidence for a rather resilient PTSD group of older adults that is available for assessment 60 years after displacement. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Intrauterine and lactation exposure to fluoxetine blunted in the offspring the aortic adaptive response induced by acute restraint stress.

    PubMed

    Marques, Bruno V D; Higashi, Carolina M; da S Novi, Daniella R B; Zanluqui, Nagela G; Gregório, Thais F; Pinge-Filho, Phileno; Gerardin, Daniela C C; Pelosi, Gislaine G; Moreira, Estefânia G; Ceravolo, Graziela S

    2017-10-15

    Selective serotonin reuptake inhibitors are the most widely prescribed antidepressants to women during pregnancy. Maternal treatment with fluoxetine can expose fetuses and neonates to higher levels of serotonin that plays a role in stress response. Thus, the aim of the study was to evaluate whether maternal treatment with fluoxetine interferes with aorta reactivity of adult male offspring after acute restraint stress. Wistar rats were gavaged with fluoxetine (5mg/kg/day) or water (control) during pregnancy and lactation. The experiments were performed in adult male offspring, treated or not with reserpine (4mg/Kg, ip, 28h before the experimental protocol). Fluoxetine and control rats were submitted to a single restraint stress session (ST) for 1h. Curves to phenylephrine were performed in thoracic aorta with endothelium. Aortic nitric oxide (NOx) were evaluated by the Griess method. The aortic contraction induced by phenylephrine was similar between control and fluoxetine rats. The acute stress reduced contraction in aorta of control ST compared to control, and L-NAME equaled this response. In fluoxetine rats, ST did not change the aortic constriction. Reserpine treatment restored the vasoconstriction in control ST, but did not interfere with aortic contraction in control, fluoxetine or fluoxetine ST. The NOx concentration was higher in aortas from control ST than control rats, and reserpine reduced NOx levels of control ST. The NOx concentration was similar between fluoxetine and fluoxetine ST rats, treated or not with reserpine. In conclusion, maternal treatment with fluoxetine blunted acute restraint stress-induced NO system activation and aortic adaptation in adult offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Rat gestation during space flight: outcomes for dams and their offspring born after return to Earth.

    PubMed

    Wong, A M; DeSantis, M

    1997-01-01

    Sprague-Dawley rats were studied to learn whether gestation in the near-zero gravity, high radiation environment of space impacts selected mammalian postnatal events. Ten rats spent days nine to twenty of pregnancy aboard the space shuttle orbiter Atlantis (STS-66). Their movement was studied shortly after return to Earth; subsequently, several of their offspring were cross-fostered and examined through postnatal day 81 (P81) for whole body growth and somatic motor development. Values for the flight animals were compared to ground-based control groups. Relative to controls, the pregnant flight rats showed a marked paucity of locomotion during the first few hours after returning to Earth. There was greater likelihood of perinatal morbidity for the offspring of flight dams when compared to the control groups. Whole body weight of surviving offspring, averaged for each group separately, showed typical sigmoidal growth curves when plotted against postnatal age. The flight group for our study had a larger ratio of female to male pups, and that was sufficient to account for the lower average daily weight gained by the flight animals when compared to the control groups. Walking was universally achieved by P13 and preceded eye opening, which was complete in all pups by P17. Thus, both of these developmental horizons were attained on schedule in the flight as well as the control rats. Characteristic changes were observed in hind limb step length and gait width as the pups grew. These patterns occurred at the same time in each group of rats. Therefore, prenatal space flight from days nine to twenty of gestation did not interfere with the establishment of normal patterns for hind paw placement during walking.

  16. Rat Gestation During Space Flight: Outcomes for Dams and Their Offspring Born After Return to Earth

    NASA Technical Reports Server (NTRS)

    Wong, Andre M.; DeSantis, Mark

    1997-01-01

    Sprague-Dawley rats were studied to learn whether gestation in the near-zero gravity, high radiation environment of space impacts selected mammalian postnatal events. Ten rats spent days nine to twenty of pregnancy aboard the space shuttle orbiter Atlantis (STS-66). Their movement was studied shortly after return to Earth; subsequently, several of their offspring were cross-fostered and examined through postnatal day 81 (P81) for whole body growth and somatic motor development. Values for the flight animals were compared to ground-based control groups. Relative to controls, the pregnant flight rats showed a marked paucity of locomotion during the first few hours after returning to Earth. There was greater likelihood of perinatal morbidity for the offspring of flight dams when compared to the control groups. Whole body weight of surviving offspring, averaged for each group separately, showed typical sigmoidal growth curves when plotted against postnatal age. The flight group for our study had a larger ratio of female to male pups, and that was sufficient to account for the lower average daily weight gained by the flight animals when compared to the control groups. Walking was universally achieved by P13 and preceded eye opening, which was complete in all pups by P17. Thus, both of these developmental horizons were attained on schedule in the flight as well as the control rats. Characteristic changes were observed in hind limb step length and gait width as the pups grew. These patterns occurred at the same time in each group of rats. Therefore, prenatal space flight from days nine to twenty of gestation did not interfere with the establishment of normal patterns for hind paw placement during walking.

  17. Maternal in utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate affects the blood pressure of adult male offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez–Arguelles, D.B.; Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 1A4; McIntosh, M.

    Di-(2-ethylhexyl) phthalate (DEHP) is used industrially to add flexibility to polyvinyl chloride (PVC) polymers and is ubiquitously found in the environment, with evidence of prenatal, perinatal and early infant exposure in humans. In utero exposure to DEHP decreases circulating testosterone levels in the adult rat. In addition, DEHP reduces the expression of the angiotensin II receptors in the adrenal gland, resulting in decreased circulating aldosterone levels. The latter may have important effects on water and electrolyte balance as well as systemic arterial blood pressure. Therefore, we determined the effects of in utero exposure to DEHP on systemic arterial blood pressuremore » in the young (2 month-old) and older (6.5 month-old) adult rats. Sprague-Dawley pregnant dams were exposed from gestational day 14 until birth to 300 mg DEHP/kg/day. Blood pressure, heart rate, and activity data were collected using an intra-aortal transmitter in the male offspring at postnatal day (PND) 60 and PND200. A low (0.01%) and high-salt (8%) diet was used to challenge the animals at PND200. In utero exposure to DEHP resulted in reduced activity at PND60. At PND200, systolic and diastolic systemic arterial pressures as well as activity were reduced in response to DEHP exposure. This is the first evidence showing that in utero exposure to DEHP has cardiovascular and behavioral effects in the adult male offspring. Highlights: ► In utero exposure to 300 mg DEHP/kg/day decreases activity at postnatal day 60. ► In utero exposure to DEHP decreases aldosterone levels at postnatal day 200. ► In utero exposure to DEHP decreases systolic blood pressure at postnatal day 200. ► An 8% salt diet recovers the decreased blood pressure at postnatal day 200.« less

  18. Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis.

    PubMed

    Gobinath, Aarthi R; Workman, Joanna L; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M

    2016-02-01

    Postpartum depression (PPD) affects approximately 15% of mothers, disrupts maternal care, and can represent a form of early life adversity for the developing offspring. Intriguingly, male and female offspring are differentially vulnerable to the effects of PPD. Antidepressants, such as fluoxetine, are commonly prescribed for treating PPD. However, fluoxetine can reach offspring via breast milk, raising serious concerns regarding the long-term consequences of infant exposure to fluoxetine. The goal of this study was to examine the long-term effects of maternal postpartum corticosterone (CORT, a model of postpartum stress/depression) and concurrent maternal postpartum fluoxetine on behavioral, endocrine, and neural measures in adult male and female offspring. Female Sprague-Dawley dams were treated daily with either CORT or oil and fluoxetine or saline from postnatal days 2-23, and offspring were weaned and left undisturbed until adulthood. Here we show that maternal postpartum fluoxetine increased anxiety-like behavior and impaired hypothalamic-pituitary-adrenal (HPA) axis negative feedback in adult male, but not female, offspring. Furthermore, maternal postpartum fluoxetine increased the density of immature neurons (doublecortin-expressing) in the hippocampus of adult male offspring but decreased the density of immature neurons in adult female offspring. Maternal postpartum CORT blunted HPA axis negative feedback in males and tended to increase density of immature neurons in males but decreased it in females. These results indicate that maternal postpartum CORT and fluoxetine can have long-lasting effects on anxiety-like behavior, HPA axis negative feedback, and adult hippocampal neurogenesis and that adult male and female offspring are differentially affected by these maternal manipulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Salt intake during pregnancy alters offspring's myocardial structure.

    PubMed

    Alves-Rodrigues, E N; Veras, M M; Rosa, K T; de Castro, I; Furukawa, L N S; Oliveira, I B; Souza, R M; Heimann, J C

    2013-05-01

    To evaluate the effects of low or high salt intake during pregnancy on left ventricle of adult male offspring. Low- (LS, 0.15%), normal- (NS, 1.3%) or high-salt (HS, 8% NaCl) diet was given to Wistar rats during pregnancy. During lactation all dams received NS as well as the offspring after weaning. To evaluate cardiac response to salt overload, 50% of each offspring group was fed a high-salt (hs, 4% NaCl) diet from the 21st to the 36th week of age (LShs, NShs, HShs). The remaining 50% was maintained on NS (LSns, NSns and HSns). Echocardiography was done at 20 and 30 weeks of age. Mean blood pressure (MBP), histology and left ventricular angiotensin II content (AII) were analyzed at 36 weeks of age. Interventricular septum, left ventricular posterior wall and relative wall thickness increased from the 20th to the 30th week of age only in HShs, cardiomyocyte mean volume was higher in HShs compared to NShs, LShs and HSns. AII and left ventricular fibrosis were not different among groups. HS during pregnancy programs adult male offspring to a blood pressure and angiotensin II independent concentric left ventricular hypertrophy, with no fibrosis, in response to a chronic high-salt intake. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure and insulin resistance in offspring rats.

    PubMed

    Hao, Xue-Qin; Du, Jing-Xia; Li, Yan; Li, Meng; Zhang, Shou-Yan

    2014-01-01

    Adult metabolic syndrome may in part have origins in fetal or early life. This study was designed to explore the effect of prenatal exposure to lipopolysaccharide and high-fat diet on metabolic syndrome in offspring rats. 32 pregnant rats were randomly divided into four groups, including Control group; LPS group (pregnant rats were injected with LPS 0.4 mg/kg intraperitoneally on the 8(th), 10(th) and 12(th) day of pregnancy); High-fat group (maternal rats had high-fat diet during pregnancy and lactation period, and their pups also had high-fat diet up to the third month of life); LPS + High-fat group (rats were exposed to the identical experimental scheme with LPS group and High-fat group). Blood pressure elevated in LPS group and High-fat group, reduced in LPS+High-fat group, accompanied by the increase of serum leptin level in LPS and High-fat group and increase of serum IL-6, TNF-a in High-fat group; both serum insulin and cholesterol increased in High-fat and LPS+High-fat group, as well as insulin in LPS group. HOMA-IR value increased in LPS, High-fat and LPS+High-fat group, and QUICKI decreased in these groups; H-E staining showed morphologically pathological changes in thoracic aorta and liver tissue in the three groups. Increased serum alanine and aspartate aminotransferase suggest impaired liver function in LPS+High-fat group. Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure, insulin resistance and impaired liver function in three-month old offspring rats. The lowered blood pressure might benefit from the predictive adaptive response to prenatal inflammation.

  1. Maternal swimming exercise during pregnancy attenuates anxiety/depressive-like behaviors and voluntary morphine consumption in the pubertal male and female rat offspring born from morphine dependent mothers.

    PubMed

    Torabi, Masoumeh; Pooriamehr, Alireza; Bigdeli, Imanollah; Miladi-Gorji, Hossein

    2017-10-17

    This study was designed to examine whether maternal swimming exercise during pregnancy would attenuate prenatally morphine-induced anxiety, depression and voluntary consumption of morphine in the pubertal male and female rat offspring. Pregnant rats during the development of morphine dependence were allowed to swim (30-45min/d, 3days per a week) on gestational days 11-18. Then, the pubertal male and female rat offspring were tested for the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that male and female rat offspring born of the swimmer morphine-dependent mothers exhibited an increase in EPM open arm time and entries, higher levels of sucrose preference than their sedentary control mothers. Voluntary consumption of morphine was less in the male and female rat offspring born of the swimmer morphine-dependent mothers as compared with their sedentary control mothers during three periods of the intake of drug. Thus, swimming exercise in pregnant morphine dependent mothers decreased anxiety, depressive-like behavior and also the voluntary morphine consumption in the pubertal male and female offspring, which may prevent prenatally morphine-induced behavioral sensitization in offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of administration of lead nitrate to pregnant rats on the lungs in their offspring.

    PubMed

    Lebed'ko, O A; Ryzhavskii, B Ya

    2005-06-01

    Lead nitrate in a dose of 200 mg/kg was administered to female rats via a gartric tube on days 5 and 12 of pregnancy. The lungs of their offspring were examined on day 40 of life. We found a decrease in the ratio between the specific volumes of alveolar lumens and interalveolar septa and hypertrophy of lymphoid tissue in the bronchial wall (compared to the offspring of intact females). Chemiluminescent analysis revealed activation of lipid peroxidation and decrease in antioxidant antiradical activity of the lungs.

  3. Abnormal Neurological Responses in Young Adult Offspring Caused by Excess Omega-3 Fatty Acid (Fish Oil) Consumption by the Mother during Pregnancy and Lactation

    PubMed Central

    Church, M. W.; Jen, K-L. C.; Jackson, D. A.; Adams, B. R.; Hotra, J. W.

    2009-01-01

    Consuming omega-3 fatty acids (ω-3 FA) during pregnancy and lactation benefits fetal and infant brain development and might reduce the severity of preterm births by prolonging pregnancy. However, diets that are relatively rich in ω-3 FA can adversely affect fetal and infant development and the auditory brainstem response (ABR), a measure of brain development and sensory function. We previously examined the offspring of female rats fed excessive, adequate or deficient amounts of ω-3 FA during pregnancy and lactation. The 24-day-old offspring in the Excess group, compared to the Control group, had postnatal growth retardation and poor hearing acuity and prolonged neural transmission times as evidenced by the ABR. The Deficient group was intermediate. The current study followed these offspring to see if these poor outcomes persisted into young adulthood. Based on prior findings, we hypothesized that the Excess and Deficient offspring would “catch-up” to the Control offspring by young adulthood. Female Wistar rats received one of the three diet conditions from day 1 of pregnancy through lactation. The three diets were the Control ω-3 FA condition (ω-3/ω-6 ratio ~ 0.14), the Excess ω-3 FA condition (ω-3/ω-6 ratio ~ 14.0) and Deficient ω-3 FA condition (ω-3/ω-6 ratio ~ 0% ratio). The Control diet contained 7 % soybean oil; whereas the Deficient and Excess ω-3 FA diets contained 7% safflower oil and 7% fish oil, respectively. One male and female offspring per litter were ABR-tested as young adults using tone pip stimuli of 2, 4, 8 and 16 kHz. The postnatal growth retardation and prolonged neural transmission times in the Excess and Deficient pups had dissipated by young adulthood. In contrast, the Excess group had elevated ABR thresholds (hearing loss) at all tone pip frequencies in comparison to the Control and Deficient groups. The Deficient group had worse ABR thresholds than the Control group in response to the 8 kHz tone pips only. The Excess group

  4. Transient Congenital Hypothyroidism Alters Gene Expression of Glucose Transporters and Impairs Glucose Sensing Apparatus in Young and Aged Offspring Rats.

    PubMed

    Gholami, Hanieh; Jeddi, Sajad; Zadeh-Vakili, Azita; Farrokhfall, Khadije; Rouhollah, Fatemeh; Zarkesh, Maryam; Ghanbari, Mahboubeh; Ghasemi, Asghar

    2017-01-01

    Transient congenital hypothyroidism (TCH) could disturb carbohydrate metabolism in adulthood. Aging is associated with increased risk of type 2 diabetes. This study aims to address effects of TCH on mRNA expressions of glucose transporters (GLUTs) and glucokinase (GcK) in islets and insulin target tissues of aged offspring rats. The TCH group received water containing 0.025% 6-propyl-2-thiouracil during gestation. Offspring from control and TCH groups (n=6 in each group) were followed until month 19. Gene expressions of GLUTs and GcK were measured at months 3 and 19. Compared to controls, aged TCH rats had higher GLUT4 expression in heart (4.88 fold) and soleus (6.91 fold), while expression was lower in epididymal fat (12%). In TCH rats, GLUT2 and GcK expressions in islets were lower in young (12% and 10%, respectively) and higher in aged (10.85 and 8.42 fold, respectively) rats. In addition, liver GLUT2 and GcK expressions were higher in young (13.11 and 21.15 fold, respectively) and lower in aged rats (44% and 5%, respectively). Thyroid hormone deficiency during fetal period impaired glucose sensing apparatus and changed glucose transporter expression in insulin-sensitive tissues of aged offspring rats. These changes may contribute to impaired carbohydrate metabolism. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats.

    PubMed

    Oshiro, W M; Beasley, T E; McDaniel, K L; Evansky, P A; Martin, S A; Moser, V C; Gilbert, M E; Bushnell, P J

    2015-01-01

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoline alone (E0) and gasoline with 15% or 85% ethanol (E15 and E85, respectively). Rat dams were exposed for 6.5h daily to the vapors at concentrations of 0, 3000, 6000, or 9000 ppm in inhalation chambers from gestational day (GD) 9 through 20. Cage controls (offspring of non-exposed dams that remained in the animal facility during these exposures) were also assessed in the E0 experiment, but showed no consistent differences from the offspring of air-exposed controls. Offspring were tested as adults with trace fear conditioning, Morris water maze, or appetitive operant responding. With fear conditioning, no significant effects were observed on cue or context learning. In the water maze, there were no differences in place learning or escaping to a visible platform. However, during the reference memory probe (no platform) male rats exposed prenatally to E85 vapor (6000 and 9000 ppm) failed to show a bias for the target quadrant. Across studies, females (treated and some controls) were less consistent in this measure. Males showed no differences during match-to-place learning (platform moved each day) in any experiment and females showed only transient differences in latency and path length in the E0 experiment. Similarly, no differences were observed in delayed match-to-sample operant performance of E0 males or females; thus this test was not used to evaluate effects of E15 or E85 vapors. During choice reaction time assessments (only males were tested) decision and movement times were unimpaired by any prenatal exposure, while anticipatory responses were increased by vapors of E0 (9000 ppm) and E15 (6000 and 9000 ppm), and the latter group also showed reduced accuracy. E85 vapors did not disrupt

  6. Postnatal Cardiovascular Consequences in the Offspring of Pregnant Rats Exposed to Smoking and Smoking Cessation Pharmacotherapies.

    PubMed

    Gopalakrishnan, Kathirvel; More, Amar S; Hankins, Gary D; Nanovskaya, Tatiana N; Kumar, Sathish

    2017-06-01

    Approximately 20% of pregnant women smoke despite intentions to quit. Smoking cessation drugs, such as nicotine replacement therapy (NRT) and bupropion, are recommended treatments. Adverse cardiovascular outcomes in offspring have raised concerns about NRT's safety during pregnancy. However, the effect of bupropion is unknown. Using a rat model, we determined whether NRT and bupropion interventions during pregnancy are safer than continued smoking on offspring's cardiovascular function. Male offspring of controls and dams exposed to cigarette smoke (1.6 packs/day, inhalation), nicotine (2 mg/kg/d subcutaneously), and bupropion (13 mg/kg twice daily orally) were assessed for fetoplacental weight, cardiac function, blood pressure, and vascular reactivity. Fetoplacental weights were decreased and spontaneous beating and intracellular calcium in neonatal cardiomyocytes were increased in smoking, nicotine, and bupropion offspring; however, these effects were more accentuated in smoking followed by nicotine and bupropion offspring. Increased heart rate and decreased cardiac output, stroke volume, and left ventricular percent posterior wall thickening were observed in smoking, nicotine, and bupropion offspring. The left ventricular mass was reduced in smoking and nicotine but not in bupropion offspring. Blood pressure was higher with decreased endothelium-dependent relaxation and exaggerated vascular contraction to angiotensin II in smoking and nicotine offspring, with more pronounced dysfunctions in smoking than nicotine offspring. Maternal bupropion did not impact offspring's blood pressure, endothelium-dependent relaxation, and vascular contraction. In conclusion, maternal nicotine intervention adversely affects offspring's cardiovascular outcomes, albeit less severely than continued smoking. However, bupropion causes cardiac derangement in offspring but does not adversely affect blood pressure and vascular function.

  7. Multigenerational effects of parental prenatal exposure to famine on adult offspring cognitive function

    PubMed Central

    Li, Jie; Na, Lixin; Ma, Hao; Zhang, Zhe; Li, Tianjiao; Lin, Liqun; Li, Qiang; Sun, Changhao; Li, Ying

    2015-01-01

    The effects of prenatal nutrition on adult cognitive function have been reported for one generation. However, human evidence for multigenerational effects is lacking. We examined whether prenatal exposure to the Chinese famine of 1959–61 affects adult cognitive function in two consecutive generations. In this retrospective family cohort study, we investigated 1062 families consisting of 2124 parents and 1215 offspring. We assessed parental and offspring cognitive performance by means of a comprehensive test battery. Generalized linear regression model analysis in the parental generation showed that prenatal exposure to famine was associated with a 8.1 (95% CI 5.8 to 10.4) second increase in trail making test part A, a 7.0 (1.5 to 12.5) second increase in trail making test part B, and a 5.5 (−7.3 to −3.7) score decrease in the Stroop color-word test in adulthood, after adjustment for potential confounders. In the offspring generation, linear mixed model analysis found no significant association between parental prenatal exposure to famine and offspring cognitive function in adulthood after adjustment for potential confounders. In conclusion, prenatal exposure to severe malnutrition is negatively associated with visual- motor skill, mental flexibility, and selective attention in adulthood. However, these associations are limited to only one generation. PMID:26333696

  8. Maternal Immune Activation Alters Nonspatial Information Processing in the Hippocampus of the Adult Offspring

    PubMed Central

    Ito, Hiroshi T.; Smith, Stephen E. P.; Hsiao, Elaine; Patterson, Paul H.

    2010-01-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. PMID:20227486

  9. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring.

    PubMed

    Ito, Hiroshi T; Smith, Stephen E P; Hsiao, Elaine; Patterson, Paul H

    2010-08-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate-early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Perinatal low-protein diet alters brainstem antioxidant metabolism in adult offspring.

    PubMed

    Ferreira, Diorginis Soares; Liu, Yuri; Fernandes, Mariana Pinheiro; Lagranha, Claudia Jacques

    2016-10-01

    Studies in humans and animal models have established a close relationship between early environment insult and subsequent risk of development of non-communicable diseases, including the cardiovascular. Whereas experimental evidences highlight the early undernutrition and the late cardiovascular disease relation, the central mechanisms linking the two remain unknown. Owing to the oxidative balance influence in several pathologies, the aim of the present study was to evaluate the effects of maternal undernutrition (i.e. a low-protein (LP) diet) on oxidative balance in the brainstem. Male rats from mothers fed with an LP diet (8% casein) throughout the perinatal period (i.e. gestation and lactation) showed 10× higher lipid peroxidation levels than animals treated with normoprotein (17% casein) at 100 days of age. In addition, we observed the following reductions in enzymatic activities: superoxide dismutase, 16%; catalase, 30%; glutathione peroxidase, 34%; glutathione-S-transferase, 51%; glutathione reductase, 23%; glucose-6-phosphate dehydrogenase, 31%; and in non-enzymatic glutathione system, 46%. This study is the first to focus on the role of maternal LP nutrition in oxidative balance in a central nervous system structure responsible for cardiovascular control in adult rats. Our data observed changes in oxidative balance in the offspring, therefore, bring a new concept related to early undernutrition and can help in the development of a new clinical strategy to combat the effects of nutritional insult. Wherein the central oxidative imbalance is a feasible mechanism underlying the hypertension risk in adulthood triggered by maternal LP diet.

  11. Effects of Tianeptine on Adult Rats Following Prenatal Stress

    PubMed Central

    Lee, Hwayoung; Kim, Hyung-Ki; Kwon, Jun-Tack; Kim, Young Ock; Seo, Jonghoon; Lee, Sanghyun; Cho, Ik-Hyun

    2018-01-01

    Objective Exposing a pregnant female to stress during the critical period of embryonic fetal brain development increases the risk of psychiatric disorders in the offspring. The objective of this study was to investigate the effect of antidepressant tianeptine on prenatally stressed (PNS) rats. Methods In this study, a repeated variable stress paradigm was applied to pregnant rats during the last week of gestation. To investigate the effects of antidepressant tianeptine on PNS rats, behavioral and protein expression analyses were performed. Forced swim test, open field test, and social interaction test were performed to determine changes in PNS rats compared to non-stressed offspring. Haloperidol was used as a positive control as an antipsychotic drug based on previous studies. Results Behavioral changes were restored after treatment with tianeptine or haloperidol. Western blot and immunohistochemical analyses of the prefrontal cortex revealed downregulation of several neurodevelopmental proteins in PNS rats. After treatment with tianeptine or haloperidol, their expression levels were increased. Conclusion Downregulation of several proteins in PNS rats might have caused subsequent behavioral changes in PNS rats. After tianeptine or haloperidol treatment, behavioral changes in PNS rats were restored. Therefore, tianeptine might decrease incidence of prenatal stress related-psychiatric disorders such as depression and schizophrenia. PMID:29739134

  12. Differential effects of habitual chow-based and semi-purified diets on lipid metabolism in lactating rats and their offspring.

    PubMed

    Del Bas, Josep Maria; Caimari, Antoni; Ceresi, Enzo; Arola-Arnal, Anna; Palou, Andreu; Arola, Lluís; Crescenti, Anna

    2015-03-14

    Diet during pregnancy and lactation is a critical factor in relation to the health of dams and their offspring. Currently, control diets used in metabolic imprinting studies differ in composition and type, i.e. semi-purified diets (SD) or chow-based diets (ND). The aim of the present study was to determine whether two widely used control diets, a SD and a ND, that mainly differ in fat content (5·08 and 3·26 %, respectively) and its sources (soyabean oil for the SD and cereals and fish for the ND), fibre (6 and 15 %, respectively), and cholesterol (26 and 69 mg/kg diet, respectively) can influence the lipid metabolism of dams and their offspring. Wistar rats were fed either the SD or the ND during pregnancy and lactation. At weaning, SD-fed dams presented severe hepatic steatosis and increased levels of circulating TAG, NEFA and insulin. Importantly, the offspring presented an altered plasma lipid profile. In contrast, the ND allowed for a normal gestation and lactation process, and did not affect the metabolism of offspring. In parallel, virgin rats fed the SD showed no metabolic alterations. A higher intake of SFA and MUFA and a lower consumption of PUFA observed in SD-fed dams during the lactation period could contribute to explaining the observed effects. In conclusion, two different control diets produced very different outcomes in the lipid metabolism of lactating rats and their offspring. The present results highlight the importance of the assessment of the metabolic state of dams when interpreting the results of metabolic programming studies.

  13. Perinatal Exposure to Perfluorooctane Sulfonate Affects Glucose Metabolism in Adult Offspring

    PubMed Central

    Wan, Hin T.; Zhao, Yin G.; Leung, Pik Y.; Wong, Chris K. C.

    2014-01-01

    Perfluoroalkyl acids (PFAAs) are globally present in the environment and are widely distributed in human populations and wildlife. The chemicals are ubiquitous in human body fluids and have a long serum elimination half-life. The notorious member of PFAAs, perfluorooctane sulfonate (PFOS) is prioritized as a global concerning chemical at the Stockholm Convention in 2009, due to its harmful effects in mammals and aquatic organisms. PFOS is known to affect lipid metabolism in adults and was found to be able to cross human placenta. However the effects of in utero exposure to the susceptibility of metabolic disorders in offspring have not yet been elucidated. In this study, pregnant CD-1 mice (F0) were fed with 0, 0.3 or 3 mg PFOS/kg body weight/day in corn oil by oral gavage daily throughout gestational and lactation periods. We investigated the immediate effects of perinatal exposure to PFOS on glucose metabolism in both maternal and offspring after weaning (PND 21). To determine if the perinatal exposure predisposes the risk for metabolic disorder to the offspring, weaned animals without further PFOS exposure, were fed with either standard or high-fat diet until PND 63. Fasting glucose and insulin levels were measured while HOMA-IR index and glucose AUCs were reported. Our data illustrated the first time the effects of the environmental equivalent dose of PFOS exposure on the disturbance of glucose metabolism in F1 pups and F1 adults at PND 21 and 63, respectively. Although the biological effects of PFOS on the elevated levels of fasting serum glucose and insulin levels were observed in both pups and adults of F1, the phenotypes of insulin resistance and glucose intolerance were only evident in the F1 adults. The effects were exacerbated under HFD, highlighting the synergistic action at postnatal growth on the development of metabolic disorders. PMID:24498028

  14. Dietary enrichment with alpha-linolenic acid during pregnancy attenuates insulin resistance in adult offspring in mice.

    PubMed

    Hollander, K S; Tempel Brami, C; Konikoff, F M; Fainaru, M; Leikin-Frenkel, A

    2014-07-01

    Our objective was to test the contribution of dietary enrichment in essential or saturated fatty acids, in normocaloric diets, on the lipid accumulation and insulin resistance in the adult offspring in a C57Bl6/J mice model. Pregnant mothers were fed normocaloric diets containing 6% fat enriched in essential fatty acids (EFA): alpha-linolenic (ALA-18:3, n-3), linoleic (LA-18:2, n-6), or saturated fatty acids (SFA). After a washing-out period with regular diet, the offspring received a high-fat diet before euthanization. Adult mice fed maternal ALA showed lower body weight gain and lower liver fat accumulation, lower HOMA index and lower stearoyl-CoA desaturase (SCD1) activity than those fed maternal SFA. The results observed using this novel model suggest that ALA in maternal diet may have the potential to inhibit insulin resistance in adult offspring.

  15. Effects of prenatal and perinatal administration of phencyclidine on the behavioral development of rat offspring.

    PubMed

    Nabeshima, T; Yamaguchi, K; Hiramatsu, M; Ishikawa, K; Furukawa, H; Kameyama, T

    1987-11-01

    The effects of prenatal and perinatal administration of a nonteratogenic dose of phencyclidine (PCP) on the behavioral development of Sprague-Dawley rats were examined. In the offspring prenatally treated with PCP (10 mg/kg) between days 7 and 17 of gestation, a decrease in maternal body weight in the gestation period, a decrease in fetal body weight and body length, a decrease in viability of offsprings, and a decrease in the body weights of the offspring in the nursing period were observed. Furthermore, PCP pups had difficulty performing the rota-rod task at 4 weeks and exhibited a decrease in sensitivity to challenged PCP at 5 weeks (female). In the offspring prenatally treated with PCP between days 7 and 21 of gestation, a decrease in the body weights of dams, fetuses and offspring, and a decrease in the viability of offsprings were observed. PCP pups showed an increase in the score for head-twitch response (male), a delay in the development of ambulation, negative geotaxis (male), bar holding and rope-descending behavior (female). However, the PCP administration during prenatal (between days 17 and 21 of gestation) and nursing periods showed only a decrease in viability and body weight of offspring, and a delay in the development of the separation of eyelids. These results suggest that more attention should be given to the developmental toxicity of PCP.

  16. Antenatal/early postnatal hypothyroidism increases the contribution of Rho-kinase to contractile responses of mesenteric and skeletal muscle arteries in adult rats.

    PubMed

    Gaynullina, Dina K; Sofronova, Svetlana I; Shvetsova, Anastasia A; Selivanova, Ekaterina K; Sharova, Anna P; Martyanov, Andrey A; Tarasova, Olga S

    2018-05-23

    Maternal thyroid deficiency can increase Rho-kinase procontractile influence in arteries of 2-week-old progeny. Here we hypothesized that augmented role of Rho-kinase persists in arteries from adult progeny of hypothyroid rats. Dams were treated with 6-propyl-2-thiouracil (PTU) in drinking water (0.0007%) during pregnancy and 2 weeks postpartum; control (CON) females received PTU-free water. At the age of 10-12-weeks, serum T 3 /T 4 levels did not differ between PTU and CON male offspring. Cutaneous (saphenous), mesenteric, and skeletal muscle (sural) arteries were studied by wire myography, qPCR, and Western blotting. Saphenous arteries of PTU and CON groups showed similar responses to α 1 -adrenoceptor agonist methoxamine and were equally suppressed by Rho-kinase inhibitor Y27632. Responses of mesenteric arteries also did not differ between PTU and CON, but the effects of Y27632 were more prominent in the PTU group. Sural arteries of PTU rats compared to CON demonstrated augmented responses to methoxamine, increased RhoA mRNA contents and higher levels of MYPT1 phosphorylation at Thr 855 . Intergroup differences in contractile responses and phospho-MYPT1-Thr 855 were eliminated by Y27632. Rho-kinase contribution to contractile responses of mesenteric and especially sural arteries is augmented in adult PTU rats. Therefore, maternal thyroid deficiency may have long-term detrimental consequences for vasculature in adult offspring.

  17. Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats.

    PubMed

    Boyes, William K; Degn, Laura; George, Barbara Jane; Gilbert, Mary E

    2018-04-21

    Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction. Copyright © 2018. Published by Elsevier B.V.

  18. Maternal obesity in the ewe increases cardiac ventricular expression of glucocorticoid receptors, proinflammatory cytokines and fibrosis in adult male offspring

    PubMed Central

    Odhiambo, John F.; McCormick, Richard J.; Nathanielsz, Peter W.; Ford, Stephen P.

    2017-01-01

    Obesity during human pregnancy predisposes offspring to obesity and cardiovascular disease in postnatal life. In a sheep model of maternal overnutrition/obesity we have previously reported myocardial inflammation and fibrosis, as well as cardiac dysfunction in late term fetuses, in association with chronically elevated blood cortisol. Significant research has suggested a link between elevated glucocorticoid exposure in utero and hypertension and cardiovascular disease postnatally. Here we examined the effects of maternal obesity on myocardial inflammation and fibrosis of their adult offspring. Adult male offspring from control (CON) mothers fed 100% of National Research Council (NRC) recommendations (n = 6) and male offspring from obese mothers (MO) fed 150% NRC (n = 6), were put on a 12-week ad libitum feeding challenge then necropsied. At necropsy, plasma cortisol and left and right ventricular thickness were markedly increased (P<0.05) in adult male MO offspring. Myocardial collagen content and collagen-crosslinking were greater (P<0.05) in MO offspring compared to CON offspring in association with increased mRNA and protein expression of glucocorticoid receptors (GR). No group difference was found in myocardial mineralocorticoids receptor (MR) protein expression. Further, mRNA expression for the proinflammatory cytokines: cluster of differentiation (CD)-68, transforming growth factor (TGF)-β1, and tumor necrosis factor (TNF)-α were increased (P < 0.05), and protein expression of CD-68, TGF-β1, and TNF-α tended to increase (P<0.10) in MO vs. CON offspring. These data provide evidence for MO-induced programming of elevated plasma cortisol and myocardial inflammation and fibrosis in adult offspring potentially through increased GR. PMID:29267325

  19. Can domestic helpers moderate distress of offspring caregivers of cognitively impaired older adults?

    PubMed

    Chong, Alice M L; Kwan, Chi Wai; Lou, Vivian W Q; Chi, Iris

    2017-10-01

    This study examined the moderating effect of domestic helpers on distress of offspring caring for parents with cognitive impairments and with or without behavioural problems. This secondary analysis of data involved 5086 Hong Kong Chinese adults aged 60 or older applying for public long-term care services from 2010 to 2012. All variables were measured using the mandatory Hong Kong version of the Minimum Data Set-Home Care 2.0. Regarding taking care of parents with cognitive impairments, 10.7% of offspring primary caregivers were aided by domestic helpers, 55.54% reported distress, and 75.70% lived with their parents. Assistance from domestic helpers reduced offspring caregiver distress if the offspring provided psychological support to parents (ratio of OR = 0.655, p < .05) and were not living with parents (ratio of OR = 1.183, p < .01). These findings might suggest: a) the positive effects of audience on psychological responses to stress; b) caregiving is usually less stressful for informal caregivers not residing with care recipients. Conversely, having a domestic helper could add to caregiving distress if offspring caregivers live with their parents, most likely because offspring may witness difficulties that domestic helpers face in providing dementia care.

  20. Paternal and maternal alcohol consumption: effects on offspring in two strains of rats.

    PubMed

    Abel, E L

    1989-08-01

    Long-Evans and Sprague-Dawley male rats were given liquid alcohol diets containing 35%, 17.5%, or 0% ethanol-derived calories (EDC). The latter two groups were pair fed to the higher alcohol diet group. A fourth group received lab chow and water ad libitum to assess the role of paternal undernutrition associated with alcohol consumption. After three or four weeks of diet consumption, these males were bred to females of the same strain. Pregnant females were divided into similarly treated alcohol groups and were fed these diets beginning on gestation Day 8, thus creating a factorial study with strain, paternal, and maternal alcohol consumption as main factors. Paternal alcohol consumption was associated with decreased litter size, decreased testosterone levels, and a strain-related effect on offspring activity. Offspring activity decreased for those sired by 35% and 17.5% EDC Long-Evans fathers. Activity also decreased for offspring sired by 17.5% EDC Sprague-Dawley fathers but increased for those sired by 35% EDC fathers. Paternal alcohol consumption did not affect postnatal mortality or passive avoidance learning of offspring. Maternal alcohol consumption was associated with lower birth weights, lower offspring weights at weaning, increased postnatal mortality, and poorer passive avoidance learning. However, offspring activity was not affected. In a separate study, levels of alcohol in the testes were found to be somewhat, but not significantly, lower than blood alcohol levels. DNA taken from sperm of Long-Evans males consuming alcohol, migrated farther under pulsed field electrophoresis than DNA from control fathers, suggestive of an alcohol-related effect on sperm DNA.

  1. Effects of environmental enrichment during abstinence in morphine dependent parents on anxiety, depressive-like behaviors and voluntary morphine consumption in rat offspring.

    PubMed

    Pooriamehr, Alireza; Sabahi, Parviz; Miladi-Gorji, Hossein

    2017-08-24

    Chronic morphine exposure during puberty increased morphine-induced rewarding effects and sensitization in the next generation. Given the well-known beneficial effects of environmental enrichment on the severity of physical and psychological dependence on morphine, we examined effects of enriched environment during morphine abstinence in morphine dependent parental rats before mating on the anxiety and depressive-like behaviors, and voluntary morphine consumption in their offspring. Paternal and/or maternal rats were injected with bi-daily doses (10mg/kg, 12h intervals) of morphine for 14days followed by rearing in a standard environment (SE) or enriched environment (EE) during 30days of morphine abstinence before mating. The pubertal male and female rat offspring were tested for anxiety (the elevated plus maze- EPM) and depression (sucrose preference test-SPT), and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that EE experience in morphine-dependent both parents result in an increase in the percentage of time spent into open arms/time spent on both arms using EPM in male offspring, higher levels of sucrose preference in female offspring and lower levels of voluntary morphine consumption in male and female offspring. Thus, EE experience in morphine-dependent both parents reduced anxiety, depressive-like behavior and also the voluntary morphine consumption in their offspring during puberty which may prevent the vulnerability of the next generation to drug abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development of Anxiety-Like Behavior via Hippocampal IGF-2 Signaling in the Offspring of Parental Morphine Exposure: Effect of Enriched Environment

    PubMed Central

    Li, Chang-Qi; Luo, Yan-Wei; Bi, Fang-Fang; Cui, Tao-Tao; Song, Ling; Cao, Wen-Yu; Zhang, Jian-Yi; Li, Fang; Xu, Jun-Mei; Hao, Wei; Xing, Xiao-Wei; Zhou, Fiona H; Zhou, Xin-Fu; Dai, Ru-Ping

    2014-01-01

    Opioid addiction is a major social, economic, and medical problem worldwide. Long-term adverse consequences of chronic opiate exposure not only involve the individuals themselves but also their offspring. Adolescent maternal morphine exposure results in behavior and morphologic changes in the brain of their adult offspring. However, few studies investigate the effect of adult opiate exposure on their offspring. Furthermore, the underlying molecular signals regulating the intergenerational effects of morphine exposure are still elusive. We report here that morphine exposure of adult male and female rats resulted in anxiety-like behavior and dendritic retraction in the dentate gyrus (DG) region of the hippocampus in their adult offspring. The behavior and morphologic changes were concomitant with the downregulation of insulin-like growth factor (IGF)-2 signaling in the granular zone of DG. Overexpression of hippocampal IGF-2 by bilateral intra-DG injection of lentivirus encoding the IGF-2 gene prevented anxiety-like behaviors in the offspring. Furthermore, exposure to an enriched environment during adolescence corrected the reduction of hippocampal IGF-2 expression, normalized anxiety-like behavior and reversed dendritic retraction in the adult offspring. Thus, parental morphine exposure can lead to the downregulation of hippocampal IGF-2, which contributed to the anxiety and hippocampal dendritic retraction in their offspring. An adolescent-enriched environment experience prevented the behavior and morphologic changes in their offspring through hippocampal IGF-2 signaling. IGF-2 and an enriched environment may be a potential intervention to prevention of anxiety and brain atrophy in the offspring of parental opioid exposure. PMID:24889368

  3. Effects of a prolonged administration of valepotriates in rats on the mothers and their offspring.

    PubMed

    Tufik, S; Fujita, K; Seabra, M de L; Lobo, L L

    1994-01-01

    Valeriana officinalis L. (Valerianaceae) is widely known to be associated with sedative properties. The effects of a valepotriates mixtures on mothers and progeny were evaluated in rats. A 30-day administration of valepotriates did not change the average length of estral cycle, nor the number of estrous phases during this period. Also, there were no changes on the fertility index. Fetotoxicity and external examination studies did not show differences, although internal examination revealed an increase in number of retarded ossification after the highest doses employed--12 and 24 mg/kg. No changes were detected in the development of the offspring after treatment during pregnancy. As for temperature, valepotriates caused a hypothermizant effect after administration by the intraperitoneal route but not after oral administration. Generally, the valepotriates employed induced some alterations after administration by the intraperitoneal route, but doses given orally were innocuous to pregnant rats and their offspring.

  4. The Preventive Effect of Zuogui Wan on Offspring Rats' Impaired Glucose Tolerance Whose Mothers Had Gestational Diabetes Mellitus

    PubMed Central

    Feng, Qianjin; Niu, Xin; Xu, Kaixia; Wang, Yingli; Wang, Jinlong; Mao, Yingqiu; Gao, Shuangrong

    2016-01-01

    In this experiment, we used streptozotocin (STZ) to establish a model of gestational diabetes mellitus (GDM) rats, where Zuogui Wan was given to GDM rats. After pregnancy, offspring rats were divided into 4 groups: control group, high fat and sugar as the control group, GDM group, and Zuogui Wan GDM group. Rats in high fat and sugar as the control group, GDM group, and Zuogui Wan GDM group were fed with high fat and sugar diet. Rats in control group were fed the basic diet. The means of 2hPG were higher than 7.8 mmol·L−1 and lower than 11.1 mmol·L−1 on the rats of GDM group on week 15, and IGT models were successful. Body weight, abdominal fat weight, the ratio of abdominal fat weight and body weight, fasting plasma glucose, 2hPG, insulin, leptin, total cholesterol, and low density lipoprotein (LDL) of Zuogui Wan GDM group were significantly lower than GDM group. The level of adiponectin in Zuogui Wan GDM group was significantly higher than GDM group. And we concluded that giving Zuogui Wan to GDM rats can have a preventive effect on the offsprings' IGT induced by high fat and sugar diet. PMID:27034700

  5. Increased renal sympathetic nerve activity leads to hypertension and renal dysfunction in offspring from diabetic mothers.

    PubMed

    de Almeida Chaves Rodrigues, Aline Fernanda; de Lima, Ingrid Lauren Brites; Bergamaschi, Cássia Toledo; Campos, Ruy Ribeiro; Hirata, Aparecida Emiko; Schoorlemmer, Guus Hermanus Maria; Gomes, Guiomar Nascimento

    2013-01-15

    The exposure of the fetus to a hyperglycemic environment promotes the development of hypertension and renal dysfunction in the offspring at adult age. We evaluated the role of renal nerves in the hypertension and renal changes seen in offspring of diabetic rats. Diabetes was induced in female Wistar rats (streptozotocin, 60 mg/kg ip) before mating. Male offspring from control and diabetic dams were studied at an age of 3 mo. Systolic blood pressure measured by tail cuff was increased in offspring of diabetic dams (146 ± 1.6 mmHg, n = 19, compared with 117 ± 1.4 mmHg, n = 18, in controls). Renal function, baseline renal sympathetic nerve activity (rSNA), and arterial baroreceptor control of rSNA were analyzed in anesthetized animals. Glomerular filtration rate, fractional sodium excretion, and urine flow were significantly reduced in offspring of diabetic dams. Two weeks after renal denervation, blood pressure and renal function in offspring from diabetic dams were similar to control, suggesting that renal nerves contribute to sodium retention in offspring from diabetic dams. Moreover, basal rSNA was increased in offspring from diabetic dams, and baroreceptor control of rSNA was impaired, with blunted responses to infusion of nitroprusside and phenylephrine. Thus, data from this study indicate that in offspring from diabetic mothers, renal nerves have a clear role in the etiology of hypertension; however, other factors may also contribute to this condition.

  6. Effects of Different Levels of Calcium Intake on Brain Cell Apoptosis in Fluorosis Rat Offspring and Its Molecular Mechanism.

    PubMed

    Sun, Yan; Ke, Lulu; Zheng, Xiangren; Li, Tao; Ouyang, Wei; Zhang, Zigui

    2017-04-01

    The purpose of the investigation is to reveal the influence of dietary calcium on fluorosis-induced brain cell apoptosis in rat offspring, as well as the underlying molecular mechanism. Sprague-Dawley (SD) female rats were randomly divided into five groups: control group, fluoride group, low calcium, low calcium fluoride group, and high calcium fluoride group. SD male rats were used for breeding only. After 3 months, male and female rats were mated in a 1:1 ratio. Subsequently, 18-day-old gestation rats and 14- and 28-day-old rats were used as experimental subjects. We determined the blood/urine fluoride, the blood/urine calcium, the apoptosis in the hippocampus, and the expression levels of apoptosis-related genes, namely Bcl-2, caspase 12, and JNK. Blood or blood/urine fluoride levels and apoptotic cells were found significantly increased in fluorosis rat offspring as compared to controls. Furthermore, the Bcl-2 messenger RNA (mRNA) expression levels significantly decreased, and caspase 12 mRNA levels significantly increased in each age group as compared to controls. Compared with the fluoride group, the blood/urine fluoride content and apoptotic cells evidently decreased in the high calcium fluoride group, Bcl-2 mRNA expression significantly increased and caspase 12 mRNA expression significantly decreased in each age group. All results showed no gender difference. Based on these results, the molecular mechanisms of fluorosis-induced brain cell apoptosis in rat offspring may include the decrease in Bcl-2 mRNA expression level and increase in caspase 12 mRNA expression signaling pathways. High calcium intake could reverse these gene expression trends. By contrast, low calcium intake intensified the toxic effects of fluoride on brain cells.

  7. Psychopathology in the adolescent and young adult offspring of parents with dysthymic disorder and major depressive disorder.

    PubMed

    Lizardi, Humberto; Klein, Daniel N; Shankman, Stewart A

    2004-03-01

    This study addressed the following question: are the adolescent and young adult offspring of parents with early-onset dysthymic disorder (DD) at increased risk for psychopathology? Participants included 41 offspring of 21 outpatients with early-onset DD, 19 offspring of nine outpatients with episodic major depressive disorder (MDD), and 32 offspring of 11 normal controls (NCs). Lifetime best-estimate diagnoses were determined for each offspring using a team consensus method. Diagnoses were derived blind to all information about the index parents. The offspring of outpatients with early-onset DD exhibited significantly higher lifetime rates of a broad range of psychiatric disorders than the offspring of NCs. In addition, the offspring of outpatients with early-onset DD exhibited significantly higher lifetime rates of DD, anxiety disorders, and phobia than the offspring of outpatients with episodic MDD. These results support the importance of early-onset DD in parents as a risk factor for psychopathology in their offspring.

  8. Maternal sodium butyrate supplement elevates the lipolysis in adipose tissue and leads to lipid accumulation in offspring liver of weaning-age rats.

    PubMed

    Zhou, Jiabin; Gao, Shixing; Chen, Jinglong; Zhao, Ruqian; Yang, Xiaojing

    2016-07-22

    Sodium butyrate (SB) is reported to regulate lipid metabolism in mammals, and the relationship between maternal nutrition and offspring growth has drawn much attention in the last several years. To elucidate the effects of maternal dietary SB supplementation on hepatic lipid metabolism in weaning rats, we fed 16 primiparous purebred female SD rats either a chow-diet or a 1 % sodium butyrate diet throughout pregnancy and lactation. At weaning age, samples of the maternal subcutaneous adipose tissue and offspring liver were taken. The serum indexes and expressions of proteins related to lipid metabolism were detected in the mother and offspring, respectively. The results showed that the maternal SB supplement increased the concentration of non-esterified fatty acid (NEFA) in the maternal and offspring serum (P < 0.05). Total cholesterol (Tch) increased significantly in the weaning-rat serum (P < 0.05). Maternal adipose tissue from the SB-supplemented rats showed higher content of protein G-coupled protein (GPR43) and protein kinase A (PKA) (P < 0.05). The expression of protein adipose triglyceride lipase (ATGL), and of total and phosphorylated hormone sensitive lipase (HSL), in the maternal adipose tissue increased significantly (P < 0.05) compared to the control group. However the proteins related to lipogenesis showed no significant changes. Moreover, the concentration of triglyceride in the offspring liver increased significantly, and this likely resulted from an increase in the levels of fatty acids binding protein (FABP) and fatty acid translocase (CD36) protein (P < 0.05). SB exposure during pregnancy and lactation increased the hepatic total cholesterol (Tch) content (P < 0.01), which was related to a significantly up-regulated offspring hepatic expression of low density lipoprotein receptor (LDLR) protein (P < 0.05). These results indicate that a maternal SB supplement during pregnancy and the lactation period promotes maternal

  9. Prenatal choline supplementation attenuates neuropathological response to status epilepticus in the adult rat hippocampus

    PubMed Central

    Wong-Goodrich, Sarah J. E.; Mellott, Tiffany J.; Glenn, Melissa J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Prenatal choline supplementation (SUP) protects adult rats against spatial memory deficits observed after excitotoxin-induced status epilepticus (SE). To examine the mechanism underlying this neuroprotection, we determined the effects of SUP on a variety of hippocampal markers known to change in response to SE and thought to underlie ensuing cognitive deficits. Adult offspring from rat dams that received either a Control or SUP diet on embryonic days 12–17 were administered saline or kainic acid (i.p.) to induce SE and were euthanized 16 days later. SUP markedly attenuated seizure-induced hippocampal neurodegeneration, dentate cell proliferation, hippocampal GFAP mRNA expression levels, prevented the loss of hippocampal GAD65 protein and mRNA expression, and altered growth factor expression patterns. SUP also enhanced pre-seizure hippocampal levels of BDNF, NGF, and IGF-1, which may confer a neuroprotective hippocampal microenvironment that dampens the neuropathological response to and/or helps facilitate recovery from SE to protect cognitive function. PMID:18353663

  10. Fetal development and renal function in adult rats prenatally subjected to sodium overload.

    PubMed

    Cardoso, Henriqueta D; Cabral, Edjair V; Vieira-Filho, Leucio D; Vieyra, Adalberto; Paixão, Ana D O

    2009-10-01

    The aims of this study were (1) to evaluate two factors that affect fetal development--placental oxidative stress (Ox) and plasma volume (PV)--in dams with sodium overload and (2) to correlate possible alterations in these factors with subsequent modifications in the renal function of adult offspring. Wistar dams were maintained on 0.17 M NaCl instead of water from 20 days before mating until either the twentieth pregnancy day/parturition or weaning. Colorimetric methods were used to measure Ox in maternal and offspring tissues, PV, 24-h urinary protein (U(Prot24 h)) and serum triacylglycerols (TG) and cholesterol (Chol). Renal hemodynamics was evaluated in the offspring at 90 days of age using a blood pressure transducer, a flow probe and inulin clearance to measure mean arterial pressure (MAP), renal blood flow and glomerular filtration rate (GFR), respectively. The number of nephrons (NN) was counted in kidney suspensions. Dams showed unchanged PV, placental Ox and fetal weight but increased U(Prot24 h) (150%, P < 0.05). Prenatally sodium-overloaded pups showed increased U(Prot24 h) (45%, P < 0.05) but unchanged MAP, renal hemodynamics, NN and kidney Ox. Prenatally and postnatally sodium-overloaded rats showed increased U(Prot24 h) (27%, P < 0.05) and kidney Ox (44%, P < 0.05), reduced GFR (12%, P < 0.05), increased PV (26%, P < 0.05) and unchanged MAP and NN. The TG increased in both groups of treated offspring (21%, P < 0.05), whereas Chol increased only in the postnatally sodium-overloaded group. We conclude that salt overload from the prenatal stage until weaning leads to alterations in lipid metabolism and in the renal function of the pups, which are additional to those alterations seen in rats only overloaded prenatally.

  11. Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats

    PubMed Central

    Zambrano, E; Martínez-Samayoa, P M; Rodríguez-González, G L; Nathanielsz, P W

    2010-01-01

    Obesity involving women of reproductive years is increasing dramatically in both developing and developed nations. Maternal obesity and accompanying high energy obesogenic dietary (MO) intake prior to and throughout pregnancy and lactation program offspring physiological systems predisposing to altered carbohydrate and lipid metabolism. Whether maternal obesity-induced programming outcomes are reversible by altered dietary intake commencing before conception remains an unanswered question of physiological and clinical importance. We induced pre-pregnancy maternal obesity by feeding female rats with a high fat diet from weaning to breeding 90 days later and through pregnancy and lactation. A dietary intervention group (DINT) of MO females was transferred to normal chow 1 month before mating. Controls received normal chow throughout. Male offspring were studied. Offspring birth weights were similar. At postnatal day 21 fat mass, serum triglycerides, leptin and insulin were elevated in MO offspring and were normalized by DINT. At postnatal day 120 serum glucose, insulin and homeostasis model assessment (HOMA) were increased in MO offspring; glucose was restored, and HOMA partially reversed to normal by DINT. At postnatal day 150 fat mass was increased in MO and partially reversed in DINT. At postnatal day 150, fat cell size was increased by MO. DINT partially reversed these differences in fat cell size. We believe this is the first study showing reversibility of adverse metabolic effects of maternal obesity on offspring metabolic phenotype, and that outcomes and reversibility vary by tissue affected. PMID:20351043

  12. Maternal Caloric Restriction Implemented during the Preconceptional and Pregnancy Period Alters Hypothalamic and Hippocampal Endocannabinoid Levels at Birth and Induces Overweight and Increased Adiposity at Adulthood in Male Rat Offspring

    PubMed Central

    Ramírez-López, María Teresa; Vázquez, Mariam; Bindila, Laura; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosarío Noemí; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Ouro, Daniel; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Rodríguez de Fonseca, Fernando

    2016-01-01

    Exposure to inadequate nutritional conditions in critical windows of development has been associated to disturbances on metabolism and behavior in the offspring later in life. The role of the endocannabinoid system, a known regulator of energy expenditure and adaptive behaviors, in the modulation of these processes is unknown. In the present study, we investigated the impact of exposing rat dams to diet restriction (20% less calories than standard diet) during pre-gestational and gestational periods on: (a) neonatal outcomes; (b) endocannabinoid content in hypothalamus, hippocampus and olfactory bulb at birth; (c) metabolism-related parameters; and (d) behavior in adult male offspring. We found that calorie-restricted dams tended to have a reduced litter size, although the offspring showed normal weight at birth. Pups from calorie-restricted dams also exhibited a strong decrease in the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and palmitoylethanolamide (PEA) in the hypothalamus at birth. Additionally, pups from diet-restricted dams displayed reduced levels of AEA in the hippocampus without significant differences in the olfactory bulb. Moreover, offspring exhibited increased weight gain, body weight and adiposity in adulthood as well as increased anxiety-related responses. We propose that endocannabinoid signaling is altered by a maternal caloric restriction implemented during the preconceptional and pregnancy periods, which might lead to modifications of the hypothalamic and hippocampal circuits, potentially contributing to the long-term effects found in the adult offspring. PMID:27847471

  13. Excess maternal salt intake produces sex-specific hypertension in offspring: putative roles for kidney and gastrointestinal sodium handling.

    PubMed

    Gray, Clint; Al-Dujaili, Emad A; Sparrow, Alexander J; Gardiner, Sheila M; Craigon, Jim; Welham, Simon J M; Gardner, David S

    2013-01-01

    Hypertension is common and contributes, via cardiovascular disease, towards a large proportion of adult deaths in the Western World. High salt intake leads to high blood pressure, even when occurring prior to birth - a mechanism purported to reside in altered kidney development and later function. Using a combination of in vitro and in vivo approaches we tested whether increased maternal salt intake influences fetal kidney development to render the adult individual more susceptible to salt retention and hypertension. We found that salt-loaded pregnant rat dams were hypernatraemic at day 20 gestation (147±5 vs. 128±5 mmoles/L). Increased extracellular salt impeded murine kidney development in vitro, but had little effect in vivo. Kidneys of the adult offspring had few structural or functional abnormalities, but male and female offspring were hypernatraemic (166±4 vs. 149±2 mmoles/L), with a marked increase in plasma corticosterone (e.g. male offspring; 11.9 [9.3-14.8] vs. 2.8 [2.0-8.3] nmol/L median [IQR]). Furthermore, adult male, but not female, offspring had higher mean arterial blood pressure (effect size, +16 [9-21] mm Hg; mean [95% C.I.]. With no clear indication that the kidneys of salt-exposed offspring retained more sodium per se, we conducted a preliminary investigation of their gastrointestinal electrolyte handling and found increased expression of proximal colon solute carrier family 9 (sodium/hydrogen exchanger), member 3 (SLC9A3) together with altered faecal characteristics and electrolyte handling, relative to control offspring. On the basis of these data we suggest that excess salt exposure, via maternal diet, at a vulnerable period of brain and gut development in the rat neonate lays the foundation for sustained increases in blood pressure later in life. Hence, our evidence further supports the argument that excess dietary salt should be avoided per se, particularly in the range of foods consumed by physiologically immature young.

  14. Excess Maternal Salt Intake Produces Sex-Specific Hypertension in Offspring: Putative Roles for Kidney and Gastrointestinal Sodium Handling

    PubMed Central

    Gray, Clint; Al-Dujaili, Emad A.; Sparrow, Alexander J.; Gardiner, Sheila M.; Craigon, Jim; Welham, Simon J.M.; Gardner, David S.

    2013-01-01

    Hypertension is common and contributes, via cardiovascular disease, towards a large proportion of adult deaths in the Western World. High salt intake leads to high blood pressure, even when occurring prior to birth – a mechanism purported to reside in altered kidney development and later function. Using a combination of in vitro and in vivo approaches we tested whether increased maternal salt intake influences fetal kidney development to render the adult individual more susceptible to salt retention and hypertension. We found that salt-loaded pregnant rat dams were hypernatraemic at day 20 gestation (147±5 vs. 128±5 mmoles/L). Increased extracellular salt impeded murine kidney development in vitro, but had little effect in vivo. Kidneys of the adult offspring had few structural or functional abnormalities, but male and female offspring were hypernatraemic (166±4 vs. 149±2 mmoles/L), with a marked increase in plasma corticosterone (e.g. male offspring; 11.9 [9.3–14.8] vs. 2.8 [2.0–8.3] nmol/L median [IQR]). Furthermore, adult male, but not female, offspring had higher mean arterial blood pressure (effect size, +16 [9–21] mm Hg; mean [95% C.I.]. With no clear indication that the kidneys of salt-exposed offspring retained more sodium per se, we conducted a preliminary investigation of their gastrointestinal electrolyte handling and found increased expression of proximal colon solute carrier family 9 (sodium/hydrogen exchanger), member 3 (SLC9A3) together with altered faecal characteristics and electrolyte handling, relative to control offspring. On the basis of these data we suggest that excess salt exposure, via maternal diet, at a vulnerable period of brain and gut development in the rat neonate lays the foundation for sustained increases in blood pressure later in life. Hence, our evidence further supports the argument that excess dietary salt should be avoided per se, particularly in the range of foods consumed by physiologically immature young. PMID

  15. Prenatal exposure to escitalopram and/or stress in rats produces limited effects on endocrine, behavioral, or gene expression measures in adult male rats

    PubMed Central

    Bourke, Chase H.; Stowe, Zachary N.; Neigh, Gretchen N.; Olson, Darin E.; Owens, Michael J.

    2013-01-01

    Stress and/or antidepressants during pregnancy have been implicated in a wide range of long-term effects in the offspring. We investigated the long-term effects of prenatal stress and/or clinically relevant antidepressant exposure on male adult offspring in a model of the pharmacotherapy of maternal depression. Female Sprague-Dawley rats were implanted with osmotic minipumps that delivered clinically relevant exposure to the antidepressant escitalopram throughout gestation. Subsequently, pregnant females were exposed on gestational days 10–20 to a chronic unpredictable mild stress paradigm. The male offspring were analyzed in adulthood. Baseline physiological measurements were largely unaltered by prenatal manipulations. Behavioral characterization of the male offspring, with or without pre-exposure to an acute stressor, did not reveal any group differences. Prenatal stress exposure resulted in a faster return towards baseline following the peak response to an acute restraint stressor, but not an airpuff startle stressor, in adulthood. Microarray analysis of the hippocampus and hypothalamus comparing all treatment groups revealed no significantly-altered transcripts. Real time PCR of the hippocampus confirmed that several transcripts in the CRFergic, serotonergic, and neural plasticity pathways were unaffected by prenatal exposures. This stress model of maternal depression and its treatment indicate that escitalopram use and/or stress during pregnancy produced no alterations in our measures of male adult behavior or the transcriptome, however prenatal stress exposure resulted in some evidence for increased glucocorticoid negative feedback following an acute restraint stress. Study design should be carefully considered before implications for human health are ascribed to prenatal exposure to stress or antidepressant medication. PMID:23906943

  16. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring.

    PubMed

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2016-04-01

    The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure. © 2016 John Wiley & Sons Australia, Ltd.

  17. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway.

    PubMed

    Zhong, Liang; Luo, Foquan; Zhao, Weilu; Feng, Yunlin; Wu, Liuqin; Lin, Jiamei; Liu, Tianyin; Wang, Shengqiang; You, Xuexue; Zhang, Wei

    2016-10-01

    The brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) (BDNF-TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF-TrkB signalling pathway is involved in propofol-induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real-time PCR (RT-PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated-TrkB (phospho-TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho-TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) reversed all of the observed changes. Treatment with 7,8-DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF-TrkB signalling pathway. The TrkB agonist 7,8-DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular

  18. Plasmodium berghei infection in pregnant rats: effects on antibody response and course of infection in offspring.

    PubMed

    Palmer, T T

    1978-06-01

    The effects of primary, patent Plasmodium berghei infection in Sprague-Dawley rats during pregnancy upon the course of infection and the humoral antibody response to malaria in their offspring were examined. Malaria specific antibody determined by an indirect fluorescent antibody test correlated well with the parasitologic profiles of each experimental group. Utilization of foster mother groups indicated passive transfer of protective antibody through milk. Evidence for in utero sensitization by soluble malaria antigens was shown by an anamnestic-like antibody response during subsequent infection of offspring from infected mothers.

  19. Ketamine administered pregnant rats impair learning and memory in offspring via the CREB pathway.

    PubMed

    Li, Xinran; Guo, Cen; Li, Yanan; Li, Lina; Wang, Yuxin; Zhang, Yiming; Li, Yue; Chen, Yu; Liu, Wenhan; Gao, Li

    2017-05-16

    Ketamine has been reported to impair the capacity for learning and memory. This study examined whether these capacities were also altered in the offspring and investigated the role of the CREB signaling pathway in pregnant rats, subjected to ketamine-induced anesthesia. On the 14th day of gestation (P14), female rats were anesthetized for 3 h via intravenous ketamine injection (200 mg/Kg). Morris water maze task, contextual and cued fear conditioning, and olfactory tasks were executed between the 25th to 30th day after birth (B25-30) on rat pups, and rats were sacrificed on B30. Nerve density and dendritic spine density were examined via Nissl's and Golgi staining. Simultaneously, the contents of Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII), p-CaMKII, CaMKIV, p-CaMKIV, Extracellular Regulated Protein Kinases (ERK), p-ERK, Protein Kinase A (PKA), p-PKA, cAMP-Response Element Binding Protein (CREB), p-CREB, and Brain Derived Neurotrophic Factor (BDNF) were detected in the hippocampus. We pretreated PC12 cells with both PKA inhibitor (H89) and ERK inhibitor (SCH772984), thus detecting levels of ERK, p-ERK, PKA, p-PKA, p-CREB, and BDNF. The results revealed that ketamine impaired the learning ability and spatial as well as conditioned memory in the offspring, and significantly decreased the protein levels of ERK, p-ERK, PKA, p-PKA, p-CREB, and BDNF. We found that ERK and PKA (but not CaMKII or CaMKIV) have the ability to regulate the CREB-BDNF pathway during ketamine-induced anesthesia in pregnant rats. Furthermore, ERK and PKA are mutually compensatory for the regulation of the CREB-BDNF pathway.

  20. Does maternal body mass index during pregnancy influence risk of schizophrenia in the adult offspring?

    PubMed Central

    Khandaker, G M; Dibben, C R M; Jones, P B

    2012-01-01

    Summary Maternal obesity in pregnancy has been linked with several adverse outcomes in offspring including schizophrenia. The rising prevalence of obesity may contribute to an increase in the number of schizophrenia cases in the near future; therefore, it warrants further exploration. We reviewed current evidence regarding maternal body mass index (BMI) in pregnancy and risk of schizophrenia in adult offspring. We searched PubMed and Embase databases and included studies that were based on large and representative population-based datasets. A qualitative review was undertaken due to heterogeneity between studies. Four studies with 305 cases of schizophrenia and 24,442 controls were included. Maternal obesity (pre-pregnant BMI over 29 or 30 compared with mothers with low or average BMI) was associated with two- to threefold increased risk of schizophrenia in the adult offspring in two birth cohorts. High maternal BMI at both early and late pregnancy also increased risk of schizophrenia in the offspring. Discrepant findings from one study could be attributable to sample characteristics and other factors. The area needs more research. Future studies should take into account obstetric complications, diabetes, maternal infections and immune responses that might potentially mediate this association. PMID:22188548

  1. Beneficial effects of vitamin C treatment on pregnant rats exposed to formaldehyde: Reversal of immunosuppression in the offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Beatriz Silva; Barioni, Éric Diego; Helua

    Inhalation of formaldehyde (FA) during the pregnancy induces oxidative stress in the uterus, and here we hypothesized that this mechanism may be responsible for the impaired immune response detected in the offspring. In order to investigate the protective effects of Vitamin C on the oxidative stress induced by FA in the uterine microenvironment, pregnant Wistar rats were treated with vitamin C (150 mg/kg, gavage) or vehicle (distilled water, gavage) 1 h before FA exposure (0.92 mg/m{sup 3}, 1 h/day, 5 days/week), for 21 days, and the 30 days old offspring were submitted to LPS injection (Salmonella abortus equi, 5 mg/kg,more » i.p.). The enhanced gene expression of iNOS, COX-1 and COX-2 and decreased gene expression of SOD-2 in the uterus of FA exposed mothers was rescued by Vit C treatment. Moreover, vitamin C rescued the impaired immune response elicited by LPS in the offspring from FA exposed mothers, by increasing the number of blood and bone marrow leukocytes, and augmenting gene expression of IL-6 and reducing mRNA levels of IL-10 and IFN in the lungs. Vitamin C treatment did not rescue the impaired TLR4-NF-kB pathway in the lung of the offspring, suggesting that FA-induced uterine oxidative stress affects other inflammatory pathways activated by LPS in the offspring. Together, data obtained here confirm our hypothesis that FA-induced oxidative stress in the uterine microenvironment modifies the programming mechanisms of the immune defenses of offspring, leading to an impaired host defense. - Highlights: • FA exposure during pregnancy induces oxidative stress in the uterus. • Vitamin C treatment blunted the oxidative stress in uterus induced by FA exposure. • Oxidative stress in uterus after FA exposure impairs the immune response of offspring. • Vitamin C in pregnant rats rescued the impaired immune response in the offspring.« less

  2. Intake of grape procyanidins during gestation and lactation impairs reverse cholesterol transport and increases atherogenic risk indexes in adult offspring.

    PubMed

    Del Bas, Josep Maria; Crescenti, Anna; Arola-Arnal, Anna; Oms-Oliu, Gemma; Arola, Lluís; Caimari, Antoni

    2015-12-01

    Cardiovascular disease (CVD) is one of the most prevalent noncommunicable diseases in humans. Different studies have identified dietary procyanidins as bioactive compounds with beneficial properties against CVD by improving lipid homeostasis, among other mechanisms. The aim of this work was to assess whether grape seed procyanidin consumption at a physiological dose during the perinatal period could influence the CVD risk of the offspring. Wistar rat dams were treated with a grape seed procyanidin extract (GSPE; 25mg/kg of body weight per day) or vehicle during gestation and lactation. The adult male offspring of GSPE-treated dams presented decreased high-density lipoprotein cholesterol (HDL-C) levels, increased total cholesterol-to-HDL-C ratios and an exacerbated fasting triglyceride-to-HDL-C ratios (atherogenic index of plasma) compared to the control group. Impaired reverse cholesterol transport (RCT) was evidenced by the accumulation of cholesterol in skeletal muscle and by decreased fecal excretion of cholesterol and bile acids, which was consistent with the observed mRNA down-regulation of the rate-limiting enzyme in the hepatic bile acid synthesis pathway Cyp7A1. Conversely, GSPE programming also resulted in up-regulated gene expression of different key components of the RCT process, such as hepatic Npc1, Abcg1, Abca1, Lxra, Srebp2, Lcat, Scarb1 and Pltp, and the repression of microRNA miR-33a expression, a key negative controller of hepatic RCT at the gene expression level. Our results show that maternal intake of grape procyanidins during the perinatal period impacts different components of the RCT process, resulting in increased CVD risk in the adult offspring. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The Effect of Neonatal Leptin Antagonism in Male Rat Offspring Is Dependent upon the Interaction between Prior Maternal Nutritional Status and Post-Weaning Diet

    PubMed Central

    Beltrand, J.; Sloboda, D. M.; Connor, K. L.; Truong, M.; Vickers, M. H.

    2012-01-01

    Epidemiological and experimental studies report associations between overweight mothers and increased obesity risk in offspring. It is unclear whether neonatal leptin regulation mediates this association between overweight mothers and offspring obesity. We investigated the effect of neonatal treatment with a leptin antagonist (LA) on growth and metabolism in offspring of mothers fed either a control or a high fat diet. Wistar rats were fed either a control (CON) or a high fat diet (MHF) during pregnancy and lactation. Male CON and MHF neonates received either saline (S) or a rat-specific pegylated LA on days 3, 5, and 7. Offspring were weaned onto either a control or a high fat (hf) diet. At day 100, body composition, blood glucose, β-hydroxybutyrate and plasma leptin and insulin were determined. In CON and MHF offspring, LA increased neonatal bodyweights compared to saline-treated offspring and was more pronounced in MHF offspring. In the post-weaning period, neonatal LA treatment decreased hf diet-induced weight gain but only in CON offspring. LA treatment induced changes in body length, fat mass, body temperature, and bone composition. Neonatal LA treatment can therefore exert effects on growth and metabolism in adulthood but is dependent upon interactions between maternal and post-weaning nutrition. PMID:22548153

  4. Perinatal programming of depressive-like behavior by inflammation in adult offspring mice whose mothers were fed polluted eels: Gender selective effects.

    PubMed

    Soualeh, Nidhal; Dridi, Imen; Eppe, Gauthier; Némos, Christophe; Soulimani, Rachid; Bouayed, Jaouad

    2017-07-01

    Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a

  5. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II-the developmental pattern of neurons in relation to oxidative stress and antioxidant defense system.

    PubMed

    Ahmed, O M; Ahmed, R G; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M

    2012-10-01

    Excessive concentrations of free radicals in the developing brain may lead to neurons maldevelopment and neurons damage and death. Thyroid hormones (THs) states play an important role in affecting the modulation of oxidative stress and antioxidant defense system. Thus, the objective of this study was to clarify the effect of hypothyroidism and hyperthyroidism in rat dams on the neurons development of different brain regions of their offspring at several postnatal weeks in relation to changes in the oxidative stress and antioxidant defense system. The adult female rats were administered methimazole (MMI) in drinking water (0.02% w/v) from gestation day 1 to lactation day 21 to induce hypothyroidism and exogenous thyroxine (T4) in drinking water (0.002% w/v) beside intragastric incubation of 50--200 T4 μg/kg body weight (b. wt.) to induce hyperthyroidism. In normal female rats, the sera total thyroxine (TT4) and total triiodothyronine (TT3) levels were detectably increased at day 10 post-partum than those at day 10 of pregnancy. Free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations in normal offspring were elevated at first, second and third postnatal weeks in an age-dependent manner. In hypothyroid group, a marked depression was observed in sera of dam TT3 and TT4 as well as offspring FT3, FT4 and GH, while there was a significant increase in TSH level with the age progress. The reverse pattern to latter state was recorded in hyperthyroid group. Concomitantly, in control offspring, the rate of neuron development in both cerebellar and cerebral cortex was increased in its density and complexity with age progress. This development may depend, largely, on THs state. Both maternal hypothyroidism and hyperthyroidism caused severe growth retardation in neurons of these regions of their offspring from the first to third weeks. Additionally, in normal offspring, seven antioxidant enzymes, four non-enzymatic antioxidants

  6. HPA axis programming by maternal undernutrition in the male rat offspring.

    PubMed

    Vieau, Didier; Sebaai, Naima; Léonhardt, Marion; Dutriez-Casteloot, Isabelle; Molendi-Coste, Olivier; Laborie, Christine; Breton, Christophe; Deloof, Sylvie; Lesage, Jean

    2007-08-01

    Epidemiological and experimental studies have demonstrated that perinatal alterations such as maternal undernutrition are frequently associated with the onset of several chronic adult diseases. Although the physiological mechanisms involved in this "fetal programming" remain largely unknown, it has been shown that early exposure to undernutrition programs hypothalamic-pituitary-adrenal (HPA) axis throughout lifespan. However, the wide spectrum of experimental paradigms used (species, sex, age of the animals, and duration and severity of undernutrition exposure) has given rise to variable results that are difficult to interpret. To circumvent this problem, we used the same experimental protocol of maternal food restriction to study the effects of a severe maternal undernutrition on the HPA axis activity in the male rat offspring throughout the life, namely from fetal stage to adulthood. Mothers exposed to food restriction received 50% (FR50) of the daily intake of pregnant dams during the last week of gestation and lactation. In FR50 fetuses, HPA axis function was reduced and associated with a decreased placental 11beta-HSD2 activity and a greater transplacental transfer of glucocorticoids. At weaning, maternal food restriction reduced HPA axis activity in response to an ether inhalation stress. In young adults (4-month-old), only fine HPA axis alterations were observed, whereas in older ones (8-month-old), maternal undernutrition was associated with chronic hyperactivity of this neuroendocrine axis. Interestingly, excessive glucocorticoids production is observed in a growing number of pathologies such as metabolic, cognitive, immune and inflammatory diseases, suggesting that they could, at least in part, result from fetal undernutrition and thus have a neurodevelopmental origin.

  7. Effect of GLP-1 Receptor Activation on Offspring Kidney Health in a Rat Model of Maternal Obesity.

    PubMed

    Glastras, Sarah J; Chen, Hui; McGrath, Rachel T; Zaky, Amgad A; Gill, Anthony J; Pollock, Carol A; Saad, Sonia

    2016-03-23

    Maternal obesity is associated with an increased risk of chronic disease in offspring, including type 2 diabetes (T2D). Exendin-4 (Exd-4) activates the glucagon like peptide-1 (GLP-1) receptor thereby decreasing serum glucose levels and body weight. In addition, Exd-4 has been shown to reduce renal and cardiac complications in experimental models of T2D. We hypothesized that treatment with Exd-4 would ameliorate the detrimental effects of maternal and diet-induced obesity on renal characteristics in offspring. Female Sprague-Dawley rats were fed either normal or high-fat diet (HFD) for 6 weeks prior to pregnancy, during pregnancy and lactation, and their offspring were weaned to normal or HFD. The offspring were randomized to Exd-4 or placebo from weaning and their kidneys harvested at Week 9. We found that the kidneys of offspring from obese mothers, regardless of postnatal diet, had significantly increased markers of inflammation, oxidative stress and fibrosis. Exd-4 ameliorated the negative renal effects of maternal obesity and in particular, reduced renal inflammation, oxidative stress and fibrosis. In conclusion, maternal obesity has persisting effects on renal structure in the offspring. GLP-1 analogues are potentially useful for protecting against the deleterious effects of maternal obesity on renal physiology in offspring.

  8. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    USDA-ARS?s Scientific Manuscript database

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  9. Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy.

    PubMed

    Raimundo, Joyce R S; Bergamaschi, Cassia T; Campos, Ruy R; Palma, Beatriz D; Tufik, Sergio; Gomes, Guiomar N

    2016-09-01

    Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure.

  10. Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism

    PubMed Central

    Vega, Claudia C; Reyes-Castro, Luis A; Bautista, Claudia J; Larrea, Fernando; Nathanielsz, Peter W; Zambrano, Elena

    2013-01-01

    BACKGROUND Maternal obesity (MO) impairs maternal and offspring health. Mechanisms and interventions to prevent adverse maternal and offspring outcomes need to be determined. Human studies are confounded by socio-economic status providing the rationale for controlled animal data on effects of maternal exercise (MEx) intervention on maternal (F0) and offspring (F1) outcomes in MO. HYPOTHESIS MO produces metabolic and endocrine dysfunction, increases maternal and offspring glucocorticoid exposure, oxidative stress and adverse offspring outcomes by postnatal day (PND) 36. MEx prevents these outcomes. METHODS F0 female rats ate either control or obesogenic diet from weaning through lactation. Half of each group wheel ran (from day ninety of life through pregnancy beginning day 120) providing four groups (n=8/group) – i) controls, ii) obese, iii) exercised controls and iv) exercised obese. After weaning, PND 21, F1 offspring ate a control diet. Metabolic parameters of F0 prepregnancy and end of lactation and F1 offspring at PND 36 were analyzed. RESULTS Exercise did not change maternal weight. Before breeding, MO elevated F0 glucose, insulin, triglycerides, cholesterol, leptin, fat and oxidative stress. Exercise completely prevented the triglyceride rise and partially glucose, insulin, cholesterol and oxidative stress increases. MO decreased fertility, recovered by exercise. At the end of lactation, exercise returned all metabolic variables except leptin to control levels. Exercise partially prevented MO elevated corticosterone. F1 Offspring weights were similar at birth. At PND 36 MO increased F1 male but not female offspring leptin, triglycerides and fat mass. In controls exercise reduced male and female offspring glucose, prevented the offspring leptin increase and partially the triglyceride rise. CONCLUSIONS MEx before and during pregnancy has beneficial effects on maternal and offspring metabolism and endocrine function occurring with no weight change in mothers

  11. Elevated androstenedione in young adult but not early adolescent prenatally androgenized female rats.

    PubMed

    Shah, Ami B; Nivar, Isaac; Speelman, Diana L

    2018-01-01

    Elevated testosterone (T) is routinely reported as a marker of hyperandrogenemia in rodent models for polycystic ovary syndrome (PCOS). In women with PCOS, elevated serum androstenedione (A4) is associated with more severe phenotypes, including a positive correlation with serum T, DHEAS, free androgen index (FAI), LH, and LH/FSH ratio. Furthermore, A4, along with calculated free T and FAI, was identified as one of the best predictors of PCOS in adult women of all ages (18 to > 50 y). The objective of this study was to investigate serum A4 levels in early adolescent and young adult prenatally androgenized (PNA) female rats, a model for PCOS. Pregnant rats were injected with 5 mg T daily during gestational days 16-19 (PNA rats, experimental group) or an equal volume of vehicle (control group). Female offspring of both groups had tail vein blood drawn for serum analysis at 8 and 16 weeks of age. ELISAs were used to quantify serum A4 and T levels. Serum A4 and T were elevated in 16-week-old PNA rats compared to controls. There was no significant difference in either hormone at 8 weeks of age. The PNA rats demonstrated elevated serum A4 and T in young adulthood, as has been observed in women with PCOS, further validating this as a model for PCOS and underscoring the importance of serum A4 elevation as a parameter inherent to PCOS and a rodent model for the disorder. Significant A4 elevation develops between early adolescence and early adulthood in this PNA rat model.

  12. Effects of in utero and lactational exposure to triphenyltin chloride on pregnancy outcome and postnatal development in rat offspring.

    PubMed

    Grote, Konstanze; Hobler, Carolin; Andrade, Anderson J M; Grande, Simone Wichert; Gericke, Christine; Talsness, Chris E; Appel, Klaus E; Chahoud, Ibrahim

    2007-09-05

    The organotin compound (OTC) triphenyltin (TPT) is used extensively as a herbicide, pesticide and fungicide in agriculture as well as, together with tributyltin (TBT), in marine antifouling paints. We studied the effects of in utero exposure to 2 or 6 mg triphenyltinchloride (TPTCl)/kgb.w. on pregnancy outcome and postnatal development in rat offspring. Gravid Wistar rats were treated per gavage from gestational day 6 until the end of lactation. In the 6 mg TPTCl dose group gestational mortality in dams as well as an increased incidence of anticipated and delayed parturition was observed. Furthermore, treatment resulted in a significant increase in perinatal mortality, a decrease in lactational body weight gain as well as in delayed physical maturation of offspring. Similarily, exposure to 2mg TPTCl/kgb.w. resulted in a significant increase in perinatal mortality and in delayed eye opening. Lactational body weight gain and other landmarks of physical maturation were unaffected in the low dose group. We conclude, that in utero exposure to TPTCl at the described dose levels severely affected pregnancy outcome and perinatal survival of offspring. These results were unexpected, as in two earlier studies with pubertal rats TPTCl at the same dose levels no signs of general toxicity were observed.

  13. Sugared water consumption by adult offspring of mothers fed a protein-restricted diet during pregnancy results in increased offspring adiposity: the second hit effect.

    PubMed

    Cervantes-Rodríguez, M; Martínez-Gómez, M; Cuevas, E; Nicolás, L; Castelán, F; Nathanielsz, P W; Zambrano, E; Rodríguez-Antolín, J

    2014-02-01

    Poor maternal nutrition predisposes offspring to metabolic disease. This predisposition is modified by various postnatal factors. We hypothesised that coupled to the initial effects of developmental programming due to a maternal low-protein diet, a second hit resulting from increased offspring postnatal sugar consumption would lead to additional changes in metabolism and adipose tissue function. The objective of the present study was to determine the effects of sugared water consumption (5% sucrose in the drinking-water) on adult offspring adiposity as a 'second hit' following exposure to maternal protein restriction during pregnancy. We studied four offspring groups: (1) offspring of mothers fed the control diet (C); (2) offspring of mothers fed the restricted protein diet (R); (3) offspring of control mothers that drank sugared water (C-S); (4) offspring of restricted mothers that drank sugared water (R-S). Maternal diet in pregnancy was considered the first factor and sugared water consumption as the second factor - the second hit. Body weight and total energy consumption, before and after sugared water consumption, were similar in all the groups. Sugared water consumption increased TAG, insulin and cholesterol concentrations in both the sexes of the C-S and R-S offspring. Sugared water consumption increased leptin concentrations in the R-S females and males but not in the R offspring. There was also an interaction between sugared water and maternal diet in males. Sugared water consumption increased adipocyte size and adiposity index in both females and males, but the interaction with maternal diet was observed only in females. Adiposity index and plasma leptin concentrations were positively correlated in both the sexes. The present study shows that a second hit during adulthood can amplify the effects of higher adiposity arising due to poor maternal pregnancy diet in an offspring sex dependent fashion.

  14. Methylglyoxal treatment in lactating mothers leads to type 2 diabetes phenotype in male rat offspring at adulthood.

    PubMed

    Francisco, Flávio Andrade; Barella, Luiz Felipe; Silveira, Sandra da Silva; Saavedra, Lucas Paulo Jacinto; Prates, Kelly Valério; Alves, Vander Silva; Franco, Claudinéia Conationi da Silva; Miranda, Rosiane Aparecida; Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Malta, Ananda; Vieira, Elaine; Palma-Rigo, Kesia; Pavanello, Audrei; Martins, Isabela Peixoto; Moreira, Veridiana Mota; de Oliveira, Júlio Cezar; Mathias, Paulo Cezar de Freitas; Gomes, Rodrigo Mello

    2018-03-01

    Environmental and nutritional disorders during perinatal period cause metabolic dysfunction in the progeny and impair human health. Advanced glycation end products (AGEs) are primarily produced during metabolism of excess blood glucose, which is observed in diabetes. Methylglyoxal (MG) is a precursor for the generation of endogenous AGEs, which disturbs the metabolism. This work aimed to investigate whether the maternal MG treatment during lactation programs the progeny to metabolic dysfunction later in life. Female Wistar rats were divided into two groups: control group (C) treated with saline and MG group treated with MG (60 mg/kg/day) by gavage throughout the lactation period. Both mothers and offspring were fed a standard chow. At weaning, breast milk composition was analyzed and mothers euthanized for blood and tissue sample collections. At 90 days of age, offspring were submitted to glucose tolerance test (ivGTT) and euthanized for blood and tissue samples collection. MG mothers showed increase in glucose and fructosamine levels; however, they showed low insulin levels and failure in β-cell function (p < 0.05). MG mothers also showed dyslipidemia (p < 0.05). Moreover, breast milk had elevated levels of glucose, triglycerides, cholesterol and fructosamine and low insulin (p < 0.05). Interestingly, MG offspring had increased body weight and adipose tissue at adulthood, and they also showed glucose intolerance and failure in β-cell function (p < 0.05). Besides, MG offspring showed dyslipidemia (p < 0.05) increasing cardiovascular diseases risk. Maternal MG treatment negatively affects the male rat offspring, leading to type 2 diabetes and dyslipidemia in later life, possibly by changes in breast milk composition.

  15. Developmental cigarette smoke exposure II: Hepatic proteome profiles in 6 month old adult offspring.

    PubMed

    Neal, Rachel E; Chen, Jing; Webb, Cindy; Stocke, Kendall; Gambrell, Caitlin; Greene, Robert M; Pisano, M Michele

    2016-10-01

    Utilizing a mouse model of 'active' developmental cigarette smoke exposure (CSE) [gestational day (GD) 1 through postnatal day (PD) 21] characterized by offspring low birth weight, the impact of developmental CSE on liver proteome profiles of adult offspring at 6 months of age was determined. Liver tissue was collected from Sham- and CSE-offspring for 2D-SDS-PAGE based proteome analysis with Partial Least Squares-Discriminant Analysis (PLS-DA). A similar study conducted at the cessation of exposure to cigarette smoke documented decreased gluconeogenesis coupled to oxidative stress in weanling offspring. In the current study, exposure throughout development to cigarette smoke resulted in impaired hepatic carbohydrate metabolism, decreased serum glucose levels, and increased gluconeogenic regulatory enzyme abundances during the fed-state coupled to decreased expression of SIRT1 as well as increased PEPCK and PGC1α expression. Together these findings indicate inappropriately timed gluconeogenesis that may reflect impaired insulin signaling in mature offspring exposed to 'active' developmental CSE. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Voluntary post weaning exercise restores metabolic homeostasis in offspring of obese rats.

    PubMed

    Rajia, S; Chen, H; Morris, M J

    2013-06-01

    Physical exercise reduces obesity, insulin resistance and dyslipidemia. We previously found that maternal obesity alters central appetite circuits and contributes to increased adiposity, glucose intolerance and metabolic disease in offspring. Here we hypothesized that voluntary exercise would ameliorate the adverse metabolic effects of maternal obesity on offspring. Sprague-Dawley females fed chow (C) or high-fat diet HFD (H) were mated. Female offspring from C dams were weaned onto chow (CC); those from H dams recieved chow (HC) or HFD (HH). Half of each group was provided with running wheels (CC(EX), HC(EX), HH(EX); n=10-12). Maternal obesity increased body weight (12%), adiposity, plasma lipids and induced glucose intolerance (HC vs CC; P<0.05). These were exaggerated by postweaning HFD (HH vs HC; P<0.01), showed doubled energy intake, a 37% increase in body weight, insulin resistance and glucose intolerance (HH vs HC; P<0.01). Exercise reduced fat mass, plasma lipids, HOMA and fasting glucose in HC(EX) (vs HC; P<0.05) and HH(EX) (vs HH; P<0.01). Values in HC(EX) were indistinguishable from CC, however in HH(EX) these metabolic parameters remained higher than the sedentary HC and CC rats (P<0.01). mRNA expression of hypothalamic pro-opiomelanocortin, and adipose tumour necrosis factor α and 11β-hydroxysteroid dehydrogenase type 1 were reduced by exercise in HH(EX) (vs HH; P<0.05). While voluntary exercise almost completely reversed the metabolic effects of maternal obesity in chow fed offspring, it did not fully attenuate the increased adiposity, glucose intolerance and insulin resistance in offspring weaned onto HFD. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  17. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring

    USDA-ARS?s Scientific Manuscript database

    The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosi...

  18. Intrauterine growth restriction increases circulating mitochondrial DNA and Toll-like receptor 9 expression in adult offspring: could aerobic training counteract these adaptations?

    PubMed

    Oliveira, V; Silva Junior, S D; de Carvalho, M H C; Akamine, E H; Michelini, L C; Franco, M C

    2017-04-01

    It has been demonstrated that intrauterine growth restriction (IUGR) can program increase cardiometabolic risk. There are also evidences of the correlation between IUGR with low-grade inflammation and, thus can contribute to development of several cardiometabolic comorbidities. Therefore, we investigated the influence of IUGR on circulating mitochondrial DNA (mtDNA)/Toll-like receptor 9 (TLR9) and TNF-α expression in adult offspring. Considering that the aerobic training has anti-inflammatory actions, we also investigated whether aerobic training would improve these inflammatory factors. Pregnant Wistar rats received ad libitum or 50% of ad libitum diet throughout gestation. At 8 weeks of age, male offspring from both groups were randomly assigned to control, trained control, restricted and trained restricted. Aerobic training protocol was performed on a treadmill and after that, we evaluated circulating mtDNA, cardiac protein expression of TLR9, plasma and cardiac TNF-α levels, and left ventricle (LV) mass. We found that IUGR promoted an increase in the circulating mtDNA, TLR9 expression and plasma TNF-α levels. Further, our results revealed that aerobic training can restore mtDNA/TLR9 content and plasma levels of TNF-α among restricted rats. The cardiac TNF-α content and LV mass were not influenced either by IUGR or aerobic training. In conclusion, IUGR can program mtDNA/TLR9 content, which may lead to high levels of TNF-α. However, aerobic training was able to normalize these alterations. These findings evidenced that the association of IUGR and aerobic training seems to exert an important interaction effect regarding pro-inflammatory condition and, aerobic training may be used as a strategy to reduce deleterious adaptations in IUGR offspring.

  19. Developmental fluoxetine and prenatal stress effects on serotonin, dopamine, and synaptophysin density in the PFC and hippocampus of offspring at weaning.

    PubMed

    Gemmel, Mary; Rayen, Ine; Lotus, Tiffany; van Donkelaar, Eva; Steinbusch, Harry W; De Lacalle, Sonsoles; Kokras, Nikolaos; Dalla, Christina; Pawluski, Jodi L

    2016-04-01

    Selective serotonin reuptake inhibitor medication exposure during the perinatal period can have a long term impact in adult offspring on neuroplasticity and the serotonergic system, but the impact of these medications during early development is poorly understood. The aim of this study was to determine the effects of developmental exposure to the SSRI, fluoxetine, on the serotonergic system, dopaminergic system, and synaptophysin density in the prefrontal cortex and hippocampus, as well as number of immature neurons in the dentate gyrus, in juvenile rat offspring at weaning. To model aspects of maternal depression, prenatal restraint stress was used. Sprague-Dawley rat offspring were exposed to either prenatal stress and/or fluoxetine. Main findings show that developmental fluoxetine exposure to prenatally stressed offspring decreased 5-HT and 5-HIAA levels and altered the dopaminergic system in the hippocampus. Prenatal stress, regardless of fluoxetine, increased synaptophysin density in the PFC. This work indicates that early exposure to maternal stress and SSRI medication can alter brain monoamine levels and synaptophysin density in offspring at weaning. © 2015 Wiley Periodicals, Inc.

  20. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring.

    PubMed

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring.

  1. Exposure of mother rats to chronic unpredictable stress before pregnancy alters the metabolism of gamma-aminobutyric acid and glutamate in the right hippocampus of offspring in early adolescence in a sexually dimorphic manner.

    PubMed

    Huang, Yuejun; Shen, Zhiwei; Hu, Liu; Xia, Fang; Li, Yuewa; Zhuang, Jingwen; Chen, Peishan; Huang, Qingjun

    2016-12-30

    There is increasing evidence that mothers' exposure to stress before or during pregnancy is linked to an incidence of psychiatric disorders in offspring. However, a few studies have estimated the role of sex in the detrimental effects of pre-gestational stress on the offspring rats at early adolescence. Sex differences regarding the metabolism of gamma-aminobutyric acid and glutamate in the right hippocampus were investigated by MRS when the offspring rats reached 30 days. Additionally, the impact of pre-gestational stress exposed on an additional short-term acute stressor, such as forced swim, was examined in the male and female offspring rats. Our findings showed female offspring rats were more vulnerable to stressful conditions for either pre-gestational stress or acute stress in early adolescence, and had decreased GABA/Cr+PCr and Glu/Cr+PCr in the right hippocampus. Interestingly, in response to forced swim, male offspring rats whose mothers were exposed to pre-gestational stress were more affected by the short-term acute stressor and this was manifested by change of Glu/GABA and Glu/Gln in the right hippocampus. These data indicated that although female offspring rats were more vulnerable to pre-gestational stress from their mothers than males, in response to an additional acute stressor they showed better response. Therefore, both sexually dimorphic manner and combination of stressful procedures should be carefully considered in the study of stress-related psychiatric disorders in early adolescence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    PubMed Central

    Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo

    2016-01-01

    Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490

  3. [Maternal methyl-containing dietary supplementation alters the ability to learn in adult rats in swimming Morris test].

    PubMed

    Pliusnina, I Z; Os'kina, I N; Shchepina, O A; Prasolova, L A; Trut, L N

    2006-01-01

    Maternal choline diet influences the spatial learning processes. In this work, the learning ability of adult progeny of mothers who had received methyl diet enriched with choline and betain during pregnancy and lactation was studied in Morris test. The introduction of the diet to pregnant rats resulted in an increase in the time of search for invisible platform and time of swimming near the pool walls in offsprings, which meant a worsening of their learning ability. It was also found that change in platform searching strategy was not associated with an increase in anxiety of male rats. Possible involvement of maternal methyl diet in the change of expression of genes which control development of the nervous system is discussed.

  4. Intrauterine Growth Restricted Rats Exercised at Pregnancy: Maternal-Fetal Repercussions.

    PubMed

    Corvino, S B; Netto, A O; Sinzato, Y K; Campos, K E; Calderon, I M P; Rudge, M V C; Volpato, G T; Zambrano, E; Damasceno, D C

    2015-08-01

    To evaluate the effect of swimming in pregnant rats born with intrauterine growth restriction (IUGR) and their offspring, IUGR rats were obtained using the streptozotocin-induced severe diabetic (SD) rats. In this study, the nondiabetic parental generation presented 10 rats and diabetic parental generation presented 116 rats. Of these, the mated nondiabetic female rats were 10 and the number of diabetic rats was 45. In relation to term pregnancy, there were 10 animals in the nondiabetic group and 15 rats in the diabetic group. In the offspring of SD rats (IUGR group), 43 females were classified as small for pregnancy age, 19 rats were classified as appropriate for pregnancy age, and 0 female was classified as large for pregnancy age. The nondiabetic and SD pregnant rats generated offspring with appropriate (control [C]) and small (IUGR) weight for pregnancy age, respectively. At adult life, the C group was maintained as nonexercised C group and IUGR rats were distributed into 2 subgroups, namely, nonexercised (IUGR) and exercised (IUGRex). The rate of mated rats in the IUGR group was reduced compared to the C group. During pregnancy, the IUGR rats presented hyperinsulinemia, impaired reproductive outcomes, decreased body weight, hypertriglyceridemia, and hyperlactacidemia. The IUGRex presented reduced insulin and triglyceride levels. Thus, swimming improved lipid metabolism and increased insulin sensitivity. However, the offspring showed retarded growth, reinforcing the need to stimulate the exercise practice in women under supervision with different professional expertise to promote appropriate gestational conditions and improve perinatal outcomes. © The Author(s) 2015.

  5. Levels of maternal care in dogs affect adult offspring temperament

    NASA Astrophysics Data System (ADS)

    Foyer, Pernilla; Wilsson, Erik; Jensen, Per

    2016-01-01

    Dog puppies are born in a state of large neural immaturity; therefore, the nervous system is sensitive to environmental influences early in life. In primates and rodents, early experiences, such as maternal care, have been shown to have profound and lasting effects on the later behaviour and physiology of offspring. We hypothesised that this would also be the case for dogs with important implications for the breeding of working dogs. In the present study, variation in the mother-offspring interactions of German Shepherd dogs within the Swedish breeding program for military working dogs was studied by video recording 22 mothers with their litters during the first three weeks postpartum. The aim was to classify mothers with respect to their level of maternal care and to investigate the effect of this care on pup behaviour in a standardised temperament test carried out at approximately 18 months of age. The results show that females differed consistently in their level of maternal care, which significantly affected the adult behaviour of the offspring, mainly with respect to behaviours classified as Physical and Social Engagement, as well as Aggression. Taking maternal quality into account in breeding programs may therefore improve the process of selecting working dogs.

  6. Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats.

    PubMed

    Fride, E; Dan, Y; Feldon, J; Halevy, G; Weinstock, M

    1986-01-01

    This study investigated the hypotheses that unpredictable prenatal stress has effects on the offspring, similar to those induced by perinatal administration of glucocorticoids and increases the vulnerability to stressful situations at adulthood. Rats were exposed to random noise and light stress throughout pregnancy. Offspring were tested for the development of spontaneous alternation behavior (SA) and at adulthood, their response to novel or aversive situations, open field, extinction and punishment following acquisition of an appetitive response and two-way active avoidance, were assessed. In prenatally stressed rats, the development of SA was significantly delayed. On repeated exposure to an open field they were less active; control rats had elevated plasma corticosterone (CCS) on days 2 and 4 of open field exposure, while prenatally stressed rats had significantly raised plasma CCS after each exposure (days 1-8). Furthermore, punishment-induced suppression of an appetitive response was enhanced. Acquisition of active avoidance was faciliated in female but reduced in male prenatally stressed offspring. It is suggested that random prenatal noise and light stress may cause impairment of development of hippocampal function which lasts into adulthood. This impairment is manifested as an increase in vulnerability and a decrease in habituation to stressful stimuli.

  7. Complex life cycles and offspring provisioning in marine invertebrates.

    PubMed

    Marshall, Dustin J; Keough, Michael J

    2006-10-01

    Offspring size can have pervasive effects throughout an organism's life history. Mothers can make either a few large or many small offspring, and the balance between these extremes is determined by the relationship between offspring size and performance. This relationship in turn is thought to be determined by the offspring's environment. Recently, it has become clear that events in one life-history stage can strongly affect performance in another. Given these strong carryover effects, we asked whether events in the larval phase can change the relationship between offspring size and performance in the adult phase. We manipulated the length of the larval period in the bryozoan Bugula neritina and then examined the relationship between offspring size and various parameters of adult performance under field conditions. We found that despite the adult stage being outplanted into identical conditions, different offspring sizes were predicted to be optimal, depending on the experience of those adults as larvae. This work highlights the fact that the strong phenotypic links between life-history stages may result in optimal offspring size being highly unpredictable for organisms with complex life cycles.

  8. A maternal methyl-containing diet alters learning ability in the Morris swimming test in adult rats.

    PubMed

    Plyusnina, I Z; Os'kina, I N; Shchepina, O A; Prasolova, L A; Trut, L N

    2007-06-01

    Maternal choline diet is known to affect the processes of spatial learning. We report here our studies of learning ability in the Morris swimming test in the adult offspring of maternal rats given a methyl-containing supplement enriched with choline and betaine during pregnancy and lactation. Increases in the time taken to find the invisible platform and the duration of swimming close to the vessel walls were seen, these demonstrating worsening of learning ability in response to the maternal diet. Changes in the platform search strategy were not associated with increases in anxiety in male rats. The possible role of a maternal methyl-containing diet in altering the expression of genes controlling the development of the nervous system is discussed.

  9. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid.

    PubMed

    Gao, Jingquan; Wu, Hongmei; Cao, Yonggang; Liang, Shuang; Sun, Caihong; Wang, Peng; Wang, Ji; Sun, Hongli; Wu, Lijie

    2016-09-01

    Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring

    PubMed Central

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring. PMID:28553167

  11. Postnatal choline levels mediate cognitive deficits in a rat model of schizophrenia.

    PubMed

    Corriveau, Jennifer A; Glenn, Melissa J

    2012-11-01

    In the present study, we investigated whether the essential nutrient choline may protect against schizophrenic-like cognitive deficits in a rat model. Theories regarding the etiology of schizophrenia suggest that early life events render an individual more vulnerable to adult challenges, and the combination may precipitate disease onset. To model this, the adult male offspring of dams who either experienced stress during late gestation or did not were given a 5 mg/kg dose of the NMDA antagonist,MK-801. The presence of both the prenatal challenge of stress and the adult challenge of MK-801 was expected to impair memory in these offspring. Memory was not expected to be impaired in rats that did not experience prenatal stress, but did receive MK-801 as adults. To study whether choline levels altered outcomes in these groups, rats were fed a choline-supplemented, -deficient, or standard diet during the period between the two challenges: beginning at weaning and continuing for 25 days. All rats consumed regular rat chow thereafter. The efficacy of the model was confirmed in the standard fed rats in that only those that were prenatally stressed and received MK-801 as adults displayed impaired memory on a novelty preference test of object recognition. Contrary to this finding and consistent with our hypothesis, choline-supplemented rats that were also both prenatally stressed and given MK-801 as adults showed intact memory. Choline deficiency impaired memory in rats that were just prenatally stressed, just given MK-801 as adults, and subjected to both. Thus, a choline deficient diet may render rats vulnerable to either challenge. Taken together, we offer evidence that developmental choline levels modulate the effects of prenatal stress and/or MK-801 and thereby alter the cognitive outcome in a rat model of schizophrenia.

  12. Postnatal choline levels mediate cognitive deficits in a rat model of schizophrenia

    PubMed Central

    Corriveau, Jennifer A.; Glenn, Melissa J.

    2012-01-01

    In the present study, we investigated whether the essential nutrient choline may protect against schizophrenic-like cognitive deficits in a rat model. Theories regarding the etiology of schizophrenia suggest that early life events render an individual more vulnerable to adult challenges, and the combination may precipitate disease onset. To model this, the adult male offspring of dams who either experienced stress during late gestation or did not were given a 5 mg/kg dose of the NMDA antagonist, MK-801. The presence of both the prenatal challenge of stress and the adult challenge of MK-801 was expected to impair memory in these offspring. Memory was not expected to be impaired in rats that did not experience prenatal stress, but did receive MK-801 as adults. To study whether choline levels altered outcomes in these groups, rats were fed a choline-supplemented, -deficient, or standard diet during the period between the two challenges: beginning at weaning and continuing for 25 days. All rats consumed regular rat chow thereafter. The efficacy of the model was confirmed in the standard fed rats in that only those that were prenatally stressed and received MK-801 as adults displayed impaired memory on a novelty preference test of object recognition. Contrary to this finding and consistent with our hypothesis, choline-supplemented rats that were also both prenatally stressed and given MK-801 as adults showed intact memory. Choline deficiency impaired memory in rats that were just prenatally stressed, just given MK-801 as adults, and subjected to both. Thus, a choline deficient diet may render rats vulnerable to either challenge. Taken together, we offer evidence that developmental choline levels modulate the effects of prenatal stress and/or MK-801 and thereby alter the cognitive outcome in a rat model of schizophrenia. PMID:22917834

  13. Losartan reverses COX-2-dependent vascular dysfunction in offspring of hyperglycaemic rats.

    PubMed

    de Queiroz, Diego Barbosa; Ramos-Alves, Fernanda Elizabethe; Santos-Rocha, Juliana; Duarte, Gloria Pinto; Xavier, Fabiano Elias

    2017-09-01

    This study examined whether chronic treatment with losartan, an angiotensin II type 1 receptor (AT 1 R) antagonist, might reverse COX-2-mediated vascular dysfunction in mesenteric resistance arteries (MRA) from offspring of hyperglycaemic rats. Male 12-month-old offspring of hyperglycaemic (O-DR) and normoglycaemic (O-CR) rats were treated with losartan (15mg·kg·day -1 ) during 2months. Third order MRA of untreated and losartan-treated O-DR and O-CR were mounted in wire myograph for isometric tension measurements. COX-2 expression was analyzed by Western blot; TxA 2 , PGE 2 and PGF 2α release was measured using commercial kits. O-DR showed increased blood pressure, impaired acetylcholine-induced vasodilation and increased noradrenaline-induced vasoconstriction than O-CR. All these parameters were normalized by losartan in O-DR. Pre-incubation of MRA with indomethacin (COX-1/2 inhibitor), NS-398 (COX-2 inhibitor) or tempol (superoxide dismutase mimetic) increased relaxation to acetylcholine and reduced contraction to noradrenaline only in O-DR. COX-2 expression, TxA 2 , PGE 2 and PGF 2α release were increased in O-DR. In losartan-treated O-DR, NS-398, indomethacin or tempol failed to produce any effect on acetylcholine or noradrenaline responses. Losartan treatment reduced COX-2 expression, TxA 2 , PGE 2 and PGF 2α release in O-DR. The present results reveal that chronic losartan administration in O-DR normalizes endothelial function in MRA by correcting the existing COX-2 overexpression and the imbalance between endothelium-derived relaxing and contracting factors. These findings not only support the beneficial effects of AT 1 receptor antagonist in O-DR, but also suggest the implication of angiotensin II as a putative mediator of hyperglycemia-programmed vascular dysfunction in rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effects of maternal stress and perinatal fluoxetine exposure on behavioral outcomes of adult male offspring.

    PubMed

    Kiryanova, V; Meunier, S J; Vecchiarelli, H A; Hill, M N; Dyck, R H

    2016-04-21

    Women of child-bearing age are the population group at highest risk for depression. In pregnant women, fluoxetine (Flx) is the most widely prescribed selective serotonin reuptake inhibitor (SSRI) used for the treatment of depression. While maternal stress, depression, and Flx exposure have been shown to effect neurodevelopment of the offspring, separately, combined effects of maternal stress and Flx exposure have not been extensively examined. The present study investigated the effects of prenatal maternal stress and perinatal exposure to the SSRI Flx on the behavior of male mice as adults. C57BL/6 dams exposed to chronic unpredictable stress from embryonic (E) day 4 to E18 and non-stressed dams were administered Flx (25 mg/kg/d) in the drinking water from E15 to postnatal day 12. A separate control group consisted of animals that were not exposed to stress or Flx. At 12 days of age, brain levels of serotonin were assessed in the male offspring. At two months of age, the male offspring of mothers exposed to prenatal stress (PS), perinatal Flx, PS and Flx, or neither PS or Flx, went through a comprehensive behavioral test battery. At the end of testing brain-derived neurotropic factor (BDNF) levels were assessed in the frontal cortex of the offspring. Maternal behavior was not altered by either stress or Flx treatment. Treatment of the mother with Flx led to detectible Flx and NorFlx levels and lead to a decrease in serotonin levels in pup brains. In the adult male offspring, while perinatal exposure to Flx increased aggressive behavior, prenatal maternal stress decreased aggressive behavior. Interestingly, the combined effects of stress and Flx normalized aggressive behavior. Furthermore, perinatal Flx treatment led to a decrease in anxiety-like behavior in male offspring. PS led to hyperactivity and a decrease in BDNF levels in the frontal cortex regardless of Flx exposure. Neither maternal stress or Flx altered offspring performance in tests of cognitive

  15. Maternal Nutrition Induces Pervasive Gene Expression Changes but No Detectable DNA Methylation Differences in the Liver of Adult Offspring

    PubMed Central

    Cannon, Matthew V.; Buchner, David A.; Hester, James; Miller, Hadley; Sehayek, Ephraim; Nadeau, Joseph H.; Serre, David

    2014-01-01

    Aims Epidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we characterize the phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic changes induced by maternal diet in adult offspring. Methods We analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart. We then measured DNA methylation patterns in liver at selected loci and throughout the genome. Results Maternal diet had a significant effect on the body weight of the offspring when they were fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. We did not detect any effect of the maternal diet on DNA methylation in the liver. Conclusions Overall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver. PMID:24594983

  16. Voluntary exercise in pregnant rats improves post-lactation maternal bone parameters but does not affect offspring outcomes in early life.

    PubMed

    Rosa, B V; Blair, H T; Vickers, M H; Morel, P C; Cockrem, J F; Firth, E C

    2012-12-01

    The objectives of this study were to examine the effects of voluntary exercise during pregnancy on maternal post-lactation bone parameters and offspring growth. Pregnant Wistar rats were housed in conventional cages (control), or were housed in raised cages requiring them to rise to an erect, bipedal stance to obtain food/water, throughout pregnancy. Dual energy X-ray absorptiometry and peripheral quantitative computed tomography scans were performed pre-mating and post-weaning. Maternal stress was assessed by fecal corticosterone measurement. Offspring weights were assessed at postnatal days 1 and 25 (weaning). Changes in bone mineral over the pregnancy/lactation period were site-specific. Exercise did not affect loss of bone mineral from the lumbar spine, but did attenuate the loss of trabecular bone mineral from the tibial metaphysis and enhance the strength strain index and cross-sectional moment of inertia at the tibial diaphysis (P≤0.05) in dams in the exercised group. Fecal corticosterone did not differ between dam groups. There were no significant differences in offspring weight between the exercised and control group at either time point. Voluntary exercise in the pregnant rat can improve some post-lactation bone parameters and does not adversely affect early postnatal outcomes of the offspring.

  17. A maternal "junk food" diet in pregnancy and lactation promotes nonalcoholic Fatty liver disease in rat offspring.

    PubMed

    Bayol, Stéphanie A; Simbi, Bigboy H; Fowkes, Robert C; Stickland, Neil C

    2010-04-01

    With rising obesity rates, nonalcoholic fatty liver disease is predicted to become the main cause of chronic liver disease in the next decades. Rising obesity prevalence is attributed to changes in dietary habits with increased consumption of palatable junk foods, but maternal malnutrition also contributes to obesity in progeny. This study examines whether a maternal junk food diet predisposes offspring to nonalcoholic fatty liver disease. The 144 rat offspring were fed either a balanced chow diet alone or with palatable junk foods rich in energy, fat, sugar, and/or salt during gestation, lactation, and/or after weaning up to the end of adolescence. Offspring fed junk food throughout the study exhibited exacerbated hepatic steatosis, hepatocyte ballooning, and oxidative stress response compared with offspring given free access to junk food after weaning only. These offspring also displayed sex differences in their hepatic molecular metabolic adaptation to diet-induced obesity with increased expression of genes associated with insulin sensitivity, de novo lipogenesis, lipid oxidation, and antiinflammatory properties in males, whereas the gene expression profile in females was indicative of hepatic insulin resistance. Hepatic inflammation and fibrosis were not detected indicating that offspring had not developed severe steatohepatitis by the end of adolescence. Hepatic steatosis and increased oxidative stress response also occurred in offspring born to junk food-fed mothers switched to a balanced chow diet from weaning, highlighting a degree of irreversibility. This study shows that a maternal junk food diet in pregnancy and lactation contributes to the development of nonalcoholic fatty liver disease in offspring.

  18. Moderate prenatal alcohol exposure and quantification of social behavior in adult rats.

    PubMed

    Hamilton, Derek A; Magcalas, Christy M; Barto, Daniel; Bird, Clark W; Rodriguez, Carlos I; Fink, Brandi C; Pellis, Sergio M; Davies, Suzy; Savage, Daniel D

    2014-12-14

    Alterations in social behavior are among the major negative consequences observed in children with Fetal Alcohol Spectrum Disorders (FASDs). Several independent laboratories have demonstrated robust alterations in the social behavior of rodents exposed to alcohol during brain development across a wide range of exposure durations, timing, doses, and ages at the time of behavioral quantification. Prior work from this laboratory has identified reliable alterations in specific forms of social interaction following moderate prenatal alcohol exposure (PAE) in the rat that persist well into adulthood, including increased wrestling and decreased investigation. These behavioral alterations have been useful in identifying neural circuits altered by moderate PAE(1), and may hold importance for progressing toward a more complete understanding of the neural bases of PAE-related alterations in social behavior. This paper describes procedures for performing moderate PAE in which rat dams voluntarily consume ethanol or saccharin (control) throughout gestation, and measurement of social behaviors in adult offspring.

  19. Sodium selenite supplementation during pregnancy and lactation promotes anxiolysis and improves mnemonic performance in wistar rats' offspring.

    PubMed

    Laureano-Melo, Roberto; Império, Güínever Eustáquio do; da Silva-Almeida, Claudio; Kluck, George Eduardo Gabriel; Cruz Seara, Fernando de Azevedo; da Rocha, Fábio Fagundes; da Silveira, Anderson Luiz Bezerra; Reis, Luís Carlos; Ortiga-Carvalho, Tania Maria; da Silva Côrtes, Wellington

    2015-11-01

    Selenium is a micronutrient which is part of selenoprotein molecules and participates in a vast number of physiological roles and, among them,we have fetal and neonatal development. Therefore, the aimof this studywas to evaluate possible behavioral changes in offspring of female rats supplemented during pregnancy and lactation with sodium selenite. To address that, we treated two groups of female rats by saline or sodium selenite at a dose of 1mg/kg through oral route and performed neurochemical and behavioral tests. In the offspring, the thyroid profile and hippocampal neurochemistrywere evaluated. Behavioral testswere performed in pups both during childhood and adulthood. We found out that selenium (Se) supplementation increased serum levels of triiodothyronine (25%, p b 0.001) and thyroxine (18%, p b 0.05) and promoted a tryptophan hydroxylase 2 (TPH 2) expression decrease (17%, p b 0.01) and tyrosine hydroxylase (TH) expression increase (202%, p b 0.01) in the hippocampus. The cholinesterase activity was decreased (28%, p b 0.01) in Se supplemented rats, suggesting a neurochemical modulation in the hippocampal activity. During childhood, the Sesupplemented offspring had a reduction in anxiety-like behavior both in elevated plus maze test and in light–dark box test. In adulthood, Se-treated pups had an increase in the locomotor activity (36%, p b 0.05) and in rearing episodes (77%, p b 0.001) in the open field test, while in the elevated plus maze test they also exhibited an increase in the time spent in the open arms (243%, p b 0.01). For the object recognition test, Se-treated offspring showed increase in the absolute (230.16%, p b 0.05) and relative index discrimination (234%, p b 0.05). These results demonstrate that maternal supplementation by sodium selenite promoted psychobiological changes both during childhood and adulthood. Therefore, the behavioral profile observed possibly can be explained by neurochemical changes induced by thyroid hormones during

  20. Effect of maternal protein restriction during pregnancy and postweaning high-fat feeding on diet-induced thermogenesis in adult mouse offspring.

    PubMed

    Sellayah, Dyan; Dib, Lea; Anthony, Frederick W; Watkins, Adam J; Fleming, Tom P; Hanson, Mark A; Cagampang, Felino R

    2014-10-01

    Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Female MF-1 mice were fed a normal protein (NP, 18% casein) or a protein-restricted (PR, 9% casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45% kcal fat) or standard chow (C, 7% kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P < 0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P < 0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P < 0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring. These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood.

  1. Exposure to a Highly Caloric Palatable Diet during the Perinatal Period Affects the Expression of the Endogenous Cannabinoid System in the Brain, Liver and Adipose Tissue of Adult Rat Offspring

    PubMed Central

    Ramírez-López, María Teresa; Arco, Raquel; Decara, Juan; Vázquez, Mariam; Noemí Blanco, Rosario; Alén, Francisco; Suárez, Juan; Gómez de Heras, Raquel

    2016-01-01

    Recent studies have linked gestational exposure to highly caloric diets with a disrupted endogenous cannabinoid system (ECS). In the present study, we have extended these studies by analyzing the impact of the exposure to a palatable diet during gestation and lactation on a) the adult expression of endocannabinoid-related behaviors, b) the metabolic profile of adult offspring and c) the mRNA expression of the signaling machinery of the ECS in the hypothalamus, the liver and the adipose tissue of adult offspring of both sexes. Exposure to a palatable diet resulted in a) sex-dimorphic and perinatal diet specific feeding behaviors, including the differential response to the inhibitory effects of the cannabinoid receptor inverse agonist AM251, b) features of metabolic syndrome including increased adiposity, hyperleptinemia, hypertriglyceridemia and hypercholesterolemia and c) tissue and sex-specific changes in the expression of both CB1 and CB2 receptors and in that of the endocannabinoid-degrading enzymes FAAH and MAGL, being the adipose tissue the most affected organ analyzed. Since the effects were observed in adult animals that were weaned while consuming a normal diet, the present results indicate that the ECS is one of the targets of maternal programming of the offspring energy expenditure. These results clearly indicate that the maternal diet has long-term effects on the development of pups through multiple alterations of signaling homeostatic pathways that include the ECS. The potential relevance of these alterations for the current obesity epidemic is discussed. PMID:27806128

  2. Prenatal ethanol enhances rotational behavior to apomorphine in the 24-month-old rat offspring with small striatal lesion.

    PubMed

    Gomide, Vânia C; Chadi, Gerson

    2004-01-01

    Pregnant Wistar rats received a hyperproteic liquid diet containing 37.5% ethanol-derived calories during gestation. Isocaloric amount of liquid diet, with maltose-dextrin substituted for ethanol, was given to control pair-fed dams. Offsprings were allowed to survive until 24 months of age. A set of aged female offsprings of both control diet and ethanol diet groups was registered for spontaneous motor activity, by means of an infrared motion sensor activity monitor, or for apomorphine-induced rotational behavior, while another lot of male offsprings was submitted to an unilateral striatal small mechanical lesion by a needle, 6 days before rotational recordings. Prenatal ethanol did not alter spontaneous motor parameters like resting time as well as the events of small and large movements in the aged offsprings. Bilateral circling behavior was already increased 5 min after apomorphine in the unlesioned offsprings of both the control and ethanol diet groups. However, it lasted more elevated for 45- to 75-min time intervals in the gestational ethanol-exposed offsprings, while decreasing faster in the control offsprings. Apomorphine triggered a strong and sustained elevation of contraversive turns in the striatal-lesioned 24-month-old offsprings of the ethanol group, but only a small and transient elevation was seen in the offsprings of the control diet group. Astroglial and microglial reactions were seen surrounding the striatal needle track lesion. Microdensitometric image analysis demonstrated no differences in the levels of tyrosine hydroxylase immunoreactivity in the striatum of 24-month-old unlesioned and lesioned offsprings of control and alcohol diet groups. The results suggest that ethanol exposure during gestation may alter the sensitivity of dopamine receptor in aged offsprings, which is augmented by even a small striatal lesion.

  3. Chronic prenatal ethanol exposure increases adiposity and disrupts pancreatic morphology in adult guinea pig offspring.

    PubMed

    Dobson, C C; Mongillo, D L; Brien, D C; Stepita, R; Poklewska-Koziell, M; Winterborn, A; Holloway, A C; Brien, J F; Reynolds, J N

    2012-12-17

    Ethanol consumption during pregnancy can lead to a range of adverse developmental outcomes in children, termed fetal alcohol spectrum disorder (FASD). Central nervous system injury is a debilitating and widely studied manifestation of chronic prenatal ethanol exposure (CPEE). However, CPEE can also cause structural and functional deficits in metabolic pathways in offspring. This study tested the hypothesis that CPEE increases whole-body adiposity and disrupts pancreatic structure in guinea pig offspring. Pregnant guinea pigs received ethanol (4 g kg(-1) maternal body weight per day) or isocaloric-sucrose/pair-feeding (control) for 5 days per week throughout gestation. Male and female CPEE offspring demonstrated growth restriction at birth, followed by a rapid period of catch-up growth before weaning (postnatal day (PD) 1-7). Whole-body magnetic resonance imaging (MRI) in young adult offspring (PD100-140) revealed increased visceral and subcutaneous adiposity produced by CPEE. At the time of killing (PD150-200), CPEE offspring also had increased pancreatic adipocyte area and decreased β-cell insulin-like immunopositive area, suggesting reduced insulin production and/or secretion from pancreatic islets. CPEE causes increased adiposity and pancreatic dysmorphology in offspring, which may signify increased risk for the development of metabolic syndrome and type 2 diabetes mellitus.

  4. Vitamin D metabolism impairment in the rat's offspring following maternal exposure to 137cesium.

    PubMed

    Tissandie, E; Guéguen, Y; Lobaccaro, J M A; Grandcolas, L; Grison, S; Aigueperse, J; Souidi, M

    2009-04-01

    Previous works clearly showed that chronic contamination by 137cesium alters vitamin D metabolism. Since children are known to be a high-risk group for vitamin D metabolism disorders, effects of 137Cs on vitamin D biosynthetic pathway were investigated in newborn rats. The experiments were performed in 21-day-old male offspring of dams exposed to 137Cs in their drinking water at a dose of 6,500 Bq/l (150 Bq/rat/day) during the lactation period. Significant modifications of blood calcium (-7%, P < 0.05), phosphate (+80%, P < 0.01) and osteocalcin (-25%, P < 0.05) levels were observed in contaminated offspring, associated with an increase of blood vitamin D3 (+25%, P < 0.01). Besides, decreased expression levels of cyp2r1 and cyp27b1 (-26 and -39%, respectively, P < 0.01) were measured in liver and kidney suggesting a physiological adaptation in response to the rise in vitamin D level. Expressions of vdr, ecac1, cabp-d28k, ecac2 and cabp-9k involved in renal and intestinal calcium transport were unaffected. Altogether, these data show that early exposure to post-accidental doses of 137Cs induces the alteration of vitamin D metabolism, associated with a dysregulation of mineral homeostasis.

  5. Effects of Sevoflurane Exposure During Mid-Pregnancy on Learning and Memory in Offspring Rats: Beneficial Effects of Maternal Exercise.

    PubMed

    Wu, Ziyi; Li, Xingyue; Zhang, Yi; Tong, Dongyi; Wang, Lili; Zhao, Ping

    2018-01-01

    Fetal exposure to general anesthetics may pose significant neurocognitive risks but methods to mitigate against these detrimental effects are still to be determined. We set out, therefore, to assess whether single or repeated in utero exposure to sevoflurane triggers long-term cognitive impairments in rat offspring. Since maternal exercise during pregnancy has been shown to improve cognition in offspring, we hypothesized that maternal treadmill exercise during pregnancy would protect against sevoflurane-induced neurotoxicity. In the first experiment, pregnant rats were exposed to 3% sevoflurane for 2 h on gestational (G) day 14, or to sequential exposure for 2 h on G13, G14 and G15. In the second experiment, pregnant rats in the exercise group were forced to run on a treadmill for 60 min/day during the whole pregnancy. The TrkB antagonist ANA-12 was used to investigate whether the brain-derived neurotrophic factor (BDNF)/TrkB/Akt signaling pathway is involved in the neuroprotection afforded by maternal exercise. Our data suggest that repeated, but not single, exposure to sevoflurane caused a reduction in both histone acetylation and BDNF expression in fetal brain tissues and postnatal hippocampus. This was accompanied by decreased numbers of dendritic spines, impaired spatial-dependent learning and memory dysfunction. These effects were mitigated by maternal exercise but the TrkB antagonist ANA-12 abolished the beneficial effects of maternal exercise. Our findings suggest that repeated, but not single, exposure to sevoflurane in pregnant rats during the second trimester caused long-lasting learning and memory dysfunction in the offspring. Maternal exercise ameliorated the postnatal neurocognitive impairment by enhancing histone acetylation and activating downstream BDNF/TrkB/Akt signaling.

  6. Implications of maternal conditions and pregnancy course on offspring's medical problems in adult life.

    PubMed

    von Ehr, Julia; von Versen-Höynck, Frauke

    2016-10-01

    In the last decade, numerous epidemiological, clinical and experimental data show that periconceptional, perinatal and postnatal environment determines the offspring's risk for later-life chronic disease. For this phenomenon, the term "fetal" or "perinatal programming" is used. In exposed offspring already in childhood and early adulthood, metabolic and cardiovascular changes can be observed, leading to obesity, diabetes and hypertension. Nowadays, the mode of conception (e.g., in vitro fertilization), maternal metabolic conditions (e.g., undernutrition, overnutrition, diabetes) and complications during pregnancy (e.g., preeclampsia, intrauterine growth restriction) are suspected to be negative predictors for offspring's long-term health. Mechanisms responsible for these effects still remain mainly unclear, but include epigenetic, transcriptional, endoplasmic reticulum stress, and reactive oxygen species. This review presents a piece of the puzzle with regards to periconceptional and early perinatal conditions determining later-life risk for chronic adult disease.

  7. Exposure of pregnant rats to diverse chemicals during pregnancy causes elevated blood pressure in offspring

    EPA Science Inventory

    Objective: Global undernutrition, low protein diet or dexamethasone treatment during pregnancy has been demonstrated in animal models to result in adverse health effects including hypertension and insulln resistance in adult offspring. Most protocols that produce these effects ca...

  8. Uteroplacental insufficiency temporally exacerbates salt-induced hypertension associated with a reduced natriuretic response in male rat offspring.

    PubMed

    Gallo, Linda A; Walton, Sarah L; Mazzuca, Marc Q; Tare, Marianne; Parkington, Helena C; Wlodek, Mary E; Moritz, Karen M

    2018-03-31

    Low weight at birth increases the risk of developing chronic diseases in adulthood A diet that is high in salt is known to elevate blood pressure, which is a major risk factor for cardiovascular and kidney diseases The present study demonstrates that growth restricted male rats have a heightened sensitivity to high dietary salt, in the context of raised systolic blood pressure, reduced urinary sodium excretion and stiffer mesenteric resistance vessels Other salt-induced effects, such as kidney hyperfiltration, albuminuria and glomerular damage, were not exacerbated by being born small The present study demonstrates that male offspring born small have an increased cardiovascular susceptibility to high dietary salt, such that that minimizing salt intake is probably of particular benefit to this at-risk population ABSTRACT: Intrauterine growth restriction increases the risk of developing chronic diseases in adulthood. Lifestyle factors, such as poor dietary choices, may elevate this risk. We determined whether being born small increases the sensitivity to a dietary salt challenge, in the context of hypertension, kidney disease and arterial stiffness. Bilateral uterine vessel ligation or sham surgery (offspring termed Restricted and Control, respectively) was performed on 18-day pregnant Wistar Kyoto rats. Male offspring were allocated to receive a diet high in salt (8% sodium chloride) or remain on standard rat chow (0.52% sodium chloride) from 20 to 26 weeks of age for 6 weeks. Systolic blood pressure (tail-cuff), renal function (24 h urine excretions) and vascular stiffness (pressure myography) were assessed. Restricted males were born 15% lighter than Controls and remained smaller throughout the study. Salt-induced hypertension was exacerbated in Restricted offspring, reaching a peak systolic pressure of ∼175 mmHg earlier than normal weight counterparts. The natriuretic response to high dietary salt in Restricted animals was less than in Controls and may

  9. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    PubMed Central

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R.; Newman, John W.; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring. PMID:25076055

  10. Do prenatally methamphetamine-exposed adult male rats display general predisposition to drug abuse in the conditioned place preference test?

    PubMed

    Šlamberová, R; Pometlová, M; Schutová, B; Hrubá, L; Macúchová, E; Nová, E; Rokyta, R

    2012-01-01

    Drug abuse of pregnant women is a growing problem. The effect of prenatal drug exposure may have devastating effect on development of the offsprings that may be long-term or even permanent. One of the most common drug abused by pregnant women is methamphetamine (MA), which is also the most frequently abused illicit drug in the Czech Republic. Our previous studies demonstrated that prenatal MA exposure alters behavior, cognition, pain and seizures in adult rats in sex-specific manner. Our most recent studies demonstrate that prenatal MA exposure makes adult rats more sensitive to acute injection of the same or related drugs than their controls. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the Conditioned place preference (CPP). Adult male rats were divided to: prenatally MA-exposed (5 mg/kg daily for the entire prenatal period), prenatally saline-exposed (1 ml/kg of physiological saline) and controls (without maternal injections). The following drugs were used in the CPP test in adulthood: MA (5 mg/kg), amphetamine (5 mg/kg), cocaine (5 and 10 mg/kg), morphine (5 mg/kg), MDMA (5 mg/kg) and THC (2 mg/kg). Our data demonstrated that prenatally MA-exposed rats displayed higher amphetamine-seeking behavior than both controls. MA as well as morphine induced drug-seeking behavior of adult male rats, however this effect did not differ based on the prenatal MA exposure. In contrast, prenatal MA exposure induced rather tolerance to cocaine than sensitization after the conditioning in the CPP. MDMA and THC did not induce significant effects. Even though the present data did not fully confirmed our hypotheses, future studies are planned to test the drug-seeking behavior also in self-administration test.

  11. Ontogenetic role of angiontensin-converting enzyme in rats: thirst and sodium appetite evaluation.

    PubMed

    Mecawi, André S; Araujo, Iracema G; Rocha, Fábio F; Coimbra, Terezila M; Antunes-Rodrigues, José; Reis, Luís C

    2010-01-12

    We investigated the influence of captopril (an angiotensin converting enzyme inhibitor) treatment during pregnancy and lactation period on hydromineral balance of the male adult offspring, particularly, concerning thirst and sodium appetite. We did not observe significant alterations in basal hydromineral (water intake, 0.3M NaCl intake, volume and sodium urinary concentration) or cardiovascular parameters in adult male rats perinatally treated with captopril compared to controls. However, male offspring rats that perinatally exposed to captopril showed a significant attenuation in water intake induced by osmotic stimulation, extracellular dehydration and beta-adrenergic stimulation. Moreover, captopril treatment during perinatal period decreased the salt appetite induced by sodium depletion. This treatment also attenuated thirst and sodium appetite aroused during inhibition of peripheral angiotensin II generation raised by low concentration of captopril in the adult offspring. Interestingly, perinatal exposure to captopril did not alter water or salt intake induced by i.c.v. administration of angiotensin I or angiotensin II. These results showed that chronic inhibition of angiotensin converting enzyme during pregnancy and lactation modifies the regulation of induced thirst and sodium appetite in adulthood.

  12. A Maternal “Junk Food” Diet in Pregnancy and Lactation Promotes Nonalcoholic Fatty Liver Disease in Rat Offspring

    PubMed Central

    Bayol, Stéphanie A.; Simbi, Bigboy H.; Fowkes, Robert C.; Stickland, Neil C.

    2010-01-01

    With rising obesity rates, nonalcoholic fatty liver disease is predicted to become the main cause of chronic liver disease in the next decades. Rising obesity prevalence is attributed to changes in dietary habits with increased consumption of palatable junk foods, but maternal malnutrition also contributes to obesity in progeny. This study examines whether a maternal junk food diet predisposes offspring to nonalcoholic fatty liver disease. The 144 rat offspring were fed either a balanced chow diet alone or with palatable junk foods rich in energy, fat, sugar, and/or salt during gestation, lactation, and/or after weaning up to the end of adolescence. Offspring fed junk food throughout the study exhibited exacerbated hepatic steatosis, hepatocyte ballooning, and oxidative stress response compared with offspring given free access to junk food after weaning only. These offspring also displayed sex differences in their hepatic molecular metabolic adaptation to diet-induced obesity with increased expression of genes associated with insulin sensitivity, de novo lipogenesis, lipid oxidation, and antiinflammatory properties in males, whereas the gene expression profile in females was indicative of hepatic insulin resistance. Hepatic inflammation and fibrosis were not detected indicating that offspring had not developed severe steatohepatitis by the end of adolescence. Hepatic steatosis and increased oxidative stress response also occurred in offspring born to junk food-fed mothers switched to a balanced chow diet from weaning, highlighting a degree of irreversibility. This study shows that a maternal junk food diet in pregnancy and lactation contributes to the development of nonalcoholic fatty liver disease in offspring. PMID:20207831

  13. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    PubMed

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.

  14. Increase in endogenous estradiol in the progeny of obese rats is associated with precocious puberty and altered follicular development in adulthood.

    PubMed

    Ambrosetti, Valery; Guerra, Marcelo; Ramírez, Luisa A; Reyes, Aldo; Álvarez, Daniela; Olguín, Sofía; González-Mañan, Daniel; Fernandois, Daniela; Sotomayor-Zárate, Ramón; Cruz, Gonzalo

    2016-07-01

    Maternal obesity during pregnancy has been related with several pathological states in offspring. However, the impact of maternal obesity on reproductive system on the progeny is beginning to be elucidated. In this work, we characterize the effect of maternal obesity on puberty onset and follicular development in adult offspring in rats. We also propose that alterations in ovarian physiology observed in offspring of obese mothers are due to increased levels of estradiol during early development. Offspring of control dams and offspring of dams exposed to a high-fat diet (HF) were studied at postnatal days (PND) 1, 7, 14, 30, 60, and 120. Body weight and onset of puberty were measured. Counting of ovarian follicles was performed at PND 60 and 120. Serum estradiol, estriol, androstenedione, FSH, LH, and insulin levels were measured by ELISA. Hepatic CYP3A2 expression was determined by Western blot. HF rats had a higher weight than controls at all ages and they also had a precocious puberty. Estradiol levels were increased while CYP3A2 expression was reduced from PND 1 until PND 60 in HF rats compared to controls. Estriol was decreased at PND60 in HF rats. Ovaries from HF rats had a decrease in antral follicles at PND60 and PND120 and an increase in follicular cysts at PND60 and PND120. In this work, we demonstrated that maternal obesity in rats alters follicular development and induces follicular cysts generation in the adult offspring. We observed that maternal obesity produces an endocrine disruption through increasing endogenous estradiol in early life. A programmed failure in hepatic metabolism of estradiol is probably the cause of its increase.

  15. Adult rats are more sensitive to the vascular effects induced by hyperhomocysteinemia than young rats.

    PubMed

    de Andrade, Claudia Roberta; de Campos, Glenda Andréa Déstro; Tirapelli, Carlos Renato; Laurindo, Francisco R M; Haddad, Renato; Eberlin, Marcos N; de Oliveira, Ana Maria

    2010-01-01

    We aimed to investigate the vascular effects of hyperhomocysteinemia (HHcy) on carotid arteries from young and adult rats. With this purpose young and adult rats received a solution of DL-homocysteine-thiolactone (1 g/kg body weight/day) in the drinking water for 7, 14 and 28 days. Increase on plasma homocysteine occurred in young and adult rats treated with DL-homocysteine-thiolactone in all periods. Vascular reactivity experiments using standard muscle bath procedures showed that HHcy enhanced the contractile response of endothelium-intact, carotid rings to phenylephrine in both young and adult rats. However, in young rats, the increased phenylephrine-induced contraction was observed after hyperhomocysteinemia for 14 and 28 days, whereas in adult rats this response was already apparent after 7 day treatment. HHcy impaired acetylcholine-induced relaxation in arteries from adult but not young rats. The contraction induced by phenylephrine in carotid arteries in the presence of Y-27632 was reversed to control values in arteries from young but not adult rats with hyperhomocysteinemia. HHcy did not alter the contraction induced by CaCl(2) in carotid arteries from young rats, but enhanced CaCl(2)-induced contraction in the arteries from adult rats. HHcy increased the basal levels of superoxide anion in arteries from both groups. Finally, HHcy decreased the basal levels of nitrite in arteries from adult but not young rats. The major new finding of the present work is that arteries from young rats are more resistant to vascular changes evoked by HHcy than arteries from adult rats. Also, we verified that the enhanced vascular response to phenylephrine observed in carotid arteries of DL-homocysteine thiolactone-treated rats is mediated by different mechanisms in young and adult rats. Copyright 2010. Published by Elsevier Inc.

  16. Maternal low protein diet decreases brain-derived neurotrophic factor expression in the brains of the neonatal rat offspring

    USDA-ARS?s Scientific Manuscript database

    Prenatal exposure to a maternal low protein diet has been known to cause cognitive impairment, learning and memory deficits. However, the underlying mechanisms have not been identified. Herein, we demonstrate that a maternal low protein (LP) diet causes, in the brains of the neonatal rat offspring, ...

  17. Parental Involvement in Residential Care and Perceptions of their Offspring's Life Satisfaction in Residential Facilities for Adults with Intellectual Disability

    ERIC Educational Resources Information Center

    Schwartz, Chaya

    2005-01-01

    Background: This study examined parental involvement in relocation and post-placement care of offspring in residential facilities for adults with intellectual disability, as well as the characteristics of residents, parents, and residential institutions and the effect of those variables on parental perceptions of their offspring's life…

  18. Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning

    USDA-ARS?s Scientific Manuscript database

    In utero exposure to maternal obesity increases the offspring’s risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND) 21. In the current s...

  19. A gestational diet high in fat-soluble vitamins alters expression of genes in brain pathways and reduces sucrose preference, but not food intake, in Wistar male rat offspring.

    PubMed

    Sanchez-Hernandez, Diana; Poon, Abraham N; Kubant, Ruslan; Kim, Hwanki; Huot, Pedro S P; Cho, Clara E; Pannia, Emanuela; Pausova, Zdenka; Anderson, G Harvey

    2015-04-01

    High intakes of multivitamins (HV) during pregnancy by Wistar rats increase food intake, body weight, and characteristics of the metabolic syndrome in male offspring. In this study, high-fat soluble vitamins were fed in combination during gestation to test the hypothesis that they partially account for the effects of the HV diet. Pregnant Wistar rats (14-16/group) were fed a recommended multivitamin diet (1-fold all vitamins) or high-fat soluble vitamin diet (HFS; 10-fold vitamins A, D, E, and K) during pregnancy. Offspring body weight, food intake, and preference as well as expression of selected genes in the hypothalamus and hippocampus were evaluated at birth, weaning, and 14 weeks postweaning. Body weight and food intake were not affected but sucrose preference decreased by 4% in those born to dams fed the HFS gestational diet. Gene expressions of the hypothalamic anorexogenic pro-opiomelanocortin (Pomc) and orexogenic neuropeptide Y (Npy) (∼30% p = 0.008, ∼40% p = 0.007) were increased in weaning and adult rats, respectively. Hippocampal dopaminergic genes (35%-50% p < 0.05) were upregulated at birth and 14 weeks postweaning. DNA hypermethylation (2% p = 0.006) was observed in the dopamine receptor 1 (Drd1) promoter region. We conclude that a gestational diet high in vitamins A, D, E, and K does not show the effects of the HV diet on body weight or food intake but may affect the development of higher hedonic regulatory pathways associated with food preference.

  20. Changes in adaptability following perinatal morphine exposure in juvenile and adult rats.

    PubMed

    Klausz, Barbara; Pintér, Ottó; Sobor, Melinda; Gyarmati, Zsuzsa; Fürst, Zsuzsanna; Tímár, Júlia; Zelena, Dóra

    2011-03-05

    The problem of drug abuse among pregnant women causes a major concern. The aim of the present study was to examine the adaptive consequences of long term maternal morphine exposure in offspring at different postnatal ages, and to see the possibility of compensation, as well. Pregnant rats were treated daily with morphine from the day of mating (on the first two days 5mg/kgs.c. than 10mg/kg) until weaning. Male offspring of dams treated with physiological saline served as control. Behavior in the elevated plus maze (EPM; anxiety) and forced swimming test (FST; depression) as well as adrenocorticotropin and corticosterone hormone levels were measured at postpartum days 23-25 and at adult age. There was only a tendency of spending less time in the open arms of the EPM in morphine treated rats at both ages, thus, the supposed anxiogenic impact of perinatal exposure with morphine needs more focused examination. In response to 5min FST morphine exposed animals spent considerable longer time with floating and shorter time with climbing at both ages which is an expressing sign of depression-like behavior. Perinatal morphine exposure induced a hypoactivity of the stress axis (adrenocorticotropin and corticosterone elevations) to strong stimulus (FST). Our results show that perinatal morphine exposure induces long term depression-like changes. At the same time the reactivity to the stress is failed. These findings on rodents presume that the progenies of morphine users could have lifelong problems in adaptive capability and might be prone to develop psychiatric disorders. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Maternal high fat diet induces early cardiac hypertrophy and alters cardiac metabolism in Sprague Dawley rat offspring.

    PubMed

    De Jong, K A; Barrand, S; Wood-Bradley, R J; de Almeida, D L; Czeczor, J K; Lopaschuk, G D; Armitage, J A; McGee, S L

    2018-06-01

    Maternal high fat diets (mHFD) have been associated with an increased offspring cardiovascular risk. Recently we found that the class IIa HDAC-MEF2 pathway regulates gene programs controlling fatty acid oxidation in striated muscle. This same pathway controls hypertrophic responses in the heart. We hypothesized that mHFD is associated with activation of signal controlling class II a HDAC activity and activation of genes involved in fatty acid oxidation and cardiac hypertrophy in offspring. Female Sprague Dawley rats were fed either normal fat diet (12%) or high fat diet (43%) three weeks prior to mating, remaining on diets until study completion. Hearts of postnatal day 1 (PN1) and PN10 pups were collected. Bioenergetics and respiration analyses were performed in neonatal ventricular cardiomyocytes (NVCM). In offspring exposed to mHFD, body weight was increased at PN10 accompanied by increased body fat percentage and blood glucose. Heart weight and heart weight to body weight ratio were increased at PN1 and PN10, and were associated with elevated signalling through the AMPK-class IIa HDAC-MEF2 axis. The expression of the MEF2-regulated hypertrophic markers ANP and BNP were increased as were expression of genes involved in fatty acid oxidation. However this was only accompanied by an increased protein expression of fatty acid oxidation enzymes at PN10. NVCM isolated from these pups exhibited increased glycolysis and an impaired substrate flexibility. Combined, these results suggest that mHFD induces signalling and transcriptional events indicative of reprogrammed cardiac metabolism and of cardiac hypertrophy in Sprague Dawley rat offspring. Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  2. Ascorbic acid co-administered with rosuvastatin reduces reproductive impairment in the male offspring from male rats exposed to the statin at pre-puberty.

    PubMed

    Leite, Gabriel Adan Araújo; Figueiredo, Thamiris Moreira; Guerra, Marina Trevizan; Borges, Cibele Dos Santos; Fernandes, Fábio Henrique; Anselmo-Franci, Janete Aparecida; Kempinas, Wilma De Grava

    2018-05-18

    Obesity during childhood and adolescence is closely related to dysfunctions on lipid profile in children. Rosuvastatin is a statin that decreases serum total cholesterol. Ascorbic acid is an important antioxidant compound for male reproduction. Pre-pubertal male rats were distributed into six experimental groups that received saline solution 0.9% (vehicle), 3 or 10 mg/kg/day of rosuvastatin, 150 mg/day of ascorbic acid, or 3 or 10 mg/kg/day of rosuvastatin co-administered with 150 mg/day of ascorbic acid by gavage from post-natal day (PND)23 until PND53. Rats were maintained until adulthood and mated with nulliparous females to obtain the male offspring, whose animals were evaluated at adulthood in relation to reproductive parameters. This study is a follow up of a previous paper addressing potential effects on F0 generation only (Leite et al., 2017). Male offspring from rosuvastatin-exposed groups showed increased sperm DNA fragmentation, androgen depletion and impairment on the testicular and epididymal structure. Ascorbic acid coadministered to the fathers ameliorated the reproductive damage in the offspring. In summary, paternal exposure to rosuvastatin may affect the reproduction in the male offspring; however, paternal supplementation with ascorbic acid was able to reduce the reproductive impairment in the male offspring caused by statin treatment to the fathers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Maternal fructose-intake-induced renal programming in adult male offspring.

    PubMed

    Tain, You-Lin; Wu, Kay L H; Lee, Wei-Chia; Leu, Steve; Chan, Julie Y H

    2015-06-01

    Nutrition in pregnancy can elicit long-term effects on the health of offspring. Although fructose consumption has increased globally and is linked to metabolic syndrome, little is known about the long-term effects of maternal high-fructose (HF) exposure during gestation and lactation, especially on renal programming. We examined potential key genes and pathways that are associated with HF-induced renal programming using whole-genome RNA next-generation sequencing (NGS) to quantify the abundance of RNA transcripts in kidneys from 1-day-, 3-week-, and 3-month-old male offspring. Pregnant Sprague-Dawley rats received regular chow or chow supplemented with HF (60% diet by weight) during the entire period of pregnancy and lactation. Male offspring exhibited programmed hypertension at 3 months of age. Maternal HF intake modified over 200 renal transcripts from nephrogenesis stage to adulthood. We observed that 20 differentially expressed genes identified in 1-day-old kidney are related to regulation of blood pressure. Among them, Hmox1, Bdkrb2, Adra2b, Ptgs2, Col1a2 and Tbxa2r are associated with endothelium-derived hyperpolarizing factor (EDHF). NGS also identified genes in arachidonic acid metabolism (Cyp2c23, Hpgds, Ptgds and Ptges) that may be potential key genes/pathways contributing to renal programming and hypertension. Collectively, our NGS data suggest that maternal HF intake elicits a defective adaptation of interrelated EDHFs during nephrogenesis which may lead to renal programming and hypertension in later life. Moreover, our results highlight genes and pathways involved in renal programming as potential targets for therapeutic approaches to prevent metabolic-syndrome-related comorbidities in children with HF exposure in early life. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Respiratory modulation of sympathetic nerve activity is enhanced in male rat offspring following uteroplacental insufficiency.

    PubMed

    Menuet, C; Wlodek, M E; Fong, A Y; Allen, A M

    2016-06-01

    Sympathetic nerve activity to the cardiovascular system displays prominent respiratory-related modulation which leads to the generation of rhythmic oscillations in blood pressure called Traube-Hering waves. An amplification of this respiratory modulation of sympathetic activity is observed in hypertension of both genetic, the spontaneously hypertensive rat, and induced, chronic intermittent hypoxia or maternal protein restriction during gestation, origin. Male offspring of mothers with uteroplacental insufficiency, induced by bilateral uterine vessel ligation at 18 days of gestation, are also hypertensive in adulthood. In this study we examined whether these male offspring display altered respiratory modulation of sympathetic activity at pre-hypertensive ages compared to controls. Respiratory, cardiovascular and sympathetic parameters were examined using the working heart-brainstem preparation in 35 day old male rats that had reduced birth weight due to uteroplacental insufficiency. Whilst all respiratory parameters were not different between groups, we observed an enhanced respiratory-related burst of thoracic sympathetic nerve activity and amplified Traube-Hering waves in the growth-restricted group. This group also showed an increased sympathetic and bradycardic response to activation of peripheral chemoreceptors. The observations add support to the view that altered respiratory modulation of sympathetic activity represents a common mechanism involved in the development of several forms of hypertension. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Prenatal centrifugation: A model for fetal programming of adult weight?

    NASA Astrophysics Data System (ADS)

    Baer, Lisa A.; Rushing, Linda; Wade, Charles E.; Ronca, April E.

    2005-08-01

    'Fetal programming' is a newly emerging field that is revealing astounding insights into the prenatal origins of adult disease, including metabolic, endocrine, and cardiovascular pathophysiology. In the present study, we tested the hypothesis that rat pups conceived, gestated and born at 2-g have significantly reduced birth weights and increased adult body weights as compared to 1-g controls. Offspring were produced by mating young adult male and female rats that were adapted to 2-g centrifugation. Female rats underwent conception, pregnancy and birth at 2-g. Newborn pups in the 2-g condition were removed from the centrifuge and fostered to non-manipulated, newly parturient dams maintained at 1-g. Comparisons were made with 1-g stationary controls, also cross- fostered at birth. As compared to 1-g controls, birth weights of pups gestated and born at 2-g were significantly reduced. Pup body weights were significantly reduced until Postnatal day (P)12. Beginning on P63, body weights of 2-g-gestated offspring exceeded those of 1-g controls by 7-10%. Thus, prenatal rearing at 2-g restricts neonatal growth and increases adult body weight. Collectively, these data support the hypothesis that 2-g centrifugation alters the intrauterine milieu, thereby inducing persistent changes in adult phenotype.

  6. Neck/upper back and low back pain in parents and their adult offspring: Family linkage data from the Norwegian HUNT Study.

    PubMed

    Lier, R; Nilsen, T I L; Vasseljen, O; Mork, P J

    2015-07-01

    Chronic pain in the neck and low back is highly prevalent. Although heritable components have been identified, knowledge about generational transmission of spinal pain between parents and their adult offspring is sparse. This study examined the intergenerational association of spinal pain using data from 11,081 parent-offspring trios participating in the population-based HUNT Study in Norway. Logistic regression was used to calculate adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for offspring spinal pain associated with parental spinal pain. In total, 3654 (33%) offspring reported spinal pain at participation. Maternal and paternal spinal pain was consistently associated with higher ORs for offspring spinal pain. The results suggest a slightly stronger association for parental multilevel spinal pain (i.e., both neck/upper back pain and low back pain) than for pain localized to the neck/upper back or low back. Multilevel spinal pain in both parents was associated with ORs of 2.6 (95% CI, 2.1-3.3), 2.4 (95% CI, 1.9-3.1) and 3.1 (95% CI, 2.2-4.4) for offspring neck/upper back, low back and multilevel spinal pain, respectively. Parental chronic spinal pain was consistently associated with increased occurrence of chronic spinal pain in their adult offspring, and this association was particularly strong for multilevel spinal pain. © 2014 European Pain Federation - EFIC®

  7. Implications of temporal variation in maternal care for the prediction of neurobiological and behavioral outcomes in offspring

    PubMed Central

    Peña, Catherine Jensen; Champagne, Frances A.

    2014-01-01

    Previous studies in Long-Evans rats demonstrated a significant relationship between variation in pup licking/grooming and arched-back nursing (LG-ABN) and offspring development. However, maternal care is dynamic and exhibits significant temporal variation. In the current study, we assessed temporal variation in LG and ABN in lactating rats across the circadian cycle and determined the impact of these behaviors for the prediction of offspring hypothalamic gene expression, anxiety-like behavior, and responsiveness to high fat diet (HFD). We find that distinguishing between dams that engage in stable individual differences in maternal behavior (Low, Mid, High) requires assessment across the light-dark phases of the light cycle and across multiple postpartum days. Amongst juvenile female offspring, we find a positive correlation between maternal LG and mRNA levels of estrogen receptor alpha and beta and the oxytocin receptor (when LG is assessed across the light-dark cycle or in the dark phase). In young adults, we find sex-specific effects, with female High LG offspring exhibiting increased exploration of a novel environment and increased latency to approach HFD and male High LG offspring displaying increased activity in a novel environment and reduced HFD consumption. Importantly, these effects on behavior were primarily evident when LG was assessed across the light-dark cycle and ABN was not associated with these measures. Overall, our findings illustrate the dissociation between the effects of LG and ABN on offspring development and provide critical insights into the temporal characteristics of maternal behavior that have methodological implications for the study of maternal effects. PMID:23398440

  8. Temporal Alterations in Vascular Angiotensin Receptors and Vasomotor Response in Offspring of Protein-restricted Rat Dams

    PubMed Central

    SATHISHKUMAR, Kunju; BALAKRISHNAN, Meena; CHINNATHAMBI, Vijayakumar; GAO, Haijun; YALLAMPALLI, Chandra

    2012-01-01

    Objective Examine temporal alterations in vascular angiotensin II (ANG II) receptors (AT1R and AT2R) and determine vascular response to ANG II in growth-restricted offspring. Study design Offspring of pregnant rats fed low-protein (6%) and control (20%) diet were compared. Results Prenatal protein restriction reprogrammed AT1aR mRNA expression in males’ mesenteric arteries to cause 1.7- and 2.3-fold increases at 3 and 6 months of age associated with arterial pressure increases of 10 and 33 mmHg, respectively; however, in females, increased AT1aR expression (2-fold) and arterial pressure (15 mmHg) occurred only at 6 months. Prenatal protein restriction did not affect AT2R expression. Losartan abolished hypertension, suggesting that AT1aR plays a primary role in arterial pressure elevation. Vasoconstriction to ANG II was exaggerated in all protein-restricted offspring, with greater potency and efficacy in males. Conclusion Prenatal protein restriction increased vascular AT1R expression and vasoconstriction to ANG II, possibly contributing to programmed hypertension. PMID:22537420

  9. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring

    PubMed Central

    Ong, Z. Y.; Muhlhausler, B. S.

    2011-01-01

    Individuals exposed to high-fat, high-sugar diets before birth have an increased risk of obesity in later life. Recent studies have shown that these offspring exhibit increased preference for fat, leading to suggestions that perinatal exposure to high-fat, high-sugar foods results in permanent changes within the central reward system that increase the subsequent drive to overconsume palatable foods. The present study has determined the effect of a maternal “junk-food” diet on the expression of key components of the mesolimbic reward pathway in the offspring of rat dams at 6 wk and 3 mo of age. We show that offspring of junk-food-fed (JF) dams exhibit higher fat intake from weaning until at least 3 mo of age (males: 16±0.6 vs. 11±0.8 g/kg/d; females: 19±1.3 vs. 13±0.4 g/kg/d; P<0.01). mRNA expression of μ-opioid receptor (Mu) was 1.6-fold higher (P<0.01) and dopamine active transporter (DAT) was 2-fold lower (P<0.05) in JF offspring at 6 wk of age. By 3 mo, these differences were reversed, and Mu mRNA expression was 2.8-fold lower (P<0.01) and DAT mRNA expression was 1.9-fold higher (P<0.01) in the JF offspring. These findings suggest that perinatal exposure to high-fat, high-sugar diets results in altered development of the central reward system, resulting in increased fat intake and altered response of the reward system to excessive junk-food intake in postnatal life.—Ong, Z. Y., Muhlhausler, B. S. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. PMID:21427213

  10. The renal effects of prenatal testosterone in rats.

    PubMed

    Bábíčková, Janka; Borbélyová, Veronika; Tóthová, L'ubomíra; Kubišová, Katarína; Janega, Pavol; Hodosy, Július; Celec, Peter

    2015-05-01

    Previous studies have shown that prenatal testosterone affects the development of not only reproductive organs but also the brain and even glucose metabolism. Whether prenatal testosterone influences the kidney development is largely unknown. We analyzed whether testosterone modulation during prenatal development would affect renal function and the number of nephrons in adult offspring. Pregnant rats were treated with olive oil, testosterone (2 mg/kg), the androgen receptor blocker flutamide (5 mg/kg) or testosterone plus flutamide via daily intramuscular injections from gestation day 14 until delivery. Renal histology and functional parameters were assessed in male and female adult offspring. Macerated kidneys were used for nephron counting. Prenatal testosterone administration increased proteinuria in male rats by 256%. A similar 134% effect in female rats was not statistically significant. This effect was prevented when flutamide was co-administered. In male rats prenatal testosterone increased blood urea nitrogen. In female rats flutamide increased creatinine clearance. In male rats prenatal testosterone and flutamide led to higher and lower, respectively, interstitial collagen deposition in adulthood. Prenatal testosterone induces proteinuria in adulthood. This effect is mediated via androgen receptor. Additional effects seem to be sex specific. Further studies should focus on the timing and dosing of testosterone as well as the applicability to human development. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Dietary ethinyl estradiol exposure during development causes increased voluntary sodium intake and mild maternal and offspring toxicity in rats.

    PubMed

    Ferguson, Sherry A; Delclos, K Barry; Newbold, Retha R; Flynn, Katherine M

    2003-01-01

    Exogenous estrogen exposure during development often results in behavioral masculinization and/or defeminization of genetic females. Genetic males may be defeminized, hypermasculinized or even demasculinized after similar treatment. Here, pregnant Sprague-Dawley rats consumed phytoestrogen-free diets containing 0, 1, 5 or 200 ppb EE(2) beginning on gestational day (GD) 7. Offspring were weaned to the same maternal diet and maintained gonadally intact. There were mild effects on body weight and food consumption in dams of the 200 ppb group and their offspring weighed less at birth than those of the control group; however, gross assessments of nursing behavior were normal in all dietary groups. Postweaning, offspring of the 200 ppb group weighed less and consumed less food than controls. There were no EE(2)-related effects on open-field activity (tested at postnatal days (PND) 22-24, 43-45 and 64-66), play behavior (tested at PND 35), running wheel activity (PND 63-77) or intake of a 0.3% saccharin-flavored solution (PND 69-71). Intake of a 3.0% sodium chloride-flavored solution on PND 73-75 was increased in both male and female offspring of the 200 ppb group relative to same-sex controls, an effect that is reportedly estrogen mediated. Sodium chloride-flavored solution intake is a sexually dimorphic behavior for which female rats consume more than males. Here, while EE(2) exposure had few effects on the conventional tests of sexually dimorphic behaviors, exposure to 200 ppb in the diet appeared to feminize genetic males and hyperfeminize genetic females with regard to sodium intake.

  12. Depression or anxiety in adult twins is associated with asthma diagnosis but not with offspring asthma.

    PubMed

    Tedner, S G; Lundholm, C; Olsson, H; Almqvist, C

    2016-06-01

    Asthma is common in both children and adults in the Western world, just like anxiety and depression. While some research has revealed that these diseases might share important environmental and pathophysiological aspects, the exact mechanisms still remain unclear. To study the correlation firstly between depression or anxiety and asthma diagnosis in adult twins and secondly the association between parental depression or anxiety and offspring asthma in children of twins. In total, 24 685 adult twins aged 20-47 years were interviewed or completed a Web-based questionnaire and their children were identified through the Multi-Generation Register. Asthma diagnosis was obtained from the Patient Register and the Prescribed Drug Register. Assessment of depression and anxiety was obtained from questionnaires using Center for Epidemiologic Studies Depression Scale (CES-D), major depression and generalized anxiety disorder (GAD) from DSM-IV. The association between depression or anxiety and asthma was analyzed with logistic regression adjusting for confounders in twins and offspring. To address genetic and familial environmental confounding, we performed a cotwin analysis using disease-discordant twin pairs. We found an association between asthma and CES-D, major depression and GAD, for example adjusted OR for major depression and register-based asthma 1.56 (1.36-1.79). Most of the point estimates remained in the co-twin control analysis, indicating that the association was likely not due to genetic or familial environmental factors. There was no association between parental depression and/or anxiety and asthma diagnosis in the offspring which implies lack of genetic confounding. We found an association between own asthma diagnosis and anxiety or depression, but not with offspring asthma. Our results indicate that the associations were not due to confounding from genes or environment shared by the twins. © 2016 John Wiley & Sons Ltd.

  13. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease.

    PubMed

    Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K

    2008-05-01

    Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1-F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti-androgenic activity) on embryonic (E) days E8-E14 of gestation. F1 control and vinclozolin generation offspring from different litters were mated to produce F2 offspring, and similarly F2 generation animals produced F3 generation offspring. Observations demonstrated that 9 out of 105 pregnant rats (8.6%) from the vinclozolin F1-F3 generations exhibited uterine hemorrhage and/or anemia late in pregnancy. None (0 out of 82) of the control F1-F3 generation females had similar pregnancy problems. Complete blood cell counts and serum chemistry profiles demonstrated that selected vinclozolin generation animals, but not controls, exhibited marked regenerative anemia in late pregnancy. Examination of kidney histology revealed moderate or severe glomerular abnormalities in 67% of the vinclozolin F2 and F3 generation adult females compared with 18% of the controls. Adult female vinclozolin generation animals also developed various types of tumors in 6.5% of the animals (11 out of 170), while 2% of control-line animals (3 out of 151) developed mammary tumors. Observations demonstrate that vinclozolin exposure during gonadal sex determination promotes a transgenerational increase in pregnancy abnormalities and female adult onset disease states.

  14. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease

    PubMed Central

    Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K

    2017-01-01

    Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1–F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti-androgenic activity) on embryonic (E) days E8–E14 of gestation. F1 control and vinclozolin generation offspring from different litters were mated to produce F2 offspring, and similarly F2 generation animals produced F3 generation offspring. Observations demonstrated that 9 out of 105 pregnant rats (8.6%) from the vinclozolin F1–F3 generations exhibited uterine hemorrhage and/or anemia late in pregnancy. None (0 out of 82) of the control F1–F3 generation females had similar pregnancy problems. Complete blood cell counts and serum chemistry profiles demonstrated that selected vinclozolin generation animals, but not controls, exhibited marked regenerative anemia in late pregnancy. Examination of kidney histology revealed moderate or severe glomerular abnormalities in 67% of the vinclozolin F2 and F3 generation adult females compared with 18% of the controls. Adult female vinclozolin generation animals also developed various types of tumors in 6.5% of the animals (11 out of 170), while 2% of control-line animals (3 out of 151) developed mammary tumors. Observations demonstrate that vinclozolin exposure during gonadal sex determination promotes a transgenerational increase in pregnancy abnormalities and female adult onset disease states. PMID:18304984

  15. Impact of perinatal exposure to sucrose or high fructose corn syrup (HFCS-55) on adiposity and hepatic lipid composition in rat offspring.

    PubMed

    Toop, Carla R; Muhlhausler, Beverly S; O'Dea, Kerin; Gentili, Sheridan

    2017-07-01

    Fructose-containing sugars, including sucrose and high fructose corn syrup (HFCS), have been implicated in the epidemics of obesity and type 2 diabetes. Few studies have evaluated the impact of perinatal exposure to these sugars on metabolic and physiological outcomes in the offspring. Using a rat model, offspring exposed to a maternal sucrose or HFCS diet during the prenatal and/or suckling periods were found to have altered adiposity and liver fat content and composition at weaning. Plasma levels of free fatty acids remained elevated in young adulthood, but consumption of a control diet following weaning appeared to ameliorate most other effects of perinatal exposure to a maternal high-sugar diet. Guidelines for maternal nutrition should advise limiting consumption of fructose-containing sugars, and it is particularly important that these recommendations include maternal nutrition during lactation. Perinatal exposure to excess maternal intake of added sugars, including fructose and sucrose, is associated with an increased risk of obesity and type 2 diabetes in adult life. However, it is unknown to what extent the type of sugar and the timing of exposure affect these outcomes. The aim of this study was to determine the impact of exposure to maternal consumption of a 10% (w/v) beverage containing sucrose or high fructose corn syrup-55 (HFCS-55) during the prenatal and/or suckling periods on offspring at 3 and 12 weeks, utilising a cross-fostering approach in a rodent model. Perinatal sucrose exposure decreased plasma glucose concentrations in offspring at 3 weeks, but did not alter glucose tolerance. Increased adiposity was observed in 3-week-old offspring exposed to sucrose or HFCS-55 during suckling, with increased hepatic fat content in HFCS-55-exposed offspring. In terms of specific fatty acids, hepatic monounsaturated (omega-7 and -9) fatty acid content was elevated at weaning, and was most pronounced in sucrose offspring exposed during both the prenatal and

  16. Functional impairment due to bereavement after the death of adolescent or young adult offspring in a national population study of 1,051,515 parents.

    PubMed

    Wilcox, Holly C; Mittendorfer-Rutz, Ellenor; Kjeldgård, Linnea; Alexanderson, Kristina; Runeson, Bo

    2015-08-01

    This study addresses the burden of grief after the death of an adolescent or young adult offspring. Parental bereavement following the death of an adolescent or young adult offspring is associated with considerable psychiatric and somatic impairment. Our aim is to fill a research gap by examining offspring death due to suicide, accidents, or natural causes in relation to risk of parental sickness absence with psychiatric or somatic disorders. This whole population-based prospective study included mothers and fathers of all offspring aged 16-24 years in Sweden on December 31, 2004 (n = 1,051,515). This study had no loss to follow-up and exposure, confounders, and the outcome were recorded independently of each other. Cox survival analysis was used to model time to sickness absence exceeding 30 days, adjusting for parental demographic characteristics, previous parental sickness absence and disability pension, and inpatient and outpatient psychiatric and somatic healthcare prior to offspring death in 2001-2004. This large study population provided satisfactory statistical power for stratification by parents' sex and adolescent and young adults' cause of death. Mothers and fathers of offspring suicide and accident decedents both had over tenfold higher risk for psychiatric sickness absence exceeding 30 days as compared to parents of live offspring. Fathers of suicide decedents were at 40 % higher risk for somatic sickness absence. This is the largest study to date of parents who survived their offspring's death and the first study of work-related outcomes in bereaved parents. This study uses a broad metric of work-related functional impairment, sickness absence, for capturing the burden of sudden offspring death.

  17. Maternal immunization with actinomycetales immunomodulators reduces parasitemias in offspring challenged with Trypanosoma cruzi.

    PubMed

    Davila, Hector; Didoli, Griselda; Bottasso, Oscar; Stanford, John

    2011-04-01

    This article describes the first use of heat-killed, borate-buffered preparations of aerobic actinomycetales to immunize pregnant animals in order to determine the effect on their pregnancy and fertility and the survival coefficients of their offspring. Pregnant rats received three injections of Gordonia bronchialis, Rhodococcus coprophylus or physiological saline and a proportion of their offspring were challenged with live Trypanosoma cruzi at the time of weaning. Levels of parasitemia and, in some animals, of the cytokines IFN-γ and IL-10 were measured. The progress of pregnancy, fertility and survival of offspring were unaffected by the maternal immunizations. The offspring of rats immunized with G. bronchialis displayed significantly reduced parasitemias, with increased levels of IFN-γ and reduced levels of IL-10, 4 days after challenge. The offspring of rats immunized with R. coprophylus displayed greater parasitemias than did those of the control group. These unexpected results are discussed and their causation considered.

  18. Prenatal ozone exposure abolishes stress activation of Fos and tyrosine hydroxylase in the nucleus tractus solitarius of adult rat.

    PubMed

    Boussouar, A; Araneda, S; Hamelin, C; Soulage, C; Kitahama, K; Dalmaz, Y

    2009-03-06

    Ozone (O3) is widely distributed in the environment, with high levels of air pollution. However, very few studies have documented the effects on postnatal development of O3 during pregnancy. The long-term effects of prenatal O3 exposure in rats (0.5 ppm 12 h/day from embryonic day E5 to E20) were evaluated in the adult nucleus tractus solitarius (NTS) regulating respiratory control. Neuronal response was assessed by Fos protein immunolabeling (Fos-IR), and catecholaminergic neuron involvement by tyrosine hydroxylase (TH) labeling (TH-IR). Adult offspring were analyzed at baseline and following immobilization stress (one hour, plus two hours' recovery); immunolabeling was observed by confocal microscopy. Prenatal O3 increased the baseline TH gray level per cell (p < 0.001). In contrast, the number of Fos-IR cells, Fos-IR/TH-IR colabeled cells and proportion of TH double-labeled with Fos remained unchanged. After stress, the TH gray level (p < 0.001), number of Fos-IR cells (p < 0.001) and of colabeled Fos-IR/TH-IR cells (p < 0.05) and percentage of colabeled Fos-IR/TH-IR neurons against TH-IR cells (p < 0.05) increased in the control group. In prenatal-O3 rats, immobilization stress abolished these increases and reduced the TH gray level (p < 0.05), indicating that prenatal O3 led to loss of adult NTS reactivity to stress. We conclude that long-lasting sequelae were detected in the offspring beyond the prenatal O3 exposure. Prenatal O3 left a print on the NTS, revealed by stress. Disruption of neuronal plasticity to new challenge might be suggested.

  19. Effect of maternal renin-angiotensin-aldosterone system activation on social coping strategies and gene expression of oxytocin and vasopressin in the brain of rat offspring in adulthood.

    PubMed

    Senko, Tomáš; Svitok, Pavel; Kršková, Lucia

    2017-10-01

    The intrauterine condition in which the mammalian foetus develops has an important role in prenatal programming. The aim of this study was to determine the extent to which activation of the maternal renin-angiotensin-aldosterone system (RAAS) could influence social behaviour strategies in offspring via changes in social neurotransmitters in the brain. Pregnant female Wistar rats were implanted with osmotic minipumps which continually released angiotensin II for 14 days at concentration of 2 μg/kg/h. The adult offspring (angiotensin and control groups) underwent a social interaction test. The mRNA expression of vasopressin, oxytocin and the oxytocin receptor in selected brain areas was measured by in situ hybridisation. Prenatal exposure to higher levels of angiotensin II resulted in a strong trend toward decreased total social interaction time and significantly decreased time spent in close proximity and frequency of mutual sniffing. The angiotensin group showed no changes in oxytocin mRNA expression in the hypothalamic paraventricular or supraoptic nuclei, but this group had reduced vasopressin mRNA expression in the same areas. We concluded that maternal activation of RAAS (via higher levels of angiotensin II) caused inhibition of some socio-cohesive indicators and decreased vasopressinergic activity of offspring. Taken together, these results suggest a reactive rather than proactive social coping strategy.

  20. Effects of maternal high-fat diet and sedentary lifestyle on susceptibility of adult offspring to ozone exposure in rats

    EPA Science Inventory

    Epidemiological and experimental data suggest that obesity exacerbates the health effects of air pollutants such as ozone (O3). Maternal inactivity and calorically rich diets lead to offspring that show signs of obesity. Exacerbated O3 susceptibility of offspring could thus be m...

  1. LATE GESTATIONAL EXPOSURE TO THE FUNGICIDE PROCHLORAZ DELAYS THE ONSET OF PARTURITION AND CAUSES REPRODUCTIVE MALFORMATIONS IN MALE RAT OFFSPRING

    EPA Science Inventory

    Late gestational exposure to the fungicide prochloraz delays the onset of parturition and causes reproductive malformations in male rat offspring.
    Nigel C. Noriega, Joseph Ostby, Christy Lambright, Vickie S. Wilson, and L. Earl Gray Jr.,

    Prochloraz (PZ) is an imidazol...

  2. Thermoregulatory deficits in adult long evans rat offspring exposed perinatally to the antithyroidal drug, propylthiouracil

    EPA Science Inventory

    Developmental exposure to endocrine disrupting toxicants has been shown to alter a variety of physiological processes in mature offspring. Body (core) temperature (Tc) is a tightly regulated homeostatic system but is susceptible to disruptors of the hypothalamic-pituitary-thyroid...

  3. Investigation on the role of Spirulina platensis in ameliorating behavioural changes, thyroid dysfunction and oxidative stress in offspring of pregnant rats exposed to fluoride.

    PubMed

    Banji, David; Banji, Otilia J F; Pratusha, N Gouri; Annamalai, A R

    2013-09-01

    The study investigated the role of Spirulina platensis in reversing sodium fluoride-induced thyroid, neurodevelopment and oxidative alterations in offspring of pregnant rats. The total antioxidant activity, phycocyanins, and β carotene content were quantified in Spirulina. Thirty female pregnant rats were allocated to six groups and treatment initiated orally from embryonic day (ED) 6 to postnatal day (PND) 15. Treatment groups included control, Spirulina alone, sodium fluoride (20 mg/kg) alone, and sodium fluoride along with Spirulina (250 and 500 mg/kg). Serum fluoride levels were determined on ED 20 and PND 11. Offspring were subjected to behavioural testing, estimation of thyroid levels, oxidative measurements in brain mitochondrial fraction and histological evaluation of the cerebellum. Fluoride-induced alterations in thyroid hormones, behaviour and increased oxidative stress. Spirulina augmented the displacement of fluoride, facilitated antioxidant formation, improved behaviour and protected Purkinje cells. Supplementing Spirulina during pregnancy could reduce the risk of fluoride toxicity in offspring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Impact of cafeteria feeding during lactation in the rat on novel object discrimination in the offspring.

    PubMed

    Wright, Thomas M; King, Madeleine V; Davey, William G; Langley-Evans, Simon C; Voigt, Jörg-Peter W

    2014-12-28

    There is increasing evidence that hyperenergetic diets have an impact on memory in rodents. However, it is largely unknown how diets, such as a cafeteria diet (CD), that mimic a Western-type diet act on learning and memory, in particular when fed during early stages of development. Here, we fed lactating dams a CD and exposed both male and female offspring to a novel object discrimination (NOD) task, a two-trial test of recognition memory in which rats exposed to two identical objects during a training/familiarisation trial can discriminate a novel from a familiar object during the subsequent choice trial. The choice trial was performed following inter-trial interval (ITI) delays of up to 4 h. Maternal diet did not have an impact on exploration of the objects by either sex during the familiarisation trial. Control males discriminated the novel from the familiar object, indicating intact memory with an ITI of 1 h, but not 2 or 4 h. The CD delayed this natural forgetting in male rats such that discrimination was also evident after a 2 h ITI. In contrast, control females exhibited discrimination following both 1 and 2 h ITI, but the CD impaired performance. In summary, the present study shows that maternal exposure to the CD programmes NOD in the adult. In better-performing females, dietary programming interferes with NOD, whereas NOD was improved in males after lactational CD feeding.

  5. Maternal psychological stress-induced developmental disability, neonatal mortality and stillbirth in the offspring of Wistar albino rats

    PubMed Central

    Govindaraj, Sakthivel; Shanmuganathan, Annadurai; Rajan, Ravindran

    2017-01-01

    Background Stress is an inevitable part of life, and maternal stress during the gestational period has dramatic effects in the early programming of the physiology and behavior of offspring. The developmental period is crucial for the well-being of the offspring. Prenatal stress influences the developmental outcomes of the fetus, in part because the developing brain is particularly vulnerable to stress. The etiology of birth defects of the offspring is reported to be 30–40% genetic and 7–10% multifactorial, with the remaining 50% still unknown and also there is no clear cause for neonatal mortality and still-birth. Objective The present study explores the association of maternal psychological stress on mother and the offspring’s incidence of birth defects, stillbirth, and neonatal mortality. Study design Pregnant animals were restrained to induce psychological stress (3 times per day, 45 minutes per session). Except control group, other animals were exposed to restraint stress during the gestational period: early gestational stress (EGS, stress exposure during 1st day to 10th days of gestational period), late gestational stress (LGS, stress exposure during 11th day to till parturition), and full term gestational stress (FGS, stress exposure to the whole gestational period). The effects of maternal stress on the mother and their offspring were analyzed. Results Expectant female rats exposed to stress by physical restraint showed decreased body weight gain, food intake, and fecal pellet levels. Specifically, the offspring of female rats subjected to late gestational and full term gestational restraint stress showed more deleterious effects, such as physical impairment (LGS 24.44%, FGS 10%), neonatal mortality (EGS 2.56%, LGS 24.44%, FGS 17.5%), stillbirths (FGS 27.5%), low birth weight (EGS 5.42g, LGS 4.40g, FGS 4.12g), preterm births (EGS 539 Hrs, LGS 514 Hrs, FGS 520.6 Hrs), and delayed eyelid opening (EGS 15.16 Days, LGS 17 Days, FGS 17.67 Days). Conclusion

  6. Long-lasting effects of prenatal dietary choline availability on object recognition memory ability in adult rats.

    PubMed

    Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros

    2013-11-01

    Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.

  7. Maternal Exposure of Rats to Isoflurane during Late Pregnancy Impairs Spatial Learning and Memory in the Offspring by Up-Regulating the Expression of Histone Deacetylase 2.

    PubMed

    Luo, Foquan; Hu, Yan; Zhao, Weilu; Zuo, Zhiyi; Yu, Qi; Liu, Zhiyi; Lin, Jiamei; Feng, Yunlin; Li, Binda; Wu, Liuqin; Xu, Lin

    2016-01-01

    Increasing evidence indicates that most general anesthetics can harm developing neurons and induce cognitive dysfunction in a dose- and time-dependent manner. Histone deacetylase 2 (HDAC2) has been implicated in synaptic plasticity and learning and memory. Our previous results showed that maternal exposure to general anesthetics during late pregnancy impaired the offspring's learning and memory, but the role of HDAC2 in it is not known yet. In the present study, pregnant rats were exposed to 1.5% isoflurane in 100% oxygen for 2, 4 or 8 hours or to 100% oxygen only for 8 hours on gestation day 18 (E18). The offspring born to each rat were randomly subdivided into 2 subgroups. Thirty days after birth, the Morris water maze (MWM) was used to assess learning and memory in the offspring. Two hours before each MWM trial, an HDAC inhibitor (SAHA) was given to the offspring in one subgroup, whereas a control solvent was given to those in the other subgroup. The results showed that maternal exposure to isoflurane impaired learning and memory of the offspring, impaired the structure of the hippocampus, increased HDAC2 mRNA and downregulated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) mRNA, N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and NR2B protein in the hippocampus. These changes were proportional to the duration of the maternal exposure to isoflurane and were reversed by SAHA. These results suggest that exposure to isoflurane during late pregnancy can damage the learning and memory of the offspring rats via the HDAC2-CREB -NR2B pathway. This effect can be reversed by HDAC2 inhibition.

  8. Individual differences in maternal response to immune challenge predict offspring behavior: Contribution of environmental factors

    PubMed Central

    Bronson, Stefanie L.; Ahlbrand, Rebecca; Horn, Paul S.; Kern, Joseph R.; Richtand, Neil M.

    2011-01-01

    Maternal infection during pregnancy elevates risk for schizophrenia and related disorders in offspring. Converging evidence suggests the maternal inflammatory response mediates the interaction between maternal infection, altered brain development, and behavioral outcome. The extent to which individual differences in the maternal response to immune challenge influence the development of these abnormalities is unknown. The present study investigated the impact of individual differences in maternal response to the viral mimic polyinosinic:polycytidylic acid (poly I:C) on offspring behavior. We observed significant variability in body weight alterations of pregnant rats induced by administration of poly I:C on gestational day 14. Furthermore, the presence or absence of maternal weight loss predicted MK-801 and amphetamine stimulated locomotor abnormalities in offspring. MK-801 stimulated locomotion was altered in offspring of all poly I:C treated dams; however, the presence or absence of maternal weight loss resulted in decreased and modestly increased locomotion, respectively. Adult offspring of poly I:C treated dams that lost weight exhibited significantly decreased amphetamine stimulated locomotion, while offspring of poly I:C treated dams without weight loss performed similarly to vehicle controls. Social isolation and increased maternal age predicted weight loss in response to poly I:C but not vehicle injection. In combination, these data identify environmental factors associated with the maternal response to immune challenge and functional outcome of offspring exposed to maternal immune activation. PMID:21255612

  9. Chronic Sleep Restriction during Pregnancy - Repercussion on Cardiovascular and Renal Functioning of Male Offspring

    PubMed Central

    Lima, Ingrid L. B.; Rodrigues, Aline F. A. C.; Bergamaschi, Cássia T.; Campos, Ruy R.; Hirata, Aparecida E.; Tufik, Sergio; Xylaras, Beatriz D. P.; Visniauskas, Bruna; Chagas, Jair R.; Gomes, Guiomar N.

    2014-01-01

    Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi – tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127±2.6 (19); OCSR: 144±2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: −2.6±0.15 (9); OCRS: −1.6±0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4±15 (18); OSR: 60.2±3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4±0.2 (10); OCSR: 7.4±0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring. PMID:25405471

  10. Chronic sleep restriction during pregnancy--repercussion on cardiovascular and renal functioning of male offspring.

    PubMed

    Lima, Ingrid L B; Rodrigues, Aline F A C; Bergamaschi, Cássia T; Campos, Ruy R; Hirata, Aparecida E; Tufik, Sergio; Xylaras, Beatriz D P; Visniauskas, Bruna; Chagas, Jair R; Gomes, Guiomar N

    2014-01-01

    Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi - tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127 ± 2.6 (19); OCSR: 144 ± 2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: -2.6 ± 0.15 (9); OCRS: -1.6 ± 0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4 ± 15 (18); OSR: 60.2 ± 3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4 ± 0.2 (10); OCSR: 7.4 ± 0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring.

  11. Intergenerational Transmission of Resilience? Sense of Coherence Is Associated between Lithuanian Survivors of Political Violence and Their Adult Offspring.

    PubMed

    Kazlauskas, Evaldas; Gailiene, Danute; Vaskeliene, Ieva; Skeryte-Kazlauskiene, Monika

    2017-01-01

    Little is known about intergeneration effects on mental health in the families of survivors of political oppression of communist regime in Central and Eastern Europe. We aimed to explore post-traumatic stress in the second generation of the Lithuanian survivors of political violence, and analyze links between parental and adult offsprings' sense of coherence in the families exposed to political violence during the oppressive communist regime in Lithuania. A total of 110 matched pairs of communist regime political violence survivors (mean age = 73.22 years) and their adult offspring (mean age = 44.65 years) participated in this study. Life-time traumatic experiences and sense of coherence were measured in both parents and their offspring. Post-traumatic stress symptoms were assessed in the second generation of survivors. We found a high vulnerability in the second generation of the Lithuanian families of political violence survivors, with a 29% of probable PTSD in the second generation based on self-report measures. A significant positive correlation between parental and adult offsprings' sense of coherence was found. Post-traumatic stress symptoms were associated negatively with a sense of coherence in the second generation. Our study indicates the links between parental and the second generation's sense of coherence in the families of survivors of political violence. The study raises broader questions about the intergenerational aspects of resilience. Further studies are needed to explore the links between parental and child sense of coherence in other samples.

  12. Increased male offspring's risk of metabolic-neuroendocrine dysfunction and overweight after fructose-rich diet intake by the lactating mother.

    PubMed

    Alzamendi, Ana; Castrogiovanni, Daniel; Gaillard, Rolf C; Spinedi, Eduardo; Giovambattista, Andrés

    2010-09-01

    An adverse endogenous environment during early life predisposes the organism to develop metabolic disorders. We evaluated the impact of intake of an iso-caloric fructose rich diet (FRD) by lactating mothers (LM) on several metabolic functions of their male offspring. On postnatal d 1, ad libitum eating, lactating Sprague-Dawley rats received either 10% F (wt/vol; FRD-LM) or tap water (controls, CTR-LM) to drink throughout lactation. Weaned male offspring were fed ad libitum a normal diet, and body weight (BW) and food intake were registered until experimentation (60 d of age). Basal circulating levels of metabolic markers were evaluated. Both iv glucose tolerance and hypothalamic leptin sensitivity tests were performed. The hypothalamus was dissected for isolation of total RNA and Western blot analysis. Retroperitoneal (RP) adipose tissue was dissected and either kept frozen for gene analysis or digested to isolate adipocytes or for histological studies. FRD rats showed increased BW and decreased hypothalamic sensitivity to exogenous leptin, enhanced food intake (between 49-60 d), and decreased hypothalamic expression of several anorexigenic signals. FRD rats developed increased insulin and leptin peripheral levels and decreased adiponectinemia; although FRD rats normally tolerated glucose excess, it was associated with enhanced insulin secretion. FRD RP adipocytes were enlarged and spontaneously released high leptin, although they were less sensitive to insulin-induced leptin release. Accordingly, RP fat leptin gene expression was high in FRD rats. Excessive fructose consumption by lactating mothers resulted in deep neuroendocrine-metabolic disorders of their male offspring, probably enhancing the susceptibility to develop overweight/obesity during adult life.

  13. Affinity to host population stimulates physical growth in adult offspring of Turkish migrants in Germany.

    PubMed

    Özer, Aydan; Scheffler, Christiane

    2018-06-11

    Because of political conflicts and climate change, migration will be increased worldwide and integration in host societies is a challenge also for migrants. We hypothesize that migrants, who take up the challenge in a new social environment are taller than migrants who do not pose this challenge. We analyze by a questionnaire possible social, nutritional and ethnic influencing factors to body height (BH) of adult offspring of Turkish migrants (n = 82, 39 males) aged from 18 to 34 years (mean age 24.6 years). The results of multiple regression (downward selection) show that the more a male adult offspring of Turkish migrants feels like belonging to the Turkish culture, the smaller he is (95% CI, -3.79, -0.323). Further, the more a male adult offspring of Turkish migrants feels like belonging to the German culture, the taller he is (95% CI, -0.152, 1.738). We discussed it comparable to primates taking up their challenge in dominance, where as a result their body size increase is associated with higher IGF-1 level. IGF-1 is associated with emotional belonging and has a fundamental role in the regulation of metabolism and growth of the human body. With all pilot characteristics of our study results show that the successful challenge of integration in a new society is strongly associated with the emotional integration and identification in the sense of a personal sense of belonging to society. We discuss taller BH as a signal of social growth adjustment. In this sense, a secular trend of BH adaptation of migrants to hosts is a sign of integration.

  14. High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring.

    PubMed

    Cho, Clara E; Sánchez-Hernández, Diana; Reza-López, Sandra A; Huot, Pedro S P; Kim, Young-In; Anderson, G Harvey

    2013-07-01

    Excess vitamins, especially folate, are consumed during pregnancy but later-life effects on the offspring are unknown. High multivitamin (10-fold AIN-93G, HV) gestational diets increase characteristics of metabolic syndrome in Wistar rat offspring. We hypothesized that folate, the vitamin active in DNA methylation, accounts for these effects through epigenetic modification of food intake regulatory genes. Male offspring of dams fed 10-fold folate (HFol) diet during pregnancy and weaned to recommended vitamin (RV) or HFol diets were compared with those born to RV dams and weaned to RV diet for 29 weeks. Food intake and body weight were highest in offspring of HFol dams fed the RV diet. In contrast, the HFol pup diet in offspring of HFol dams reduced food intake (7%, p = 0.02), body weight (9%, p = 0.03) and glucose response to a glucose load (21%, p = 0.02), and improved glucose response to an insulin load (20%, p = 0.009). HFol alone in either gestational or pup diet modified gene expression of feeding-related neuropeptides. Hypomethylation of the pro-opiomelanocortin (POMC) promoter occurred with the HFol pup diet. POMC-specific methylation was positively associated with glucose response to a glucose load (r = 0.7, p = 0.03). In conclusion, the obesogenic phenotype of offspring from dams fed the HFol gestational diet can be corrected by feeding them a HFol diet. Our work is novel in showing post-weaning epigenetic plasticity of the hypothalamus and that in utero programming by vitamin gestational diets can be modified by vitamin content of the pup diet.

  15. Maternal Obesity during Gestation Impairs Fatty Acid Oxidation and Mitochondrial SIRT3 Expression in Rat Offspring at Weaning

    PubMed Central

    Borengasser, Sarah J.; Lau, Franchesca; Kang, Ping; Blackburn, Michael L.; Ronis, Martin J. J.; Badger, Thomas M.; Shankar, Kartik

    2011-01-01

    In utero exposure to maternal obesity increases the offspring's risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND)21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p<0.001) and increases in RER values (p<0.001), which were further exacerbated by high fat diet (45% kcals from fat) consumption indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is known to be associated with fatty acid oxidation (FAO) in the liver. Several markers of hepatic mitochondrial function were reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012) and mitochondrial protein content (p = 0.002), electron transport chain complexes (II, III, and ATPase), and fasting PGC-1α mRNA expression (p<0.001). Moreover, hepatic LCAD, a SIRT3 target, was not only reduced 2-fold (p<0.001) but was also hyperacetylated in offspring of obese dams (p<0.005) suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such as insulin resistance and NAFLD. PMID:21901160

  16. Effects of Low-Dose Developmental Bisphenol A Exposure on Metabolic Parameters and Gene Expression in Male and Female Fischer 344 Rat Offspring

    PubMed Central

    Lejonklou, Margareta H.; Dunder, Linda; Bladin, Emelie; Pettersson, Vendela; Rönn, Monika; Lind, Lars; Waldén, Tomas B.

    2017-01-01

    Background: Bisphenol A (BPA) is an endocrine-disrupting chemical that may contribute to development of obesity and metabolic disorders. Humans are constantly exposed to low concentrations of BPA, and studies support that the developmental period is particularly sensitive. Objectives: The aim was to investigate the effects of low-dose developmental BPA exposure on metabolic parameters in male and female Fischer 344 (F344) rat offspring. Methods: Pregnant F344 rats were exposed to BPA via their drinking water, corresponding to 0.5μg/kg BW/d (BPA0.5; n=21) or 50μg/kg BW/d (BPA50; n=16), from gestational day (GD) 3.5 until postnatal day (PND) 22, and controls were given vehicle (n=26). Body weight (BW), adipose tissue, liver (weight, histology, and gene expression), heart weight, and lipid profile were investigated in the 5-wk-old offspring. Results: Males and females exhibited differential susceptibility to the different doses of BPA. Developmental BPA exposure increased plasma triglyceride levels (0.81±0.10 mmol/L compared with 0.57±0.03 mmol/L, females BPA50 p=0.04; 0.81±0.05 mmol/L compared with 0.61±0.04 mmol/L, males BPA0.5 p=0.005) in F344 rat offspring compared with controls. BPA exposure also increased adipocyte cell density by 122% in inguinal white adipose tissue (iWAT) of female offspring exposed to BPA0.5 compared with controls (68.2±4.4 number of adipocytes/HPF compared with 55.9±1.5 number of adipocytes/HPF; p=0.03) and by 123% in BPA0.5 females compared with BPA50 animals (68.2±4.4 number of adipocytes/high power field (HPF) compared with 55.3±2.9 number of adipocytes/HPF; p=0.04). In iWAT of male offspring, adipocyte cell density was increased by 129% in BPA50-exposed animals compared with BPA0.5-exposed animals (69.9±5.1 number of adipocytes/HPF compared with 54.0±3.4 number of adipocytes/HPF; p=0.03). Furthermore, the expression of genes involved in lipid and adipocyte homeostasis was significantly different between exposed

  17. Prenatal programming of rat cortical collecting tubule sodium transport.

    PubMed

    Cheng, Chih-Jen; Lozano, German; Baum, Michel

    2012-03-15

    Prenatal insults have been shown to lead to elevated blood pressure in offspring when they are studied as adults. Prenatal administration of dexamethasone and dietary protein deprivation have demonstrated that there is an increase in transporter abundance for a number of nephron segments but not the subunits of the epithelial sodium channel (ENaC) in the cortical collecting duct. Recent studies have shown that aldosterone is elevated in offspring of protein-deprived mothers when studied as adults, but the physiological importance of the increase in serum aldosterone is unknown. As an indirect measure of ENaC activity, we compared the natriuretic response to benzamil in offspring of mothers who ate a low-protein diet (6%) with those who ate a normal diet (20%) for the last half of pregnancy. The natriuretic response to benzamil was greater in the 6% group (821.1 ± 161.0 μmol/24 h) compared with the 20% group (279.1 ± 137.0 μmol/24 h), consistent with greater ENaC activity in vivo (P < 0.05). In this study, we also directly studied cortical collecting tubule function from adult rats using in vitro microperfusion. There was no difference in basal or vasopressin-stimulated osmotic water permeability. However, while cortical collecting ducts of adult offspring whose mothers ate a 20% protein diet had no sodium transport (-1.9 ± 3.1 pmol·mm(-1)·min(-1)), the offspring of rats that ate a 6% protein diet during the last half of pregnancy had a net sodium flux of 10.7 ± 2.6 pmol·mm(-1)·min(-1) (P = 0.01) in tubules perfused in vitro. Sodium transport was measured using ion-selective electrodes, a novel technique allowing measurement of sodium in nanoliter quantities of fluid. Thus we directly demonstrate that there is prenatal programming of cortical collecting duct sodium transport.

  18. High dose folic acid supplementation of rats alters synaptic transmission and seizure susceptibility in offspring

    PubMed Central

    Girotto, Fernando; Scott, Lucas; Avchalumov, Yosef; Harris, Jacqueline; Iannattone, Stephanie; Drummond-Main, Chris; Tobias, Rose; Bello-Espinosa, Luis; Rho, Jong M.; Davidsen, Jörn; Teskey, G. Campbell; Colicos, Michael A.

    2013-01-01

    Maternal folic acid supplementation is essential to reduce the risk of neural tube defects. We hypothesize that high levels of folic acid throughout gestation may produce neural networks more susceptible to seizure in offspring. We hence administered large doses of folic acid to rats before and during gestation and found their offspring had a 42% decrease in their seizure threshold. In vitro, acute application of folic acid or its metabolite 4Hfolate to neurons induced hyper-excitability and bursting. Cultured neuronal networks which develop in the presence of a low concentration (50 nM) of 4Hfolate had reduced capacity to stabilize their network dynamics after a burst of high-frequency activity, and an increase in the frequency of mEPSCs. Networks reared in the presence of the folic acid metabolite 5M4Hfolate developed a spontaneous, distinctive bursting pattern, and both metabolites produced an increase in synaptic density. PMID:23492951

  19. Educational Attainments of Immigrant Offspring: Success or Segmented Assimilation?

    ERIC Educational Resources Information Center

    Boyd, Monica

    2002-01-01

    Examined the educational attainments of adult offspring of immigrants age 20-64 years, analyzing data from Canada's 1996 Survey of Labour and Income Dynamics. Contrary to second generation decline and segmented underclass assimilation found in the United States, Canadian adult visible-minority immigrant offspring did not have lower educational…

  20. Subchronic perinatal asphyxia increased anxiety-and depression-like behaviors in the rat offspring.

    PubMed

    Sedláčková, Natália; Krajčiová, Martina; Koprdová, Romana; Ujházy, Eduard; Brucknerová, Ingrid; Mach, Mojmír

    2014-01-01

    Perinatal asphyxia is one of the major cause of mortality in newborns and cause of neurological disorders in adulthood. Brain damage is of the most concern due to high sensitivity of nervous system to suboptimal intrauterine oxygen condition. The aim of this study was to assess effect of subchronic prenatal asphyxia (SPA) during sensitive stages of brain maturation on behavioral changes in rats, as a method of prenatal programming of anxiety and depression-like behavior. Pregnant Wistar/DV females were exposed to environment containing lower oxygen (10.5% O2) during sensitive stages of brain maturation (day 19-20 of gestation) for 4h a day and anxiety- and depression-like behaviors in offspring were assessed using battery of behavioral tests--Open field (OF), Elevated plus maze (EPM), Light/dark test (L/D), Forced swim test (FST), and Stress induced hyperthermia (SIH). OF did not induced changes of locomotor and exploration activities. The anxiety-like behavior was induced by SPA in EPM and L/D. These results were significant in males SPA group only. The higher response to the stress stimulus in SIH was recorded in both males and females SPA group. The intensity of climbing on the walls of cylinder in FST in males SPA group was significantly decreased indicating depression-like behavior in adulthood. In conclusion, we found out that perinatal asphyxia on 19th and 20th day of gestation caused anxiety- and depression-like behaviors in the rat offspring. Our model of SPA has proved to be useful to study the conditions of asphyxia during pregnancy, and could be suitable model for studies uncovering the mechanisms of prenatal programming of psychiatric diseases.

  1. Maternal high-protein diet during pregnancy, but not during suckling, induced altered expression of an increasing number of hepatic genes in adult mouse offspring.

    PubMed

    Vanselow, Jens; Kucia, Marzena; Langhammer, Martina; Koczan, Dirk; Metges, Cornelia C

    2016-04-01

    Indirect effects of a high-protein maternal diet are not well understood. In this study, we analyzed short-term and sustainable effects of a prenatal versus early postnatal maternal high-protein diet on growth and hepatic gene expression in mouse offspring. Dams were exposed to an isoenergetic high-protein (HP, 40 % w/w) diet during pregnancy or lactation. Growth and hepatic expression profiles of male offspring were evaluated directly after weaning and 150 days after birth. Offspring from two dietary groups, high-protein diet during pregnancy and control diet during lactation (HPC), and control diet during pregnancy and high-protein diet during lactation (CHP), were compared with offspring (CC) from control-fed dams. Maternal CHP treatment was associated with sustained offspring growth retardation, but decreased numbers of affected hepatic genes in adults compared to weanlings. In contrast, offspring of the HPC group did not show persistent effects on growth parameters, but the number of affected hepatic genes was even increased at adult age. In both dietary groups, however, only a small subset of genes was affected in weanlings as well as in adults. We conclude that (1) prenatal and early postnatal maternal HP diet caused persistent, but (2) different effects and partially complementary trends on growth characteristics and on the hepatic transcriptome and associated pathways and that (3) only a small number of genes and associated upstream regulators might be involved in passing early diet-induced imprints to adulthood.

  2. Different combinations of maternal and postnatal diet are reflected in changes of hepatic parenchyma and hepatic TNF-alpha expression in male rat offspring.

    PubMed

    Kačarević, Željka Perić; Grgić, Anđela; Šnajder, Darija; Bijelić, Nikola; Belovari, Tatjana; Cvijanović, Olga; Blažičević, Valerija; Radić, Radivoje

    2017-09-01

    Obesity is related to increased TNF-alpha production in different tissues. TNF-alpha is connected to mitochondrial dysfunction in the liver and also development of fatty infiltration of the liver. Also, postnatal change from normal to high-fat diet causes a significant increase in TNF-alpha serum levels. The aim of this research was to determine how maternal diet and switching male offspring to a different dietary regime after lactation influences rat liver. Ten female Sprague Dawley rats at nine weeks of age were randomly divided in two groups and fed either standard laboratory chow or high-fat diet during six weeks, and then mated with the same male subject. After birth and lactation male offspring from both groups were further divided into four subgroups depending on their subsequent diet. At 22 weeks of age, the animals were weighted, sacrificed and major organs were collected and weighted. Immunohistochemistry for TNF-alpha was performed on liver, and liver samples were analyzed for pathohistological changes. The group in which mothers were fed standard chow and offspring high-fat diet had the most pronounced changes: heaviest liver, poorest histopathological findings and strongest TNF-alpha immunohistochemical staining of liver parenchyma. High-fat diet during pregnancy and lactation and switching to high-fat diet postnatally affects liver weight, histological structure and TNF-alpha expression in male offspring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Developmental Exposure to Mild Variable Stress: Adult ...

    EPA Pesticide Factsheets

    In utero exposure to mild variable stress has been reported to influence learning and memory formation in offspring. Our research aims to examine whether nonchemical environmental stressors will exacerbate effects to chemical exposure. This study utilized a varying stress paradigm to simulate human psychosocial stress incurred during and after pregnancy to identify phenotypic learning changes in adult offspring that are potential stress markers. We additionally wanted to compare these behavioral outcomes to rat performance induced by perinatal exposure to manganese (Mn), a neurotoxic environmental element, at 2 or 5 g/l in drinking water throughout gestation and lactation. Pregnant Long Evans rats were exposed to an unpredictable series of mild stressful events which had previously been shown to increase maternal corticosterone levels. Nonchemical stressors were presented from GD 13 through GD 21 and included varying noise, light, housing, and confinement during both sleep and wake cycles. A subgroup of offspring was also exposed to periods of maternal separation. Starting at PND 97 offspring were trained with a trace fear conditioning protocol whereby rats were exposed to a compound cue (light and tone) followed by 30 seconds (trace period) and a mild foot shock (1mA, 0.5 seconds). Five paired training sessions occurred on the first day. The following day, context and cue learning were assessed by measuring motor activity. Preliminary data suggests adu

  4. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring.

    PubMed

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    The mother's consumption of high-fat food can affect glucose metabolism and the hypothalamic-pituitary-adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Female rats were randomly divided into normal and high-fat diet groups and were fed in accordance with their given diets from pre-pregnancy to the end of lactation. The offspring were divided into control (NC and HFC) and stress (NS and HFS) groups based on their mothers' diet and exposure to stress in adulthood. After the two-week stress induction period was over, an intraperitoneal glucose tolerance test (IPGTT) was performed and plasma glucose and insulin levels were assessed. The pancreas was then removed for measuring insulin secretion from the isolated islets as well as glucose transporter 2 mRNA expression and protein levels. According to the results obtained, plasma corticosterone concentrations increased significantly on days 1 and 14 of the stress induction period and were lower on the last day compared to on the first day. In both the NS and HFS groups, stress reduced plasma insulin concentration in the IPGTT without changing the plasma glucose concentration, suggesting an increased insulin sensitivity in the NS and HFS groups, although more markedly in the latter. Stress reduced insulin secretion (at high glucose concentrations) and increased glucose transporter 2 mRNA and protein expression, especially in the HFS group. Mothers' high-fat diet appears to intensify the stress response by changing the programming of the neuroendocrine system in the offspring.

  5. MATERNAL EXPERIENCE OF ABUSE IN CHILDHOOD AND DEPRESSIVE SYMPTOMS IN ADOLESCENT AND ADULT OFFSPRING: A 21-YEAR LONGITUDINAL STUDY

    PubMed Central

    Roberts, Andrea L.; Chen, Ying; Slopen, Natalie; McLaughlin, Katie A.; Koenen, Karestan C.; Austin, Sydney Bryn

    2015-01-01

    Background Intergenerational effects of child abuse have been documented, but it is unknown whether maternal childhood abuse influences offspring mental health in adolescence or adulthood. Methods To examine whether maternal experience of childhood abuse is associated with depressive symptoms in adolescent and young adult offspring, we linked data from two large longitudinal cohorts of women (N = 8,882) and their offspring (N = 11,402), and we examined three possible pathways by which maternal experience of abuse might be associated with offspring depressive symptoms: maternal mental health, family characteristics, and offspring’s own experience of abuse. Results Offspring of women who experienced severe versus no childhood abuse had greater likelihood of high depressive symptoms (RR = 1.78, 95% CI = 1.47, 2.16) and persistent high depressive symptoms (RR = 2.47, 95% CI = 1.37, 4.44). Maternal mental health accounted for 20.9% and offspring’s exposure to abuse accounted for 30.3% of the elevated risk of high depressive symptoms. Disparities in offspring depressive symptoms by maternal abuse exposure were evident at age 12 years and persisted through age 31 years. Conclusions Findings provide evidence that childhood abuse adversely affects the mental health of the victim’s offspring well into adulthood. As offspring exposure to abuse and maternal mental health accounted for more than 50% of the elevated risk of high depressive symptoms among offspring of women who experienced abuse, improving maternal mental health and parenting practices may reduce offspring risk for depressive symptoms in these families. PMID:26220852

  6. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats.

    PubMed

    Mendes Garrido Abregú, Facundo; Gobetto, María Natalia; Juriol, Lorena Vanesa; Caniffi, Carolina; Elesgaray, Rosana; Tomat, Analía Lorena; Arranz, Cristina

    2018-06-01

    Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Increased systolic blood pressure in rat offspring following a maternal low-protein diet is normalized by maternal dietary choline supplementation.

    PubMed

    Bai, S Y; Briggs, D I; Vickers, M H

    2012-10-01

    An adverse prenatal environment may induce long-term metabolic consequences, in particular hypertension and cardiovascular disease. A maternal low-protein (LP) diet is well known to result in increased blood pressure (BP) in offspring. Choline has been shown to have direct BP-reducing effects in humans and animals. It has been suggested that endogenous choline synthesis via phosphatidylcholine is constrained during maternal LP exposure. The present study investigates the effect of choline supplementation to mothers fed a LP diet during pregnancy on systolic BP (SBP) in offspring as measured by tail-cuff plethysmography. Wistar rats were assigned to one of three diets to be fed ad libitum throughout pregnancy: (1) control diet (CONT, 20% protein); (2) an LP diet (9% protein); and (3) LP supplemented with choline (LP + C). Dams were fed the CONT diet throughout lactation and offspring were fed the CONT diet from weaning for the remainder of the trial. At postnatal day 150, SBP and retroperitoneal fat mass was significantly increased in LP offspring compared with CONT animals and was normalized in LP + C offspring. Effects of LP + C reduction in SBP were similar in both males and females. Plasma choline and phosphatidylcholine concentrations were not different across treatment groups, but maternal choline supplementation resulted in a significant reduction in homocysteine concentrations in LP + C offspring compared with LP and CONT animals. The present trial shows for the first time that maternal supplementation with dietary choline during periods of LP exposure can normalize increased SBP and fat mass observed in offspring in later life.

  8. Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats

    PubMed Central

    Hallam, Megan C.; Reimer, Raylene A.

    2016-01-01

    The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS) diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF) had lower body weight and adiposity than animals re-matched to a high protein (HP) or control (C) diet and also had increased levels of the satiety hormones GLP-1 and PYY (p < 0.05). Control animals, whether maintained throughout the study on AIN-93M, or continued on HFS rather than reverting back to AIN-93M, did not differ from each other in body weight or adiposity. Overall, the HF diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones). The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation. PMID:26784224

  9. Comparative analysis of two different models of swimming applied to pregnant rats born small for pregnant age.

    PubMed

    Corvino, Silvana B; Damasceno, Débora C; Sinzato, Yuri K; Netto, Aline O; Macedo, Nathália C D; Zambrano, Elena; Volpato, Gustavo T

    2017-01-01

    The aim of this study was to compare two models of swimming applied to pregnant rats born small for pregnancy age (SPA). Diabetes was chemically induced in adult female rats to develop an inadequate intrauterine environment, leading to birth of a SPA offspring. In adulthood, the female SPA rats were mated and submitted to different swimming programs. The exercise program 1 (Ex1) consisted of swimming for 15 minutes, followed by 15 minutes of rest and another 15 minutes of swimming, 3 days a week before and during pregnancy. Another program (Ex2) was applied during 60 minutes uninterrupted a day, 6 days/week during pregnancy. The pregnant rats presented no interference on body weight and glycemia. The rats submitted to Ex2 model showed decreased insulin and blood glucose levels by oral glucose tolerance test, and reduction in area under curve values. The offspring from dams submitted to both exercise protocols presented an increased rate of newborns SPA. However, the offspring from Ex2 dams showed percentage twice higher of newborns SPA than Ex1 offspring. Our data suggests that continuous exercise of 60 min/day ameliorated the enhanced peripheral insulin sensitivity in growth-restricted females. However, this protocol employed at pregnancy leads to intrauterine growth restriction.

  10. Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring.

    PubMed

    Mizuno, Genki; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Murase, Yuri; Kondo, Kanako; Ishikawa, Hiroaki; Teradaira, Ryoji; Suzuki, Koji; Ohashi, Koji

    2017-02-01

    Neurosteroids, steroidal hormones synthesized de novo from cholesterol within the brain, stimulate hippocampal functions such as neuron protection and synapse formation. Previously, we examined the effect of maternal fructose on the transcriptional regulation of neurosteroidogenic enzymes. We found that the mRNA expression level of the steroidogenic acute regulatory protein (StAR), peripheral benzodiazepine receptor (PBR), cytochrome P450(11β), 11β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD was altered. However, we could not determine whether maternal fructose intake played a role in the gestation or lactation period because the dam rats were fed fructose solution during both periods. Thus, in this study, we analyzed the hippocampi of the offspring of dams fed fructose during the gestation or lactation period. Maternal fructose consumption during either the gestation or lactation period did not affect the mRNA levels of StAR, P450(17α), 11β-HSD-2, and 17β-HSD-1. PBR expression was down-regulated, even when rats consumed fructose during the lactation period only, while fructose consumption during gestation tended to activate the expression of P450(11β)-2. We found that maternal fructose intake during gestation and lactation differentially affected the expression of hippocampal neurosteroidogenic enzymes in the offspring.

  11. Parental history of moderate to severe infantile malnutrition is associated with cognitive deficits in their adult offspring.

    PubMed

    Waber, Deborah P; Bryce, Cyralene P; Girard, Jonathan M; Fischer, Laura K; Fitzmaurice, Garrett M; Galler, Janina R

    2018-04-01

    We compared the IQ and academic achievement of the young adult offspring of parents malnourished in infancy and those of a healthy control group in order to test the hypothesis that the offspring of previously malnourished individuals would show IQ and academic deficits that could be related to reduced parental socioeconomic status. We conducted a group comparison study based on a community sample in Barbados (Barbados Nutrition Study). Participants were adult children ≥16 years of age whose parents had been malnourished during the first year of life (n = 64; Mean age 19.3 years; 42% male) or whose parents were healthy community controls (n = 50; Mean age 19.7 years; 48% male). The primary outcome was estimated IQ (Wechsler Abbreviated Scale of Intelligence); a secondary outcome was academic achievement (Wide Range Achievement Test - Third Edition). Data were analyzed using PROC MIXED with and without adjusting for parental socioeconomic status (Hollingshead Index of Social Position). IQ was reduced in the offspring of previously malnourished parents relative to the offspring of controls (9.8 point deficit; P < 0.01), but this difference was not explained by parental socioeconomic status or parental IQ. The magnitude of the group difference was smaller for basic academic skills and did not meet criteria for statistical significance. The deleterious impact of infant malnutrition on cognitive function may be transmitted to the next generation; however, this intergenerational effect does not appear to be explained by the reduced socioeconomic status or IQ of the parent generation.

  12. A maternal "junk-food" diet reduces sensitivity to the opioid antagonist naloxone in offspring postweaning.

    PubMed

    Gugusheff, Jessica R; Ong, Zhi Yi; Muhlhausler, Beverly S

    2013-03-01

    Perinatal exposure to a maternal "junk-food" diet has been demonstrated to increase the preference for palatable diets in adult offspring. We aimed to determine whether this increased preference could be attributed to changes in μ-opioid receptor expression within the mesolimbic reward pathway. We report here that mRNA expression of the μ-opioid receptor in the ventral tegmental area (VTA) at weaning was 1.4-fold (males) and 1.9-fold (females) lower in offspring of junk-food (JF)-fed rat dams than in offspring of dams fed a standard rodent diet (control) (P<0.05). Administration of the opioid antagonist naloxone to offspring given a palatable diet postweaning significantly reduced fat intake in control offspring (males: 7.7 ± 0.7 vs. 5.4 ± 0.6 g/kg/d; females: 6.9 ± 0.3 vs. 3.9 ± 0.5 g/kg/d; P<0.05), but not in male JF offspring (8.6 ± 0.6 vs. 7.1 ± 0.5 g/kg/d) and was less effective at reducing fat intake in JF females (42.2 ± 6.0 vs. 23.1 ± 4.1% reduction, P<0.05). Similar findings were observed for total energy intake. Naloxone treatment did not affect intake of standard rodent feed in control or JF offspring. These findings suggest that exposure to a maternal junk-food diet results in early desensitization of the opioid system which may explain the increased preference for junk food in these offspring.

  13. Moderate caloric restriction in lactating rats programs their offspring for a better response to HF diet feeding in a sex-dependent manner.

    PubMed

    Palou, Mariona; Torrens, Juana María; Priego, Teresa; Sánchez, Juana; Palou, Andreu; Picó, Catalina

    2011-06-01

    We aimed to assess the lasting effects of moderate caloric restriction in lactating rats on the expression of key genes involved in energy balance of their adult offspring (CR) and their adaptations under high-fat (HF) diet. Dams were fed with either ad libitum normal-fat (NF) diet or a 30% caloric restricted diet throughout lactation. After weaning, the offspring were fed with NF diet until the age of 15 weeks and then with an NF or a HF diet until the age of 28 weeks, when they were sacrificed. Body weight and food intake were followed. Blood parameters and the expression of selected genes in hypothalamus and white adipose tissue (WAT) were analysed. CR ate fewer calories and showed lower body weight gain under HF diet than their controls. CR males were also resistant to the increase of insulin and leptin occurring in their controls under HF diet, and HF diet exposed CR females showed lower circulating fasting triglyceride levels than controls. In the hypothalamus, CR males had higher ObRb mRNA levels than controls, and CR females displayed greater InsR mRNA levels than controls and decreased neuropeptide Y mRNA levels when exposed to HF diet. CR males maintained WAT capacity of fat uptake and storage and of fatty-acid oxidation under HF diet, whereas these capacities were impaired in controls; female CR showed higher WAT ObRb mRNA levels than controls. These results suggest that 30% caloric restriction in lactating dams ameliorates diet-induced obesity in their offspring by enhancing their sensitivity to insulin and leptin signaling, but in a gender-dependent manner. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Changes in behavioural parameters, oxidative stress and neurotrophins in the brain of adult offspring induced to an animal model of schizophrenia: The effects of FA deficient or FA supplemented diet during the neurodevelopmental phase.

    PubMed

    Canever, L; Freire, T G; Mastella, G A; Damázio, L; Gomes, S; Fachim, I; Michels, C; Carvalho, G; Godói, A K; Peterle, B R; Gava, F F; Valvassori, S S; Budni, J; Quevedo, J; Zugno, A I

    2018-05-18

    A deficiency of maternal folic acid (FA) can compromise the function and development of the brain, and may produce a susceptibility to diseases such as schizophrenia (SZ) in the later life of offspring. The aim of this study was to evaluate the effects of both FA deficient and FA supplemented diets during gestation and lactation on behavioural parameters, the markers of oxidative stress and neurotrophic factors in adult offspring which had been subjected to an animal model of SZ. Female mother rats (Dam's) were separated into experimental maternal groups, which began receiving a special diet (food) consisting of the AIN-93 diet, a control diet, or an FA deficient diet during the periods of pregnancy and lactation. Dam's receiving the control diet were further subdivided into four groups: one group received only control diet, while three groups to receive supplementation with FA at different doses (5, 10 and 50 mg/kg). Adult offspring bred from the Dam's were divided into ten groups for induction of the animal model of SZ through the administration of ketamine (Ket) (25 mg/kg). After the last administration of the drug, the animals were subjected to the behavioural tests and were then euthanized. The frontal cortex (FC) and hippocampus (Hip) were then dissected for later biochemical analysis. Our data demonstrates that Ket induced the model of SZ by altering the behavioural parameters (e.g. hyperlocomotion, social impairment, deficits in the sensory-motor profile and memory damage in the adult animals); and also caused changes in the parameters of oxidative stress (lipid hydroperoxide - LPO; 8-isoprostane - 8-ISO; 4-hydroxynonenal - 4-HNE; protein carbonyl content; superoxide dismutase - SOD and catalase - CAT) as well as in the levels of neurotrophic factors (brain-derived neurotrophic factor - BDNF and nerve growth factor - NGF) particularly within the FC of adult offspring. A deficiency in maternal FA, alone or in combination with ket, was able to induce

  15. A maternal 'junk food' diet in pregnancy and lactation promotes an exacerbated taste for 'junk food' and a greater propensity for obesity in rat offspring.

    PubMed

    Bayol, Stéphanie A; Farrington, Samantha J; Stickland, Neil C

    2007-10-01

    Obesity is generally associated with high intake of junk foods rich in energy, fat, sugar and salt combined with a dysfunctional control of appetite and lack of exercise. There is some evidence to suggest that appetite and body mass can be influenced by maternal food intake during the fetal and suckling life of an individual. However, the influence of a maternal junk food diet during pregnancy and lactation on the feeding behaviour and weight gain of the offspring remains largely uncharacterised. In this study, six groups of rats were fed either rodent chow alone or with a junk food diet during gestation, lactation and/or post-weaning. The daily food intakes and body mass were measured in forty-two pregnant and lactating mothers as well as in 216 offspring from weaning up to 10 weeks of age. Results showed that 10 week-old rats born to mothers fed the junk food diet during gestation and lactation developed an exacerbated preference for fatty, sugary and salty foods at the expense of protein-rich foods when compared with offspring fed a balanced chow diet prior to weaning or during lactation alone. Male and female offspring exposed to the junk food diet throughout the study also exhibited increased body weight and BMI compared with all other offspring. This study shows that a maternal junk food diet during pregnancy and lactation may be an important contributing factor in the development of obesity.

  16. Developmental Effects of Prenatal Exposure to Bisphenol A on the Uterus of Rat Offspring1

    PubMed Central

    Schönfelder, Gilbert; Friedrich, Karin; Paul, Martin; Chahoud, Ibrahim

    2004-01-01

    Abstract Exposure to estrogenic compounds during critical periods of fetal development could result in adverse effects on the development of reproductive organs that are not apparent until later in life. Bisphenol A (BPA), which is employed in the manufacture of a wide range of consumer products, is a prime candidate for endocrine disruption. We examined BPA to address the question of whether in utero exposure affects the uterus of the offspring and studied the expression and distribution of the estrogen receptors alpha (ERα) and beta (ERβ), because estrogens influence the development, growth, and function of the uterus through both receptors. Gravid Sprague-Dawley dams were administered by gavage either 0.1 or 50 mg/kg per day BPA or 0.2 mg/kg per day 17α-ethinyl estradiol (EE2) as reference dose on gestation days 6 through 21. Female offspring were killed in estrus. Uterine morphologic changes as well as ERα and ERβ distribution and expression were measured by immunohistochemistry and Western blot analysis. Striking morphologic changes were observed in the uterine epithelium of postpubertal offspring during estrus of the in utero BPA-treated animals (the thickness of the total epithelium was significantly reduced). ERα expression was increased in the 50-mg BPA and EE2-treated group. In contrast, we observed significantly decreased ERβ expression in all BPA- and EE2-treated animals when compared with the control. In summary, these results clearly indicate that in utero exposure of rats to BPA promotes uterine disruption in offspring. We hypothesize that the uterine disruption could possibly be provoked by a dysregulation of Erα and ERβ. PMID:15548368

  17. Deconstructing the function of maternal stimulation in offspring development: Insights from the artificial rearing model in rats.

    PubMed

    Lomanowska, Anna M; Melo, Angel I

    2016-01-01

    This article is part of a Special Issue on "Parental Care". Maternal behavior has an important function in stimulating adequate growth and development of the young. Several approaches have been used in primates and rodents to deconstruct and examine the influence of specific components of maternal stimulation on offspring development. These approaches include observational studies of typical mother-infant interactions and studies of the effects of intermittent or complete deprivation of maternal contact. In this review, we focus on one unique approach using rats that enables the complete control of maternal variables by means of rearing rat pups artificially without contact with the mother or litter, while maintaining stable nutrition, temperature and exposure to stressful stimuli. This artificial rearing model permits the removal and controlled replacement of relevant maternal and litter stimuli and has contributed valuable insights regarding the influence of these stimuli on various developmental outcomes. It also enables the analysis of factors implicated in social isolation itself and their long-term influence. We provide an overview of the effects of artificial rearing on behavior, physiology, and neurobiology, including the influence of replacing maternal tactile stimulation and littermate contact on these outcomes. We then discuss the relevance of these effects in terms of the maternal role in regulating different aspects of offspring development and implications for human research. We emphasize that artificial rearing of rats does not lead to a global insult of nervous system development, making this paradigm useful in investigating specific developmental effects associated with maternal stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Maternal high-fat diet acts on the brain to induce baroreflex dysfunction and sensitization of angiotensin II-induced hypertension in adult offspring.

    PubMed

    Zhang, Yu-Ping; Huo, Yan-Li; Fang, Zhi-Qin; Wang, Xue-Fang; Li, Jian-Dong; Wang, Hai-Ping; Peng, Wei; Johnson, Alan Kim; Xue, Baojian

    2018-05-01

    Accumulating evidence indicates that maternal high-fat diet (HFD) is associated with metabolic syndrome and cardiovascular disease in adult offspring. The present study tested the hypothesis that maternal HFD modulates the brain renin-angiotensin system (RAS), oxidative stress, and proinflammatory cytokines that alter angiotensin II (ANG II) and TNF-α actions and sensitize the ANG II-elicited hypertensive response in adult offspring. All offspring were cross fostered by dams on the same or opposite diet to yield the following four groups: offspring from normal-fat control diet-fed dams suckled by control diet-fed dams (OCC group) or by HFD-fed dams (OCH group) and offspring from HFD-fed dams fed a HFD suckled by control diet-fed dams (OHC group) or by HFD-fed dams (OHH group). RT-PCR analyses of the lamina terminalis and paraventricular nucleus indicated upregulation of mRNA expression of several RAS components, NADPH oxidase, and proinflammatory cytokines in 10-wk-old male offspring of dams fed a HFD during either pregnancy, lactation, or both (OHC, OCH, and OHH groups). These offspring also showed decreased cardiac baroreflex sensitivity and increased pressor responses to intracerebroventricular microinjection of either ANG II or TNF-α. Furthermore, chronic systemic infusion of ANG II resulted in enhanced upregulation of mRNA expression of RAS components, NADPH oxidase, and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus and an augmented hypertensive response in the OHC, OCH, and OHH groups compared with the OCC group. The results suggest that maternal HFD blunts cardiac baroreflex function and enhances pressor responses to ANG II or proinflammatory cytokines through upregulation of the brain RAS, oxidative stress, and inflammation. NEW & NOTEWORTHY The results of our study indicate that a maternal high-fat diet during either pregnancy or lactation is sufficient for perinatal programming of sensitization for hypertension, which is

  19. Effects of ethanol and folic acid consumption during pregnancy and lactation on basal enzymatic secretion in the duodenal juice of offspring rats.

    PubMed

    Cano, Ma José; Murillo, Ma Luisa; Delgado, Ma José; Carreras, Olimpia

    2003-09-01

    Studies on duodenal juice enzyme activities were carried out on suckling Wistar rats born to dams given ethanol during gestation and suckling. The results were compared with offspring of dams given diets containing no ethanol. Comparisons were also made with offspring of dams given ethanol and folic acid supplementation to observe whether a folate supplement could sufficiently reverse the negative effect of ethanol consumption. The dams were fed increased amounts of ethanol (5% to 20%, vol/vol) in tap water for 4 wk. The maximum quantity, 20% ethanol, was given to the dams during pregnancy and lactation. Offspring animals were randomized into three groups: control (CG), ethanol treated (EG), and ethanol plus folic acid (EFG). Body weight at birth and at 21 d after birth and pancreatic weight were lower in offspring after ethanol treatment. Folic acid supplement increased these parameters in the EFG. Under basal conditions, decreases in amylase, lipase, and chymotrypsin activities in the duodenal juice after ethanol treatment were detected. Serum and urine amylase activities also decreased in the EG and EFG. These changes were different in the ethanol-treated progenitors. In these progenitors, ethanol treatment increased serum amylase levels. In the offspring, amylase activities in the EFG decreased with respect to the CG; however, an increase in the EG was observed. In dams the folic acid supplement did not significantly alter the serum amylase activities. Lipase and chymotrypsin activities in the EFG were similar to those in the EG. An increase of serum and urine amylase in the EFG with respect to the EG was found. Our findings indicated that, under basal conditions, ethanol treatment during gestation and lactation negatively affects the digestive function in offspring. The effects of ethanol were slightly attenuated in rats supplemented with folic acid for amylase activities. Although extrapolation from animal studies can be tenuous, the present findings may

  20. Maternal Gestational Hypertension-Induced Sensitization of Angiotensin II Hypertension Is Reversed by Renal Denervation or Angiotensin-Converting Enzyme Inhibition in Rat Offspring.

    PubMed

    Xue, Baojian; Yin, Haifeng; Guo, Fang; Beltz, Terry G; Thunhorst, Robert L; Johnson, Alan Kim

    2017-04-01

    Numerous findings demonstrate that there is a strong association between maternal health during pregnancy and cardiovascular disease in adult offspring. The purpose of the present study was to test whether maternal gestational hypertension modulates brain renin-angiotensin-aldosterone system (RAAS) and proinflammatory cytokines that sensitizes angiotensin II-elicited hypertensive response in adult offspring. In addition, the role of renal nerves and the RAAS in the sensitization process was investigated. Reverse transcription polymerase chain reaction analyses of structures of the lamina terminalis and paraventricular nucleus indicated upregulation of mRNA expression of several RAAS components and proinflammatory cytokines in 10-week-old male offspring of hypertensive dams. Most of these increases were significantly inhibited by either renal denervation performed at 8 weeks of age or treatment with an angiotensin-converting enzyme inhibitor, captopril, in drinking water starting at weaning. When tested beginning at 10 weeks of age, a pressor dose of angiotensin II resulted in enhanced upregulation of mRNA expression of RAAS components and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus and an augmented pressor response in male offspring of hypertensive dams. The augmented blood pressure change and most of the increases in gene expression in the offspring were abolished by either renal denervation or captopril. The results suggest that maternal hypertension during pregnancy enhances pressor responses to angiotensin II through overactivity of renal nerves and the RAAS in male offspring and that upregulation of the brain RAAS and proinflammatory cytokines in these offspring may contribute to maternal gestational hypertension-induced sensitization of the hypertensive response to angiotensin II. © 2017 American Heart Association, Inc.

  1. Mitotically Stable Modification of DNA Methylation in IGF2/H19 Imprinting Control Region Is Associated with Activated Hepatic IGF2 Expression in Offspring Rats from Betaine-Supplemented Dams.

    PubMed

    Yang, Shu; Zhao, Nannan; Yang, Yang; Hu, Yun; Dong, Haibo; Zhao, Ruqian

    2018-03-21

    The growth-promoting action of betaine involves activation of GH/IGF-1 signaling, yet it remains unclear whether insulin-like growth factor 2 (IGF2), an imprinting gene, is affected by maternal dietary betaine supplementation. In this study, F1 offspring rats derived from dams fed basal or betaine-supplemented diet were examined at D21 and D63. Maternal betaine significantly upregulated the hepatic expression of IGF2 mRNA and protein in offspring rats at both D21 and D63, which was accompanied by enhanced hepatic IGF2 immunoreactivity and elevated serum IGF-2 level. Higher protein expression of betaine-homocysteine methyltransferase and DNA methyltransferase 1 was detected in the betaine group at D21, but not D63. However, hypermethylation of the imprinting control region of the IGF2/H19 locus at D21 was maintained at D63. These results indicate that maternal betaine modifies DNA methylation of IGF2/H19 imprinting control region in a mitotically stable fasion, which was associated with the activation hepatic IGF2 expression in offspring rats.

  2. Maternal treatment of rats with the new pyridoindole antioxidant during pregnacy and lactation resulting in improved offspring hippocampal resistance to ischemia in vitro.

    PubMed

    Gáspárová, Zdenka; Snirc, Vladimír; Stolc, Svorad; Dubovický, Michal; Mach, Mojmír; Ujházy, Eduard

    2010-01-01

    Damage to the developing brain may be caused by maternal environment, nutritional deficiencies, failure of protective mechanisms, etc. Further, the developing brain may be damaged by intrauterine ischemia or by ischemia in newborns complicated by perinatal asphyxia. There is an effort to find agents with neuroprotective effect on the developing brain. The aim was to study the effect of the new pyridoindole antioxidant SMe1EC2 on the resistance of offspring hippocampus exposed to ischemia in vitro after treatment of mothers. The electrically evoked responses were determined by extracellular recording from offspring hippocampal slices. The effect of oral treatment of rats with SMe1EC2 over 18 consecutive days, from day 15 of gestation to day 10 post partum (PP) was analyzed in the model of ischemia in vitro measured on the hippocampus of 21-day-old pups, with focus on neuronal function recovery in reoxygenation. Increased recovery of neuronal response was found at the end of 20-min reoxygenation in offspring hippocampal slices exposed to 10-min hypoxia/hypoglycemia from rats whose mothers were treated with the dose of 50 and 250 mg/kg of SMe1EC2, compared to control offspring slices (mothers received vehicle over the same time). The increased offspring hippocampus resistance to hypoxia/hypoglycemia due to 18-day maternal treatment with SMe1EC2 might have been obtained via the transplacental way as well as in the neonatal period via breast milk, skin and saliva. The manifested neuroprotective effect of SMe1EC2 on the developing brain might find exploitation during risk pregnancy and delivery.

  3. DIFFERENTIAL POSTPARTUM SENSITIVITY TO THE ANXIETY-MODULATING EFFECTS OF OFFSPRING CONTACT IS ASSOCIATED WITH INNATE ANXIETY AND BRAINSTEM LEVELS OF DOPAMINE BETA-HYDROXYLASE IN FEMALE LABORATORY RATS

    PubMed Central

    RAGAN, C. M.; LONSTEIN, J. S.

    2014-01-01

    In female mammals, the postpartum period involves dramatic shifts in many socioemotional behaviors. This includes a suppression of anxiety-related behaviors that requires recent physical contact with offspring. Factors contributing to differences among females in their susceptibility to the anxiety-modulating effect of offspring contact are unknown, but could include their innate anxiety and brain monoaminergic activity. Anxiety behavior was assessed in a large group of nulliparous female rats and the least-anxious and most-anxious tertiles were mated. Anxiety was assessed again postpartum after females were permitted or prevented from contacting their offspring 4 h before testing. Levels of dopamine β-hydroxylase (DBH, norepinephrine synthesizing enzyme) and tryptophan hydroxylase- 2 (TPH2, serotonin synthesizing enzyme) were measured in the brainstem and dorsal raphe, respectively. It was found that anxiety-related behavior in the two groups did not differ when dams were permitted contact with offspring before testing. Removal of the offspring before testing, however, differentially affected anxiety based on dams’ innate anxiety. Specifically, dams reverted back to their pre-mating levels of anxiety such that offspring removal slightly increased anxiety in the most-anxious females but greatly lowered anxiety in the least-anxious females. This reduction in anxiety in the least-anxious females after litter removal was associated with lower brainstem DBH. There was no relationship between females’ anxiety and dorsal raphe TPH2. Thus, a primary effect of recent contact with offspring on anxiety-related behavior in postpartum rats is to shift females away from their innate anxiety to a more moderate level of responding. This effect is particularly true for females with the lowest anxiety, may be mediated by central noradrenergic systems, and has implications for their ability to attend to their offspring. PMID:24161285

  4. Fluoride and arsenic exposure affects spatial memory and activates the ERK/CREB signaling pathway in offspring rats.

    PubMed

    Zhu, Yu-Peng; Xi, Shu-Hua; Li, Ming-Yan; Ding, Ting-Ting; Liu, Nan; Cao, Fu-Yuan; Zeng, Yang; Liu, Xiao-Jing; Tong, Jun-Wang; Jiang, Shou-Fang

    2017-03-01

    Fluoride and arsenic are inorganic contaminants that occur in the natural environment. Chronic fluoride and/or arsenic exposure can induce developmental neurotoxicity and negatively influence intelligence in children, although the underlying molecular mechanisms are poorly understood. This study explored the effects of fluoride and arsenic exposure in drinking water on spatial learning, memory and key protein expression in the ERK/CREB signaling pathway in hippocampal and cerebral cortex tissue in rat offspring. Pregnant rats were divided into four groups. Control rats drank tap water, while rats in the three exposure groups drank water with sodium fluoride (100mg/L), sodium arsenite (75mg/L), and a sodium fluoride (100mg/L) and sodium arsenite (75mg/L) combination during gestation and lactation. After weaning, rat pups drank the same solution as their mothers. Spatial learning and memory ability of pups at postnatal day 21 (PND21) and postnatal day 42 (PND42) were measured using a Morris water maze. ERK, phospho-ERK (p-ERK), CREB and phospho-CREB (p-CREB) protein expression in the hippocampus and cerebral cortex was detected using Western blot. Compared with the control pups, escape latencies increased in PND42 pups exposed to arsenic and co-exposed to fluoride and arsenic, and the short-term and long-term spatial memory ability declined in pups exposed to fluoride and arsenic, both alone and in combination. Compared with controls, ERK and p-ERK levels decreased in the hippocampus and cerebral cortex in pups exposed to combined fluoride and arsenic. CREB protein expression in the cerebral cortex decreased in pups exposed to fluoride, arsenic, and the fluoride and arsenic combination. p-CREB protein expression in both the hippocampus and cerebral cortex was decreased in pups exposed to fluoride and arsenic in combination compared to the control group. There were negative correlation between the proteins expression and escape latency periods in pups. These data

  5. Effects of experimentally-induced maternal hypothyroidism on crucial offspring rat brain enzyme activities.

    PubMed

    Koromilas, Christos; Liapi, Charis; Zarros, Apostolos; Stolakis, Vasileios; Tsagianni, Anastasia; Skandali, Nikolina; Al-Humadi, Hussam; Tsakiris, Stylianos

    2014-06-01

    Hypothyroidism is known to exert significant structural and functional changes to the developing central nervous system, and can lead to the establishment of serious mental retardation and neurological problems. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil-induced experimental hypothyroidism on crucial brain enzyme activities of Wistar rat offspring, at two time-points of their lives: at birth (day-1) and at 21 days of age (end of lactation). Under all studied experimental conditions, offspring brain acetylcholinesterase (AChE) activity was found to be significantly decreased due to maternal hypothyroidism, in contrast to the two studied adenosinetriphosphatase (Na(+),K(+)-ATPase and Mg(2+)-ATPase) activities that were only found to be significantly altered right after birth (increased and decreased, respectively, following an exposure to gestational maternal hypothyroidism) and were restored to control levels by the end of lactation. As our findings regarding the pattern of effects that maternal hypothyroidism has on the above-mentioned crucial offspring brain enzyme activities are compared to those reported in the literature, several differences are revealed that could be attributed to both the mode of the experimental simulation approach followed as well as to the time-frames examined. These findings could provide the basis for a debate on the need of a more consistent experimental approach to hypothyroidism during neurodevelopment as well as for a further evaluation of the herein presented and discussed neurochemical (and, ultimately, neurodevelopmental) effects of experimentally-induced maternal hypothyroidism, in a brain region-specific manner. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  6. The influence of maternal high fat diet on ozone-induced lung injury and inflammation in Long Evans male and female rat offspring

    EPA Science Inventory

    There is a growing interest in understanding how maternal diet can increase the sensitivity of offspring to environmental exposures. In this study, we examined the influence of high fat diet (HFD) during puberty, pregnancy and lactation in Long Evans rats on the susceptibility of...

  7. Prenatal air pollution exposure induces sexually dimorphic fetal programming of metabolic and neuroinflammatory outcomes in adult offspring.

    PubMed

    Bolton, Jessica L; Auten, Richard L; Bilbo, Staci D

    2014-03-01

    Environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal exposure to diesel exhaust particles (DEP), a primary component of air pollution, would prime microglia long-term, resulting in exacerbated metabolic and affective outcomes following exposure to a high-fat diet in adulthood. Time-mated mouse dams were intermittently exposed to respiratory instillations of either vehicle (VEH) or DEP throughout gestation. Adult male and female offspring were then fed either a low-fat diet (LFD) or high-fat diet (HFD) for 9 weeks. The male offspring of DEP-exposed dams exhibited exaggerated weight gain, insulin resistance, and anxiety-like behavior on HFD compared to the male offspring of VEH-exposed dams, whereas female offspring did not differ according to prenatal treatment. Furthermore, HFD induced evidence of macrophage infiltration of both adipose tissue and the brain in both sexes, but these cells were more activated specifically in DEP/HFD males. DEP/HFD males also expressed markedly higher levels of microglial/macrophage, but not astrocyte, activation markers in the hippocampus, whereas females exhibited only a suppression of astrocyte activation markers due to HFD. In a second experiment, DEP male offspring mounted an exaggerated peripheral IL-1β response to an LPS challenge at postnatal day (P)30, whereas their central IL-1β response did not differ from VEH male offspring, which is suggestive of macrophage priming due to prenatal DEP exposure. In sum, prenatal air pollution exposure "programs" offspring for increased susceptibility to diet-induced metabolic, behavioral, and neuroinflammatory changes in adulthood in a sexually dimorphic manner. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Maternal protein restriction during lactation induces early and lasting plasma metabolomic and hepatic lipidomic signatures of the offspring in a rodent programming model.

    PubMed

    Martin Agnoux, Aurore; El Ghaziri, Angélina; Moyon, Thomas; Pagniez, Anthony; David, Agnès; Simard, Gilles; Parnet, Patricia; Qannari, El Mostafa; Darmaun, Dominique; Antignac, Jean-Philippe; Alexandre-Gouabau, Marie-Cécile

    2018-05-01

    Perinatal undernutrition affects not only fetal and neonatal growth but also adult health outcome, as suggested by the metabolic imprinting concept. However, the exact mechanisms underlying offspring metabolic adaptations are not yet fully understood. Specifically, it remains unclear whether the gestation or the lactation is the more vulnerable period to modify offspring metabolic flexibility. We investigated in a rodent model of intrauterine growth restriction (IUGR) induced by maternal protein restriction (R) during gestation which time window of maternal undernutrition (gestation, lactation or gestation-lactation) has more impact on the male offspring metabolomics phenotype. Plasma metabolome and hepatic lipidome of offspring were characterized through suckling period and at adulthood using liquid chromatography-high-resolution mass spectrometry. Multivariate analysis of these fingerprints highlighted a persistent metabolomics signature in rats suckled by R dams, with a clear-cut discrimination from offspring fed by control (C) dams. Pups submitted to a nutritional switch at birth presented a metabolomics signature clearly distinct from that of pups nursed by dams maintained on a consistent perinatal diet. Control rats suckled by R dams presented transiently higher branched-chain amino acid (BCAA) oxidation during lactation besides increased fatty acid (FA) β-oxidation, associated with preserved insulin sensitivity and lesser fat accretion that persisted throughout their life. In contrast, IUGR rats displayed permanently impaired β-oxidation, associated to increased glucose or BCAA oxidation at adulthood, depending on the fact that pups experienced slow postnatal or catch-up growth, as suckled by R or C dams, respectively. Taken together, these findings provide evidence for a significant contribution of the lactation period in metabolic programming. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Fetal alcohol exposure and mammary tumorigenesis in offspring: role of the estrogen and insulin-like growth factor systems.

    PubMed

    Cohick, Wendie S; Crismale-Gann, Catina; Stires, Hillary; Katz, Tiffany A

    2015-01-01

    Fetal alcohol spectrum disorders affect a significant number of live births each year, indicating that alcohol consumption during pregnancy is an important public health issue. Environmental exposures and lifestyle choices during pregnancy may affect the offspring's risk of disease in adulthood, leading to the idea that a woman's risk of breast cancer may be pre-programmed prior to birth. Exposure of pregnant rats to alcohol increases tumorigenesis in the adult offspring in response to mammary carcinogens. The estrogen and insulin-like growth factor (IGF-I) axes occupy central roles in normal mammary gland development and breast cancer. 17-β estradiol (E2) and IGF-I synergize to regulate formation of terminal end buds and ductal elongation during pubertal development. The intracellular signaling pathways mediated by the estrogen and IGF-I receptors cross-talk at multiple levels through both genomic and non-genomic mechanisms. Several components of the E2 and IGF-I systems are altered in early development in rat offspring exposed to alcohol in utero, therefore, these changes may play a role in the enhanced susceptibility to mammary carcinogens observed in adulthood. Alcohol exposure in utero induces a number of epigenetic alterations in non-mammary tissues in the offspring and other adverse in utero exposures induce epigenetic modifications in the mammary gland. Future studies will determine if fetal alcohol exposure can induce epigenetic modifications in genes that regulate E2/IGF action at key phases of mammary development, ultimately leading to changes in susceptibility to carcinogens.

  10. Behavioral benefits of maternal swimming are counteracted by neonatal hypoxia-ischemia in the offspring.

    PubMed

    Marcelino, Thiago Beltram; de Lemos Rodrigues, Patricia Idalina; Klein, Caroline Peres; Santos, Bernardo Gindri Dos; Miguel, Patrícia Maidana; Netto, Carlos Alexandre; Silva, Lenir Orlandi Pereira; Matté, Cristiane

    2016-10-01

    Hypoxia-ischemia (HI) represents one of the most common causes of neonatal encephalopathy. The central nervous system injury comprises several mechanisms, including inflammatory, excitotoxicity, and redox homeostasis unbalance leading to cell death and cognitive impairment. Exercise during pregnancy is a potential therapeutic tool due to benefits offered to mother and fetus. Swimming during pregnancy elicits a strong metabolic programming in the offspring's brain, evidenced by increased antioxidant enzymes, mitochondrial biogenesis, and neurogenesis. This article aims to evaluate whether the benefits of maternal exercise are able to prevent behavioral brain injury caused by neonatal HI. Female adult Wistar rats swam before and during pregnancy (30min/day, 5 days/week, 4 weeks). At 7(th) day after birth, the offspring was submitted to HI protocol and, in adulthood (60(th) day), it performed the behavioral tests. It was observed an increase in motor activity in the open field test in HI-rats, which was not prevented by maternal exercise. The rats subjected to maternal swimming presented an improved long-term memory in the object recognition task, which was totally reversed by neonatal HI encephalopathy. BDNF brain levels were not altered; suggesting that HI or maternal exercise effects were BDNF-independent. In summary, our data suggest a beneficial long-term effect of maternal swimming, despite not being robust enough to protect from HI injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. PRENATAL EXPOSURE TO THE FUNGICIDE PROCHLORAZ ALTERS THE ONSET OF PARTURITION IN THE DAM AND SEXUAL DIFFERENTIATION IN MALE RAT OFFSPRING

    EPA Science Inventory

    Prenatal Exposure to the Fungicide Prochloraz alters the onset of Parturition in
    the Dam and Sexual Differentiation in Male Rat Offspring.
    N. Noriega1; E. Gray1; J. Ostby1; C. Lambright1; V. Wilson1
    1. RTD, NHEERL, ORD, USEPA, RTP, NC, USA;

    Prochloraz...

  12. Can Anxiety Tested in the Elevated Plus-maze Be Related to Nociception Sensitivity in Adult Male Rats?

    PubMed

    Pometlová, Marie; Yamamotová, Anna; Nohejlová, Kateryna; Šlamberová, Romana

    Methamphetamine (MA) is one of the most addictive psychostimulant drugs with a high potential for abuse. Our previous studies demonstrated that MA administered to pregnant rats increases pain sensitivity and anxiety in their adult offspring and makes them more sensitive to acute administration of the same drug in adulthood. Because individuals can differ considerably in terms of behaviour and physiology, such as rats that do not belong in some characteristics (e.g. anxiety) to average, can be described as low-responders or high-responders, are then more or less sensitive to pain. Therefore, prenatally MA-exposed adult male rats treated in adulthood with a single dose of MA (1 mg/ml/kg) or saline (1 ml/kg) were tested in the present study. We examined the effect of acute MA treatment on: (1) the anxiety in the Elevated plus-maze (EPM) test and memory in EPM re-test; (2) nociception sensitivity in the Plantar test; (3) the correlation between the anxiety, memory and the nociception. Our results demonstrate that: (1) MA has an anxiogenic effect on animals prenatally exposed to the same drug in the EPM; (2) all the differences induced by acute MA treatment disappeared within the time of 48 hours; (3) there was no effect of MA on nociception per se, but MA induced higher anxiety in individuals less sensitive to pain than in animals more sensitive to pain. In conclusion, the present study demonstrates unique data showing association between anxiety and nociceptive sensitivity of prenatally MA-exposed rats that is induced by acute drug administration.

  13. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring

    PubMed Central

    Khalil, Omari S; Pisar, Mazura; Forrest, Caroline M; Vincenten, Maria C J; Darlington, L Gail; Stone, Trevor W

    2014-01-01

    Glutamate receptors for N-methyl-d-aspartate (NMDA) are involved in early brain development. The kynurenine pathway of tryptophan metabolism includes the NMDA receptor agonist quinolinic acid and the antagonist kynurenic acid. We now report that prenatal inhibition of the pathway in rats with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulphonamide (Ro61-8048) produces marked changes in hippocampal neuron morphology, spine density and the immunocytochemical localisation of developmental proteins in the offspring at postnatal day 60. Golgi–Cox silver staining revealed decreased overall numbers and lengths of CA1 basal dendrites and secondary basal dendrites, together with fewer basal dendritic spines and less overall dendritic complexity in the basal arbour. Fewer dendrites and less complexity were also noted in the dentate gyrus granule cells. More neurons containing the nuclear marker NeuN and the developmental protein sonic hedgehog were detected in the CA1 region and dentate gyrus. Staining for doublecortin revealed fewer newly generated granule cells bearing extended dendritic processes. The number of neuron terminals staining for vesicular glutamate transporter (VGLUT)-1 and VGLUT-2 was increased by Ro61-8048, with no change in expression of vesicular GABA transporter or its co-localisation with vesicle-associated membrane protein-1. These data support the view that constitutive kynurenine metabolism normally plays a role in early embryonic brain development, and that interfering with it has profound consequences for neuronal structure and morphology, lasting into adulthood. PMID:24646396

  14. Effects of mother's dietary exposure to acesulfame-K in Pregnancy or lactation on the adult offspring's sweet preference.

    PubMed

    Zhang, Gen-Hua; Chen, Meng-Ling; Liu, Si-Si; Zhan, Yue-Hua; Quan, Ying; Qin, Yu-Mei; Deng, Shao-Ping

    2011-11-01

    This study investigates whether mother's exposure to the artificial sweetener acesulfame-K (AK) during pregnancy or lactation affected her adult offspring's sweet preference. It was found that mother's dietary exposure to AK in pregnancy or lactation decreased the preference thresholds for AK and sucrose solutions in the adult offspring, whereas the preference pattern and the most preferred concentration for AK or sucrose solution were unchanged. Furthermore, the preference scores in the exposure groups were increased significantly when compared with the control group at a range of concentrations for AK or sucrose solution. The existence of AK and its dynamic changes within 24 h in amniotic fluid during pregnancy or in mother's milk during lactation after a single oral infusion of AK solution were revealed by the methods of reversed-phase high-performance liquid chromatography and mass spectrometry. Our data suggest that AK can be ingested by the prenatal or postnatal mice through their mother's amniotic fluid or breast milk, producing a long-dated function on the adult's sweet preference.

  15. Older maternal age is associated with depression, anxiety, and stress symptoms in young adult female offspring.

    PubMed

    Tearne, Jessica E; Robinson, Monique; Jacoby, Peter; Allen, Karina L; Cunningham, Nadia K; Li, Jianghong; McLean, Neil J

    2016-01-01

    The evidence regarding older parental age and incidence of mood disorder symptoms in offspring is limited, and that which exists is mixed. We sought to clarify these relationships by using data from the Western Australian Pregnancy Cohort (Raine) Study. The Raine Study provided comprehensive data from 2,900 pregnancies, resulting in 2,868 live born children. A total of 1,220 participants completed the short form of the Depression Anxiety Stress Scale (DASS-21) at the 20-year cohort follow-up. We used negative binomial regression analyses with log link and with adjustment for known perinatal risk factors to examine the extent to which maternal and paternal age at childbirth predicted continuous DASS-21 index scores. In the final multivariate models, a maternal age of 30-34 years was associated with significant increases in stress DASS-21 scores in female offspring relative to female offspring of 25- to 29-year-old mothers. A maternal age of 35 years and over was associated with increased scores on all DASS-21 scales in female offspring. Our results indicate that older maternal age is associated with depression, anxiety, and stress symptoms in young adult females. Further research into the mechanisms underpinning this relationship is needed. (c) 2016 APA, all rights reserved.

  16. Overexpression of cerebral and hepatic cytochrome P450s alters behavioral activity of rat offspring following prenatal exposure to lindane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok

    2007-12-15

    Oral administration of different doses (0.0625, 0.125 or 0.25 mg/kg corresponding to 1/1400th, 1/700th or 1/350th of LD{sub 50}) of lindane to the pregnant Wistar rats from gestation days 5 to 21 were found to produce a dose-dependent increase in the activity of cytochrome P450 (CYP)-dependent 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-dealkylase (PROD) and N-nitrosodimethylamine demethylase (NDMA-d) in brain and liver of offspring postnatally at 3 weeks. The increase in the activity of CYP monooxygenases was found to be associated with the increase in the mRNA and protein expression of xenobiotic metabolizing CYP1A, 2B and 2E1 isoenzymes in the brain and liver ofmore » offspring. Dose-dependent alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 3 weeks have suggested that increase in CYP activity may possibly lead to the formation of metabolites to the levels that may be sufficient to alter the behavioral activity of the offspring. Interestingly, the inductive effect on cerebral and hepatic CYPs was found to persist postnatally up to 6 weeks in the offspring at the relatively higher doses (0.125 and 0.25 mg/kg) of lindane and up to 9 weeks at the highest dose (0.25 mg/kg), though the magnitude of induction was less than that observed at 3 weeks. Alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 6 and 9 weeks, though significant only in the offspring at 3 and 6-week of age, have further indicated that due to the reduced activity of the CYPs during the ontogeny, lindane and its metabolites may not be effectively cleared from the brain. The data suggest that low dose prenatal exposure to the pesticide has the potential to produce overexpression of xenobiotic metabolizing CYPs in brain and liver of the offspring which may account for the behavioral changes observed in the offspring.« less

  17. Associations of Maternal Pre-Pregnancy Body Mass Index and Gestational Weight Gain with Adult Offspring Cardio-Metabolic Risk Factors: The Jerusalem Perinatal Family Follow-up Study

    PubMed Central

    Hochner, Hagit; Friedlander, Yechiel; Calderon-Margalit, Ronit; Meiner, Vardiella; Sagy, Yael; Avgil-Tsadok, Meytal; Burger, Ayala; Savitsky, Bella; Siscovick, David S.; Manor, Orly

    2012-01-01

    Background Accumulating evidence demonstrates that both maternal pre-pregnancy body mass index (mppBMI) and gestational weight gain (GWG) are associated with adult offspring adiposity. However, whether these maternal attributes are related to other cardio-metabolic risk factors in adulthood has not been comprehensively studied. Methods and Results We used a birth cohort of 1400 young adults born in Jerusalem, with extensive archival data as well as clinical information at age 32, to prospectively examine the associations of mppBMI and GWG with adiposity and related cardio-metabolic outcomes. Greater mppBMI, independent of GWG and confounders, was significantly associated with higher offspring BMI, waist circumference (WC), systolic and diastolic BP, insulin and triglycerides and with lower HDL-C. For example, the effect sizes were translated to nearly 5kg/m2 higher mean BMI, 8.4cm higher WC, 0.13mmol/L (11.4mg/dL) higher triglycerides and 0.10mmol/L (3.8mg/dL) lower HDL-C among offspring of mothers within the upper mppBMI quartile (BMI>26.4kg/m2) compared to the lower (BMI<21.0kg/m2). GWG, independent of mppBMI, was positively associated with offspring adiposity; differences of 1.6kg/m2 in BMI and 2.4cm in waist were observed when offspring of mothers in the upper (GWG>14kg) and lower (GWG<9kg) quartiles of GWG were compared. Further adjustment for offspring adiposity attenuated to null the observed associations. Conclusions Maternal size both before and during pregnancy are associated with cardio-metabolic risk factors in young adult offspring. The associations appear to be driven mainly by offspring adiposity. Future studies that explore mechanisms underlying the intergenerational cycle of obesity are warranted to identify potentially novel targets for cardio-metabolic risk-reduction interventions. PMID:22344037

  18. Unexpected Long-Term Protection of Adult Offspring Born to High-Fat Fed Dams against Obesity Induced by a Sucrose-Rich Diet

    PubMed Central

    Couvreur, Odile; Ferezou, Jacqueline; Gripois, Daniel; Serougne, Colette; Crépin, Delphine; Aubourg, Alain; Gertler, Arieh; Vacher, Claire-Marie; Taouis, Mohammed

    2011-01-01

    Background Metabolic and endocrine environment during early life is crucial for metabolic imprinting. When dams were fed a high fat diet (HF diet), rat offspring developed hypothalamic leptin resistance with lean phenotype when weaned on a normal diet. Interestingly, when grown on the HF diet, they appeared to be protected against the effects of HF diet as compared to offspring of normally fed dams. The mechanisms involved in the protective effect of maternal HF diet are unclear. Methodology/Principal Findings We thus investigated the impact of maternal high fat diet on offspring subjected to normal or high palatable diet (P diet) on metabolic and endocrine parameters. We compared offspring born to dams fed P or HF diet. Offspring born to dams fed control or P diet, when fed P diet exhibited a higher body weight, altered hypothalamic leptin sensitivity and metabolic parameters suggesting that maternal P diet has no protective effect on offspring. Whereas, maternal HF diet reduces body weight gain and circulating triglycerides, and ameliorates corpulence index of offspring, even when subjected to P diet. Interestingly, this protective effect is differently expressed in male and female offspring. Male offspring exhibited higher energy expenditure as mirrored by increased hypothalamic UCP-2 and liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus astrocytic organization. In female offspring, the most striking impact of maternal HF diet is the reduced hypothalamic expression of NPY and POMC. Conclusions/Significance HF diet given during gestation and lactation protects, at least partially, offspring from excessive weight gain through several mechanisms depending upon gender including changes in arcuate nucleus astrocytic organization and increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and reduced hypothalamic expression of NPY and POMC in females. Taken together our results reveal new mechanisms involved in the protective

  19. Both high and low maternal salt intake in pregnancy alter kidney development in the offspring.

    PubMed

    Koleganova, Nadezda; Piecha, Grzegorz; Ritz, Eberhard; Becker, Luis Eduardo; Müller, Annett; Weckbach, Monika; Nyengaard, Jens Randel; Schirmacher, Peter; Gross-Weissmann, Marie-Luise

    2011-08-01

    In humans, low glomerular numbers are related to hypertension, cardiovascular, and renal disease in adult life. The present study was designed 1) to explore whether above- or below-normal dietary salt intake during pregnancy influences nephron number and blood pressure in the offspring and 2) to identify potential mechanisms in kidney development modified by maternal sodium intake. Sprague-Dawley rats were fed low (0.07%)-, intermediate (0.51%)-, or high (3.0%)-sodium diets during pregnancy and lactation. The offspring were weaned at 4 wk and subsequently kept on a 0.51% sodium diet. The kidney structure was assessed at postnatal weeks 1 and 12 and the expression of proteins of interest at term and at week 1. Blood pressure was measured in male offspring by telemetry from postnatal month 2 to postnatal month 9. The numbers of glomeruli at weeks 1 and 12 were significantly lower and, in males, telemetrically measured mean arterial blood pressure after month 5 was higher in offspring of dams on a high- or low- compared with intermediate-sodium diet. A high-salt diet was paralleled by higher concentrations of marinobufagenin in the amniotic fluid and an increase in the expression of both sprouty-1 and glial cell-derived neutrophic factor in the offspring's kidney. The expression of FGF-10 was lower in offspring of dams on a low-sodium diet, and the expression of Pax-2 and FGF-2 was lower in offspring of dams on a high-sodium diet. Both excessively high and excessively low sodium intakes during pregnancy modify protein expression in offspring kidneys and reduce the final number of glomeruli, predisposing the risk of hypertension later in life.

  20. Neurocircuitry of fear extinction in adult and juvenile rats.

    PubMed

    Ganella, Despina E; Nguyen, Ly Dao; Lee-Kardashyan, Luba; Kim, Leah E; Paolini, Antonio G; Kim, Jee Hyun

    2018-06-10

    In contrast to adult rodents, juvenile rodents fail to show relapse following extinction of conditioned fear. Using different retrograde tracers injected into the infralimbic cortex (IL) and the ventral hippocampus (vHPC) in conjunction with c-Fos and parvalbumin (PV) immunochemistry, we investigated the neurocircuitry of extinction in juvenile and adult rats. Regardless of fear extinction or retrieval, juvenile rats had more c-Fos+ neurons in the basolateral amygdala (BLA) compared to adults, and showed a higher proportion of c-Fos+ IL-projecting neurons. Adult rats had more activated vHPC-projecting BLA neurons following extinction compared to retrieval, a difference not observed in juvenile rats. The number of activated vHPC- or IL-projecting BLA neurons was significantly correlated with freezing levels in adult, but not juvenile, rats. We also identified neurons in the BLA that simultaneously project to the IL and vHPC activated in the retrieval groups at both ages. This study provides novel insight into the neural process underlying extinction, especially in the juvenile period. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. High sodium intake increases blood pressure and alters renal function in intrauterine growth-retarded rats.

    PubMed

    Sanders, Marijke W; Fazzi, Gregorio E; Janssen, Ger M J; Blanco, Carlos E; De Mey, Jo G R

    2005-07-01

    A suboptimal fetal environment increases the risk to develop cardiovascular disease in the adult. We reported previously that intrauterine stress in response to reduced uteroplacental blood flow in the pregnant rat limits fetal growth and compromises renal development, leading to an altered renal function in the adult offspring. Here we tested the hypothesis that high dietary sodium intake in rats with impaired renal development attributable to intrauterine stress, results in increased blood pressure, altered renal function, and organ damage. In rats, intrauterine stress was induced by bilateral ligation of the uterine arteries at day 17 of pregnancy. At the age of 12 weeks, the offspring was given high-sodium drinking water (2% sodium chloride). At the age of 16 weeks, rats were instrumented for monitoring of blood pressure and renal function. After intrauterine stress, litter size and birth weight were reduced, whereas hematocrit at birth was increased. Renal blood flow, glomerular filtration rate, and the glomerular filtration fraction were increased significantly after intrauterine stress. High sodium intake did not change renal function and blood pressure in control animals. However, during high sodium intake in intrauterine stress offspring, renal blood flow, glomerular filtration rate, and the filtration fraction were decreased, and blood pressure was increased. In addition, these animals developed severe albuminuria, an important sign of renal dysfunction. Thus, a suboptimal fetal microenvironment, which impairs renal development, results in sodium-dependent hypertension and albuminuria.

  2. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CDl Mice.

    EPA Science Inventory

    Inorganic arsenic exposure is carcinogenic in humans and rodents. When pregnant mice are exposed to inorganic arsenic in the drinking water their offspring, when adults, develop tumors and proliferative lesions at several sites, such as lung, liver, adrenal, uterus, ovary and ovi...

  3. POMC and NPY mRNA expression during development is increased in rat offspring brain from mothers fed with a high fat diet.

    PubMed

    Klein, Marianne Orlandini; MacKay, Harry; Edwards, Alexander; Park, Su-Bin; Kiss, Ana Carolina Inhasz; Felicio, Luciano Freitas; Abizaid, Alfonso

    2018-02-01

    Developmental programing is influenced by perinatal nutrition and it has long-lasting impacts on adult metabolism in the offspring. In particular, maternal high fat diet has been associated with increased risk of obesity and metabolic disorders during adulthood in the descendants. These effects may be due to the effects of the high fat diet on the development of the systems that regulate food intake and energy balance in the offspring hypothalamus. The arcuate nucleus (ARC) may be a particularly sensitive region to it as this nucleus contains the POMC and AgRP/NPY neurons that integrate the melanocortin system. Thus, the aim of this study was to investigate the effects of maternal high fat diet during pregnancy on the transcription factors that regulate hypothalamic development in the offspring as a potential mechanism that may result in altered neuronal expression of POMC, NPY and/or AgRP. To this end, pregnant females exposed to high fat diet (60% fat diet since day 0 of pregnancy) or standard rat chow were sacrificed on days 12, 14, 16 and 18 of gestation to obtain brains from their developing fetuses and examine the mRNA expression of transcription factors associated with the development of cells in the ARC. Results show that, while no changes in transcription factor expression between groups were observed, POMC and NPY mRNA expression were higher on embryonic day 18 in the high fat group. These results suggest that POMC and NPY expression are altered by in utero exposure to a high fat diet, but these changes in gene expression are not associated with changes in the expression of transcription factors known to determine the fate of ARC cells. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. Opposing Effects of Maternal Hypo- and Hyperthyroidism on the Stability of Thalamocortical Synapses in the Visual Cortex of Adult Offspring.

    PubMed

    Strobl, Marie-Therese J; Freeman, Daniel; Patel, Jenica; Poulsen, Ryan; Wendler, Christopher C; Rivkees, Scott A; Coleman, Jason E

    2017-05-01

    Insufficient or excessive thyroid hormone (TH) levels during fetal development can cause long-term neurological and cognitive problems. Studies in animal models of perinatal hypo- and hyperthyroidism suggest that these problems may be a consequence of the formation of maladaptive circuitry in the cerebral cortex, which can persist into adulthood. Here we used mouse models of maternal hypo- and hyperthyroidism to investigate the long-term effects of altering thyroxine (T4) levels during pregnancy (corresponding to embryonic days 6.5-18.5) on thalamocortical (TC) axon dynamics in adult offspring. Because perinatal hypothyroidism has been linked to visual processing deficits in humans, we performed chronic two-photon imaging of TC axons and boutons in primary visual cortex (V1). We found that a decrease or increase in maternal serum T4 levels was associated with atypical steady-state dynamics of TC axons and boutons in V1 of adult offspring. Hypothyroid offspring exhibited axonal branch and bouton dynamics indicative of an abnormal increase in TC connectivity, whereas changes in hyperthyroid offspring were indicative of an abnormal decrease in TC connectivity. Collectively, our data suggest that alterations to prenatal T4 levels can cause long-term synaptic instability in TC circuits, which could impair early stages of visual processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Prenatal lipopolysaccharide exposure increases anxiety-like behaviors and enhances stress-induced corticosterone responses in adult rats.

    PubMed

    Lin, Yu-Lung; Lin, Shu-Yi; Wang, Sabrina

    2012-03-01

    Maternal infection during pregnancy may affect fetal brain development and lead to neurological and mental disorders. Previously, we used lipopolysaccharide [LPS, 33 μg/kg, intraperitoneal injection] exposure on gestation day 10.5 to mimic maternal bacterial infection in rats and found reduced dopaminergic and serotoninergic neurons in the offspring. In the present study, we examined the anxiety and stress responses of the affected offspring and the neurophysiological changes in their brains. Our results show that LPS rats displayed more anxiety-like behaviors and heightened stress responses. Dopamine (DA) in the nucleus accumbens and serotonin (5-HT) in the medial prefrontal cortex and the hippocampus were significantly reduced in LPS rats. Their glucocorticoid receptors in the dorsal hippocampus and the 5-HT(1A) receptors in the dorsal and ventral hippocampus were also reduced. In addition, chronic but not acute fluoxetine treatment reversed the behavioral changes and increased hippocampal 5-HT(1A) receptor expression. This study demonstrates that LPS exposure during a critical time of embryonic development could produce long-term reduction of DA and 5-HT and other neurophysiological changes; such alterations may be associated with the increases in stress response and anxiety-like behaviors in the offspring. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Influence of parental care on offspring hippocampal volume in young adults varies as a function of overprotection

    PubMed Central

    Wang, Yinan; Song, Yiying; Li, Xueting; Zhang, Lin; Liu, Jia

    2017-01-01

    Parental care results in increased hippocampal volumes through adaptive stress responses in developing animals. However, human studies have not yet provided consistent findings analogous to the animal literature, possibly because parental care in humans is likely intermingled with parental overprotection, as suggested by the optimal parenting theory. Here, we tested the hypothesis that the effect of parental care on offspring hippocampal volume varies as a function of parental overprotection with a large cohort of young adult participants (N = 257). Consistent with some previous human studies, we found that parental care in childhood alone had little association with the hippocampal volume in adulthood. However, when parental overprotection was low, parental care was positively correlated with offspring hippocampal volume, whereas there was no association between parental care and offspring hippocampal volume when parental overprotection was high. Thus, an interaction exists between parental care and overprotection in human’s hippocampal development, which contributes to the elucidation of the complex relationship between brain structure and environmental factors. PMID:28401913

  7. Influence of parental care on offspring hippocampal volume in young adults varies as a function of overprotection.

    PubMed

    Wang, Yinan; Song, Yiying; Li, Xueting; Zhang, Lin; Liu, Jia

    2017-04-12

    Parental care results in increased hippocampal volumes through adaptive stress responses in developing animals. However, human studies have not yet provided consistent findings analogous to the animal literature, possibly because parental care in humans is likely intermingled with parental overprotection, as suggested by the optimal parenting theory. Here, we tested the hypothesis that the effect of parental care on offspring hippocampal volume varies as a function of parental overprotection with a large cohort of young adult participants (N = 257). Consistent with some previous human studies, we found that parental care in childhood alone had little association with the hippocampal volume in adulthood. However, when parental overprotection was low, parental care was positively correlated with offspring hippocampal volume, whereas there was no association between parental care and offspring hippocampal volume when parental overprotection was high. Thus, an interaction exists between parental care and overprotection in human's hippocampal development, which contributes to the elucidation of the complex relationship between brain structure and environmental factors.

  8. A comparison of the apoptotic effect of Delta(9)-tetrahydrocannabinol in the neonatal and adult rat cerebral cortex.

    PubMed

    Downer, Eric J; Gowran, Aoife; Campbell, Veronica A

    2007-10-17

    The maternal use of cannabis during pregnancy results in a number of cognitive deficits in the offspring that persist into adulthood. The endocannabinoid system has a role to play in neurodevelopmental processes such as neurogenesis, migration and synaptogenesis. However, exposure to phytocannabinoids, such as Delta(9)-tetrahydrocannabinol, during gestation may interfere with these events to cause abnormal patterns of neuronal wiring and subsequent cognitive impairments. Aberrant cell death evoked by Delta(9)-tetrahydrocannabinol may also contribute to cognitive deficits and in cultured neurones Delta(9)-tetrahydrocannabinol induces apoptosis via the CB(1) cannabinoid receptor. In this study we report that Delta(9)-tetrahydrocannabinol (5-50 microM) activates the stress-activated protein kinase, c-jun N-terminal kinase, and the pro-apoptotic protease, caspase-3, in in vitro cerebral cortical slices obtained from the neonatal rat brain. The proclivity of Delta(9)-tetrahydrocannabinol to impact on these pro-apoptotic signalling molecules was not observed in in vitro cortical slices obtained from the adult rat brain. In vivo, subcutaneous administration of Delta(9)-tetrahydrocannabinol (1-30 mg/kg) activated c-jun N-terminal kinase, caspase-3 and cathepsin-D, and induced DNA fragmentation in the cerebral cortex of neonatal rats. In contrast, in vivo administration of Delta(9)-tetrahydrocannabinol to adult rats was not associated with the apoptotic pathway in the cerebral cortex. The data provide evidence which supports the hypothesis that the neonatal rat brain is more vulnerable to the neurotoxic influence of Delta(9)-tetrahydrocannabinol, suggesting that the cognitive deficits that are observed in humans exposed to marijuana during gestation may be due, in part, to abnormal engagement of the apoptotic cascade during brain development.

  9. Hitting a triple in the non-alcoholic fatty liver disease field: sucrose intake in adulthood increases fat content in the female but not in the male rat offspring of dams fed a gestational low-protein diet.

    PubMed

    Nicolás-Toledo, L; Cervantes-Rodríguez, M; Cuevas-Romero, E; Corona-Quintanilla, D L; Pérez-Sánchez, E; Zambrano, E; Castelán, F; Rodríguez-Antolín, J

    2018-04-01

    The excessive consumption of carbohydrates is related to non-alcoholic fatty liver disease (NAFLD) in infants and adults. The effect of combining maternal malnutrition and a high carbohydrate intake on the development of NAFLD in adulthood remains unknown. We therefore hypothesized that consumption of 5% sucrose by the offspring of dams fed a low-protein diet during pregnancy promotes liver fat accumulation and oxidative damage differently in females and males. To test this, 12-month-old female and male offspring of mothers fed a Control (C) or low-protein diet (Restricted, R) were provided with either tap water or 5% sucrose for a period of 10 weeks. Livers were excised to measure the fat content and 3-nitrotyrosine (3-NTyr) immunostaining; serum samples were also obtained to measure the concentration of malondialdehyde (MDA). Data were analyzed using a non-repeated measures three-way analysis of variance to determine significant differences (P<0.05) regarding to the interaction among maternal diet, sucrose consumption and sex. Results showed that the liver fat content of females from R mothers was higher than that of their male counterpart. Hepatic 3-NTyr immunostaining and serum MDA concentrations were not affected by the interaction involving maternal diet, sucrose consumption and sex. Otherwise, liver fat content was correlated with the hepatic 3-NTyr immunostaining and serum MDA concentrations only in females. Thus, sucrose intake in adulthood increases fat content in the female but not in the male rat offspring of dams fed with a low-protein diet during pregnancy. This research emphasizes the importance of a balanced diet during pregnancy and the influence of the diet on the adult offspring.

  10. Evidence that a maternal "junk food" diet during pregnancy and lactation can reduce muscle force in offspring.

    PubMed

    Bayol, Stéphanie A; Macharia, Raymond; Farrington, Samantha J; Simbi, Bigboy H; Stickland, Neil C

    2009-02-01

    Obesity is a multi-factorial condition generally attributed to an unbalanced diet and lack of exercise. Recent evidence suggests that maternal malnutrition during pregnancy and lactation can also contribute to the development of obesity in offspring. We have developed an animal model in rats to examine the effects of maternal overeating on a westernized "junk food" diet using palatable processed foods rich in fat, sugar and salt designed for human consumption. Using this model, we have shown that such a maternal diet can promote overeating and a greater preference for junk food in offspring at the end of adolescence. The maternal junk food diet also promoted adiposity and muscle atrophy at weaning. Impaired muscle development may permanently affect the function of this tissue including its ability to generate force. The aim of this study is to determine whether a maternal junk food diet can impair muscle force generation in offspring. Twitch and tetanic tensions were measured in offspring fed either chow alone (C) or with a junk food diet (J) during gestation, lactation and/or post-weaning up to the end of adolescence such that three groups of offspring were used, namely the CCC, JJC and JJJ groups. We show that adult offspring from mothers fed the junk food diet in pregnancy and lactation display reduced muscle force (both specific twitch and tetanic tensions) regardless of the post-weaning diet compared with offspring from mothers fed a balanced diet. Maternal malnutrition can influence muscle force production in offspring which may affect an individual's ability to exercise and thereby combat obesity.

  11. A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation.

    PubMed

    Cuthbert, Candace E; Foster, Jerome E; Ramdath, D Dan

    2017-10-01

    A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (P<0·05) of genes coding for v-Akt murine thymoma viral oncogene homolog 2, resistin and v-Raf-1 murine leukaemia viral oncogene homolog 1 (Raf1) in offspring skeletal muscle and acetyl-CoA carboxylase (Acaca), fatty acid synthase and phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit β in offspring liver. Skeletal muscle neuropeptide Y and hepatic Kruppel-like factor 10 were up-regulated in HFS v. CON offspring (P<0·05). Compared with CON, Acaca and Raf1 protein expression levels were significantly lower in HFS offspring. Maternal HFS induced higher homoeostasis model of assessment index of insulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.

  12. Gestational and Lactational Exposure to Atrazine via the Drinking Water Causes Specific Behavioral Deficits and Selectively Alters Monoaminergic Systems in C57BL/6 Mouse Dams, Juvenile and Adult Offspring

    PubMed Central

    Krishna, Saritha; Ye, Xiaoqin; Filipov, Nikolay M.

    2014-01-01

    Atrazine (ATR) is one of the most frequently detected pesticides in the U.S. water supply. This study aimed to investigate neurobehavioral and neurochemical effects of ATR in C57BL/6 mouse offspring and dams exposed to a relatively low (3 mg/l, estimated intake 1.4 mg/kg/day) concentration of ATR via the drinking water (DW) from gestational day 6 to postnatal day (PND) 23. Behavioral tests included open field, pole, grip strength, novel object recognition (NOR), forced swim, and marble burying tests. Maternal weight gain and offspring (PND21, 35, and 70) body or brain weights were not affected by ATR. However, ATR-treated dams exhibited decreased NOR performance and a trend toward hyperactivity. Juvenile offspring (PND35) from ATR-exposed dams were hyperactive (both sexes), spent less time swimming (males), and buried more marbles (females). In adult offspring (PND70), the only behavioral change was a sex-specific (females) decreased NOR performance by ATR. Neurochemically, a trend toward increased striatal dopamine (DA) in dams and a significant increase in juvenile offspring (both sexes) was observed. Additionally, ATR exposure decreased perirhinal cortex serotonin in the adult female offspring. These results suggest that perinatal DW exposure to ATR targets the nigrostriatal DA pathway in dams and, especially, juvenile offspring, alters dams’ cognitive performance, induces sex-selective changes involving motor and emotional functions in juvenile offspring, and decreases cognitive ability of adult female offspring, with the latter possibly associated with altered perirhinal cortex serotonin homeostasis. Overall, ATR exposure during gestation and lactation may cause adverse nervous system effects to both offspring and dams. PMID:24913803

  13. Selective cognitive deficits in adult rats after prenatal exposure to inhaled ethanol.

    PubMed

    Oshiro, W M; Beasley, T E; McDaniel, K L; Taylor, M M; Evansky, P; Moser, V C; Gilbert, M E; Bushnell, P J

    2014-01-01

    Increased use of ethanol blends in gasoline suggests a need to assess the potential public health risks of exposure to these fuels. Ethanol consumed during pregnancy is a teratogen. However, little is known about the potential developmental neurotoxicity of ethanol delivered by inhalation, the most likely route of exposure from gasoline-ethanol fuel blends. We evaluated the potential cognitive consequences of ethanol inhalation by exposing pregnant Long Evans rats to clean air or ethanol vapor from gestational days 9-20, a critical period of neuronal development. Concentrations of inhaled ethanol (5000, 10,000, or 21,000 ppm for 6.5h/day) produced modeled peak blood ethanol concentrations (BECs) in exposed dams of 2.3, 6.8, and 192 mg/dL, respectively. In offspring, no dose-related impairments were observed on spatial learning or working memory in the Morris water maze or in operant delayed match-to-position tests. Two measures showed significant effects in female offspring at all ethanol doses: 1) impaired cue learning after trace fear conditioning, and 2) an absence of bias for the correct quadrant after place training during a reference memory probe in the Morris water maze. In choice reaction time tests, male offspring (females were not tested) from the 5000 and 10,000 ppm groups showed a transient increase in decision times. Also, male offspring from the 21,000 ppm group made more anticipatory responses during a preparatory hold period, suggesting a deficit in response inhibition. The increase in anticipatory responding during the choice reaction time test shows that inhaled ethanol yielding a peak BEC of ~200mg/dL can produce lasting effects in the offspring. The lack of a dose-related decrement in the effects observed in females on cue learning and a reference memory probe may reflect confounding influences in the exposed offspring possibly related to maternal care or altered anxiety levels in females. The surprising lack of more pervasive cognitive deficits

  14. Assessment of offspring development and behavior following gestational exposure to inhaled methanol in the rat.

    PubMed

    Stanton, M E; Crofton, K M; Gray, L E; Gordon, C J; Boyes, W K; Mole, M L; Peele, D B; Bushnell, P J

    1995-11-01

    The prospect of widespread human exposure associated with its use as an alternative fuel has sparked concern about the toxic potential of inhaled methanol (MeOH). Previous studies have revealed congenital malformations in rats following inhaled MeOH (Nelson et al. (1985). Fundam. Appl. Toxicol. 5, 727-736) but these studies did not include postnatal behavioral assessment. In the present study, pregnant Long-Evans rats were placed in exposure chambers containing 15,000 ppm MeOH or air for 7 hr/day on Gestational Days (GD) 7-19. The total alveolar dose of methanol was estimated at about 6.1 g/kg/day, for a total dose of about 42.7 g/kg for the entire study. Maternal body weights were recorded daily and blood methanol concentrations were determined at the end of exposure on GD 7, 10, 14, and 18. Following birth (Postnatal Day 0 [PND 0]), a number of tests were performed at various points in development, including: offspring mortality and body wt (PND 1,3), motor activity (PND 13-21, 30, 60), olfactory learning (PND 18), behavioral thermoregulation (PND 20-21), T-maze learning (PND 23-24), acoustic startle response (PND 24, 60), reflex modification audiometry (PND 60), pubertal landmarks (PND 31-56), passive avoidance (PND 72), and visual-evoked potentials (PND 160). Maternal blood MeOH levels, measured from samples taken within 15 min after removal from the exposure chamber, declined from about 3.8 mg/ml on the first day of exposure to 3.1 mg/ml on the 12th day of exposure. MeOH transiently reduced maternal body wt (4-7%) on GD 8-10, and offspring BW (5%) on PND 1. No other test revealed significant effects of MeOH. Prenatal exposure to high levels of inhaled MeOH appears to have little effect on this broad battery of tests beyond PND 1 in the rat.

  15. Face-Emotion Processing in Offspring at Risk for Panic Disorder.

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Klein, Rachel G.; Mannuzza, Salvatore; Moulton, John L., III; Lissek, Shmuel; Guardino, Mary; Woldehawariat, Girma

    2005-01-01

    Objective: Panic disorder (PD) has been linked to perturbed processing of threats. This study tested the hypotheses that offspring of parents with PD and offspring with anxiety disorders display relatively greater sensitivity and attention allocation to fear provocation. Method: Offspring of adults with PD, major depressive disorder (MDD), or no…

  16. Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring.

    PubMed

    Ghorbel, Imen; Amara, Ibtissem Ben; Ktari, Naourez; Elwej, Awatef; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba

    2016-12-01

    Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na + K + -ATPase, Mg 2+ -ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.

  17. Effect of nutritional recovery with soybean flour diet on body composition, energy balance and serum leptin concentration in adult rats

    PubMed Central

    Cheim, Loanda Maria G; Oliveira, Elisângela A; Arantes, Vanessa C; Veloso, Roberto V; Reis, Marise Auxiliadora B; Gomes-da-Silva, Maria Helena G; Carneiro, Everardo M; Boschero, Antonio C; Latorraca, Márcia Q

    2009-01-01

    Background Malnutrition in early life is associated with obesity in adulthood and soybean products may have a beneficial effect on its prevention and treatment. This study evaluated body composition, serum leptin and energy balance in adult rats subjected to protein restriction during the intrauterine stage and lactation and recovering on a soybean flour diet. Methods Five groups of the Wistar strain of albino rats were used: CC, offspring born to and suckled by mothers fed a control diet and fed the same diet after weaning; CS, offspring born to and suckled by mothers fed a control diet and fed a soybean diet with 17% protein after weaning; LL, offspring of mothers fed a low protein diet and fed the same diet after weaning; LC, offspring of mothers fed a low protein diet, but fed a control diet after weaning; LS, offspring of mothers fed a low protein diet, but fed a soybean diet with 17% protein after weaning. Food intake, body, perirenal and retroperitoneal adipose tissue were measured in grams. Leptin was quantified using the Enzyme Linked Immuno Sorbent Assay (ELISA) and insulin by radioimmunoassay (RIA). Carcass composition was determined by chemical methods and energy expenditure was calculated by the difference between energy intake and carcass energy gain. Data were tested by analysis of variance (ANOVA). Results The LC and LS groups had higher energetic intake concerning body weight, lower energy expenditure, proportion of fat carcass and fat pads than CC and CS groups. The LS group showed reduced body weight gain and lower energy efficiency, which was reflected in less energy gain as protein and the proportion of carcass protein, and lower energy gain as lipid than in the LC groups, although both groups had eaten the same amount of diet and showed equal energy expenditure. Serum leptin did not differ among groups and was unrelated to food or energy intake and energy expenditure. Serum insulin was higher in the LS than in the LC group. Conclusion Protein

  18. Permanent alterations in catecholamine concentrations in discrete areas of brain in the offspring of rats treated with methylamphetamine and chlorpromazine

    PubMed Central

    Tonge, Sally R.

    1973-01-01

    Methylamphetamine hydrochloride (80 mg/l.) and/or chlorpromazine hydrochloride (200 mg/l.) have been administered in the drinking water of female Wistar rats during pregnancy and suckling. The offspring were weaned at 21 days and thereafter received no drugs. Nine months later, male offspring were killed and noradrenaline and normetanephrine concentrations were determined in eight discrete areas of the brains: neocortex, hippocampus, striatum, thalamus, hypothalamus, corpora quadrigemina, pons/medulla, and amygdala region. Both drugs appeared to have permanently altered catecholamine concentrations in several areas of the brain. There was evidence of antagonism between the effects of the two drugs in the hippocampus, striatum, thalamus, and corpora quadrigemina, where the individual drugs produced altered noradrenaline concentrations but a combination of the two had no effect. PMID:4722052

  19. Protein Nutrition of Southern Plains Small Mammals: Immune Response to Variation in Maternal and Offspring Dietary Nitrogen

    EPA Science Inventory

    Maternal nutrition during pregnancy and postnatal offspring nutrition may influence offspring traits. We investigated the effects of maternal and postweaning offspring dietary nitrogen on immune function and hematology in two species of rodent: the hispid cotton rat (Sigmodon his...

  20. The Transmission of Values to School-Age and Young Adult Offspring: Race and Gender Differences in Parenting

    ERIC Educational Resources Information Center

    Pagano, Maria E.; Hirsch, Barton J.; Deutsch, Nancy L.; McAdams, Dan P.

    2003-01-01

    The current study explores parental socialization practices and the values transmitted to school-aged and young adult off-spring, focusing on race and gender issues involved in parental teachings. A community sample of 187 black and white mothers and fathers were interviewed with regards to their parenting practices using both quantitative and…

  1. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring.

    PubMed

    Khalil, Omari S; Pisar, Mazura; Forrest, Caroline M; Vincenten, Maria C J; Darlington, L Gail; Stone, Trevor W

    2014-05-01

    Glutamate receptors for N-methyl-d-aspartate (NMDA) are involved in early brain development. The kynurenine pathway of tryptophan metabolism includes the NMDA receptor agonist quinolinic acid and the antagonist kynurenic acid. We now report that prenatal inhibition of the pathway in rats with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulphonamide (Ro61-8048) produces marked changes in hippocampal neuron morphology, spine density and the immunocytochemical localisation of developmental proteins in the offspring at postnatal day 60. Golgi-Cox silver staining revealed decreased overall numbers and lengths of CA1 basal dendrites and secondary basal dendrites, together with fewer basal dendritic spines and less overall dendritic complexity in the basal arbour. Fewer dendrites and less complexity were also noted in the dentate gyrus granule cells. More neurons containing the nuclear marker NeuN and the developmental protein sonic hedgehog were detected in the CA1 region and dentate gyrus. Staining for doublecortin revealed fewer newly generated granule cells bearing extended dendritic processes. The number of neuron terminals staining for vesicular glutamate transporter (VGLUT)-1 and VGLUT-2 was increased by Ro61-8048, with no change in expression of vesicular GABA transporter or its co-localisation with vesicle-associated membrane protein-1. These data support the view that constitutive kynurenine metabolism normally plays a role in early embryonic brain development, and that interfering with it has profound consequences for neuronal structure and morphology, lasting into adulthood. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Low Dose Prenatal Alcohol Exposure Does Not Impair Spatial Learning and Memory in Two Tests in Adult and Aged Rats

    PubMed Central

    Cullen, Carlie L.; Burne, Thomas H. J.; Lavidis, Nickolas A.; Moritz, Karen M.

    2014-01-01

    Consumption of alcohol during pregnancy can have detrimental impacts on the developing hippocampus, which can lead to deficits in learning and memory function. Although high levels of alcohol exposure can lead to severe deficits, there is a lack of research examining the effects of low levels of exposure. This study used a rat model to determine if prenatal exposure to chronic low dose ethanol would result in deficits in learning and memory performance and if this was associated with morphological changes within the hippocampus. Sprague Dawley rats were fed a liquid diet containing 6% (vol/vol) ethanol (EtOH) or an isocaloric control diet throughout gestation. Male and Female offspring underwent behavioural testing at 8 (Adult) or 15 months (Aged) of age. Brains from these animals were collected for stereological analysis of pyramidal neuron number and dendritic morphology within the CA1 and CA3 regions of the dorsal hippocampus. Prenatal ethanol exposed animals did not differ in spatial learning or memory performance in the Morris water maze or Y maze tasks compared to Control offspring. There was no effect of prenatal ethanol exposure on pyramidal cell number or density within the dorsal hippocampus. Overall, this study indicates that chronic low dose prenatal ethanol exposure in this model does not have long term detrimental effects on pyramidal cells within the dorsal hippocampus or impair spatial learning and memory performance. PMID:24978807

  3. Positive modulation of α5 GABAA receptors in preadolescence prevents reduced locomotor response to amphetamine in adult female but not male rats prenatally exposed to lipopolysaccharide.

    PubMed

    Batinić, Bojan; Santrač, Anja; Jančić, Ivan; Li, Guanguan; Vidojević, Aleksandra; Marković, Bojan; Cook, James M; Savić, Miroslav M

    2017-10-01

    We previously demonstrated that lipopolysaccharide (LPS) administered intraperitoneally (i.p.) to pregnant Wistar rat dams, at embryonic days 15 and 16 (E15/16), induced a decrease of baseline locomotor activity and diminished reactivity to amphetamine in adult female offspring. In the present study we aimed to assess the duration of LPS-induced maternal immune activation (MIA) and investigate possible changes in levels of main neurotransmitters in fetal brain during MIA. We hypothesized that the observed behavioral changes may be linked with MIA-induced disturbance of prenatal GABAergic system development, especially with α5 GABA A receptors (α5GABA A Rs), expression of which takes place between E14 and E17. Thereafter, we set to investigate if later potentiation of α5GABA A Rs in offspring's preadolescence (from postnatal day 22-28) could prevent the deficit in locomotor reactivity to amphetamine observed in adulthood, at postnatal day P60. The elevation of IL-6 in amniotic fluid 6h after LPS treatment (100μg/kg, i.p.) at E15 was concurrent with a significant increase of GABA and decrease of glutamate concentration in fetal brain. Moreover, repeated administration of MP-III-022, a selective positive allosteric modulator of α5GABA A Rs, at a dose (2mg/kg daily, i.p.) derived from a separate pharmacokinetic study, prevented the LPS-induced decrease in locomotor reactivity to amphetamine (0.5mg/kg, i.p.) in adult females. These results were not mirrored in the parallel set of experiments with male offspring from LPS-treated rats. The results suggest that pharmacological potentiation of α5GABA A Rs activity in preadolescence may ameliorate at least some of adverse consequences of exposure to MIA in utero. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. Effects of perinatal methylphenidate (MPH) treatment in male and female Sprague-Dawley offspring.

    PubMed

    Panos, John J; Law, C Delbert; Ferguson, Sherry A

    2014-01-01

    MPH is a common treatment for adult Attention Deficit Hyperactivity Disorder (ADHD). However, little information exists regarding its safety during pregnancy and thus, women with ADHD face difficult decisions regarding continued use during pregnancy. Here, Sprague-Dawley rats were orally treated 3 ×/day with 0 (control), 6 (low), 18 (mid), or 42 (high) mg MPH/kg/day (i.e., 0, 2, 6, or 14 mg/kg at each treatment time) on gestational days 6-21. On postnatal days (PNDs) 1-21, all offspring/litter were orally treated 2 ×/day with the same dose. Righting reflex (PNDs 3-6) and slant board performance (PNDs 8-11) were assessed. T3, T4, E2, testosterone, LH and corticosterone were measured at PND 22. Separate pregnant dams and resulting litters were used for serum MPH measurements. MPH treatment had mild, but significant, effects on gestational body weight and food intake. Birth weight of high MPH offspring was 5% more than controls (p<0.0500). Relative to same-sex controls on PNDs 1-22, low and mid MPH males weighed more (p<0.0094), low MPH females weighed more (p<0.0001), while high MPH females weighed less (p<0.0397). PND 22 serum E2 levels were significantly decreased (20-25%) in high MPH males and females (p<0.0500). Behavioral performance was unaffected by treatment. Serum MPH levels of the low MPH pregnant dams were within the range produced by therapeutic MPH doses in adults; however, offspring levels in all groups were substantially higher. These results indicate that developmental MPH treatment has mild effects on gestational body weight and food intake and offspring preweaning body weight. Potential functional consequences of decreased serum E2 levels are not clear, but may impact later behavior or physiology. Published by Elsevier Inc.

  5. Glucose metabolism and hepatic Igf1 DNA methylation are altered in the offspring of dams fed a low-salt diet during pregnancy.

    PubMed

    Siqueira, Flavia R; Furukawa, Luzia N S; Oliveira, Ivone B; Heimann, Joel C

    2016-02-01

    A low-salt (LS) diet during pregnancy has been linked to insulin resistance in adult offspring, at least in the experimental setting. However, it remains unclear if this effect is due to salt restriction during early or late pregnancy. To better understand this phenomenon, 12-week-old female Wistar rats were fed a LS or normal-salt (NS) diet during gestation or a LS diet during either the first (LS10) or second (LS20) half of gestation. Glucose tolerance test, HOMA-IR, gene expression analysis and DNA methylation measurements were conducted for the Insr, Igf1, Igf1r, Ins1 and Ins2 genes in the livers of neonates and in the liver, white adipose tissue and muscle of 20-week-old male offspring. Birth weight was lower in the LS20 and LS animals compared with the NS and LS10 rats. In the liver, the Igf1 levels in the LS10, LS20 and LS neonates were lower than those in the NS neonates. Methylation of the Insr, Igf1r, Ins1 and Ins2 genes was influenced in a variable manner by low salt intake during pregnancy. Increased liver Igf1 methylation was observed in the LS and LS20 neonates compared with their NS and LS10 counterparts. Glucose intolerance was observed in adult offspring as an effect of low salt intake over the duration of pregnancy. Compared to the NS animals, the HOMA-IR was higher in the 12-week-old LS and 20-week-old LS-10 rats. Based on these results, it appears that the reason a LS diet during pregnancy induces a low birth weight is its negative correlation with Igf1 DNA methylation in neonates. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring.

    PubMed

    Yüksel, Murat; Nazıroğlu, Mustafa; Özkaya, Mehmet Okan

    2016-05-01

    We investigated the effects of mobile phone (900 and 1800 MHz)- and Wi-Fi (2450 MHz)-induced electromagnetic radiation (EMR) exposure on uterine oxidative stress and plasma hormone levels in pregnant rats and their offspring. Thirty-two rats and their forty newborn offspring were divided into the following four groups according to the type of EMR exposure they were subjected to: the control, 900, 1800, and 2450 MHz groups. Each experimental group was exposed to EMR for 60 min/day during the pregnancy and growth periods. The pregnant rats were allowed to stand for four generations (total 52 weeks) before, plasma and uterine samples were obtained. During the 4th, 5th, and 6th weeks of the experiment, plasma and uterine samples were also obtained from the developing rats. Although uterine lipid peroxidation increased in the EMR groups, uterine glutathione peroxidase activity (4th and 5th weeks) and plasma prolactin levels (6th week) in developing rats decreased in these groups. In the maternal rats, the plasma prolactin, estrogen, and progesterone levels decreased in the EMR groups, while the plasma total oxidant status, and body temperatures increased. There were no changes in the levels of reduced glutathione, total antioxidants, or vitamins A, C, and E in the uterine and plasma samples of maternal rats. In conclusion, although EMR exposure decreased the prolactin, estrogen, and progesterone levels in the plasma of maternal rats and their offspring, EMR-induced oxidative stress in the uteri of maternal rats increased during the development of offspring. Mobile phone- and Wi-Fi-induced EMR may be one cause of increased oxidative uterine injury in growing rats and decreased hormone levels in maternal rats. TRPV1 cation channels are the possible molecular pathways responsible for changes in the hormone, oxidative stress, and body temperature levels in the uterus of maternal rats following a year-long exposure to electromagnetic radiation exposure from mobile phones and

  7. Furosemide Pharmacokinetics in Adult Rats become Abnormal with an Adverse Intrauterine Environment and Modulated by a Post-Weaning High-Fat Diet.

    PubMed

    DuBois, Barent N; Pearson, Jacob; Mahmood, Tahir; Thornburg, Kent; Cherala, Ganesh

    2016-06-01

    Adult individuals born with intrauterine growth restriction (IUGR) have physiological maladaptations that significantly increase risk of chronic disease. We suggested that such abnormalities in organ function would alter pharmacokinetics throughout life, exacerbated by environmental mismatch. Pregnant and lactating rats were fed either a purified control diet (18% protein) or low-protein diet (9% protein) to produce IUGR offspring. Offspring were weaned onto either laboratory chow (11% fat) or high-fat diet (45% fat). Adult offspring (5 months old) were dosed with furosemide (10 mg/kg i.p.) and serum and urine collected. The overall exposure profile in IUGR males was significantly reduced due to a ~35% increase in both clearance and volume of distribution. Females appeared resistant to the IUGR phenotype. The effects of the high-fat diet trended in the opposite direction to that of IUGR, with increased drug exposure due to decreases in both clearance (31% males, 46% females) and volume of distribution (24% males, 44% females), with a 10% longer half-life in both genders. The alterations in furosemide pharmacokinetics and pharmacodynamics were explained by changes in the expression of renal organic anion transporters 1 and 3, and sodium-potassium-chloride cotransporter-2. In summary, this study suggests that IUGR and diet interact to produce subpopulations with similar body-weights but dissimilar pharmacokinetic profiles; this underlines the limitation of one-size-fits-all dosing which does not account for physiological differences in body composition resulting from IUGR and diet. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  8. Parental longevity and offspring's home blood pressure: the Ohasama study.

    PubMed

    Watanabe, Yumiko; Metoki, Hirohito; Ohkubo, Takayoshi; Hirose, Takuo; Kikuya, Masahiro; Asayama, Kei; Inoue, Ryusuke; Hara, Azusa; Obara, Taku; Hoshi, Haruhisa; Totsune, Kazuhito; Imai, Yutaka

    2010-02-01

    Longevity is clustered in particular families. Some studies using conventional blood pressure (BP) reported an association between parental longevity and offspring's BP. No study has used self-measurement of BP at home (home BP). We examined the association between parental longevity and home BP values of adult Japanese offspring. Home and conventional BPs were measured in 1961 residents aged 40 years and over in the general population of Ohasama, Japan. Information about the ages of offspring's parents (age at death or current age) was obtained from a standardized questionnaire. The mean +/- SD values of systolic/diastolic home BP in offspring whose mothers died at less than 69 years of age, at 69-84 years of age, and in offspring whose mothers were alive at age 84 years were 127.4 +/- 13.2/76.2 +/- 9.1, 124.8 +/- 15.0/74.4 +/- 10.0, and 123.4 +/- 15.2/74.4 +/- 10.3 mmHg (P = 0.0002/0.009), respectively. Corresponding values in offspring whose fathers died at less than 66 years of age, at 66-80 years of age, and in offspring whose fathers were alive at age 80 years were 125.7 +/- 15.2/75.6 +/- 10.6, 124.7 +/- 14.1/75.0 +/- 9.2 and 122.4 +/- 14.6/73.6 +/- 9.5 mmHg (P = 0.001/0.003), respectively. Multivariate analysis demonstrated associations that were only weakly observed for conventional BP values (conventional BP: P = 0.3/0.4 for maternal and P = 0.3/0.3 for paternal longevity; home BP: P = 0.05/0.2 for maternal and P = 0.0004/0.007 for paternal longevity). Parental premature death was significantly associated with higher home BP levels in adult offspring, suggesting that parental longevity might be a useful additional marker for screening adult offspring at higher risk of hypertension.

  9. Parental body mass index and blood pressure are associated with higher body mass index and blood pressure in their adult offspring: a cross-sectional study in a resource-limited setting in northern Peru.

    PubMed

    Carrillo-Larco, Rodrigo M; Bernabé-Ortiz, Antonio; Sal Y Rosas, Víctor G; Sacksteder, Katherine A; Diez-Canseco, Francisco; Cárdenas, María K; Gilman, Robert H; Miranda, J Jaime

    2018-05-01

    High body mass index (BMI) and blood pressure (BP) are major contributors to the high burden of non-communicable diseases in adulthood. Individual high-risk and population approaches for prevention require newer strategies to target these risk factors and focusing on the family to introduce prevention initiatives appears as a promising scenario. Characterisation of the relationship between BMI and BP among the adult members of a given family merits evaluation. We conducted a secondary analysis of an implementation study in Tumbes, Peru, benefiting from data derived from families with at least one adult offspring. The exposures of interest were the BMI, systolic BP (SBP) and diastolic BP (DBP) of the mother and father. The outcomes were the BMI, SBP and DBP of the offspring. Mixed-effects linear regression models were conducted. The mean age of the offspring, mothers and fathers was 29 (SD: 9.5), 54 (SD: 11.8) and 59 (SD: 11.6) years, respectively. Father's BMI was associated with a quarter-point increase in offspring BMI, regardless of the sex of the offspring. Mother's BMI had a similar effect on the BMI of her sons, but had no significant effect on her daughters'. Mother's SBP was associated with almost one-tenth of mmHg increase in the SBP of the adult offspring. There was no evidence of an association for DBP. In families with adult members, the higher the parents' BMI and SBP, the higher their adult offspring's levels will be. © 2018 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  10. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    PubMed

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood. © 2014 Society for the Study of Addiction.

  11. The effect of methamphetamine exposure during pregnancy and lactation on hippocampal doublecortin expression, learning and memory of rat offspring.

    PubMed

    Jalayeri-Darbandi, Zahra; Rajabzadeh, Aliakbar; Hosseini, Mahmoud; Beheshti, Farimah; Ebrahimzadeh-Bideskan, Alireza

    2018-06-01

    The aim of this study was to evaluate the effect of methamphetamine (MA) exposure during pregnancy and lactation on doublecortin (DCX) expression in the hippocampus of rat offspring and also on learning/memory. Thirty-five pregnant Wistar rats were randomly divided into seven groups of 5 rats each: three experimental groups, each receiving 5 mg/kg body weight (BW) intraperitoneal (i.p.) injections of MA during pregnancy or/and lactation; three sham groups, each receiving saline injections; one control group, receiving no injection. After the interventions, two male pups (1 and 22 days old) were randomly selected from each mother, sacrificed and their brains subjected to DCX immunohistochemistry. One additional male pup from each mother was randomly selected and maintained for 60 days for testing in the Morris water maze and passive avoidance tests. MA administration during pregnancy was found to have significantly decreased the number of DCX-positive cells in the CA1, CA3 and DG regions of the hippocampus in the 1-day pups (P ≤ 0.05) and to have significantly decreased the number of DCX-positive cells in only two regions of the hippocampus, the CA1 and DG regions, in 22-day old pups. In comparison, exposure to MA during lactation was only associated with a significant decrease in the number of DCX-positive cells in the DG. Exposure to MA during pregnancy had significant impact on the intensity of DCX expression in the hippocampus of 1- and 22-day pups (P ≤ 0.05). There was no significant difference in memory/learning among the study groups. Our results indicate the administration of MA during pregnancy had a greater effect that during the lactation period on DCX expression in the hippocampus of rat offspring.

  12. Dietary sodium manipulation during critical periods in development sensitize adult offspring to amphetamines

    PubMed Central

    McBride, Shawna M.; Culver, Bruce; Flynn, Francis W.

    2008-01-01

    This study examined critical periods in development to determine when offspring were most susceptible to dietary sodium manipulation leading to amphetamine sensitization. Wistar dams (n = 6–8/group) were fed chow containing low (0.12% NaCl; LN), normal (1% NaCl; NN), or high sodium (4% NaCl; HN) during the prenatal or early postnatal period (birth to 5 wk). Offspring were fed normal chow thereafter until testing at 6 mo. Body weight (BW), blood pressure (BP), fluid intake, salt preference, response to amphetamine, open field behavior, plasma adrenocorticotropin hormone (ACTH), plasma corticosterone (Cort), and adrenal gland weight were measured. BW was similar for all offspring. Offspring from the prenatal and postnatal HN group had increased BP, NaCl intake, and salt preference and decreased water intake relative to NN offspring. Prenatal HN offspring had greater BP than postnatal HN offspring. In response to amphetamine, both prenatal and postnatal LN and HN offspring had increased locomotor behavior compared with NN offspring. In a novel open field environment, locomotion was also increased in prenatal and postnatal LN and HN offspring compared with NN offspring. ACTH and Cort levels 30 min after restraint stress and adrenal gland weight measurement were greater in LN and HN offspring compared with NN offspring. These results indicate that early life experience with low- and high-sodium diets, during the prenatal or early postnatal period, is a stress that produces long-term changes in responsiveness to amphetamines and to subsequent stressors. PMID:18614766

  13. In vivo longitudinal micro-CT study of bent long limb bones in rat offspring.

    PubMed

    De Schaepdrijver, Luc; Delille, Peter; Geys, Helena; Boehringer-Shahidi, Christian; Vanhove, Christian

    2014-07-01

    Micro-computed X-ray tomography (micro-CT) has been reported as a reliable method to assess ex vivo rat and rabbit fetal skeletons in embryo-fetal developmental toxicity studies. Since micro-CT is a non-invasive imaging modality it has the potential for longitudinal, in vivo investigation of postnatal skeletal development. This is the first paper using micro-CT to assess the reversibility of drug-induced bent long bones in a longitudinal study from birth to early adulthood in rat offspring. Analysis of the scans obtained on postnatal Day 0, 7, 21 and 80 showed complete recovery or repair of the bent long limb bones (including the scapula) within the first 3 weeks. When assessing risk the ability to demonstrate recovery is highly advantageous when interpreting such transient skeletal change. In summary, in vivo micro-CT of small laboratory animals can aid in non-clinical safety assessment, particularly for specific mechanistic purposes or to address a particular concern in developmental biology. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Gestational and lactational exposure to atrazine via the drinking water causes specific behavioral deficits and selectively alters monoaminergic systems in C57BL/6 mouse dams, juvenile and adult offspring.

    PubMed

    Lin, Zhoumeng; Dodd, Celia A; Xiao, Shuo; Krishna, Saritha; Ye, Xiaoqin; Filipov, Nikolay M

    2014-09-01

    Atrazine (ATR) is one of the most frequently detected pesticides in the U.S. water supply. This study aimed to investigate neurobehavioral and neurochemical effects of ATR in C57BL/6 mouse offspring and dams exposed to a relatively low (3 mg/l, estimated intake 1.4 mg/kg/day) concentration of ATR via the drinking water (DW) from gestational day 6 to postnatal day (PND) 23. Behavioral tests included open field, pole, grip strength, novel object recognition (NOR), forced swim, and marble burying tests. Maternal weight gain and offspring (PND21, 35, and 70) body or brain weights were not affected by ATR. However, ATR-treated dams exhibited decreased NOR performance and a trend toward hyperactivity. Juvenile offspring (PND35) from ATR-exposed dams were hyperactive (both sexes), spent less time swimming (males), and buried more marbles (females). In adult offspring (PND70), the only behavioral change was a sex-specific (females) decreased NOR performance by ATR. Neurochemically, a trend toward increased striatal dopamine (DA) in dams and a significant increase in juvenile offspring (both sexes) was observed. Additionally, ATR exposure decreased perirhinal cortex serotonin in the adult female offspring. These results suggest that perinatal DW exposure to ATR targets the nigrostriatal DA pathway in dams and, especially, juvenile offspring, alters dams' cognitive performance, induces sex-selective changes involving motor and emotional functions in juvenile offspring, and decreases cognitive ability of adult female offspring, with the latter possibly associated with altered perirhinal cortex serotonin homeostasis. Overall, ATR exposure during gestation and lactation may cause adverse nervous system effects to both offspring and dams. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Prenatal low protein and postnatal high fat diets induce rapid adipose tissue growth by inducing Igf2 expression in Sprague Dawley rat offspring

    USDA-ARS?s Scientific Manuscript database

    Maternal low protein diets during prenatal development contribute to the development of obesity and insulin resistance in offspring. In this study, obese-prone Sprague -Dawley rats were fed diets having either 8% (low protein, LP) or 20% (normal protein, NP) protein for 3-wk prior to conception and...

  16. Rats undernourished in utero have altered Ca2+ signaling and reduced fertility in adulthood

    PubMed Central

    Muzi-Filho, Humberto; Souza, Alessandro M; Bezerra, Camila G P; Boldrini, Leonardo C; Takiya, Christina M; Oliveira, Felipe L; Nesi, Renata T; Valença, Samuel S; Silva, Ananssa M S; Zapata-Sudo, Gisele; Sudo, Roberto T; Einicker-Lamas, Marcelo; Vieyra, Adalberto; Lara, Lucienne S; Cunha, Valeria M N

    2015-01-01

    Epidemiological and animal studies have shown that placental undernutrition impairs reproduction in adult offspring, but the underlying molecular mechanisms within the male genital tract remain unknown. Due to its special physiological characteristics in transport and the modulation of the environment to which its luminal content is exposed, we hypothesized that the vas deferens would be a highly sensitive target. The goals were to investigate whether intrauterine malnutrition affects molecular mechanisms related to Ca2+- and oxidative stress-modulated processes and causes structural alterations in the adult rat vas deferens that could attenuate fecundity and fertility. Male adult rats malnourished in utero had increased vas deferens weight associated with thickening of the muscular coat, a decrease in the total and haploid germ cells, a marked increase in the immature cells, and a decline in the numbers of pregnant females and total offspring per male rat. The ex vivo response of vas deferens from malnourished rats demonstrated an accentuated decrease in the contractile response to phenylephrine. The vas deferens had a marked decrease in Ca2+ transport due to the uncoupling of Ca2+-stimulated ATP hydrolysis and ATP-driven Ca2+ flux, and the downregulation of both sarco-endoplasmic reticulum Ca2+-ATPase 2 and the coupling factor 12-kDa FK506-binding protein. An increase in protein carbonylation (a marker of oxidative damage) and an imbalance between protein kinases C and A were observed as a legacy of undernutrition in early life. These results provide the structural and molecular basis to explain at least in part how maternal undernutrition affects fecundity and fertility in adult male rats. PMID:26508737

  17. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation

    PubMed Central

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Background Fetal exposure to hyperglycemia impacts negatively kidney development and function. Objective Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Design Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Results Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)—a key enzyme involved in gene expression during early development–was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Conclusion Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function. PMID:26258530

  18. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation.

    PubMed

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Fetal exposure to hyperglycemia impacts negatively kidney development and function. Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)--a key enzyme involved in gene expression during early development--was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function.

  19. Later Life Impacts of Social Participation on Parents of Adult Offspring with and without Intellectual and Developmental Disabilities

    ERIC Educational Resources Information Center

    Olsen, Darren L.

    2018-01-01

    Social participation is an important resource for parents in old age, and may be particularly important for parents living with adult offspring with intellectual and developmental disabilities. To evaluate whether socializing with friends and family and participating in social organizations protects against depression in old age, this study…

  20. Maternal vitamin B6 deficient or supplemented diets on expression of genes related to GABAergic, serotonergic, or glutamatergic pathways in hippocampus of rat dams and their offspring.

    PubMed

    Almeida, Mara Ribeiro; Mabasa, Lawrence; Crane, Courtney; Park, Chung S; Venâncio, Vinícius Paula; Bianchi, Maria Lourdes Pires; Antunes, Lusânia Maria Greggi

    2016-07-01

    Vitamin B6 plays crucial roles on brain development and its maternal deficiency impacts the gamma-aminobutyric acid (GABA)ergic, serotonergic, glutamatergic, and dopaminergic systems in offspring. However, the molecular mechanisms underlying these neurological changes are not well understood. Thus, we aimed at evaluating which components of those neurotransmitter metabolism and signaling pathways can be modulated by maternal vitamin B6 -deficient or B6 -supplementated diets in the hippocampus of rat dams and their offspring. Female Wistar rats were fed three different diets: control (6 mg vitamin B6 /kg), supplemented (30 mg vitamin B6 /kg) or deficient diet (0 mg vitamin B6 /kg), from 4 weeks before pregnancy through lactation. Newborn pups (10 days old) from rat dams fed vitamin B6 -deficient diet presented hyperhomocysteinemia and had a significant increase in mRNA levels of glutamate decarboxylase 1 (Gad1), fibroblast growth factor 2 (Fgf2), and glutamate-ammonia ligase (Glul), while glutaminase (Gls) and tryptophan hydroxylase 1 (Tph1) mRNAs were downregulated. Vitamin B6 supplementation or deficiency did not change hippocampal global DNA methylation. A maternal vitamin B6 -deficient diet affects the expression of genes related to GABA, glutamate, and serotonin metabolisms in offspring by regulating Gad1, Glul, Gls, and Tph1 mRNA expression. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Prenatal chronic mild stress induces depression-like behavior and sex-specific changes in regional glutamate receptor expression patterns in adult rats.

    PubMed

    Wang, Y; Ma, Y; Hu, J; Cheng, W; Jiang, H; Zhang, X; Li, M; Ren, J; Li, X

    2015-08-20

    Chronic stress during critical periods of human fetal brain development is associated with cognitive, behavioral, and mood disorders in later life. Altered glutamate receptor (GluR) expression has been implicated in the pathogenesis of stress-dependent disorders. To test whether prenatal chronic mild stress (PCMS) enhances offspring's vulnerability to stress-induced behavioral and neurobiological abnormalities and if this enhanced vulnerability is sex-dependent, we measured depression-like behavior in the forced swimming test (FST) and regional changes in GluR subunit expression in PCMS-exposed adult male and female rats. Both male and female PCMS-exposed rats exhibited stronger depression-like behavior than controls. Males and females exhibited unique regional changes in GluR expression in response to PCMS alone, FST alone (CON-FST), and PCMS with FST (PCMS-FST). In females, PCMS alone did not alter N-methyl-d-aspartate receptor (NMDAR) or metabotropic glutamate receptor (mGluR) expression, while in PCMS males, higher mGluR2/3, mGluR5, and NR1 expression levels were observed in the prefrontal cortex. In addition, PCMS altered the change in GluR expression induced by acute stress (the FST test), and this too was sex-specific. Male PCMS-FST rats expressed significantly lower mGluR5 levels in the hippocampus, lower mGluR5, NR1, postsynaptic density protein (PSD)95, and higher mGluR2/3 in the prefrontal cortex, and higher mGluR5 and PSD95 in the amygdala than male CON-FST rats. Female PCMS-FST rats expressed lower NR1 in the hippocampus, lower NR2B and PSD95 in the prefrontal cortex, lower mGluR2/3 in the amygdala, and higher PSD95 in the amygdala than female CON-FST rats. PCMS may increase the offspring's vulnerability to depression by altering sex-specific stress-induced changes in glutamatergic signaling. Copyright © 2015. Published by Elsevier Ltd.

  2. Effect of prenatal ethanol exposure on sexual motivation in adult rats.

    PubMed

    Ávila, Mara Aparecida P; Marthos, Gabriela Cristina P; Oliveira, Liliane Gibram M; Figueiredo, Eduardo Costa; Giusti-Paiva, Alexandre; Vilela, Fabiana Cardoso

    2016-08-01

    Maternal alcohol use during pregnancy adversely affects prenatal and postnatal growth and increases the risk of behavioral deficits. The aim of the present study was to evaluate the effect of prenatal exposure to a moderate dose of alcohol on sexual motivation during adulthood. Rats were prenatally exposed to ethanol by feeding pregnant dams a liquid diet containing 25% ethanol-derived calories on days 6 through 19 of gestation. The controls consisted of pair-fed dams (receiving an isocaloric liquid diet containing 0% ethanol-derived calories) and dams with ad libitum access to a liquid control diet. The sexual motivation of offspring was evaluated during adulthood. The results revealed that the male and female pups of dams treated with alcohol exhibited reduced weight gain, which persisted until adulthood. Both male and female adult animals from dams that were exposed to alcohol showed a reduction in the preference score in the sexual motivation test. Taken together, these results provide evidence of the damaging effects of prenatal alcohol exposure on sexual motivation responses in adulthood. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Reproductive toxicity evaluation of dietary butyl benzyl phthalate (BBP) in rats.

    PubMed

    Tyl, Rochelle W; Myers, Christina B; Marr, Melissa C; Fail, Patricia A; Seely, John C; Brine, Dolores R; Barter, Robert A; Butala, John H

    2004-01-01

    Butyl benzyl phthalate (BBP) was administered in the diet at 0, 750, 3750, and 11,250 ppm ad libitum to 30 rats per sex per dose for two offspring generations, one litter/breeding pair/generation, through weaning of F2 litters. Adult F0 systemic toxicity and adult F1 systemic and reproductive toxicity were present at 11,250 ppm (750 mg/kg per day). At 11,250 ppm, there were reduced F1 and F2 male anogenital distance (AGD) and body weights/litter during lactation, delayed acquisition of puberty in F1 males and females, retention of nipples and areolae in F1 and F2 males, and male reproductive system malformations. At 3750 ppm (250 mg/kg per day), only reduced F1 and F2 offspring male AGD was present. There were no effects on parents or offspring at 750 ppm (50 mg/kg per day). The F1 parental systemic and reproductive toxicity no observable adverse effect level (NOAEL) was 3750 ppm. The offspring toxicity NOAEL was 3750 ppm. The offspring toxicity no observable effect level (NOEL) was 750 ppm, based on the presence of reduced AGD in F1 and F2 males at birth at 3750 ppm, but no effects on reproductive development, structures, or functions.

  4. The impact of early postnatal environmental enrichment on maternal care and offspring behaviour following weaning.

    PubMed

    Li, Ki Angel; Lund, Emilie Torp; Voigt, Jörg-Peter W

    2016-01-01

    The early postnatal period is a sensitive period in rodents as behavioural systems are developing and maturing during this time. However, relatively little information is available about the impact of environmental enrichment on offspring behaviour if enrichment is implemented only during this period. Here, environmental enrichment was provided from postnatal day 1 until weaning. On post-natal day 9, maternal behaviour and nonmaternal behaviour of the dam was observed. Nursing time in the enriched group was reduced but dams showed more non-maternal appetitive behaviours. Offspring were exposed to either the open field or the elevated plus maze (EPM) after weaning. In the open field, rats from the enriched group approached the more aversive inner zone of the open field later than control rats. Offspring from the enriched group made fewer entries into the inner zone and spent less time in this part of the arena. Enrichment had no impact on behaviour in the EPM. The present study provides evidence that postnatal enrichment can interfere with maternal behaviour in rats and can possibly lead to increased anxiety in the offspring. The findings suggest that enrichment procedures can have potentially unintended effects, interfering with the development of emotional behaviours in rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Experimental comparison of the reproductive outcomes and early development of the offspring of rats given five common types of drinking water.

    PubMed

    Zeng, Hui; Chen, Ji-an; Liu, Lin; Wang, Da-hua; Fu, Wen-juan; Wang, Ling-qiao; Luo, Jiao-hua; Zhang, Liang; Tan, Yao; Qiu, Zhi-qun; Huang, Yu-jing; Shu, Wei-qun

    2014-01-01

    Tap water (unfiltered), filtered tap water and processed bottled water (purified water, artificial mineralized water, or natural water) are now the five most widely consumed types of drinking water in China. However, the constituents (organic chemicals and inorganic ingredients) of the five waters differ, which may cause them to have different long-term health effects on those who drink them, especially sensitive children. In order to determine which type of water among the five waters is the most beneficial regarding reproductive outcomes and the developmental behaviors of offspring, two generations of Sprague-Dawley rats were given these five waters separately, and their reproductive outcomes and the developmental behaviors of their offspring were observed and compared. The results showed that the unfiltered tap water group had the lowest values for the maternal gestation index (MGI) and offspring's learning and memory abilities (OLMA); the lowest offspring survival rate was found in the purified water group; and the highest OLMA were found in the filtered tap water group. Thus, the best reproductive and offspring early developmental outcomes were found in the group that drank filtered tap water, which had the lowest levels of pollutants and the richest minerals. Therefore, thoroughly removing toxic contaminants and retaining the beneficial minerals in drinking water may be important for both pregnant women and children, and the best way to treat water may be with granular activated carbon and ion exchange by copper zinc alloy.

  6. Experimental Comparison of the Reproductive Outcomes and Early Development of the Offspring of Rats Given Five Common Types of Drinking Water

    PubMed Central

    Zeng, Hui; Shu, Wei-qun; Chen, Ji-an; Liu, Lin; Wang, Da-hua; Fu, Wen-juan; Wang, Ling-qiao; Luo, Jiao-hua; Zhang, Liang; Tan, Yao; Qiu, Zhi-qun; Huang, Yu-jing

    2014-01-01

    Tap water (unfiltered), filtered tap water and processed bottled water (purified water, artificial mineralized water, or natural water) are now the five most widely consumed types of drinking water in China. However, the constituents (organic chemicals and inorganic ingredients) of the five waters differ, which may cause them to have different long-term health effects on those who drink them, especially sensitive children. In order to determine which type of water among the five waters is the most beneficial regarding reproductive outcomes and the developmental behaviors of offspring, two generations of Sprague–Dawley rats were given these five waters separately, and their reproductive outcomes and the developmental behaviors of their offspring were observed and compared. The results showed that the unfiltered tap water group had the lowest values for the maternal gestation index (MGI) and offspring's learning and memory abilities (OLMA); the lowest offspring survival rate was found in the purified water group; and the highest OLMA were found in the filtered tap water group. Thus, the best reproductive and offspring early developmental outcomes were found in the group that drank filtered tap water, which had the lowest levels of pollutants and the richest minerals. Therefore, thoroughly removing toxic contaminants and retaining the beneficial minerals in drinking water may be important for both pregnant women and children, and the best way to treat water may be with granular activated carbon and ion exchange by copper zinc alloy. PMID:25279561

  7. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CD1 Mice

    EPA Science Inventory

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the bi...

  8. (Meta)cognitive beliefs in posttraumatic stress disorder following forced displacement at the end of the Second World War in older adults and their offspring.

    PubMed

    Jelinek, Lena; Wittekind, Charlotte E; Kellner, Michael; Moritz, Steffen; Muhtz, Christoph

    2013-01-01

    The aim of the present study was to investigate (meta)cognitive beliefs related to posttraumatic stress disorder (PTSD) in a sample of individuals displaced as children at the end of the Second World War as well as transgenerational effects of trauma and PTSD on the offspring. Displaced individuals with (n=20) and without PTSD (n=24) and nondisplaced healthy controls (n=11), as well as one of their adult offspring, were assessed with the Metacognitions Questionnaire (MCQ-30). Older adults, formerly displaced in childhood, were additionally assessed with the Posttraumatic Cognitions Inventory (PTCI). Dysfunctional beliefs (MCQ-30, PTCI) were particularly pronounced in formerly displaced individuals with PTSD, but not in the offspring generation. The findings suggest that in an aging group of displaced individuals with PTSD dysfunctional beliefs are associated with the disorder. Bias modification may help to attenuate symptomatology. No evidence was found for a transgenerational effect.

  9. Parental Smoking and Adult Offspring's Smoking Behaviors in Ethnic Minority Groups: An Intergenerational Analysis in the HELIUS Study.

    PubMed

    Ikram, Umar Z; Snijder, Marieke B; Derks, Eske M; Peters, Ron J G; Kunst, Anton E; Stronks, Karien

    2018-05-03

    To understand smoking behaviors among ethnic minority groups, studies have largely focused on societal factors, with little attention to family influences. Yet studies among majority groups have identified parental smoking as an important risk factor. It is unknown whether this applies to ethnic minority groups. We investigated the association between parental smoking and adult offspring's smoking behaviors among ethnic minority groups with an immigrant background. We used data from the Healthy Life in an Urban Setting study from Amsterdam (the Netherlands) from January 2011 to December 2015. The sample consisted of 2184 parent-offspring pairs from South-Asian Surinamese, African Surinamese, Turkish, Moroccan, and Ghanaian origin. We collected self-reported smoking data: current status, duration of exposure to parental smoking, number of daily cigarettes, heavy smoking ( > 10 cigarettes/day), and nicotine dependency (using the Fagerström Test). Analyses were stratified by offspring's age, cohabitation with parent, education (parent/offspring), offspring's cultural orientation, and gender concordance within pairs. Logistic regression was used. Overall, parental smoking was associated with offspring's smoking behaviors (eg, current smoking: odds ratio 2.33; 95% confidence interval 1.79-3.03), with little ethnic variation. We found dose-response associations between exposure to parental smoking and offspring's smoking. The associations were similar across different strata but stronger in gender-concordant pairs (3.16; 2.12-4.51 vs. 1.73; 1.15-2.59 in gender-discordant pairs; p-value for interaction .017). Parental smoking is associated with offspring's smoking behaviors in ethnic minority groups across different strata but particularly in gender-concordant pairs. Similar to majority groups, family influences matter to smoking behaviors in ethnic minority groups. Our findings have deepened our understanding of smoking behaviors among ethnic minority groups. Future

  10. The herbicide linuron reduces testosterone production from the fetal rat testis both in utero and in vitro

    EPA Science Inventory

    In utero exposure to linuron, an urea-based herbicide, results in a pattern of malformations of androgen-dependent tissues in adult male rat offspring resembling that produced by some phthalate esters which are known to decrease fetal testosterone production. This study investiga...

  11. Dysfunctional Cognitions among Offspring of Individuals with Bipolar Disorder.

    PubMed

    Ruggero, Camilo J; Bain, Kathleen M; Smith, Patrick M; Kilmer, Jared N

    2015-07-01

    Individuals with bipolar disorder often endorse dysfunctional beliefs consistent with cognitive models of bipolar disorder (Beck, 1976; Mansell, 2007). The present study sought to assess whether young adult offspring of those with bipolar disorder would also endorse these beliefs, independent of their own mood episode history. Participants (N = 89) were young adult college students with a parent with bipolar disorder (n = 27), major depressive disorder (MDD; n = 30), or no mood disorder (n = 32). Semi-structured interviews of the offspring were used to assess diagnoses. Dysfunctional beliefs related to Beck and colleagues' (2006) and Mansell's (2007) cognitive models were assessed. Unlike offspring of parents with MDD or no mood disorder, those with a parent with bipolar disorder endorsed significantly more dysfunctional cognitions associated with extreme appraisal of mood states, even after controlling for their own mood diagnosis. Once affected by a bipolar or depressive disorder, offspring endorsed dysfunctional cognitions across measures. Dysfunctional cognitions, particularly those related to appraisals of mood states and their potential consequences, are evident in young adults with a parent who has bipolar disorder and may represent targets for psychotherapeutic intervention.

  12. Semen quality of young adult ICSI offspring: the first results.

    PubMed

    Belva, F; Bonduelle, M; Roelants, M; Michielsen, D; Van Steirteghem, A; Verheyen, G; Tournaye, H

    2016-12-01

    What is the semen quality of young adult men who were conceived 18-22 years ago by ICSI for male infertility? In this cohort of 54 young adult ICSI men, median sperm concentration, total sperm count and total motile sperm count were significantly lower than in spontaneously conceived peers. The oldest ICSI offspring cohort worldwide has recently reached adulthood. Hence, their reproductive health can now be investigated. Since these children were conceived by ICSI because of severe male-factor infertility, there is reasonable concern that male offspring have inherited the deficient spermatogenesis from their fathers. Previously normal pubertal development and adequate Sertoli and Leydig cell function have been described in pubertal ICSI boys; however, no information on their sperm quality is currently available. This study was conducted at UZ Brussel between March 2013 and April 2016 and is part of a large follow-up project focussing on reproductive and metabolic health of young adults, between 18 and 22 years and conceived after ICSI with ejaculated sperm. Results of both a physical examination and semen analysis were compared between young ICSI men being part of a longitudinally followed cohort and spontaneously conceived controls who were recruited cross-sectionally. Results of a single semen sample in 54 young adult ICSI men and 57 spontaneously conceived men are reported. All young adults were individually assessed, and the results of their physical examination were completed by questionnaires. Data were analysed by multiple linear and logistic regression, adjusted for covariates. In addition, semen parameters of the ICSI fathers dating back from their ICSI treatment application were analysed for correlations. Young ICSI adults had a lower median sperm concentration (17.7 million/ml), lower median total sperm count (31.9 million) and lower median total motile sperm count (12.7 million) in comparison to spontaneously conceived peers (37.0 million/ml; 86

  13. Protective effects of Allium sativum against defects of hypercholesterolemia on pregnant rats and their offspring.

    PubMed

    El-Sayyad, Hassan I; Abou-El-Naga, Amoura M; Gadallah, Abdelalim A; Bakr, Iman H

    2010-06-10

    Sixty fertile female and male albino rats of Wistar strain (I male/ 3 females) were used in the present study. The females were divided into four groups of ten rats each. Group 1 received water and standard feeds for thirty-four days. Group 2 was fed with a cholesterol-containing diet (1%) for two weeks prior to onset of gestation and maintained administration till parturition, produce atherosclerosis (34 days). Group 3 received intragastric administration of 100mg homogenate of garlic (Allium sativum)/kg body weight for three weeks prior to onset of gestation as well as throughout the gestation period. Group 4 intragastrically administered garlic for one week of group B and maintained with combined garlic-treatment for the mentioned period. At parturition, the pregnant were sacrificed and serum total cholesterol (TCL), triglycerides (TG), HDL, LDL and creatine kinase activity (CK) were determined. The total numbers of offspring were recorded and examined morphological for congenital abnormalities. Biopsies of heart and dorsal aorta of both pregnant and their offspring (1 day-age) were processed for investigation at light and transmission electron microscopy. The skeleton of the newborn of different experimental groups were stained with alizarin red s and mor-phometric assessment of mandibular and appendicular bone length. The study revealed that the myocardium of atherosclerotic mother exhibited leuhkocytic inflammatory cell infiltration associated with necrosis, eosinophilia of myocardiai fibers, and edema of blood vessels. Ultrastructural studies revealed swelling of mitochondria, disruption of cristae in the myocardiai muscle fibers. The dorsal aorta possessed accumulation of extra-cellular lipid in intima lining of endothelium. The collagenous fibrils in the tunica adventitia became fragile and loosely separated from each other. Numerous foamy lipid loaden cells were detected within the tunica intima causing deterioration of the elastic fibers, resulting in

  14. Protective effects of Allium sativum against defects of hypercholesterolemia on pregnant rats and their offspring

    PubMed Central

    El-Sayyad, Hassan I; Abou-El-Naga, Amoura M; Gadallah, Abdelalim A; Bakr, Iman H

    2010-01-01

    Sixty fertile female and male albino rats of Wistar strain (I male/ 3 females) were used in the present study. The females were divided into four groups of ten rats each. Group 1 received water and standard feeds for thirty-four days. Group 2 was fed with a cholesterol-containing diet (1%) for two weeks prior to onset of gestation and maintained administration till parturition, produce atherosclerosis (34 days). Group 3 received intragastric administration of 100mg homogenate of garlic (Allium sativum)/kg body weight for three weeks prior to onset of gestation as well as throughout the gestation period. Group 4 intragastrically administered garlic for one week of group B and maintained with combined garlic-treatment for the mentioned period. At parturition, the pregnant were sacrificed and serum total cholesterol (TCL), triglycerides (TG), HDL, LDL and creatine kinase activity (CK) were determined. The total numbers of offspring were recorded and examined morphological for congenital abnormalities. Biopsies of heart and dorsal aorta of both pregnant and their offspring (1 day-age) were processed for investigation at light and transmission electron microscopy. The skeleton of the newborn of different experimental groups were stained with alizarin red s and mor-phometric assessment of mandibular and appendicular bone length. The study revealed that the myocardium of atherosclerotic mother exhibited leuhkocytic inflammatory cell infiltration associated with necrosis, eosinophilia of myocardiai fibers, and edema of blood vessels. Ultrastructural studies revealed swelling of mitochondria, disruption of cristae in the myocardiai muscle fibers. The dorsal aorta possessed accumulation of extra-cellular lipid in intima lining of endothelium. The collagenous fibrils in the tunica adventitia became fragile and loosely separated from each other. Numerous foamy lipid loaden cells were detected within the tunica intima causing deterioration of the elastic fibers, resulting in

  15. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiellaro, Marília; Correa-Costa, Matheus; Vitoretti, Luana Beatriz

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillatedmore » water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment.« less

  16. Elevated paternal glucocorticoid exposure modifies memory retention in female offspring.

    PubMed

    Yeshurun, Shlomo; Rogers, Jake; Short, Annabel K; Renoir, Thibault; Pang, Terence Y; Hannan, Anthony J

    2017-09-01

    Recent studies have demonstrated that behavioral traits are subject to transgenerational modification by paternal environmental factors. We previously reported on the transgenerational influences of increased paternal stress hormone levels on offspring anxiety and depression-related behaviors. Here, we investigated whether offspring sociability and cognition are also influenced by paternal stress. Adult C57BL/6J male mice were treated with corticosterone (CORT; 25mg/L) for four weeks prior to paired-matings to generate F1 offspring. Paternal CORT treatment was associated with decreased body weights of female offspring and a marked reduction of the male offspring. There were no differences in social behavior of adult F1 offspring in the three-chamber social interaction test. Despite male offspring of CORT-treated fathers displaying hyperactivity in the Y-maze, there was no observable difference in short-term spatial working memory. Spatial learning and memory testing in the Morris water maze revealed that female, but not male, F1 offspring of CORT-treated fathers had impaired memory retention. We used our recently developed methodology to analyze the spatial search strategy of the mice during the learning trials and determined that the impairment could not be attributed to underlying differences in search strategy. These results provide evidence for the impact of paternal corticosterone administration on offspring cognition and complement the cumulative knowledge of transgenerational epigenetic inheritance of acquired traits in rodents and humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring.

    PubMed

    Sartini, S; Lattanzi, D; Ambrogini, P; Di Palma, M; Galati, C; Savelli, D; Polidori, E; Calcabrini, C; Rocchi, M B L; Sestili, P; Cuppini, R

    2016-01-15

    Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Parental vitamin D deficiency during pregnancy is associated with increased blood pressure in offspring via Panx1 hypermethylation.

    PubMed

    Meems, Laura M G; Mahmud, Hasan; Buikema, Hendrik; Tost, Jörg; Michel, Sven; Takens, Janny; Verkaik-Schakel, Rikst N; Vreeswijk-Baudoin, Inge; Mateo-Leach, Irene V; van der Harst, Pim; Plösch, Torsten; de Boer, Rudolf A

    2016-12-01

    Vitamin D deficiency is one of the most common nutritional deficiencies worldwide. Maternal vitamin D deficiency is associated with increased susceptibility to hypertension in offspring, but the reasons for this remain unknown. The aim of this study was to determine if parental vitamin D deficiency leads to altered DNA methylation in offspring that may relate to hypertension. Male and female Sprague-Dawley rats were fed a standard or vitamin D-depleted diet. After 10 wk, nonsibling rats were mated. The conceived pups received standard chow. We observed an increased systolic and diastolic blood pressure in the offspring from depleted parents (F1-depl). Genome-wide methylation analyses in offspring identified hypermethylation of the promoter region of the Pannexin-1 (Panx1) gene in F1-depl rats. Panx1 encodes a hemichannel known to be involved in endothelial-dependent relaxation, and we demonstrated that in F1-depl rats the increase in blood pressure was associated with impaired endothelial relaxation of the large vessels, suggesting an underlying biological mechanism of increased blood pressure in children from parents with vitamin deficiency. Parental vitamin D deficiency is associated with epigenetic changes and increased blood pressure levels in offspring. Copyright © 2016 the American Physiological Society.

  19. Maternal smoking during pregnancy and risk of alcohol use disorders among adult offspring.

    PubMed

    Nomura, Yoko; Gilman, Stephen E; Buka, Stephen L

    2011-03-01

    The aim of this study was to evaluate the association between maternal smoking during pregnancy (MSP) and lifetime risk for alcohol use disorder (AUD) and to explore possible mechanisms through which MSP may be related to neurobehavioral conditions during infancy and childhood, which could, in turn, lead to increased risk for AUD. A sample of 1,625 individuals was followed from pregnancy for more than 40 years. Capitalizing on the long follow-up time, we used survival analysis to examine lifetime risks of AUD (diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) in relation to levels of MSP (none, <20 cigarettes/day, and ≥20 cigarettes/day). We then used structural equation modeling to test hypotheses regarding potential mechanisms, including lower birth weight, neurological abnormalities, poorer academic functioning, and behavioral dysregulation. Relative to unexposed offspring, offspring of mothers who smoked 20 cigarettes per day or more exhibited greater risks for AUD (hazard ratio = 1.31, 95% CI [1.08, 1.59]). However, no differences were observed among offspring exposed to fewer than 20 cigarettes per day. In structural equation models, MSP was associated with neurobehavioral problems during infancy and childhood, which, in turn, were associated with an increased risk for adult AUD. MSP was associated with an increased lifetime risk for AUD. Adverse consequences were evident from birth to adulthood. A two-pronged remedial intervention targeted at both the mother (to reduce smoking during pregnancy) and child (to improve academic functioning) may reduce the risk for subsequent AUD.

  20. Nutritional recovery with a soybean diet impaired the glucagon response but did not alter liver gluconeogenesis in the adult offspring of rats deprived of protein during pregnancy and lactation.

    PubMed

    Pacheco, Nelma Cristina Silva; de Almeida, Ana Paula Carli; de Siqueira, Kariny Cássia; de Lima, Faena Moura; Reis, Silvia Regina de Lima; Latorraca, Marcia Queiroz; Stoppiglia, Luiz Fabrizio

    2018-06-22

    Nutritional recovery of early malnutrition with soybean diet reduces liver glycogen stores in the fed state and produces liver insulin resistance. We investigated whether nutritional recovery on a soybean flour diet alters hepatic gluconeogenesis in the adult offspring of rats deprived of protein during pregnancy and lactation. Male rats from mothers that were fed either 17% (C) or 6% (L) protein during pregnancy and lactation were maintained on a 17% casein (CC, n=16 and LC, n=17), 17% soybean flour (CS, n=10 and LS, n=10) or 6% casein (LL, n=10) diet after weaning. The soybean diet reduced basal serum glucose (soybean diet=5.6±0.6 mmol/L vs casein diet= 6.2±0.6 mmol/L; p<0.05), but increased alanine aminotransferase mRNA/GAPDH (soybean diet =0.062 ±0.038 vs casein diet= 0.024 ±0.011; p<0.01) and phosphoenolpyruvate carboxykinase mRNA/GAPDH (soybean diet =1.53 ±0.52 vs casein diet= 0.95 ±0.43; p<0.05), and the glycerokinase protein content (soybean diet =0.86 ±0.08 vs casein diet= 0.75 ±0.11; p<0.05). The serum glucose concentration (recovered groups=5.6±0.5mmol/L vs control groups=6.2±0.7mmol/L, p<0.05) and pophosphoenolpyruvate carboxykinase activity (recovered groups=2.8±0.6μU/mg vs control groups=3.6±0.6μU/mg; p<0.05) were decreased in rats subjected to protein restriction in early life. The glucose area under the curve during the pyruvate tolerance test did not differ among the groups, whereas glucose area under the curve after glucagon infusion was reduced by early malnutrition (recovered groups=4210±572mg/dL.40min vs control groups=4493±688mg/dL.40min; p<0.001), and by the soybean diet (soybean diet= 3995±500mg/dL.40min vs casein diet=4686±576 mg/dL.40min, p<0.05). Thus, soybean diet impaired the response to glucagon, but did not alter gluconeogenesis.

  1. Mediators and moderators of parental alcoholism effects on offspring self-esteem.

    PubMed

    Rangarajan, Sripriya

    2008-01-01

    The goal of the proposed study was fourfold: (i) to examine the effects of parental alcoholism on adult offspring's self-esteem; (ii) to identify and test possible mediators and moderators of parental alcoholism effects on the self-esteem of adult offspring; (iii) to examine the utility and relevance of attachment theory (Bowlby J. (1969) Attachment and Loss: Vol. 1. Attachment. New York: Basic Books) in explaining parental alcoholism effects on self-esteem and (iv) to address some of the methodological limitations identified in past research on adult children of alcoholics (ACOA). Participants (N = 515) completed retrospective reports of parental alcoholism, family stressors, family communication patterns, parental attachment and a current measure of self-esteem. The results showed support for the detrimental effects of parental alcoholism on offspring self-esteem and offered partial support for family stressors as a mediator of parental alcoholism effects on parental attachment and parental attachment as a mediator of parental alcoholism effects on offspring self-esteem, respectively. Finally, support was found for family communication patterns as a moderator of the effects of family stressors on attachment. The study findings offer preliminary support for the utility of attachment theory in explicating parental alcoholism effects on the self-esteem of adult offspring. Findings from the present study make salient the need to consider factors beyond the identification of parental alcohol abuse when explicating individual differences in offspring self-esteem in adulthood. The identification of protective and risk factors can contribute to the development of optimal intervention strategies to help ACOAs better than simply the knowledge of family drinking patterns.

  2. Tumors and proliferative lesions in adult offspring after maternal exposure to methylarsonous acid during gestation in CD1 mice.

    PubMed

    Tokar, Erik J; Diwan, Bhalchandra A; Thomas, David J; Waalkes, Michael P

    2012-06-01

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the biological methylation of inorganic arsenic, could be a key carcinogenic species. Thus, pregnant CD1 mice were provided drinking water containing MMA3+ at 0 (control), 12.5, or 25 parts per million (ppm) from gestational days 8 to 18. Tumors were assessed in groups of male or female (initial n = 25) offspring up to 2 years of age. In utero treatment had no effect on survival or body weights. Female offspring exhibited increases in total epithelial uterine tumors (control 0%; 12.5 ppm 26%; 25 ppm 30%), oviduct hyperplasia (control 4%; 12.5 ppm 35%; 25 ppm 43%), adrenal cortical adenoma at 25 ppm (control 0%; 12.5 ppm 9%; 25 ppm 26%), and total epithelial ovarian tumors (control 0%; 12.5 ppm 39%; 25 ppm 26%). Male offspring showed dose-related increases in hepatocellular carcinoma (control 0%; 12.5 ppm 12%; 25 ppm 22%), adrenal adenoma (control 0%; 12.5 ppm 28%; 25 ppm 17%), and lung adenocarcinoma (control 17%; 12.5 ppm 44%). Male offspring had unusual testicular lesions, including two rete testis carcinomas, two adenomas, and three interstitial cell tumors. Overall, maternal consumption of MMA3+ during pregnancy in CD1 mice produced some similar proliferative lesions as gestationally applied inorganic arsenic in the offspring during adulthood.

  3. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CD1 Mice

    PubMed Central

    Tokar, Erik J.; Diwan, Bhalchandra A.; Thomas, David J.; Waalkes, Michael P.

    2012-01-01

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the biological methylation of inorganic arsenic, could be a key carcinogenic species. Thus, pregnant CD1 mice were provided drinking water containing MMA3+ at 0 (control), 12.5 or 25 parts per million (ppm) from gestational day 8 to 18. Tumors were assessed in groups of male or female (initial n = 25) offspring up to two years of age. In utero treatment had no effect on survival or body weights. Female offspring exhibited increases in total epithelial uterine tumors (control 0%; 12.5 ppm 26%; 25 ppm 30%), oviduct hyperplasia (control 4%; 12.5 ppm 35%; 25 ppm 43%), adrenal cortical adenoma at 25 ppm (control 0%; 12.5 ppm 9%; 25 ppm 26%), and total epithelial ovarian tumors (control 0%; 12.5 ppm 39%; 25 ppm 26%). Male offspring showed dose-related increases in hepatocellular carcinoma (control 0%; 12.5 ppm 12%; 25 ppm 22%), adrenal adenoma (control 0%; 12.5 ppm 28%; 25 ppm 17%), and lung adenocarcinoma (control 17%; 12.5 ppm 44%). Male offspring had unusual testicular lesions, including two rete testis carcinomas and two adenomas, and three interstitial cell tumors. Overall, maternal consumption of MMA3+ during pregnancy in CD1 mice produced some similar proliferative lesions as gestationally applied inorganic arsenic in the offspring during adulthood. PMID:22398986

  4. Maternal vitamin D deficiency during pregnancy results in insulin resistance in rat offspring, which is associated with inflammation and Iκbα methylation.

    PubMed

    Zhang, Huaqi; Chu, Xia; Huang, Yifan; Li, Gang; Wang, Yuxia; Li, Ying; Sun, Changhao

    2014-10-01

    We aimed to investigate the impact of maternal vitamin D deficiency during pregnancy on insulin resistance in male offspring and examine its mechanism. Pregnant Sprague-Dawley rats were maintained on a vitamin-D-free diet with ultraviolet-free light during pregnancy (early-VDD group). Insulin resistance in the male offspring was assessed by HOMA-IR, OGTT and euglycaemic clamp. NEFA, oxidative stress and inflammation levels were estimated as risk factors for insulin resistance. DNA methylation was examined by bisulfate sequencing PCR analysis. Luciferase reporter assay was performed to validate the effect of DNA methylation. The offspring in the early-VDD group had significantly higher fasting insulin and HOMA-IR levels, markedly reduced glucose tolerance and significantly lower tissue sensitivity to exogenous insulin at 16 weeks (all p < 0.05) compared with control offspring. Significantly higher serum and liver IL-1β, IL-6, IL-8 and TNF-α concentrations were observed in the offspring of the early-VDD group at 0, 3, 8 and 16 weeks. Expression of hepatic Iκbα (also known as Nfkbia) mRNA and nuclear factor κB inhibitor α (IκBα) protein was persistently lower in the early-VDD offspring at all time points, and their hepatic Iκbα methylation levels at the cytosine phosphate guanine site +331 were significantly higher at 0 and 16 weeks (all p < 0.01). Methylation at Iκbα first exon +331 markedly decreased the luciferase activity (p < 0.05). Maternal vitamin D deficiency during pregnancy results in insulin resistance in the offspring, which is associated with persistently increased inflammation. Persistently decreased Iκbα expression, potentially caused by changes in Iκbα methylation, plays an important role in persistent inflammation.

  5. High novelty-seeking rats are resilient to negative physiological effects of the early life stress.

    PubMed

    Clinton, Sarah M; Watson, Stanley J; Akil, Huda

    2014-01-01

    Exposure to early life stress dramatically impacts adult behavior, physiology, and neuroendocrine function. Using rats bred for novelty-seeking differences and known to display divergent anxiety, depression, and stress vulnerability, we examined the interaction between early life adversity and genetic predisposition for high- versus low-emotional reactivity. Thus, bred Low Novelty Responder (bLR) rats, which naturally exhibit high anxiety- and depression-like behavior, and bred High Novelty Responder (bHR) rats, which show low anxiety/depression together with elevated aggression, impulsivity, and addictive behavior, were subjected to daily 3 h maternal separation (MS) stress postnatal days 1-14. We hypothesized that MS stress would differentially impact adult bHR/bLR behavior, physiology (stress-induced defecation), and neuroendocrine reactivity. While MS stress did not impact bHR and bLR anxiety-like behavior in the open field test and elevated plus maze, it exacerbated bLRs' already high physiological response to stress - stress-induced defecation. In both tests, MS bLR adult offspring showed exaggerated stress-induced defecation compared to bLR controls while bHR offspring were unaffected. MS also selectively impacted bLRs' (but not bHRs') neuroendocrine stress reactivity, producing an exaggerated corticosterone acute stress response in MS bLR versus control bLR rats. These findings highlight how genetic predisposition shapes individuals' response to early life stress. Future work will explore neural mechanisms underlying the distinct behavioral and neuroendocrine consequences of MS in bHR/bLR animals.

  6. Prenatal Stress Disrupts Social Behavior, Cortical Neurobiology and Commensal Microbes in Adult Male Offspring.

    PubMed

    Gur, Tamar L; Palkar, Aditi Vadodkar; Rajasekera, Therese; Allen, Jacob; Niraula, Anzela; Godbout, Jonathan; Bailey, Michael T

    2018-06-24

    In utero and early neonatal exposure to maternal stress is linked with psychiatric disorders, and the underlying mechanisms are currently being elucidated. We used a prenatal stressor in pregnant mice to examine novel relationships between prenatal stress exposure, changes in the gut microbiome, and social behavior. Here, we show that males exposed to prenatal stress had a significant reduction in social behavior in adulthood, with increased corticosterone release following social interaction. Male offspring exposed to prenatal stress also had neuroinflammation, decreased oxytocin receptor, and decreased serotonin metabolism in their cortex in adulthood, which are linked to decreased social behavior. Finally, we found a significant difference in commensal microbes, including decreases in Bacteroides and Parabacteroides, in adult male offspring exposed to prenatal stress when compared to non-stressed controls. Our findings indicate that gestation is a critical window where maternal stress contributes to the development of aberrant social behaviors and alterations in cortical neurobiology, and that prenatal stress is sufficient to disrupt the male gut-brain axis into adulthood. Copyright © 2018. Published by Elsevier B.V.

  7. Maternal depression in childhood and aggression in young adulthood: evidence for mediation by offspring amygdala-hippocampal volume ratio.

    PubMed

    Gilliam, Mary; Forbes, Erika E; Gianaros, Peter J; Erickson, Kirk I; Brennan, Lauretta M; Shaw, Daniel S

    2015-10-01

    There is abundant evidence that offspring of depressed mothers are at increased risk for persistent behavior problems related to emotion regulation, but the mechanisms by which offspring incur this risk are not entirely clear. Early adverse caregiving experiences have been associated with structural alterations in the amygdala and hippocampus, which parallel findings of cortical regions altered in adults with behavior problems related to emotion regulation. This study examined whether exposure to maternal depression during childhood might predict increased aggression and/or depression in early adulthood, and whether offspring amygdala:hippocampal volume ratio might mediate this relationship. Participants were 258 mothers and sons at socioeconomic risk for behavior problems. Sons' trajectories of exposure to maternal depression were generated from eight reports collected prospectively from offspring ages 18 months to 10 years. Offspring brain structure, aggression, and depression were assessed at age 20 (n = 170). Persistent, moderately high trajectories of maternal depression during childhood predicted increased aggression in adult offspring. In contrast, stable and very elevated trajectories of maternal depression during childhood predicted depression in adult offspring. Increased amygdala: hippocampal volume ratios at age 20 were significantly associated with concurrently increased aggression, but not depression, in adult offspring. Offspring amygdala: hippocampal volume ratio mediated the relationship found between trajectories of moderately elevated maternal depression during childhood and aggression in adult offspring. Alterations in the relative size of brain structures implicated in emotion regulation may be one mechanism by which offspring of depressed mothers incur increased risk for the development of aggression. © 2014 Association for Child and Adolescent Mental Health.

  8. Maternal intake of trans-unsaturated or interesterified fatty acids during pregnancy and lactation modifies mitochondrial bioenergetics in the liver of adult offspring in mice.

    PubMed

    de Velasco, Patricia C; Chicaybam, Gustavo; Ramos-Filho, Dionizio M; Dos Santos, Raísa M A R; Mairink, Caroline; Sardinha, Fátima L C; El-Bacha, Tatiana; Galina, Antonio; Tavares-do-Carmo, Maria das Graças

    2017-07-01

    The quality of dietary lipids in the maternal diet can programme the offspring to diseases in later life. We investigated whether the maternal intake of palm oil or interesterified fat, substitutes for trans-unsaturated fatty acids (FA), induces metabolic changes in the adult offspring. During pregnancy and lactation, C57BL/6 female mice received normolipidic diets containing partially hydrogenated vegetable fat rich in trans-unsaturated fatty acids (TG), palm oil (PG), interesterified fat (IG) or soyabean oil (CG). After weaning, male offspring from all groups received the control diet until day 110. Plasma glucose and TAG and liver FA profiles were ascertained. Liver mitochondrial function was accessed with high-resolution respirometry by measuring VO2, fluorimetry for detection of hydrogen peroxide (H2O2) production and mitochondrial Ca2+ uptake. The results showed that the IG offspring presented a 20 % increase in plasma glucose and both the IG and TG offspring presented a 2- and 1·9-fold increase in TAG, respectively, when compared with CG offspring. Liver MUFA and PUFA contents decreased in the TG and IG offspring when compared with CG offspring. Liver MUFA content also decreased in the PG offspring. These modifications in FA composition possibly affected liver mitochondrial function, as respiration was impaired in the TG offspring and H2O2 production was higher in the IG offspring. In addition, mitochondrial Ca2+ retention capacity was reduced by approximately 40 and 55 % in the TG and IG offspring, respectively. In conclusion, maternal consumption of trans-unsaturated and interesterified fat affected offspring health by compromising mitochondrial bioenergetics and lipid metabolism in the liver.

  9. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring.

    PubMed

    Beauchamp, Brittany; Thrush, A Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-04-10

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. © 2015 Authors.

  10. Maternal "junk-food" feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring.

    PubMed

    Ong, Z Y; Muhlhausler, B S

    2011-07-01

    Individuals exposed to high-fat, high-sugar diets before birth have an increased risk of obesity in later life. Recent studies have shown that these offspring exhibit increased preference for fat, leading to suggestions that perinatal exposure to high-fat, high-sugar foods results in permanent changes within the central reward system that increase the subsequent drive to overconsume palatable foods. The present study has determined the effect of a maternal "junk-food" diet on the expression of key components of the mesolimbic reward pathway in the offspring of rat dams at 6 wk and 3 mo of age. We show that offspring of junk-food-fed (JF) dams exhibit higher fat intake from weaning until at least 3 mo of age (males: 16 ± 0.6 vs. 11 ± 0.8 g/kg/d; females: 19 ± 1.3 vs. 13 ± 0.4 g/kg/d; P<0.01). mRNA expression of μ-opioid receptor (Mu) was 1.6-fold higher (P<0.01) and dopamine active transporter (DAT) was 2-fold lower (P<0.05) in JF offspring at 6 wk of age. By 3 mo, these differences were reversed, and Mu mRNA expression was 2.8-fold lower (P<0.01) and DAT mRNA expression was 1.9-fold higher (P<0.01) in the JF offspring. These findings suggest that perinatal exposure to high-fat, high-sugar diets results in altered development of the central reward system, resulting in increased fat intake and altered response of the reward system to excessive junk-food intake in postnatal life.

  11. Depot- and sex-specific effects of maternal obesity in offspring's adipose tissue.

    PubMed

    Lecoutre, Simon; Deracinois, Barbara; Laborie, Christine; Eberlé, Delphine; Guinez, Céline; Panchenko, Polina E; Lesage, Jean; Vieau, Didier; Junien, Claudine; Gabory, Anne; Breton, Christophe

    2016-07-01

    According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11β-hydroxysteroid dehydrogenase type 1 (11β-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner. © 2016 Society for Endocrinology.

  12. Effects of nutritional supplementation during pregnancy on early adult disease risk: follow up of offspring of participants in a randomised controlled trial investigating effects of supplementation on infant birth weight.

    PubMed

    Macleod, John; Tang, Lie; Hobbs, F D Richard; Wharton, Brian; Holder, Roger; Hussain, Shakir; Nichols, Linda; Stewart, Paul; Clark, Penny; Luzio, Steve; Holly, Jeff; Smith, George Davey

    2013-01-01

    Observational evidence suggests that improving fetal growth may improve adult health. Experimental evidence from nutritional supplementation trials undertaken amongst pregnant women in the less developed world does not show strong or consistent effects on adult disease risk and no trials from the more developed world have previously been reported. To test the hypothesis that nutritional supplementation during pregnancy influences offspring disease risk in adulthood. Clinical assessment of a range of established diseases risk markers in young adult offspring of 283 South Asian mothers who participated in two trials of nutritional supplementation during pregnancy (protein/energy/vitamins; energy/vitamins or vitamins only) at Sorrento Maternity Hospital in Birmingham UK either unselected or selected on the basis of nutritional status. 236 (83%) offspring were traced and 118 (50%) of these were assessed in clinic. Protein/energy/vitamins supplementation amongst undernourished mothers was associated with increased infant birthweight. Nutritional supplementation showed no strong association with any one of a comprehensive range of markers of adult disease risk and no consistent pattern of association with risk across markers in offspring of either unselected or undernourished mothers. We found no evidence that nutritional supplements given to pregnant women are an important influence on adult disease risk however our study lacked power to estimate small effects. Our findings do not provide support for a policy of nutritional supplementation for pregnant women as an effective means to improve adult health in more developed societies.

  13. Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Zuo, Xuezhi; He, Dongliang; Ding, Shibin; Xu, Fangyi; Yang, Huiqin; Jin, Xin; Fan, Ying; Ying, Li; Tian, Chong; Ying, Chenjiang

    2017-01-01

    Bisphenol A (BPA), a typical environmental endocrine-disrupting chemical, induces epigenetic inheritance. Whether histone acetylation plays a role in these effects of BPA is largely unknown. Here, we investigated histone acetylation in male rats after long-term exposure to a ‘safe’ dose of BPA. Twenty adult male rats received either BPA (50 μg/kg·bw/day) or a vehicle diet for 35 weeks. Decreased protein lysine-acetylation levels at approximately ~17 kDa and ~25 kDa, as well as decreased histone acetylation of H3K9, H3K27 and H4K12, were detected by Western blot analysis of testes from the treated rats compared with controls. Additionally, increased protein expression of deacetylase Sirt1 and reduced binding of Sirt1, together with increased binding of estrogen receptor β (ERβ) to caveolin-1 (Cav-1), a structural protein component of caveolar membranes, were detected in treated rats compared with controls. Moreover, decreased acetylation of Cav-1 was observed in the treated rats for the first time. Our study showed that long-term exposure to a ‘safe’ dose of BPA reduces histone acetylation in the male reproductive system, which may be related to the phenotypic paternal-to-offspring transmission observed in our previous study. The evidence also suggested that these epigenetic effects may be meditated by Sirt1 via competition with ERβ for binding to Cav-1.

  14. Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes

    PubMed Central

    Chen, Zhuo; Zuo, Xuezhi; He, Dongliang; Ding, Shibin; Xu, Fangyi; Yang, Huiqin; Jin, Xin; Fan, Ying; Ying, Li; Tian, Chong; Ying, Chenjiang

    2017-01-01

    Bisphenol A (BPA), a typical environmental endocrine-disrupting chemical, induces epigenetic inheritance. Whether histone acetylation plays a role in these effects of BPA is largely unknown. Here, we investigated histone acetylation in male rats after long-term exposure to a ‘safe’ dose of BPA. Twenty adult male rats received either BPA (50 μg/kg·bw/day) or a vehicle diet for 35 weeks. Decreased protein lysine-acetylation levels at approximately ~17 kDa and ~25 kDa, as well as decreased histone acetylation of H3K9, H3K27 and H4K12, were detected by Western blot analysis of testes from the treated rats compared with controls. Additionally, increased protein expression of deacetylase Sirt1 and reduced binding of Sirt1, together with increased binding of estrogen receptor β (ERβ) to caveolin-1 (Cav-1), a structural protein component of caveolar membranes, were detected in treated rats compared with controls. Moreover, decreased acetylation of Cav-1 was observed in the treated rats for the first time. Our study showed that long-term exposure to a ‘safe’ dose of BPA reduces histone acetylation in the male reproductive system, which may be related to the phenotypic paternal-to-offspring transmission observed in our previous study. The evidence also suggested that these epigenetic effects may be meditated by Sirt1 via competition with ERβ for binding to Cav-1. PMID:28067316

  15. Programming hyperglycaemia in the rat through prenatal exposure to glucocorticoids-fetal effect or maternal influence?

    PubMed

    Nyirenda, M J; Welberg, L A; Seckl, J R

    2001-09-01

    In a previous study, we showed that exposure of rats to dexamethasone (Dex) selectively in late pregnancy produces permanent induction of hepatic phosphoenolpyruvate carboxykinase (PEPCK) expression and hyperglycaemia in the adult offspring. The mechanisms by which glucocorticoids cause this programming are unclear but may involve direct actions on the fetus/neonate, or glucocorticoids may act indirectly by affecting maternal postnatal nursing behaviour. Using a cross-fostering paradigm, the present data demonstrate that switching the offspring at birth from Dex-treated dams to control dams does not prevent induction of PEPCK or hyperglycaemia. Similarly, offspring born to control dams but reared by Dex-treated dams from birth maintain normal glycaemic control. During the neonatal period, injection of saline per se was sufficient to cause exaggeration in adult offspring responses to an oral glucose load, with no additional effect from Dex. However, postnatal treatment with either saline or Dex did not alter hepatic PEPCK activity. Prenatal Dex permanently raised basal plasma corticosterone levels, but under stress conditions there were no differences in circulating corticosterone levels. Likewise, Dex-exposed rats had similar plasma catecholamine concentrations to control animals. These findings show that glucocorticoids programme hyperglycaemia through mechanisms that operate on the fetus or directly on the neonate, rather than via effects that alter maternal postnatal behaviour during the suckling period. The hyperglycaemic response does not appear to result from abnormal sympathoadrenal activity or hypothalamic-pituitary-adrenal response during stress.

  16. Prevalence of Prediabetes Risk in Offspring Born to Mothers with Hyperandrogenism.

    PubMed

    Tian, Shen; Lin, Xian-Hua; Xiong, Yi-Meng; Liu, Miao-E; Yu, Tian-Tian; Lv, Min; Zhao, Wei; Xu, Gu-Feng; Ding, Guo-Lian; Xu, Chen-Ming; Jin, Min; Feng, Chun; Wu, Yan-Ting; Tan, Ya-Jing; Gao, Qian; Zhang, Jian; Li, Cheng; Ren, Jun; Jin, Lu-Yang; Chen, Bin; Zhu, Hong; Zhang, Xue-Ying; Chen, Song-Chang; Liu, Xin-Mei; Liu, Ye; Zhang, Jun-Yu; Wang, Li; Zhang, Ping; Chen, Xiao-Jun; Jin, Li; Chen, Xi; Meng, Yi-Cong; Wu, Dan-Dan; Lin, Hui; Yang, Qian; Zhou, Cheng-Liang; Li, Xin-Zhu; Wang, Yi-Yu; Xiang, Yu-Qian; Liu, Zhi-Wei; Gao, Ling; Chen, Lu-Ting; Pan, Hong-Jie; Li, Rong; Zhang, Fang-Hong; Xing, Lan-Feng; Zhu, Yi-Min; Klausen, Christian; Leung, Peter C K; Li, Ju-Xue; Sun, Fei; Sheng, Jian-Zhong; Huang, He-Feng

    2017-02-01

    Excessive androgen exposure during pregnancy has been suggested to induce diabetic phenotypes in offspring in animal models. The aim of this study was to investigate whether pregestational maternal hyperandrogenism in human influenced the glucose metabolism in offspring via epigenetic memory from mother's oocyte to child's somatic cells. Of 1782 reproductive-aged women detected pregestational serum androgen, 1406 were pregnant between 2005 and 2010. Of 1198 women who delivered, 1116 eligible mothers (147 with hyperandrogenism and 969 normal) were recruited. 1216 children (156 children born to mothers with hyperandrogenism and 1060 born to normal mother) were followed up their glycometabolism in mean age of 5years. Imprinting genes of oocyte from mothers and lymphocytes from children were examined. A pregestational hyperandrogenism rat model was also established. Children born to women with hyperandrogenism showed increased serum fasting glucose and insulin levels, and were more prone to prediabetes (adjusted RR: 3.98 (95%CI 1.16-13.58)). Oocytes from women with hyperandrogenism showed increased insulin-like growth factor 2 (IGF2) expression. Lymphocytes from their children also showed increased IGF2 expression and decreased IGF2 methylation. Treatment of human oocytes with dihydrotestosterone upregulated IGF2 and downregulated DNMT3a levels. In rat, pregestational hyperandrogenism induced diabetic phenotypes and impaired insulin secretion in offspring. In consistent with the findings in human, hyperandrogenism also increased Igf2 expression and decreased DNMT3a in rat oocytes. Importantly, the same altered methylation signatures of Igf2 were identified in the offspring pancreatic islets. Pregestational hyperandrogenism may predispose offspring to glucose metabolism disorder via epigenetic oocyte inheritance. Clinical trial registry no.: ChiCTR-OCC-14004537; www.chictr.org. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: I. The development of the thyroid hormones-neurotransmitters and adenosinergic system interactions.

    PubMed

    Ahmed, O M; Abd El-Tawab, S M; Ahmed, R G

    2010-10-01

    The adequate functioning of the maternal thyroid gland plays an important role to ensure that the offspring develop normally. Thus, maternal hypo- and hyperthyroidism are used from the gestation day 1 to lactation day 21, in general, to recognize the alleged association of offspring abnormalities associated with the different thyroid status. In maternal rats during pregnancy and lactation, hypothyroidism in one group was performed by antithyroid drug, methimazole (MMI) that was added in drinking water at concentration 0.02% and hyperthyroidism in the other group was induced by exogenous thyroxine (T4) (from 50 microg to 200 microg/kg body weight) intragastric administration beside adding 0.002% T4 to the drinking water. The hypothyroid and hyperthyroid states in mothers during pregnancy and lactation periods were confirmed by measuring total thyroxine (TT4) and triiodothyronine (TT3) at gestational day 10 and 10 days post-partum, respectively; the effect was more pronounced at the later period than the first. In offspring of control maternal rats, the free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations were pronouncedly increased as the age progressed from 1 to 3 weeks. In hypothyroid group, a marked decrease in serum FT3, FT4 and GH levels was observed while there was a significant increase in TSH level with age progress as compared with the corresponding control. The reverse pattern to latter state was recorded in hyperthyroid group. The thyroid gland of offspring of hypothyroid group, exhibited some histopathological changes as luminal obliteration of follicles, hyperplasia, fibroblastic proliferation and some degenerative changes throughout the experimental period. The offspring of hyperthyroid rats showed larger and less thyroid follicles with flattened cell lining epithelium, decreased thyroid gland size and some degenerative changes along the experimental period. On the other hand, the biochemical data

  18. Discrepancy in reports of support exchanges between parents and adult offspring: within- and between-family differences.

    PubMed

    Kim, Kyungmin; Zarit, Steven H; Birditt, Kira S; Fingerman, Karen L

    2014-04-01

    Using data from 929 parent-child dyads nested in 458 three-generation families (aged 76 for the oldest generation, 50 for the middle generation, and 24 for the youngest generation), this study investigated how discrepancies in reports of support that parents and their adult offspring exchanged with one another vary both within and between families, and what factors explain variations in dyadic discrepancies. We found substantial within- and between-family differences in dyadic discrepancies in reports of support exchanges. For downward exchanges (from parents to offspring), both dyad-specific characteristics within a family (e.g., gender composition, relative levels of relationship quality, and family obligation) and shared family characteristics (e.g., average levels of relationship quality) showed significant effects on dyadic discrepancies. For upward exchanges (from offspring to parents), however, only dyad-specific characteristics (e.g., gender composition, coresidence, relative levels of positive relationship quality, and family obligation) were significantly associated with discrepancies. Discrepancies in support exchanges were mainly associated with dyad-specific characteristics, but they also appeared to be influenced by family emotional environments. The use of multiple informants revealed that families differ in discrepancies in reports of exchanges, which has implications for quality of family life as well as future exchanges. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. Discrepancy in Reports of Support Exchanges between Parents and Adult Offspring: Within- and Between-Family Differences

    PubMed Central

    Kim, Kyungmin; Zarit, Steven H.; Birditt, Kira S.; Fingerman, Karen L.

    2014-01-01

    Using data from 929 parent-child dyads nested in 458 three-generation families (aged 76 for the oldest generation, 50 for the middle generation, and 24 for the youngest generation), this study investigated how discrepancies in reports of support that parents and their adult offspring exchanged with one another vary both within and between families, and what factors explain variations in dyadic discrepancies. We found substantial within- and between-family differences in dyadic discrepancies in reports of support exchanges. For downward exchanges (from parents to offspring), both dyad-specific characteristics within a family (e.g., gender composition, relative levels of relationship quality, and family obligation) and shared family characteristics (e.g., average levels of relationship quality) showed significant effects on dyadic discrepancies. For upward exchanges (from offspring to parents), however, only dyad-specific characteristics (e.g., gender composition, coresidence, relative levels of positive relationship quality, and family obligation) were significantly associated with discrepancies. Discrepancies in support exchanges were mainly associated with dyad-specific characteristics, but they also appeared to be influenced by family emotional environments. The use of multiple informants revealed that families differ in discrepancies in reports of exchanges, which has implications for quality of family life as well as future exchanges. PMID:24548009

  20. Effects of maternal vitamin B6 deficiency and over-supplementation on DNA damage and oxidative stress in rat dams and their offspring.

    PubMed

    Almeida, Mara Ribeiro; Venâncio, Vinícius Paula; Aissa, Alexandre Ferro; Darin, Joana Darc Castania; Pires Bianchi, Maria Lourdes; Antunes, Lusânia Maria Greggi

    2015-06-01

    Vitamin B6 is a cofactor for more than 140 essential enzymes and plays an important role in maternal health and fetal development. The goal of this study was to investigate the effects of maternal vitamin B6 on DNA damage and oxidative stress status in rat dams and their offspring. Female Wistar rats were randomly assigned to three dietary groups fed a standard diet (control diet), a diet supplemented with 30 mg/kg of vitamin B6, or a deficient diet (0 mg/kg of vitamin B6) for 10 weeks before and during mating, pregnancy and lactation. The dams were euthanized at weaning, and their male pups were euthanized either 10 days or 100 days after birth. We found that maternal vitamin B6 deficiency increased the micronucleus frequency in peripheral blood and bone marrow cells and also increased the concentration of hepatic TBARS (thiobarbituric acid reactive substances) in newborn pups (10 days old). In conclusion, maternal 5- to 6-fold over-supplementation of vitamin B6 had no adverse effects, however its deficiency may induce chromosomal damage and hepatic lipid peroxidation in the offspring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multiple Endocrine Disrupting Effects in Rats Perinatally Exposed to Butylparaben.

    PubMed

    Boberg, J; Axelstad, M; Svingen, T; Mandrup, K; Christiansen, S; Vinggaard, A M; Hass, U

    2016-07-01

    Parabens comprise a group of preservatives commonly added to cosmetics, lotions, and other consumer products. Butylparaben has estrogenic and antiandrogenic properties and is known to reduce sperm counts in rats following perinatal exposure. Whether butylparaben exposure can affect other endocrine sensitive endpoints, however, remains largely unknown. In this study, time-mated Wistar rats (n = 18) were orally exposed to 0, 10, 100, or 500 mg/kg bw/d of butylparaben from gestation day 7 to pup day 22. Several endocrine-sensitive endpoints were adversely affected. In the 2 highest dose groups, the anogenital distance of newborn male and female offspring was significantly reduced, and in prepubertal females, ovary weights were reduced and mammary gland outgrowth was increased. In male offspring, sperm count was significantly reduced at all doses from 10 mg/kg bw/d. Testicular CYP19a1 (aromatase) expression was reduced in prepubertal, but not adult animals exposed to butylparaben. In adult testes, Nr5a1 expression was reduced at all doses, indicating persistent disruption of steroidogenesis. Prostate histology was altered at prepuberty and adult prostate weights were reduced in the high dose group. Thus, butylparaben exerted endocrine disrupting effects on both male and female offspring. The observed adverse developmental effect on sperm count at the lowest dose is highly relevant to risk assessment, as this is the lowest observed adverse effect level in a study on perinatal exposure to butylparaben. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Adrenocortical responses to offspring-directed threats in two open-nesting birds.

    PubMed

    Butler, Luke K; Bisson, Isabelle-Anne; Hayden, Timothy J; Wikelski, Martin; Romero, L Michael

    2009-07-01

    Dependent young are often easy targets for predators, so for many parent vertebrates, responding to offspring-directed threats is a fundamental part of reproduction. We tested the parental adrenocortical response of the endangered black-capped vireo (Vireo atricapilla) and the common white-eyed vireo (V. griseus) to acute and chronic threats to their offspring. Like many open-nesting birds, our study species experience high offspring mortality. Parents responded behaviorally to a predator decoy or human 1-2m from their nests, but, in contrast to similar studies of cavity-nesting birds, neither these acute threats nor chronic offspring-directed threats altered plasma corticosterone concentrations of parents. Although parents in this study showed no corticosterone response to offspring-directed threats, they always increased corticosterone concentrations in response to capture. To explain these results, we propose that parents perceive their risk of nest-associated death differently depending on nest type, with cavity-nesting adults perceiving greater risk to themselves than open-nesters that can readily detect and escape from offspring-directed threats. Our results agree with previous studies suggesting that the hypothalamic-pituitary-adrenal axis, a major physiological mechanism for coping with threats to survival, probably plays no role in coping with threats to offspring when risks to parents and offspring are not correlated. We extend that paradigm by demonstrating that nest style may influence how adults perceive the correlation between offspring-directed and self-directed threats.

  3. Evaluation of a Group Intervention to Assist Aging Parents with Permanency Planning for an Adult Offspring with Special Needs

    ERIC Educational Resources Information Center

    Botsford, Anne L.; Rule, David

    2004-01-01

    More than three-fourths of older adults with developmental disabilities and mental illness live in the community with aging parents, the majority of whom do not complete plans for the residential, financial, and legal future of their offspring. The authors used a true experimental design to evaluate the effectiveness of a six-week…

  4. Perinatal polyunstaurated fatty acids supplementation causes alterations in fuel homeostasis in adult male rats but does not offer resistance against STZ-induced diabetes.

    PubMed

    van Dijk, G; Kacsándi, A; Kóbor-Nyakas, D E; Hogyes, E; Nyakas, C

    2011-12-01

    Maternal factors can have major imprinting effects on homeostatic mechanisms in the developing fetus and newborn. Here we studied whether supplemented perinatal polyunsaturated fatty acids (PUFAs) influence energy balance and fuel homeostasis later in life. Between day 10 after conception and day 10 after delivery, female rats were subjected to chow enriched with 10% fish-oil (FO-rich). Fish oil contains high concentrations of n-3 biosynthesis endpoint products, which may have caused the increased membrane phospholipid incorporation (particularly derived from the long-chain 20 +:n-3 PUFAs) in 10-day old pup brains. Adult male offspring of FO-rich fed rats had reduced body weight (- 20%) at 3 months, and had lower levels of plasma leptin (- 54%), insulin (- 41%), triglycerides (- 65%), and lactate (- 46%) than controls. All differences between groups were lost 48 h after streptozotocin (STZ) treatment. At 4.5 months of age, body weights of FO-rich were still lower (- 6%) than controls, but were associated with increased food intake, and increased insulin sensitivity (following intraperitoneal injection) to lower blood glucose levels relative to controls. We concluded that perinatal FO supplementation has lasting effects on body weight homeostasis and fuel metabolism in male offspring, but does not offer resistance against STZ-induced diabetes. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Variations in maternal care alter corticosterone and 17beta-estradiol levels, estrous cycle and folliculogenesis and stimulate the expression of estrogen receptors alpha and beta in the ovaries of UCh rats

    PubMed Central

    2011-01-01

    Background Variations in maternal care are associated with neonatal stress, hormonal disturbances and reproductive injuries during adulthood. However, the effects of these variations on sex hormones and steroid receptors during ovary development remain undetermined. This study aimed to investigate whether variations in maternal care are able to influence the hormonal profile, follicular dynamics and expression of AR, ER-alpha and ER-beta in the ovaries of UCh rat offspring. Methods Twenty-four adult UCh rats, aged 120 days, were randomly divided into two groups (UChA and UChB) and mated. Maternal care was assessed from birth (day 0) to the 10th postnatal day (PND). In adulthood, twenty adult female rats (UChA and UChB offspring; n = 10/group), aged 120 days, were euthanized by decapitation during the morning estrus. Results UChA females (providing high maternal care) more frequently displayed the behaviors of carrying pups, as well as licking/grooming and arched back nursing cares. Also, mothers providing high care had elevated corticosterone levels. Additionally, offspring receiving low maternal care showed the highest estrous cycle duration, increased corticosterone and 17beta-estradiol levels, overexpression of receptors ER-alpha and ER-beta, increased numbers of primordial, antral and mature follicles and accentuated granulosa cell proliferation. Conclusions Our study suggests that low maternal care alters corticosterone and 17beta-estradiol levels, disrupting the estrous cycle and folliculogenesis and differentially regulating the expression of ER-alpha and ER-beta in the ovaries of adult rats. PMID:22192617

  6. Effects of Perinatal Polychlorinated Biphenyls on Adult Female Rat Reproduction: Development, Reproductive Physiology, and Second Generational Effects

    PubMed Central

    Steinberg, Rebecca M.; Walker, Deena M.; Juenger, Thomas E.; Woller, Michael J.; Gore, Andrea C.

    2009-01-01

    Perinatal exposures to endocrine-disrupting chemicals such as polychlorinated biphenyls (PCBs) can cause latent effects on reproductive function. Here, we tested whether PCBs administered during late pregnancy would compromise reproductive physiology in both the fetally-exposed female offspring (F1 generation), as well as in their female offspring (F2 generation). Pregnant Sprague-Dawley rats were treated with the PCB mixture Aroclor (A) 1221 (0, 0.1, 1 or 10 mg/kg) on embryonic days 16 and 18. Somatic and reproductive development of F1 and their F2 female offspring were monitored, including ages of eye opening, pubertal landmarks, and serum reproductive hormones. The results showed that low doses of A1221 given during this critical period of neuroendocrine development caused differential effects of A1221 on F1 and F2 female rats. In both generations, litter sex ratio was skewed towards females. In the F1 generation, additional effects were found including a significant alteration of serum luteinizing hormone (LH) in the 1 mg/kg A1221 group. The F2 generation showed more profound alterations, particularly with respect to fluctuations in hormones and reproductive tract tissues across the estrous cycle. On proestrus, the day of the preovulatory GnRH/gonadotropin surge, F2 females whose mothers had been perinatally exposed to A1221 exhibited substantially suppressed LH and progesterone concentrations, and correspondingly smaller uterine and ovarian weights on estrus, compared to F2 decendants of control rats. These latter changes suggest a dysregulation of reproductive physiology. Thus, low levels of exposure to PCBs during late fetal development cause significant consequences on the maturation and physiology of two generations of female offspring. These findings have implications for reproductive health and fertility of wildlife and humans. PMID:18305224

  7. Metabolome disruption of pregnant rats and their offspring resulting from repeated exposure to a pesticide mixture representative of environmental contamination in Brittany.

    PubMed

    Bonvallot, Nathalie; Canlet, Cécile; Blas-Y-Estrada, Florence; Gautier, Roselyne; Tremblay-Franco, Marie; Chevolleau, Sylvie; Cordier, Sylvaine; Cravedi, Jean-Pierre

    2018-01-01

    The use of pesticides exposes humans to numerous harmful molecules. Exposure in early-life may be responsible for adverse effects in later life. This study aimed to assess the metabolic modifications induced in pregnant rats and their offspring by a pesticide mixture representative of human exposure. Ten pregnant rats were exposed to a mixture of eight pesticides: acetochlor (246 μg/kg bw/d) + bromoxynil (12 μg/kg bw/d) + carbofuran (22.5 μg/kg bw/d) + chlormequat (35 μg/kg bw/d) + ethephon (22.5 μg/kg bw/d) + fenpropimorph (15.5 μg/kg bw/d) + glyphosate (12 μg/kg bw/d) + imidacloprid (12.5 μg/kg bw/d) representing the main environmental pesticide exposure in Brittany (France) in 2004. Another group of 10 pregnant rats served as controls. Females were fed ad libitum from early pregnancy, which is from gestational day (GD) 4 to GD 21. Urine samples were collected at GD 15. At the end of the exposure, mothers and pups were euthanized and blood, liver, and brain samples collected. 1H NMR-based metabolomics and GC-FID analyses were performed and PCA and PLS-DA used to discriminate between control and exposed groups. Metabolites for which the levels were significantly modified were then identified using the Kruskal-Wallis test, and p-values were adjusted for multiple testing correction using the False Discovery Rate. The metabolomics analysis revealed many differences between dams of the two groups, especially in the plasma, liver and brain. The modified metabolites are involved in TCA cycle, energy production and storage, lipid and carbohydrate metabolism, and amino-acid metabolism. These modifications suggest that the pesticide mixture may induce oxidative stress associated with mitochondrial dysfunction and the impairment of glucose and lipid metabolism. These observations may reflect liver dysfunction with increased relative liver weight and total lipid content. Similar findings were observed for glucose and energy metabolism in the liver of the offspring

  8. The influence of parental divorce and alcohol abuse on adult offspring risk of lifetime suicide attempt in the United States.

    PubMed

    Alonzo, Dana; Thompson, Ronald G; Stohl, Mahlki; Hasin, Deborah

    2014-05-01

    The influences of parental divorce and alcohol abuse on adult offspring lifetime suicide attempt have not been examined in national data. This study analyzed data from the 2001-2002 NESARC to estimate main and interaction effects of parental divorce and alcohol abuse on lifetime suicide attempt. Adjusted for controls, parental divorce and parental alcohol abuse independently increased odds of lifetime suicide attempt. The effect of parental divorce was not significantly moderated by parental alcohol abuse. Further research is needed to examine whether additional parental and offspring psychiatric and substance use covariates attenuate the association between parental divorce and lifetime suicide attempt. PsycINFO Database Record (c) 2014 APA, all rights reserved

  9. [Detection of auditory impairment in the offsprings caused by drug treatment of the dams].

    PubMed

    Kameyama, T; Nabeshima, T; Itoh, J

    1982-12-01

    To study the auditory impairment induced by prenatal administration of aminoglycosides in the offspring, the shuttle box method to measure the auditory threshold of rats (Kameyama et al., Folia pharmacol. japon. 77, 15, 1981) was employed. Four groups of pregnant rats were administered 200 mg/kg kanamycin sulfate (KM), 200 mg/kg dihydrostreptomycin sulfate (DHSM), 100 mg/kg neomycin sulfate (NM), or 1 ml/kg saline intramuscularly from the 10th to the 19th day of pregnancy. The auditory threshold of the offspring could be measured by the shuttle box method in about 90% of the live born rats at the age of 100 days. The auditory thresholds of the groups were as follows (mean +/- S.E.): saline group, 53.8 +/- 0.6 dB (N = 36); KM group, 63.8 +/- 1.1 dB (N = 34); DHSM group, 60.0 +/- 1.2 dB (N = 29); NM group, 62.4 +/- 1.2 dB (N = 24). Auditory thresholds of drug-treated groups were significantly higher than that of the saline group. However, no increase in the auditory threshold of the mother rat was detected after treatment with aminoglycosides. In addition, the experimental procedure of the shuttle box method is very easy, and the auditory threshold of a large number of rats could be measured in a short period. These findings suggest that this method is a very useful one for screening for auditory impairment induced by prenatal drug treatment in rat offspring.

  10. Developmental cigarette smoke exposure II: Hippocampus proteome and metabolome profiles in adult offspring.

    PubMed

    Neal, Rachel E; Jagadapillai, Rekha; Chen, Jing; Webb, Cindy; Stocke, Kendall; Greene, Robert M; Pisano, M Michele

    2016-10-01

    Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. Utilizing a murine experimental model of "active" inhalation exposure to cigarette smoke spanning the entirety of gestation and through human third trimester equivalent hippocampal development [gestation day 1 (GD1) through postnatal day 21 (PD21)], we examined hippocampus proteome and metabolome alterations present at a time during which developmental cigarette smoke exposure (CSE)-induced behavioral and cognitive impairments are evident in adult animals from this model system. At six month of age, carbohydrate metabolism and lipid content in the hippocampus of adult offspring remained impacted by prior exposure to cigarette smoke during the critical period of hippocampal ontogenesis indicating limited glycolysis. These findings indicate developmental CSE-induced systemic glucose availability may limit both organism growth and developmental trajectory, including the capacity for learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats.

    PubMed

    Kong, Lu; Tang, Meng; Zhang, Ting; Wang, Dayong; Hu, Ke; Lu, Weiqi; Wei, Chao; Liang, Geyu; Pu, Yuepu

    2014-11-17

    Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs) is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH) and luteinizing hormone (LH), and lowered etradiol (E2) serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T) diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions.

  12. Nickel Nanoparticles Exposure and Reproductive Toxicity in Healthy Adult Rats

    PubMed Central

    Kong, Lu; Tang, Meng; Zhang, Ting; Wang, Dayong; Hu, Ke; Lu, Weiqi; Wei, Chao; Liang, Geyu; Pu, Yuepu

    2014-01-01

    Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs) is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH) and luteinizing hormone (LH), and lowered etradiol (E2) serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T) diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions. PMID:25407529

  13. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  14. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner

    PubMed Central

    Ramírez-López, María Teresa; Vázquez, Mariam; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosario Noemi; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Bindila, Laura

    2017-01-01

    Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid

  15. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner.

    PubMed

    Ramírez-López, María Teresa; Vázquez, Mariam; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosario Noemi; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Bindila, Laura; Rodríguez de Fonseca, Fernando

    2017-01-01

    Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid

  16. Renal structure and function evaluation of rats from dams that received increased sodium intake during pregnancy and lactation submitted or not to 5/6 nephrectomy.

    PubMed

    Marin, Evelyn Cristina Santana; Balbi, Ana Paula Coelho; Francescato, Heloísa Della Coletta; Alves da Silva, Cleonice Giovanini; Costa, Roberto Silva; Coimbra, Terezila M

    2008-01-01

    Adult rats submitted to perinatal salt overload presented renin-angiotensin system (RAS) functional disturbances. The RAS contributes to the renal development and renal damage in a 5/6 nephrectomy model. The aim of the present study was to analyze the renal structure and function of offspring from dams that received a high-salt intake during pregnancy and lactation. We also evaluated the influence of the prenatal high-salt intake on the evolution of 5/6 nephrectomy in adult rats. A total of 111 sixty-day-old rat pups from dams that received saline or water during pregnancy and lactation were submitted to 5/6 nephrectomy (nephrectomized) or to a sham operation (sham). The animals were killed 120 days after surgery, and the kidneys were removed for immunohistochemical and histological analysis. Systolic blood pressure (SBP), albuminuria, and glomerular filtration rate (GFR) were evaluated. Increased SBP, albuminuria, and decreased GFR were observed in the rats from dams submitted to high-sodium intake before surgery. However, there was no difference in these parameters between the groups after the 5/6 nephrectomy. The scores for tubulointerstitial lesions and glomerulosclerosis were higher in the rats from the sham saline group compared to the same age control rats, but there was no difference in the histological findings between the groups of nephrectomized rats. In conclusion, our data showed that the high-salt intake during pregnancy and lactation in rats leads to structural changes in the kidney of adult offspring. However, the progression of the renal lesions after 5/6 nephrectomy was similar in both groups.

  17. Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring.

    PubMed

    Kesby, James P; O'Loan, Jonathan C; Alexander, Suzanne; Deng, Chao; Huang, Xu-Feng; McGrath, John J; Eyles, Darryl W; Burne, Thomas H J

    2012-04-01

    Developmental vitamin D (DVD) deficiency is a candidate risk factor for developing schizophrenia in humans. In rodents DVD deficiency induces subtle changes in the way the brain develops. This early developmental insult leads to select behavioural changes in the adult, such as an enhanced response to amphetamine-induced locomotion in female DVD-deficient rats but not in male DVD-deficient rats and an enhanced locomotor response to the N-methyl-D: -aspartate (NMDA) receptor antagonist, MK-801, in male DVD-deficient rats. However, the response to MK-801-induced locomotion in female DVD-deficient rats is unknown. Therefore, the aim of the current study was to further examine this behavioural finding in male and female rats and assess NMDA receptor density. DVD-deficient Sprague Dawley rats were assessed for locomotion, ataxia, acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR to multiple doses of MK-801. The NMDA receptor density in relevant brain regions was assessed in a drug-naive cohort. DVD deficiency increased locomotion in response to MK-801 in both sexes. DVD-deficient rats also showed an enhanced ASR compared with control rats, but PPI was normal. Moreover, DVD deficiency decreased NMDA receptor density in the caudate putamen of both sexes. These results suggest that a transient prenatal vitamin D deficiency has a long-lasting effect on NMDA-mediated signalling in the rodent brain and may be a plausible candidate risk factor for schizophrenia and other neuropsychiatric disorders.

  18. Beneficial effects of co-treatment with dextromethorphan on prenatally methadone-exposed offspring.

    PubMed

    Chiang, Yao-Chang; Ye, Li-Ci; Hsu, Kuei-Ying; Liao, Chien-Wei; Hung, Tsai-Wei; Lo, Wan-Jou; Ho, Ing-Kang; Tao, Pao-Luh

    2015-03-20

    Heroin use among young women of reproductive age has drawn much attention around the world. Although methadone is widely used in maintenance therapy for heroin/morphine addiction, the long-term effects of prenatal exposure to methadone and preventative therapy remain unclear. For revealing this question, female pregnant Sprague-Dawley rats were sub-grouped to receive (1) vehicle, (2) methadone 5 mg/kg at embryonic day 3 (E3) and then 7 mg/kg from E4 to E20, (3) dextromethorphan (DM) 3 mg/kg, and (4) methadone + DM (the rats received methadone followed by DM treatment), subcutaneously, twice a day from E3 to E20. The body weight, natural withdrawal, pain sensitivity, ED50, conditioned place preference and water maze were conducted at different postnatal stages (P1 to P79) of offspring. The quantitative real-time RT-PCR and electrophysiology were also used to measure the gene expression of opioid receptors in the spinal cord and changes of LTP/LTD in the hippocampus, separately. Prenatal exposure to methadone or DM did not affect survival rate, body weight, water maze and LTP or LTD of offspring. However, prenatal methadone significantly increased the withdrawal symptoms, pain sensitivity, addiction liability and decreased the mRNA expression of pain related opioid receptors. Co-administration of DM with methadone in the maternal rats effectively prevented these abnormalities of offspring induced by methadone. Our study clearly showed that co-administration of dextromethorphan with methadone in the maternal rats prevented the adverse effects induced by prenatal methadone exposure. It implies that dextromethorphan may have a potential to be used in combination with methadone for maintenance treatment in pregnant heroin-addicted women to prevent the adverse effects induced by methadone on offspring.

  19. Maternal exposure to environmental enrichment before and during gestation influences behaviour of rat offspring in a sex-specific manner.

    PubMed

    Zuena, Anna Rita; Zinni, Manuela; Giuli, Chiara; Cinque, Carlo; Alemà, Giovanni Sebastiano; Giuliani, Alessandro; Catalani, Assia; Casolini, Paola; Cozzolino, Roberto

    2016-09-01

    The beneficial effects of Environmental Enrichment (EE) applied immediately after weaning or even in adulthood have been widely demonstrated. Less is known about the possible changes in behaviour and brain development of the progeny following the exposure of dams to EE. In order to further investigate this matter, female rats were reared in EE for 12weeks, from weaning until delivery. After having confirmed the presence of relevant behavioural effects of EE, both control and EE females underwent mating. Maternal behaviour was observed and male and female offspring were then administered a battery of behavioural test at different ages. EE mothers showed a decreased frequency of total nursing and, during the first 2days of lactation, an increase in licking/grooming behaviour. Maternal exposure to EE affected offspring behaviour in a sex-specific manner: social play behaviour and anxiety-like behaviour were increased in males but not in females and learning ability was improved only in females. As a general trend, maternal EE had a marked influence on motility in male and female offspring in both locomotor activity and swimming speed. Overall, this study highlights the importance of environmental stimulation, not only in the animals directly experiencing EE, but for their progeny too, opening the way to new hypothesis on the heritability mechanisms of behavioural traits. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Social behavior impairment in offspring exposed to maternal seizures in utero.

    PubMed

    Novaes, Gisane Faria; Amado, Debora; Scorza, Fulvio Alexandre; Cysneiros, Roberta Monterazzo

    2012-06-01

    Human and animal models have demonstrated that maternal seizures in utero could be deleterious to the development of the offspring. This study focused on the social behavior of offspring exposed to seizures in utero. A pilocarpine model of temporal lobe epilepsy was induced in female Wistar rats that were mated after the first spontaneous seizure. Early after birth, pups from an epileptic mother were reared by a control mother. To evaluate the influence of the adoption process, two other groups were added: rat pups from control mothers cross-fostered with other control mothers, and rat pups reared by their birth mother. Animals exposed to seizures in utero showed impaired social behavior with no signs of anxiety-like behavior. This study demonstrated that epileptic seizures during pregnancy could be harmful to brain development and may increase the risk of developing neurodevelopmental disorders. The mechanisms underlying the abnormalities of social behavior are not well understood, and further studies in this field are warranted.

  1. Predator-Specific Effects on Incubation Behaviour and Offspring Growth in Great Tits

    PubMed Central

    Basso, Alessandra; Richner, Heinz

    2015-01-01

    In birds, different types of predators may target adults or offspring differentially and at different times of the reproductive cycle. Hence they may also differentially influence incubation behaviour and thus embryonic development and offspring phenotype. This is poorly understood, and we therefore performed a study to assess the effects of the presence of either a nest predator or a predator targeting adults and offspring after fledging on female incubation behaviour in great tits (Parus major), and the subsequent effects on offspring morphological traits. We manipulated perceived predation risk during incubation using taxidermic models of two predators: the short-tailed weasel posing a risk to incubating females and nestlings, and the sparrowhawk posing a risk to adults and offspring after fledging. To disentangle treatment effects induced during incubation from potential carry-over effects of parental behaviour after hatching, we cross-fostered whole broods from manipulated nests with broods from unmanipulated nests. Both predator treatments lead to a reduced on- and off-bout frequency, to a slower decline in on-bout temperature as incubation advanced and showed a negative effect on nestling body mass gain. At the current state of knowledge on predator-induced variation in incubation patterns alternative hypotheses are feasible, and the findings of this study will be useful for guiding future research. PMID:25830223

  2. Probable gamma-aminobutyric acid involvement in bisphenol A effect at the hypothalamic level in adult male rats.

    PubMed

    Cardoso, Nancy; Pandolfi, Matías; Lavalle, Justina; Carbone, Silvia; Ponzo, Osvaldo; Scacchi, Pablo; Reynoso, Roxana

    2011-12-01

    The aim of the present study was to investigate the effects of bisphenol A (BPA) on the neuroendocrine mechanism of control of the reproductive axis in adult male rats exposed to it during pre- and early postnatal periods. Wistar mated rats were treated with either 0.1% ethanol or BPA in their drinking water until their offspring were weaned at the age of 21 days. The estimated average dose of exposure to dams was approximately 2.5 mg/kg body weight per day of BPA. After 21 days, the pups were separated from the mother and sacrificed on 70 day of life. Gn-RH and gamma-aminobutyric acid (GABA) release from hypothalamic fragments was measured. LH, FSH, and testosterone concentrations were determined, and histological and morphometrical studies of testis were performed. Gn-RH release decreased significantly, while GABA serum levels were markedly increased by treatment. LH serum levels showed no changes, and FSH and testosterone levels decreased significantly. Histological studies showed abnormalities in the tubular organization of the germinal epithelium. The cytoarchitecture of germinal cells was apparently normal, and a reduction of the nuclear area of Leydig cells but not their number was observed. Taken all together, these results provide evidence of the effect caused by BPA on the adult male reproductive axis when exposed during pre- and postnatal period. Moreover, our findings suggest a probable GABA involvement in its effect at the hypothalamic level.

  3. Effect of maternal diabetes on female offspring

    PubMed Central

    Martins, Juliana de Oliveira; Panício, Maurício Isaac; Dantas, Marcos Paulo Suehiro; Gomes, Guiomar Nascimento

    2014-01-01

    Objective To evaluate the effect of maternal diabetes on the blood pressure and kidney function of female offspring, as well as if such changes exacerbate during pregnancy. Methods Diabetes mellitus was induced in female rats with the administration of streptozotocin in a single dose, one week before mating. During pregnancy, blood pressure was measured through plethysmography. On the 20th day of pregnancy, the animals were placed for 24 hours in metabolic cages to obtain urine samples. After the animals were removed from the cages, blood samples were withdrawn. One month after pregnancy, new blood and urine sample were collected. Kidney function was evaluated through proteinuria, plasma urea, plasma creatinine, creatinine excretion rate, urinary flow, and creatinine clearance. Results The female offspring from diabetic mothers showed an increase in blood pressure, and a decrease in glomerular filtration rate in relation to the control group. Conclusion Hyperglycemia during pregnancy was capable of causing an increase in blood pressure and kidney dysfunction in the female offspring. PMID:25628190

  4. Protective role of taurine in developing offspring affected by maternal alcohol consumption

    PubMed Central

    Ananchaipatana-Auitragoon, Pilant; Ananchaipatana-Auitragoon, Yutthana; Siripornpanich, Vorasith; Kotchabhakdi, Naiphinich

    2015-01-01

    Maternal alcohol consumption is known to affect offspring growth and development, including growth deficits, physical anomalies, impaired brain functions and behavioral disturbances. Taurine, a sulfur-containing amino acid, is essential during development, and continually found to be protective against neurotoxicity and various tissue damages including those from alcohol exposure. However, it is still unknown whether taurine can exert its protection during development of central nervous system and whether it can reverse alcohol damages on developed brain later in life. This study aims to investigate protective roles of taurine against maternal alcohol consumption on growth and development of offspring. The experimental protocol was conducted using ICR-outbred pregnant mice given 10 % alcohol, with or without maternal taurine supplementation during gestation and lactation. Pregnancy outcomes, offspring mortality and successive bodyweight until adult were monitored. Adult offspring is supplemented taurine to verify its ability to reverse damages on learning and memory through a water maze task performance. Our results demonstrate that offspring of maternal alcohol exposure, together with maternal taurine supplementation show conserved learning and memory, while that of offspring treated taurine later in life are disturbed. Taurine provides neuroprotective effects and preserves learning and memory processes when given together with maternal alcohol consumption, but not shown such effects when given exclusively in offspring. PMID:26648819

  5. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    PubMed

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our

  6. Prenatal lipopolysaccharide exposure affects maternal behavior and male offspring sexual behavior in adulthood.

    PubMed

    Bernardi, Maria M; Kirsten, Thiago B; Matsuoka, Suzana M; Teodorov, Elizabeth; Habr, Soraya F; Penteado, Sandra H W N; Palermo-Neto, João

    2010-01-01

    This study investigates the effects of prenatal lipopolysaccharide (LPS) exposure on the maternal behavior of pregnant rats and the physical development and sexual behavior of their male offspring in adulthood. For two experiments, pregnant rats were injected with LPS (250 microg/kg, i.p.) on gestation day (GD) 21. In the first experiment, the maternal behavior (postnatal day, PND, 6) and the dam's open-field general activity (PND7) were evaluated. In the second experiment, the maternal pre- and postnatal parameters, the pup's development, the offspring's sexual behavior in adulthood, and the pup's organ weights were assessed. Compared to the control group, the LPS-treated dams presented reduced maternal behavior, decreased general activity, a smaller body weight difference between GD21 and PND1, a greater number of perinatal deaths, and smaller litters. For the male pups, LPS treatment resulted in a decreased body weight on PND2, whereas the anogenital distance and the day of testis descent were not modified. The male sexual behavior was impaired by prenatal LPS. Particularly the number of ejaculating animals was reduced. The testis weight was also lower in the prenatally LPS-treated rats than in the control rats. We propose that prenatal LPS exposure on GD21 acts as an imprinting factor that interferes with the programming of brain sexual determination in offspring. Copyright 2009 S. Karger AG, Basel.

  7. Effects of Vitamin D Restricted Diet Administered during Perinatal and Postnatal Periods on the Penis of Wistar Rats

    PubMed Central

    Fernandes-Lima, Flávia; Gregório, Bianca M.; Nascimento, Fernanda A. M.; Costa, Waldemar S.; Sampaio, Francisco J. B.

    2018-01-01

    Vitamin D deficiency is common in pregnant women and infants. The present study aimed to investigate the effects of vitamin D restricted diet on the Wistar rats offspring penis morphology. Mother rats received either standard diet (SC) or vitamin D restricted (VitD) diet. At birth, offspring were divided into SC/SC (from SC mothers, fed with SC diet) and VitD/VitD (from VitD mothers, fed with VitD diet). After euthanasia the penises were processed for histomorphometric analysis. The VitD/VitD offspring displayed metabolic changes and reduction in the cross-sectional area of the penis, corpus cavernosum, tunica albuginea, and increased area of the corpus spongiosum. The connective tissue, smooth muscle, and cell proliferation percentages were greater in the corpus cavernosum and corpus spongiosum in the VitD/VitD offspring. The percentages of sinusoidal spaces and elastic fibers in the corpus cavernosum decreased. The elastic fibers in the tunica albuginea of the corpus spongiosum in the VitD/VitD offspring were reduced. Vitamin D restriction during perinatal and postnatal periods induced metabolic and structural changes and represented important risk factors for erectile dysfunction in the penis of the adult offspring. These findings suggest that vitamin D is an important micronutrient in maintaining the cytoarchitecture of the penis. PMID:29850540

  8. Liver antioxidant stores protect the brain from electromagnetic radiation (900 and 1800 MHz)-induced oxidative stress in rats during pregnancy and the development of offspring.

    PubMed

    Çetin, Hasan; Nazıroğlu, Mustafa; Çelik, Ömer; Yüksel, Murat; Pastacı, Nural; Özkaya, Mehmet Okan

    2014-12-01

    The present study determined the effects of mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) exposure on oxidative stress in the brain and liver as well as the element levels in growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their offspring were equally divided into three different groups: the control, 900 MHz, and 1800 MHz groups. The 900 MHz and 1800 MHz groups were exposed to EMR for 60 min/d during pregnancy and neonatal development. At the 4th, 5th, and 6th weeks of the experiment, brain samples were obtained. Brain and liver glutathione peroxidase activities, as well as liver vitamin A and β-carotene concentrations decreased in the EMR groups, although brain iron, vitamin A, and β-carotene concentrations increased in the EMR groups. In the 6th week, selenium concentrations in the brain decreased in the EMR groups. There were no statistically significant differences in glutathione, vitamin E, chromium, copper, magnesium, manganese, and zinc concentrations between the three groups. EMR-induced oxidative stress in the brain and liver was reduced during the development of offspring. Mobile phone-induced EMR could be considered as a cause of oxidative brain and liver injury in growing rats.

  9. Uterine Artery Flow and Offspring Growth in Long-Evans Rats following Maternal Exposure to Ozone during Implantation

    PubMed Central

    Dye, Janice A.; Ledbetter, Allen D.; Schladweiler, Mette C.; Richards, Judy H.; Snow, Samantha J.; Wood, Charles E.; Henriquez, Andres R.; Thompson, Leslie C.; Farraj, Aimen K.; Hazari, Mehdi S.; Kodavanti, Urmila P.

    2017-01-01

    Background: Epidemiological studies suggest that increased ozone exposure during gestation may compromise fetal growth. In particular, the implantation stage of pregnancy is considered a key window of susceptibility for this outcome. Objectives: The main goals of this study were to investigate the effects of short-term ozone inhalation during implantation on fetal growth outcomes and to explore the potential for alterations in uterine arterial flow as a contributing mechanism. Methods: Pregnant Long-Evans rats were exposed to filtered air, 0.4 ppm ozone, or 0.8 ppm ozone for 4 h/d during implantation, on gestation days (GD) 5 and 6. Tail cuff blood pressure and uterine artery Doppler ultrasound were measured on GD 15, 19, and 21. To assess whether peri-implantation ozone exposure resulted in sustained pulmonary or systemic health effects, bronchoalveolar lavage fluid, serum metabolic and inflammatory end points, and kidney histopathology were evaluated in dams at GD 21. Growth parameters assessed in GD 21 offspring included fetal weight, length, and body composition. Results: Measures of maternal uterine arterial flow, including resistance index and mean velocity, indicated that resistance increased between GD 15 and GD 21 in 0.8 ppm dams but decreased in controls, although absolute values were similar in both groups on GD 21. Ozone-exposed dams also had lower serum glucose and higher free fatty acid concentrations than controls on GD 21. On GD 21, both male and female offspring had lower body weight than controls, and pooled subsets of 3 male and 3 female fetuses from litters exposed to 0.8 ppm ozone had lower lean mass and fat mass than pooled control offspring. Conclusions: Findings from our experimental model suggest that the offspring of dams exposed to ozone during implantation had reduced growth compared with controls, possibly as a consequence of ozone-induced vascular dysfunction. https://doi.org/10.1289/EHP2019 PMID:29269335

  10. [Subcutaneous transplants of juvenile rat testicular tissues continue to develop and secret androgen in adult rats].

    PubMed

    Yu, Zhou; Wang, Tong; Cui, Jiangbo; Song, Yajuan; Ma, Xianjie; Su, Yingjun; Peng, Pai

    2017-12-01

    Objective To explore the effects of subcutaneous microenvironment of adult rats on survival, development and androgen secretion of Leydig cells of transplanted juvenile rat testis. Methods Healthy adult SD rats were randomly divided into control group, sham group, castrated group and non-castrated group. Rats in the control group were kept intact, no testis was transplanted subcutaneously after adult recipients were castrated in the sham group; 5-7-day juvenile rat testes were transplanted subcutaneously in the castrated group, with one testis per side; Testes resected from juvenile rats were directly transplanted subcutaneously on both sides of the recipients in the non-castrated group. The grafts were obtained and weighed 4 weeks later. Then the histological features of the grafts were examined by HE staining; the expression and distribution of hydroxysteroid 17-beta dehydrogenase 1 (HSD-17β1) were investigated by immunohistochemistry; and the serum androgen level was determined by ELISA. Results The average mass of grafts obtained from the castrated group was significantly higher than that of the non-castrated group. Immunohistochemistry indicated that Leydig cells were visible in the tissues from both the castrated and non-castrated groups, but the number of HSD-17β1-posotive cells in the castrated group was larger than that in the non-castrated group. ELISA results showed that the serum androgen level was higher in the control group and non-castrated group than in the sham group and castrated group, and compared with the sham group, the serum androgen level in the castrated group was significantly higher. Conclusion The juvenile rat testis subcutaneously transplanted could further develop under the adult recipient rat skin, and the Leydig cells of grafts harbored the ability to produce and secret androgen.

  11. Parental and offspring associations of the metabolic syndrome in the Fels Longitudinal Study123

    PubMed Central

    Sabo, Roy T; Lu, Zheng; Deng, Xiaoyan; Ren, Chunfeng; Daniels, Stephen; Arslanian, Silva; Sun, Shumei S

    2012-01-01

    Background: Evidence shows that some causes of the metabolic syndrome (MS) begin in childhood, which could indicate a familial association, through either genetic inheritance or cohabitation. Objective: This study examined associations between parents and adult offspring diagnoses of the MS and its risk factors. Design: Measurements were obtained from adult participants and their adult offspring enrolled in the Fels Longitudinal Study, with simultaneous waist circumference, systolic blood pressure (SBP), diastolic blood pressure (DBP), triglycerides, HDL, and glucose observations used for diagnosis. On the basis of repeated measurements (in some cases), adult participants were classified as having the MS at least once or as never having the MS. Chi-square tests, ORs, and mixed-effects models were used to study familial associations. Results: Maternal (OR: 2.5; 95% CI: 1.1, 5.5) and paternal (OR: 4.1; 95% CI: 1.4, 12.1) MS classifications were significantly associated with MS classification in sons. MS classification in mothers and daughters (OR: 2.7; 95% CI: 0.9, 8.7; P = 0.08) was similar to that in sons but was not significant, whereas fathers and daughters were not associated (OR: 1.1; 95% CI: 0.4, 3.5). Maternal MS diagnoses were significantly and positively associated with triglycerides in male offspring and were significantly associated with SBP, DBP, and triglycerides in females. Paternal diagnoses were significantly associated only with DBP and HDL in male offspring. Conclusions: Parental MS diagnosis is significantly associated with MS diagnosis in adult male offspring, and adverse levels of certain risk factors are associated between offspring and parents, although these associations vary across risk factors and child sex. PMID:22811445

  12. Inhibition of 5α-reductase activity in late pregnancy decreases gestational length and fecundity and impairs object memory and central progestogen milieu of juvenile rat offspring

    PubMed Central

    Paris, Jason J.; Brunton, Paula J.; Russell, John A.; Walf, Alicia A.; Frye, Cheryl A.

    2011-01-01

    Psychological, physical, and/or immune stressors during pregnancy are associated with negative birth outcomes, such as preterm birth and developmental abnormalities. In rodents, prenatal stressors can alter the expression of 5α-reductase enzymes in the brain and may influence cognitive function and anxiety-type behaviour in the offspring. Progesterone plays a critical role in maintaining gestation. Here it was hypothesised that 5α-reduced progesterone metabolites influence birth outcomes and/or the cognitive and neuroendocrine function of the offspring. 5α-reduced steroids were manipulated in pregnant Long-Evans rats via administration of vehicle, the 5α-reduced, neuroactive metabolite of progesterone, 5α-pregnan-3α-ol-20-one (3α,5α-THP, allopregnanolone; 10 mg/kg/ml, SC), or the 5α-reductase inhibitor, finasteride (50 mg/kg/ml, SC), daily from gestational days 17–21. Compared to vehicle or 3α,5α-THP treatment, finasteride, significantly reduced the length of gestation and the number of pups per litter found in the dams’ nests after parturition. The behaviour of the offspring in hippocampus-dependent tasks (object recognition, open field) was examined on post-natal days 28–30. Compared to vehicle-exposed controls, prenatal 3α,5α-THP treatment significantly increased motor behaviour in females compared to males, decreased progesterone content in the medial prefrontal cortex (mPFC) and diencephalon, increased 3α,5α-THP and 17β-estradiol content in the hippocampus, mPFC, and diencephalon, and significantly increased serum corticosterone concentrations in males and females. Prenatal finasteride treatment significantly reduced object recognition, decreased hippocampal 3α,5α-THP content, increased progesterone concentration in the mPFC and diencephalon, and increased serum corticosterone concentration in female (but not male) juvenile offspring, compared with vehicle-exposed controls. Thus, inhibiting formation of 5α-reduced steroids during late

  13. COMPARING IMMUNOTOXICITY IN RATS AFTER IN UTERO VERSUS AN ADULT EXPOSURE: IS DEVELOPMENTAL EXPOSURE MORE SENSITIVE?

    EPA Science Inventory

    Using a known immunosuppresant, dexamethasone (DEX), pregnant Sprague Dawley (SD) rats were given subcutaneous (s.c.) injections of DEX (0.0, 0.0375, 0.075, 0.15, 0.3 mg/kg) during gestation days 6 to 21. Both male and female offspring were tested for immune dysfunction. In a ...

  14. Effect of fish oil and coconut fat supplementation on depressive-type behavior and corticosterone levels of prenatally stressed male rats.

    PubMed

    Borsonelo, Elizabethe Cristina; Suchecki, Deborah; Galduróz, José Carlos Fernandes

    2011-04-18

    Prenatal stress (PNS) during critical periods of brain development has been associated with numerous behavioral and/or mood disorders in later life. These outcomes may result from changes in the hypothalamic-pituitary-adrenal (HPA) axis activity, which, in turn, can be modulated by environmental factors, such as nutritional status. In this study, the adult male offspring of dams exposed to restraint stress during the last semester of pregnancy and fed different diets were evaluated for depressive-like behavior in the forced swimming test and for the corticosterone response to the test. Female Wistar rats were allocated to one of three groups: regular diet, diet supplemented with coconut fat or with fish oil, offered during pregnancy and lactation. When pregnancy was confirmed, they were distributed into control or stress groups. Stress consisted of restraint and bright light for 45 min, three times per day, in the last week of pregnancy. The body weight of the adult offspring submitted to PNS was lower than that of controls. In the forced swimming test, time of immobility was reduced and swimming was increased in PNS rats fed fish oil and plasma corticosterone levels immediately after the forced swimming test were lower in PNS rats fed regular diet than their control counterparts; this response was reduced in control rats whose mothers were fed fish oil and coconut fat. The present results indicate that coconut fat and fish oil influenced behavioral and hormonal responses to the forced swimming test in both control and PNS adult male rats. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Disturbed nitric oxide and homocysteine production are involved in the increased risk of cardiovascular diseases in the F1 offspring of maternal obesity and malnutrition.

    PubMed

    Moussa, Y Y; Tawfik, S H; Haiba, M M; Saad, M I; Hanafi, M Y; Abdelkhalek, T M; Oriquat, G A; Kamel, M A

    2017-06-01

    The present study aimed to evaluate the changes in levels of different independent risk factors for vascular diseases in the rat offspring of maternal obesity and malnutrition as maternal health disturbances are thought to have direct consequences on the offspring health. The effect of postnatal diet on the offspring was also assessed. Three groups of female Wistar rats were used (control, obese and malnourished). After the pregnancy and delivery, the offspring were weaned to control diet or high-caloric (HCD) diet and followed up for 30 weeks. Every 5 weeks postnatal, 20 pups (10 males and 10 females) of each subgroup were sacrificed after overnight fasting, the blood sample was obtained, and the rats were dissected out to obtain heart muscle. The following parameters were assessed; lipid profile, NEFA, homocysteine (Hcy), nitric oxide end product (NOx) and myocardial triglyceride content. Maternal obesity and malnutrition caused significant elevation in the body weight, triglycerides, NEFA, Hcy and NOx in the F1 offspring especially those maintained under HCD. Also, the male offspring showed more prominent changes than female offspring. Maternal malnutrition and obesity may increase the risk of the development of cardiovascular diseases in the offspring, especially the male ones.

  16. Long-term neurocognitive dysfunction in offspring via NGF/ ERK/CREB signaling pathway caused by ketamine exposure during the second trimester of pregnancy in rats.

    PubMed

    Li, Yanan; Li, Xinran; Guo, Cen; Li, Lina; Wang, Yuxin; Zhang, Yiming; Chen, Yu; Liu, Wenhan; Gao, Li

    2017-05-09

    Early life exposure to ketamine caused neurohistopathologic changes and persistent cognitive dysfunction. For this study, a pregnant rat model was developed to investigate neurocognitive effects in the offspring, following ketamine exposure during the second trimester. Pregnant rats on gestational day 14 (equal to midtrimester pregnancy in humans), intravenously received 200 mg/kg ketamine for 3 h. Their behavior was tested (Morris water maze, odor recognition test, and fear conditioning) at postnatal days (P25-30). Furthermore, hippocampal morphology of the offspring (P30) was examined via Nissl staining and hippocampal dendritic spine density was determined via Golgi staining. The hippocampal protein levels of nerve growth factor (NGF), extracellular signal-regulated kinase (ERK), phosphorylated-ERK (p-ERK), cyclic adenosine monophosphate response element-binding (CREB), p-CREB, synaptophysin (SYP), synapsin (SYN), and postsynaptic density-95 (PSD95) were measured via western blot. Additionally, SCH772984 (an ERK inhibitor) was used to evaluate both role and underlying mechanism of the ERK pathway in PC12 cells. We found that ketamine caused long-term neurocognitive dysfunction, reduced the density of the dendritic spin, caused neuronal loss, and down-regulated the expression of NGF, ERK, p-ERK, mitogen, and stress-activated protein kinase (MSK), CREB, p-CREB, SYP, SYN, and PSD95 in the hippocampus. These results suggest that ketamine induced maternal anesthesia during period of the fetal brain development can cause long-term neurocognitive dysfunction in the offspring, which likely happens via inhibition of the NGF-ERK-CREB pathway in the hippocampus. Our results highlight the central role of ERK in neurocognition.

  17. Prenatal Stress Induces Long-Term Effects in Cell Turnover in the Hippocampus-Hypothalamus-Pituitary Axis in Adult Male Rats

    PubMed Central

    Baquedano, Eva; García-Cáceres, Cristina; Diz-Chaves, Yolanda; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Garcia-Segura, Luis M.; Argente, Jesús; Chowen, Julie A.; Frago, Laura M.

    2011-01-01

    Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations. PMID:22096592

  18. Maternal low protein diet leads to placental angiogenic compensation via dysregulated M1/M2 macrophages and TNFa expression in Sprague-Dawley rats

    USDA-ARS?s Scientific Manuscript database

    A maternal low-protein (LP) diet results in low birth weight, increased offspring rapid adipose tissue catch-up growth, adult obesity, and insulin resistance in Sprague-Dawley rats. The placenta functions to fulfill the fetus’ nutrient demands. Placental function is dependent on regulation of immune...

  19. N-hexane inhalation during pregnancy alters DNA promoter methylation in the ovarian granulosa cells of rat offspring.

    PubMed

    Li, Hong; Liu, Jin; Sun, Yan; Wang, Wenxiang; Weng, Shaozheng; Xiao, Shihua; Huang, Huiling; Zhang, Wenchang

    2014-08-01

    The N-hexane-induced impact on the reproductive system of the offspring of animals exposed to n-hexane has caused great concern. Pregnant Wistar rats inhaled 500, 2 500 or 12 500 ppm n-hexane during gestational days 1-20. Clinical characteristics and developmental indices were observed. Ovarian granulosa cells were extracted from F1 rats, the number of follicles was determined in ovarian slices and promoter methylation was assessed using MeDIP-Chip. Several methods were used to analyze the scanned genes, including the Gene Ontology Consortium tools, the DAVID Functional Annotation Clustering Tool, hierarchical clustering and KEGG pathway analysis. The results indicated that the live pups/litter ratio was significantly lowest in the 12 500 ppm group. A significant decrease in secondary follicles and an increase in atresic follicles were observed in the 12 500 ppm group. The number of shared demethylated genes was higher than that of the methylated genes, and the differentially methylated genes were enriched in cell death and apoptosis, cell growth and hormone regulation. The methylation profiles of the offspring from the 500 ppm and control groups were different from those of the 2500 and 12 500 ppm groups. Furthermore, the methylation status of genes in the PI3K-Akt and NF-kappa B signaling pathways was changed after n-hexane exposure. The Cyp11a1, Cyp17a1, Hsd3b1, Cyp1a1 and Srd5a1 promoters were hypermethylated in the n-hexane-exposed groups. These results indicate that the developmental toxicity of n-hexane in F1 ovaries is accompanied by the altered methylation of promoters of genes associated with apoptotic processes and steroid hormone biosynthesis. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Cross-fostering reduces obesity induced by early exposure to monosodium glutamate in male rats.

    PubMed

    Miranda, Rosiane Aparecida; da Silva Franco, Claudinéia Conationi; de Oliveira, Júlio Cezar; Barella, Luiz Felipe; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; Pavanello, Audrei; da Conceição, Ellen Paula Santos; Torrezan, Rosana; Armitage, James; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar; de Freitas Mathias, Paulo Cezar; Vieira, Elaine

    2017-01-01

    Maternal obesity programmes a range of metabolic disturbances for the offspring later in life. Moreover, environmental changes during the suckling period can influence offspring development. Because both periods significantly affect long-term metabolism, we aimed to study whether cross-fostering during the lactation period was sufficient to rescue a programmed obese phenotype in offspring induced by maternal obesity following monosodium L-glutamate (MSG) treatment. Obesity was induced in female Wistar rats by administering subcutaneous MSG (4 mg/g body weight) for the first 5 days of postnatal life. Control and obese female rats were mated in adulthood. The resultant pups were divided into control second generation (F 2 ) (CTLF 2 ), MSG-treated second generation (F 2 ) (MSGF 2 ), which suckled from their CTL and MSG biological dams, respectively, or CTLF 2 -CR, control offspring suckled by MSG dams and MSGF 2 -CR, MSG offspring suckled by CTL dams. At 120 days of age, fat tissue accumulation, lipid profile, hypothalamic leptin signalling, glucose tolerance, glucose-induced, and adrenergic inhibition of insulin secretion in isolated pancreatic islets were analysed. Maternal MSG-induced obesity led to an obese phenotype in male offspring, characterized by hyperinsulinaemia, hyperglycaemia, hyperleptinaemia, dyslipidaemia, and impaired leptin signalling, suggesting central leptin resistance, glucose intolerance, impaired glucose-stimulated, and adrenergic inhibition of insulin secretion. Cross-fostering normalized body weight, food intake, leptin signalling, lipid profiles, and insulinaemia, but not glucose homeostasis or insulin secretion from isolated pancreatic islets. Our findings suggest that alterations during the lactation period can mitigate the development of obesity and prevent the programming of adult diseases.